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Abstract

Set Priority: Solving an Artificial Intelligence Cybersecurity Challenge with a

Simple Manual Agent

by

Joaquin L. Ortiz

In recent years, there has been a focus on the potential of using artificial intelligence agents

for network security. In this paper, we consider a scenario where network segmentation

protocols require a multi-agent solution, along with an adversary that can evade traditional

firewall solutions via email, known as the CAGE 4 challenge. While the challenge is

focused on the use of artificial intelligence, we propose a solution that was manually

crafted by analyzing the potential alerts provided by the environment with human eyes.

The exceptionally good performance of our agent, especially when compared to other

submissions to the challenge, leads us to raise questions about the efficacy of such

challenges for evaluating the performance of artificial intelligence algorithms.
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Chapter 1

Introduction

Over the past decade, artificial in-

telligence technologies have gained signif-

icant mainstream attention. While some

of these technologies have been around for

much longer, others, especially generative

technologies, are relatively new and are con-

tinuously increasing their capabilities. As

public access to artificial intelligence tools

increases, so does concern for potential ma-

licious use of these tools. One potential

malicious use is to drive a cyberattack. An

artificial intelligence agent trained on a net-

work simulator may develop a method of

attack which performs better than the av-

erage human hacker would in the same sce-

nario. The resulting model could then be

used to create an automatic network infil-

tration service. While such a model would

likely require some target-specific training,

it could still pose quite a threat to tradi-

tional security systems.

Due to this possibility, artificial

intelligence gyms have been created for the

purpose of training defensive agents. Such

agents could, in theory, deduce that a net-

work intrusion has occured faster than tra-

ditional models and even take actions to

confine or expel the intruder without wait-

ing for human input. These agents could

also be continuously trained to stay up to

date with recently observed threats. Addi-

tionally, these agents could exploit the struc-

ture of the network to their advantage, as

an attacker would likely not have complete

knowledge of this structure. For instance, a

defensive agent could mislead an attacker

to a honeypot network which contains fake

data for the attacker to steal.

To further research about this to-

pic, challenges such as CAGE have been cre-

ated. These challenges present a particular

cyberattack scenario, with varying network

layouts, observable features, goals, and at-

tackers, and invite participants to create

a defensive agent which performs the best

according to the challenge’s goals and scor-
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ing system. The results of these challenges

are used to study techniques for training

cybersecurity agents and their effectiveness

under different scenarios.

In this paper, we will present an

atypical solution to the CAGE 4 scenario.

Contrary to what might be expected for

a solution to an artificial intelligence chal-

lenge, the bulk of the solution does not

involve artificial intelligence, but instead

a manually developed prioritization of ac-

tions. Artificial intelligence is used selec-

tively, if at all, in places where uncertainty

is present. Despite the simplicity of this so-

lution, it performs equivalently to or better

than all known solutions submitted during

the CAGE 4 competition.

The main contributions of this pa-

per are summarized as follows:

• This is the one of the first papers in

the literature to explore the CAGE

4 scenario, and the unique challenges

that the scenario poses when develop-

ing an agent.

• We propose only using artificial intel-

ligence where human intelligence fails,

or using human intelligence to boot-

strap artificial intelligence, instead of

relying on reinforcement learning to

find a policy without guidance.

• We raise questions about how well a

training scenario that can be easily be

beaten by a human can serve as an

evaluation to determine how effective

an AI model is.

• We raise questions about how to effec-

tively balance such scenarios so that

it is difficult for a human to arrive at

an optimal solution but possible for

an AI to do so.

The remainder of the paper is

structured as follows. Section 2.2 will ex-

plore prior work in this field, followed by

the CAGE 4 challenge itself, the semantics

of the environment, and the method of eval-

uation. We will then introduce our agent

in Section 3 and describe its observation

space, why we decided to create our own

observation space instead of using the one

provided by the challenge, implementation

details, and some potential modifications.

In Section 4, we will evaluate the agent be-

fore concluding and discussing potential for

future research in Section 5.
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Chapter 2

Background

2.1 Important Concepts

This paper assumes familiarity

with the following concepts, which are used

by the CAGE challenge’s documentation

and in related literature. We are defining

these terms as they are used in the context

of artificial intelligence for cybersecurity,

not necessarily for artificial intelligence in

general.

Agent: In an AI environment, an

agent is a interface that can receive observa-

tional inputs and rewards from the environ-

ment, and use these inputs to take actions

in order to achieve some goal. For the pur-

poses of this paper, an agent may refer to a

program which tries to defend or attack a

network or a simulated user of the network.

Action: An high-level abstraction

of a general computer security tactic or

technique, such as restoring a host using

a system image or creating a honeypot in a

particular location.

Step: An arbitrary moment of

time used to separate the continuous flow

of time into discrete units. In general, each

agent receives one observation on each step

and takes one action on each step.

Agent Teams: Agents are sepa-

rated into 3 general teams. Blue agents are

agents which attempt to defend the network

from a cyberattack, while red agents are

the agents which perform the attack. Green

agents represent the users of the network,

and are usually controlled by the simulation.

The existence of the green agents serves as

an extra challenge to the blue agents, as

they provide a source of innocuous activ-

ity throughout the network that serves to

distract from the red agent’s malicious ac-

tivity.

Host: A single system connected

to a network. For the purposes of this paper,

a host can either refer to a user terminal

through which a green agent will interface

with the network or a server which provides

3



services that can be connected to.

Lateral Movement: For a red

agent, the act of moving in between hosts

and subnets in search of a goal, such as an

important server or subnet. The red agent

will use lateral movement to learn about

the topology of the network so it can reach

this goal. In this paper, we specifically use

it to refer to the act of moving in between

subnets, as this is significantly harder than

the act of move in between hosts.

Partial Observability: The in-

ability to have a complete picture of the

environment at any given time. In cyberse-

curity scenarios, all agents have partial ob-

servability of the environment. Red agents

are generally not aware of the topology of

the network when the game begins, and

must explore to discover hosts. Also, the

red agent cannot see everything that is oc-

curring on a particular host without gaining

administrative access to said host. While

the blue agent is aware of the topology of

the network at the start of the game, it may

not be aware of every communication or

process that runs in the network, possibly

due to a requirement for confidentiality of

communications or due to deception on the

part of the red agent. And of course, green

agents are simply users and do not have

complete access to all hosts in the network,

nor should they.

Reinforcement Learning (RL):

A form of learning which learns to estimate

the expected reward for taking a certain

action in a given state, as well as which

state the agent is expected to end up in as

a result. Using these estimations, an agent

can either select the action that is expected

to result in the best reward-state pair (ex-

ploitation) or choose to take an action at

random to see what kinds of rewards and/or

states occur (exploration). Reinforcement

learning works well in stochastic environ-

ments, where the transition from state to

state is not deterministic, but relies heavily

on an accurate reward function.

CybORG: An AI gym for train-

ing cybersecurity agents, which complies

with the OpenAI gym specification [Standen

et al., 2021]. The CAGE challenges are im-

plemented using this gym [Group, 2023].

