
UC Berkeley
Research Reports

Title
Freeway Service Patrol (fsp) 1.1: The Analysis Software For The Fsp Project

Permalink
https://escholarship.org/uc/item/9f63k4pd

Author
Petty, Karl

Publication Date
1995

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9f63k4pd
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

June 1995

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Report for MOU 91

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Freeway Service Patrol (FSP) 1.1:
The Analysis Software for the FSP
Project

UCB-ITS-PRR-95-20
California PATH Research Report

Karl Petty

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

FSP 1.1
The Analysis Software for the FSP Project

Karl Petty

FSP Project
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720
c
1994, Karl Petty

Mailing for bug reports: pettyk@eecs.berkeley.edu

This manual is for the FSP and XFSP programs

June 4, 1995

2

Contents

1 Introduction 13

2 Setting Up And Running The fsp Program 17

2.1 Setting Up The fsp Program : 17

2.2 Running The Program : 21

3 Setting Up And Running The xfsp Program 23

3.1 Introduction To The xfsp Program : 23

3.2 Support Software For The xfsp Program : 23

3.3 Installing The Support Software : 25

3.3.1 Step 1: Creating The Directory Structure : : : : : : : : : : : : : : : : : : 26

3.3.2 Step 2: Downloading The Software : 26

3.3.3 Step 3: Installing Tcl 7.3 : 27

3.3.4 Step 4: Installing Tk 3.6 : 28

3.3.5 Step 5: Installing Expect 5 : 28

3.3.6 Step 6: Finishing Up : 29

3.4 Installing The xfsp Software : 29

3.5 Running The xfsp Software : 31

3.5.1 The Layout Of The xfsp Window : 32

3.5.2 Using The Fileselector : 32

3.5.3 Using Setup Files : 33

3.5.4 Running The fsp Program : 33

3.5.5 Using The xfspview Program : 34

4 The Data 37

4.1 The Study : 37

4.2 Downloading The Data : 37

4.2.1 Downloading Via The World Wide Web : : : : : : : : : : : : : : : : : : : 40

4.2.2 Size of the Data : 40

4.3 The Car Data : 41

4.4 The Loop Data : 45

4.5 The Incident Data : 48

3

4 CONTENTS

5 Problems With The Data 55

5.1 The Car Data : 55

5.1.1 Key Presses : 55

5.1.2 Car Placement : 56

5.1.3 Just Plain Bad : 57

5.1.4 Car Position Plots : 57

5.2 The Loop Data : 58

5.2.1 Loop Data Drop Outs : 58

5.2.2 Over/Under Counting : 61

5.2.3 Bad Initialization : 63

5.2.4 Bad Traps : 63

5.3 The Incident Data : 64

5.3.1 Bad Placement : 64

5.3.2 Bad Duration : 68

6 Program Input: Directory Structure and File Formats 71

6.1 The Input Directory Structure : 72

6.1.1 Car Input Directory Structure : 72

6.1.2 Car Con�guration File Formats : 73

6.1.3 Loop Input Directory Structure : 74

6.1.4 Loop Con�guration File Formats : 75

6.1.5 Incident Input Directory Structure and Con�guration Files : : : : : : : : 78

6.2 The Output Directory Structure : 79

6.2.1 Loop Output Directory Structure : 79

7 Program Input: The Run�le 81

7.1 The Basic Idea : 81

7.2 How To Use The Parameters : 81

7.3 Parameters To The Run�le : 82

7.4 Default Parameters Values : 109

7.5 Summary Of Parameter Values : 109

8 Run�le Parameters To xfsp Strings 121

8.1 xfsp Windows To Run�le Parameters : 121

9 Program Input: The Incident Filter 127

9.1 The Incident Filter Format : 127

9.2 Fields Of The Incident Filter : 128

9.3 Incident Filter Examples : 128

9.3.1 Example 1: Examining Incident Fields : 131

9.3.2 Example 2: Accidents With Little Processing : : : : : : : : : : : : : : : : 132

9.3.3 Example 3: Red Cars With Lots Of Processing : : : : : : : : : : : : : : : 133

9.3.4 Example 4: Tow Truck Incidents : 134

CONTENTS 5

10 Program Input: The Loop Detector Tests 139

10.1 Generating The Tests : 139

10.2 Listing Of The Various Tests : 143

10.3 The Default Values For The Loop Tests : 148

11 Program Input: Cross Data Analysis 151

11.1 Generating The Loop Speeds : 152

11.2 Fixing The Loop Data : 154

11.2.1 The
oop Files : 155

11.2.2 The gloop Files : 156

11.2.3 The hloop Files : 157

11.3 The Loop Delay Files : 157

11.3.1 The Run�le Parameters Needed : 158

11.3.2 Extra Loop Files : 159

11.4 Fixing The Incident Data : 160

11.5 Finding The Delay For Each Incident : 161

11.5.1 Incident Delays By Distance : 161

11.5.2 Incident Delays By Bounding Box : 163

12 Examples With The Run�le 167

12.1 General Parameters : 168

12.2 Example 1: Just Car Data : 169

12.3 Example 2: More Car Data : 170

12.4 Example 3: Lots Of Car Data : 170

12.5 Example 4: General Loop Data Example : 171

12.6 Example 5: Complicated Loop Data Example : 172

12.7 Example 6: Computing The Delay WRT The Average : : : : : : : : : : : : : : : 173

12.7.1 The First Pass: Standard Values : 174

12.7.2 The Second Pass: Calculating The Delay : : : : : : : : : : : : : : : : : : 175

12.7.3 The Final Step: Moving The Files To A Safe Place : : : : : : : : : : : : : 176

12.8 Example 7: Generating The Contour Plots : 177

12.9 Example 8: Fixing The Incident Locations : 179

12.9.1 Step 1: Generating The First Plot : 179

12.9.2 Step 2: Generating The Location Fix File : : : : : : : : : : : : : : : : : : 181

12.9.3 Step 3: Adjusting The Incidents : 182

12.9.4 Step 4: Adjusting One Last Time : 184

12.10Example 9: Fixing The Incident Durations : 185

12.10.1Step 1: Using The Probe Data To Correct The Durations : : : : : : : : : 186

12.10.2Step 2: Using The Runtime File To Correct The Durations : : : : : : : : 188

12.11Example 10: Calculating The Incident Delay With Space-Time Boxes : : : : : : 188

12.11.1Step 1: Figuring Out The Bounding Boxes : : : : : : : : : : : : : : : : : 189

12.11.2Step 2: Incident Delays From The Bounding Boxes : : : : : : : : : : : : : 191

6 CONTENTS

13 Program Output: How To View It 193

13.1 GNUPLOT : 193
13.2 XGRAPH: An Alternative : 194
13.3 LaTEX Tables : 194

14 Program Output: The Car Data 197

14.1 The Car Textual Output : 197
14.1.1 The Key Error Report : 198
14.1.2 The Huge Car Error Report : 199
14.1.3 The Medium Car Error Report : 200
14.1.4 The Small Car Error Report : 200

14.2 The Car Graphical Output : 200
14.2.1 The Graphs For Each Loop : 201
14.2.2 The Graphs For Each Shift : 206

14.3 The Car Plots : 207

15 Program Output: The Loop Data 213

15.1 The Loop Textual Output : 213
15.2 The Loop Text Reports Summary : 217
15.3 The Basic Data Set : 217
15.4 The Calculated Data Set : 222

15.4.1 The Loop Delay And Density Files : 223
15.4.2 The Loop Emission Files : 225
15.4.3 The Aggregate Loop Files : 226

15.5 The Loop Plots : 227

16 Program Output: The Incident and Cross Data Analysis 229

16.1 Quick Overview Of The Incident And Analysis Output : : : : : : : : : : : : : : : 229
16.2 Textual Output : 230

16.2.1 The Base Case Output : 231
16.2.2 The Raw Incident Output : 232
16.2.3 Incident Database - Probe Vehicle Correlation Results : : : : : : : : : : : 233
16.2.4 The Incident Duration Fix Output : 236
16.2.5 The Finished Incident Output : 237

16.3 Graphical Output : 242
16.3.1 The Incident Plots : 242
16.3.2 The Correlation Plots : 244
16.3.3 The Contour Plots : 247

17 A Larger Picture: The Whole FSP Data Flow 251

A Frequently Asked Questions and Warnings 255

A.1 General : 255
A.2 The Loop Data : 256
A.3 The Probe Vehicle Data : 261
A.4 The Incident Database : 262

CONTENTS 7

B Changes From Version 1.0 to 1.1 265

8 CONTENTS

List of Figures

1.1 Basic Program Structure. : 14
1.2 Basic Program Structure with Chapters. : 15

3.1 Relationship Between fsp and xfsp Programs. : : : : : : : : : : : : : : : : : : : 24
3.2 Main xfsp Window. : 31
3.3 The xfsp File Selector Window. : 33
3.4 The xfsp Run Window. : 34
3.5 The xfsp Output Window. : 35
3.6 The xfspviewWindow. : 35

4.1 The FSP Study Section. : 38
4.2 FTP Directory Structure On www-path. : 39
4.3 Basic Keys Pressed During First Set. : 42
4.4 Basic Keys Pressed During Second Set. : 43
4.5 Basic Calculation of Car Speeds. : 46

5.1 Basic Keys Pressed During Second Set. : 56
5.2 Basic Car Position Plot That Drifts. : 58
5.3 Loop Data Dropout. : 59
5.4 Missing Detector. : 60
5.5 Detector Current Level. : 62
5.6 Basic Incident Plot. : 65
5.7 Car Trajectories. : 66
5.8 Correlation Plots. : 66
5.9 Fixed Incident Placement. : 67
5.10 Actual Incident and Witnessed Incident. : 69
5.11 Incorrect Incident Duration Fix. : 70

6.1 Input FSP Directory Structure. : 72
6.2 Car Input Directory Structure. : 73
6.3 Loop Input Directory Structure. : 75
6.4 Loop Output Directory Structure. : 80

7.1 Basic Incident Plot. : 108

10.1 High Speed Test. : 140
10.2 Cross Lane Test. : 141

9

10 LIST OF FIGURES

10.3 The Loop Detectors In The Freeway. : 142

11.1 Big Picture For FSP Program. : 151
11.2 Fixing The Loop Data. : 155
11.3 Delay Calculation wrt A Constant. : 159
11.4 Delay Calculation wrt The Average. : 160
11.5 Data Flow For Fixing The Incidents. : 161
11.6 Processing The Incidents. : 162
11.7 Incident At One Time Slice. : 163
11.8 Density Contour With Incident. : 164

12.1 Incident Database-Probe Vehicle Correlation Plot. : : : : : : : : : : : : : : : : : 181
12.2 Correlation Plot With Fixed Incident Locations. : : : : : : : : : : : : : : : : : : 183
12.3 Delay Contour Plot. : 189

14.1 Car File Name Extensions. : 203
14.2 Car Trajectory (X-Y). Gnuplot �le: c1loop2.vxy : : : : : : : : : : : : : : : : : : 208
14.3 Car Trajectory (time vs. distance). Gnuplot �le: c1loop2.vtd : : : : : : : : : : : 208
14.4 Car Trajectory (speed vs. distance). Gnuplot �le: c1loop2.vsd : : : : : : : : : : : 209
14.5 Car Trajectory (speed vs. time). Gnuplot �le: c1loop2.vst : : : : : : : : : : : : : 209
14.6 Travel Times With INRAD Points. Gnuplot �le: inrad.gtv : : : : : : : : : : : : : 210
14.7 Travel Times With nbd Gore Points. Gnuplot �le: ngore.gtv : : : : : : : : : : : 210
14.8 Travel Times With sbd Gore Points. Gnuplot �le: sgore.gtv : : : : : : : : : : : : 211
14.9 Travel Times With Gore And INRAD Points. Gnuplot �le: stimes.gtv : : : : : : 211

15.1 Cumulative Loop Delay. : 224
15.2 Loop Delay Table. : 225

16.1 Data Flow For Fixing The Incidents. : 230
16.2 Generating The Incident Delays. : 231
16.3 Histogram Of The Number Of Incidents. : 243
16.4 Histogram Of The Percentage Of Incidents. : 244
16.5 Cumulative Distribution Plot. : 245
16.6 Incident Delay Versus Duration. : 246
16.7 Incident Correlation Plot. : 247
16.8 Contour Plot Of Delay. : 249
16.9 Contour Plot Of Density. : 250
16.10Contour Plot Of Di�erential Density. : 250

17.1 The Larger Picture. : 252

List of Tables

3.1 Anonymous ftp sites for the software packages. : : : : : : : : : : : : : : : : : : : 27

4.1 Size of data sets (in megabyes). : 40

7.1 Default values for the main parameters. : 110

7.2 Default values for the car parameters. : 110

7.3 Default values for the loop parameters. : 111

7.4 Default values for the incident parameters. : 112

7.5 Default values for the analysis parameters. : 112

7.6 Summary of main parameters. : 113

7.7 Summary of car parameters with no pre-de�ned options. : : : : : : : : : : : : : : 113

7.8 Summary of loop parameters with no pre-de�ned options. : : : : : : : : : : : : : 114

7.9 Summary of incident parameters with no pre-de�ned options. : : : : : : : : : : : 115

7.10 Summary of pre-de�ned car parameters. : 116

7.11 Summary of pre-de�ned loop parameters. : 117

7.12 Summary of more pre-de�ned loop parameters. : : : : : : : : : : : : : : : : : : : 118

7.13 Summary of pre-de�ned incident parameters. : 119

7.14 Summary of pre-de�ned analysis parameters. : 120

8.1 Run�le parameters to xfsp location. : 122

8.2 More run�le parameters to xfsp location. : 123

8.3 Run�le parameters in the Car Output/Processing window. : : : : : : : : : : : 124

8.4 Run�le parameters in the Correlate Data window. : : : : : : : : : : : : : : : : 124

8.5 Run�le parameters in the Emissions/Delays window. : : : : : : : : : : : : : : 124

8.6 Run�le parameters in the Fix Inc Data window. : : : : : : : : : : : : : : : : : 124

8.7 Run�le parameters in the Fix Loop Data window. : : : : : : : : : : : : : : : : 125

8.8 Run�le parameters in the General Options window. : : : : : : : : : : : : : : : 125

8.9 Run�le parameters in the Incident Delays window. : : : : : : : : : : : : : : : : 125

8.10 Run�le parameters in the Incident Output/Processing window. : : : : : : : : 125

8.11 Run�le parameters in the Loop Output/Processing window. : : : : : : : : : : 126

9.1 Some �eld descriptors for incident �lter. : 129

9.2 More �eld descriptors for incident �lter. : 130

10.1 Test parameter defaults. : 149

10.2 Auxiliary parameter defaults. : 149

11

12 LIST OF TABLES

10.3 Main parameters and error entries. : 150

15.1 Summary of loop output text �les. : 217
15.2 Loop plots. : 228

A.1 Travel Distances (in feet). : 262

Chapter 1

Introduction

This manual is the reference manual for the fsp and xfsp programs. The fsp program is a
software tool used to interrogate the data that was collected during the Freeway Service Patrol
Evaluation Project. This program will perform diagnostics on the data, generate error reports,
and make plots of various pieces of data. The program takes as it's input arguments a �le that
we shall call a run�le, an incident �lter �le, and an incident run number. The run�le contains all
of the commands that the fsp program needs to run. The incident �lter tells the program which
incidents to �lter out of the incident database and the incident run number is just an index for
the output �les. The xfsp program is a graphical user interface to the fsp program that was
written in Tcl/Tk[1] and Expect[2]. This program allows the user to generate the run�le and
the incident �lter by clicking on various buttons and widgets with the mouse. Since the xfsp
program is just a graphical user interface to the fsp program this manual will concentrate on
explaining the di�erent types of analysis that the fsp program will perform. The xfsp program
is described in more detail in Chapter 3.

The fsp program generates quite a few di�erent types of output. If you were to run
the program on a complete data set the program would take about 12 hours and could possibly
generate up to 8000 �les. As a result, a large portion of the manual is going to be devoted to
the interpretation of the various output �les. A summary of the various types of output �les
and plots is given below:

� Loop Data:

{ Speed vs. Time plots

{ Counts vs. Time plots

{ Occupancy vs. Time plots

{ Delay (v-hr) vs. Time plots

{ Delay tables

{ Text reports of the data

{ Error reports on the data

{ Reports of dropout times

� Car Data:

13

14 CHAPTER 1. INTRODUCTION

Runfile

Incident Filter

Data

(Car, Loop, Incident)

Configuration Files

The fsp program Data Plots

Error Reports

Data Analysis

Figure 1.1: Basic Program Structure.

{ Latitude vs. Longitude plots of car trajectory

{ Speed vs. Time plots of car trajectory

{ Distance vs. Time plots of car trajectory

{ Speed vs. Distance plots of car trajectory

{ Link Travel Time vs. Starting Time

{ Plots of GPS data

{ Driver evaluations

� Incident Data:

{ Histograms of incident duration

{ Cumulative distribution of incident duration

� Data Analysis:

{ Delay per incident

{ Plot of delay per incident duration

{ Plots of correlation between car and incident data

{ Contour plots of delay on the freeway

Although this may seem too much to have to deal with, hopefully this manual will
make everything seem clear.

Basically the whole system looks like Figure 1.1. The program takes as input a
run�le, an incident �lter �le, various con�guration �les, and some data. It generates as output

15

Data

(Car, Loop, Incident)

Runfile

Incident Filter

Configuration Files

Chapter 4, 5

Chapters 2, 3
The fsp program

Error Reports

Data Plots

Data Analysis

Chapters 7, 8, 10, 12

Chapter 9

Chapter 6

Chapters 13, 14, 15

Chapters 13, 14, 15

Chapter 16

Figure 1.2: Basic Program Structure with Chapters.

various error reports, graphs, and tables. This manual is an attempt to describe in detail all of
the various boxes listed in Figure 1.1.

