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Abstract

Objective.—Magnetoencephalography (MEG) has a well-recognized weakness at detecting 

deeper brain activities. This paper proposes a novel algorithm for selective detection of deep 

sources by suppressing interference signals from superficial sources in MEG measurements.

Approach.—The proposed algorithm combines the beamspace preprocessing method with the 

dual signal space projection (DSSP) interference suppression method. A prerequisite of the 

proposed algorithm is prior knowledge of the location of the deep sources. The proposed 

algorithm first derives the basis vectors that span a local region just covering the locations of the 

deep sources. It then estimates the time-domain signal subspace of the superficial sources by using 

the projector composed of these basis vectors. Signals from the deep sources are extracted by 

projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of 

the superficial sources.

Main results.—Compared with the previously proposed beamspace signal space separation 

(SSS) method, the proposed algorithm is capable of suppressing much stronger interference from 

superficial sources. This capability is demonstrated in our computer simulation as well as 

experiments using phantom data.

Significance.—The proposed bDSSP algorithm can be a powerful tool in studies of 

physiological functions of midbrain and deep brain structures.
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1. Introduction

Electrophysiological activity of neurons in the cerebral cortex generates weak but detectable 

magnetic fields outside the scalp, and direct non-invasive measurements of these neuronal 

activities can be achieved with magnetoencephalography (MEG) [1–3]. Modern MEG 

systems, combining large-scale sensor arrays with advanced signal processing algorithms, 

are now capable of imaging dynamic brain activities with the temporal resolution on the 

order of submilli-seconds.

In spite of its success, MEG has the well-recognized weakness that it is not generally good 

at detecting deep brain activities, although there have been many attempts on recording 

MEG signals from deep brain regions [4] such as the thalamus [5–9], amygdala [10, 11], and 

cerebellum [12, 13]. This is primarily because MEG sensor arrays generally have very low 

sensitivity near deep brain regions, due to the physical nature of magnetic signals. That is, 

since magnetic signals attenuate with the inverse-square-distance law, MEG signals arising 

from deep sources become significantly weaker than signals from superficial cortical 

sources. Also, it is generally true that when a deeper brain region is active, superficial 

cortical regions are simultaneously active. In such cases, the activity at a deep brain region is 

masked by overlapped cortical activities, and only these cortical activities are detected by 

MEG.

To overcome this weakness, Özkurt et al proposed a method of decomposing MEG signals 

into components corresponding to deep and superficial sources [14]. Their method is based 

on the signal space separation (SSS) algorithm, which utilizes the vector spherical 

harmonics expansions of the measured magnetic field [15, 16]. Their method combines the 

SSS algorithm with so-called beamspace processing [17, 18]. The method proposed by 

Özkurt et al is thus referred to as the beamspace SSS method herein.

The beamspace processing was originally developed to reduce the data dimensionality. 

Many popular source localization methods, such as the MUSIC algorithm [19, 20] and 

adaptive beamforming [21, 22], make use of second-order statistics of the measured data. To 

obtain stable data statistics, a large number of time samples are generally needed, and the 

number of required time samples linearly increases as the data dimension increases. The 

beamspace processing was developed to reduce this data-sample requirements by reducing 

the data dimensionality. The data-dimensionality reduction is achieved by projecting the data 

vector onto a low-dimensional subspace [22, 23]. In this paper, the beamspace idea is used 

for preprocessing the data by selective interference cancellation. A brief introduction on the 

beamspace preprocessing is presented in section 3.1 of this paper.

Inspired by Özkurt et al, this paper proposes a novel algorithm for selective detection of a 

deep source by suppressing interference signals from superficial sources. The proposed 

method is a combination of the beamspace processing with the previously-proposed 

interference suppression method called dual signal space projection (DSSP) [24]. Thus, the 

proposed method is here called beamspace DSSP (bDSSP). Compared with the beamspace 

SSS, the proposed bDSSP algorithm is capable of suppressing much stronger interference 
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from superficial sources. This capability is demonstrated in our computer simulation and 

experiments using phantom data.

This paper is organized as follows: following concise explanations of the DSSP algorithm in 

section 2, the proposed beamspace DSSP algorithm is described in section 3. We present 

computer simulations that test the effectiveness of the bDSSP algorithm. In section 5.1, 

results of experiments using an MEG phantom are presented to further demonstrate the 

effectiveness of the proposed method. In sections 6 and 7, additional supplementary 

arguments are presented, including a comparison between the beamspace SSS and bDSSP 

methods.

2. Dual signal subspace projection algorithm

2.1. Data model

Biomagnetic measurements are usually conducted using a sensor array, which 

simultaneously measures the biomagn-etic signal with multiple sensors. Let us define the 

measurement of the mth sensor at time t as ym(t). The measurement from the whole sensor 

array is expressed as a column vector y(t): y(t) = [y1(t), y2(t),…, yM(t)]T, which is called the 

data vector. Here, M is the number of sensors, and the superscript T indicates the matrix 

transpose. Throughout this paper, plain italics indicate scalars, lower-case boldface italics 

indicate vectors, and upper-case boldface italics indicate matrices.

Let us assume that a unit-magnitude source exists at r (r = (x, y, z)). When this unit-

magnitude source is directed in the x, y, and z directions, the outputs of the m-th sensor are 

respectively denoted as lm
x (r), lm

y (r), and lm
z (r). Let us define an M × 3 matrix L(r) whose mth 

row is equal to a 1 × 3 row vector lm
x (r), lm

y (r), lm
z (r) . This matrix L(r), referred to as the lead 

field matrix [1, 25], represents the sensitivity of the sensor array at r.

The DSSP algorithm was proposed in order to remove interfering magnetic fields overlapped 

onto signal magnetic fields. The algorithm assumes the data model:

y(t) = yS(t) + yI(t) + ε, (1)

where yS(t), (called the signal vector), represents the signal of interest, yI(t), (called the 

interference vector), represents the interference magnetic field, and ε, (called the random 

vector), represents additive sensor noise. We denote the time series outputs of a sensor array 

y(t1),…, y(tK), where K is the total number of measured time points. The measured data 

matrix B is thus defined as:

B = y t1 , …, y tK . (2)

The signal matrix is defined as
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BS = yS t1 , …, yS tK , (3)

and the interference matrix as

BI = yI t1 , …, yI tK . (4)

Then, the data model in equation (1) is expressed in a matrix form as:

B = BS + BI + Bε, (5)

where Bε is the noise matrix whose j-th column is equal to the noise vector ε at time tj.

