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Amsotroplc Beltraml Smoothlng and
Edge Contrast Enhancement of Gray
| Level and Color Images

R Malladl and I Ravve

Lawrence Berkeley Natlonal Laboratory:

Abstract

_ In th1s study, we re—arrange the governmg equatlon for Beltralm
B d1ffus1on ﬂow to the form, where the reaction term and the d1ffu51on

Fast leference Scherne for» el

term appear exphc1tly The reaction term leads to an edge enhance— . )

ment, and we illustrate this phenomenon by. numerlcal simulations.. -
The reaction- d1ffu51on form of the Beltrami equatmn makes it poss1ble -
to develop the uncond1t1onally stable semi- -implicit scheme for image
- filtering. The method is based on Additive Operator -Split, applied

orlglnally by Weickert for the, nonhnear diffusion flow. The values of S

~ the edge 1nd1cator function are used from the previous step in’scale;
~while the pixel values of the next. step are used to approximate the

' _Beltraml flow. ‘This approach leads to a sem1—1mphc1t linearized dif--
" ference scheme “The souices of truncatmn error are e*cammed and.
o its value is estabhshed ‘The: computatlonal t1me requlred for nnage_ ‘

o ,'.ﬁlterlng may be saved up to ten timnes or éven more dependmg on‘the =~ . e

B “value of the scale step A sumlar approach may be apphed also fo1 SR

S '-_'mean curvature ﬁow N o

. For the color 1ma.ges the edge 1nd1cator funct1on is presented by a:' B o L SRR
- f-matrm Equatrons for two-dlmensmnal images. become. coupled; and-_’_ Coen

S ‘this does not allow to apply the: AOS sphttmg 1mmed1ate1y 'However,. . Rt

Cin the p1ox1m1ty of the edge, the cross products of gradlents for color': -



.. PDE

components all vanish or almost vanish. The . Beltrami smoothing
operator becomes weakly coupled. The principal directions of the
“edge indicator matrix are normal to the edge and tangent to the edge.
Replacmg the action of this matrix on the gradient vector by an action
of its elgenva.lue, we reduce the color pr oblem to the gray level case and
show that the scalar edge indicator function for the color case is exactly
the same as that for the gray level image. Thus, the interprertation of -
~ the gray level edge enhancement mechanism caused by reaction term
of the smoothirig PDE may be applied for color images, and the fast
implicit smoothing scheme may be implemented for color images as
- well.

1 Introduction

Smoothing of noisy images presents usually a numerical integration of a
parabolic PDE in scale and two dimensions in space. This is often the most
time consumptive component of image processing algorithms. Smoothing-
technique governed by the Beltrami flow (7) proves to be the most effective

as:

e the Beltrami equation is normalized by the gradient length in power 4

o the Beltrami flow incorporates the edge indicator function, thus provid-
ing a minimum diffusion at the edges and extensive diffusion elsewhere
(inside and outside the particles)

However, on the other hand, the normalization makes the Beltrami smooth-
ing slow. The explicit numerical integration scheme is conditionally stable.
It imposes a constraint on the time step length, dependlng on the spatlal
resolution s = Az = Ay: .

At < ks* ()

It proves to be d1fﬁcult to estabhsh analytlcally the 11m1t1ng value of & for
the nonlinear smmothmg For the hnear smoothmg governed by a parabohc—
U U

U e R )

Lo



‘the ultimate time fs'_tep value'is:

Atmax = 3 s - g
o (Arz + Ay ) S _ (3)

S and thus for an equal g11d in z and Y, 1/4 in Eq ( ) The hnear

palabohc PDE (2) can be solved semi- analytlcally, applying the Fast Fourier
Transform. It can be also solved numeucally, applymg the ADI technique
' '(Altemate Directions Imp11c1t) Where the Laplaman is approxlmately split
into-a product of two operators, in z* only and 'y only. Both methods
lead to a fast computational procedure Howeve1 the l1near smoothmg has
a mumber of: disadvantages; in paricular, the governing linear PDE (2) does
not refer to the edge indicator function and the gradient length and thus can

© not enhance the edge (moreover, the edge ma’y bes dampedout). Therefore,

. for images with moderar te and strong noise, a nonhnear smoothmg is usually
' fapphed

