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Abstract 

In this paper we analyze a generalization of the traditional delta network, introduced by 
Patel [21], and dubbed Expanded Delta Network (EDN). These networks provide in general 
multiple paths that can be exploited to reduce contention in the network resulting in increased 
performance. The crossbar and traditional delta networks are limiting cases of this class of 
networks. However, the delta network does not provide the multiple paths that the more general 
expanded delta networks provide, and crossbars are to costly to use for large networks. The 
EDNs are analyzed with respect to their routing capabilities in the MIMD and SIMD models 
of computation. 

The concepts of capacity and clustering are also addressed. In massively parallel SIMD com­
puters, it is the trend to put a larger number J?rDCessors on a chip, but due to I/O constraints 
only a subset of the total number of processors may have access to the network. This is in­
troduced as a Restricted Access Expanded Delta Network of which the MasPar MP-1 router 
network is an example. 

Keywords: interconnection networks, delta networks, crossbar, hyper bar, clustering, ca­
pacity, MIMD, SIMD. 
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1 Introduction 

Multistage interconnection networks have been extensively investigated over the past 40 years. 

Initially, they were used as building blocks for telephone switching networks [7, 5). Later, they 

were studied as an alternative to the crossbar and spanning bus for interconnecting processors and 

memories in multiprocessor systems. Many families of these networks were proposed and studied, 

including the "Omega network" [14), the "Delta network" [21), and variants of the "Multistage 

cube" networks [26, 3, 1). Many of these networks were eventually incorporated into MIMD and 

SIMD parallel computers. Examples of these include the Maspar MP-1 [18] the IBM RP-3 [22], 

the NYU Ultracomputer [8] and the GPlOOO by BBN Advanced Computers Inc. [4]. This paper 

analyzes the Expanded Delta Network (EDN) which is a generalization of the traditional delta 

network introduced by Patel [21]. EDNs share the digit controlled routing strategy of delta networks 

so that no global controller is necessary to set up the switches of the network. However, unlike 

delta networks, EDNs contain multiple paths (multipath) between any input and output. This fact 

can be used to reduce conflicts or Non Uniform Traffic Spots (NUTS) [13] that occur within the 

network. 

The concept of.capacity (defined later) is similar to the concept of "dilation" [28, 29] in that the 

networks are "multipath". However the number ~f wires between stages in a d-dialated network is 

d times the number of wires of the equivalent stage of an EDN with the same number of inputs, 

resulting in a much less space efficient network. 

In Section 2 the Expanded Delta Network is defined and some of its properties are described. 
; 

Section 3 deals with the general performance of t'he EDN. Section 4 expands the analysis to that of 

MIMD processor memory or processor systems. In Section 5 the EDN is used as a restricted access 

network [31] in an SIMD environment. Concluding remarks are presented in Section 6. 

2 Description of the Expanded Delta Network 

This section is divided into three main portions: The characterization of the switch used in the 

Expanded Delta Networks (EDN s), the characterization of the interconnection permutation between 

stages, and the question of routing data through the network. 
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The MP-1 massively parallel processor, produced by Maspar Corporation, uses a unique switch 

in its router network called a hyperbar switch [6]. The generalized version of this switch is the 

main building block of the Expanded Delta Network (EDN). A detailed analysis of this switch is 

presented in [17]. 

The Hyperbar switch is defined as follows: 

Deiinition 1 A hyperbar, denoted by H (a ~ b x c) is a switch that connects a inputs labeled 

0, 1, 2, ···,a - 1 to b x c outputs labeled 0, 1, 2, · · ·, (b x c) - 1. The outputs are labelled such that 

every group of c outputs has a label in the range [O to b-1]. There are b output groups (or buckets) 

each with capacity c. A control digit d of base-b is supplied by each input. This digit indicates which 

of the b output groups they are to be connected to. Since each of the b output groups contains only 

c wires, if more than c inputs request to be connected to a particular output group, exactly c are 

accepted and the rest are rejected (See Figure 1). 

The degenerate case H (a ~ b x 1) is a traditional a x b cross bar. In Figure 2 we show a 

H(8 ~ 4 x 2) hyperbar. In this case, only log2(4) = 2 bits are needed at each input to determine 

the appropriate output bucket. A sample switch routing is shown in Figure 2. Note that some the 

inputs to be discarded since their destination buckets were already full. Assuming that inputs are 

prioritized according to their input label (0, 1, 2, ·; ·, 7), inputs 5 and 7 are discarded. 

For simplicity we shall assume that a, b, care all powers of 2. However, the analysis can easily 

be expanded to the more general case. 

The hyperbar switch is the basic building bldck for EDNs which are defined as follows: 

Definition 2 An EDN(a,b,c,l} is an (l + 1) stage interconnection network. The first O· · ·(l- 1) 

stages consist of H( a ~ b x c) hyperbar switches, and the last stage consists of c x c crossbar (or 

H ( c ~ c x 1) ) switches. All paths from any input to any output have constant length, and none of 

the switches have unconnected terminals. All of the output terminals from one stage are connected 

to input terminals of the next stage. 