2.2. Pseudo-signal subspace projector

The DSSP algorithm assumes the data model in equation (5) with the assumption that the 

interference sources are located outside the source space6. The DSSP algorithm uses the so-

called pseudo-signal subspace projector, and to derive it, voxels are defined over the source 

space, in which the voxel locations are denoted r1,…, rN. The augmented leadfield matrix 

over these voxel locations is defined as

F = L r1 , …, L rN , (6)

and the pseudo-signal subspace ℰ̆S is defined such that

ℰ̆S = csp(F), (7)

where the notation csp(X) indicates the column space of a matrix X. If the voxel interval is 

sufficiently small and voxel discretization errors are negligible, we have the relationship 

ℰ̆S ⊃ ℰS where ℰS indicates the true signal subspace. Therefore, a vector contained in the 

signal subspace is also contained in the pseudo-signal subspace.

Let us derive the orthonormal basis vectors of the pseudosignal subspace. To do so, we 

compute the singular value decomposition of F:

F = ∑
j = 1

M
λ je j f j

T . (8)

6The source space indicates a region in which signal sources can exist. For example, the entire brain (or entire cortex) is considered as 
the source space in most MEG measurements.
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Note that F is an M × N matrix, so ej is an M × 1 column vector and fj is an N × 1 column 

vector. In equation (8), we assume the relationship M < N, and the singular values are 

numbered in decreasing order. If the singular values λ1,…, λτ are distinctively large and 

other singular values λτ+1,…, λM are nearly equal to zero, the leading τ singular vectors e1,

…,eτ form orthonormal basis vectors of the pseudo-signal subspace ℰ̆S [26]. Thus, the 

projector onto ℰ̆S is obtained using

P̆S = e1, …, eτ e1, …, eτ
T . (9)

Note that, since ℰ̆S ⊃ ℰS, the orthogonal projector I − P̆S  removes the signal vector, i.e. 

I − P̆S yS(t) = I − P̆S BS = 0.

2.3. DSSP algorithm

A detailed explanation of the DSSP algorithm in the context of the time-domain signal 

subspace can be found in [27]. The DSSP algorithm applies P̆S and I − P̆S to the data matrix 

B to create two kinds of data matrices:

P̆SB = BS + P̆SBI + P̆SBε, (10)

I − P̆S B = I − P̆S BI + I − P̆S Bε . (11)

To derive equations (10) and (11), we use P̆SBS = BS and I − P̆S BS = 0. Let us use the 

notation rsp(X) to indicate the row space of a matrix X. Then, according to the arguments in 

[27], the following relationships hold:

rsp P̆SB ⊂ rsp BS + rsp P̆SBI + rsp P̆SBε , (12)

rsp I − P̆S B ⊂ rsp I − P̆S BI + rsp I − P̆S Bε . (13)

Since the relationships, rsp P̆SBI = 𝒦I and rsp I − P̆S BI = 𝒦I, hold, equations (12) and (13) 

lead to the relationships:

rsp P̆SB ⊂ 𝒦S + 𝒦I + 𝒦̆ε, (14)
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rsp I − P̆S B ⊂ 𝒦I + 𝒦̆ε′, (15)

Where 𝒦S and 𝒦I respectively indicate the time-domain signal and interference subspaces. 

Here, we use the notations, rsp P̆SBε = 𝒦̆ε and rsp I − P̆S Bε = 𝒦̆ε′ .

Using equations (14) and (15), we can finally derive the relationship [27]:

𝒦I ⊃ rsp P̆SB ∩ rsp I − P̆S B . (16)

The equation above shows that the intersection between rsp P̆SB  and rsp I − P̆S B  forms a 

subset of the interference subspace 𝒦I. Once the orthonormal basis vectors of the 

intersection ψ1…, ψr are obtained, we can compute the projector onto the intersection Πisc 

such that

Πisc = ψ1, …, ψr ψ1, …, ψr
T . (17)

Using this Πisc as the projector onto the interference subspace 𝒦I, the interference removal 

is achieved and the signal matrix is estimated such that

BS = B I − Πisc = B I − ψ1, …, ψr ψ1, …, ψr
T . (18)

The method of removing the interference in a manner described above is called DSSP [24]. 

Note that since the basis vectors of the intersection, ψ1…, ψr, span only a subset of the 

interference subspace 𝒦I, this method cannot perfectly remove interferences. However, 

when the intersection rsp P̆SB ∩ rsp I − P̆S B  is a reasonable approximation of 𝒦I, 

interferences can effectively be removed by the DSSP algorithm.

3. Beamspace dual signal subspace projection (bDSSP) algorithm

3.1. Beamspace processing

Beamspace processing refers to a signal processing algorithm used for data-dimensionality 

reduction. Such data-dimensionality reduction is achieved by projecting the data vector onto 

a low-dimensional subspace. In other words, an M × 1 data vector y(t) is represented with 

known basis vectors u1,…, uP, where the number of basis vectors P is smaller than the 

dimension of the data vector M. That is, if y(t) is expressed using a linear combination of a 

set of known P basis vectors such that
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y(t) ≈ ∑
j = 1

P
c j(t)u j, (19)

the sensor measurements y1(t),y2(t),…, yM(t) can be represented by only P coefficients c1(t),
…, cP(t). Since we assume P < M, the data dimension is reduced from M to P in equation 

(19).

The problem here is how to find basis vectors u1,…, uP which satisfy the relationship in 

equation (19). A method of deriving the basis vectors based on the prior knowledge of signal 

source locations has been proposed in [23]. In this proposed method, the augmented lead 

field matrix F is defined over a local region that just contains the signal sources. The voxels 

are defined over this local region and the voxel locations are denoted r1, …, rN. The 

augmented leadfield matrix over these voxel locations is expressed as

F = L r1 , …, L rN , (20)

and its singular value decomposition is given by

F = ∑
j = 1

R
λ je j f j

T (21)

where R = min M, N . Let us assume that the leading τ singular values, λ1, …, λτ are 

distinctively large, compared to the rest of the singular values λτ + 1, …, λR. Then, the 

beamspace basis vectors u1,…, uP are obtained as the leading τ singular vectors e1, ⋯, eτ

where P is equal to τ.