The chapters in this manual almost follow the boxes in Figure 1.1. Chapter 2
deals with how to setup the fsp program and Chapter 3 deals with how to setup the xfsp
program. Chapter 4 talks about the data that we collect during the course of the experiment
and Chapter 5 talks about the problems associated with the data. Chapter 6 describes how the
fsp program expects the data to be stored on the system. Chapters 7, 8, 10, and 11 discuss
the di�erent parameters that can be set in the run�le and Chapter 9 explains how to generate
incident �lters. In terms of program output, Chapter 13 explains the basics of how to view
the output and where you can expect to �nd it. Chapters 14, 15 explain the various types of
output that are generated from the loop and car data sets. Chapter 16 explains the output
that is generated from the cross data analysis. Finally, Chapter 17 talks about how the fsp
program �ts into a larger picture. With this in mind I would like to relabel my diagram of the
basic program structure to include the chapter numbers in the appropriate boxes. I have done
this in Figure 1.2.

During the course of the Freeway Service Patrol there turned out to be a need to
have more detailed data collection from the cars. What this basically means is that the format
of the data from the cars changed in the middle of the experiment. I have pointed out in the
manual where this can cause problems.

Although I wrote the fsp program, I never could have done it without the help of
quite a few people. Probably the most important is Leon Chen. He wrote the code that reads
in the binary loop data and converts it to an understandable format. The routines that process
the loop data still use his code as a foundation. Kumud Sanwal wrote the routines to do the
consistency �x on the loop data and part of this documentation was written by him as well.
Hisham Noeimi and Dan Rydzewski came up with the format of the incident database which
plays a big part in fsp program. They also had the thankless job of collecting all of the data.

16 CHAPTER 1. INTRODUCTION

Dr. Alex Skabardonis managed the project and wrote the �nal report. I would also like to
acknowledge my advisor Professor Pravin Varaiya for his continuing support and many helpful
suggestions. If you are looking for a summary of the results of the Freeway Service Patrol
Evaluation Project then you should consult [3].

Please note that this software is currently in
ux. Hence, the manual is not quite
�nished yet. There are bound to be typos, bad grammar, and even incorrect instructions. If you
�nd that something doesn't work then please send me email at pettyk@eclair.eecs.berkeley.edu.
I'm not guaranteeing that I'll be respond - it's just that it would be nice to know if there were
any bugs.

Chapter 2

Setting Up And Running The fsp

Program

The fsp program is rather large and complex. There are quite a few input �les that need to
be placed in the right spots, and quite a few input directories that need to be created. I have
outlined the steps below to setup the fsp program, create the directories and �nally to compile
and execute the software. The installation procedure for the xfsp program is quite a bit harder
than for the fsp program. As a result, all of Chapter 3 is devoted to installing and running the
xfsp program.

The steps to generating the fsp code and running it are pretty straight forward:

1. Download the software.

2. Compile the program using the included make�le.

3. Install the con�guration �les using the included make�le.

4. Install some data.

5. Make a run�le.

6. Make an incident �lter.

7. Run it.

In this chapter we will talk about the �rst 3 items in this list. The fourth item,
installing some data, is discussed in Chapter 4, and the �fth and sixth items, making a run�le
and an incident �lter, are discussed in Chapters 7, 9, and 10.

2.1 Setting Up The fsp Program

Downloading the software is pretty straight forward. You simply need to download one �le
from the the software server at Berkeley. This is done via a mechanism called anonymous ftp.
To use this simply type the following command:

17

18 CHAPTER 2. SETTING UP AND RUNNING THE FSP PROGRAM

ftp www-path.eecs.berkeley.edu

When the machine prompts you for a login name type in the word \anonymous." When you are
prompted for a password type in your email address like: \me@some.machine.somewhere." This
will let you in. I would suggested that you download any �les named README and look at those
�rst. The fsp software package is located under /pub/PATH/FSP/Packages/fsp.1.1.tar.Z.
You should download this by �rst changing to that directory and then typing the command:

get fsp.1.1.tar.Z

This will download the �le from the machine at Berkeley to your local machine. The way that
the fsp program is distributed is in a compressed tar �le. The �le, on your machine, should
look something like this:

clair 1: ls

fsp.1.1.tar.Z

To unpack the data simply type the following command:

clair 2: uncompress fsp.1.1.tar.Z

This will create a �le called fsp.1.1.tar which you then need to \untar" with the following
command:

clair 3: tar xvf fsp.1.1.tar

This last command will create a directory on your system named fsp. This directory will be
referred to as the main fsp directory. Note that if you already have a directory named fsp then
it might be overwritten by the tar command. A listing of the directory should look something
like this:

clair 4: cd fsp

clair 5: ls

Makefile Set1 fsp_src xfsp_src

README.DOC Set2 manual xfspview_src

This directory has the following set of subdirectories:

1. Directory of source �les for the fsp program (fsp src).

2. Directory of source �les for the xfsp program (xfsp src).

3. Directory of source �les for the xfspview program (xfspview src).

4. Directory of con�guration �les for the before data set (Set1).

5. Directory of con�guration �les for the after data set (Set2).

6. Directory holding this manual (manual).

2.1. SETTING UP THE FSP PROGRAM 19

The directory will also include a make�le named Make�le and a documentation �le named
README.DOC. In order to compile the fsp program you need to do the follow steps:

1. Figure out where you want to place the data. This will be referred to by its make�le
name, FSP_DATA_DIR (for the fsp data directory).

2. Manually create this directory.

3. Edit the make�le and follow the instructions in there. You will need to set the value of
FSP_DATA_DIR to be the name of the directory that you just created.

4. Compile the fsp program by typing in the main directory:

clair 6: make fsp

This will make the fsp program. Note that you don't have to change into the fsp src

directory for this to work - this should be done from the main fsp directory. You should
see something like the following output:

clair 6: make fsp

cc -g -c fsp.c

cc -g -c compassc.c

cc -g -c cparsec.c

cc -g -c fsp_util.c

cc -g -c makeprnc.c

cc -g -c congpsc.c

cc -g -c log_170c.c

cc -g -c log_stat.c

cc -g -c log_fsp.c

cc -g -c log_util.c

cc -g -c log_flow_plot.c

cc -g -c inradc.c

cc -g -c fsp_calc.c

cc -g -c loop_util.c

cc -g -c inc_util.c

cc -g -c inc_pos.c

cc -g -c inc_print.c

cc -g -c fsp_neural.c

cc -g -c fsp_mkavg.c

cc -g -c fsp_dir.c

cc -o fsp -g fsp.o compassc.o cparsec.o fsp_util.o makeprnc.o

congpsc.o log_170c.o log_stat.o log_fsp.o log_util.o log_flow_plot.o

inradc.o fsp_calc.o loop_util.o inc_util.o inc_pos.o inc_print.o

fsp_neural.o fsp_mkavg.o fsp_dir.o -lm

chmod ugo+rx fsp

20 CHAPTER 2. SETTING UP AND RUNNING THE FSP PROGRAM

If this is not what happens and the fsp executable program has not been created then
make sure that all of the libraries are in the appropriate place, that all the include �les
are around, and that the source �les are there as well. If you still can't get it to compile
then track down a hacker and ask them.

5. To install the con�guration �les type:

clair 7: make set1

or

clair 7: make set2

The �rst thing that this will do is to create all of the subdirectories that you will need to
store the data. For an explanation of the various directories and where the data should
be placed see Chapter 4. This command will also copy all of the �les from the various
con�guration directories into the appropriate spots under the FSP_DATA_DIR. Note that
this will overwrite any con�guration �les that you already have in these directories. If
you don't want to run the install portion of the make program then that is �ne, but you'll
have to manually copy the con�guration �les to their appropriate place yourself because
the fsp program expects them to be there. For example, if the value of FSP_DATA_DIR is
/home/clair0/PATH/FSP/Temp/kp1 then the output of the \make set1" command should
be something like this:

clair 8: make set1

Making main directories:

Making directory /home/clair0/PATH/FSP/Temp/kp1/Loopdata

Making directory /home/clair0/PATH/FSP/Temp/kp1/Cardata

Making directory /home/clair0/PATH/FSP/Temp/kp1/Incidents

Making directory /home/clair0/PATH/FSP/Temp/kp1/Runfiles

Installing configuration files:

Installing files from loop_config

Making loop data subdirs...

Copying loop configuration files...

Installing files from car_config

Making car data subdirs...

Copying car configuration files...

Installing files from inc_config

Copying incident configuration files...

Installing files from runfile_config

2.2. RUNNING THE PROGRAM 21

Copying runfile example files...

Done

6. Next, you need to install the fsp software. Most people like to have all of the executable
programs in a few locations on their system. These are usually /bin or /usr/local/bin.
On step 9 in the make�le there is a variable named DEST that you can de�ne as the
destination for the fsp executable. Once you have set the variable DEST in the make�le,
to install the fsp software you simply type:

make install_fsp

This will copy the program over from the source directory to the destination directory.
If you don't want to install the fsp program in some common directory but instead wish
to leave the program in the source directory then that is �ne but you'll need to set your
path such that you can �nd the fsp program.

7. Note that the installation procedure for the xfsp program is given in Chapter 3.

2.2 Running The Program

Once you have complied the program, installed the con�guration �les, and installed some data
then you can start running the program. For an explanation of how to install some data see
Chapter 4. There are a few things to note:

� You can run the program from anywhere on your system (as long as you have your path
set correctly) and it should still put the data in the correct spot.

� If you halt the program, by typing control-c, you might see weird �les lying around. If
the program exits normally then these �les are deleted, but if you halt it then it won't
get a chance to delete them. You can just delete them yourself or you can wait until the
program is run again and it will delete them when it exits normally. These �les are named
garbage.raw.

� You need to specify on the command line the name of the run�le, the name of the incident
�lter, and a run number. The run number is used to name, or index, some of the output
�les. If you want to know more about the run�le then refer to Chapter 7.

� If you want to run through the loop data then that takes the longest amount of time.

� To run the program simply type:

clair 9: fsp my.runfile my.inc.filter 0

(or whatever your run�le and incident �lter are called).

� I usually like to run the program in the main data directory. On my system this would
be the directory: /home/clair0/PATH/FSP/Set2.

22 CHAPTER 2. SETTING UP AND RUNNING THE FSP PROGRAM

Chapter 3

Setting Up And Running The xfsp

Program

The xfsp program is a graphical user interface to the fsp program. It will allow you to create
the run�le and the incident �lter that the fsp program requires by pointing and clicking on
various buttons and widgets with the mouse. It will also collect the output for you and display
it in a window on the screen. There is an extensive help system within xfsp that should allow
the user to control the fsp program without much need for this manual. This chapter probably
should have been a little bit later in the manual because it assumes that you know something
about the way the fsp program works. You can probably skip most parts of this chapter at
�rst and then come back to them later. The part that you should probably read is the section
on installing the xfsp program.

3.1 Introduction To The xfsp Program

The xfsp program does something really simple: it allows the user to generate a run�le and an
incident �lter for the fsp program. Once the run�le and the incident �lter have been created,
the xfsp program will execute the fsp program, collect the output and then display it on the
screen. One can think of the xfsp program as being a \wrapper" for the fsp program: the fsp
program is what does all of the processing work and the xfsp program is what deals with the
user. One way to view this graphically is in Figure 3.1.

Figure 3.1 shows the xfsp program being in control of the fsp program: the xfsp
program tells the fsp program what to do and then reads the output back from it. On the
same �gure is another program named xfspview. Xfspview is a program that allows the user
to browse through the output of the fsp program by simply clicking on buttons. The xfsp
program starts up the xfspview program every time that it runs the fsp program. The xfsp
and xfspview programs are what the normal user will be using.

3.2 Support Software For The xfsp Program

The xfsp and xfspview programs were written on top of two di�erent software tools: Tcl/Tk,
that was written by John Ousterhout at the University of California at Berkeley[1], and Expect,

23

24 CHAPTER 3. SETTING UP AND RUNNING THE XFSP PROGRAM

FSP Output

fsp program

xfsp program

xfspview program

FSP Data Set

Figure 3.1: Relationship Between fsp and xfsp Programs.

that was written by Don Libes at the National Institute of Standards and Technology[2]. Tcl/Tk
is a very powerful command language that lets you manipulate graphical objects like windows,
buttons, sliderbars, etc. Expect is also a command language that is built on top of Tcl/Tk that
allows the xfsp script to control the fsp program. In order to run the xfsp program you need
to have Tcl/Tk and Expect on your system.

A list of the software packages that you need to download or already have installed
is given below:

Tcl7.3 This is the \Tool Command Language" that is a simple script writing language for
controlling and extending applications. It is one half of the Tcl/Tk package that is used
to generate the graphical user interface (GUI) that the user will interact with.

Tk3.6 This is a toolkit for the X Window System. This allows you to manipulate various
objects in X to create really nice graphical user interfaces. This is the second half of the
Tcl/Tk package.

Expect 5 This is a program that allows scripts to interact with other programs. This will allow
us to start up a program in the background and then collect it's output to a window. We
will use this feature when the xfsp program starts up the fsp program. It is built on top
of Tcl/Tk and should already be available on most systems in the form of the program
called expectk.

xgraph and gnuplot (version 3.5) Xgraph and gnuplot are two standard pieces of software
on any Unix system. Xgraph comes with the X Window System distribution which is
now the windowing standard on workstations. Gnuplot is a plotting program that comes
with GNU software. These two programs are used by the xfsp and xfspview programs
to generate plots and graphs. The fsp program actually generates �les that can be read

3.3. INSTALLING THE SUPPORT SOFTWARE 25

directly into gnuplot. Since these two pieces of software should be on your system already
this chapter will not discuss installing them.

If you have access to the Internet then you can download these programs via anony-
mous ftp from many di�erent sites around the country. The software packages are also located
on the �le server at UC Berkeley along with the fsp code so that you can download them
easily. An important thing to note about all of these programs is that they are free and they
are probably installed on your system already. If they aren't then there are steps below which
you can follow to download and install these programs.

3.3 Installing The Support Software

Since there are a few di�erent software packages, and the installation procedure can be a
little confusing, the following discussion is provided to assist the user. This section will deal
speci�cally with installing the support software for the xfsp program. Section 3.4 will deal with
installing the xfsp program itself.

The most important thing that you can do at this point is to check and see if Tcl/Tk
and/or Expect are already on your system. Speci�cally what we are looking for is the program
called expectk. This is a version of Expect that was built with the Tcl/Tk support included.
If this program is on your system them you can skip all the way to Section 3.4 and install the
xfsp program. To �nd out if you have the expectk program on your system can type the
following:

pettyk 1: which expectk

/usr/sww/bin/expectk

This tells me that the program expectk is located in /usr/sww/bin/expectk. If you type this
command and it says something else about not being able to �nd the program then you should
talk to your system administrator and see if it's been stored in an odd place.

If you don't have this program installed, then you need to download and install
the programs yourself. An overview of the steps that you need to take to install the support
software are as follows:

1. Download Tcl7.3, compile and install.

2. Download Tk3.6, compile and install.

3. Download Expect 5.16, compile and install.

Installing these packages isn't that hard. They were designed to be used by a whole
variety of people and machine types so they are extremely easy to use. For the most part, you
will only have to type three commands to completely compile and install each packages.

The �nal goal of installing the software packages is a program called expectk. This
is a shell that the xfsp program will call to interpret it's commands.

26 CHAPTER 3. SETTING UP AND RUNNING THE XFSP PROGRAM

3.3.1 Step 1: Creating The Directory Structure

The hardest part is �guring out where to place the packages in your directory structure. If you
are installing the software as a system administrator then you will probably place the packages
in /usr/tools or /usr/local. In that case you can probably �gure out how to set up the
links yourself so I won't tell you how to do this. The case that I will explain is when you aren't
the system administrator. In that case, you will want to create a directory to hold all of the
packages including the fsp package. It is very important that all of the packages reside in the
same directory. The directory that I have chosen for this example is /home/clair1/FSP. Note
that you will need approximately 32 megabytes just to hold the software packages.

You will also need to �gure out where the executable �les and libraries will reside.
Once again, if you are the system administrator then there are a few obvious places for these
�les like /usr/local/{bin,lib}. But if you aren't the system administrator then I would
recommend that you create the appropriate directories to hold these �les in the current directory.
In my case, the correct directory is /home/clair1/FSP. So in this directory I will create four
subdirectories called: bin, lib, include and man with the following mkdir command:

clair 1: pwd

/home/clair1/FSP

clair 2: mkdir bin lib include man

clair 3: ls

bin include lib man

These will be the directories that will hold the executables, libraries and manual pages.

3.3.2 Step 2: Downloading The Software

Table 3.1 gives a list of where you can look to �nd the various software packages. Note that
you can also download the software from the �le server that contains the fsp and xfsp code
which is currently www-path.eecs.berkeley.edu. To download software via anonymous ftp
you only need to ftp to the site and then give your login name as \anonymous." When the
system prompts you for a password simply type in your e-mail address.