An EDN network will have (a/c)1c inputs and b1c outputs. At the output of the ith stage 

(1 ~ i ~ l) there are (a/ c )1-ibic wires. The ith stage has (a/ c )1-ibi-I hyper bars, and the l + 1 stage 

has b1 crossbars. Let the switches be named 0, 1, 2, ···from top to bottom (Figure 3). 
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To define the connectivity rule between stages we define a I permutation: 

Definition 3 Permutation 1],k(Y) is defined on an n-bit label y as follows: 

1) Fix the j least significant bits of the label 

2) Left cyclic shift by k the remaining (n - j) bits 

This function is related to the "segment shuffle" defined by Lenfant [16]. /o,l (0 ::; i < 2n) is the 

well-known shuffle of 2n labels. 1;,log
2

(q) (0 ~ i < 2n) is a q-shuffie of 2n objects defined by Patel 

(21]. /~,0 (0 ~ i < 2n) is the identity permutation. 

At the output of stage i and the input of stage ( i + 1 ), there are Wi = (a/ c )1-ibic wires. Let y 

be any output of stage i, y E {O, 1, 2, · · ·, (a/c)1-ibic}, and let y be represented by a binary string 

of length log2((a/c)1-ibic). Then y is connected to input z of stage (i + 1) if and only if 

(1) 

The generalized EDN is shown in Figure 3, and a specific instance is shown in Figure 4. Note that 

at the lth stage, each of the b1 buckets are sent directly to a c x c crossbar. 

Before proving that an EDN is indeed "connected" let us first illustrate how routing is performed 

on EDNs. At every source a (l x log2 (b) + log2 (c)) destination tag is used for routing. At each 

hyper bar stage, log2( b) bits are used for routing, and at the final c x c crossbar stage, log2 ( c) bits 

are used. Let the destination tag be written as D = d1-1d1_ 2 • · • d0 x where the di's are digits in 

a base-b system, and x is a digit in a base-c system. After the destination tags pass through the 

network, then some sources are connected to some destinations. At this point data is transmitted 

through the network. 

Routing in the EDN is performed as follows: 

1. At stage i, (1 ::; i ~ l), the digit dr-i of the destination tag D = d1-1dz-2 · · · dax determines 

which of the output buckets of a hyperbar a message should be connected to. For example, 

if a particular message has dt-i = 1 at stage i, then that message should be routed to the 1st 

output bucket of the hyperbar it is passing through. It does not matter on which of the c 

wires of the output bucket the message is placed. Thus, there are c possible choices of output 

at every stage. If more than c messages require to be routed to any particular bucket, only c 
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are accommodated, and the rest discarded. Since each d1-i is used once during the routing 

and are never considered again, we liken this to "retiring" and say that bits dt-i of D are 

"retired" at stage i. 

2. At stage (l + 1), the messages are inputs to a c x c crossbar. At this point the digit x of the 

routing tag D = dz-idz_ 2 • • • dox is used to determine to which output the message is to be 

routed. Similarly, we say that bits x of D are "retired" at stage l + 1. 

Lemma 1 An EDN(a,b,c,l) can connect any source S to any destination D = d1-id1-2 · · ·dox by 

retiring dz-i of D at stage i ( 1 ~ i ~ l) and by retiring x at stage l + 1. 

Proof: A similar approach to that used by Patel [21) to prove that a delta network can connect 

any source to any destination is used for this proof. 

Consider a source S that needs a connection to destination D. The destination address is 

represented as dz-idz_ 2 • • • dox, where the di's are digits of a base-b system, and x is a digit in a 

base-c system. Let S be represented as sz-i sz-2 · · ·sax' where the si' s are digits of a base-( a/ c) 

system and x' is a digit in a base-c system. At each stage, let the switches be named 0, 1, 2, · · · 

from top to bottom. At the input and output of each stage, let the lines be named 0, 1, 2, ···from 

top to bottom. 

At the input to the network, S is connected to hyper bar number l S /a J. The input is now 

routed to bucket dz-i, since dz-i is used for routing at stage 1. Thus, the source is connected to 

line 

where 0 ~ Ki < c. Ki cannot be determined since we do not know to which output of bucket dt-i 

the source S will be switched. 

In order to compute l S /a J, we make the observation that the least significant digit of S is x' 

which is a digit in base-c, and thus consists of log2(c) bits, and the next significant digit, so, is 

a digit in base-(a/c) which consists of log2(a/c) bits. Thus sax' has log2(a/c) + log2(c) = log2 (a) 

bits. LS/aj is now computed by right-shifting S by log2 (a) bits, which is equivalent to dropping 

sax' from S yielding sz-i sz-2 · · · s1. 
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And so 

Now we have to compute Li, the input to stage 2. Using the definition of the interconnection 

between stage 1 and stage 2, we get a line number: 