2.2 Related Work

Several papers have been written

about previous iterations of CAGE. These

iterations have some significant differences

from CAGE 4, but are still useful to track

existing methodologies of training artificial

intelligence agents for cyber defense. This

section is not exhaustive; we are only high-

lighting works that we found relevant to

4



Actions
Blue Agent Steps Red Agent Steps

1. Analyze files 2 1. Discover hosts 1
2. Create Decoy service 2 2. Portscan host 1 or 3
3. Kill detected processes 3 3. Identify Decoys 2
4. Restore system image 5 4. Exploit service 4

5. Block subnet 1 5. Escalate privilege 2
6. Unblock subnet 1 6. Degrade services 2

Table 2.1: Actions available in CAGE 4

the issues posed by this challenge and the

solution that we created.

Bates et al. [2023] investigated the

use of reward shaping to expedite training

of agents in the CAGE 2 environment. This

is especially important as the CAGE chal-

lenges are systems with very sparse, mostly

negative rewards. Sparsity of rewards often

corresponds with requiring more samples to

learn a policy [Crowder et al., 2024]. Their

experiments showed that reward shaping

can be effective in helping a learning al-

gorithm converge on a policy faster, but

that doing reward shaping improperly can

cause the algorithm to instead converge on

a worse-performing policy Ng et al. [1999].

The winning submission to CAGE

1, created by Foley et al. [2022], used a spe-

cific subclass of reward shaping known as

intrinsic curiosity, which encourages agents

to explore states that are considered "novel".

Implementing curiosity into one of their

agents led to a drastic improvement in said

agent’s score. They observed that such cu-

riosity "overcomes the problem of develop-

ing strategies in the presence of randomness

in the adversary". They used a similar strat-

egy to develop an agent for CAGE 2 [Foley

et al., 2023], but were not able to achieve the

same level of success without also modifying

the observation provided by the challenge

to contain additional information.

The same team used a different

strategy when approaching CAGE 3, which

is a multi-agent environment with highly

random elements, such as the local and be-

havior of the red agents and the behavior

of the green agents. In Hicks et al. [2023],

they found that a naive application of PPO

completely failed to learn a policy, and in-

stead found that it was best to design a well-

performing expert agent, an agent based on

an expertly designed algorithm as opposed

to learning a policy, which could be used

to bootstrap learning agents in the same

environment.
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2.3 CAGE Challenge

The CAGE 4 Challenge [Group,

2023] takes place in a network whose layout

is pictured in Figure 2.1. Due to the high

security of the network, certain subnets can-

not allow connections from external blue

agents. As a result, these subnets require a

separate dedicated blue agent, represented

in the figure using the shield icon. Likewise,

if the red agent moves laterally into one of

these subnets, it must operate a separate

agent in that subnet, unable to communi-

cate with its parent. However, one of the

agents is still in charge of three of the sub-

nets; we refer to this agent as the HQ agent.

All blue agents share the same score, which

is provided by green agents, simulated users

that will deduct points if their work is in-

terrupted.

Each subnet contains between 1

and 10 user terminals as well as between 1

and 6 servers, collectively known as hosts.

Each host runs a set of random services

which a red agent can exploit to gain ac-

cess. One of the servers is responsible for

maintaining the subnet’s firewall. If the red

agent gains administrative access to this

special server, it can allow itself to tem-

porarily communicate through the firewall

and achieve lateral movement.

Over the course of the simulation,

the subnets will go through three phases.

In the first phase, known as the planning

phase, all links in Figure 2.1 are active. Af-

ter one-third of the simulation has elapsed,

the subnets will move on to mission phase

A. In mission phase A, green agents within

the subnets labeled Restricted Zone A will

not be able to communicate with hosts in

Restricted Zone B and vice versa, and green

agents within the subnet labeled Opera-

tional Zone A will not be able to communi-

cate with other subnets at all. After another

one-third of the simulation has elapsed, mis-

sion phase B will begin, which is similar

except that Operational Zone B is affected

instead of Operational Zone A. These re-

strictions are voluntary on the part of the

green agents; the red agent may ignore them,

requiring preventative action from the blue

agent.

Unlike red agents, blue agents are

able to have limited communication with

each other. On each step, a blue agent

can send 8 bits of data to adjacent blue

agents. The operational zones are an ex-

ception: blue agents in these zones are not

able to transmit messages due to the high

security protocols, but may still receive mes-

sages from blue agents in the corresponding

restricted zone. The content and meaning

of these bits is entirely up to the agents

6



Figure 2.1: CAGE 4 Subnet Diagram
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themselves.

The red agent always enters the

network through a compromised user termi-

nal in the contractor subnet. The contractor

does not have a blue agent installed in their

subnet, and the servers in the contractor’s

subnet are vital to the green agents’ work, so

it is not possible to simply quarantine the

subnet or the affected terminal. Instead,

the blue agents must respond to the red

agent’s attempts to move laterally out of

the contractor subnet before the red agent

can damage important systems.

2.4 Agent Actions

The blue and red agents each have

six high-level actions, as shown in Table

2.1. Each action corresponds to a basic

kind of attack or defense used in real world

scenarios. Each agent can only run one

action at a time, and some actions may

take multiple steps to finish. The effects

of an action will only apply at the end of

this waiting period. The waiting period

includes the step that the action was run;

a one-step action will yield results on the

next step. Actions cannot be canceled once

started. Below, we describe semantics of

actions that we found notable.

Each host can only support a lim-

ited number of Decoys before they begin

interfering with the host’s regular services.

The number of decoys that can be used on

a given host depends on the services that a

host runs at the start of the game, as decoys

can only listen on certain ports.

Kill cannot arbitrarily kill pro-

cesses; it will only kill processes on the

specified host’s "Kill list". Processes are

added to a "Kill list" if they trigger a se-

curity alert, as detailed in 2.6. Processes

cannot be killed if they are running with

elevated permissions. This action takes 3

steps and always succeeds, even if it failed

to kill a process.

Blocks will prevent all commu-

nication between two subnets, except for

emails. Blocks will not be removed auto-

matically; they will last until Unblocked.

Portscans can either be done ag-

gressively, taking 1 step, or stealthily, tak-

ing 3 steps. We will cover the difference

between the two in Section 2.6

The red agent can run Degrade

in one of two modes: OT mode or Service

mode. In OT mode, the red agent will

attempt to kill a particular internal service

known as the OT service. If the specified

host is not running an instead of the OT

service, the action will fail. In Service mode,

the reliability of all non-OT services on the

specified host will be reduced. Unreliable

8



services have a 20% chance to reject an

otherwise valid connection, and this chance

increases by 20% every time Degrade is run

in Service mode.

2.5 Green Agents

Green agents are simulation con-

trolled agents that represent the users of

the network. One green agent is created for

each user host in the network. The actions

of green agents drive the scoring system

used by the challenge, and also provide a

source of innocuous network and process ac-

tivity that may cause a false alarm. Green

agents use an entirely separate set of ac-

tions, having only two: LocalWork and

RemoteWork. Every step, the green agent

will execute one of the two actions at ran-

dom. Both actions take only one step to

complete.

LocalWork: The green agent at-

tempts to connect to a service running lo-

cally, on the same host as the green agent

itself. If there are multiple services, one is

selected at random. As this is a connec-

tion, an unreliable service may reject the

connection, causing the action to fail.