Once the software has been downloaded to the desired directory your listing should
look like the following:

clair 4: pwd

/home/clair1/FSP

clair 5: ls

bin fsp.1.1.tar.Z lib tcl7.3.tar.Z

expect.tar.Z include man tk3.6.tar.Z

At this point you should uncompress and untar all of the �les. This is done by using the
following commands:

3.3. INSTALLING THE SUPPORT SOFTWARE 27

Software package Anonymous ftp site Package path and name1

Tcl7.3 ftp.cs.berkeley.edu /ucb/tcl/tcl7.3.tar.Z
ftp.neosoft.com /pub/tcl/distrib/tcl7.3.tar.gz
ftp.uu.net /languages/tcl/tcl7.3.tar.Z
www-path.eecs.berkeley.edu /pub/PATH/FSP/Packages/tcl7.3.tar.Z

Tk3.6 ftp.cs.berkeley.edu /ucb/tcl/tk3.6.tar.Z
ftp.neosoft.com /pub/tcl/distrib/tk3.6.tar.gz
ftp.uu.net /languages/tcl/tk3.6.tar.Z
www-path.eecs.berkeley.edu /pub/PATH/FSP/Packages/tk3.6.tar.Z

Expect 5 ftp.cme.nist.gov /pub/expect/expect.tar.Z
www-path.eecs.berkeley.edu /pub/PATH/FSP/Packages/expect.tar.Z

fsp www-path.eecs.berkeley.edu /pub/PATH/FSP/Packages/fsp.1.1.tar.Z

Study Area Map www-path.eecs.berkeley.edu /pub/PATH/FSP/Packages/freeway.ps

Table 3.1: Anonymous ftp sites for the software packages.

uncompress expect.tar.Z

tar xvf expect.tar

on each software package. After you have untar'ed the packages you can delete the tar �les
themselves because they are just wasting disk space.

3.3.3 Step 3: Installing Tcl 7.3

The steps for installing all of these packages is going to be just about the same:

1. cd into the package directory.

2. Read the documentation �le (README or INSTALL).

3. Follow the instructions.

If you want to skip reading the documentation and just trust what I tell you then it
should save you a lot of time. Everything that I tell you should work just �ne, but if something
goes wrong then you'll have to refer to their notes to correct the problem. The generic steps
that you need to follow to install these, and quite a few other, packages are:

1. Run the con�gure program.

2. Run the make program.

3. Run the make program with the install option.

One nice feature that all of the software packages come with is a program called
con�gure. This program will look at your system and �gure out where all of your �les are
located and it will �gure out what needs to be done to compile programs on your machine. This
simpli�es your job quite a bit. The only thing that you need to tell the con�gure program is
where the executable and library directories (bin and lib) are located as well as the data and
manual directories (include and man). In my directory structure, and hopefully in yours as
well, these are both the same: /home/clair1/FSP. The complete command looks like this:

28 CHAPTER 3. SETTING UP AND RUNNING THE XFSP PROGRAM

./configure --prefix=/home/clair1/FSP --exec_prefix=/home/clair1/FSP

Note that you need to put the ./ before the con�gure program so that you will be sure that
you are running the local version and not the system version. Also note that you have to
be in the Tcl directory to run this and the following commands. This will generate a lot of
uninteresting output that you can just ignore. Once it is done you should attempt to compile
the Tcl package by typing:

make

Finally, if this succeeds then you should install the package by typing:

make install

Once this step has completed you are done installing the Tcl package. If any of these steps
don't succeed then you should examine the output and attempt to �x it yourself. If that fails
then �nd somebody that knows about make �les and ask them.

3.3.4 Step 4: Installing Tk 3.6

The installation for this package should be the same as for the Tcl package. Just cd into the
tk3.6 directory and type the following commands:

./configure --prefix=/home/clair1/FSP --exec_prefix=/home/clair1/FSP

make

make install

These steps should generate a lot of output that you can just ignore. If the installation of the
Tcl 7.3 package came o� without a hitch then this package should be just as easy.

3.3.5 Step 5: Installing Expect 5

The installation for this package should be the same as for the Tcl package. Just cd into the
expect-5.16 directory and type the following commands:

./configure --prefix=/home/clair1/FSP --exec_prefix=/home/clair1/FSP

make

make install

If the installation of the Tcl 7.3 package came o� without a hitch then this package should be
just as easy.

3.4. INSTALLING THE XFSP SOFTWARE 29

3.3.6 Step 6: Finishing Up

Once the software packages have been installed you can delete all of the intermediate �les
that were created by the various installation procedures. This is done by using the following
command in each one of the package directories:

make clean

This will delete all of the �les that you don't need.

In order to use the Tcl/Tk packages you need to set a few environment variables.
These environment variables tell the Tcl/Tk programs where they can �nd the support programs
that they need to run properly.

You will notice that when you installed Extended Tcl that it created two di�erent
directories in your main directory: These directories hold the support programs and �les for the
main Tcl/Tk program wishx. These are the directories that Tcl/Tk programs need to know
about. We can set the appropriate environment variables with the following commands:

setenv TCL_LIBRARY /home/clair1/FSP/lib/tcl

setenv TK_LIBRARY /home/clair1/FSP/lib/tk

You should probably put these two statements in your .cshrc �le so that these environment
variables are set every time that you log on to your system. The Tcl/Tk programs will not run
properly without them.

The last thing that needs to be done is you need to set the permissions on the �les
such that other people can use them. To do this you need to be in the main directory which
on my system is /home/clair1/FSP. You need to run the following commands to open up the
�les for other people to use:

chmod -R ugo+rxX bin

chmod -R ugo+rX lib include man

This will enable di�erent users to be able to execute the programs.

3.4 Installing The xfsp Software

Once you have the software packages installed, installing the xfsp software should be quite
simple. Note that you absolutely have to have the above support packages installed in order
for the xfsp program to work. The steps involved in installing the xfsp software are as follows:

1. Edit the make�le in the main fsp directory and follow the steps outlined there.

2. Assemble the program by typing make xfsp.

3. Install the program by typing make install xfsp.

4. Set up an environment variable and correct your path.

30 CHAPTER 3. SETTING UP AND RUNNING THE XFSP PROGRAM

The make�le in the main fsp directory is appropriately named Make�le. You
should edit this �le and simply read the steps listed. The important step for the xfsp in-
stallation is step 8. In this step you supply a complete path to the executable program ex-

pectk that you just compiled in Section 3.3. In the example above the complete path is
/home/clair1/FSP/bin/expectk. So in the make�le for step 8 you would put the following
line:

EXPECTK_EXE_PATH = /home/clair1/FSP/bin/expectk

The most important thing to note here is that the complete path to the expectk program,
including the program name, has to be less than 32 characters. This is a quirk of Unix that
is completely out of our control. In our example above the total path is 26 characters long
and so we are �ne. If the path is longer than 32 characters then you have to �nd a way to
make it shorter. One way to do this is to create a link from one of the common executable
directories to this �le. The most obvious choices for the common executable directory are /bin
or /usr/local/bin. In order to do this you must have root access.

Let's assume for a minute that the directory that we had placed our executables
into had caused the complete path for the wishx program to have more than 32 characters.
And let's also assume that we made a link from /usr/local/bin/xfsp to our executable �le
in /home/clair1/FSP/bin/xfsp. In that case, we would put the following line in the make�le:

EXPECTK_EXE_PATH = /usr/local/bin/xfsp

Note that this is the location of the link and not the actual �le. Once we have completed the
steps outlined in the make�le we can assemble the program by running the make�le on the xfsp
program:

make xfsp

Note that this should be run in the main fsp directory, not the xfsp src directory. Finally,
we can install the xfsp and xfspview programs in the destination directory by running the
make�le with the install option:

make install_xfsp

This should place the xfsp and xfspview programs in the executable directory.
Now that the xfsp program is in place you need to set an environment variable so

that the program will know where the support �les (help �les, pictures, tables, etc.) are located.
This is done by setting the environment variable XFSP_DIRECTORY to the main fsp directory.
So in our example this would be done like this:

setenv XFSP_DIRECTORY /home/clair1/FSP/fsp.1.1

Just like the environment variables for the Tcl/Tk package, you should probably put this
statement in your .cshrc �le to make sure that it is set every time that you log on to your
system. Finally, you have to set your path to include the xfsp program. If you installed the
xfsp program in the same place that you installed the expectk program, like we did in this
example, then you don't need to do anything else. If you didn't then you need to execute a
statement like:

3.5. RUNNING THE XFSP SOFTWARE 31

set path = ($path /home/clair1/FSP/bin)

Once again, something like this can be placed in your .cshrc �le so that it is set every time
you login.

3.5 Running The xfsp Software

Now that the software has all been installed you can run the xfsp program. You might want
to �rst make sure that the following steps have been completed:

1. The environment variables XFSP_DIRECTORY, TCL_LIBRARY and TK_LIBRARY have all been
set to their proper values.

2. Your path has been set to include the directories that hold the expectk, xfsp, xfspview
and fsp programs.

3. You are currently in a directory that you have write access to. This is needed because
the xfsp will create some �les there.

If all of this has been done then you should be able to run the xfsp program by simply typing:

xfsp

If everything is set up properly then the xfsp control window will pop up onto the screen. It
looks something like Figure 3.2.

Figure 3.2: Main xfsp Window.

There are two distinct part of the xfsp control window. The top part consists of
a menu bar with 5 buttons in it that control the various administrative parts of the program
like �le manipulation, the main help screens, exiting the program, etc. The large window right
below the menu bar is the data
ow window. Each of the buttons in the data
ow window has

32 CHAPTER 3. SETTING UP AND RUNNING THE XFSP PROGRAM

various options \underneath" it. If you click on one of the buttons then a window will pop up
with the options speci�c to that button's function. For example, there is a button called \Fix
Loop Data." If you click on that button then the window that holds the options that deal with
�xing the loop data will pop up. Once you are done setting those options then you can pop
that window down and play with some di�erent options. For every button and every option
there is either a help screen or an explanation button. You should probably just spend some
time reading the explanations given for various options. The sections that follow will point out
some of the details about that xfsp program that you should de�nitely be aware of.

3.5.1 The Layout Of The xfsp Window

In the xfsp data
ow window there are three rows of buttons. These rows, from top to bottom,
correspond to the various data sources that we have: the loop data, the probe vehicle data, and
the incident database. The basic
ow for each of the rows is the same:

� The buttons on the far left side of the data
ow window allow you select the data that
you would like to process.

� The buttons in the second column from the left allow you to apply various �xes to the
data. For example, under the loop data �x button you can choose whether or not to �ll
in the holes in the loop data.

� The buttons in the middle column allow you to choose what kind of processing you would
like to do on the various sets of data.

� In the fourth column you can choose to do various integrity tests on the loop data and/or
indicate whether the program should attempt to correlate the incident database with the
probe vehicle data.

� Finally, the last column of buttons deal with calculating the delay for each incident.

The layout of the data
ow window was chosen to re
ect the actual
ow of data
inside the fsp program. The arrows indicate the how the data
ows (which is mostly from left
to right). The hope is that this would help the user understand the function of each of the
options.

3.5.2 Using The Fileselector

There are few times within the xfsp program that you will need to tell the program what �le
you are referring to. For example, you might want to use a setup �le (Described in Section 3.5.3)
to load some options. Or you might want to save the current run�le and incident �lter without
running the fsp program. In all cases, �le selection is done though a piece of code called a �le
selector. The �le selector window is shown in Figure 3.3.

The �le selector reads in the contents of the current directory and displays them
in the large window. The user is then allowed to select a �le by either typing in a �le name
and then clicking on \OK" or by clicking twice really fast on one of the �les in the list. Either
way, the selected �le is the passed back to the application which then uses it. You can traverse
directories by either selecting \.." in the �le list window or by typing a directory name in the

3.5. RUNNING THE XFSP SOFTWARE 33

Figure 3.3: The xfsp File Selector Window.

entry window and hitting return. If you decide that you don't want to continue with whatever
option brought up the �leselector window then you can simply click on the \Cancel" button to
cancel everything.

3.5.3 Using Setup Files

The �rst thing that you will notice about the xfsp program is that there are quite a few
options (approximately 120). The �rst thing that I noticed about using the program is that
it's a complete pain to have to respecify all of the options that you desire every time that you
start up the program (the program starts up with the parameters set to their default settings).
Therefore, to easy this burden, the xfsp program can create and reload special �les called setup
�les. A setup �le is simply a �le that the xfsp program creates that holds the current settings
of all of the various options. So if you are doing a particular type of analysis and you have the
parameters set a certain way then you might want to save these settings in a setup �le so that
you can run the program later and not have to respecify everything.

I would suggest that you utilize the setup �les because they save quite a bit of time.
What I do is I have one setup �le for the before study data set and one for the after. Saving
and loading the setup �les can be done through the button names \Files" in the menu bar at
the top of the control window.

3.5.4 Running The fsp Program

Once you have set up the options the way that you like you can have the xfsp program run the
fsp program. This is done by choosing \Run" in the menu bar at the top of the xfsp control
window. This will pop up a run window that looks like Figure 3.4 with a few options in it.
Once you have set these then you can choose \Run" in the run window and the program will

34 CHAPTER 3. SETTING UP AND RUNNING THE XFSP PROGRAM

Figure 3.4: The xfsp Run Window.

start. When this happens the run window will pop down and an output window will pop up.
An example of an output window is given in Figure 3.5.

The output window will collect the output from the fsp program and display it in
the text area. At the bottom of the output window are a few buttons that allow you to save the
output to a �le or print it to a printer. The �le that you can save to is called fsp.out.X and
it is placed in the current directory (the \X" in the �lename is the run number). The printer
that you can print to is determined by the printer option in the xfsp program. These buttons
should only be used once the fsp program has �nished. You will know that the fsp program
has �nished processing normally because it spits out the following line:

****** END OF PROGRAM ******

If the program does not �nish successfully but encounters some sort of error, then it will say
something bad and not spit out this line. When the fsp program gets done running (whether
it �nished successfully or not) the xfspview program will pop up (Section 3.5.5).

You should note that if you are doing any processing on the loop data or the car
data that this might take a long time. In cases like this the xfsp program is not really very
useful as an interactive tool. What you might want to do, instead of starting the fsp program
from inside the xfsp program, is to save the run�le and incident �lter that you have made
and to then run the fsp program from the command line and put it in the background. You
could even redirect the output to a �le for later viewing. This would work really well when the
program is expected to take 4 or 5 hours (which can happen).

3.5.5 Using The xfspview Program

The xfspview program is a graphical user interface to the data that the fsp program generates.
The xfspview program can be viewed as a sister program to the xfsp program: the xfspview

3.5. RUNNING THE XFSP SOFTWARE 35

Figure 3.5: The xfsp Output Window.

program gives the user an easy way to view the output �les that the fsp program has generated.
The xfspview window is given in Figure 3.6.

Figure 3.6: The xfspview Window.

The xfspview program is run in one of two ways:

� It can be run in stand alone mode where the user starts the xfspview program up from
the command line. When the program is run this way the user needs to supply as the
one argument the main output directory. This is done by simply typing the program
name on the command line followed by the name of the output directory. Something like:
xfspview /home/data/Out5min.

� It can be started up automatically by the xfsp program. After the xfsp program has run
the fsp program it will start up the xfspview program if the user so requests. Whether
this is done or not is set by a button in the \Run Window." The last panel of the \Run
Window" allows the user to choose whether to run the xfspview program after the fsp
program is done.

The xfspview has three main sections of buttons that are stacked vertically. The
top section is a row of buttons labeled \Quit," \Delete Graphs," and \Help." These button

36 CHAPTER 3. SETTING UP AND RUNNING THE XFSP PROGRAM

do fairly obvious tasks. The only potentially confusing button is the \Delete Graphs" button
and we will talk about that a little bit later. The middle section of buttons has a title above it
that says \Directories" and the bottom section of buttons has a title above it that says \Files."
What the xfspview program does is it starts o� in a directory and it reads all of the entries
in the directory table. If an entry corresponds to a directory then a button is created with
that directory name as it's label and it is placed in the middle section. If an entry is a �le
then a button is created for that �le and it is placed in the bottom row. If the program starts
out with a main output directory being passed to it (actually, it better start out with a main
output directory or it will not work) then the middle section of buttons should read \Cardata,"
\Loopdata," and \Incidents." These are the main directories that the fsp program makes under
the main output directory.

When you click on one of the buttons in the middle section (one of the buttons
corresponding to a directory) then the program will change down into that directory and then
reread all of the �les. So if you were to choose \Loopdata" then the program will change into the
loop data directory and it will read the directory table and create new buttons corresponding
to the directories and the �les. Note that whenever you are in a directory below the main
directory that there will always be a button labeled <Up> that will take you to the directory
directly above.

Whenever you click on one of the �le buttons the program will either display the text
�le on the screen, generate a graph using the program xgraph, or it will generate a graph using
the gnuplot program. The choice the program makes depends on what type of �le you have
selected. A more detailed description is given in the help windows of the xfspview program.

Chapter 4

The Data

This chapter will explain the format of the data that we get from the cars and from the loop
detectors. It will also discuss the format of the incident database. The directory structure that
the fsp program expects the data to be in is discussed in Chapter 6. The �rst section of this
chapter will discuss how to download the data and where to place it.

4.1 The Study

In order to estimate the delay savings attributable to the FSP, data was collected over two time
periods: once when the FSP was not in operation (the \before" period) and once when the FSP
was in operation (the \after" period). The before study took place from February 16 through
March 19, 1993 with the after study taking place from September 27 through October 29, 1993.
All of the data was collected on a section of the I-880 freeway in Hayward, California as shown
in Figure 4.1. The study section was 9.2 miles long and varied from 3 to 5 lanes. An HOV lane
covered approximately 3.5 miles of the study section. There were several sections that lacked
right-hand shoulders and/or left-hand shoulders. Call boxes were installed at approximately
1/4 mile intervals but that data was not used for the evaluation project. Probe vehicle data was
collected on the weekdays during the peak periods (6:30 - 9:30 am and 3:30 - 6:30 pm). And
loop detector data was collected from 5:00 - 10:00 am and then again from 2:00 - 8:00 pm. For
each study period we collected three di�erent types of data: loop detector data, probe vehicle
data and an incident characteristics database.