3.2. bDSSP algorithm

Use of the beamspace basis vectors with the DSSP algorithm leads to a novel algorithm that 

can selectively detect signals from a deep source by suppressing interference from 

superficial sources. The algorithm is called bDSSP, which is described as follows: The data 

model for the bDSSP algorithm is expressed as

B = Bdeep + Bsup  + Bε, (22)

where Bdeep indicates the signal caused from a deep source7, and Bsup the signal from 

superficial sources. A prerequisite of this algorithm is that the location of the deep source be 

7We assume that the target deep source is a single source for simplicity.
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known. We then compute the beamspace basis vectors u1,…, uP by setting the local source 

space as a small region just covering the location of the deep source.

The beamspace projector Pdeep is then derived as

Pdeep = u1, …, uP u1, …, uP
T . (23)

By multiplying Pdeep and I − Pdeep with the data matrix B, we obtain:

PdeepB = Bdeep + PdeepBsup + PdeepBε, (24)

I − Pdeep B = I − Pdeep Bsup + I − Pdeep Bε . (25)

Here, we use PdeepBdeep = Bdeep. Then, by using exactly the same derivations as in [27], we 

can derive

rsp PdeepB ⊂ 𝒦sup + 𝒦deep + 𝒦ε, (26)

rsp I − Pdeep B ⊂ 𝒦sup + 𝒦ε′, (27)

where 𝒦deep and 𝒦sup are the time-domain signal subspaces of the deep and superficial 

sources, respectively. We also use the notations: rsp PdeepBε = 𝒦ε and 

rsp I − Pdeep Bε = 𝒦ε′ . Using equations (26) and (27), We can finally derive,

𝒦sup ⊃ rsp PdeepB ∩ rsp I − Pdeep B . (28)

The equation above indicates that the intersection between the row spaces of PdeepB and (I − 
Pdeep)B forms a subset of 𝒦sup.

The orthonormal basis set of the intersection, rsp(PdeepB) ∩ rsp((I − Pdeep)B), can be 

obtained using the procedure presented in [24, 27, 28]. Denoting these orthonormal basis 

vectors by ϕ1,…, ϕr, the projector onto the intersection is obtained as

Πisc = ϕ1, …, ϕr ϕ1, …, ϕr
T .
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Using this Πisc as the projector onto the signal subspace 𝒦sup, the signal from the deep 

source is estimated by projecting the rows of the data matrix onto the direction orthogonal to 

𝒦sup, such that

Bdeep = B I − Πisc = B I − ϕ1, …, ϕr ϕ1, …, ϕr
T . (29)

Note that since the basis vectors ϕ1,…, ϕr span only a part of 𝒦sup, the orthogonal projection 

on the right-hand side of equation (29) cannot perfectly remove Bsup. Nonetheless, when 

rsp PdeepB ∩  rsp I − Pdeep B ≈ 𝒦sup holds, a significant reduction of Bsup can be attained. 

One such situation is the case in which the superficial signal Bsup is dominated in B.

The procedure of the bDSSP algorithm can be summarized as follows:

1. Set the local source space so that it covers the location of the target deep source, 

and compute the beamspace projector Pdeep using equation (23).

2. Apply the projector Pdeep to the data matrix B to create two data sets PdeepB and 

(I − Pdeep)B.

3. Apply the singular value decomposition to PdeepB to derive the orthonormal 

basis set of rsp(PdeepB); the basis set is denoted by {x1,…,xμ} where μ is the 

dimension of rsp(PdeepB). Also, apply the singular value decomposition to (I − 
Pdeep)B to derive the orthonormal basis set of rsp((I − Pdeep)B); the basis set is 

denoted by {y1;…,yv} where v is the dimension of rsp((I − Pdeep)B).

4. Define matrices X = x1
T, …, xμ

T  and Y = y1
T, …, yν

T , and compute the singular 

value decomposition of XTY, such that

XTY = Q

γ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ γν

TT, (30)

where Q and T are matrices whose columns consist of the singular vectors.

5. Observe the relation:

γ1 = γ2 = ⋯ = γr ≈ 1 > γr + 1 ⩾ ⋯ ⩾ γν,

and determine the dimension of the intersection rsp(PdeepB) ∩ rsp((I − Pdeep)B) 

to be r.

6. Obtain the orthonormal basis set of the intersection rsp(PdeepB) ∩ rsp((I − 

Pdeep)B) as the first r columns of the matrix XQ, which are denoted ϕ1,…, ϕr.

7. Estimate the sensor time courses of the deep source by applying equation (29).
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8. Apply any of the source localization methods to obtain source images.

4. Computer simulations

A series of computer simulations were carried out to test the effectiveness of our proposed 

algorithm. A sensor alignment of the 275-channel whole-head sensor array from the Omega 

(VMS Medtech, Coquitlam, Canada) neuromagnetometer was used. The sensor lead field 

was computed using the Sarvas formula [25] with the sphere origin set at (0.1, 0, 6.3). In our 

computer simulation, three sources, (two superficial sources and one deep source), were 

assumed. The locations of the three sources are shown with sensor locations in figure 1. In 

this figure, the filled circles indicate the locations of the sensors; the location of the deep 

source is indicated by the blank circle; and the locations of the two superficial sources are 

indicated by the square and the triangle. The sphere origin is indicated by a cross mark.

The source properties (the locations, orientations, and distances from the sphere origin) are 

summarized in table 1. Note that, in our computer simulations, Source#2 is considered the 

deep source and the other two sources are considered the superficial sources. The distance of 

Source#2 to the sphere origin was set to 4.4 cm, and distances of the other sources to the 

sphere origin were set between 6 and 7 cm. The time courses assigned to these three sources 

are shown in figure 2. The time t is expressed with the unit of time points ranging from t = 
−1200 to 1200. Sensor time courses were generated by projecting the source time courses in 

figure 2 through the sensor lead field.

We first performed simulations with a moderately high signal-to-interference ratio. 

Simulated sensor measurements were computed by adding the sensor time courses generated 

from the deep source and those from the superficial source. We set the ratio γ = ||Bdeep||F/||

Bsup||F to be one at which ||X||F indicates the Frobenius norm of a matrix X8. This ratio γ is 

called the signal to interference ratio (SIR), because, in our experiments, the magnetic field 

from the superficial sources is considered the interference, and that from the deep source 

considered the signal. The simulated sensor measurements given by B = Bdeep + Bsup + Bε 
are shown in the top panel of figure 3(a). Here, a moderare amount of white Gaussian noise 

was added to simulate the sensor noise and the SNR defined as ||Bdeep|| F/||Bε||F was set at 

4.5. The middle panel of figure 3(a) shows Bdeep + Bε, which are the sensor time courses 

generated from only the deep source with the same amount of the sensor noise added. These 

time courses work as the ground truth for our experiments described below.