If a red agent is active in a sub-

net adjacent to the one the green agent’s

host is a member of, and the LocalWork ac-

tion succeeds, there is a 1% chance that the

green agent will accidentally open a phish-

ing email while performing work. This will

lead to the red agent gaining access to the

green agent’s host. Phishing emails can be

received and opened even if the sender and

recipient are separated by a firewall that

has been Blocked. This is believed to be a

bug, and makes it more difficult to stop the

lateral movement of red agents.

RemoteWork: A server host in

the same subnet or an adjacent subnet is

selected at random. If that server host pro-

vides an OT service, the green agent at-

tempts to connect to that service, otherwise

it will select a service from that host ran-

domly. The action will fail if the connection

is blocked due to firewall rules created by

Block, if the service being connected to has

been killed, or if the service being connected

to rejects the connection due to being af-

fected by Degrade.

2.6 Partial Observation

In practice, security analysts can-

not fully observe the state of a network, and

attacker actions can be hidden or missed

by security monitors. The CAGE challenge

models this problem as a partially observ-

able environment, where the blue agent can

only observe partial information about the

state of the network. In this section we

9



describe the actions that may trigger these

security monitors, resulting in an alert, their

chances of doing so, and the resulting ob-

servations.

When an alert occurs, information

about the alert and the associated host is

made visible to the blue agent that has ju-

risdiction over the subnet in which the alert

occurred. Each alert is classified as a file,

connection, or process, which determines

which fields may be present in the alert. If

a connection alert crosses subnet bounds,

the alert only appears to the blue agent

with jurisdiction over the subnet that re-

ceived the connection, not the blue agent

with jurisdiction over the subnet that sent

it.

{

’Files ’: [{

’Density ’: 0.9, ’File Name’

: ’cmd.sh’, ’Path’: ’/tmp/’

}],

’Connections ’: [{

’local_address ’: ’

10.0.90.221 ’, ’local_port ’: 25,

’remote_address ’: ’10.0.90.250 ’,

’remote_port ’: 53258

}],

’Processes ’: [{’PID’: 2651}] ,

’Interface ’: [

{’ip_address ’: ’10.0.90.221

’}

],

’System info’: {

’Architecture ’: ’x64’,

’Hostname ’: ’

admin_network_user_host_3 ’,

’OSDistribution ’: ’ubuntu ’,

’OSType ’: ’linux’,

’OSVersion ’: ’20.04’

}

}

Listing 2.1: Example of alerts from an

Ubuntu host.

An aggressive Portscan has a 75%

chance triggering a connection alert for each

port, while a stealthy Portscan has a 25%

chance of triggering a connection alert for

each port. However, if the host has a De-

coy, the connection to the Decoy’s port will

always trigger a connection alert.

[

{’local_address ’: ’10.0.90.2 ’,

’local_port ’: 25, ’

remote_address ’: ’10.0.90.196 ’,

’remote_port ’: 52597} ,

{’local_address ’: ’10.0.90.2 ’,

’local_port ’: 22, ’

remote_address ’: ’10.0.90.196 ’,

’remote_port ’: 51368} ,

{’local_address ’: ’10.0.90.2 ’,

’local_port ’: 3390, ’

remote_address ’: ’10.0.90.196 ’,

’remote_port ’: 50271}

]

Listing 2.2: Example of alerts caused by a

single Portscan.

Exploit: Has a 95% chance of

triggering a connection and process alert on

10



success and a 100% chance of triggering a

connection alert on failure. If a process alert

is triggered, the detected process will be

added to the Kill list. Exploit also creates a

payload file called "cmd.sh" that will trigger

a file alert when Analyze is used.

’Connections ’: [

{’local_address ’: ’10.0.90.221 ’, ’

local_port ’: 25, ’remote_address

’: ’10.0.90.250 ’, ’remote_port ’:

53258}

],

’Processes ’: [{’PID’: 2651}] ,

Listing 2.3: Example of a connection and

process alert caused by Exploit. The lack

of fields in the process alert indicates that

information is being hidden.

Escalate: Although Escalate can-

not actively cause alerts, it does create a

payload file called "escalate.sh" that will

trigger a file alert when scanned by Ana-

lyze.

{

’Density ’: 0.9,

’File Name’: ’escalate.sh’,

’Path’: ’/tmp/’

}

Listing 2.4: Example of a file created by

Escalate. Density may vary but File Name

is always the same.

Green Agents: Green agents have

a 1% chance to raise a false positive connec-

tion alert every time they take a successful

action.

{’local_address ’: ’10.0.74.39 ’, ’

remote_address ’: ’10.0.86.254 ’,

’remote_port ’: 49711}

Listing 2.5: Example of an false positive

alert caused by RemoteWork

{’local_address ’: ’10.0.90.221 ’, ’

local_port ’: 53258}

Listing 2.6: Example of a false positive alert

caused by LocalWork

Unlike successful runs of Exploit,

an infiltration triggered by a phishing email

encountered during LocalWork does not cre-

ate a file, nor can it ever cause an alert. This

makes phishing emails an especially danger-

ous way for red agents to move laterally, as

they are completely untraceable. However,

the red agent must Escalate before it can

deal damage to the host, which gives An-

alyze a chance to trigger an alert for the

payload file created by Escalate.

2.7 Scoring

The goal of the blue agent is to

maximize service availability in the pres-

ence of an attacker that is attempting to

kill and/or reduce the reliability of services.

This goal is reflected in the scoring system

provided by the challenge, where points are
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deducted should the attacker successfully

kill or destabilize a service in a way that

disrupts a green agent’s attempt to do some

kind of Work. These penalties vary during

the three phases of the game to represent

how certain system are more valuable if they

are currently performing critical operations.

Penalties are assessed whenever a

green agent fails to do Work, either because

of Degraded or killed services, or, in the

case of RemoteWork, a Block that prevents

the connection from going through. Due to

how critical it is to operation of the network,

an immediate penalty is assessed should the

red agent successfully kill the OT service

on any host. Additionally, a single-point

penalty is applied for using Restore on a

host to represent the downtime incurred,

regardless of if the host is a server or a user.

During mission phases, the opera-

tional and restricted zones for the currently

running mission have increased penalties for

red agent activity. This is to represent the

importance of the work that the hosts in

that subnet are currently performing. The

phase does not affect the Restore penalty.

Despite there being no blue agent

to defend the contractor network, it has a

penalty during the planning phase. This is

likely to prevent blue agents from simply

Blocking the contractor network to prevent

Subnet Phase Penalty
Contractor Planning -5
Contractor A or B 0

Operational A A -10
Restricted A A -2

Operational B B -10
Restricted B B -2

(other) -1

Table 2.2: Rewards, separated by subnet

and phase

initial infection of the network.

2.8 Red Agent Behavior

For evaluation purposes, a state

machine red agent is provided by the CAGE

4 challenge. The state machine of this agent

is described by Figure 2.2, with a separate

instance of the state machine for each known

host. Although we did not analyze this state

machine for the purposes of developing our

solution, we are including it here as it is

part of the evaluation used for the challenge

and it may provide some insights as to why

certain solutions perform they way they do.

At the start of a step where is it able to

take an action, the red agent will select a

host at random and select a state transition

as follows.

Hosts begin in the Known state.

The red agent can run Portscan on a Known

host to get information about which ports

are open, putting that host in the Scanned

12



Figure 2.2: Red agent state machine. Num-

bers correspond to actions in Table 2.1. †

occurs if the red agent loses access to a host.

state. From here, the red agent can run

rounds of Identify to determine which ports

are likely decoys, and eventually run Exploit

on a port which is believed to not be a

decoy. On success, the host will be put

in the Unrooted state. After this, the red

agent will Escalate to move to the Rooted

state, and then repeatedly Degrade that

host as long as it has access.