- TheoretiEal and numerical aspects of the nOnlinear anis’otro'pie diffusion
were extensively studied by Weickert [6]. This type of smoothing should

e beapplied in cases when the edge sharpemng is required . -The formation of

~sharp steps at the edges of images was studied by G. I. Barenblatt [3]. In
this work, an asymptotic self-similar solution was obtained for a particular
case of the Beltraml equatlon leading to edge enhancement

v I_t pr_ov_es to be difﬁcult to deﬁne'an_alyticélly the ,t'hreshold _Value of k£ for

7 nonlinear smoothing, but various numerical tests revealed that for Beltrami -
B smoothmg (7), the threshold vaslue is almost’ exactly ‘the same as for the

linear diffusion (2): 'k ~ 1/4. Thus, the’ uncond1t10nally stable numerical

- fscheme becomes an 1mpo1tant matter. "In this” case, the time- step will be

~limited only by the accuracy of the solutlon and ot by the stablhty 1ssues '

o We will further show that for i image smoothlng the’ accuracy factor is- nof»- '
. __.'_.crucml but the stablh'ry threehold is usually a bottleneck R

The Addltlve Operator Sphttlng (/—\OS) Schemeq were 1nt10duced by VV -

L _3:1(1\e).t et al. [1] as unconditionally stable for the- nonhnear diffusion in 1mage. V
L i__‘v_f-processmg and -then applied by Goldenberg et al. [2]- to 1mplement a fast

”Verelon of the geodesw contour model In thls Report we' apply the AOS[ ,. |

FR



.t.echhique fo ’fhé Beltrami ﬂo'\# which differs from the nonlinear diffusion,
- but may be treated in a similar way. Applylng a dlffelent edge 1nd1cator the
AOS can be used also f01 the Curvafme ﬂow ‘

2 Sphttmg the Beltraml Operator

) Compare the nonhnear d1ffus1on ofa. gray-level i unage W1rh Beltraml flow. |
‘‘Let, U be the p_mel Value The nonhnear dlffusmn is descnbed by the followmg-'

| }}"_PDE 1,2 |
| | U = v-(VU').: 0 Uy Qh N
g Ng /) Org Oyg i

Cl where h = l is the Edge Indicator Function- a‘nd
e S S I S 5y
o : "Int.r:'o_duvci.ng (5) into (4), we obtain:

Uso (U2 +U2+1) = 4 U UL, + U, (U2 = U2 +1)

o (emery @

; \Iow conslder the Beltrami flow: -
U _'g;q: (C'; +1) — r)U,L.J[/ U + DJJ (UZ + 1)
B -

B ['/7_.

i [/rr I' 6 [Jy Ur [/va'v + l:' l:’m

Vs U, U.Usy +0, UJJ
Or g Oy g (uz +U2 + 1)

(U2 + U7+ 1)

. r .
z

5 U, gl gl
"oy g 2 2




Eq. (7) presents Beltrami flow with the mixed derivative U,, hidden. This
makes it possible to apply Additive Operator Split, to be used in the implicit
numerical scheme for individual rows and columns of pixels:

U= (4 + 4)U .. (8)

where-A, and A, are differential operators:

4o 0 (L), 1
7 9r \2g Oz 2 g Oz2 )
~ 9
4 = 9 (1 9 +_1_ﬁ '
Y 9y \29 0y 2 g Oy

3 Splitting the Curvature Flow

. e . 1
For a different edge indicator function — and
g

g = U2+ 02 +1, (10)

the splitting technique can be applied for the image smoothing with the
Curvature flow:

Uso (U2+1) = 2U,,U.U, + Uy, (U2+1)
Uz +U; +1

_ (20, 20
“9\G g dy g

4 Semi-Implicit Scheme for Beltami. Flow

(11)

Apply the backward difference to Eq. (8).
Un,+] _ U'n,
At

The superscript n+1 is related to the next time step, and n - to the present.
The subscripts 7, 7 index the location of the pixel. U7, are given values, and

= (A, + A,) U™ (12)

5



U are to be found. Applying U™ on the right side of Eq. (12) makes |
the integration scheme implicit and unconditionally stable:

[I-At(A, +A) U™ =U" (13)

where I is the identity ‘matrix. Before proceedlng in time, we calculate .
the values of the edge indicator function ¢, using the known values of U™.
Thus, the scheme is only semi- 1mp1101t Although ¢ depends actually on the
gladlent of U, we treat it like a given function of (z,y), and the nonlinear
governing PDE becomes ”quasi-linear”. '

Eq. (13) includes a large bandwidth matrix, because all equations, related
to new pixel values U™ are coupled. ‘Our aim is to decouple set (13) so
that each row and each column of pixels will be treated individually. For
this, we re-arrange the resolvmg set:

U = I-AtA+A) U a9

Of course, we are not- -going to inverse ‘rhe matrix to solve the hnear set This'
is only a S_ymbohc form used forv further derivation.” For a small value of
-At, the matrix in the brackets on-the right side of Eq. (14) is close to the
identity I. Thus, its inverse can be expanded into the Taylor series at the
proximity of I: v ’ '

[I-At{A.+A,) ] ~ I+At(A, +A,) - (15)

where only the linear term are retained and the high order terms are ne-
glected. Introducing Eq. (15) into (14), we get:

2t = I+ 2AiAz)'Un + (I +2AtA,)U” (16)
Introduce the new notations V and W'
(I+2M4)0" = V. (I4+2MA)U" = W (17)
The solution includes now two components:

V+W
2

4

Un+ilt — (18) ._



We like to get an implicit scheme, so we re-arrange Eq. ('17) to apply the
differential matrix operators A, and A, to U™*" (and not to U™).

C(I+2AtA,)7'V = UT (I+2AtA)"' W = U" (19)

Expanding the inverse matrices into the Taylor series and applying the lin-
earization for small A¢, we finally obtain the equation sets for V and W:

(I -2AtA,)V = U”" (I -2AtA,)W = U" (20)

5 Finite Difference Equation

The differential operators A, and A, in. Eq. (9) are similar, and therefore
we derive here the difference equation the difference equation for a single row
of pixels. Equation for the column of pixels is identical. Consider a row with
N + 1 pixels enumerated from 0 to N, Fig. 1.

Az

1—1 : : 1+1

i—1/2 i+1/2

Figure 1: Finite Difference Scheme

oz (21)'

In the difference equations (22 - 24) the omitted error terms are of order
O (A:EQ). '

(_@K) _ VYin - Vi (@_) _ Vi = Vi (22)
Or /.1 Az S\ 0z )y A.?: '

I 3217
ay o (L) LV
g Oz g Ox?

-1



(32V> L Vier — 2V1 + Vi

Or? Ax? (23)

2(A,V), = higigg (Vigr = Vi) — hicyp (Vi = Visa) Y Viei =2V + Vi

A2 o - Az?
N
, hisijp+hi, hi—'1.72+211i+hi+1/2 , hi+hivip .,
PAV) = = Ve - a7 T TAm
' | (25)

To av01d establishing the values of the edge 1ndlcat01 function % at the -
non-nodal pomts i—1/2 and i+ 1/2 we average the: Values of two: neighbour
nodes: - »

hi + hi—H : gi—1 + h;

i = £O(827) o = S 4 0(a?) )

Introduce Eq: (26) into (25) - |

3hl + h7+1

hi_1 + 3h; hi—y + 6h; + h;py . -
ot by, | Bt Bt by Skl )

oAz2 T A2 Vit

It may seemthat after introduction of Eq. (26) into (2 5), the overall.error
becomes huge, of order O (1), due to A2 in the denominator. However, due
to a special symmetry of Eq. (27), the total error is still of order O (A2)
For proof we expand the functions g (z) and V(z z) into the Taylor series in
the proximity of point ¢ and find the local truncation error of the difference
~operator 24,V with respect to the same differential operator. Let E¥ be the
local error for the right side of Eq. (25), and E! - the same for Eq. (27),
where superscript I stands for integer and H for half-integer. ‘

| EA -~ &*h oV N 3'@ 8V R PV Cah VY Ag?
T \ 023 Ox Jr? Ox? Oz dx® = Oat 24

B _ <,) o3h oV 3 O%h *V Oh 3V 5 h 84V) Az?

2(A,V); =

293 ar T2 a2 T2 gz o5 ") 12
(28)



As we see, the erors are of the same order, and this justifies the validity of
substitution (26). It follows from Eqgs. ( 20 and 27 )

hi—] + 3’7, h, 1+ 6]7 =+ hz+l 3hz + hi+1 n
(29)
Introduce the following notations:
| At At
z ¥

The finite difference equation comes to:

—dx ( hi-] +'3h,’) Vi—] + [1 + oy (hi—l + 6hi + hi+l )] V;
— QO (3]71 + hi-}—l) Vvi—{—l = Ur

| (31)
Eq. (31) is a linear set with the three-diagonal matrix. The similar equation

holds for W in y dimension, where j =0, 1, ... M.

