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Abstract

EGFR exon 20 alterations are rare events seen mainly in non-small cell lung cancer (NSCLC).  They 

include EGFR T790 and C797S mutations (associated with secondary resistance to classic EGFR tyrosine 

kinase inhibitors (TKIs)), and EGFR exon 20 in-frame insertions (associated with resistance to first- and 

second-generation EGFR TKIs).  In silico modeling of structural changes in aberrant proteins has informed 

selection of compounds with potential clinical activity:  poziotinib (whose smaller size permits access to 

the restricted kinase pocket created by EGFR and ERBB2 exon 20 insertions); cetuximab (an antibody that 

attenuates dimerization caused by EGFR exon 20 insertions), and TAK-788 (another EGFR/ERBB2 TKI).   

Other alterations, such as EGFR T790M, are responsive to osimertinib, while the EGFR C797S alteration 

seen in osimertinib resistance demonstrates preclinical sensitivity to combined brigatinib and cetuximab.  

These observations indicate that clinical resistance can be overcome by utilizing advanced genomic 

interrogation coupled with computer modeling.

Keywords: NSCLC, EGFR, exon 20, TKIs, structural modeling



1.1 Introduction

Epidermal growth factor receptor (EGFR), an ErbB family member, is a tyrosine kinase enzyme 

involved in carcinogenesis.  In non-small cell lung cancer (NSCLC), up to 90% of mutations are exon 19 

deletions and point mutations in exons 18 and 21 (L858R), which sensitize tumors to EGFR tyrosine kinase 

inhibitors (TKIs) [1].   In contrast, EGFR exon 20 alterations make up a small subset of EGFR mutations, 

found mostly in NSCLC[1]. Per The Cancer Genome Atlas (TCGA) cohort (N = 7,099), alterations (of any 

type) in EGFR exon 20 represent ~11% of EGFR alterations across tumor types (N = 44/398 patients), are 

detected in ~1% of all patients with cancer (N = 44/7099 patients) (Table 1), and are present in ~3% of 

lung adenocarcinomas (N = 6/230 patients).  EGFR exon 20 in-frame insertions of >3 base pairs are 

generally associated with primary resistance to 1st and 2nd generation TKI monotherapies (gefitinib, 

erlotinib, dacomitinib, neratinib, and afatinib)  [1].  EGFR exon 20 T790M mutations correlate with 

secondary resistance, now treatable with osimertinib. The EGFR exon 20 C797S alteration is linked with  

osimertinib resistance. A single-center retrospective analysis found decreased survival in lung cancer 

patients carrying exon 20 alterations, compared to patients whose tumors harbor other molecular 

alterations [1]. Several studies proposing specific targeted therapies are currently ongoing (Table 2).

1.2 Therapeutic approaches aimed at EGFR exon 20 insertions in lung cancer

In-frame insertions of >3 base pairs in EGFR exon 20 were among the first EGFR mutations to be 

identified as oncogenic drivers in NSCLC. However, unlike the classical EGFR exon 19 deletions or EGFR 

L858R point mutations, which represent the majority of EGFR mutations in NSCLC, the uncommon EGFR 

exon 20 insertions correlate with de novo resistance to many targeted EGFR inhibitors and with a poor 

outcome.

A study investigating molecular structure found that certain EGFR exon 20 insertions, as well as 

corresponding ErbB2/HER2 exon 20 insertions, caused structural changes restricting ATP-binding pocket’s 

size [2].  Consequently, larger drugs such as lapatinib (ErbB2/HER2 inhibitor) and osimertinib (EGFR 

inhibitor) encountered difficulty binding to intended targets. One case report demonstrated tumor 

shrinkage following osimertinib treatment in a patient carrying an EGFR V769_D770InsASV variant, as well 

as in vivo effect in xenografts expressing common EGFR exon 20 insertions [3]; however, a larger study 

reported only a 6% response rate (RR) (1/17 patients) [4].