States ending in D indicate that

the subnet which contains that host has

already been Discovered. The red agent has

a high chance of executing Discover during

any state which does not end in D, and will

transition all hosts discovered as a result of

that action to the equivalent D state.

2.9 Observation Wrapper

Although the blue agent observa-

tions described in Section 2.6 are suitable

for parsing by Python code, they are not

suitable for inputting to an RL agent algo-

rithm. Most algorithms require that the in-

put observation be a multi-discrete array, a

one-dimensional array of integers, each with

a defined range of possible values. Because

of this, the creators of CAGE 4 designed

an observation wrapper which transforms

the raw, unwrapped observation previously

described into a multi-discrete array. The

layout of the resulting array can be seen in

Table 2.3. Below, we describe each of the

fields in the array.

• Phase is a single number that reports

the current phase, with the planning

phase being 0, mission phase A being

1, and mission phase B being 2. The

range of this value is [0, 2].

• Subnet ID is a single number that

tells the agent which subnet it has

jurisdiction over. The range of this

value is [0, 7], as the contractor net-

work counts as a subnet despite there

not being a blue agent there.

• Blocked subnets is a series of 8 bits,

one for each of the subnets in the sim-

ulation, that encode whether a Block

exists between the subnet indicated by

Subnet ID and the subnet indicated

by the bit.

• Should Subnet be Blocked is a se-
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Name Length Values
Phase 1 Planning, Mission A, Mission B

Subnet ID 1 See 2.1
Blocked Subnets 8 No, Yes

Should Subnet be Blocked 8 No, Yes
Process Alert on Previous Step 16 No, Yes

Connection Alert on Previous Step 16 No, Yes
Repeat last 5 rows for additional subnets, if this is the HQ agent

Communication Vector 4 ∗ 8 0, 1
Padding 0 or 98 0

Table 2.3: Fields of the wrapped observation array provided by the challenge

ries of 8 bits, one for each of the sub-

nets in the simulation, that encode

whether a Block should be placed be-

tween the subnet indicated by Subnet

ID and the subnet indicated by the bit

in order to enforce the current phase’s

communication policy, as detailed in

Section 2.3.

• Process Alert on Previous Step

is a series of 16 bits, one for each of the

possible hosts in the subnet, that en-

code whether a process alert occurred

on that host on the previous step. If

there are less than 16 hosts in a sub-

net, bits which do not correspond to

any host will always be 0.

• Connection Alert on Previous Step

is the same as Process Alert on Pre-

vious Step, but for connection alerts

instead of process alerts. Connection

alerts will only appear on the host

that received the connection that caused

the alert, not the one that sent it.

• If this is the HQ agent, the above

5 fields (Subnet ID to Connection

Alert) will be repeated for each of

the three subnets the HQ agent has

jurisdiction over.

• The Communication Vector encodes

messages received from other agents

as four series of 8 bits. If the current

blue agent cannot receive a message

from a given blue agent due to the

communication policies, the message

will be represented as all zeroes in the

observation space.

• Padding may be optionally used to

support algorithms which do not al-

low for variable observation sizes. If

used, it will be appended to the arrays

of non-HQ blue agents so that they

match the size of the array of the HQ
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blue agent.
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Chapter 3

Set Priority Agent

Following our analysis of the vari-

ous observations in the CAGE 4 challenge,

we determined that there were patterns

which could be used to reliably differen-

tiate between false and true positive alerts.

However, these patterns were being hidden

by the observation wrapper provided by the

challenge. As a result, we decided to create

our own observation wrapper which would

use these patterns to sort hosts into different

sets. While we intended to use the sets as

input to a reinforcement learning algorithm,

we realized that we could instead write a

simple algorithm to prioritize actions using

these sets.

Ultimately, a good solution to this

challenge is one that is able to balance main-

taining availability of network services with

the dangers of acting on false positive alerts,

while also attempting to account for false

negatives by proactively searching for red

agents. Using these principles, we created a

design for a simple agent to use as a starting

point using the following basic ideas:

• If we know that Restore must be run

on a host, meaning that either the red

agent on the host has Escalated or we

were not alerted to the initial infection

of the host, we should run Restore on

it as soon as possible to prevent the

red agent from dealing damage to the

host.

• If we know about malicious processes

on a host, we should Kill them as

soon as possible before they have the

chance to Escalate. As Kill takes less

steps than Restore, and the window

for Killing is limited, Killing should

take priority over Restoring.

• As damage a server has the potential

to affect more users than damage to a

single user, we should prioritize run-

ning Kill or Restore on servers before

doing so on users. However, Kill on
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a user should still take priority over

Restore on a server.

• When there are not active threats on

our subnets, we should create as many

Decoys as possible on each host, as

Decoys greatly increase the chance

of Portscans causing alerts and some-

what increase the chance of Exploits

failing. This requires us to know how

many more Decoys can be created on

a host at any given time, as different

hosts may not be able to support the

same number of Decoys.

• To increase the chance that a red agent

causes alerts no matter where it tries

to go, we should aim to create Decoys

evenly. In other words, we first create

one Decoy on all hosts, then create

a second Decoy on all hosts, and so

on, instead of creating three Decoys

on one host before moving on to the

next.

• When we have nothing else to do,

we should Analyze all hosts in turn

so that we can detect infections that

we may have missed, either due to a

phishing email or, rarely, a false nega-

tive alert from Exploit.

• Despite this, false negative Exploits

are rare, so it may be beneficial to

only Analyze user hosts, as only users

can open phishing emails.

• Following a successful Restore or Kill,

there is no need to Analyze a host for

some time, as it is unlikely that it will

be reinfected immediately.

Note that these design objectives

leave three major ambiguities: what to do

if we know about a malicious process but

suspect that it has already Escalated, what

information to put into messages between

agents, and how to determine if we should

run Restore on a host. We intended to iden-

tify possible answers to the first two am-

biguities by developing and testing various

mutations of our agent that implemented

various possible answers, and intended to

define the answer to the last one as part of

our observation space.

3.1 Alert Patterns

In Section 2.6, we listed all possi-

ble causes of alerts. Upon analyzing these

further, we found that the presence or non-

presence of keys will always be the same

for any given cause of alert. For instance,

if Portscan or Exploit causes a connection

alert, the resulting alert will always have

a local_port and a remote_port. How-

ever, if RemoteWork causes a connection
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alert, the resulting alert will only have a

remote_port and not a local_port. Sim-

ilarly, a connection alert caused by Local-

Work will only have a local_port and not a

remote_port. This pattern, based on pres-

ence or absence of fields, is very powerful,

as it allows for us to reliably distinguish

between false positive and true positive con-

nection alerts. As there is no way for false

positive file or process alerts to occur, this

single pattern could allow an agent to learn

to distinguish and ignore all false positive

alerts, making said agent’s job much sim-

pler.

3.2 Observation Wrapper Is-

sues

Unfortunately, we found that the

observation space described in Section 2.9

often omits or oversimplifies critical

information. This includes information

that allows for detecting the patterns men-

tioned above, but also extends to actions as

simple as Analyzing the files on a host or

identifying the source of an attack. Both of

these are critical to implementing the ideas

behind our algorithm.