We applied the proposed bDSSP algorithm to the simulated measurements shown in the top 

panel, and the results are shown in the bottom panel of figure 3(a). In the application, the 

local source space was chosen as a 2 cm cubic region whose center was equal to the location 

of the deep source. The results show that by using the bDSSP algorithm, time courses nearly 

identical to those of the ground truth (in the middle panel) were obtained. These results show 

that the bDSSP algorithm effectively suppresses the interference from the superficial source 

and the signal sensor time courses from the deep-source can be retrieved.

8As defined in equation (22), Bsup and Bdeep are the signal matrices corresponding to superficial and deep sources.
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In our computer simulations, the correlation between the groun truth (the sensor time 

courses Bdeep + Bε in the middle panel of figure 3(a)) and the bDSSP-processed sensor time 

courses Bdeep (in the bottom panel of figure 3(a)) is computed such that

Φ = 1
M ∑

m = 1

M
ρm, (31)

where ρm is the correlation coefficient between the mth row of Bdeep and that of Bdeep + Bε. 

Here, Φ is computed by averaging ρm across all sensor channels. This Φ can be a measure 

indicating how well the bDSSP algorithm can retrieve the sensor time courses from the 

target deep source, and is called the sensor time-course correlation. The results in the bottom 

of figure 3(a) attain Φ of 0.85. We use this Φ to assess the results in our Monte Carlo 

experiments below.

We next conducted computer simulations for a case of significantly low SIR of 0.05. That is, 

the interference from superficial sources was 20 times stronger than the signal from the deep 

source. The generated sensor time courses in this case are shown in the top panel of figure 

3(b). The results of applying the bDSSP algorithm are shown in the bottom panel. The 

results here also attain Φ of 0.85, and this fact indicates that the proposed bDSSP algorithm 

still effectively removed the interference from the superficial sources even when SIR was so 

low.

We performed source reconstruction experiments using these simulated sensor data with SIR 

of 0.05. The adaptive beamformer reconstruction algorithm [22] was applied to the data in 

figures 3(b). The results of the reconstruction experiments are shown in figure 4. In these 

experiments, voxels were defined with 0.5 cm interval. The locations of the three sources 

were set at one of voxel locations. In these results in figure 4, the sources were reconstructed 

exactly at their assumed locations.

The source image from the simulated sensor measurements in the top panel of figure 3(b) is 

shown in figure 4(a). Here, the top left, top right and bottom panels, respectively, show the 

axial, coronal and sagittal projections of the 3D source distribution. In these results, two 

superficial sources are reconstructed, but the deep source was not clearly reconstructed 

because of a large intensity difference between the superficial and deep sources. Note that 

the cross marks in figure 4(a) indicate the location of the deep source. The source 

reconstruction results obtained using the bDSSP-processed sensor data in the bottom panel 

of figure 3(b) are shown in figure 4(b). Here, the target deep source is successfully 

reconstructed, demonstrating the effectiveness of the proposed algorithm.

We also performed source reconstruction experiments using low SIR and low SNR data, in 

order to see the effect of the sensor noise on the algorithm performance. The same computer 

simulation as for the low SIR experiments mentioned above was used. However, in this case, 

the sensor noise was added such that the SNR (defined as ||Bdeep||F/||Bε||F) was 

approximately equal to 1.5. The bDSSP-processed sensor time courses are shown in figure 
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5(a). These results show that the sensor time courses of the deep-source still can be 

retrieved. The results of source reconstruction obtained from these sensor data are shown in 

figure 5(b). Again, the deep source is clearly reconstructed, although these results have a 

small localization error of 0.7 cm, which was obtained as the distance between the assumed 

and reconstructed locations of the deep source9.

In computer simulations so far, the local source space was chosen as a 2 cm cubic region 

whose center was exactly equal to the location of the deep source. However, in real-life 

applications, the estimated location of the target deep source may have some uncertainty. 

Therefore, we conducted Monte Carlo computer simulation to see the robustness of the 

bDSSP algorithm to the mismatch between the position of the local source space and the 

location of the target deep source. In this simulation, the distance between the deep source 

and the center of the local source space was set at several non-zero values, keeping the local 

source space to be the same 2 cm cubic volume. This distance is called the mismatch 

distance and denoted by D. Here, to assess the algorithm performance, we used two 

measures: the sensor time-course correlation Φ in equation (31) and the localization error of 

the deep source.

Results of the experiments are shown in figure 6. Here, the top panel shows the plots of the 

sensor-time course correlation Φ versus the mismatch distance D. The bottom panel 

indicates the plots of the localization error of the deep source versus D. In these Monte Carlo 

experiments, at each value of D, the position of the local source space was set to fifty 

random locations having the same D. In the plots in figure 6, a filled dot indicates the results 

of each Monte Carlo trial, and a blank circle indicates the average across the results at each 

value of D. These plots show that when D is less than 1 cm, there is nearly no influence and 

even when D = 1.5 cm, the influence is still very small, demonstrating the algorithm’s 

robustness to the mismatch between the local source space and the target source location.

Finally, we conducted Monte Carlo simulation to see the robustness of the bDSSP algorithm 

to the source configuration. In this simulation, one hundred Monte Carlo trials were 

generated, and in each trial, the location and orientation of the deep source were randomly 

chosen. One hundred locations of the deep source generated in this Monte Carlo study are 

shown by cross marks in figure 7(a). In this study, a random value between 0 and 1 cm was 

assigned to the mismatch distance D. The results of these one hundred Monte Carlo trials 

were assessed by using the sensor time course correlation Φ and the source localization 

error.

In figure 7(b), the histogram of Φ is shown at the top panel, and the histogram of source 

localization errors is shown at the bottom panel. Here, SNR was set equal to 4.5 and SIR (γ) 

equal to 0.05. In these results, the 96% of the Monte Carlo trials attain the values of Φ 
between 0.8 and 0.9. Also, 97% of the Monte Carlo results attain the localization errors less 

than 0.8 cm. Note that, in this Monte Carlo study, since the deep source location was 

randomly chosen, the source was not necessarily located at one of voxel locations, and the 

localization error also contains contributions from the voxel discretization, which is 0.25 cm 

9The reconstructed source location was defined as the location of the peak maximum.
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in average for this study that uses the voxel interval of 0.5 cm. The results of these Monte 

Carlo experiments demonstrate that the performance of the bDSSP algorithm is not much 

affected by the configuration of the deep source with respect to superficial sources.