Now, ((sz_ 1sz-2 · · ·s1)b+dz-1)c is strictly greater than c, and K1 is strictly less than c. This means 

that the 'Y function which fixes the least log2( c) bits leaves the K 1 portion of L1 unchanged, and 

cyclicly shifts the bit string ((sz-1s1-2 · · · s1)b + dz-1) by log2(a/c), giving ((sz_ 2sz_3 · · ·s1)ab/c + 
s z-1 + dz-1 a/ c). Collecting these terms: 

which is the input to stage 2. This line is connected to switch lLi/aJ of stage 2 and then routed 

to output dz-2c + K2 (where 0 ~ K2 < c) of that switch and becomes line L2 where 

Now 

lLi/aJ = l((sz-2sz_3 · · ·s1)ab + dz-1a + sz-1c + K1)/aj 

= (sz-2sz_3 · · ·s1)b + d1-1 + l(sz-ic + K1)/aJ 

= ( s1-2sz_3 · · · s1)b + d1-1 

since ( sz_1 c + K1) < a. Substituting into L2 we get 

In general, after the ith stage, the input to the network is line 

Since all di's are digits in base-b, this expression can be shortened to: 
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In particular, at the lth stage 

Li = ( d1-1d1-2 · · · do)c +Ki 

At the final stage the message is sent to the l Li/ c J crossbar of the final stage, and routing in 

the crossbar is effected by the last digit x in base-c. So, 

Lout =(lLz/cJ)c+x 

= (l((d1-1d1-2 · · ·do)c + K1)/cJ )c + x 

= (d1-1d1-2 .. · da)c + x 

= d1-1d1-2 · · · dox 

Thus the input is routed to the required destination DQ .E.D. 

Theorem 1 An EDN is always connected. 

Proof: Follows constructively from Lemma 1 DQ .E .D. 

(0 s; K1 < c) 

Corollary 1 A renaming of the inputs of an EDN or a permutation of its inputs does not prevent 

a source from connecting to destination D = d1_ 1dz_ 2 · · · dax. 

Proof: By Theorem 1, an EDN(a,b,c,l) is always connected. If a path exists we can connect 

source to destination D = dz_ 1di_ 2 • • • d0 x by Lemma 1, irrespective of where the message origi­

nated. Thus renaming the inputs, or permuting}he inputs, only puts D = d1-1d1-2 · · · dox onto a 

different input to the network. From this input it is routed according to the routing algorithm to 

the appropriate destination. DQ.E.D. 

Corollary 2 If the bits of D = dz_ 1d1-2 · · · dox are retired in a different order, say d/_i at stage i, 

then the source with destination tag di-1 d1-2 · · · dox will be routed to destination D' = d/_1 d/_ 2 · · · dcix'. 

Proof: The above statement is equivalent to saying that the bits o_f dt-l d1-2 · · · dox are re­

ordered such that F( d1-1 d1-2 · · · dox) = d/_1 d/_ 2 · · · dcix' before being fed to the network. In this 

case since the routing tag d/_1 d/_ 2 · • • dcix' is applied to the network, the input will be routed to 

D' = d/_1 d/_ 2 · · · dcix' by Theorem 1. But D' = F( dt-1 d1-2 · · · dox) = F(D). Thus to retire the 
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bits in different order, while preserving the destination D = dt-l dt_ 2 • · • d0 x, the permut<1 ti on p-l 

must be performed at the output of the network. DQ.E.D. 

To illustrate the usefulness of Corollary 2, consider the EDN(64,16,4,2) shown in Figure 5. This 

network is incapable of performing the identity permutation in one pass. However, by retiring the 

bits of the routing tag in a different order, and then adding an additional permutation stage to 

compensate, the modified EDN in Figure 6 is obtained. It should be noted that these networks will 

perform identically in the average case, while very differently for specific permutations. 

Theorem 2 An EDN(a,b,c,l) has cl different paths from any input to any output. 

Proof: At each stage i, digit dt-i in D = d1-1 d1-2 · · · dax determines to which bucket the source 

is switched. However, it can be put onto any one of the c wires of the bucket, ie. the source can be 

put onto wires d1-ic, d1-ic + 1, · · ·, d1-ic + ( c - 1). Thus, there are c alternate paths that the source 

can be switched to at each stage. Since this occurs in l stages., there are,c1 possible paths that the 

source can take to any one output. DQ.E.D. 

There are two special cases of EDNs worthy of mention. An EDN(a,b,1,1) is an ax b crossbar. 

An EDN( a,b,1,l) is an a1 x b1 delta network [21]. In both of these cases, c = 1 and so by Theorem 2 

there is a unique path from any input to any output. 

3 General Analysis of EDNs 

3.1 Cost of EDNs 

The number of crosspoint switches (Cs( a, b, c, l)) required to build the network is a possible measure 

of the cost of the EDN(a,b,c,l). This is a reasonable measure since the number of crosspoints give 

an idea of the layout area necessary to realize the network. Thus, an a x b crossbar containing ab 

crosspoint switches has an associated cost of ab, and an H(a-+ bx c) hyperbar with abc crosspoint 

switches has a cost of abc. The EDN(a,b,c,l) consists of 1 stages of hyperbars, and one stage of 

crossbars. For each stage i (1 ::; i < l), there are (a/c) 1-ibi-l H(a-+ bx c) hyperbars, and in the 

final stage there are b1 c x c crossbars. In total, there are 

l 
l:) a/ c )l-ibi-1 

i=l 

_ (a/c) 1-b1 

- (a/c)-b 
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(a/c) = b 

hyperbars and b1 crossbars. Thus the crosspoint switch cost of an EDN(a,b,c,l) is 

