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Human hepatocellular carcinoma (HCC) is the most common and recurrent type of primary adult liver cancer without any effective
therapy. Plant-derived compounds acting as anticancer agents can induce apoptosis by targeting several signaling pathways.
Strigolactone (SL) is a novel class of phytohormone, whose analogues have been reported to possess anticancer properties on a
panel of human cancer cell lines through inducing cell cycle arrest, destabilizing microtubular integrity, reducing damaged in
the DNA repair machinery, and inducing apoptosis. In our previous study, we reported that a novel SL analogue, TIT3, reduces
HepG2 cell proliferation, inhibits cell migration, and induces apoptosis. To decipher the mechanisms of TIT3-induced
anticancer activity in HepG2, we performed RNA sequencing and the differential expression of genes was analyzed using
different tools. RNA-Seq data showed that the genes responsible for microtubule organization such as TUBB, BUB1B, TUBG2,
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TUBGCP6, TPX2, and MAP7 were significantly downregulated. Several epigenetic modulators such as UHRF1, HDAC7, and
DNMT1 were also considerably downregulated, and this effect was associated with significant upregulation of various
proapoptotic genes including CASP3, TNF-α, CASP7, and CDKN1A (p21). Likewise, damaged DNA repair genes such as
RAD51, RAD52, and DDB2 were also significantly downregulated. This study indicates that TIT3-induced antiproliferative and
proapoptotic activities on HCC cells could involve several signaling pathways. Our results suggest that TIT3 might be a
promising drug to treat HCC.

1. Introduction

In 2012, 0.8 million patients were diagnosed with liver can-
cer, the seventh highest age-related incidence rate globally
[1]. Human hepatocellular carcinoma (HCC) is the most
common type of primary liver cancer in adults, as well as
the most frequently recurrent malignancy without any
effective therapy [2, 3]. HCC is the third most common
cancer-related cause of mortality globally [1]. Several etio-
logical factors could lead to the development of HCC
including hepatitis B virus (HBV), hepatitis C virus
(HCV), alcohol, cirrhosis, and nonalcoholic fatty liver dis-
ease (NAFLD) [1].

There exists an inveterate history of compounds, derived
from plants, serving as anticancer agents [4]. These com-
pounds can exert their inhibitory effects on cancer cells by
targeting several pathways including cell cycle arrest, cell
proliferation, and apoptosis. Strigolactones (SLs) are a novel
class of phytohormones, which control the branching of
shoot architecture by hindering growth and self-renewal of
axillary meristem cells [5, 6]. It has previously been reported
that synthetic SL analogues instigate G2/M cell cycle arrest
and apoptosis by regulating the p38 and JNK1/2 MAPKs sig-
naling pathways, causing the induction of stress in an array of
solid and nonsolid human cancer cells, including prostate,
colon, leukemia, osteosarcoma, and lung cancer cell lines.

It has only slight effects on the growth, survival, and via-
bility of nontransformed human fibroblasts, healthy primary
prostate cells, and mammary epithelial cells [7, 8]. SL ana-
logues demonstrated their anticancer effects in a xenograft
model of breast cancer [9] and have also been shown to affect
the integrity of the microtubule network by impeding the
migration of highly invasive breast cancer cell lines [9].

Recently, SL analogues have been found to destabilize the
genomic DNA of cancer cells by inducing DNA double-
strand breaks (DSBs) and activating the DNA damage and
simultaneously hindering DNA repair, resulting in cell death.
It is noteworthy that these activities of SL analogues have not
been reported in nontransformed BJ fibroblast cells [10].
Furthermore, the efficiency of the delivery of SL analogues
(hence their therapeutic efficacy) to prostate cancer cells
may get enhanced by encapsulation of SL analogues in glu-
tathione/pH-responsive nanosponges [11].

Synthetic SL analogues have been reported to down-
regulate RAD51 expression through ubiquitination in a
proteasome-dependent way, hence, reducing the localiza-
tion of RAD51 to DSB sites [10]. RAD51 is a crucial
component of a prominent DNA repair pathway, the
homology-directed repair (HDR) machinery. Overexpres-
sion of RAD51 causes an increase in DNA repair activity,

which could result in resistance to DNA damage that is usu-
ally imposed by radiotherapy or chemotherapy [12, 13].

In our previous study, we found that the newly synthe-
sized SL analogue, TIT3, inhibits proliferation and induces
apoptosis of HepG2 (hepatocellular carcinoma) cells with
minimal effects on healthy cells [14]. The molecular structure
of TIT3 is shown in Figure 1.

In the present study, we performed RNA sequencing and
the differential expression of genes was analyzed using differ-
ent tools to analyze and investigate the differential gene
expression of HepG2 cells treated with TIT3 and to disclose
the possible signaling pathways leading to the inhibition of
cell proliferation and induction of apoptosis.