4.2 Downloading The Data

The data that was collected during the Freeway Service Patrol Evaluation Project is available via
anonymous ftp from the machine www-path.eecs.berkeley.edu at UC Berkeley. Anonymous
ftp is a way of downloading �les via the Internet without having to use passwords. To connect
to the machine that holds the data at UC Berkeley using anonymous ftp you simply type the
command:

ftp www-path.eecs.berkeley.edu

37

38 CHAPTER 4. THE DATA

To San Jose

264

293

312

329

342

447

497

266

280

359

388

398

431

Industrial

Tennyson

SR 92

Jackson/SR 92

Winton

Whipple

5

15

17

4

12

13

19

18

6

11

2

Loop detector

HOV lane
1 unit = 100 feet
(e.g. 142 = 14200 from Marina)

Shoulders present
No shoulders

Legend:

To Oakland

9

0

21

106

140

177

194

211

228

160

156

128

134

243
250

Hesperian

Lewelling

Marina

Washington/SR238

A-Street # 10

20

7

1

3

16

8

Figure 4.1: The FSP Study Section.

4.2. DOWNLOADING THE DATA 39

When the machine prompts you for a login ID you simply type in \anonymous."
This will tell the machine that you want to log in as a guest. When you are prompted for your
password you type in your email address like: pettyk@eecs.berkeley.edu.

Once you have connected to www-path you will be able to browse through the entire
directory structure. One thing that you should always do when browsing through an anonymous
ftp site is to download any �les named README or README.DOC because they usually have helpful
information in them. After you log in, to get down to the FSP directory you need to change
into the pub directory and then into the FSP directory. Once inside the FSP directory you'll
see that there are three main directories named Packages, Data, and Results. The Packages
directory holds the support packages for the xfsp programs, the Data directory holds the data
(imagine that), and the Results directory holds the results of the project. The discussion here
will focus on downloading the data. There are various README �les scattered throughout the
directory structure that can help you download the results and the software packages.

Under the Data directory is a sub-directory named Raw that holds the raw data, and
a sub-directory named Processed which holds the processed data. Figure 4.2 gives a represen-
tation of what the directory structure looks like for the branch FSP/Data/Raw/Set2/Loop. As
you can see, the directory names are pretty straight forward.

Set 2Set 1 Set 2Set 1

Car Loop Inc

Data

ProcessedRaw

ResultsPackages

lp101393.tar.Z

FSP

Figure 4.2: FTP Directory Structure On www-path.

If you want to run the fsp program on the data then you probably want to download
the raw data and then use the fsp program to process it. In that you case you want to place
the data that you download in the input directory structure that is de�ned in Chapter 6. The
data goes in the obvious places: the car data goes in the directory labeled \Cardata," the
loop data goes in the directory labeled \Loopdata," etc. If you aren't interested in using the
fsp program to process the data and you only want to use the data with your own programs
then you probably want to download the processed data. The processed data holds, along with
the car data and incident database, the loop data in 5 and 1 minutes averages. Most of the
processing that has taken place in di�erent groups has been done on the 1 minute loop data

40 CHAPTER 4. THE DATA

and the incident database.

4.2.1 Downloading Via The World Wide Web

One thing to point out is that you can also download the data through the World Wide Web
using the program netscape or mosaic1 if you have access to a workstation running X, or by
using the program lynx if you only have a character based terminal. Netscape is a program
that allows people to do quite a few things, like browse documents, look at art galleries, listen
to music �les, and even get current weather maps. What we will use it for is a user friendly
interface to download the data. In order for netscape to work, it needs to know the location
of the document that you want to look through. This is done by specifying something called a
uniform resource locator, or URL for short. The URL for the FSP project is:

http://www-path.eecs.berkeley.edu/FSP/

So to connect to this via netscape or lynx you would type:

netscape http://www-path.eecs.berkeley.edu/FSP

or

lynx http://www-path.eecs.berkeley.edu/FSP

Once you have connect to the FSP document via netscape you will be able to download all
of the results, the software programs, and whatever combination of the data you would like.
I would strongly recommend using this to download the data because it is so user friendly
(besides, you'll be sur�ng the Internet if you do!).

4.2.2 Size of the Data

A word of caution before you start downloading the data: they take up a lot of disk space.
Table 4.1 gives the size of each data set in megabytes. Note that if you were to download the
entire data set that you would need approximately 2 gigabytes to hold the set uncompressed.
To generate any output involving the loop data you will need approximately 400 megabytes
more.

Set 1 Set 2
Data Type compressed uncompressed compressed uncompressed

Loop data 382 760 412 817
each day 16 33 16 33

Car data 35 126 31 107

Incident data 0.04 0.2 0.03 0.2

Table 4.1: Size of data sets (in megabyes).

In light of this I would recommend that you download only a portion of the data
set and work with that. On the other hand, you can download the processed data, instead of
the raw data, and work with that.

1On some systems the programmosaic is called xmosaic orMosaic. Check with your system administrator

if you can't �nd it.

4.3. THE CAR DATA 41

4.3 The Car Data

During the course of the experiment there were four or �ve probe vehicles that were driven
around the study section for approximately 2 1=2 hours in the morning and 2 1=2 hours in the
evening. These vehicles were equipped with computers that recorded the car's movement and
the driver's key presses and then saved these to various �les on a PC
oppy disk. We get a
total of four �les from each car for each run. They are currently named: key.dat, fsp.dat,
nav.dat, and gsp.dat. Below is a short sample of each type of �le and a description of what
it is:

key.dat This is a �le that saves the keys that the drivers type in.

SAMPLE:

6:54:15 3- 8-93

0: 0: 2.618 1 14

0: 0: 5.493 1 7311

0: 0:21.549 1 03/07/93

0: 0:44.645 76 06:55:00

0: 0:56.244 76 qwe

0:18:16.297 65278 d

0:21:27.264 81942 k

0:26:42.116 106153 d

0:32:53.528 112000 d

0:36:32.899 132595 l

0:39:13.795 147085 l

0:40:29.114 153335 d

0:41:30.855 158933 k

0:42:13.116 162578 k

0:44: 3.463 168739 qwe

The drivers type a sequence of keys each time they start a loop. During the before study
this sequence was qwe. Each time they pass an incident and each time they pass a gore
point they type in a single key. The �le starts o� with a date and time stamp on the �rst
line. This is put there by the computer when it is turned on. The next four lines are just
start up information that the user types in. The �rst main column is the time since the
start of the �le, the second is the odometer reading of the car in wheel rotations, and the
third is the text that the driver has typed in. There is one line in this �le for every line
the driver types in. A more detailed explanation of the �rst few lines follows:

0: 0: 2.618 1 14 <- Driver ID number

0: 0: 5.493 1 7311 <- Car ID number

0: 0:21.549 1 03/07/93 <- Date

0: 0:44.645 76 06:55:00 <- Time

0: 0:56.244 76 qwe <- Sequence to indicate start of loop

42 CHAPTER 4. THE DATA

0:18:16.297 65278 d <- Key to indicate gore point

0:21:27.264 81942 k <- Key to indicate an incident

In the middle of the experiment it turned out that we needed to have more information
from the cars. We wanted a way to get the travel times for the section of freeway that
the cars were driving over that was already operating under the Freeway Service Patrol.
In order to do this we had to tell the drivers to be more speci�c when they typed in keys
for the �le key.dat. This means that we had to tell them to type in di�erent keys at
di�erent points. These changes can be summarized in Figures 4.3 and 4.4. I will refer to
the data taken during the �rst part of the experiment as the �rst set and the data taken
during the second part of the experiment as the second set.

N

Loop start

Gore points

Incidents

Figure 4.3: Basic Keys Pressed During First Set.

In the �rst set of data the drivers had to type in something to record three di�erent things
happening:

1. Every time they started another loop (or run).

2. Every time they passed one of four gore points.

3. Every time they passed an incident.

To accomplish this they typed in the corresponding keys:

1. Each loop: qwe or QWE.

2. Each gore point: a single key from the left half of the keyboard.

3. Each incident: a single key from the right half of the keyboard.

4.3. THE CAR DATA 43

N

Loop start

Gore points

Incidents

Southbound
start and end

Northbound
start and end

Figure 4.4: Basic Keys Pressed During Second Set.

These keys are labeled in Figure 4.3. In that �gure, the boomerang shaped loop is a
representation of the freeway. The three di�erent keys that the drivers had to type in
are indicated by the three di�erent symbols. We thought that this was going to be a
su�ciently rich labeling to capture all of the data that we wanted. It turns out that we
needed to have more detail, so for the second set of data, the after study, we had the
drivers type in a di�erent set of keys. They typed in a key:

1. Every time they ended another loop (or run).

2. At the start and end of every southbound run.

3. At the start and end of every northbound run.

4. Every time they passed one of four gore points.

5. Every time they passed an incident.

To accomplish this they typed in the corresponding keys:

1. Each loop: the key \q"

2. Southbound run: \c"

3. Southbound run: \t"

4. Each gore point: \n"

5. Each incident: \o"

These keys are labeled in Figure 4.4. Since this is a large number of keys for the drivers
to remember to press when they are driving on the freeway, we modi�ed the keyboards
to make their task easier. We had hard plastic covers made that �t over the keyboards.

44 CHAPTER 4. THE DATA

In these plastic covers we cut holes where the desired keys were and placed giant buttons
that were clearly labeled on these keys.

You might ask yourself at this point, why am I bringing this up at all? It turns out
that in order to take advantage of this added detail, we have to process the car data �les
di�erently. In order for the program to be able to do this it has to know what type of
data it is dealing with. What this means is that there has to be a way to tell the program
whether it is dealing with the �rst type of data or the second. The way that this is done
is through the run�le parameter CAR_DATA_SET_NUM. This parameter should be set to a
1 if the �rst data set is to be used and to a 2 if the second data set is to be used.

fsp.dat This �le is saved automatically by the INRAD equipment in the car each time that it
drives over an INRAD beacon.

SAMPLE:

6:54:15 3- 8-93

0:19:19.557 70913 CS4NE

0:19:19.582 70915 CS4NE

0:19:19.608 70918 CS4NE

0:25:37.642 103309 CS2SE

0:25:37.663 103310 CS2SE

0:25:37.685 103311 CS2SE

The �rst line is the date stamp (that shows up in all the �les). All of the other lines are
times when the car picked up an INRAD beacon. The �rst column is the time since the
start of the �le, the second column is the odometer reading of the car in wheel revolutions,
and the third column is a string to indicate which INRAD signal was picked up. There
are a total of three di�erent INRAD points: two on the southbound run and one on the
northbound run.

nav.dat This is the data from the digital compass in the car.

SAMPLE:

6:54:15 3- 8-93

0, 2565, 2640, 2356

1, 2565, 2640, 2356

1, 2563, 2641, 2354

1, 2575, 2639, 2355

1, 2575, 2639, 2355

1, 2575, 2639, 2355

The nav.dat �le is a binary �le when it is stored on disk. We convert this to it's ascii
equivalent which is what is shown above. Once again, the �rst line is the date stamp.
The rest of the rows are stored for each second. The �rst column is the odometer reading
in wheel revolutions, the second and third column is the digital compass reading, and the

4.4. THE LOOP DATA 45

fourth column is the angular rate sensor. Although you could calculate the position using
the digital compass or the angular rate sensor, we found that the angular rate sensor
wasn't very accurate. Therefore we get our position plots from the digital compass.

gps.dat The gps.dat �le is the data from the GPS equipment in the car.

SAMPLE:

6:54:15 3- 8-93

$GPGGA,025602,3747.75,N,12216.00,W,0,3,000,041,M,-028,M*6E

$GPGGA,025602,3747.75,N,12216.00,W,0,3,000,041,M,-028,M*6E

$GPGGA,025602,3747.75,N,12216.00,W,0,3,000,041,M,-028,M*6E

$GPGGA,025602,3747.75,N,12216.00,W,0,3,000,041,M,-028,M*6E

$GPGGA,025602,3747.75,N,12216.00,W,0,3,000,041,M,-028,M*6E

It is stored one line per second, just like the nav.dat �le. The �rst line is the date stamp.
The following lines are a bunch of stu� that the GPS equipment stores that we don't
really use. Only the third and �fth columns are of use to us. They contain the latitude
and longitude of the car which we use to plot the trajectory.

4.4 The Loop Data

The loop data is pretty straight forward in that there is only one �le per cabinet per day and it
isn't even in ascii text so we can't read it. The loop data consists of the output from di�erent
loop detectors. A loop detector is just an inductive loop that is buried under the freeway that
picks up the presence of a vehicle traveling over it. On the main line lanes the detectors are
placed in pairs, but on the on and o� ramps they are single detectors. From this data the
program calculates the number of cars that pass over the detectors their average speed and the
average occupancy per period. Figure 4.5 should help explain the calculations.

The �gure on the left side of Figure 4.5 is a graphical representation of one lane of
a freeway. As you can see there is an upstream and a downstream detector and the distance
between them, �, is a known quantity. The graphs on the right side of Figure 4.5 are hypo-
thetical graphs of the signals that come from the upstream and downstream detectors when
a single car passes over both of them. The program �nds the di�erence in time between the
falling edges of the two pulses, what is labeled � in Figure 4.5, and then uses this to calculate
the speed. The program calculates the values of speed, occupancy and counts, once per output
period. The concept of output period is described in more detail in Chapter 7 but for now it
will su�ce to call it the frequency at which data is reported to the user. The calculation of
speed per output period is as follows:

�� =
1

n

nX
i=1

�i

�� =
�

��

46 CHAPTER 4. THE DATA

Upstream Downstream

∆
U

ps
tr

ea
m

si
gn

al
D

ow
ns

tr
ea

m
si

gn
al

Time

τ

Figure 4.5: Basic Calculation of Car Speeds.

Where n is the number of cars that went over the detectors during that time period, �i is the
di�erence in time between the falling edge of the upstream detector and the falling edge of the
downstream detector for each car, �� is the average time between falling edges, and �� is the �nal
average velocity. Note that this is the same as the formula:

1

��
=

1

n

nX
i=1

1

�i

Where �i is the speed for each car that went over the detector during the given time
period. This is sometimes referred to as the harmonic mean speed. Note that this speed is
generated for every lane of the highway and it is not the average speed that we will refer to later
on. For a more complete discussion of the speeds used in the delay calculation see Section 11.1.

The occupancy is the percentage of time that the detector has a vehicle on it and
the on time is the average time that each vehicle spends on the detector. When the loop data
is read in all of these values are calculated. If the user chooses to generate a text �le of this
data, as explained in Chapter 7, then they will get a �le corresponding to the calculated values
of counts, occupancy, speeds and on times. What I will explain below is the translation of a bit
of loop data into ascii text. This is a sample of the text �le from a loop for one output period:

This is the data from the file:

/home/clair0/PATH/FSP/Set1/Loopdata/lp021793/loop1.txt

5:01:00 HACIENDA

1 2 3 4 5 6 7

PPS 0.51 0.76 2.29 1.27 0.76 0.25

4.4. THE LOOP DATA 47

OCC 0.56 1.47 3.56 1.64 0.85 0.25

ON 166.67 288.89 233.33 193.33 166.67 150.00

PPS 0.51 2.54 2.29 1.27 0.76 0.25

OCC 0.56 2.88 3.64 1.64 1.19 0.28

ON 166.67 170.00 238.89 193.33 233.33 166.67

SPD 71.15 9.30 61.88 63.92 55.79 74.38

8 9 10 11 12 13 14

PPS 2.54 3.05 4.07 1.53

OCC 3.25 4.52 8.59 2.91

ON 191.67 222.22 316.67 286.11

PPS 2.54 3.05 4.07 1.53

OCC 3.11 4.15 8.50 2.85

ON 183.33 204.17 313.54 280.56

SPD 67.06 63.75 66.70 63.75

The above text is an example of one output record for an entire cabinet. This data
is for March 17th, 1993 from cabinet #1, at 5:01:00am. Each cabinet can hold a total of 28 loop
detectors but most of the time there aren't that many detectors at one site so they hold less.
A record like the one above is generated once for every output period. Each record contains 28
slots of data in 2 rows of 14. Each slot contains 2 inductive measurement loops: an upstream
and a downstream. You will notice that there are two main rows and in each one of these rows, 2
sub rows. The �rst sub row is the upstream detector and the second sub row is the downstream
detector. I have cut out a section of the above report and put it below with explanations to
the right side.

1 2 3 <- Detector number

PPS 0.51 0.76 2.29 <- Upstream PPS value

OCC 0.56 1.47 3.56 <- Upstream OCC value

ON 166.67 288.89 233.33 <- Upstream ON time value

PPS 0.51 2.54 2.29 <- Downstream PPS value

OCC 0.56 2.88 3.64 <- Downstream OCC value

ON 166.67 170.00 238.89 <- Downstream ON time value

SPD 71.15 9.30 61.88 <- Speed value

The mapping from the detector numbers to the actual lanes is done by the loop
wiring diagram �les discussed in Chapter 6. If there is a whole column of values missing then
that means that there just isn't any data for that detector slot. The empty columns are just
extra.

48 CHAPTER 4. THE DATA

In some columns there might be data for just the upstream or just the downstream
detector. This usually happens when that detector slot holds the output from one of the on
or o� ramps. If the output from two on or o� ramps are placed in the same detector slot -
meaning one was placed in the upstream position and one in the downstream position - then
there won't be a speed value calculated for this slot. This is because the two detectors might
not even be next to each other on the road, and therefore it doesn't make any sense to calculate
a speed value.