5. Experiments

5.1. Experiments using phantom data

5.1.1. Phantom data measurements.—Experiments using data from an MEG 

phantom were performed to test the usefulness of the proposed algorithm. The phantom used 

in our experiments is shown in figure 8. In this phantom, dipole sources consist of isosceles-

triangular-shaped coils; these triangular coils generate magnetic fields expressed by the 

Sarvas formula [25]. Thus, the coils behave like dipole sources in the spherical 

homogeneous conductor [29]. A phantom using such triangular coils is called a dry phantom 

[30]. The triangular coils installed on the surface of a disc-shaped phantom can be seen in 

figures 8(a) and (b), in which the squares with a pale color show the locations of the coils. 

The center of the disc matches the sphere origin of the spherical conductor.

A whole-head MEG system with a 160-channel sensor array [31], installed at Applied 

Electronics Laboratory, Kanazawa Institute of Technology, Amaike, Kanazawa, Japan, was 

used to measure the phantom data. Figure 8(c) shows how the phantom was installed within 

the bore of the MEG sensor helmet. The phantom is equipped with marker coils, which were 

used to match between the phantom and sensor coordinates.

5.1.2. Experiments using dipole pair#1.—We performed two cases of experiments 

using different dipole pairs. The first case used a pair of dipole sources shown with the 

annotation ‘Dipole pair#1’ in figure 8(a). These dipoles are perpendicular to each other and 

2 cm apart. The pair was placed near the parietal-lobe region. The superficial dipole, which 

is annotated as ‘4–1’, was driven by an 11 Hz sinusoid with a current strength of 1.42 mA. 

The deep dipole, annotated as ‘4–2’, was driven by an amplitude-modulated sinusoid in 

which the carrier frequency was 15 Hz and the modulation frequency was 1 Hz. The current 

strength to drive the deep dipole was 0.225 mA. The current values of the two dipoles were 

chosen in order for the magnetic field of the superficial dipole to have a 16-times stronger 

intensity than that of the deep dipole. Namely, the signal-to-interference ratio (SIR), γ, was 

set to 1/16 in the first experiments. The data were acquired for 2 s using a sampling 

frequency of 1 kHz.

The 160-sensor time courses measured when only the superficial dipole was active are 

shown in figure 9(a), and the time courses measured when only the deep dipole was active 

are shown in figure 9(b). Adaptive beamformer source reconstruction was applied to these 

data sets. The image of the superficial dipole is shown in figure 9(c), and the image of the 

deep dipole is shown in figure 9(d). The sensor time courses and the dipole location of the 

deep source in figures 9(b) and (d) work as the ground truth in the following experiments.

The 160-sensor time courses measured when the superficial and deep dipoles were 

simultaneously active are shown in figure 10(a). In these sensor data, since the signal from 

the superficial dipole was sixteen times stronger than the signal from the deep dipole, the 
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sensor time courses were dominated by the signal from the superficial source. Source 

reconstruction results from these sensor data are shown in figure 10(c). Although the sensor 

data only show the dominated superficial dipole activity, the reconstruction results show 

both the superficial and deep dipoles.

We then applied the bDSSP algorithm to detect the signal from the deep source. We set the 

local source space at a 1 cm-cubic region whose center was equal to the location of the deep 

dipole. The bDSSP algorithm was applied to the sensor data in figure 10(a) to extract the 

signal from the deep source. The resultant sensor time courses are shown in figure 10(b), and 

source reconstruction results are shown in figure 10(d). Comparisons between these results 

and those in figures 9(b) and (d) demonstrate that the proposed bDSSP algorithm can 

successfully extract the activity of the deep dipole from the sensor data dominated by a large 

interference from the superficial source. Note that the difference between the source 

locations in figures 9(d) and 10(d) is 0.5 cm.

5.1.3. Experiments using dipole pair#2.—We conducted the same experiments using 

a pair of dipole sources shown with the annotation ‘Dipole pair#2’ in figure 8(a). These 

dipoles are parallel to each other and 4 cm apart, and they were placed near the temporal-

lobe region. The superficial dipole, which is annotated as ‘2–1’, was driven by an 11 Hz 

sinusoid with a current strength of 0.71 mA. The deep dipole, annotated as ‘1–2’, was driven 

with the same amplitude-modulated sinusoid as in the previous experiments with a current 

strength of 0.5 mA. These current values were chosen in order for the intensity of the 

magnetic field from the superficial dipole to be eight times stronger than that from the deep 

dipole. The reconstruction results of the superficial dipole are shown in figure 11(a). The 

reconstruction results of the deep dipole are shown in figure 11(b).

The sensor time courses obtained when the superficial and deep dipoles were simultaneously 

active are shown in figure 12(a). Again, the sensor data were dominated by the signal from 

the superficial dipole. Results of source reconstruction applied to these sensor data are 

shown in figure 12(c). In these results, since the superficial source is dominated, the deep 

dipole can hardly be seen. We applied the bDSSP algorithm for the removal of the 

interference from the superficial source activity. The resultant sensor time courses are shown 

in figure 12(b). These results show that the interference signal from the superficial dipole 

was successfully removed. The source reconstruction results obtained using these bDSSP- 

processed sensor data are shown in figure 12(d). Although considerable blur was introduced 

and the difference between the source locations in figures 11(b) and 12(d) is 2.5 cm in this 

case, the deep dipole can still be detected in figure 12(d).

In figure 12(d), the resultant source image contains a large blur and a fairly large localization 

error was caused. This is due to the high spatial correlation between the lead fields of the 

two sources [22]. (Since the two sources are parallel dipoles, the similarity of their lead 

fields are considerably high, even though they are 4 cm apart.) By making use of the blur in 

the bDSSP results, we can make a rough estimate on how much signal from the superficial 

source remains in the bDSSP-processed results. Let us denote the sensor data measured 

when only the superficial dipole (dipole’2–1’) was active by ysup(t), and the data measured 

when only the deep dipole (dipole ‘1–2’) was active by ydeep(t). Then, the synthetic sensor 
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data ysy(t) is computed such that ysy(t) = ydeep(t) + αysup(t) where the positive value α 
controlled the mixture ratio. The source reconstruction results using ysy(t) with α = 0.04, α 
= 0.02, and α = 0.01 are shown in figures 13(a)–(c), respectively.