The issues with the observation

space that we found most pressing are as

follows:

• The Alert on Previous Step fields

only report alerts that occurred on

the previous step. Once another

step passes, the alert is forgot-

ten. As the agent may not be able

to immediately act on an alert, the

agent requires some form of internal

memory or observation stacking so as

to not forget about alerts. Due to the

length of the Restore action in par-

ticular, and the possibility that any

number of alerts could happen during

any turn, the task of remembering all

of the alerts quickly becomes difficult

to manage if the responsibility is left

to the agent.

• The wrapped observation does not

include any information about

Decoys, which makes it difficult to

determine how many decoys are cur-

rently deployed on a host and how

many additional decoys can be de-

ployed. As the number of decoys that

can be deployed on each host varies be-

tween episodes, this information would

be useful to avoid wasting steps.

• The wrapped observation does not

include any fields for file alerts,

which makes it impossible to retrieve

results from Analyze. The action is ef-

fectively unusable with this wrapper.
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• Although there are patterns that al-

low differentiating between false and

true positive alerts, the wrapper sim-

plifies the alerts down to single

bits that signify the presence or ab-

sence of a alert for each host. This

makes it impossible for the agent to

exploit these patterns.

• As the wrapper only shows infor-

mation about where connection

alerts were received, it is impos-

sible to determine which host sent a

connection that caused an alert.

3.3 New Observation Space

Due to the lack of key informa-

tion in the original wrapped observation,

we deemed it necessary to create our own

observation wrapper that could preserve or

parse the aforementioned patterns for our

agent. The goal of the new observation

wrapper is to distinguish hosts that require

Restoring, Killing, more Decoys, or Ana-

lyzing, and to pass that information to the

agent, which will choose the action. Due to

the simplicity of the distinguishing patterns,

we chose to hardcode the parsing of the pat-

terns into the observation wrapper, and use

the results of those patterns to create two

sets of hosts. While creating the wrapper,

we observed that we could create further

sets to represent additional features about

the hosts in the environment, and use in-

formation about host membership in those

sets as a multi-binary input to an agent.

The core two sets of our new ob-

servation space are the set of hosts that

Kill should be used on and the set of

hosts that Restore should be used on.

These are abbreviated as the Kill set and

the Restore set.

The Kill set is simple to define:

it is the set of all hosts which have a non-

empty Kill list. Killing when we don’t have

anything to Kill is a no-op, so it should

be avoided. As only true positive alerts

from successful Exploits lead to processes

being added to a host’s Kill list, the set

becomes the set of hosts on which we have

been alerted to a successful Exploit.

As Escalate cannot result in an

alert, the Restore set is not as simple to

define. However, if we receive a true positive

connection alert, we know that the red agent

must have a presence on the host that sent

the connection. If the host that sent the

connection is not already in the Kill set, it

is not possible to use Kill to remove the

red agent from that host. Instead, the host

should be added to the Restore set. In the

event that the host is already in the Kill set,
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it is added to the Escalate set anyway, with

dual set membership indicating that it is

not clear if the red agent has run Escalate

on this host or not. In a real world scenario,

it is likely that a intruder would attempt

to gain privilege escalation on a machine

before using it to attack other machines,

especially if the blue agent is not aware of

the presence of the intruder.

Simply relying on connection and

process alerts to act comes with the caveat

that not all red agent actions can result in

connection and process alerts. Due to the

existence of phishing emails, it is possible

for a red agent to move laterally and deal

damage without the blue agent recieving a

single alert. As a result, it is best to en-

courage the agent to actively scan hosts in

its network using Analyze. Although phish-

ing emails do not create files, the red agent

must Escalate before it can deal damage,

and Analyze will always raise a file alert on

a host where Escalate has been used. To

aid in this, the wrapper provides a deque of

hosts to run Analyze on and a singleton

set containing the host at the front of the

queue, abbreviated as the Analyze queue

and Analyze set respectively. As phishing

emails can only infect user terminals, server

hosts do not need to be in the deque. When-

ever a blue agent runs Analyze, Restore, or

Remove on a host, the host is moved to the

back of the deque so that hosts which have

not recently had some form of removal or

analysis drift to the front of the deque.

The results of Analyze (file alerts)

can also be used to place hosts into the

Restore set. Being alerted to a file named

escalate.sh should add a host to the Re-

store set. However, being alerted to a file

named cmd.sh should also add a host to the

Restore set, but only if it is not already in

the Kill set. If a host has a cmd.sh file but

is not in the Kill set, the PID of the process

which created that file and is acting as the

red agent’s shell is unknown, and thus Kill

will not work. As such, Restore must be

used instead to evict the red agent from the

host.

As Decoys cause Portscans to re-

liably cause alerts and can entice the red

agent to use Exploit on the wrong port,

the wrapper contains three sets and one

mapping relating to decoys. The three sets

are the set of hosts that can support

n additional Decoys, where n ∈ [1, 3],

abbreviated as Dn. The mapping is a map-

ping of hosts to the number of additional

Decoys that the host could support at the

beginning of the game. The mapping is

maintained so that a host can be added to

the correct set after it is Restored, as doing
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so will wipe out all Decoys. When a De-

coy is created, the host with the new Decoy

will be moved from set Dn−1 to Dn, unless

n = 0, in which case the host will simply be

removed from D1.

Now that the observation wrapper

has these sets, the observation passed to

the agent can be encoded as a binary ma-

trix. Each item in the matrix indicates set

membership for a certain host, with each

host having 6 bits. A 1 bit indicates that

the host is in that set, and a 0 bit indicates

that the host is not in that set.

Set bits for each Host
Kill set

Restore set
D3

D2

D1

Analyze set
Table 3.1: Layout of the set-based observa-

tion.

Once the host sets were defined,

we attempted to design sets related to Block-

ing subnets. Our original plan was to make

sets of subnets that were Blocked and sub-

nets that should be Blocked, but we realized

that this would effectively be identical to

the original observation wrapper after en-

coding set membership as bits. Instead, we

used knowledge of the problem to deter-

mine the each agent only needs to worry

about blocking one subnet, if any, during

one phase of the simulation, as seen in Ta-

ble 3.2. The observation itself then only

requires information about whether that

one subnet is/should be Blocked instead of

holding information for all 8 subnets. This

also allowed us to decrease the size of the ac-

tion space by removing Block and Unblock

actions that do not pertain to that subnet.

3.4 Set Priority (Matrix)

Agent

Given the sets provided by the ob-

servation wrapper, a simple agent can be

created using the following algorithm, which

manually prioritizes actions using the obser-

vation’s sets:

1. If the phase changed since the last

action, and this agent has a subnet

which should be Blocked or Unblocked

during a certain phase, Block/Unblock

that subnet.

2. If the Kill set is not empty, pop a host

from the set and use Kill on it. After

the action is complete, move this host

to the back of the Analyze queue and

remove it from the Kill and Restore

sets1. As a red agent on a server can

do more damage than a red agent on a
1This must be done after the action completes

21



Agent Home Subnet Subnet to Block Phase
Operational Zone A Restricted Zone A Mission A
Restricted Zone A Restricted Zone B Mission A

Operational Zone B Restricted Zone B Mission B
Restricted Zone B Restricted Zone A Mission B

HQ Subnets None
Table 3.2: List of Blocks supported by our observation wrapper. The limited number of

Blocks greatly decreases the size of the wrapped observation.

user, prioritize running Kill on server

hosts before doing so user hosts.