There is one thing about the way the loop data is processed that I should point
out before going on. There used to be two di�erent ways to process the loop data. The �rst
way was called the long data set. This simply meant that we were referring to the whole time
period over which the loop data was collected. The second way was called the short data set.
This referred to a more speci�c range of time that the loop data was collected. The original
intention was that you would want to have a coarse look at all of the data and then a very �ne,
detailed look at a smaller section. But we decided that the long data set was not very useful.
All of the analysis was being done on the short data set instead of the long data set. Therefore,
the fsp program no longer has two di�erent ways of processing the data - there is only one.

4.5 The Incident Data

The incident data is one database �le with approximately 80 columns of information per inci-
dent. The database was collected during the experiment by the drivers of the probe vehicles.
When they were driving around the freeway and they passed an incident they would radio it
in to the command center (a person sitting at Denny's). Their report would go something like,
\There's a stalled green passenger car, southbound, about 1/2 mile before 92. They are getting
assistance from the FSP guy now. There is also a CHP on the scene." All of this would be
written down by someone at the command center on a standard form. This form was then
coded into a database with numerical entries in each column so that a computer could process
it later. The database format was devised by Hisham Noeimi and Dan Rydzewski. A complete
listing of the columns in the database is given below:

4.5. THE INCIDENT DATA 49

Column Name Description and Options
A Type: Data type

F = Field data
C = CHP data
T = Tow truck data

B Incident: Incident number
C Date: Date incident occurred
D Shift: Shift during incident

0 = AM shift
1 = PM shift

E Time: Time listed in military time
F Direction: Direction of incident

0 = Northbound
1 = Southbound

G Beginning: Incident present at beginning of shift
0 = No
1 = Yes

H End: Incident present at end of shift
0 = No
1 = Yes

I Link Identity: Link identity according to between exits
1 = Marina - Washington/238 intersection
2 = Washington/238 intersection - Lewelling/Hisperian
3 = Lewelling/Hisperian - A-Street
4 = A-Street - Winton
5 = Winton - Jackson/92/San Mateo Bridge
6 = Jackson/92/San Mateo Bridge - Tennyson
7 = Tennyson - Industrial
8 = Industrial - Whipple

J Location: Location listed according to following
1 = Marina
2 = Washington/238 intersection
3 = Lewelling/Hisperian
4 = A-Street
5 = Winton
6 = Jackson/92/San Mateo Bridge
7 = Tennyson
8 = Industrial
9 = Whipple

K Relative: Relative location
0 = At exit
1 = Before
2 = After

50 CHAPTER 4. THE DATA

Column Name Description and Options
L Exit Distance: Distance of incident from speci�c exit

1 = Right at over/under-pass
2 = < 1/4 mile
3 = 1=4 mile
4 = 1=2 mile
5 = 3=4 mile
6 = 1 mile
7 = > 1 mile

M Primary Lane: Which lane was the primary lane
1 = Lane 1
2 = Lane 2
3 = Lane 3
4 = Lane 4
5 = Lane 5
7 = Right shoulder
8 = Center divide

N 2nd Lane: Which was the 2nd lane involved
1 = Lane 1
2 = Lane 2
3 = Lane 3
4 = Lane 4
5 = Lane 5
7 = Right shoulder
8 = Center divide

O 3rd Lane: Which was the 3rd lane involved
1 = Lane 1
2 = Lane 2
3 = Lane 3
4 = Lane 4
5 = Lane 5
7 = Right shoulder
8 = Center divide

P Incident Type: Type of incident
0 = Vehicle
1 = Debris/Pedestrian
2 = Sweeping/Clearing Debris

Q Type 1: Is this a breakdown
0 = Not this type
1 = Flat tire
2 = Gas
3 = Mechanical
5 = Can't tell/Using call box

4.5. THE INCIDENT DATA 51

Column Name Description and Options
R Type 2: Is this an accident

0 = Not this type
1 = single car incident
2 = multiple car incident

S Type 3: Is this a CHP event
0 = Not this type
3 = CHP is incident
4 = Ticketing

T Begin/End: When did the incident start and end
0 = Started and ended during the shift
1 = Everything else

U Num Vehicles: The number of vehicles involved
V-X Vehicle Type: Type of 1st, 2nd and 3rd vehicles

0 = No vehicle involved
1 = Standard car
2 = Pickup truck
3 = Van
4 = Station wagon
5 = Motorcycle
6 = Vehicle with trailer
7 = Dump truck/Commercial truck
8 = 18-Wheeler tractor trailer
9 = Caltrans construction vehicle
10 = Other
11 = Tow truck
12 = 4x4 vehicle

Y-AA Vehicle Color: Color of 1st, 2nd and 3rd vehicle
0 = Not a vehicle
1 = Black
2 = Blue
3 = Brown
4 = Gold
5 = Green
6 = Grey
7 = Orange
8 = Red
9 = White
10 = Yellow
11 = Beige
12 = Black and white (CHP)

AB Ticketed For Tow: Vehicle ticketed for tow to storage by CHP
0 = No, not witnessed
1 = Yes

52 CHAPTER 4. THE DATA

Column Name Description and Options
AC CHP: Arrival of CHP at scene

0 = CHP does not arrive during shift at incident
1 = CHP present at beginning of witness
2 = CHP arrives during shift at scene

AD Entries In Log: Number of times incident is entered in time log
AE-BE Time Entries: Individual time entries in log
BF No Tow: Tow truck did something funny

0 = Doesn't apply
1 = Tow truck left without assisting
2 = Clearance time not known

BG Main Clear: Time that main was cleared
BH FSP Arrival: Arrival of FSP at scene

0 = No FSP
1 = FSP present at �rst witness
2 = FSP present during incident
3 = FSP is incident
4 = FSP present but another tow truck towed

BI CHP Arrival: Time that the CHP arrived at scene
BJ Tow Truck Arrival: Time that the Tow Truck arrived at scene
BK Ambulance Arrival: Time that the Ambulance arrived at scene
BL Fire Arrival: Time that the �re department arrived at scene
BM CHP Departure: Time that the CHP departs the scene
BN Tow Truck Departure: Time that the Tow Truck departs the scene
BO Ambulance Departure: Time that the Ambulance departs the scene
BP Fire Departure: Time that the �re department departs the scene
BQ Comments: Were there comments written in the log

0 = No comments
1 = Comments written in �eld log

BR O�cial: Number of o�cial vehicles at incident
BS Non-O�cial: Number of non-o�cial vehicles at incident
BT Tow Truck Response: Time that the Tow Truck responds
BU Tow Truck Clearance: Time that the Tow Truck cleared incident

BV-CW Headway: The headway times
CX Incident Duration: The duration of the incident
CY Weather: The weather during the incident

0 = Clear
1 = Partly cloudy
2 = Cloudy
3 = Light rain
4 = Rainy

For the �elds that have a time value if there is no time value or the time value is not
available then the database entry is simply a *". The database is stored on the workstations
as a tab delimited set of lines. This means that there is one line per incident and the �elds are

4.5. THE INCIDENT DATA 53

separated by tabs.
These are all of the data �les that we collect. We get 8 car disks and 19 or 20 loop

disks per day and one incident database for the whole study period.

54 CHAPTER 4. THE DATA

Chapter 5

Problems With The Data

There are quite a few things that turned out to be wrong with the data. In most of the cases
we attempted to �x these problems by programming the fsp program to take care of them.
In other cases there is nothing that we could do about the problems and so we just left them.
This chapter will explain the problems that we found and what the fsp program does to �x
them. Note that this chapter does not have a canonical list of which speci�c piece of data
was wrong where. That information can be found in one of the other publications of the FSP
project. All of the run�le parameters that are referred to in this chapter are explained in detail
in Chapters 7, 10, and 11.

5.1 The Car Data

There were usually 3 or 4 probe vehicles that were driving around the test section of the
freeway during the study period. When the drivers would pass an incident they would press a
key on their keyboard to record their position and they would radio in their position and the
characteristics of the incident to the base station. Most of the problems with the car data arose
during these transactions.

5.1.1 Key Presses

Recall that the drivers were supposed to press a certain set of keys when they were driving
around the freeway. The keys that the drivers were supposed to press for the after study are
given in Figure 5.1.

So a typical sequence of key presses that the program could expecting to see is some-
thing like: loop start, southbound start, gore point, gore point, southbound end, northbound
start, gore point, gore point, northbound end, etc. Well, quite a bit of the time the drivers
either forgot to press the keys or they pressed the wrong key. This causes a few problems:

� It is harder to match up the incident database with the car key presses. This makes it
hard to �gure out the precise location of the incident. See the discussion in Section 5.3.1.

� If the drivers don't radio in that they see an incident then it could possibly mess up the
incident duration. If they were the �rst or the last driver to pass an incident and they
don't report it then the duration of the incident will be too short.

55

56 CHAPTER 5. PROBLEMS WITH THE DATA

N

Loop start

Gore points

Incidents

Southbound
start and end

Northbound
start and end

Figure 5.1: Basic Keys Pressed During Second Set.

� In one routine, the program attempts to calculate the travel time for the southbound run
and for the northbound run based on the start and end keys. If the drivers don't press
these keys properly (in the right order and at the right time) then we can't get accurate
travel times.

Although we don't do much to �x the key presses, the program will attempt to weed
out simple things. For example, if the driver typed in 1) southbound start, 2) northbound end,
3) southbound end, then the program won't calculate any travel times. What it will still do,
no matter what, is parse the car data on the southbound start key. If the driver repeatedly
pressed the southbound start key in the middle of a run the program will assume that every
key press signi�ed the start of a southbound run. As it turns out, we don't really need to do
that much with the key presses for the rest of the analysis to go smoothly.

5.1.2 Car Placement

If the key presses were entered correctly then it's not that hard of a job to �gure out where the
cars are at any speci�c time. But you will notice that in the fsp program we don't use the car
data that much. The reason for this is two fold:

� It was really hard to trust what the drivers typed in. So we couldn't place that much
stock in the location of the car at any particular time.

� Getting anything from the car data is just plain hard. If there was ever a way to get any
data we needed from the loop data we did.

There was one thing that we did use the car data for, though. That was to re�ne
the placement of each key press in the key.dat �le. The reason that this had to be done is

5.1. THE CAR DATA 57

because when the incident key was pressed the distance that was stored in the key.dat �le was
the distance since the computer had been turned on. Since the driver may have driven around
the block a couple of times before they started their run down the freeway we need to �gure
out exactly where on the freeway the incident key was pressed. We do this by looking at the
other keys that the drivers pressed and at the INRAD data. The procedure that we go through
is listed out below:

1. If the INRAD data is available then measure the distance from the last INRAD point to
the key press. Since we know where the INRAD points are we can then get the location
of the key press.

2. If the INRAD points are not available then look for the other key presses. If you have
both a gore point key and a direction starting key then �gure out the location of the key
press from both of these and average them.

3. If you only have the gore points then just use them.

4. If you only have the direction starting keys then just use them.

Note that this is not the same thing as trying to match up the key presses with the
incident database - this is more of a precursor to that routine. We are simply trying to give
our best estimate of where the key presses took place based solely on the car data. Trying to
match the key presses up with the incident data is another can of worms and is discussed in
Section 5.3.1.

5.1.3 Just Plain Bad

Car 2 was consistently bad. It seems that in the middle of operation it would screw up the data
stream that it was saving to the nav.dat �le. We couldn't really understand what it was doing.
Maybe the \COM" port on the PC was skipping a byte or something like that. We changed
cars in the before study once we �gured out that something was wrong. The car was supposed
to be �xed for the after study and it wasn't. Since car 2 was always bad, I would recommend
that you don't use it for any data analysis.

5.1.4 Car Position Plots

The calculation for the car position from the nav.dat �les seems to drift. You can see this
clearly in Figure 5.2.

The nav.dat �le contains the output from a digital compass for each second. The
output consists of three values, the total distance the car has traveled, and two values whose
ratio is proportional to the direction the car is pointing. A typical plot of the car trajectory
should have the starting and ending points matching up. Unfortunately, this rarely happens.
At �rst, the reason that we wanted these plots was to make sure that the drivers weren't going
to McDonald's in the middle of the experiment. We then decided that this was not important
because the drivers were responsible people. So these plots are not used anywhere in the
program. These plots are still generated in case somebody wants to do something with them
later.

58 CHAPTER 5. PROBLEMS WITH THE DATA

-8

-7

-6

-5

-4

-3

-2

-1

0

1

0 1 2 3 4 5

P
os

iti
on

 (
m

ile
s)

Position (miles)

Car and incident data: /am100693/car1/c1loop3

Car trajectory
Incidents

INRAD points

Figure 5.2: Basic Car Position Plot That Drifts.

5.2 The Loop Data

The loop data was our best source of data. Even so, there were still a lot of loop detectors that
were continuously out, that went out periodically, or that counted things incorrectly. There are
two main �xes that we attempt to do on the loop data: a hole �x, to �ll in any missing data,
and a consistency �x, to correct systematic errors in the loop data. This section will describe
these two �xes and the various problems that we had with the loop data and what we did about
them.

5.2.1 Loop Data Drop Outs

There are two di�erent types of missing loop data. The �rst type is when a loop detector is
gone for the whole day - either the computer was broken or the disk was bad, etc. The second
type is when the loop detector just doesn't report data for a period of time. If we visualize the
data as a plot of detector number vs. time with a solid line if the data is present and a dotted
line if the data is not there then we can easily see that we need to �ll in the holes.

Figure 5.3 is just such a representation. In this �gure the data in loop #7 drops out
for a time in the middle of the day and loop #10 is never there. What we do is recreate the
data for the missing detectors from the adjacent (adjacent in distance, not time) loop detectors.
For example, to recreate the data for loop # 10 we would use detectors # 2 and # 20 somehow.

There are a couple of ways to recreate the missing data. We could just copy the

5.2. THE LOOP DATA 59

2

10

20

7

1

3

Detector
#

Time

Figure 5.3: Loop Data Dropout.

data from the adjacent upstream loop detector. Alternatively, we could average the values from
the two adjacent loop detectors. The criterion that we use to govern how we recreate the data
is that the delay should be the same as if the loop detector was not there in the �rst place. To
understand what we are doing here consider two situations:

� In the �rst situation a loop detector is missing. The adjacent loop detectors expand the
length of their segments to cover the missing detector. Based on these new lengths we
calculate the delay for these two segments. This is the situation where the loop detector
is not there in the �rst place.

� In the second situation a loop detector is missing but we recreate some data for that
detector. We now have three segments all with their original lengths. Based on the
new data and the original lengths we calculate the delay for all three segments. This is
obviously the situation where the loop data is recreated.

Since these two situations cover the same distance on the freeway the total delay
should be the same. This is the criterion that we use to �gure out the formulas for recreating
any missing loop data. These two situations are displayed graphically in Figure 5.4. The
numbers on the top are the loop detector/segment numbers. Note that the segment lengths
change from situation 1 to situation 2. The normal equation used for calculating the delay at
a particular loop segment is:

Dk = Lk

�T

60
Fk

�
1

Vk
�

1

VT

�
(5.1)

Where Dk is the delay on segment k, Lk is the length of segment k in miles, �T is the time
slice in minutes, Fk is the
ow on segment k, Vk is the speed on segment k, and VT is the
threshold or congestion speed. So what we are trying to do here is to set the delays for the two
situations in Figure 5.4 to be equal. This is represented below:

DSituation1 = KF1

�
L1 +

L2

2

��
1

V1
�

1

VT

�
+KF3

�
L3 +

L2

2

��
1

V3
�

1

VT

�
(5.2)

60 CHAPTER 5. PROBLEMS WITH THE DATA

L 1 L 2 L 3

1 2 3

Situation 2

L 1
’ L 3

’

1 3

Situation 1

Figure 5.4: Missing Detector.

DSituation2 = KF1L1

�
1

V1
�

1

VT

�
+KF2L2

�
1

V2
�

1

VT

�
+KF3L3

�
1

V3
�

1

VT

�
(5.3)

Where K is the time conversion constant. Setting equations 5.2 and 5.3 equal results in:

F1L2

2

�
1

V1
�

1

VT

�
+

F3L2

2

�
1

V3
�

1

VT

�
= F2L2

�
1

V2
�

1

VT

�
(5.4)

If we assume that this must hold for all values of VT then we can pull out the terms that have
VT in them to get:

F1L2

2VT
+

F3L2

2VT
=

F2L2

VT
(5.5)

Finally, we solve equation 5.5 for F2 to get:

F1 + F3

2
= F2 (5.6)

If we turn around and plug 5.6 into equation 5.4 then we get:

F1L2

2

�
1

V1
�

1

VT

�
+

F3L2

2

�
1

V3
�

1

VT

�
=

F1 + F3

2
L2

�
1

V2
�

1

VT

�
(5.7)

F1

V1
+

F3

V3
=

F1 + F3

V2
(5.8)

V2 =
F1 + F3
F1
V1

+ F3
V3

(5.9)

So the equations that we use to recreate the data for loop detector #2 in situation 2 in Figure 5.4
are equations 5.6 and 5.9 above. Note that the distance drops out and that this will work no
matter how many detectors in a row are missing. If the detector that is missing is at the end
of our study section, meaning we don't have any data for one side, then the counts, speeds,

5.2. THE LOOP DATA 61

and occupancies are simply copied from the side that we do have data for. This option can
be turned on or o� by the user by specifying the run�le parameter LOOP_HOLES_FIX that is
discussed in Chapter 7.