C (a b C l) - (a/c)1-b1 abc + blc2 
s ' ' ' - (a/c)-b 

= lb1+1c + b1c2 

(a/c)-j;b 

(a/c)=b 

(2) 

Another measure of cost of the EDN( a,b,c,l) is the wire cost Cw( a, b, c, l), that is the number 

of wires required to connect all the hyperbars and crossbars that constitute the network. This is 

important, since this cost provides an estimate of PC board area, the number of pins and, in some 

cases, the number of connections needed across the backplane. The number of wires between stage 

i and i + 1 is (a/c)1-ibic. Thus, the total number of wires between stages is 

l 

°L(a/c)1-ibic 
i=l 

- (a/c)l-bl be 
- (a/c)-b (a/c)-f;b 

(a/c)=b 

The number of inputs and outputs to the network is (a/ c )1 and b1c respectively. A wire is 

counted for each of these. Thus, the wire cost of an EDN( a,b,c,l) is 

( ) 
(a/c)

1 
b
1 

· ( / )l l Cw a, b, c,l =(a:/c):=b be+ a c c + b c (a/c) f::. b (3) 

=(l+2)b1c (a/c)=b 

3.2 Performance of EDN's 

Theorem 1 showed that an EDN(a,b,c,l) is capable of routing any input to any output. However, 

if many inputs require to be routed simultaneously, there is the possibility that some of the inputs 

will not be routed. This occurs due to two reasons: 

1. Two or more inputs may contend for the same output. In this case all but one of these inputs 

will be blocked (not accepted). 

2. Even if there is no contention for an output, an input may be blocked as it makes its way 

through the network itself. This will not occur only in the special case where the EDN is a 

crossbar. As a result, even if the inputs form a permutation (in which case a crossbar would 

13 



be able to route all inputs), in general there is no guarantee that all the inputs will be routed 

by the EDN. 

A cycle is defined as the time required for a request at any input to propagate through the 

network to an output (if not blocked), plus the time for the corresponding message to propagate 

through the network. It is assumed that the network is circuit-switched, and so there are no buffers 

or queues in the network. At the beginning of each cycle, the network attempts to accommodate 

all the requests presented at the inputs. Some of the requests are blocked, and so the number of 

requests actually satisfied is a fraction of the requests issued. The probability of acceptance PA is 

defined as the ratio of the expected number of requests satisfied per cycle to the expected number 

of requests generated per cycle. We will proceed to derive PA for EDNs. 

For the purpose of analysis, the following assumptions are made about the nature of the requests 

generated: 

1. inputs are uniformly and independently distributed over the outputs. Thus at each cycle, the 

probability that any input should be connected to a particular output is the same. 

2. At the beginning of each cycle, the probability that there is a request on an input line is r. 

3. The requests which are blocked are ignored,· and do not affect the requests generated at the 

next cycle. ie. the requests generated at each cycle are independent of the inputs blocked in 

previous cycles. 

Theorem 3 If the inputs to the network are uniformly and independently distributed over the 

outputs, then the inputs to every hyperbar in the network are uniformly and independently distributed 

over the output buckets of the hyperbars at stage i {l ~ i :::; l), and the inputs to the crossbars at 

stage l + 1 are uniformly distributed over their outputs. 

Proof: Each stage of the EDN is controlled by a distinct digit of the destination tag. In 

particular, stage i (1 :::; i ~ l) is controlled by di, and stage l + 1 is controlled by c (destination 

tag represented as in Section 2). The inputs to the network are uniformly and independently . 

·distributed over the outputs, which implies that the destination tags are uniformly and indepen­

dently distributed. This in turn implies that the digits di and c are uniformly and independently 

14 



distributed. Since the digits di are used as routing tags determine which output bucket of the hy­

perbar the message is routed to, then the inputs to the hyperbars are uniformly and independently 

distributed over the output buckets of the hyper bar. Since the digit c 1s used as as a routing tag 

to the crossbars of the network, then the inputs to the crossbars are uniformly and independently 

distributed. DQ .E .D. 

We will now derive an expression for PA using Theorem 3. Let us consider a hyper bar H (a -r 

b x c ), in which the requests are independently and uniformly distributed over the output buckets. 

For each of the a inputs of the hyper bar, the probability that there is a request is r. The probability 

that a request is destined for any of the b output buckets is 1/b. Thus the probability that a request 

originates on an input line and is destined for a particular output bucket is r/b. Given that there 

are a inputs, each with probability r /b of requesting an output bucket, 

the probability of e_xactly n requests for any bucket 

0 for n >a 

Since each bucket has a capacity of c, requests beyond c will be discarded·. Thus the expected 

number of requests accepted per bucket is 

which simplifies to: 

Thus the probability that there is a request at an output of the hyper bar is E( r) / c. 

Using Theorem 3, if Tin is the request rate at the inputs of any stage of hyperbars and Tout is the 

request rate at the outputs, then Tin = E( rout)· In particular, Ti+i = E( Ti)/ c for 0 ::; i < l, ro = r. 