3. If the Restore set is not empty, pop

a host from the set and use Restore

on that host. After the action is com-

plete, reset the Decoy set for that host

to what it was at the start of the sim-

ulation, move this host to the back

of the Analyze queue, and remove it

from the Kill and Restore sets. Simi-

larly to Kill, prioritize server hosts.

4. If any of the sets D3, D2, or D1 are

not empty, pop a host from the set

with the highest number and deploy

a decoy on that host.

5. If no other items apply, take the host

on top of the Analyze queue, move

it to the back of the queue, and run

Analyze on it.

as the host could be re-added to either set by alerts

occurring as the action executes. This would result

in the action being needlessly executed a second

time, wasting steps.

This priority of operations can be

implemented through an if-else chain or by

multiplying a hardcoded matrix of priority

values with the binary observation space.

For simplicity, we provide a matrix for only

the host portion of the observation, not the

subnet portion. The matrix is diagonally

tiled so that each host’s observations are

associated with actions on that host. Prior-

itization of servers can be accomplished by

ordering the observation and action spaces

so that server hosts come before user hosts,

and implementing the matrix such that the

first index which leads to the global maxima

will be used as the action.

def prioritize_action(last_action:

Action):

if last_action is IN_PROGRESS:

# Have to wait for it to

finish

return Sleep()

elif last_action is SUCCESS and

last_action is Restore or

Remove:

host = last_action.host

if host in analyze_queue:
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move host to back of

analyze_queue

remove host from kill_set

remove host from

restore_set

if phase == phase_to_block and

not is_blocked:

Block subnet specified in

Block table

set is_blocked to true

elif is_blocked and phase !=

phase_to_block:

Unblock subnet specified in

Block table

set is_blocked to false

elif kill_set is not empty:

pop host from kill_set ,

preferring servers over users

run Kill on host

elif restore_set is not empty:

pop host from restore_set ,

preferring servers over users

run Restore on host

reset number of decoys on

host

elif D_n is not empty for n in

(3, 2, 1):

pop host from D_n

create Decoy on host

if n > 1:

add host to D_(n-1)

else:

host = analyze_queue.front

move host to back of

analyze_queue

run Analyze on host

Listing 3.1: Pseudocode implementation of

Set Priority Agent

Using a modified version of the en-

vironment that ran two agents in lockstep

with each other, we verified that the agent

behavior encoded by Table 3.3 is identical

to the behavior encoded by our Python im-

plementation.

While we did intend to add more

sophisticated handling for the case where a

host is in both the Kill set and the Restore

set at the same time, as well as sending and

using the contents of messages, we found

that the agent outlined here performed quite

well on its own. We did attempt some modi-

fications to the agent that used messages to

communicated about cross-subnet attacks,

but this did not appear to have any affect

on the agent’s performance. We also at-

tempted to take more variables into account

when determining whether to use Kill or Re-

store, but doing so naively resulted in signif-

icantly poorer performance, so we deemed

that more analysis was necessary.

However, we found one potential

modification that could work for this spe-

cific scenario. As phishing emails, which are

the primary cause of lateral movement, are

not affected by Blocks, we entertained the

idea that Blocks may not be effective in this
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

Kill Restore Decoy Analyze
7 0 0 0

0 6 0 0

0 0 4 0

0 0 3 0

0 0 2 0

0 0 0 1



Kill set

Restore set

D3

D2

D1

Analyze set

Table 3.3: Matrix encoding of Set Priority agent.

scenario by creating a version of the agent

which did not perform Blocks or Unblocks.

The agent’s performance was completely

unaffected by this change, suggesting that

Blocks are not an effective method of net-

work defense in this challenge.

Through development of this agent,

we utilized a visualization tool to assist in

debugging the agent. For instance, the visu-

alization system allowed us to realize that

we had made a typographical error when

creating the subnet table, which drastically

reduced scores until it was fixed. We believe

that this visualization system allowed us to

effectively audit the behavior of our agent

and determine if it was missing signs of red

agent infection or attempting to perform an

invalid action due to an error in our coding.

We believe that having a system to allow

visualization or similar oversight over an

agent’s actions is key to agent development.
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Chapter 4

Results

With the hardcoded priority ma-

trix, the agent achieves an average score in

the range of -105 to -115 over 100 episodes,

with a standard deviation of around 35.

This score would result in the agent placing

within the top two if it were submitted to

the CAGE competition, despite not using

inter-agent communication at all. A

comparison to the top 5 submitted agents

is available in Table 4.1. In the remainder

of this section, we will analyze our agent’s

performance and what in means in terms of

reinforcement learning and the challenge, as

well as some ways that our solution could

be improved through selective addition of

artificial intelligence.

4.1 Analysis

For the sake of analysis, we mod-

ified the environment so that we could de-

compose the score and determine when,

where, and why the agent received penal-

ties. We discovered that the majority of our

penalties were caused by the red agent do-

ing damage to contractor hosts during the

planning phase. While the contractor net-

work does have a penalty associated with it

during the planning phase, we found that all

penalties related to the contractor network

were caused by failures of LocalWork within

the contractor network itself. As there is no

way for any blue agent to defend the contrac-

tor network, we re-evaluated what agents

we could using a modified environment that

did not count penalties for LocalWork in

the contractor network, which can be seen

in Table 4.2.

For our agent, nearly all of our

remaining penalties are as a result of run-

ning Restore. Removing the penalty for

running Restore increases our score further

to −8.9 ± 8.1, and Cybermonic’s score to

−54.4± 46.0.

But what penalties actually led to

these scores? To test this, we modified the
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CAGE 4 Submission Scores
Team or Agent Name Score

Set Priority Agent −110.4± 33.8
UC −113.8

LANCER −118.5
PUNCH −142.7

Cybermonic −193.7± 65.2
BlueSTAR −302.0
Sleep Agent −6621.5± 1483.4

Table 4.1: Set Priority Agent compared to the top 5 submissions to the CAGE 4

competition, plus a "Sleep Agent" that takes no actions during the game. As few teams

have made their agent’s code publicly available, standard deviations for most of the

agents cannot be given.

Scores without Contractor Penalties
Agent Score

Set Priority Agent −41.4± 8.4
Cybermonic −135.1± 61.0

Sleep −6646.1± 1325.2

Table 4.2: Scores with contractor subnet

penalties removed, as it is impossible to

defend the contractor subnet.

environment to dump information about

penalties and certain actions to a file and

ran it for 100 episodes, aiming to determine

the following:

• Which subnets, ignoring the contrac-

tor network, result in penalties for the

blue agent.

• When these penalties occur.

• The circumstances which lead to a

host being placed in both the Kill set

and the Restore set, and if the amount

of time since the blue agent was first

alerted to a malicious process on a

host can help determine if the process

has Escalated.

• How common use of Kill is on hosts

where the red agent has already Esca-

lated.

• How common it is for red agents to

Escalate while Kill is still executing.