— 0y (hj_] + 3hJ) Wj—l + [1 -+ Qy (hj_1 -+ 6]7] + hj+1)] VVJ'
—O(J (3]7 + hj+]) Wj+] == Un

' (32)
For the first and the last nodes, either the Dirichlet, or ’rhe Neumann bound-

ary conditions hold:

e In case of Dirichlet BC _
Vo = B; Vy = B; Wy =B, Wy =B (33

where B is a known value. We use central differences to establish the
gradient components for the edge indicator function for all internal
nodes of the grid and unilateral (forward or backward) differences at
the boundary nodes, to find the normal derivarive of the pixel function

U,.

e In case of Neumann BC we assume that the normal derivatives V, and
W, vanish along the rectangular contour of the computational box le.
we accept the mirror boundary conditions:

V_1 = Vrl and VI\I+1 = VN (34)



Establish the normal derivatives of the edge indicator function along
the vertical and horizontal boundary lines: -

8_]1_, = 2 UelUow + UyUsy
oz (1+wm+v)
, ‘ 35
Oh __ 2 U“’Umy + UyUyy ( 0)
Er 2 )7
y (1+ 02+ 02)

Along the vertical boundary =z =const, U, = 0 and U,, = 0.
Along the horizontal boundary y = const, U, = 0 and U,, = 0.
Thus, in both cases h, = 0, and the mirror boundary condition hold
not only for the pixel value, but also for the edge indicator function.
The ghost values become:

h_]A = hl . and hN—H = ]ZN_} (36)

" This affects the first. and  the last equations of Set (31):

[1 + a, (6ho+2k)]Ve — s (6ho +2h1) Vi - Uy
—a (2hy +6hy) Vo + (14 (2hy +6hy)|Vy = Uy
‘ | - (37)

6 Local Truncation Eror

Let A, and ;’iy be the difference operators (Eq. 27) that correspond to

~ where

the differential operators A, and A, (Eq. 9). Then it follows from Eq. (28):

M . Az ~ Ay?
A, L{ = A, U + L, U 51 AU =A4,U+ L, U 51 (38)
’ P*h U h O*U oh 33U U
LU =222 TROID L o200 L 9p 2™
» U ox3 Ox +3 0zx? Ox? + or Ox3 + ! ort (30)
. PBh ¢ Zh 92U dh 93U orU
PR N T T T U
: oy® Oy dy* Oy? oy Oy? oy*

10



Rearrange Eq. (20) and expand into the Tailor series for small values of At:

V= (1-204,)7 U = U™ + 28t4,U" + ARALU™ + O(AF)
W o= (1-204,) Un = U" + 28e4,U" + ABAU™ + O(AF)
| (40)
Introduce Eqgs. (18 and 38) into (40):
’ .. A2 AQ
Ut = U™ + Aj(A, + A)U™ + A <L Ut == 4+ L, U" ——y>
, 24 LY
AfQ n 3 )
+ <H(Aee + Ay) U™ + O (AF) (41)

According to the left side of Eq. (12), the numerical approximation of the
scale (time) derivative '

+n+1/2 Urt — pn ) -

Introduce Eq. (41) into Eq. (42) and assume equal qrid in 2 and y:

Az = Ay = h (43)

T n+1/2 h? At - ™m
U = (4, + 4,) U™ + 51 (Le + L) U + — (Aso+4y,) U”
i o i (44)

T n+1/2
Expand U into the Taylor series in the proximity of scale level n:

At

T n+1/2 - Tn .
Ul =U + U+ 0(ad) (45)
2
and introduce the result into Eq. (44):
zn At .- ]/'2 A n
U +—= L’rn = (-4:1: + ‘4‘1}) I:jn + i— (L:I‘ + Ly) Lf” + '—.’)1 (‘4$$+‘4yy) D ’

2 24 .
(46)
Assume that the original Beltrami PDE holds. Then it follows from Eq. (8):

[] = (/‘11‘ + Ay)2 Uv = (Az:z: + Azy' + Aym A.’/y) U (47>

11



Note that A,, and A,, are not identical:

8 (haA)' h 8?4,
4 o

4o O (hoAN L b4,
T o \2 Oz 2 Ox?

where A, (md A, are d1ﬁerent1al operators deﬁned in Eq. (9). Introduce
Egs. (8 and 47) 1nto (46): '
. T h?