·rz is the input to the c x c crossbar stage of the network. By Theorem 3, these inputs are uniformly 

and independently distributed over the outputs of the crossbar. Since the probability of a request 

at every input is r1, and by Theorem 3, these inputs are uniformly and independently d1stributed 

over the outputs of the crossbar, the probability that there will not be a request at a particular 
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output by any of the c inputs is (1 - rtf c)c. So the probability that a message was routed is 

1 - (1 - rtf c)c = Tjinal· 

The probability of acceptance PA is defined as the ratio of the expected number of requests 

routed per cycle ((number of outputs Xrfinal) = b1c X rfinal) to the expected number of requests 

generated per cycle ((number of inputs xr) = (a/c)'c x r). Thus 

P (r) = b
1
cxr[inal = (bac) 

1 
r1ir·nal 

A (a/c) cxr (4) 

where r 0 = r and for 0 ~ i < l 

= (i - (i -~n + ~(~ -1) (:) cir (i - ~rn 
r final =l-(1-rtfcY 

In Figures 7,8 plots are presented which compare the performance of various EDNs. The 

performance of a crossbar network is also included as reference. In Figure 7, all families EDNs 

generated with 8 inputs 8 outputs hyperbars are featured. As expected, the EDN(8,8,l,*) which 

· correspond to the family of delta networks performs the worse. In addition, as the capacity is 

increased, the performance of the networks improves. The performance of the family of EDNs 

generated by the 16 inputs 16 outputs hyperbars also performs better than the family of EDNs 

generated by the 8 inputs 8 outputs hyperbars. 

3.2.1 Permutation Routing 

Let us now assume that the input requests to the EDN form a permutation on the outputs of the 

network. 

Lemma 2 If the input requests to an EDN form a permutation, there will be· no blocking at the 

final two stages. 

Proof: Since the input requests form a permutation, there will never be a contention for an 

output of the network. The outputs of the last stage switches are also outputs of the network, and 

so no contention will occur at these switches. 
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Each of the b output groups of the second-to-la.st stage is connected directly to a c x c crossbar 

switch. This c x c crossbar is connected directly to c outputs of the network. Therefore, if a 

permutation is being routed, there will never be more than c requests for any c x c crossbar. Thus 

there will be never more than c requests to each of the b output groups of the second-to-last stage, 

and so all requests can be accommodated at the second-to-last stage. Thus there are no conflicts 

in the last two stages. DQ.E.D. 

Let us denote the probability of acceptance PA in the special case where the inputs form a 

permutation as PAp· PAp can be derived from PA by modifying the equation for PA to take into 

account that there will be no blocking in the last two stages by Lemma 2. Thus 

(5) 

where ro = r and for 0 ~ i < l - 2 

( ( r.) a) c n ( a ) ( r.) n ( r.) a-n 
1- 1 - ; + ];( ~ - 1) n ; 1 - ; 

In the following two sections we turn our atte:ntion to computing systems in which EDN s are 

likely to be imbedded, namely MIMD and SIMD machines. 

4 Analysis of the EDNs in MIMD Computers 

In this section a processor-memory multiprocessor system is assumed. Examples of such systems 

are the Cedar System [12] and the NYU Ultracomputer [9]. These systems can support a maximum 

of 1024 and 256 processors respectively. It is further assumed that each node has direct access to 

the network. 

A multiprocessor system now considered in which the processors share a main memory through 

an EDN( a,b,c,l). Each processor is connected to an input port of the network, and each memory 

module to an output port. At each cycle, a processor generates a request to any one of the output 

modules with probability r. Such a system is shown in Figure 9. Under the assumptions of Section 3, 

the expected bandwidth of the system is given by Equation( 4), depending on the request rate r 
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Figure 9: A Multiprocessor System 

of the processors. However, a rejected request is generally not discarded, but submitted again on 

the following cycle, until it is satisfied. Thi~ causes a net increase in request rate to the network, 

and hence a decrease in network performance. We will now consider the magnitude of this effect 

on network performance using the method described in [11]. 

Processors that have to resubmit their requests are considered blocked, since it is reasonable 

to assume that they have to wait for the requested data in order to continue processing. At any 

given time processors can be in one of two states, active (A) or waiting (W). Let qA and qw be 

the steady state probabilities that a processor is active or waiting respectively, and PA_ ( r) be the 
- ~ . 

steady state probability of acceptance of the network. Then the system can be described by the 

Markov graph of Figure 10. 

We will also assume that the resubmitted requests along with the new requests address the 

memory modules uniformly, thus the assumption that the requests are uniformly and independently 

distributed is still valid. Solving for qA and qw we obtain 

qw 

r + PA_ ( r) - r PA_ ( r) 
r(l - PA_(r)) 
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Figure 10: Markov graph for computing qA and qw 

The request rate to the network is now r', where 

r' = rqA + qw = r 
(8) 

and we have 

(9) 

where PA(r) is given by Equation 4. PA(r) can be computed iteratively from Equation 9 by 

computing the following recursion until conversion: 

pA1n+1(r) = P ( , r ) 
A r + pAn(r) - rPAn(r) 

(10) 

with starting condition P.4°(r) = PA(r) 

from which r', qA and qw can be determined usi¥g Equation 8. 