2. Materials and Methods

2.1. Cell Culture and Treatment. HepG2 cells were obtained
from ATCC (Manassas, Virginia, USA). These cells were
then sustained at 37°C, in a humidified incubator, at 5%
CO2. DMEM (UFC Biotech, Riyadh, KSA) supplemented
with 10% fetal bovine serum (FBS) (LifeTech, catalogue no:
16000-044) and 1% (100U/ml) penicillin-streptomycin
(LifeTech, catalogue no: 15140-122) was used to maintain
cells.

2.2. RNA-Seq, Differentially Expressed Genes, and
Bioinformatics Analysis. HepG2 cells were treated with
60 μM of SL analogue TIT3 (IC50 of 63.46μM) [14] for 24
hours, in triplicate. An RNeasy kit (QIAGEN) was used to
extract the total RNA, and the concentration of RNA was
quantified. A bioanalyzer was used to analyze the quality of
the total RNA (RIN score > 7 0). Sequencing libraries were
then generated using TruSeq Stranded mRNA Sample Prep-
aration Kits (Illumina, CA) from 2500ng of the total RNA
from each of the three replicates. The Illumina HiSeq 2000
system was used to conduct 50 bp long single-end deep
sequencing. The FASTX-Toolkit was used to remove the
adaptor sequence and filtering of low-quality base call and
low-quality reads. The short filtered sequencing reads that
were acquired were mapped to the human genome by the
TopHat2 and Subreads package; the featureCounts function
was used to quantify the gene expression values. These gene
expression values were then used to calculate the size of the
library and dataset dispersion for the analysis of differentially
expressed genes [15]. Differential gene expression was exam-
ined using the R/Bioconductor package edgeR and estab-
lished by log fold change (LogFC) and false discovery rate
(FDR) (LogFC ≥ 1 or ≤-1; FDR ≤ 0 05).

2.3. Bioinformatics Analysis. The gene set functional analysis
and pathway analysis were analyzed using the gene ontology
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(GO) and KEGG pathway. The gene IDs of interest were
converted to EntrezID and uploaded to DAVID bioinfor-
matics tools. GO and KEGG pathway analysis were per-
formed by setting all the GO terms and KEGG pathway
genes as background genes. Overrepresented GO terms
or pathways are determined by the enrichment score
(EASE ≤ 0 1, gene count ≥ 2).

3. Results

3.1. Gene Expression Is Regulated by TIT3. Data obtained
from HepG2 cells treated with 60 μM of SL analogue
of TIT3 revealed that the mRNA expression of 3240
genes was modulated, with 1473 genes being upregulated
(log fold change < 1 5; p < 0 05) and 1767 genes being
downregulated (log fold change>−1 5; p < 0 05). The
number of altered transcripts has been organized based
on the log fold change (LogFC) or the p value
(Tables 1 and 2). Overall, the number of transcripts being
upregulated was fewer than the number of transcripts
being downregulated.

3.2. Gene Enrichment Analysis of Altered Transcripts. The
gene enrichment analysis of gene ontology (GO) terms
(p < 0 0001) revealed that there was a significant increase
in the negative regulation of transcription by the RNA
polymerase II promoter and negative regulation of G1/S
transition of mitosis and a substantial decrease in the
damaged DNA repair genes. A summary of GO analysis
with different biological processes, cell components, and
molecular functions of upregulated and downregulated
transcripts in HepG2 cells treated with TIT3 is shown in
Figures 2 and 3, respectively.

3.3. KEGG Pathway Analysis. The KEGG pathway analysis
revealed the probability of the involvement of apoptosis
pathways involving TNF and PI3K-Akt (Figures 4–6). There
was a significant decrease in the genes involved in the organi-
zation of microtubules such as BUB1B, TUBB, TUBG2,
TUBGCP6, TPX2, and MAP7 (LogFC<−2 0; p < 0 0001).
A significant decrease was also found in the expression
levels of crucial epigenetic players UHRF1, DNMT1, and
HDAC7, known to inhibit the expression of several tumor
suppressor genes in cancer (LogFC<−1 7; p < 0 001).

Table 1: Classification based on p values; total number of transcripts altered in TIT3-treated HepG2 cells.

Range of p value of genes
in the transcriptome

Number of upregulated
transcript genes

Range of upregulated
LogFC

Number of downregulated
transcript genes

Range of downregulated
LogFC

≤0.05 1026 +1 to +7 968 -6.63 to -1.5

≤0.01 293 +1.5 to 7.3 511 -7.28 to -1.5

≤0.001 154 +1.55 to 12.47 288 -7.99 to -1.5

Table 2: Classification based on log fold change (LogFC) values; total number of transcripts altered in TIT3-treated HepG2 cells.