Although this is not explained fully until Chapter 11 I feel obliged to mention
something. When applied, the loop hole �x will generate a set of loop �les that will be referred
to as the \gloop" �les. The name \gloop" is used to refer to these �les because all of them
start with the pre�x \gloop." This will also be referred to as the second stage in the loop
data analysis. The �rst stage is just the extraction of the raw data from the loop �les and the
generation of the \
oop" �les. The third stage is the application of the consistency �x discussed
in the next section and the generation of the \hloop" �les.

5.2.2 Over/Under Counting

When the loop detectors are setup they are calibrated so that they give consistent results - only
one car is counted when only one car goes over the detector, the occupancy time reported is
correctly, etc. We noticed that there were some loop detectors that were calibrated incorrectly
or that were just broken. In some cases the loop detectors were over counting cars and in
others they were under counting cars. This can be a problem for anybody trying to do tra�c

ow models on the data. A program to identify these problems was written by Kumud K.
Sanwal. He ran his program on the loop data and generated a set of correction factors that
can be applied to the loop data. When it runs, the fsp program can read in these correction
factors and �x the loop data such that it is consistent as described in the following subsections.
Whether or not this �x is applied is governed by the run�le parameter LOOP_CONSISTENCY_FIX.
For a complete discussion of the run�le see Chapter 7. The text below explaining the problem
was written by Kumud as well.

When applied, the consistency �x will generate a set of loop �les that will be referred
to as the \hloop" �les. The name hloop is used to refer to these �les because all of them start
with the pre�x \hloop." This is the third stage of the loop data analysis.

5.2.2.1 Data

Data is collected from inductive loops that are embedded in the highway. At a speci�c location,
each lane contains a pair of loops that are spaced about 14 feet apart, and during operation,
have a current
owing through them. When a vehicle passes over a loop, the e�ective inductance
in the circuit changes and this results in a change in the current
owing in the loop as shown
in Figure 5.5. An adjustable current threshold is set for each loop and the current in the loop
is compared to this threshold. Binary data is generated by sampling (at 60 Hz) the result of
this comparison.

For a desired data output period, the fsp program generates the following informa-
tion for each interval.

� The number of vehicles that pass over the loop location in that interval.

� The fraction of the time in that interval for which the loop is occupied.

� The mean speeds in that region during that interval.

62 CHAPTER 5. PROBLEMS WITH THE DATA

Time

Threshold

detector level

Figure 5.5: Detector Current Level.

5.2.2.2 Sources of Error

The loop data may have inaccuracies/inconsistencies due to a variety of reasons other than a
complete loop malfunction (which are taken care of by the fsp program). Some of these may
lead to errors of the following nature:

Counts: The loop may not be sensitive enough to detect all the vehicles passing over
them and thus may in fact be undercounting. Also, vehicles not in the center of the lane
may be missed as is the case of vehicles attempting to change lanes. On the other hand,
loops may be detecting vehicles that are on neighboring lanes and hence resulting in some
overcounting.

Speeds: The resolution with which the time headways can be measured is 1=60 second.
This limits the accuracy of measured vehicle speeds. Further, mismatch in tuning of a
pair of coupled detectors leads to errors that cannot be compensated for.

Occupancies: The detector thresholds may not be tuned properly and this can result
in bias in the measured occupancies.

5.2.2.3 Occupancy Correction

The reliability of the densities obtained from the occupancy data provided by the detectors
depends on proper tuning of the detector threshold. In the kth interval, the speed v[k], the
ow
per lane q[k] and the density �[k] are related by

q[k] = �[k]� v[k]

The tra�c density �[k] is proportional to the percent occupancy, occ[k], measured by the
detector as �[k] = Kd�occ[k], whereKd is a constant that depends on the detector. Substituting
this into the previous equation and taking logarithms, we obtain

log(q[k]) = log(Kd) + log(v[k])+ log(occ[k])

From the �eld data we can �nd the least squares regression �t for Kd for each of the main-
line detectors. These coe�cients can be used to compensate the detector errors by using the
estimated constant Kd to obtain the actual density.

5.2. THE LOOP DATA 63

5.2.2.4 Counts Correction

Since vehicles are neither created nor destroyed, we can apply conservation laws for vehicles.
If we consider a section of highway which has detectors at the beginning and end as well as on
the ramps, then the number of vehicles accumulated over the kth data collection interval is

�[k + 1]L� �[k]L = qin[k]� qout[k] + r[k]� s[k]

If the detectors on a section of the highway count correctly, then the accumulation should not
have a drift (should remain bounded within reasonable numbers, the reasonable depending on
the length and number of lanes in the section) since this section of highway can only hold
a limited number of vehicles. We compute the average accumulation per minute over a long
period (about 4 hours) and if its absolute value exceeds a set threshold, then our algorithm
checks the consistency of the detectors associated with that section and compensation factors
are computed as a fraction of the
ow of the nearest mainline
ow. Using these correction
factors the fsp program computes
ow estimates that satisfy the consistency requirements.

5.2.3 Bad Initialization

The loop data is collected from 5am to 10am and then again from 2pm until 8pm. When the
program reports it's statistics for each time interval (a time period could be 1 min or 5 min,
etc.) it reports the number of vehicles, the average occupancy time of the vehicles, and the
average speed of the vehicles that went over the detector for that speci�c time interval. At 5am
it turns out that there aren't that many people on the road and it could happen that a whole
time interval goes by without a single car going over the detector. If this happens then the
loop detector will report the number of vehicles to be zero and the average occupancy to be
zero as well - both of these reports are �ne. The problem comes when the detectors report the
speed for this interval - they will say that the speed is zero. Well, if you are �ltering the loop
speeds with the loop �ltering factor and you come across a speed of zero then this will give you
very misleading results. What the program does to correct this is it resets any zero speed from
the loop detectors to be the speed from the previous interval. The �rst couple of samples in
the morning might still have zero speed because nothing came before them, but the results are
much better. This is not an run�le option - this is on all of the time.

5.2.4 Bad Traps

The loop detector for one lane consists of an upstream and a downstream detector placed about
14 feet apart. Certain pairs of detectors have one of the two traps out, meaning that it always
reports zeros. This, of course, causes severe problems:

� The counts for one lane are computed as the average of the two traps. So if one trap is
out then the value reported will be only one half of the correct value.

� The speeds will all be zero.

� When calculating the counts and speeds for the whole freeway (meaning the average over
all of the lanes) the program will get wrong results.

64 CHAPTER 5. PROBLEMS WITH THE DATA

We take care of this by programming in the con�guration �le to only look at the trap that
works. This tells the program to do a few things:

� Report the counts based only on the good detector.

� Don't use this lane when calculating the average speed.

This option is on all of the time - the user can't turn it on and o�. The loop con�guration �le
formats are discussed in Section 6.1.4.

5.3 The Incident Data

The only problems that we had with the incident database was that the location of the incidents
was not accurate and the starting and ending times were not accurate.

5.3.1 Bad Placement

It turns out that the location of the incidents is not accurate. The way that we attempt to
�x that is by calling a routine that attempts to correlate the locations of the incidents in the
incident database with the locations of the key presses in the car data. Our hope in doing this
is that we can get a more accurate location for the incident. In the text that follows I will
explain what is meant by correlating the data and the limitations and problems that arise in
attempting to do so.

What we are trying to do here is to match up two di�erent sets of data: the incident
database and the data from the probe vehicles. The incident database was generated from the
observations of the drivers. Whenever the drivers would pass an incident they would contact a
manager by radio and tell them everything they could about the incident: the type of incident,
the number of cars involved, the color of the cars, the location, etc. All of this information was
written down and stored in what is now called the incident database. The data from the probe
vehicles is basically all the �les named key.dat. Whenever the drivers of the probe vehicles
passed an incident they pressed a key that recorded the location. This information was stored
in the key.dat �le. So we have a key.dat �le for every car, for every shift, and for every day.
This constitutes the car data.

But there are problems with each set of data. In the incident database the location
of the incident is only stored in very general terms like, "a half a mile before A-Street," or
"3/4 of a mile past Winton." These distances are based solely on the drivers perception and in
our experience they are very inaccurate. When we look at the car data the situation doesn't
get much better. Even though there was a key that was pressed when the driver passed an
incident, there is no link between a speci�c incident and a key press. There is only a marker in
the key.dat �le that says that a key was pressed when the odometer said a certain value. The
odometer reading that is recorded is just the total distance from the start of the shift. So to
�nd out the exact location on the freeway where the key was pressed we need to do a little more
processing. This extra processing involves trying to determine where the vehicle was on the
freeway based on other keys that the driver typed in. There is a discussion of these problems
in Section 5.1. I would like to brie
y list out the points that I made above about the two sets
of data:

5.3. THE INCIDENT DATA 65

Time

Incident end time

Incident start time

}

}

Time error bounds

Distance error bounds

Distance
Incident location

Figure 5.6: Basic Incident Plot.

� Incident Database

{ Includes a lot of descriptive information including the location.

{ The location is very vague.

� Car data

{ A collection of time and distance stamps that should correspond to incidents.

What the correlation routine will attempt to do is to merge the two data sets to get
a more accurate incident location. The way that it does this is it �rst de�nes a box for each
incident in the time-distance plane. This box is centered in distance around the location of the
incident recorded in the incident database. The width of the box is the distance error bound
that is a function of how accurate we think the data is. The box is centered in time around
the recorded time of the incident. The length of the box on the time axis is increased by the
amount of the time error bound which is a user settable option. The time error bound is set
by the run�le parameter TIME ERROR BOUND which is discussed in Chapter 7. Figure 5.6
is a typical picture of an incident plot.

Once the program de�nes all of the incident boxes on a space-time plot it places all
of the key presses from all of the key.dat �les for that shift and that day on the plot as well.
An example of the key presses from the car data is given in Figure 5.7.

The plot on the left in Figure 5.7 is a plot of one run of a probe vehicle down the
freeway and back. Since this is a plot of time versus distance, the inverse of the slope is the
speed of the vehicle. The steep region in the middle of the run is where the car got o� the
freeway and turned around. Each \x" is a key press that corresponds to an incident. The plot
on the right is just all of the runs for that particular car on one plot. You can see that if you
take a vertical line at an incident then it should pass through multiple key presses - these are
just the di�erent times that the car passed the same incident.

66 CHAPTER 5. PROBLEMS WITH THE DATA

One Run All Runs

Time

Distance

Time

Distance

Incidents

Figure 5.7: Car Trajectories.

Finally, the correlation plot is made from combining all of the incident plots for one
shift with all of the key press plots for one shift. This is a lot of information and to make it
a little more presentable we take out the trajectory of each car and just leave the key presses.
Figure 5.8 is a sample of a correlation plot.

Time

Distance

Correlation plot

Time

Distance

Key presses

Time

Distance

Incidents

Figure 5.8: Correlation Plots.

Note that the key presses from the key press plots should fall inside of the incident
boxes but quite often they don't. Also note that on the �nal plots the key presses from a speci�c
car are all one symbol:

� car 1: diamond

� car 2: plus

� car 3: square

5.3. THE INCIDENT DATA 67

13

Time

Distance

13

14

Time

Distance

14

Old correlation plot New correlation plot

Figure 5.9: Fixed Incident Placement.

� car 4: cross (x)

� car 5: triangle

For an example of a real correlation plot and an explanation of where the �les are found see
Chapter 16. Once we have made these plots, or in reality, the computer has these plots stored
in memory, the program attempts to �gure out where the incident actually occurred. It does
this by taking the average location of all the key presses that occurred inside of each box. This
average location is called the incident location. If an incident doesn't fall within any box then
it is not counted at all. There is no attempt to �nd the closest box that an incident could be
in.

It turns out that this process takes a long time. So instead of trying to do this every
time that we want to run the program we came up with a di�erent scheme. We took all of
these plots and printed them out and looked for places where it was obvious that the placement
of the incident was wrong. By wrong we mean there was a whole column of key presses just
outside of an incident box. If there is no other incident around then we can be pretty much
assured that this incident should be on top of these key presses. We then �gured out which
direction and how far we needed to shift the incident box for the key presses and the box to
match up. Note that we only had to get the key presses inside the box in order for the program
to work because the routine will take the average of all of the key presses inside of the box -
no matter where they are. We then coded this shift into a �le that can be read at runtime to
adjust the location of the incidents. Whether or not this �le is read in to adjust the incidents
is governed by the run�le parameter FIX_INC_LOCATION which is discussed in Chapter 7. An
example of this process is given in Figure 5.9. So reading in the runtime �le and using it to
adjust the incidents is a replacement for running the correlation part of the fsp program. Of
course you can still run the correlation part all that you want. You can even �gure out which
boxes you want to move around and program those into the incident location �x �le. Simply
follow the format described in Chapter 6.

Unfortunately the correlation between the incident data and the probe vehicle data

68 CHAPTER 5. PROBLEMS WITH THE DATA

only gave marginal results. If you look at some of the correlation plots the situation looks
pretty hopeless. There are many reasons why things could look so bad:

1. The driver could have pressed a key when there was no incident.

2. The driver could have not pressed a key when there was an incident.

3. The computer might have been broken in a car that reported an incident. This might
cause an incident to appear in the database that has no corresponding key presses.

4. The location in the incident database could be wrong.

5. The fsp program might not be able to determine the location on the freeway of the key
press in the key.dat �le accurately.

There are a few things that need to be pointed out about the correlation of the incident data:

1. The routine that does the correlation between the incident database and the probe vehicles
is turned on and o� by the run�le parameter CORRELATE_CARS_DATABASE.

2. If this option is not turned on, then the correlation plots will not be made. For an
explanation of the correlation plots see the discussion in Chapter 7.

3. This test does not need to be run in order for everything else to work. The only thing
that this test does is adjust the location of the incident by looking at the data that the
probe vehicles recorded. If you don't want to adjust this value then don't run these tests
- everything else will work just �ne.

4. You can also adjust the locations of the incidents by reading in the runtime �le with the
run�le parameter FIX_INC_LOCATION discussed above.

5. The only incidents that this test looks at are the ones passed to it from the incident �lter.
So you aren't going to get a very good correlation if the incidents that you pick from the
�lter don't overlap with the days that you pick from the car data.

It should be pointed out that what we really need to know is which loop detector
was directly upstream of the incident. As you have seen we spend a lot of time trying to adjust
the location of the incident and in the end the only granularity that we need is about 1/3 of a
mile. Sometimes overkill produces interesting results though.

5.3.2 Bad Duration

Another thing that should probably be corrected in the incident database is the duration of the
incidents. Since we only witnessed incidents when a probe vehicle would drive by, we usually
don't know when an incident started and ended. The incident duration is obviously longer than
the duration that we have in the incident database because those are just times that a car drove
by and witnessed the incident. This can be seen in Figure 5.10. In this picture the diagonal
lines are the trajectories that the various probe vehicles made. The solid box corresponds to the
duration of the incident that we have in the incident database and the dotted line corresponds

5.3. THE INCIDENT DATA 69

Distance

Actual incident

Witnessed incident

Car trajectories

Time

Figure 5.10: Actual Incident and Witnessed Incident.

to the actual duration of the incident. The incident actually occurred sometime between when
we witnessed it the �rst time and when somebody drove by the same spot and didn't witness
it. One way to estimate the true incident start and end time is to �gure out the average time
between any two vehicles and then add one half of this time to the starting time and one half
to the ending time. The problem with this is that the headway time is not constant and adding
some constant to both sides of the duration might not be the best thing to do. What we
could do instead is �gure out the last time that a car drove by that didn't witness the incident
and then take a certain fraction of this time. The fraction of this time that we usually use is
50% simply because there is no reason to think that start time of the incident isn't uniformly
distributed between when we didn't see it and the �rst time that we did see it. This method
should give you a more accurate approximation to the duration of the incident.

Once again, since processing the car data takes a long time we take the familiar
route of doing the processing once and then saving the results to a �le. This �le can then be
read in at runtime as a substitution for extracting this information from the car data. The way
that this is done is the program will save the last time that a car went by an incident, before
it happened and didn't witness it, and the �rst time that a car went by an incident, after it
had ended and didn't witness it. By saving these two values, the user can still choose various
values of the fraction of time to use. When the program saves this information, it saves it to a
speci�c �le named inc.duration.out in the incident data directory. When the program reads
this information back in during subsequent runs it reads in the �le inc.duration.in, also in
the incident data directory. So for the program to use the �le that it has generated the user has
to manually copy the �le inc.duration.out to inc.duration.in. The reason for the two �les
is to keep the program from overwriting the good data �le which took a long time to process
(and is very irritating to lose).

Of course, doing this method brings up problems of it's own. Since car 2 was broken
we never got any location data from it. But since the driver was still driving around the freeway

70 CHAPTER 5. PROBLEMS WITH THE DATA

Distance

Actual incident

Witnessed incident
Time

Missing car

3

2

1

Figure 5.11: Incorrect Incident Duration Fix.

and reporting incidents we have database entries for a car that we have no tach data from. This
could easily mess up the duration calculation. For example, let's say that car 3 drove past an
incident and witnessed it just as it was being cleaned up, and that the next two cars to pass
the incident were car 2 and then car 1 and neither one of them saw the incident. The correct
ending time for this incident should be half of the time between when car 3 passed the incident
and witnessed it when car 2 passed the incident and didn't witness it. But since we don't
have any data from car 2 the fsp program thinks that the next car that passed by was car 1.
Therefore the ending time for this incident will be erroneously in
ated. A picture of this is
given in Figure 5.11.

Finally, to be complete, I should mention that another problem that could show up
is the fact that we don't know exactly where the probe vehicles are. This is a fuzziness that
we always have due to the fact that the vehicle position is dependent on the drivers pressing
a certain set of keys at a particular time. As a result we can't be precisely sure of when a car
drove by an incident location. I believe, but don't o�er any proof, that we can only be accurate
to within 1-2 minutes.