Conversely, poziotinib, a smaller TKI with a more flexible structure determined via computer 

modeling, demonstrated both in vitro and clinical activity [2].   Early results with poziotinib showed 



response rates of ~60% in EGFR exon 20 insertion lung cancer and of ~50% in ERBB2/Her2 exon 20 

insertions [2], [5]. However, a recent press release regarding data in a phase 2 clinical trial investigating 

poziotinib in previously treated NSCLC patients with EGFR exon 20 insertions reported only a 14.8% 

objective response rate (17/115 patients), with a median duration of response of 7.4 months [6].

An additional compound of interest is luminespib, an inhibitor of heat shock protein 90 (Hsp90), a 

chaperone protein that interacts with a variety of cellular proteins (including EGFR). One recent phase II 

clinical trial in lung cancer patients with exon 20 insertions demonstrated a 17% RR (5/29 patients), 

though median progression-free survival (PFS) was low (at 2.9 months) [7].

TAK-788, a novel EGFR2/HER2 inhibitor, is also being studied in the context of exon 20 insertions; a 

phase 1/2 study in EGFR exon 20 insertion lung cancer patients demonstrated responses in 14 of 26 lung 

cancer patients (54%); decreased target lesion size was also observed in 23 of 24 patients [8]. 

Elsewhere, another study utilized modeling to demonstrate that certain EGFR exon 20 alterations 

may promote receptor dimerization and could be sensitive to EGFR antibodies targeting this domain [9]. 

Two patients carrying EGFR D770_P772delinsKG and EGFR D770>GY, respectively, were treated with one 

such antibody—cetuximab--as part of their regimen, and achieved ongoing partial response at 6+ and 42+

months [9]. In another study, 3 of 4 patients receiving cetuximab combined with afatinib also achieved 

responses [10]. This strategy has been explored in ErbB2/HER2 exon 20 mutation-positive patients: a 

trastuzumab-based regimen combined with lapatinib showed remarkable tumor regression in a case of 

metastatic lung adenocarcinoma [11]. Keeping in mind reporting bias, 6 of 7 reported patients with exon 

20 insertions in EGFR or ErbB2/HER2 achieved response with regimens that included a targeted antibody.

1.3   EGFR   T790M and C797S     mutations represent additional challenges  

Aside from insertions, the EGFR T790M in exon 20 has also been identified as a significant driver of 

acquired resistance. Dual blockade with cetuximab and afatinib demonstrated a RR of 32% in T790M 

mutation-positive lung cancers, far exceeding the 7% response rate to afatinib monotherapy reported [12],

[13].  However, the drug of choice is osimertinib.  Osimertinib obtained Food and Drug Administration 

(FDA) and European Medicines Agency (EMA) approval as first-line treatment of metastatic NSCLC patients 

with common EGFR mutations (exon 19 deletions and exon 21 L285R mutations) on the strength of a 

clinical trial showing significantly longer PFS (18.9 months, compared to traditional EGFR TKIs at 10.2 

months) [14]; objective response rates to osimertinib in patients with lung cancer and EGFR T790M 

alterations are 60-70%. 



The EGFR C797S mutation represents another significant driver of acquired resistance that 

interferes with osimertinib binding. Structural analyses identified brigatinib as a compound able to fit in the

altered ATP-binding pocket in EGFR “triple mutant” cells (containing C797S and T790M). Researchers 

demonstrated pre-clinical in vitro and in vivo activity, and noted that the efficacy of brigatinib appears 

enhanced when combined with cetuximab, presumably because of decreased surface and total EGFR 

expression [15]. This strategy of combining EGFR inhibitors and targeted antibodies may be successful as 

translational studies have suggested survival mechanisms for cancer cells independent of EGFR kinase 

activity [16].  

Preclinical work has also identified additional molecules of potential importance for EGFR exon 20 

insertion cancers.  For instance, TAS6417 is a novel EGFR inhibitor targeting exon 20 insertions that shows 

in vitro activity in cell viability assays and in vivo activity in lung orthotopic implantation mouse models

[17], [18]. Indeed, TAS6417 was a potent inhibitor against the most frequent EGFR mutations (exon 19 

deletions and L858R) and against cells carrying EGFR T790M mutations; moreover, TAS6417 demonstrated

activity in cells driven by less frequent alterations such as EGFR G719X, L861Q, and S768I mutations. For 

recalcitrant EGFR exon 20 insertion mutations, selectivity indices (wild-type EGFR/mutant EGFR ratio of 

inhibition) favored TAS6417 as compared to osimertinib and poziotinib, suggesting a wider therapeutic 

window [19].   Tarloxotinib, a hypoxia-activated EGFR TKI, has also shown activity in patient-derived lung cancer 

cell lines carrying EGFR exon 20 insertions [20]. 