LogFC of the genes
in transcriptome

Number of transcript-
upregulated genes

LogFC
Number of transcript-
downregulated genes

Range of p values

+12.5 to +3 503 -8 to -3 290 ≤0.05
+2.9 to +2 478 -2.9 to -2 693 ≤0.05
+1.5 to +1.9 491 -1.5 to -1.99 810 ≤0.05

Chemical formula:
C15H14O5

Molecular weight: 274.27

O
O

O

OMeO

TIT3

Figure 1: Molecular structure, chemical formula, and molecular weight of SL analogue TIT3.
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Figure 2: Gene ontology (GO) of upregulated genes in TIT3-treated HepG2 cells. The bar length represents the significance of that specific
gene set or term, and the degree of the brightness of the color denotes the significance (p < 0 001) of the differentially expressed genes.

Figure 3: Gene ontology (GO) of downregulated genes in TIT3-treated HepG2 cells. The bar length represents the significance of that specific
gene set or term, and the degree of the brightness of the color denotes the significance (p < 0 001) of the differentially expressed genes.
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Figure 4: Analysis of the KEGG pathway in HepG2 cells after treatment with TIT3 illustrating the upregulated genes in apoptosis pathways;
the genes regulated are marked.
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Additionally, genes responsible for DNA damage repair
including DDB2, RAD51, and RAD52 were substantially
downregulated (Table 3). The expression levels of several
tumor suppressor genes such as NKX-3, FLCN, ING1,

SIK1, and TP53INP1 (LogFC > 2 0; p < 0 001), and genes
exhibiting proapoptotic activities such as TNF-α, LTA
(TNF-β), CASP3, MOAP1, and CASP7 (LogFC > 1 6;
p < 0 01) as well as genes having antiproliferative effects
such as CDKN1A (p21) (LogFC > 2 2; p < 0 001) were signif-
icantly increased in response to TIT3 treatment (Table 4).
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Figure 6: Significantly downregulated genes in the PI3K/Akt pathway after the treatment of HepG2 cells with TIT3 in this KEGG pathway
analysis; the depicted downregulated genes are marked.

Table 3: Downregulated genes in TIT3-treated HepG2 cells as
compared with untreated cells.

Genes LogFC p value

BUB1B -2.018 3.71E-05

TUBB -2.247 3.03E-06

TUBG2 -2.271 8.41E-06

TUBGCP6 -2.582 6.82E-06

TPX2 -2.054 2.44E-05

MAP7 -2.185 4.42E-05

UHRF1 -2.627 4.63E-06

DNMT1 -1.867 1.16E-04

HDAC7 -2.103 4.96E-05

KAT7 -2.026 4.65E-05

DDB2 -2.351 5.80E-06

RAD51 -2.463 1.29E-05

RAD52 -7.507 3.78E-04
∗Fold change treated vs control.

Table 4: Upregulated genes in TIT3-treated HepG2 cells as
compared with untreated cells.

Genes LogFC p value

CASP3 3.506 2.35E-11

CASP7 1.605 2.36E-03

TNF-α 4.686 6.96E-08

LTA (TNF-β) 8.148 1.02E-05

MOAP1 2.131 1.95E-04

CDKN1A (p21) 2.420 7.69E-07

NKX3-1 2.522 1.89E-06

FLCN 2.556 5.82E-07

ING1 2.094 3.43E-05

SIK1 3.947 1.70E-13

TP53INP1 3.046 3.08E-09
∗Fold change treated vs control.
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Figure 7 shows the probable interactions of genes of the
different transcriptional regulators, and Figure 8 depicts a
heat map, representing the comprehensive regulation of gene
expressions in terms of their p values and LogFC.

4. Discussion

Synthetic SL analogues have been reported to induce cell
cycle arrest and apoptosis in both solid and hematological
tumors by targeting several signaling pathways [7, 8]. Our
previous study showed that synthetic SL analogue TIT3
inhibited the proliferation and migration and induced apo-
ptosis of HepG2 cells with minimal toxicity towards
healthy noncancerous cells [14]. Since TIT3 impeded the
migration of HepG2 cells, we suggested that such an effect
is a result of the interference with the organization of the
microtubular network. Data obtained from RNA-Seq
showed significant downregulation of BUB1B, TUBB,

TUBG2, TUBGCP6, TPX2, and MAP7 genes, which are
known to be involved in the microtubular organization,
suggesting that the antimetastatic and proapoptotic effects
of TIT3 could be challenged by mechanisms involved in
the organization of microtubules. Our results are consis-
tent with several studies showing that SL analogues can
induce apoptosis in breast cancer cells [9]. Other cancer cell
lines such as melanoma, colon, lung, prostate, and osteosar-
coma were also reported to be affected by SL analogues
through targeting of the microtubular network [8].