Chapter 6

Program Input: Directory

Structure and File Formats

The fsp program uses two di�erent main directories when it runs: an input directory and
an output directory. There are many subdirectories but these are the top ones. All of the
raw data is stored under the input directory and all of the output �les are placed under the
output directory. Since both the input and the output directories are speci�ed by the run�le
the output can be placed wherever the user likes by simply modifying the appropriate run�le
parameter. The way that the program used to be run is there was only one main directory
for both the input and the output. This meant that the output �les were placed in the same
directories as the data �les. There are a couple of disadvantages in doing this. The �rst is
that having one main directory for both the input and the output means that the data �les are
writable by random users. Since the data is usually valuable and hard to replace it would be
best if this was not the case. The second reason that having only one directory is bad is that
it makes it di�cult for multiple users to work with the data. If all of the output is placed in
the same directory then whenever the program is run the output is going to be overwritten.
In a multiuser environment where people want to be working with di�erent types of output (5
minute output versus 1 minute output) this is a huge headache. By allowing users to specify
the output directory in the run�le they can have the output placed in their own directory and
thus avoid having to deal with other users.

So far I have only mentioned the main input and output directories. Underneath
each of these directories there are a whole host of subdirectories that the fsp program expects
to see. The subdirectory structures in the input and output directories are almost the same.
The only di�erence is the contents: the input directories hold raw data and con�guration �les
and the output directories hold processed data. When the fsp program runs the �rst thing
that it does is it checks to see if the output directory exists. If it doesn't then the fsp program
creates all of the subdirectories that it thinks it's going to need. Since the directory structures
are almost the same the output directory is sometimes referred to as the parallel directory
structure.

71

72 CHAPTER 6. PROGRAM INPUT: DIRECTORY STRUCTURE AND FILE FORMATS

6.1 The Input Directory Structure

The fsp program expects to see a special input directory structure when it runs. Although
some of the directories can be changed by simply changing the appropriate run�le variables,
most of the structure is already determined. The fsp program also requires the assistance of
a few con�guration �les when it runs. These �les must be in the appropriate directories each
time the program is run. If you downloaded the software in it's original form and you followed
the directions in Chapter 2 then the whole input directory structure will be made for you and
all of the con�guration �les will be put in the correct place. I am including this discussion
so that users can understand all aspects of the directories that the fsp program uses. What I
will describe in this chapter are the di�erent con�guration �les that are needed and the various
input directories that the fsp program expects to see. The example that I will use is the �le
system that I have on my machine. This is illustrated in Figure 6.1.

Car data Loop data Incident data Runfiles

Main input directory

Figure 6.1: Input FSP Directory Structure.

Note that all of the data directories reside under one directory. Also note that the
directory labeled \Run�les" is only used to hold the di�erent run�les and incident �lters that
the user might use. The run�les don't need to be stored here and this directory isn't needed
by the fsp program. The run�les are placed here simply for neatness.

6.1.1 Car Input Directory Structure

The car input directory structure is fairly simple. Below the main car directory there is a
con�guration directory and one directory for each shift of car data. The location of the main
car directory is governed by the run�le parameter CAR_DATA_DIRECTORY.My directory structure
is shown in Figure 6.2.

The directory labeled \Con�guration" holds the �les needed by the fsp program
at startup. These �les are described below in Section 6.1.2. The directories labeled \day
directory" need a little more explanation. Each one of these directories holds one shift worth
of data. For example, one directory might hold the morning shift of February 3rd and another
one the afternoon shift of February 3rd. Inside each one of these directories are the directories
that corresponds to each car that was in operation on that day. These directories correspond to
the boxes in Figure 6.2 that are labeled \car directory." The car directories are usually labeled

6.1. THE INPUT DIRECTORY STRUCTURE 73

day directory day directory

Car data directory

car directorycar directory

Configuration

Figure 6.2: Car Input Directory Structure.

\car1," \car2," etc., but this name can be set by the run�le parameter CAR_DIRECTORY_ROOT.
The car directory structure can be represented with the following picture:

am020393 <= This is the day directory

|

|-- car1 <= Car directory 1

|-- car2 <= Car directory 2

|-- car3 <= Car directory 3

pm020393 <= This is the day directory

|

|-- car1 <= Car directory 1

|-- car2 <= Car directory 2

|-- car3 <= Car directory 3

In the above text there are two day directories, am020393 and pm020393, holding
data for the morning and evening shift of February 3rd respectively. Inside of the car directories
is the actual data from each car (the four �les discussed in Section 4.3).

6.1.2 Car Con�guration File Formats

There are two con�guration �les that the fsp program needs in order to interpret the car data
correctly. These are the �lesDRIVER FILE NAME andCALIBRATION FILE NAME.
Both of these �le names are de�ned in the �le fsp.h. Below is a short description of each �le:

DRIVER FILE NAME: This �le holds the driver names and their identi�cation numbers.
The format is:

[ID number] [First name] [Last name]

74 CHAPTER 6. PROGRAM INPUT: DIRECTORY STRUCTURE AND FILE FORMATS

The ID number can be any unique valid integer and the driver names need to be in two
parts. If you don't have a last name then make up one because the program expects there
to be two names. When the drivers type in their ID number for the �le key.dat their
name will be matched up with that speci�c ID. A short sample of the �le follows:

1 Hisham Noeimi

2 Dan Rydzewski

3 Ayman Taha

4 Jun Huang

On my system this �lename is de�ned as:

#define DRIVER_FILE_NAME "drivers.dat"

CALIBRATION FILE NAME: This �le holds the calibration data for each car. The cali-
bration value is the number of wheel revolutions per mile. This value allows the program
to calculate the real distance traveled. The format is:

[Car number] [Conversion value]

The car number needs to be in the range 1 to MAX NUM CARS as de�ned in
the �le fsp.h. If it is not in this range then the program will halt. The value of
MAX NUM CARS is currently de�ned to be 5. The conversion value should be a
valid
oating point number. If the program can not �nd a value for a car then it will
print a warning and the program will probably crash later on due to a divide by zero
error. An example of this �le follows:

1 6019.20

2 10032.00

3 6019.20

4 12038.40

5 19588.80

On my system this �lename is de�ned as:

#define CALIBRATION_FILE_NAME "calibration.dat"

6.1.3 Loop Input Directory Structure

The loop input directory structure is quite a bit like the car directory structure. There is
a main loop directory below which lie the directories for the individual days and the con�g-
uration �les. The location of the main loop directory is governed by the run�le parameter
LOOP_DATA_DIRECTORY. This structure is shown in Figure 6.3.

The directory labeled \Con�guration" holds the �les needed by the fsp program at
startup to interpret the loop data correctly. These �les are described below in Section 6.1.4.

6.1. THE INPUT DIRECTORY STRUCTURE 75

Configuration

Loop data directory

loop directory loop directory

Figure 6.3: Loop Input Directory Structure.

The directories labeled \loop directory" are simply the directories of the various days of loop
data. For example, one directory might hold the loop data from February 3rd and another
one the data from February 4th. Inside each one of these directories are the data �les for each
individual cabinet. These are labeled loop1.dat, loop2.dat, loop3.dat, etc. Note that if the
�les are compressed then they will be labeled loop1.dat.Z, loop2.dat.Z, etc. This structure
can be represented with the following picture:

lp020393 <= This is a main loop directory

|

|-- loop1.dat <= loop detector 1

|-- loop2.dat <= loop detector 2

|-- loop3.dat <= loop detector 3

.

.

lp020493 <= This is a main loop directory

|

|-- loop1.dat <= loop detector 1

|-- loop2.dat <= loop detector 2

|-- loop3.dat <= loop detector 3

.

.

In the above text there are twomain loop directories, lp020393 and lp020493, holding
data for February 3rd and 4th respectively.

6.1.4 Loop Con�guration File Formats

There are many con�guration �les that the fsp program needs in order to interpret the loop
data correctly. These are the display con�guration �les for the loop cabinets, the wiring diagram
�les for the cabinet slots, the emission tables, and the geometrics of the road. Below is a list of
the various loop con�guration �les needed:

76 CHAPTER 6. PROGRAM INPUT: DIRECTORY STRUCTURE AND FILE FORMATS

Display con�guration �les: These are the �les that tell the program how to interpret the
loop data when it is �rst read in and how to display the data when it is printed out. These
�les came with the original software that Leon Chen wrote and have not been changed
since. There are no parameters in these �les that can be changed by the user. Therefore
I have not listed out their format.

These �les have names of the format loc_ZZ.cnf. Where \ZZ" is the cabinet number.
These �les need to be in the directory de�ned by the variable LOOPDATA CONFIG DIR
in the �le fsp_dirs.h.

Wiring diagram �les: These �les are the �les that tell the program what slot corresponds
to what lane on the freeway. These �les have names of the format loopZZ.wir. Where
\ZZ" is the cabinet number. The format of these �les is:

[Detector number] [Up or down] [Type] [Lane number]

The various legal values are de�ned below.

Column Valid Value Explanation

Detector: 1 thru 14 The detector number
Up or down: 0 Upstream detector

1 Downstream detector
Type: n Northbound lane

s Southbound lane
f South o� ramp
F North o� ramp
p South passage
P North passage
d South demand
D North demand
q South queue
Q North queue
b Blank

Lane number: 1 thru 6 The lane number
0 Blank

Any line in the wiring �le starting with a \#" is considered to be a comment line and
is ignored. Note that since the program wants you to specify what the upstream and
downstream detectors are you need to have a line in this �le for every detector. Since
there are 14 slots, each with an upstream and downstream detector, that means that
there needs to be 28 lines in each one of these �les. Also note that the characters used to
specify the southbound lanes are all lower case while the characters used to specify the
northbound lanes are mostly upper case. The one exception is that \n" means northbound
lane. A short sample of the �le follows:

6.1. THE INPUT DIRECTORY STRUCTURE 77

Loop 16

Trap Up_or_Down Type Lane

1 0 n 1

1 1 n 1

2 0 n 2

2 1 n 2

3 0 n 3

3 1 n 3

4 0 n 4

4 1 n 4

5 0 n 5

5 1 n 5

6 0 b 0

6 1 b 0

7 0 s 1

7 1 s 1

This sample �le is loop16.wir. Note that this is only the �rst half of this �le. These
�les need to be in the directory de�ned by the variable LOOPDATA CONFIG DIR
in the �le fsp_dirs.h.

Emission Tables: These �les hold the tables that are used to do the emission calculations.
They are basically tables of the amount of a certain type of emission in grams per hour
versus vehicle speed. There is a table for hydrocarbons, nitrogen compounds, and carbon
monoxide. The emissions �le for carbon monoxide is given below:

This is the table for the emissions of carbon monoxide.

The values are in grams/mile except for the idle speed

which is grams/minute.

The first row is the idle value for cars, gas trucks, and diesel trucks.

The second row is the speed values.

The third through fifth rows are the values for cars,

gas trucks, and diesel trucks, respectively, for the

speed values in the second row.

3.67 8.81 3.23

5 10 15 20 25 30 35 40 45 50 55 60

44.0 22.5 15.4 11.7 9.3 7.8 6.6 5.8 5.2 4.7 4.3 8.4

105.7 66.4 46.7 35.0 27.6 22.9 20.0 18.3 17.6 17.8 18.8 24.0

38.8 26.7 19.3 14.5 11.5 9.5 8.2 7.4 7.0 7.0 7.3 7.9

Any line that starts with an \#" is a comment line and is not read in by the program.
You can see that there is a short explanation of the various values in this �le in the
comments. As it says in the comments, the �rst non-commented row is the idle value of
cars, gas trucks, and diesel trucks respectively in grams/minute. The second row is a list
of speed values for which data values will be given later. The third through �fth rows are

78 CHAPTER 6. PROGRAM INPUT: DIRECTORY STRUCTURE AND FILE FORMATS

the values for cars, gas trucks, and diesel trucks for the speed values given in the second
row. Note that for space considerations I have left o� a few of the speed values and I
truncated the precision of the emissions values.

LOOP DISTANCE FILENAME: This �le holds the distance in feet of each loop detector
from the start of the course. The starting point for the course is the intersection of I-880
and Marina. The distance is always increasing, meaning that the northbound loops are
the distance from Marina to Whipple and back to the loop. Note that you need to list out
all of the cabinets in the southbound and northbound direction separately - you can't have
one entry for a cabinet if it has loop detectors in both the southbound and northbound
lanes. You need to list that cabinet out as both a southbound and northbound cabinet.
Finally, you have to list out the detectors in order. The speci�c order that the program
is looking for is the order that a car driving around the loop would see if they started at
Marina, drove south all the way to Whipple, turned around and drove back to Marina.
The format is:

[Loop number] [Dist] [Seg length] [South or north] [Number of lanes]

Where the loop number is a number from 1 thru 20, and the distance is the distance,
in feet, from the starting point of Marina. The segment length is the length, in feet, of
the current segment. A segment is the stretch of road covering a loop detector. There is
only one loop detector per segment. \South or north" is either SB to indicate that this
is a southbound detector or NB to indicate that this is a northbound detector. Finally,
\Number of lanes" is simply the number of main line lanes. An example of this �le follows:

Distance Loop Direction #lanes

These distances were typed in on 6/13

south bound loops

16 15950 1970 SB 5

3 17700 1880 SB 5

1 19400 1700 SB 5

7 21100 1700 SB 5

20 22800 1550 SB 5

Any line that starts with a \#" is treated as a comment line. As you can see by this sample
�le that the northern most loop detector on the southbound run has to be loop #16. This
�le needs to be in the directory de�ned by the variable LOOPDATA CONFIG DIR
in the �le fsp_dirs.h. On my system this �le is de�ned as:

#define LOOP_DISTANCE_FILENAME "loop.distances"

6.1.5 Incident Input Directory Structure and Con�guration Files

The incident input directory is only one directory. This directory holds the incident database
and the con�guration �les. You should note that there are some �les that are generated by

6.2. THE OUTPUT DIRECTORY STRUCTURE 79

the fsp program that can be read in later on to �x the incident data. While these �les are
read in by the fsp if you specify the correct parameters in the run�le they are not technically
con�guration �les so they will not be discussed further. These �les are described in more detail
in Chapters 5 and 7.

The one true incident con�guration �le is the �le that tells the program what the
various �elds in the incident database mean. This �le is named according to the variable
INCIDENT DEFS FILE which is de�ned in the �le fsp.h. This �le is usually named
inc_defs.dat. The format of the �le is as follows:

[field string] = [numerical value] = [explanation string]

The \�eld string" is the string that is associated with a particular incident database
�eld. These strings are used when creating an incident �lter as described in Chapter 9. Since
each incident database �eld has a few di�erent options there is a line in the inc_defs.dat �le
for each option. For example, the incident �eld that describes the weather has as it's �eld string
\WEATHER." Since there are �ve di�erent options the section of the inc_defs.dat �le that
describes this �eld would look like this:

WEATHER = 0 = Clear

WEATHER = 1 = Partly cloudy

WEATHER = 2 = Cloudy

WEATHER = 3 = Light rain

WEATHER = 4 = Rainy

Unfortunately, things are not as
exible as they might seem. It turns out that there
needs to be a way to tell the program what kind of data each �eld is: whether it's a time, a date,
or a single numerical value. This coding is done within the program itself. This makes changing
the format of the incident database something that can only be done by a programmer.

6.2 The Output Directory Structure

As was mentioned above, the output directory structure is quite a bit like the input directory
structure. The nicest part about the output directories is that they are created by the fsp
program at runtime. If you want to place output �les in a directory that was used before then
that's �ne: the fsp program will simply write over the old �les. If you want to place the output
in a new directory then that's �ne as well, the fsp program will create it for you. The incident
and car output directories are exactly the same as the input directories with the exception
that there are no con�guration directories. The loop output directory structure is only slightly
di�erent than the loop input directory structure.

6.2.1 Loop Output Directory Structure

The main loop output directory has a few additional directories that hold various types of
output. A graphical representation of the directories is given in Figure 6.4.

The directory labeled \Reports" in Figure 6.4 is the summary directory and it holds
the summary loop error reports that are described in more detail in Chapter 15. Note that

80 CHAPTER 6. PROGRAM INPUT: DIRECTORY STRUCTURE AND FILE FORMATS

Average files Delay files Reports loop directory

Loop data directory

Figure 6.4: Loop Output Directory Structure.

this only holds a certain subset of the loop output text �les. The directory labeled \Average
Files" contains the average loop �les. These �les are the average over all of the days of the
counts, speeds, occupancies, and densities. These �les are needed when calculating the delay
with respect to the average. The directory labeled \Delay Files" contains a sub-directory for
each main loop directory. These sub-directories contain the delay �les for each day with respect
to the average. The procedure for computing these �les is described in detail in Section 12.7.
Finally, the directory labeled \loop directory" holds the output for one speci�c day.

Chapter 7

Program Input: The Run�le

When the FSP program runs, it takes as one of its arguments the name of a �le that is called
the run�le. The run�le contains the commands that tell the program what to do: what data
to analyze, what tests to run, what output to generate, etc. This chapter is a reference guide
to the various parameters that can be speci�ed in the run�le.

There is a whole set of parameters to the run�le that are not listed in this chapter.
These are the parameters that deal with the various tests that you can put the loop data
through when generating the loop error reports. Since these are all in the same category, and
there are quite a few of them, they are described in Chapter 10.