Of interest, pretreatment EGFR T790M mutations have been associated with genetic susceptibility 

to lung cancer [21]–[23] Because germline transmission of this mutation is a possibility, genetic counseling

is recommended in these patients.

1.4 Conclusions

EGFR exon 20 alterations are heterogeneous and include both sensitive and resistant mutations

[24], [25].   For instance, S768I is a mutation that does not restrict sensitivity to different TKIs [26]–[28]  . 

It is often associated with other mutations, such as exon 18 G718X, with the latter being sensitive to 

several drugs including afatinib, neratinib and osimertinib [29], [30].   On the other hand, EGFR exon 20 

insertion alterations as well as T790M and C797S mutations mediate both primary and secondary 

resistance to traditional EGFR TKIs and were previously considered undruggable [30], [31].  However, with 

structural protein analysis, careful preclinical studies, and clinical innovation, multiple new treatment 



strategies now appear viable (Table 2).  This family of alterations demonstrates how advanced genomics 

and computer modeling can be exploited in the clinic in order to overcome resistance.  



Table 1: Frequency of non-silent EGFR mutations in The Cancer Genome Atlas (TCGA) 
(https://portal.gdc.cancer.gov/). (Total N = 7,099 patients) 

All patient s
N

EGFR-mutated
patient s

N (% of patients)

EGFR exon 20 altered
patients

N (% of patients)
All tumor types 7,099 398 (6%) 44 (1%)
Colon adenocarcinoma 154 75 (49%) 22 (14%)*
Glioblastoma multiforme 290 74 (26%) 5 (2%)
Lung adenocarcinoma 230 72 (31%) 6 (3%)
Lower Grade Glioma 286 35 (12%) 1 (0%)
Cutaneous Melanoma 343 20 (6%) 0 (0%)
Head/Neck squamous cell 
carcinoma

279
20 (7%) 0 (0%)

Stomach adenocarcinoma 289 19 (7%) 0 (0%)
Rectum adenocarcinoma 69 9 (13%) 2 (3%)
Endometrial Carcinoma 248 8 (3%) 0 (0%)
Bladder Urothelial Carcinoma 130 7 (5%) 0 (0%)
Diffuse Large B-cell Lymphoma 48 7 (15%) 0 (0%)
Kidney renal clear cell carcinoma 417 6 (1%) 1 (0%)
Ovarian serous adenocarcinoma 316 6 (2%) 1 (0%)
Hepatocellular carcinoma 198 6 (3%) 3 (2%)
Lung squamous cell carcinoma 178 6 (3%) 0 (0%)
Breast invasive carcinoma 977 5 (1%) 0 (0%)
Cervical squamous cell & 
adenocarcinoma

194
5 (3%) 1 (1%)

Esophageal carcinoma 185 5 (3%) 0 (0%)
Prostate adenocarcinoma 332 3 (1%) 0 (0%)
Sarcoma 247 2 (1%) 0 (0%)
Acute Myeloid Leukemia 197 2 (1%) 0 (0%)
Adrenocortical carcinoma 90 2 (2%) 0 (0%)
Kidney renal papillary cell 
carcinoma

161
1 (1%) 0 (0%)

Pancreatic adenocarcinoma 150 1 (1%) 1 (1%)
Testicular Germ Cell Tumors 149 1 (1%) 0 (0%)
Cholangiocarcinoma 35 1 (3%) 1 (3%)
Thyroid carcinoma 402 0 (0%) 0 (0%)
Pheochromocytoma/
Paraganglioma

179
0 (0%) 0 (0%)

Thymoma 123 0 (0%) 0 (0%)
Uveal Melanoma 80 0 (0%) 0 (0%)
Kidney Chromophobe 66 0 (0%) 0 (0%)
Uterine Carcinosarcoma 57 0 (0%) 0 (0%)

Description of the EGFR alterations observed (N (%))
All EGFR non-silent mutations 605 (100%)
Non-exon 20 mutations 558 (92.2%)
Exon 20 alterations 47 (7.8%)**

Insertions

p.S768_V769insV
DS 1 (0.2%)

p.V769_D770insA
SV 2 (0.3%)

p.D770_N771insG
L 1 (0.2%)

p.H773_V774insH 1 (0.2%)
p.