In Figure 4.1, we graph the num-

ber of penalties received in each subnet over

the course of the 100 episodes. The dis-

proportionately large number of penalties

received for OT service kills in the opera-

tional zone subnets is due to these subnets

being guaranteed to have an OT service on

each host, as opposed to only appearing at

random. To demonstrate this, we graph the

number of attempted OT service kills for
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Figure 4.1: Penalties separated by subnet. This counts the number of penalties, not how

many points they were worth. Green bars indicate failed green agent actions, while red

bars indicate successful OT service kills.

Figure 4.2: Attempted OT service kills separated by subnet.
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each subnet in Figure 4.2, which shows that

the red agent is attempting to kill the OT

service more in restricted zones than in the

operational zones. This is likely due to red

agent’s being more likely to enter the re-

stricted zone via phishing emails, but being

quickly detected and evicted before the OT

service can actually be killed.

A trend in both figures is the red

agent’s near complete failure to disrupt ac-

tivity in the public access and administra-

tive subnets. We believe that the reason for

this is that these two subnets, along with

the office subnet, are shared by a single red

agent, much like how they are shared by

a single blue agent as seen in Figure 2.1.

As a red agent chooses which host to act

on completely randomly, having to choose

between three subnets worth of hosts makes

it more likely that the HQ red agent will

attempt to spread itself out to other hosts

instead of focusing on securing its position

on hosts it has already infected. As a re-

sult, the HQ blue agent is much more likely

to detect the red agent before it can deal

damage to an infected host. However, this

does not explain why the office subnet was

disproportionately affected by green agent

failures; we are unsure as to why it occurred

in our data, and attempts to collect more

data were inconclusive in determining if this

was a pattern.

We were initially concerned about

the amount of successful OT service kills

in the operational zones, as those have the

potential for high penalties depending on

which phase they occur. As such, we graphed

the penalties for only the two operational

subnets, aggregated by timestamp, as seen

in Figure 4.3. The vast majority of the

penalties occur during the planning phase,

during which the blue agents have yet to

finish creating Decoys. The lack of Decoys

both reduces the risk of a red agent causing

an alert during a Portscan and nullifies the

risk of an Exploit failing. This allows the

red agent to move between hosts in a subnet

much faster, increasing the risk for damage.

Additionally, there is a chance that a red

agent will delay Discovering other hosts and

instead focus on dealing damage to the one

host it has access to. As the blue agent will

be too busy creating Decoys to run Ana-

lyze, this will go undetected until the red

agent attempts to Portscan or Exploit an-

other host. Regardless, once the Decoys are

set up, the red agent’s false negative rate

sharply decreases and regular scans can de-

tect otherwise silent Escalations, making it

difficult to hide.

Out of curiosity, we also decided

to graph the number of Kills vs the num-
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Figure 4.3: Penalties in operational subnets separated by the time at which they occurred.

Grey bars have been added to approximately separate the phases.

Figure 4.4: Comparison of number of Kills to number of Restores.
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ber of Restores as Figure 4.4. This shows

that a large proportion of reactions were

Restores rather than Kills, meaning that

the blue agent did not know which PID to

kill. This is likely because infections from

phishing emails are more common than in-

fections as a result of lateral movement, as

the blue agent is adept at stopping attempts

at lateral movement quickly but cannot stop

phishing emails from infecting hosts. We

intended to graph this by subnet, but there

was no meaningful difference to this ratio

between subnets.

We intended to discuss the case

where a host is added to both the Kill set

and the Restore set, and how we could po-

tentially use other factors, such as how long

it had been since the infection had occurred

and how large the subnet was, to estimate

whether or not the host was actually rooted.

However, it turned out that this had only

occurred 7 times in our dataset, and in ev-

ery one of those instances the red had not

Escalated that host by the time an action

was taken in response. Additionally, a re-

sponse was almost always taken within 1

step of the agent becoming aware of the is-

sue, rendering the number of steps since the

initial process alert unsuitable as an input

to differentiate between the two cases, as

shown in Figure 4.5.

The case where Kill was used on a

host where the red agent had already Esca-

lated occurred twice in our dataset. In both

cases, the blue agent had only become aware

of the red agent’s presence on the turn it

reacted. Additionally, the case where the

red agent Escalated after the blue agent had

already begun running Kill, causing the Kill

to silently fail, occurred only 19 times. As a

result, we are unable to provide meaningful

commentary.

4.2 Discussion

From the results above, it is clear

that this simple manually created agent per-

forms surprisingly well against RL agents

submitted to the competition. As most

teams have not made their code available,

we cannot create a thorough analysis of

strategies used by other agents. However,

we believe the reason that agents encoun-

tered difficulty achieving a high score is due

to aspects of the challenge itself that may

confuse RL algorithms. Additionally, we

believe that the fact that this score was

achievable with a rather simple algorithm

says more about the simulation than it does

the algorithm.

The environment itself poses chal-

lenges that make it difficult for RL agents

to converge on a working policy. Namely,
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Figure 4.5: Number of steps that pass in between an agent first receiving a process alert

and the agent using Kill in response to that alert. The equivalent pie chart for Restores

is extremely similar.

there is a very poor relationship between ac-

tions and rewards, and there are no positive

rewards at all, both of which hinder agent

learning greatly. A situation like this would

greatly benefit from per-host and per-agent

rewards, as this would allow an actor-critic

algorithm to determine which hosts should

have been acted on at what times and cri-

tique the actor accordingly. Although there

are per-turn rewards, the cause of the re-

ward is not necessarily related to what the

actor was currently or recently doing, espe-

cially if another agent was the cause of the

reward. When the actor begins training, it

is not clear that actions, observations, and

penalties from a certain host have little to

no relation with the actions, observations,

and penalties from other hosts, and this

lack of specific feedback only impedes the

actor from learning this fact.

One possible solution to this is-

sue is using a graph-based observation. By

separating the hosts into graph nodes, the

algorithm can more easily establish a rela-

tionship between actions, observations, and

hosts, even without per-host rewards. At

least one other team, Cybermonic, appears

to have implemented this solution, with

their agent managing to achieve 5th place

with 50,000 iterations of training. However,

we would rather not speak for them, so we

will not analyze their agent thoroughly. Re-

gardless, their method for avoiding these

issues seems to be relatively successful.
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Somewhat more concerning is that

a simple if-else chain such as this was able

to perform so well in such an environment.

We originally intended to use this agent

to assist in initial training of a later, RL-

powered agent, but were surprised by its

performance even when using a buggy ver-

sion that would block the wrong subnets,

and continue to find its performance rela-

tive to other submissions to the challenge

equally surprising. We believe that the rea-

son for the high score of our agent comes

from the challenge being too simple, and not

an accurate representation of a real world

scenario. Specifically, we believe that it is

too easy to distinguish false positive alerts

from true positive alerts, as discussed in

Section 2.6, and that the red agent used in

the challenge is not sophisticated enough to

emulate a real attacker.

Although we did not analyze the

red agent’s behavior when creating our agent,

our agent performs excellently against the

red agent because our agent assumes that

the red agent does not try to deceive us.