Uu-vu =ﬁ (Lm + L) U + 5 (A + Ap) U (49)

4 &

- where U is the scale derivative of the pixel firiction, U is it§ numeucal ap— :
" proximation, and thelocal truncahon error E is the dlsc1epancy :

E = U-U=0 (At "+.-,92) where s = Az = Ay : (50)

Summarwmg the above derlvatlon we outhne four s sources f01 the local
truncation error of the implicit: dlfference scheme ' '

"1. Finite .dlffere'n'ce approx1mat10mn of space derivatives’

2. Replacement of half—lnteger values of the edge 1n(hca’r0r functlon with
integer values ‘

.-

- 3. Back‘v’vard (non- central) dlfferences in time

" 4. High order terms of addmve operator split

7 Simulation Results for Gfay Level Images

A series_of numierical simulations was run to study the accuracy of the
implicit scheme for the Beltrami smoothing flow. For this, the acceleration
factor f was introduced. Factor f shows the ratio of the acual scale step
in the implicit scheme to the ultimate value of the scale step for the explicit
scheme. Recall that for the square grid Az = Ay = s, the ultimate value
At = 82 s°/4. Assuming further that the unit of length is defined as the

12



distance between the pixels, s = 1, and Atf,.x = 0.25. Simulations were
run for different values of f, starting from f = 1 and up to f = 200.
The results are presented in Fig. 2. In each case, the computational time
was measured. As wee see, the implicit scheme is always stable, but for
f > 20, the accuracy of processing may be insufficient. Perhaps, the
average recommended values are f = 10...20. Note that for a single step,
the implicit scheme takes approximately twice more computational time than
the explicit scheme.

Next series of numerical simulations was carried out to study the edge
enhancemeent effect for gray level images. In all cases of the secon series,
the acceleration factor was 10. A normalized reaction-diffusion smoothing
governed by PDE (51) was applied to a medical image:

aa—[f] = cosf} Vh-VU + sin h VU (51)
The first term on the right side of Eq. (51) is a reaction term, while the
second is a diffusion term. [ is a parameter presenting the relative contri-
bution of reaction and diffusion. The reaction term is responsible for edge
enhancement, while the diffusion term - for smoothing the random noise. 3
varies from 0 to 90°. Results of edge enhancement for different values of (3
are presented in Fig. 3. 3 = 0 corrsponds to a pure reaction, 5 = 45° is a
nonlinear diffusion flow (until the constant scale factor), 3 = arctan 2 ~ 63.4°
is the Beltrami flow, and 5 = 90° is a normalized 'linear’ diffusion (ceases to
be linear after normalization).

According to Eq. (51), the edge enhancement effect should decay as
3 increases. Indeed, we see that the edge enhancement is stronger for the
nonlinear diffusion flow (3 = 45°) than for the Beltrami flow (3 = 63.4°).

8 Beltrami Smoothing for Color Images

The Beltrami flow for color images is governed by the followingbset of
PDE [4, 5]:
or, | 9Qi 9y g
oI,  Ox = oy Oz & dy @i

ot g 2 g2

(52)

13



(d) f=5,t=215s (e) =10, t=10.T s (f) f=20,t=538s

(g) f=50, t=2.145 (h) f =100, t = 1.07 s (i) f =200, t =0.54 s

Figure 2: Beltrami Smoothing, Implicit Difference Scheme, Scale 250

14
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(¢) B~ 63.4° (f) B = 30°

Figure 3: Edge Enhancement of Medical Image, Scale




where i = 1,2,3 is the number of color (red, green, blue), I; is the corre-
sponding pixel value and P, ) are defined by:

e I 5y Qi = — g1 FP + g1 By

Fi = g2 (53)

911, 912 and gys are components of a symmetric matrix (tensor) G of dimen-
sion 2 X 2, and g is: its discriminant:

G = | I 9 (54)
g12 922
3 aI_ 2 3 af i
= 94 s = 1 ==
g 5 J; (dr) 922 & ]z:': (81})
| (55)
°. 0I; 0I;
gis = Z _11_?/1 g = detG = g11 goa — .(1122
= Oz

9 Nonlinear Diffusion Flow for Color Images

So far, instead of Beltrami flow (52), consider a simplified smoothing flow,
which is an analog for the nonlinear diffusion for gray level image:

oF; | 0Qi dg 99
oI; _ Oz = oy Oz Bt Jy @i (56)
ot g 9

Note that in Eq. (56), there is no factor 2 in the denominator of the last term.
Eq. (56) becomes easier to operate in this analysis. It may be rearranged as:

oI 9 (P o (Q ’
e a‘(?) ¥ a_/<7> 57)

Define vector S; of length 2, whose components are P;/g and Q;/g: Then,
according to the above,

S; =G'VIL =RV (58)

16



where R is a notation for an inverse of G. The flow becomes:

ol

5 = V.S = V-(RVIL) (59)

- Note that there are three plxel value gradient vectors VI; (for each color
component), three vectors S;. but only one matrix R. This is 2 x 2 edge
indicator matrix, similar to a scalar edge indicator function for a gray level
case.