In Figure 4 we see the impact that resubmitting rejected requests has on the network perfor­

mance in two typical cases. 

The efficiency of the shared memory MIMD system in which processors share a main memory 

through an EDN( a,b,c,l) over an MIMD system in which any memory request will always be satisfied 

is given by 

(11) 

The extension of the above model to processor-processor interconnection in MIMD systems is 

quite straightforward, and is not expanded upon in this paper. 

20 



~i 

~(.5) or ~(.5) 

0. 8 

0. 6 

0. 4 

0. 2 

ADN(l6,4,4,•) n>jected requests ignored -+­
ADN(l6,4,4,•) rejected requests :-esubmittad -+­
ADN(4,2,2,•) rejected requests ignorad -a­
ADN(4,2,2,•) rejected requests resubmittad -

01--...................... .J-.................... ....L.... __ ........... .....,_ __ ......... ......,,__,_ .......... .........iL-.. ............ ........w 
1 10 100 1000 10000 100000 let06 

Number of Inputs 

Figure 11: Effect of resubmitting rejected requests on PA in EDNs 

5 Analysis of the EDNs in SIMD Computers 

Currently available Massively Parallel computers such as Thinking Machine's CM-x [10], MasPar's 

MP-1 [18] and AMT's DAP [20] have proven the feasibility of systems in which there are more 

than 4K processing elements (PEs). Interprocessol communication can be performed in one of two 

methods, each of which have their own dedicated communication network. Local communication 

is supported by a mesh like interconnection stn,icture, while global communication is generally 

performed by a generalized router. The router of the CM is based on a hypercube structure, 

while that of the MasPar is based on the restricted delta network described in this paper. In 

MIMD architectures different processors may require communication at different times, and so the 

"goodness" of the network is based on degree, diameter and bandwidth. However, in an SIMD 

system all (or at least a good portion) of the processors usually want to communicate at the same 

time. Hence the goal of the router is to route an arbitrary permutation in a reasonable time. 

The Connection Machine CM-1 [10] and the Maspar MP-1 [18] have chips containing 16 or 32 

processing elements respectively. With the ability to pack more and more processing elements per 

processing chip, the I/O bottleneck between processing elements and the interconnection network 

is only aggravated. Already systems are available with 64K PEs. As the number of processing 

elements continues to grow, it will most certainly be impractical (or impossible) to build inter-
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connection networks where the network size is equal to the number of PEs. One solution to this 

problem is clustering which is used in the architecture of the MasPar MP-1 system, in thinking 

Machine's CM-x, and the proposed P 3 system [24, 2, 25]. In clustering, a restricted access net­

work is used where a group of processing elements (a cluster) ,as opposed to a single processing 

element, has access to the network at any given time. This has been studied in the case where 

the interconnection network is a crossbar, Clos or Benes Network[31]. Much research has been 

done on permutation routing on multistage networks [5, 14, 15, 27] as well as on static networks 

[9, 19, 23, 30] but all these research efforts assume that the network size (i.e., the number of its 

input terminals) is equal to the number of processors in the system. 

We now generalize our analysis of EDNs to systems which incorporate clustering. We will 

compare the performance of. the proposed augmented delta network with that of a crossbar in a 

restricted access system when performing arbitrary permutations. Random permutations occur in 

SIMD in cases where the communications are data dependent. 

5.1 Restricted Access EDNs 

We refer to a restricted access augmented delta network and the associated processing elements as 

a RA-EDN system. The RA - EDN system consists of p clusters and an interconnection network 

of size p. Since the number of inputs and outputs of the EDN are the same, the EDN used can 

be repre.sented as EDN(bc,b,c,l), with p = b1c. Each cluster has q processing elements, a single 

input port (I) and a single output port (0). For convenience, the clusters are labeled 0, 1, ... ,p- 1 

and the input and output ports of cluster i ar~ denoted Ii and Oi and are assumed to be the 

input terminal i and output terminal i of the network, respectively. The processors in each cluster 

are locally labeled O; 1, ... ,q-1. Thus, every processor in the system is globally labeled with two 

digits xy indicating that it is processor y in cluster x, where 0 :::; x :::; p - 1 and 0 :::; y :::; q - 1. 

In decimal notation, the processors are labeled 0, 1, ... , N - 1, where N = p x q and the decimal 

label of processor xy is xp + y. A RA - EDN system so parameterized and labeled is denoted 

RA - EDN(b, c, l, q) (Figure 12). 

Routing a permutation f of the set SN= {O, 1, ... , N-1} in a system of N processors (0, 1, ... , N-

1) consists of delivering a message from processor i to processor f ( i) for every i = O, 1, ... , N - 1. 

rn· RA-EDN(b,c,l,q), at most one message from each cluster can be sent at every network cycle (a 
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network cycle is the time needed to route a permutation of Sp in the network of size p ). As there 

are q processors (and thus messages) in every cluster, routing J requires at least q network cycles. 