Let us compare these reconstruction results with the bDSSP interference removal results in 

figure 12(d), and we can see that the results in figure 13(b) are closest to those in figure 

12(d), This observation leads to the estimation that the value of α could be around 0.02 in 

the bDSSP results in figure 12(d). Since the value of α was equal to 8 in the original sensor 

data shown in figure 12(a), the attenuation of the interference signal from the superficial 

dipole is estimated as 0.02/8 = 1/400. That is, we can estimate that the bDSSP algorithm has 

reduced the intensity of the superficial interference by a factor of 400 in this experiment.

5.2. Experiments using real MEG data

The bDSSP algorithm was also applied to somatosensory MEG data to further demonstrate 

its usefulness. The data set was collected from a healthy subject using the 275-channel CTF 

MEG scanner. Vibrotactile stimuli were applied to a subject’s right index finger for a total of 

240 trials, and sensor time courses were averaged across these trials time-aligned to the 

onset of the tactile stimulus. The averaged sensor time courses are shown in the upper panel 

in figure 14(a) in which a peak due to the activity from the hand area in the primary 

somatosensory cortex (S1) can be seen 50–60 ms after stimulation. The results of source 

reconstruction from these sensor data are shown in the upper panel of figure 14(b). Here, we 

used the sparse Bayesian (Champagne) source reconstruction algorithm developed by our 

group [32, 33]. In these results, a clear and focussed activity (labelled as (A)) arising from 

the primary somatosensory cortex can be observed. However, no other somatosensory 

activities that are weaker than the activity in the primary somatosensory cortex were 

detected.

We applied the bDSSP algorithm in order to detect weaker somatosensory cortical activity 

by suppressing the strong S1 activity. A local source space was set so that it covers more 

ventral regions of the somatosensory cortex, as indicated by the rectangles in figure 14(b). 

The sensor time courses of the bDSSP results are shown in the bottom panel of figure 14(a). 

Here, it can be seen that the large peak near 50 ms is removed. The results of source 

reconstruction obtained from these time courses are shown in the bottom panel of figure 

14(b). Here, three sources, not observed in the original reconstruction image (in the upper 

panel of figure 14(b)), can be observed. (They are labelled as (B)–(D).)

The reconstructed source time courses are shown in figure 14(c). These time courses 

indicate that the three sources observed in the results in the bottom panel of figure 14(b) 

were stimulus elicited. The results in the bottom panel of figure 14(b) show that the two 

sources labeled as (B) and (D) are located on the posterior bank of the central sulcus and 

considered as somatosensory activities. The third source, labeled as (C), is located near the 

supplementary motor area (SMA) and can also be considered as a somatosensory-related 

activity. These results demonstrate the usefulness of the bDSSP algorithm for investigating 

weak brain activities usually hidden by simultaneously-existing, much stronger activities.
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6. Complementary bDSSP algorithm

There can be a complementary way to implement the bDSSP algorithm. In the 

complementary version, the prerequisite of the algorithm is the information on the location 

of the superficial (interference) sources. The local source space is set at a region including 

the superficial sources, and beamspace basis vectors are computed by following exactly the 

same procedure described in section 3. Denoting the basis vectors as u1, …, uP, we can 

compute the beamspace projector Psup: Psup = u1, …, uP u1, …, uP
T. Note that Psup is a 

projector onto the pseudo-signal subspace of the superficial source. (In the original bDSSP 

algorithm, the beamspace projector is denoted Pdeep because it is a projector onto the pseudo 

signal subspace of the deep source.)

By multiplying Psup and I − Psup with the data matrix B, we obtain

PsupB = Bsup + PsupBdeep + PsupBε, (32)

I − Psup B = I − Psup Bdeep + I − Psup Bε, (33)

where we use

I − Psup Bsup = 0. (34)

Therefore, we can finally derive [27],

𝒦deep ⊃ rsp PsupB ∩ rsp I − Psup B . (35)

The equation above indicates that the intersection, rsp(PsupB) ∩ rsp((I − Psup)B), forms a 

subset of 𝒦deep, and the projector onto the intersection, Πisc, can be used as the projector 

onto 𝒦deep. Thus, the signal from the deep source is extracted by using Bdeep = BΠisc. The 

algorithm is called the ‘complementary bDSSP’, (cbDSSP) algorithm.

We applied the cbDSSP algorithm to the computer-generated data in the top panel of figure 

3(a), and the results are shown in figure 15(a). The algorithm effectively removed the 

interference in this computer simulation. We then applied the cbDSSP algorithm to the 

phantom data in figure 10(a) obtained using dipole pair#1, and the results are shown in 

figure 15(b). Here, the algorithm fails to remove the interference from the superficial dipole.

Figure 15(c) shows PsupB and (I − Psup)B in these phantom experiments. The data set PsupB 
is shown in the upper panel and (I – Psup)B, in the lower panel. Here, the two data sets are 

normalized by the same value, (the maximum value of PsupB). It can be seen in figure 15(c) 
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that although most of Bsup components were removed in (I − Psup)B, a small amount of 11 

Hz sinusoid, the component from the superficial source, still remains. This is probably 

because Bsup is much stronger than Bdeep in the phantom data in figure 10(a)10.

The failure of the cbDSSP algorithm in the phantom experiments indicates one of its 

limitations. While the bDSSP algorithm uses the projector Pdeep to suppress the signal from 

the deep source, the cbDSSP algorithm uses Psup to suppress the signal from the superficial 

source. Since it is generally true that the signal from the superficial source is much stronger 

than the signal from the deep source, the cbDSSP algorithm must be less robust to various 

types of errors. This is because such errors may force (I − Psup)Bsup to have non-zero values, 

while (I − Pdeep)Bdeep approximates zero.