Opening the brackets in the last equation, we obtain a reaction term
(includes the first dericatives of pixel values), and a diffusion term (includes
the second derivatives).

ol
ot

= (V-R)- VI, + R-VVI, (60)

Note that the first term is a scalar product of two vectors. (divergence of
tensor V - R yields a vector), and R - VVI; is a full scalar product of two
tensors. VVI; is a matrix of second derivatives:

L. L,
vi, = | 7 (61)
I“‘./ Iy!/

Note also that while this nonlinear diffusion flow includes the reaction term
and the diffusion term, the Beltrami flow 1ncludes an additional reaction term
not considered here.

10 Eigenvalues of Edge Indicator Matrix

Considerv the nonlinear diffusion flow

olI;
Ot

= V- (RVI) (62)

One may get an analogy with the scalar gray level case if the action of matrix
R on vector nablal; is replaced by the action of the scalar number on that
vector. This number is an eigenvalue.

17



For this, we de-compose the dradient vector VI into the basis of principal
. directions V; and V5.

VI, = KV, + k2V2 (63)

~ where V| and V5 are normalized eigenvectors (say, of unit length) of the
'Edge Indicator Tensor R. Assume A} and /\2 are eigenvalues, corresponding
to these elgenvectors

RV;c = MV k=12 _ (64)
Consider the expression insidé'q‘thé brackets on the right side of Eq. (62).

RVI, = R (Ii’]V1 + k‘QVQ) = ]f‘lel + kgRVQ = ]m A]V] + k /\QVQ

(65)
Note that both Ar are real p081t1ve numbers since matrix R is symmetric
and posmve definite. \Iow let us ﬁnd these elgenvalues

o aI - . &1, I T
1+ Z( > . " htia¥ 3 _J_ o
— \ Or Oy
=NV A . ki A
.d . 9 _ o g : o :0\
et ; , —
| 3.0I; 8L; S N ETAY
283 y L 1'+ ;(E) )\'.
L g S g : ¢

This leads to a quadratic equation:

RN IAS I; dI;
2 (3) B Zaz ay) = °

j=1

3. 611 2 . .

Introduce a new notation:

Av = g\ k= 1,2 (68)
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and recall that

) A N T A
o =dne =1+ 3 (532) + 3 (5)
J= J=
2 2 3 2 (69)
3 61) <8I-) <3I 8[)
+ -J -7 - tia Rntint' }
;(8:1* ; dy ; x Oy

. 2
0 3.0I; 01,
» + i Rndiat'
4 (]Z::Oam 5y)

Eq. (71) may be alternatively presented in the form:
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Expanding powers and products, Eq. (73) may be rearranged in the following

form: . .
[/81\? A7\ 2 SN2 \ 2
OL )" | (9B QI—? | 311 + 0L\, (9L} _
or) - \ 0z /) . Ox \ 8y dy Oy
(oL 311 312 (312 N oLy oL\
Ox (9y bx By Bz ay

A =

z.%2+% oL +i._ .

Oz Oy ox ox X

8L\’ (8L\* (3L aIQ oI :
(5—)(5;;) *\or o 5; T E

.%”%2+% a3 +% oY _

ozx | \ 0y dx 81/ z

0L OL\* (8L 3L\ 0l; 013\’

dz Oy 0z dy) ~ \ 9z dy

OO, 0L0L _ , 0L0LOL Ol _, 010101 Ol

Ox Oy Ox (91/ ox- 01/ Ox Oy oz é‘y oz Oy

oL oI, 8L oL L (0R0h 013 0h\’
\ 0z Oy 8z By 87: 37; dz Oy

(%%_%%f
(74)

" Thus, A presents a sum of squares of lengts for cross-products of pirs of

gladlents VI, xVI,..
A = (VL xVEL)? + (VL x V) 4+ (VI3 x VL) (75)

11 Basic Assumption in Proxiihity'_of ‘Edge

Let us-define the edge. For the gray level image, the edge is a line which
divides the plane into segments with different pixel value. In other words,
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when passing across the edge, the pixel value changes in a discontinuour (or
continuous, but very rapid) manner. The magnitude of the gradient vector
is large (although not necessarily infinite), and its direction is normal to the
edge.