H773_V774insNP
H 1 (0.2%)
p.

H773_V774insVH 1 (0.2%)
Point mutations p.Y764H 1 (0.2%)



p.M766V 1 (0.2%)
p.S768G/I/T 5 (0.8%)

p.V769L 1 (0.2%)
p.N771S 1 (0.2%)
p.P772R 1 (0.2%)

p.V774A/M 3 (0.5%)
p.L777P 1 (0.2%)

p.S784F/P 2 (0.3%)
p.T785I 1 (0.2%)

p.V786M 1 (0.2%)
p.I789M 1 (0.2%)

p.T790M 2 (0.3%)
p.G796S 1 (0.2%)
p.L798P 1 (0.2%)

p.D800G 2 (0.3%)
p.Y801C 1 (0.2%)
p.V802A 2 (0.3%)
p.E804G 1 (0.2%)
p.H805R 1 (0.2%)
p.K806R 1 (0.2%)

p.D807E/H 2 (0.3%)
p.G810D 1 (0.2%)
p.S811C 1 (0.2%)
p.Y813C 1 (0.2%)

p.L814M/P 2 (0.3%)
p.C818F/R 2 (0.3%)

Abbreviation: % = percentage; EGFR = epidermal growth factor receptor; N = number of mutations or 
number of patients; TCGA = The Cancer Genome Atlas

* A variety of EGFR exon 20 alterations were present in colorectal cancer.  Only one was an  
EGFR T790M and no EGFR insertions were seen.  The functional impact of some of these 
alterations is unclear.

**47 EGFR exon 20 mutations were observed in 44 patients; three patients presented multiple EGFR exon 
20 mutations.



Table 2:  Examples of therapies targeting EGFR and ERBB2 exon 20 alterations, mechanism of response, 
and response rate.

Drug/
therapy

Alteration(s) of
interest

Mechanism of response Response rate (all
NSCLC)

Citation/
Year

EGFR or ErbB2/HER2 exon 20 insertions

Lapatinib + 
trastuzumab
+ based 
regimen

ErbB2/HER2 exon 
20 insertion (ErbB2
774–775 AYVM)

Similar to EGFR, 
ErbB2/HER2 mAb 
(trastuzumab) may 
interfere with dimerization

Case report, objective 
response in 1 of 1 
patient 

[11]

2013

Cetuximab-
based 
regimen

EGFR exon 20 
insertion (EGFR 
D770_P772del_ins
KG and D770>GY)

EGFR mAb (cetuximab) 
interferes with 
dimerization of receptors 
(modeling showed EGFR 
exon 20 insertions brought
dimerization domains 
closer together)

Objective response in 2 
of 2 patients, previously 
resistant to EGFR tyrosine 
kinase inhibitors

[9]

2015

Osimertinib EGFR exon 20 
insertion 
(V769_D770InsASV
)

Small molecular TKI Case report, single patient 
with clinical improvement 
and tumor shrinkage 

[3]

2017

Poziotinib EGFR and ERBB2 
exon 20 insertion

Small molecule TKI

Smaller size of poziotinib 
versus other EGFR TKIs 
allows binding despite 
restricted drug-binding 
pocket caused by exon 20 
insertion

Objective response in 7 
of 11 patients with EGFR 
exon 20 mutations (64%) 

[2]

2018

Objective response in 
23 of 40 patients with 
EGFR exon 20 mutations 
(58%) 

Objective response in 6 
of 12 patients with HER2 
exon 20 mutations (50%)

[5]

2018

Objective response in 17
of 115 patients (15%)

[6]