7. Discussion and summary

The beamspace SSS method [14] has been proposed to attain the selective detection of 

components from deep sources by suppressing components from superficial sources. In the 

original SSS method, signal components of the data vector ySare estimated using the 

expansion:

yS(t) = ∑
𝓁 = 1

∞
∑

m = − 𝓁

𝓁
α𝓁, mc𝓁, m, (36)

where cℓ,m are the SSS basis vectors for the internal part and αℓ,m, are called the multipole 

components, and represent the coefficients of the expansion [15, 16]. Here, the time notation 

is omitted from αℓ,m for simplicity. The beamspace SSS method utilizes the fact that 

components from superficial sources are represented more by larger ℓ terms, and components 

from deep sources are represented more by smaller ℓ terms. Thus, estimating the data vector 

using only lower-order SSS basis vectors provides an estimated data vector containing more 

deep-source components and less superficial-source components. This can be achieved in 

simplest form by truncating the basis vector expansion, as suggested in [14]. That is, to 

estimate the deep source activity, the beamspace SSS algorithm uses

ydeep(t) = ∑
𝓁 = 1

LT
∑

m = − 𝓁

𝓁
α𝓁, mc𝓁, m, (37)

where ydeep(t) is the estimated deep source activity. In the equation above, the summation 

with respect to the index ℓ is truncated at LT. We applied the beamspace SSS algorithm to the 

simulated sensor data in the top panel of figure 3(a). The results obtained by truncating ℓ to 

1, 2, and 3 are shown in figure 16. The results show that the beamspace SSS can enhance the 

signal from the deep source. However, considerable amount of signal from the superficial 

source still remains even when ℓ is set at 1, the minimum value of ℓ. These results suggest 

10As mentioned, Bsup is sixteen times stronger than Bdeep in these phantom data.
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that the beamspace SSS method has only a limited capability of suppressing superficial 

interference.

In our computer simulation and our experiments using phantom data, the spherical 

homogeneous conductor model was used. One limitation with this conductor model is that 

the discrepancy between the actual and computed lead fields becomes large for midbrain and 

deep brain regions. This may affect the performance of the beamspace projector Pdeep 

defined in equation (23). That is, one key factor for the success of the algorithm is that the 

relationship (I − Pdeep)Bdeep ≈ 0 holds. However, due to the inaccuracy of the conductor 

model, (I − Pdeep)Bdeep could have non-zero components, which may cause removal of the 

signal magnetic field from a deep source, as well as removal of the interference from 

superficial sources. Therefore, to avoid such signal cancellation, a better conductor model, 

such as the realistic head model, may have to be used with the bDSSP algorithm. We will 

investigate on this point, and publish the results in a future occasion.

This paper proposes a novel algorithm for selective detection of a deep source by 

suppressing interference signals from superficial sources in MEG measurements. The 

proposed algorithm combines the beamspace preprocessing method with the dual signal 

space projection (DSSP) interference suppression algorithm. A prerequisite of the proposed 

algorithm is prior knowledge on the location of the deep source. After presenting a concise 

review on the DSSP interference removal algorithm, this paper introduces a method we call 

the beamspace DSSP algorithm. Compared with the previously proposed beamspace signal 

space separation (SSS) method, the proposed algorithm is capable of suppressing much 

stronger interference from superficial sources. This capability is demonstrated in our 

computer simulations as well as experiments using phantom data.

The proposed bDSSP algorithm can be a powerful tool in neuroscience studies of 

physiological functions of midbrain structures such as the thalamus, amygdala, hippocampus 

and the basal ganglia, and of the cerebellum, because there are many studies that require 

accurate localization of physiological and pathophysiological activities in deep brain 

regions. One example is non-invasive imaging studies of neural oscillations that examine the 

computational role of these brain regions. Other examples include studies on 

pathophysiological activities from deep brain structures. Such pathologic activities are 

implicated in a variety of conditions such as epilepsy and dementias (hippocampus and 

medial temporal lobe), movement disorders (basal ganglia, cerebellum), and 

neurodevelopmental disorders (thalamus etc). Accurate reconstruction of such activities in 

deep brain regions can lead to better understanding of these pathological conditions and 

potentially contributes to improved clinical managements and treatment strategies.
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Figure 1. 
Locations of sensors and three sources assumed in our computer simulations. Filled circles 

indicate the locations of sensors, the blank circle indicates the location of the deep source, 

and the square and triangle indicate the locations of the two superficial sources. The cross 

mark indicates the sphere origin. Top-left, top-right, and bottom panels, respectively, show 

the coronal, sagittal, and axial projections. The source locations, orientations and distances 

to the sphere origin are shown in table 1 in which Source#2 is the deep source, and the other 

two sources are called the superficial sources in our computer simulations.
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Figure 2. 
Time courses assigned to the three sources. Time t is expressed with the unit of time points. 

Top panel shows the time course assigned to the deep source, and the bottom two panels 

show the time courses assigned to the two superficial sources. Each time course is 

normalized between − 1 and 1.
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Figure 3. 
(a) Results of experiments when the signal to interference ratio (SIR), γ, was set to one. Top 

panel: simulated sensor time courses generated when one deep and two superficial sources 

are active. Middle panel: sensor time courses generated when only the deep source is active 

with the same amount of the sensor noise added. Bottom panel: results of applying the 

bDSSP algorithm to the sensor data in the top panel. (b) Results of the same experiments 

except that SIR (γ) was set to 0.05. Top panel: simulated sensor time courses. Bottom panel: 

results of applying the bDSSP algorithm to the sensor data in the top panel. Sensor time 
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courses in each panel are normalized to each maximum value, and the ordinate of the figure 

indicates the values normalized between −1 and 1.
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Figure 4. 
(a) Source reconstruction results obtained using the simulated sensor time courses in the top 

panel of figure 3(b). The cross marks indicate the location of the deep source. (b) Source 

reconstruction results from the bDSSP-processed sensor data in the bottom panel of figure 

3(b). In these results, the top left, top right and bottom panels, respectively, show the axial, 

coronal and sagittal projections of the 3D source reconstruction results.
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Figure 5. 
(a) Results of applying the bDSSP algorithm to sensor data with SNR equal to 1.5. (The 

SNR is defined as ‖Bdeep‖F/‖Bε‖F) These sensor time courses are normalized between −1 and 

1, and the ordinate indicates the normalized values. (b) Source reconstruction results 

obtained from the bDSSPprocessed sensor data in (a). In these results, the top left, top right 

and bottom panels, respectively, show the axial, coronal and sagittal projections of the 3D 

source reconstruction results.
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Figure 6. 
Results of Monte Carlo experiments on the mismatch between the position of the local 

source space and the location of the target deep source. Top panel: plots of the sensor-time 

course correlation Φ versus the mismatch distance D. Bottom panel: plots of the localization 

error of the deep source versus D. The position of the local source space was set at fifty 

different locations having the same D. A filled dot represents the results of each Monte 