For the color image, the gradients of red-green-blue components may
have different directions.. However, we assume that in the proximity of the
edge at least one of them has a large-magnitude gradient. The direction of
this gradient is normal to the egde. The directions of other color gradients
are collinear to this direction: either the same, or opposite, provided the
magnitudes of gradients of these other components are also large. For the
component(s) of small-magnitude gradient, the direction of gradient does not
matter. Thus, in the close proximity of the edge, the value A in Eq. (75)
will be small because all cross-products of gradients vanish or almost vanish:
either since the components of the cross-product are collinear, or due to the
fact that one of them or both have small magnitude. '

12 Eigenvalues éhd Eigenvectors of Edge In-
dicator Matrix in Proximity of Edge

Since the cross-products are small in the proximity of the egde, the value
A in Eq. (72) may be neglected. The eigenvalues become:

3 (8I.\° 3. (8L\?
A o~ 1 g 1+z<5§) +Z<—‘ai> (76)
. ] .

=0

/\1%

Q

Q |

Find the principal direction of the edge indicator matrix R, corrsponding to
the smaller eigenvalue 1/g:



i 3 af-)’ 3,01, oI 17 ]
1+ 9l _ % 9
;(39 1 Lo oy e
g g g -
. [ 0;
3.81; 8l 3 <aI-)2 -
_ . 77 1 + 223 )
]Z::]@x Oy ; Or 1 vy
L g g gd L 1 .
(77)-

It follows form Set (77)

Each 'equation of set (78) follows from the correponding e"qﬁafioﬂof set (77).
However, the two equations in set (77) are linearly dependent, so that both
results for v/ V{” should be the same. Recall that.

’ : 331_1.31]: 13 azj 3 fan\t

Introducing Eq. (79) into any equation of Set (78), we get the same result:

EE/EE e

Since we assumed that all gradients (of essential magnitude) have approxi-
mately collinear directions in the proximity of the edge,.it follows from Eq.
(80) that the principal direction V'; coincides with these gradients and is nor-
mal to the edge. Now let us find the second principal direction, corresponding

~
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to a larger eigenvalue 1. -

[ A% g ol 17 ]
1+ (—’)
; oy . Z&c By Ve
g g
2 =0
3.1, 3I; 3. (98I
- 1 it}
Z@m dy +J§(8r) . vy
- 9 g I T
(81)

It follows form Set (81)

(82)
In the proximity of the edge, all three forms of Eq. (82) are "approximately
equivalent”. The second eigenvector is dierected along the edge. As expected,
it is normal to the first eigenvector:

Vi- Vo =0 (83)

Note that even when the cross products of color components’ gradients do
not vanish exactly, it is reasonable to define the direction of the edge as a
principal direction of the edge indicator matrix corresponding to the larger
eigenvalue Ay & 1. Let us define the egde direction exactly as an eigenvector
of the indicator matrix.

13 Governing PDE in the Poximity of Edge

Consider Eq. (65). Since the edge is normal to the gradient (provided the
gradient magnitude is not negligibly small),

| ~ |V ky ~ 0 (84)



. ) j-i
RVI, = AV 4+ AV, = v

(85)

where g is given by Eq. (76). In the proximity of the edge, the governig PDE
for smoothing the color image comes to:

oI, | | VI, /1N
e () - o(2)

QIi-

. (86)

Now, recall that Eq. (86) describes the nonlinear d-iffusion flow which differs
from the Beltrami flow. It follows from Eqgs. (52, refE5 and 86) that the
Beltrami flow has an additional reaction term:

dg dg

N - 2Py ZQ

I. . 27, : [ i

_a"=v<l)-wi+‘”’+ax 23'” (87)
- g : g 29 |

Refarrénge the last term in Eq. (87) to a tensor form: |

dg dg BT
: 2 g2 | ' 2 |8z g 8 g/) (88)
l ( L ) g R VI
2 g .
Nowvvapply Eq. (85) for the proximity of the edge:

The governing equatidn (87) for Beltrami flow comes to:

oL 1 1 v 1 VI 1 V2I,
—_— & — — 1. . = — . — - 0
ot 2v(g> VE o+ g .2'v(g)+2 g (90)