Furthermore, a schedule is needed to determine which processor in each cluster is to send at every 

cycle. Although it is be desirable that the schedule guarantees that at every cycle the destinations 

of the selected processors belong to mutually distinct clusters so that the resulting communication 

pattern is a permutation executable by the network in a single cycle, this schedule can be very 

expensive to compute [31] even when the network is capable of performing arbitrary permutations. 

Thus we assume a random schedule where at every cycle, any processor whose message is not yet 

delivered is chosen from each cluster at random. It should be noted that a random schedule on a 

fixed permutation is equivalent to a fixed schedule on a random permutation. If there are conflicts 

in the network, then some messages will not be delivered and will have to wait for a subsequent 

cycle. 

At any cycle, at most one processor with an undelivered message is selected per cluster. The 

selected processor in every cluster i is then put through a q-to-1 multiplexor in the output register 

oi, and the destination address of the selected processor is expressed in its 2-digit form (say XiYi)· 

Xi is used as a header and Yi is appended as a trailer. Then, the headers (xi)'s are used to establish 

a path between the inputs and outputs of the network of RA-EDN(b, c, l, q). If a path between an 

input and output cannot be established due to conflicts in the network, then the affected processor 

is deselected. This processor does not participate further in the network cycle. The trailer Yi in 

cluster Xi is now used to select the local processor of global label XiYi through a 1-to-q multiplexor. 

At this point a path exists between certain selected processors and their destinations, and messages 

can be forwarded to their final destinations. Thes~ cycles are repeated until there are no undelivered 

messages. 

We are interested in the time required to perform a -typical permutation (between the pq pro­

cessors), as opposed to memory bandwidth, waiting time and probability of acceptance. In the 

remainder of the paper, we will discuss how the RA-EDN system with an augmented delta network 

would perform in an SIMD environment. 

Conflicts only occur through the EDN, and not after an input has arrived at the destination 

cluster. Thus the trailer Yi need not be considered in the analysis. We have assumed for the purpose 

of analysis that we are dealing with a random permutation. Thus the headers Xi which are used as 
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the routing tags of the EDN are uniformly although not independently distributed. However the 

larger q is, the more closely it approximates a uniform and independent distribution. At the first 

cycle, there is an output from each cluster, and there is a request at each input of the network. 

Thus r = 1, and the probability of acceptance PA(l) can be worked out by Equation( 4). In this 

case, it is the fraction of inputs that were routed. The inputs that were not routed are still waiting 

in the respective clusters to be routed again. r remains at 1 at least for q cycles, and very close to 1 

until there are on average only one processor per cluster with an undelivered message e. Thus the 

average time to have less than one processor per cluster with an undelivered message is q/ PA (1 ). 

At this point there are on average P* (1- PA(l)) processors with undelivered messages, and the 

probability of a request on any given input is r = (P* (1- PA(l)))/p = (1- PA(l)). Call this first 

r, r 1 . Using this value of r, there are p * (1 - PA(r1))(l - PA(l)) = p * (1 - PA(r1))r1 processors 

with undelivered messages after the following cycle, giving r2 = ( 1 - PA ( r1 ) )r1 . This is continued 

until (rj x p) < 1 for some j, say J. At this point it can be assumed that all data can be routed 

in the following cycle. 

Thus the expected time to perform the permutation is: 

q/ PA(l) + J 

where ro = 1 

Tj+I = (1- PA(rj))rj 

and J is the least value of j + 1 such that Tj+IP < 1 

For purpose of illustration, suppose that we have a RA-EDN(16,4,2,16) system, ie., a system 

with a two stage EDN, and 1024 clusters of 16 processors each. In this system PA (1) = .544. Solving 

the recursion above gives a J of 5. Thus the expected time to route an average permutation will 

be about 16/ .544 + 5 = 34.41 network cycles. 

6 Conclusions 

The Delta network developed by Patel [21] had a much better performance to cost ratio than 

the traditional crossbar. However, these networks have a unique path between every input and 

output, and therefore suffered from internal conflicts which reduced performance. So, even though 

the performance to cost ratio was much higher than the crossbar, the performance relative to the 
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crossbar fell off rapidly with network size. 

The Expanded Delta Network describes a family of networks of which the crossbar and the 

delta networks are specific cases. Members of the family of EDNs exhibit similar performance 

to crossbar switches for a given size network, but with a cost approximating that of the delta 

network. In addition, the performance of these networks in an SIMD and MIMD environment is 

also discussed. 

The router network of the MasPar MP-1 computer with 16K PEs can shown to be logically 

equivalent to the RA-EDN(16,4,2,16) [6]. 

References 

[1] G.B. Adams III and H.J. Siegel, The extra stage cube: a fault-tolerant interconnection network 

for supersystems, IEEE Transactions on Computers, Vol.,C-31, No. 5, pp. 443-454, May 1982. 

[2] B.D. Alleyne, David-A. Kramer and Isaac D. Scherson, A bit-Parallel, word-Parallel, massively 

Parallel Processor for Scientific Computing, Frontiers of Massively Parallel Processing, pp. 

176-185, 1990. 

[3] K.E. Batcher, STARAN Series E, 1977 International Conference on Parallel Processing, pp. 

140-143, August 1977. 