While the red agent has no actions explicitly

pertaining to deception, it has the ability

to remove all of it’s sessions on a host at

any time while leaving damage caused by

Degrade. However, the red agent in the

challenge never uses this ability. Addition-

ally, the red agent selects a host completely

randomly when deciding what to do next,

with no regard for what it was doing on

the previous step. This means that the red

agent does not have much of a strategy for

taking over the network or performing lat-

eral movement, and it can be countered by

simply reacting to its presence as opposed

to trying to spot a pattern in its actions, as

there is none.
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Chapter 5

Future Work

5.1 Reward Shaping

One potential way to bootstrap

training of an RL algorithm, especially in

a scenario where rewards or sparse or are

not a good indicator of whether individual

actions are a step in the right direction or

not, is to modify the rewards to perform

reward shaping. In reward shaping, the re-

wards from the environment are augmented

or replaced with rewards that are tailored

to entice the agent into performing actions

that bring it close to the real rewards. Re-

ward shaping is effective in helping agent

converge more quickly [Bates et al., 2023].

An alternative is to initialize the

model of the agent itself to one that is

known to work decently, and then let the

agent train from there. This helps the agent

get over the initial stage of randomly per-

forming actions in the hopes of getting some

reward and instead focus on improving an

already functioning model. However, de-

pending on the hyperparameters, scenario,

and initial model, it is possible for the agent

to converge on a non-optimal local maxima

due to being unwilling to stray too far from

the model. This can occur if the global op-

timal policy is too different from the initial

model for the agent to converge towards.

Additionally, as models get more complex,

it becomes more difficult to select "good"

initial values as doing so requires expertise

in both the domain and the model in ques-

tion [Hu et al., 2020].

We planned to use our agent to

perform either reward shaping, by reward-

ing an agent for following the same "rules"

as our agent did, or by model initialization,

but we decided not to do so. This decision

was spurred by the reward system for the

challenge being extremely negative, causing

us to believe that to counter the negative

effect of the challenges rewards, we would

have to make our shaping rewards so large

that we would end up with an extremely
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overfitted model. Regardless, we believe

that a simple manual agent such as ours

has potential to be used in reward shaping,

and we would like to see this idea further

explored in future works.

5.2 LLMs

Although the challenge is based

around the use of model-based reinforce-

ment learning techniques, Large Language

Models (LLMs) have also been used for re-

inforcement learning Monea et al. [2024].

LLMs were even the subject of a previous

paper by Rigaki et al. [2024], but this pa-

per used a pre-trained LLM, and did not

train an LLM specifically for the purpose of

cybersecurity. Regardless, the LLM agent

performed remarkably well with a simple

prompt. We would like to see how an LLM

specifically trained for this challenge might

be able to perform against an LLM not

specifically trained for this challenge. We

would especially like to see how such LLMs

would be able to explain and justify their

actions on each step, which would make

monitoring the actions an agent takes much

easier. Similarly to our proposal for reward

shaping, we would like to use the set prior-

ity agent shown in this paper as a base for

LLM training. We intend to release a paper

covering our efforts to do so in the future.

5.3 Selective Use of A.I.

Although our agent works for the

purposes of this challenge, there are two

particular areas of uncertainty that might

benefit from the use of machine learning for

the purposes of binary classification.

1. How do we determine if a communi-

cation, file, or process alert is a false

positive or not?

2. If we know that a host has malicious

processes, after what point should we

assume the process has Escalated? In

the challenge, the red agent may not

Escalate on the host before using it to

attack other hosts, and the red agent

selects a host to act on completely ran-

domly, so it is difficult to determine

if the red agent may have acted on a

particular host or not.

Unfortunately, this challenge is not

particularly conducive to either of these. As

previously mentioned in Section 2.6, the con-

nection alerts in this challenge have easy-to-

spot patterns that can reliably distinguish

between red agent activity and green agent

activity, while file and process alerts can

never be false positives. Meanwhile, the

randomness inherent to the red agent of

this challenge makes it unlikely that Esca-

lation will occur before the blue agent has
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a chance to respond, making it difficult to

train a classifier on the resulting data. The

blue agent already responds to alerts as

soon as possible, as seen in Figure 4.5, and

in most cases is able to do so on the same

step that it is first alerted to the presence

of the red agent.

Outside of CAGE 4, performing

this kind of detection is rather difficult, as

cybersecurity analysts are often performing

"treadmill work", trying to catch up to at-

tackers as new exploits are discovered and

used maliciously [Gyimah et al., 2024]. Such

rapid work, combined with the difficulty of

analyzing potentially malicious code and

data using machine learning [Erdemir et al.,

2024] and the number of samples required

to train an RL agent makes it difficult to

use such agents for a small but very open-

ended subtask such as "Figure out if this is

a false positive." As for the second potential

subtask, it has limited applicability in the

real world, as infections frequently take a

long time to be discovered [Gyimah et al.,

2024]; much longer than the rapid "steps"

provided by the simulation.

5.4 Difficulty of Challenges

Most importantly, we believe that

the simulation itself should be modified to

be more realistic. Mainly, we would prefer

that the scenario not have a method for

reliable distinction of false and true positive

alerts and that red agents be more strategic,

as well as there being a wider variety of

red agent strategies to prevent overfitting

against a single strategy.

Overall, we believe that the chal-

lenge is too simplistic to serve as an accu-

rate representation of cybersecurity scenar-

ios, This is somewhat concerning, as the

point of the challenge is to evaluate how

well various methods of training work in

a real world scenario, and this simplicity

somewhat detracts from those results. Al-

though it is expected for a security agent

to work a high level, a red agent that does

not act with any strategy and the ability to

reliably distinguish between false and true

positives mean that this challenge can be

solved with a manually designed algorithm.

Additionally, while this challenge empha-

sizes the use of agent communication, our

solution is very successful despite not using

it at all, unlike the expert solution used by

Hicks et al. [2023] in CAGE 3. While some

level simplicity may be necessary to train AI

agents in a reasonable time, we believe that

the challenge should be more difficult for

humans to create a state-of-the-art solution

to.
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Chapter 6

Conclusion

We have shown that a manual so-

lution is capable of meeting the CAGE 4

challenge despite not exploiting all the tools

at its disposal, such as inter-agent communi-

cation and, depending on the version of the

agent used, even subnet Blocks. We have

analyzed the performance of this agent and

determined that while there are locations of

uncertainty in the agent which might benefit

from the additional of artificial intelligence

to recognize patterns that we did not see,

the environment is ultimately too simplistic

yet random to pick out any meaningful data.

While it could be argued that our solution

misses the point of the challenge, that be-

ing to analyze the effectiveness of different

methods of training in a cybersecurity envi-

ronment, we would like to also question if

an environment that can be solved through

extremely simple pattern matching is an

effective way to measure the performance

of a training method.

In the future, we would like to see

later iterations of the challenge introduce

patterns that are more difficult for humans

to pick out simply by looking at the ob-

servations. As there are few other papers

in the literature that cover this challenge

at time of writing, we are uncertain of the

exact methods used by other teams, but

we would like to see why such methods re-

turned the results they did and especially

why they failed to match the performance

of a simple agent like this. In addition, we

would like to focus on more unconventional

solutions to these challenges that do not

rely on traditional RL models and neural

networks.
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Appendix A

Additional Files

This thesis submission includes the source code files for the agent which we

created. This agent may be run by following the instructions described in [Group, 2023].

We also include the raw results dumped by our modified environment.

• combined_results.csv

• set_priority_wrapped

– dummy_agent.py

– SetBasedWrapper.py

– submission.py

• set_priority

– dummy_agent.py

– submission.py
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