Furthermore, our results showed that the histone dea-
cetylase 7 (HDAC7) was downregulated in response to
TIT3 treatment. Interestingly, the unusual activity of the
histone deacetylases including HDAC7 has been reported
in many types of cancers [16]. HDAC inhibitors such as
TSA, SAHA, and MS-275 are useful in the chemothera-
peutic regimens of many cancers including HCC and sig-
nificantly inhibit cell proliferation, and migration/invasion

Positive regulation of apoptotic process
Cell cycle arrest
G1/S transition of mitotic cell cycle

Histone modification
Microtubule cytoskeleton organization
Regulation of response to DNA damage stimulus

Coexpression

Physical interactions

Predicted

Colocalization

Shared protein domains

Pathway

44.67%

25.83%

17.33%

7.66%

2.96%

1.55%

Figure 7: Outline of the interactions of different altered genes with their functions in HepG2 cells after treatment with TIT3.
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induces cell cycle arrest and apoptosis of HCC [17]. Knock-
down of HDAC7 led to G1/S arrest in different cancer cells
through the upregulation of the cell cycle inhibitor CDKN1A
(p21). Interestingly, an increase in the expression levels of
p21 mRNA has also been observed in TIT3-treated HepG2
cancer cell lines [18]. All the evidences above suggest that
TIT3 could act as a HDAC inhibitor causing cell cycle arrest
through a p21-dependent mechanism inducing inhibition of
HepG2 cell proliferation.

Moreover, UHRF1, a well-documented regulator of gene
expression in cancer [19, 20], was downregulated by TIT3
suggesting that UHRF1 could be a potent target for TIT3 in
HCC. In alignment with our results, UHRF1 overexpres-
sion has been demonstrated to cause tumorigenesis in dif-
ferent cancer types including HCC [21]. UHRF1 inhibition
by using pharmacological compounds is associated with
the reactivation of various tumor suppressor genes, thus
suppressing the proliferation of cancer cells by inducing
apoptosis [22].

Double-strand breaks (DSBs) are the most notable form
of DNA damage, and once the DSBs are formed, cells may
undergo either of the two repair mechanisms: nonhomolo-
gous end joining (NHEJ) or homology-directed repair
(HDR) [23, 24]. Previous studies have revealed that cancer
cells which lack HDR are quite sensitive to DNA-damaging
agents [25]. Our data obtained from RNA-Seq showed that
TIT3 induced the downregulation of damaged DNA repair

genes including DDB2, RAD51, and RAD52. Therefore,
TIT3 could be an inhibitor of DNA repair proteins. In
support of our results, the evidence is available in the lit-
erature that SL analogues can hamper HDR and impair
DSB repair [10].

Caspase 3 (CASP 3) is known as an executioner caspase
in apoptosis resulting in the inhibition of proliferation of
HepG2 cancer cells [26]. TNF-α is also known to modulate
proliferation, differentiation, and apoptosis or necrotic cell
death in several different cell types including HepG2 cancer
cells [27, 28]. Our results illustrated that the primary genes
responsible for apoptosis including CASP 3, CASP 7, TNF-
α, TNF-β, and MOAP1 were significantly upregulated by
TIT3 treatment on HepG2 cancer cells.

Overall, we propose that the inhibition of HepG2 can-
cer cell growth was due to an interplay of genes wherein
the treatment of TIT3 significantly altered their expression
levels. Altered gene expressions affected cell proliferation,
cell cycle, metastasis, and apoptosis. TIT3 could also be
an inhibitor of HDAC and can target the organization of
the microtubular network as well as affect the genes
involved in DNA repair.

5. Conclusion

We provided evidence that TIT3 targets several critical
pathways in HepG2 cells. Therefore, to obtain and establish

SIK1
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LTA (TNF-b)
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DNMT1
TPX2 
MAP7
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RAD51

KAT7
HDAC7

DDB2

TUBGCP6
BUB1B
TUBG2
TUBB
CASP7

MOAP1
TP53INP1

3

4

2

1

–3

–2

–1

0

LogFC p value

Figure 8: The heat map of the significantly deregulated genes represents the change with the intensity of the variation in color; with the
alteration of LogFC (fold change) from -3 to +4 in TIT3-treated HepG2 cells as compared to untreated cells.
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a deeper understanding of the molecular mechanisms
exerted by TIT3, molecular biology techniques such as
Western blotting, qPCR, microarray, and proteomics must
be done to reveal the specific targets.
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