[4] Inside the GP1000 (Cambridge, Massachusetts: BBN Advance.cl Computers Inc., 1988) 

[5] V. E. Benes, Mathematical theory on connecting networks and telephone traffic, Academic 

Press, New York, 1965. 

[6] T. Blank, R. Tuck, Personal Communications, MasPar Computer Corporation, 1991. 

[7] C. Clos, A study of non-blocking.switching networks, Bell System Technical Journal, Vol. 32, 

pp. 406-424, 1953. 

[8] A. Gottlieb et al., The NYU Ultracomputer - Designing an MIMD shared-memory parallel 

computer, IEEE Transactions on Computers, Vol. c-32, No. 2, pp. 175-189, February 1983. 

[9] A. Gottlieb and C. P. Kruskal, Complexity Results for Permuting Data and Other Computa­

tions on.Parallel Processors, Journal of the ACM, Vol. 31, No. 2, pp. 193-209, April 1984. 

26 



(10) D. Hillis, The Connection Machine, MIT Press, Cambridge, Mass., 1986. 

[11) K. Hwang and F.A. Briggs, Computer Architecture and Parallel Processing, Chapter 7, Section 

7.2.4, McGraw-Hill Press, 1984. 

[12) D.J. Kuck at al., Parallel Supercomputing today and the Cedar approach, Science, Vol. 231, 

pp. 967-974, February 1986. 

[13) T. Lang and L. Kurisaki, Nonuniform Traffic Spots (NUTS) in Multistage Interconnection 

Networks, Proceedings of the International Conference on Parallel Processing, pp. 191-195, 

August 1988. 

[14) D. K. Lawrie, Access and Alignment of Data in an Array Processor, IEEE Transactions on 

Computers, C-24, pp. 1145, 1155, Dec. 1975. 

[15) K. Y. Lee, A New Benes Network Control Algorithm, IEEE Transactions on Computers, C-36, 

pp. 768-772, May 1987. 

[16) J. Lenfant, Parallel Permutations of Data: A Benes Network Control Algorithm for Frequently 

Used Permutations, IEEE Transactions on Computers, C-27, pp. 637-647, July 1987. 

[17) S. Liew and K. Lu, Performance Analysis of .flsymmetric Packet Switch Modules with Channel 

Grouping, Frontiers of Massively Parallel Processing, pp. 668-676, 1990. 

[18) MasPar Computer Corporation, MasPar Parallel Application Language (MPL) Users Guide, 

Software Version 2.0, MasPar Computer Corporation, Sunnyvale California, 1991. 

[19) D. Nassimi and S. Sahni, An Optimal Routing Algorithm for Mesh-Connected Parallel Com­

puters, J. ACM, Vol. 27, No. 1, pp. 6-29, Jan. 1980. 

[20) D. Parkinson, D.J. Hunt, K.S. MacQueen, The ATM DAP 500, Proceedings of the thirty-third 

IEEE Computer Society International Conference, pp. 196-199, 1988. 

[21) J.H. Patel, Performance of Processor-Memory Interconnections for Multiprocessors IEEE 

Transactions on Computers, Vol. C-30, No. 10, pp. 771-780, October 1981. 

[22) G.F. Phister at al., The IBM Research Parallel Processor Prototype (RP3): introduction and 

architecture, 1985 International Conference on Parallel Processing, pp. 764-771,August 1985. 

27 



[23) C. S. Raghavendra and V. K. Prasanna Kumar, Permutations on Illiac IV-Type Networks, 

IEEE Transactions on Computers, Vol. C-35, No. 7, pp. 662-669, July 1986. 

(24) I.D. Scherson, D.A. Kramer and B.D. Alleyne, A Fine-Grain bit-Parallel, word-Parallel, 

massively-Parallel Associative Processor, International Conference on Parallel Processing, Vol. 

1, pp. 541-544, 1990. 

[25] I.D. Scherson, D.A. Kramer and B.D. Alleyne, Bit Parallel Arithmetic in a massively Parallel 

Associative Processor, IEEE Transactions on Computers, to appear. 

[26] H.J. Siegel and R.J. McMillen, A multistage cube: a versatile interconnection network, Com­

puter, Vol. 14, No. 12, pp. 65-76, December 1981. 

[27] H.J. Siegel, Interconnection Networks for Large-Scale Parallel Processing, Lexington Books, 

1985. 

[28] T.H. Szymanski and V.C. Hamacher, On the Permutation Capability of Multistage Intercon­

nection Networks, IEEE Transactions on Computers, Vol. C-36, No. 7, pp. 810-822, July 1987. 

[29] T.H. Szymanski and V.C. Hamacher, On the Universality of Multipath Multistage Intercon­

nection Networks, Journal of Parallel and Distributed Computing, Vol. 7, No. 3, pp. 541-569, 

December 1989. 

[30] L. G. Valiant, A Scheme for Fast Parallel Communication, SIAM Journal on Computers, Vol. 

11, No. 2, pp. 350-361, May 1982. 

[31] A. Youssef, B.D. Alleyne, I.D. Scherson, Permutation Routing in Restricted Access Networks, 

IPPS 1992, to appear. 

28 