Carlo trial, and blank circles indicate the average of the Monte Carlo results at each D.
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Figure 7. 
Results of Monte Carlo experiments on the robustness of the bDSSP algorithm to the source 

configuration. (a) One hundred randomly-selected locations of the deep source generated in 

this Monte Carlo study. Each location is shown by a cross mark. Two blank circles show the 

locations of the superficial sources, which are the same as those used in the previous 

experiments. (b) Top panel: histogram of the one-hundred trials with respect to the sensor 

time course correlation Φ. Bottom panel: histogram of the one-hundred trials with respect to 

the source localization errors. In this study, SIR was set at 0.05, and SNR was set at 4.5.
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Figure 8. 
Configuration of a dry phantom used in our experiments. (a) The squares show the locations 

of dipole sources. Dipole pairs annotated by ‘dipole pair#1’ and ‘dipole pair#2’ were those 

used in our experiments. Dipole pair#1 consists of dipole 4–1 and dipole 4–2, and the 

orientations of these dipoles are perpendicular to each other. Dipole pair#2 consists of dipole 

2–1 and dipole 1–2, and the orientations of these dipoles are parallel. The center of the disc 

matches the sphere origin of the spherical conductor. (b) Isosceles-triangular-shaped coils 

that simulate dipole sources in the spherical homogeneous conductor can be seen. (c) 

Depiction showing how the disc-shaped phantom was installed inside the sensor helmet.
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Figure 9. 
(a) Sensor time courses measured when only the superficial dipole (marked ‘4–1’ in figure 

8(a)) was active. The superficial dipole was driven by an 11 Hz sinusoid. (b) Sensor time 

courses measured when only the deep dipole (marked ‘4–2’ in figure 8(a)) was active. The 

deep dipole was driven with an amplitude-modulated sinusoid whose carrier frequency was 

15 Hz and modulation frequency was 1 Hz. These sensor time courses in (a) and (b) are 

normalized to each maximum field intensity. The abscissa of these figures indicates time in 

ms. (c) Source reconstruction results of the superficial dipole. (d) Source reconstruction 

results of the deep dipole. In each figure, the left, middle, and right panels, respectively, 

show the axial, coronal and sagittal projections of the 3D source reconstruction results.
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Figure 10. 
(a) The sensor time courses measured when the superficial and deep dipoles were 

simultaneously active. The magnetic field from the superficial dipole was sixteen times 

stronger than the magnetic field from the deep dipole. (b) The sensor time courses of the 

bDSSP results. These sensor time courses in (a) and (b) are normalized to each maximum 

field intensity. The abscissa of these figures indicates time in ms. (c) Source reconstruction 

results from the sensor data in (a). (d) Source reconstruction results from the bDSSP-

processed sensor data in (b). The left, middle, and right panels, respectively, show the axial, 

coronal and sagittal projections of the 3D source reconstruction results.
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Figure 11. 
Results of experiments using a pair of dipoles denoted ‘Dipole pair#2’; the deep dipole is 

denoted ‘2–1’, and the superficial dipole ‘1–2’. (a) The reconstruction results of the 

superficial dipole. (b) The reconstruction results of the deep dipole. The left, middle, and 

right panels, respectively, show the axial, coronal and sagittal projections of the 3D source 

reconstruction results.
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Figure 12. 
Results of experiments using a pair of dipoles denoted ‘Dipole pair#2’; the deep dipole is 

denoted ‘2–1’, and the superficial dipole ‘1–2’. (a) The sensor time courses measured when 

the superficial and deep dipoles were simultaneously active. (b) The bDSSP-processed 

sensor time courses. These sensor time courses in (a) and (b) are normalized to each 

maximum field intensity. The abscissa of these figures indicates time in ms. (a) Source 

image reconstructed using the sensor data in (a). (b) Source image reconstructed using the 

bDSSP-processed sensor data in (b). The left, middle, and right panels, respectively, show 

the axial, coronal and sagittal projections of the 3D source reconstruction results.
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Figure 13. 
Source reconstruction results obtained from synthetic sensor data ysy(t) obtained such that 

ysy(t) = ydeep (t) + αysup (t). Here, ydeep(t) is the sensor data measured when only the deep 

dipole (dipole’1–2’) was active, and ysup(t) is the sensor data measured when only the 

superficial dipole (dipole’2–1’) was active. (a) Source reconstruction results when α = 0.04. 

(b) Source reconstruction results when α = 0.02. (c) Source reconstruction results when α = 
0.01.

Sekihara et al. Page 34

J Neural Eng. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 14. 
(a) Top panel: somatosensory MEG data averaged across 240 trials collected using the 275-

channel CTF MEG scanner. Bottom panel: the sensor time courses of the bDSSP results. (b) 

Top panel: results of source reconstruction obtained from the sensor data in the top panel of 

(a). The blank squares show the boundary of the local source space used when applying the 

bDSSP algorithm. A single source, labelled by (A), was detected at the primary 

somatosensory area. Bottom panel: results of source reconstruction obtained from the 

bDSSP-processed sensor data shown in the bottom panel of (a). Three sourses, labelled as 

(B)–(D), are detected. The cross sectional MR images were chosen as those at the voxel 

having the maximum intensity. (c) Reconstructed source time courses. The top, second top, 

third top, and bottom panels respectively show the time courses of voxels indicated by (A)–

(D). The all four time courses are normalized to a common value equal to the maximum 

value of the time course in the top panel.
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Figure 15. 
(a) Results of applying the cbDSSP algorithm to the computer generated data in the top 

panel of figure 3(a). (b) Results of applying the cbDSSP algorithm to the phantom data in 

figure 10(a) obtained using dipole pair#1. The sensor time courses in (a) and (b) are 

normalized to each maximum value, and the ordinate of these figures indicates the 

normalized values of the magnetic field intensity. (c) Two data sets, PsupB and (I − Psup)B, 

from the phantom data, obtained using dipole pair#1. The data set PsupB is shown in the 

upper panel and the data set (I − Psup)B is in the lower panel. These data sets are normalized 

to the same maximum value of PsupB.
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Figure 16. 
(a) Results of applying the beamspace SSS method to simulated sensor measurements in the 

top panel of figure(a). (a) Results obtained with LT set at 1. (b) Results obtained with LT set 

at 2. (c) Results obtained with LT set at 3. These sensor time courses in (a)–(c) are 

normalized to each maximum field intensity.
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Table 1.

Source properties assumed in computer simulation.

Source number Orientation Location (cm) Distance from the sphere origin (cm)

1 (1,−1, 0) (0.4, 0.1, 13.3) 7.0

2 (0, 1, 1) (2.9, −1.4, 9.3) 4.4

3 (1, 0, 1) (2.4, 2.6, 11.3) 6.1
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