- However;- this coincides exactly with the governing PDE for the Beltrami
smoothing of a gray level image. This means that the mechanism of the edge
enhancement is exactly the same. In the proximity of the edge, 1/g reaches.
~ minimum values. This means that the gradient of 1/g is directed outside
the thin pass of the edge. The gradient of the pixel value is also normal
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o the. edge but 1ts d1rect10n comc1des w1th the gradlent of 1 / g for larger»

pixel values,. and is opp031te to that dlrectlon for smaller plxelvalues The
i.1eact1ve component of smoo’rhmg becomes positive for larger pixel valuesand ~ - . -

‘negative - for smaller pixel in the proximity of the edge. The larger values, :

‘become even larger, and the samil values become even smaller The edge.j::

venhances it becomes more sharp

\lote 'that the simpliﬁed decbupled form of the Beltraml'smoovt'h.ing may S

be recommended for numerical computations. Close to the edge this form is

justified because the coupling. between z- and y components of. gladlent- o

becomes weak. Far from the edge the decoupled form brings. a definite
inaccuracy, and the smoothing is no longer exactly Bellt1am1 smoothing.
However, we consider that the accuracy is crucial af the prommlty of the -
edge and less important elsewhere. In this case, the decoupled form of the
governing PDE (90) leads to a considerable saving of the computational time.
Furthermore, the decoupled form makes it. possible to apply the add1t1ve :
splitting algorithm leading to a semi-implicit linearized difference scheme,
and this yields even much better saving of the cOmputatioﬁa'l time..

14 Slmulatmn Results for Color Images

The goal of this numerical experlment is to show that the weal\ly cou-
pled Beltrami smoothlng operator may be replaced by its decoupled approx-
imation, without essential loss of acculacy and with a great savmg of the -
computatmnal t1me ; '

Fig. 4 presents (a) the 1n1t1al image: and the smoothmg s1mulat10n result ,
for the. Beltrami filtering of color image using (b) coupled exphclt d1fference
scheme with a full edge 1nd1cator matrix, (c) explicit difference scheme with
vdecoupled govemmg equatlon and the elgenvalue 1nstead of. the mathlx and -
(d) implicit dllference scheme with’ decoupled governing equation and accel—_ N
--eration factor = F1g 5 prsents the sxmulatmn results for 1mphc1t.

scheme w1th dlfferent values of acceleraflon factor. f =. 2, 5y 10 and 20.



(a) Initial Image (b) Explicit Coupled Scheme

(c¢) Expl. Decoupled Scheme (d) Implicit Scheme, f =1

Figure 4: Beltrami Smoothing of Color Images, Scale 100



(a) Implicit Scheme, f =2 (b) Implicit Scheme, f =35

(¢) Implicit Scheme, f = 10 (d) Implicit Scheme, f = 20
Figure 5: Fast Beltrami Smoothing of Color Images, Scale 100
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Cloéi;ng Rem_'élfr_ks |

. The anisotropic Beltrami opelat'of:for gray l'evel images is r'ecl'uced to -

reaction-diffusion form and this. rnakes 1t pOSS1b1e to apply the Additive .
Operator Spht (AOS) approach

Basing on tth approach; the uncondlotlonally stable dlﬁelence scheme

is developed

The method uses the known values of the edge indicator function from
the previous scale step, and, incorporates the unknown pixel values
from the next step, thus making the dlfference scheme semi- implicit
and linearized. ’ '

The implicit scheme leads to considerable S&Vin‘gbf the computational
time -as compared to the explicit scheme: up to ten times and even
more, depending on the value of- the scale step, with no visible loss of
accuracy. :

The approach may be applied also for mean curvature flow by a similar
way, with a different edge indicator function.

: The eigenvalue analysis is applied to study the Beltrami smoothing

technique for color images. It is shown that in the proximity of the edge
the coupling of the Beltrami operator becomes weak. The principal
directions of the edge indicator matrix are normal to the edge and
tangent to the edge. This allows to replace the action of the edge
indicator matrix on the gradient Vecto1 by the action of its eigenvalue
on that vector.

. The main assumption of the above 'de_rivation'is that the cross-products

of the dradients of color componeh_ts are negl-igibly small in the proxim-
ity of edge, since their directions are all parallel and normal to the edge. -
When these cross- p1oducts a,xe small the couphng becomes Weak

Weak couphng of the Beltraml operator for color 1rnages makes it poss1-.

- ble to apply the AOS techmque and unconditionably stable fast implicit

difference scheme. The difference scheme is similar to that for gray-level
images. Numerical simulations conﬁ1m the val1d1ty of the assumption
about the Weak couphng
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