2019

Cetuximab 
+ afatinib 
combination

EGFR exon 20 
insertion

Dual EGFR inhibition via 
irreversible TKI (afatinib) 
and antibody binding to 
extracellular domain 
(cetuximab)

Objective response in 3 
out of 4 patients

[10]

2018

Osimertinib EGFR exon 20 
insertion

Small molecular TKI Objective response in 1 
of 17 patients (6%)

[4]

2018

Luminespib EGFR exon 20 
insertion

Heat shock protein 90 
inhibition

Overall response in 5 of
29 patients (17%); 
median progression-free
survival of 2.9 mos

[7]

2017

TAK-788 EGFR exon 20 
insertion

EGFR/HER2 TKI Objective response in 
14 of 26 patients (54%)

[8]



TAS6417 EGFR exon 20 
insertion

EGFR/HER2 inhibitor Preclinical in vitro and in 
vivo activity

[17]–[19]

Tarloxotinib EGFR exon 20 
insertion

EGFR/HER2 TKI in hypoxia Preclinical in vivo activity [20]

EGFR exon 20 T790M or C797S

Cetuximab 
+ afatinib 
combination

T790M Dual EGFR inhibition via 
irreversible TKI (afatinib) 
and antibody binding to 
extracellular domain 
(cetuximab)

Objective response in 
32% of T790M-positive 
patients for afatinib plus 
cetuximab; (Objective 
response in ~7% for 
afatinib alone) 

[12], [13]

2012, 2014

Osimertinib T790M Osimertinib is a third 
generation TKI

Objective response 
rates of ~60-70%

[14]

Brigatinib + 
cetuximab

C797S Dual EGFR inhibition via 
TKI (brigatinib) and 
antibody binding to 
extracellular domain 
(cetuximab)

Preclinical in vitro and in 
vivo activity

[15]

2017

Abbreviations:  EGFR = epidermal growth factor receptor; ErbB2/HER2 = human epidermal growth factor
receptor 2; NSCLC = non-small cell lung cancer; PFS = progression-free survival; TKI = tyrosine kinase 
inhibitor



Figure 1: EGFR receptor structure, tyrosine kinase domain variants and sensitivity to small tyrosine 
kinase inhibitors.

Panel A: The tyrosine kinase domain of EGFR is encoded by exons 18 to 21.  Point mutations and small 
insertions/deletions located within exons 18, 19 and 21 generally confer sensitivity to first- and second-
generation tyrosine kinase inhibitors. Point mutations and small insertions/deletions located within exon 20
confer resistance to first- and second-generation tyrosine kinase inhibitors.

Panel B: Upon ligand binding, the EGFR moieties dimerize, the tyrosine kinase domains come closer to 
each other (1 donor, 1 receiver). The ATP molecule binds to the tyrosine kinase, leading to the consecutive
phosphorylation of the regulatory tail and later activation of the intracellular oncogenic signal.

In non-exon 20 mutated EGFR tumors, classical tyrosine kinase inhibitors (TKIs) compete with ATP for 
binding to the ATP-binding pocket and decrease/inhibit the intracellular transduction cascade.

In exon 20 mutated EGFR tumors, the structure of the ATP-binding pocket is smaller, and TKIs can no 
longer bind. The receptor remains active and the oncogenic signal persists. The use of monoclonal 
antibodies (mAb) or smaller next-generation TKIs may circumvent the resistance conferred by exon 20 
alterations.

Point
mutations e.g.



Abbreviations: ATP = adenosine triphosphate; EGFR = epidermal growth factor receptor; mABs = monoclonal antibodies; TKI = tyrosine 
kinase inhibitors
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	The EGFR C797S mutation represents another significant driver of acquired resistance that interferes with osimertinib binding. Structural analyses identified brigatinib as a compound able to fit in the altered ATP-binding pocket in EGFR “triple mutant” cells (containing C797S and T790M). Researchers demonstrated pre-clinical in vitro and in vivo activity, and noted that the efficacy of brigatinib appears enhanced when combined with cetuximab, presumably because of decreased surface and total EGFR expression �[15]�. This strategy of combining EGFR inhibitors and targeted antibodies may be successful as translational studies have suggested survival mechanisms for cancer cells independent of EGFR kinase activity �[16]�.