Note that if you are going to be using the program xfsp then you don't have to
worry about the various names of the run�le parameters because the program will create the
run�le for you. You will have to worry about what each parameter does, but the xfsp program
has on-line help that will replace this chapter. Chapter 8 gives a cross reference guide between
the xfsp windows and the run�le parameter strings that might be helpful.

7.1 The Basic Idea

I wanted the program to be as
exible as possible and easy to use. Therefore I decided to
make the program highly automatic so that if the user has lots of data that they want to
crunch through then they can simply create the appropriate run�le and start the program up
- everything will be taken care. Unfortunately, the price in software for increased
exibility
is increased complexity. In this case the complexity manifests itself in the number of run�le
parameters needed to tell the fsp program what to do. As you read the rest of this chapter
you might conclude that so much
exibility, and hence so many run�le options, just confuses
everything. Hopefully, with a little bit of practice, the fsp program will become easy to use.
Then again, maybe not.

7.2 How To Use The Parameters

The run�le is just a text �le that you can edit with any editor. There are a few things about
specifying parameters that need to be pointed out:

81

82 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

� To specify a parameter, place it at the start of a new line followed by an equals sign and
the chosen value.

� Spaces do not matter. You can have as many spaces as you want between the parameter,
the equals sign, and the chosen value.

� If you do not specify a value or you leave out a parameter then the default value will be
assigned. A list of the default values is given below in Section 7.4.

� The run�le is case sensitive and all of the parameters have to be speci�ed in upper case.

� If you have a parameter on a line then you must have an equals sign on the line as well.
You don't have to specify a value for the parameter after the equals sign, but the equals
sign must be there.

� The comment character is the pound sign: #. To comment out a line then just place
this character at the start of the line. This is very useful in switching between di�erent
parameter options when you don't want to retype a di�erent value every time.

� For most of the parameters you just supply one of a few prede�ned strings. For some
parameters you need to type in your own value. When you do this, just type in your
value - don't use quotes, or type casts; the program takes care of all of the casting.

� You can NOT use the logical OR character \j" with the parameters. You can only choose
one of the prede�ned strings.

An example of specifying the parameter DEBUG LEVEL is given below. Each one
of these lines is acceptable.

DEBUG_LEVEL = VERBOSE_DEBUG

DEBUG_LEVEL=VERBOSE_DEBUG

DEBUG_LEVEL = VERBOSE_DEBUG

DEBUG_LEVEL =

#DEBUG_LEVEL = DETAIL_DEBUG

In the �rst three lines the value of the option DEBUG LEVEL is set to VER-
BOSE DEBUG. In the fourth line the value of DEBUG LEVEL is set to the default value
which is SILENT DEBUG. In the last line the whole line has been commented out. Therefore
it is not read by the run�le parser and the value is set to the default value. You could have
all of these lines in the same run�le, but the parameter DEBUG LEVEL would only be set
to the last supplied value. Note that in the fourth line above there is no supplied value, so in
this case the value would be set to VERBOSE DEBUG. In the examples below we will use a
combination of the di�erent allowable ways to specify a parameter.

7.3 Parameters To The Run�le

What follows is an alphabetical listing of the various run�le parameters. The parameter name
is in bold face,
ush with the margin, and the explanation is indented.

7.3. PARAMETERS TO THE RUNFILE 83

CAR CLEANUP Specify whether to leave the temporary car �les.

This lets you delete intermediate �les that were generated when processing the car data
or to leave them hanging around. The �les that the program generates when grinding
through the car data are completely unimportant and don't hold any useful information
like the temporary loop �les. This option should only be used if you are trying to debug
the program. The options are:

DELETE FILES: Delete temporary car �les.

LEAVE FILES: Leave temporary car �les.

The default for this parameter is DELETE FILES.

CAR DATA COMPRESSED Specify whether the car data is compressed or not.

Since the data for this project takes up so much room it is sometimes advantageous to
store the raw data in the compressed format. This option will tell the program to expect
the data to be in the compressed format or the uncompressed format. The compressed
format is the standard UNIX compression format that is done by the programs compress
and uncompress. There are a couple of things to note about using this option:

� You need to have the programs compress and uncompress in your path. If you
type the command which compress then it should list out where the program is
located. If the program is not in your path then ask your system administrator where
it resides.

� All of the data needs to be compressed or uncompressed. You can't have some of
the data compressed and some of the data uncompressed.

� If you are only going to be working on a small set of data but you are going to be
running the program over and over again then you should probably just uncompress
the data before you start running the program - it will take too long for the program
to do it for you.

� This option is only useful if you are going to be working with a very large data set
and you only want to do the processing once.

� The process of uncompressing and compressing the car data can take up to 10 minutes
for each day. So be warned that the processing time for the whole data set might
take a while!

The various options are:

DATA NOT COMPRESSED: The data is not compressed.

DATA IS COMPRESSED: The data is compressed.

The default for this parameter is DATA NOT COMPRESSED.

84 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

CAR DATA DIRECTORY Specify which main car directory to use for the data.

This is the complete path of the directory that holds the car data. It must also hold the
car con�guration and report directories. For more information on the directory structure
that the fsp program expects see Chapter 6.

The default for this parameter is /home/clair0/PATH/FSP/Set1/Cardata.

CAR DATA SET NUMBER Specify whether the data set is from the before study or the
after study.

The FSP experiment involved a before and after study of the freeway. Since the data
collected from the probe vehicles was di�erent in both studies there needs to be a way to
tell the program what type of data set to expect. This parameter tells the program if the
car data set being used belongs to the before study or to the after study. For a complete
explanation of the di�erence between the two data sets see Section 4.3. There are two
possible values for this parameter, 1 or 2, that correspond to the before and after data
sets respectively.

The default for this parameter is 1.

CAR DIRECTORY ROOT Specify the car sub-directory name.

This is the root name to your car directory. The directory structure looks something like
the example below:

am110492 <= This is a car directory

|

|-- car1 <= Sub car dir 1

|

|-- car2 <= Sub car dir 2

|

|-- car3 <= Sub car dir 3

Where the car directory is called am110492, and the various subdirectories below it are
called car1, car2, and car3. So the name that we are trying to specify with this parameter
is the sub-car-directory name. In this example the name is \car". For more information
on the directory structure that the program expects to see then see Chapter 6.

The default for this parameter is car.

CAR SPD FILTER FACTOR Specify the �ltering factor for the car speed data.

When making the plots for the car data of speed vs. time and speed vs. distance it is
sometimes useful to �lter the data so as to get a better looking plot. The general formula
for �ltering data looks like this:

xk = �xk�1 + sk

yk = (1� �)xk

7.3. PARAMETERS TO THE RUNFILE 85

Where sk is the current speed measurement, xk is the state variable, � is the �ltering
factor that you are specifying with this parameter, and yk is the �nal output variable.
This is simply exponential �ltering. Some things to note:

� If the data is �ltered then all subsequent analysis will be performed on the �ltered
data.

� The value for this parameter has to be 0 � � < 1. The program will not let you set
the variable to 1 because this results in an unstable �lter.

� The larger the value the more smoothing you do. A value of 0 will perform no
�ltering at all and will give you the actual data.

The default for this parameter is 0.9.

CORRELATE CARS DATABASE Specify whether to attempt to correlate the incident
database with the car data.

This tells the program to attempt to correlate the incident database with the data collected
from the probe vehicles. We do this to re�ne the incident location. If you remember,
from Chapter 4, when a probe vehicle went past an incident the driver would radio in the
location to the base station and they would also press a key on their keyboard. During
the radio call the driver would give the distance as something like, \A half mile before
92," or \3/4 of a mile past Winton." These locations are obviously not accurate. Every
time that a di�erent probe vehicle would pass the same incident a record would be made
at the base station, and in the incident database, of the time that somebody passed it.
And when the drivers would press a key, the computer would store the location of the car
in a �le. So what we have is an incident database entry with a list of times that some
probe vehicle passed it and all of the car data �les that have times and distances when
they passed some incident. What we are attempting to do here is to match up the key
presses with the incident log with the ultimate goal of getting a more accurate location
for each incident. This process is described in detail in Chapter 5. There are a couple of
things to note about this parameter:

� There are two other parameters that e�ect the output of this routine. These are:
INC CORRELATION GRAPH and NUMBER INC CORR GRAPHS. The �rst pa-
rameter tells the program whether to make a graph of the keypresses and the inci-
dents and the second one tells the program whether to put the incident numbers on
this plot.

� Since this routine is working with car data, you have to specify some car data for
this to do anything at all.

� The program has to �nd the incidents from the car data in order for the cor-
relation to take place. So the parameter INCIDENT POINTS must be set to
YES INCIDENT POINTS.

� These tests do not need to be run in order for everything else to work. The only
thing that this test does is adjust the location of the incident by looking at the data
that the probe vehicles recorded. If you don't want to adjust this value then don't
run these tests - everything else will work just �ne.

86 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

� The correlation of the data take almost as much time as the loop tests. So if you
want to run this test then be prepared to wait.

The various options for this parameter are:

NO CORRELATE: Don't attempt to correlate the data.

YES CORRELATE: Attempt to correlate the data.

The default for this parameter is NO CORRELATE.

DEBUG LEVEL Specify how much debug information to print out.

This allows the user to receive various levels of diagnostic output in case there is an
error. This probably shouldn't be changed at all because the program is completely free
of bugs.... well, maybe. The various options are:

SILENT DEBUG: No output at all.

MINIMUM DEBUG: Small updates on progress.

DETAIL DEBUG: Some updates and more diagnostic output.

VERBOSE DEBUG: Prints out everything - this will take forever to run.

The default for this parameter is SILENT DEBUG.

DELAY CALCULATION Specify what type of loop and incident delay calculation to per-
form.

This parameter tells the program how to calculate the delay for the loop data. The
formula for calculating the delay for a particular section of freeway for a speci�c time is
given below:

Di
k = L

�T

60
F i
k

1

V i
k

�
1

VT

!

Where Di
k is the delay on segment k during time slice i, L is the segment length in miles,

�T is the time slice in minutes, F i
k is the
ow on segment k during time slice i, V i

k is
the speed on segment k during time slice i, and VT is the threshold or congestion speed.
What this parameters tells the program is whether to use a constant speed for VT or
to use the average speed. The constant speed that is used, when required, is given by
the run�le parameter TRAFFIC LOW SPEED. Note that even though this parameter
applies to how the loop delays are calculated, it also applies to which loop delay �les the
program reads in to calculate the delay per incident. A discussion of how to �nd the
average speeds as well as the details on how the delay calculation is performed is given in
Chapter 11. The various options for this parameter are:

WRT CONSTANT SPEED: Calculate the delay with respect to a constant speed.

WRT AVERAGE SPEED: Calculate the delay with respect to an average speed.

7.3. PARAMETERS TO THE RUNFILE 87

The default for this parameter is WRT CONSTANT SPEED.

DELAY DOWNSTREAM NUM Specify how many downstream detectors to use in the
incident delay calculation.

There is no consensus on how to calculate the delay for a speci�c incident. What this
option allows the user to do is to choose how many detectors downstream of the incident
the program should use in calculating the delay. For each incident the program calculates
the duration and location. Then, for the whole duration of the incident the program
adds up the delay at each loop detector that is close to the incident. The parameter
DELAY DOWNSTREAM NUM and DELAY UPSTREAM NUM de�ne what is meant
by close. This parameter tells the program how many detectors to use downstream of the
incident. Normally, one would think that this should be 0 because an incident shouldn't
e�ect anything downstream, only the stu� upstream. Well, as it turns out, you might
actually get some bene�t downstream from an incident. So we left this decision up to
the user. A value of -1 for this parameter means to go all the way downstream to the
end of the study section. A more complete description of the delay calculation is given in
Chapter 11.

The default for this parameter is 0.

DELAY TYPE Specify whether to allow the delay to be negative or not.

When the program applies the formula for calculating the loop delay it is possible for the
delay to be negative if the current speed is above the congestion speed. It is a debatable
point as to whether or not the delay can be negative. We don't attempt to answer that
question but we leave it up to the user. This parameter will tell the program to allow
negative delays or to make all negative delays zero. The various options are:

ONLY HAVE POSITIVE DELAY: Allow only positive delays.

HAVE POSITIVE AND NEGATIVE DELAY: Allow positive and negative delay.

The default for this parameter is ONLY HAVE POSITIVE DELAY.

DELAY UPSTREAM NUM Specify how many upstream detectors to use in the incident
delay calculation.

This parameter tells the program how many loop detectors to use upstream of an inci-
dent when calculating the delay for that incident. This parameter is the counterpart to
DELAY DOWNSTREAM NUM and you should see the discussion there for a short de-
scription. For a more complete discussion of the incident delay calculation see Chapter 11.

The default for this parameter is -1.

DROPOUT TIMES Specify whether to �gure out the loop data dropout times.

For some reason or another the loop detectors don't work all of the time - they go out
sporadically and don't record data. This parameter tells the program to attempt to �gure
out when those dropout periods occur. It will attempt to do this for all of the data �les
in each loop directory and it will store the results in one �le for that directory. This �le is

88 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

called bad.times. See Chapter 15 for an explanation of the output. If error reports are
being generated then the dropout information is included at the end of the error report.
If you are going to attempt to �x the holes in the loop data set with the parameter
LOOP HOLES FIX then you need to set this parameter to YES DROPOUT FILE. The
various report type options are:

NO DROPOUT FILES: Don't attempt to �gure out when the data has blackouts.

YES DROPOUT FILE: Attempt to �gure out when there are data blackouts.

The default for this parameter is NO DROPOUT FILES.

EMISSION CALC Specify whether to calculate the loop emissions.

This parameter tells the program whether or not to calculate the emission factors. The
emission factors are calculated a lot like the delay values. The formula is given below:

Ei
k = L

�T

60
F i
k

�
eV i

k

� eVT

�

Where Ei
k is the emissions on segment k during time slice i, L is the segment length in

miles, �T is the time slice in minutes, F i
k is the
ow on segment k during time slice i,

eV i

k

is the emission factor for speed V i
k on segment k during time slice i, and eVT is the

emission factor for speed VT . Note that VT can be either a constant speed or an average
speed as speci�ed by the parameter DELAY TYPE. There are three di�erent types of
emission calculations:

� Carbon monoxide (CO)

� Hydrocarbon compounds (VOC)

� Nitrogen compounds (NITRO)

These are described in more detail in Chapter 11. The various options for this parameter
are given below:

NO CALC EMISSIONS: Don't calculate any emissions.

YES CALC CO EMISSIONS: Calculate carbon monoxide emissions only.

YES CALC VOC EMISSIONS: Calculate hydrocarbon emissions only.

YES CALC NITRO EMISSIONS: Calculate nitrogen compound emissions only.

YES CALC ALL EMISSIONS: Calculate all emissions.

The default for this parameter is NO CALC EMISSIONS.

ERROR FILE NAME EXT Specify a new extension for the car error �les.

This lets you specify a di�erent name for the extension of the car error �les. This could
be useful if you want to try out a di�erent error criterion and you don't want to lose the
�les that you already have. This probably shouldn't be changed.

The default for this parameter is err.

7.3. PARAMETERS TO THE RUNFILE 89

FIX INC DELAY BOX Specify whether to use a prede�ned box to calculate the incident
delay.

It turns out that there was quite a bit of debate over how to exactly calculate the delay
per incident. This parameter gives the user one more way to calculate this. The plots
generated by the parameter INC CONTOUR DELAY PLOT are contour plots of the
delay in vehicle-hours. So each line type is a speci�c level surface. These plots also have
the incidents on them as a box. After looking at the delay caused by certain incidents
we decided that trying to have the computer automatically �gure out the region that
contained the delay for each incident was going to be too complex. So we decided that
we could de�ne a bounding box for each incident by hand and then code that into a �le.
This �le could then be loaded in at runtime and used by the program to calculate the
delay for each incident correctly. A couple of things to note about this option:

� Only certain incidents have a bounding box in the runtime �le. This is because it
was too hard to �gure out what the bounding boxes were for quite a few of the
incidents because of overlapping incident.

� You can de�ne more bounding boxes yourself. Just follow the details given in Sec-
tion 12.11.

� If you tell the program to use the bounding box �le then all of the incidents not
de�ned in that �le will have a delay of zero.

A more complete description of the calculation of the incident delays is given in Chap-
ter 11. The various options for this parameter are given below:

NO FIX INC DELAY: Don't read in the bounding box �le.

YES FIX INC DELAY: Read in the bounding box �le and use it to calculate the
delay for the incidents in there.

The default for this parameter is NO FIX INC DELAY.

FIX INC DURATION Specify whether to attempt to �x the incident duration or not.

This parameter tells the program whether to attempt to �x the incident durations or not.
Since we only witnessed incidents when a probe vehicle would drive by, we usually don't
know when an incident started and ended. The true incident duration is obviously longer
than the duration that we have in the incident database because those are just times
that a car drove by and witnessed the incident. The incident actually occurred or was
cleared sometime between when we witnessed it last and when somebody drove by the
same spot and didn't witness it. The way that we attempt to �x the duration is to take
the di�erence between when we witnessed the incident and the last time that a car drove
by that didn't witness the incident. We then take a certain fraction of this di�erence and
add it onto the starting or ending time of the incident. This parameter governs whether
or not to do this processing and exactly how to do it.

Since the car data takes a long time to process we will try to only do it once. So once we
�gure out the times from the car data we save them to a �le named inc.duration.out.

90 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

This �le will hold two numbers for each incident: the time that a car went by, before the
incident occurred, and didn't witness it, and the time that a car went by, after the incident
occurred, and didn't witness it. This �le can then be read in by the program to substitute
for processing the car data. This should save about 4 hours of processing. The one catch
is that the �le that the program tries to read in is named inc.duration.in. So in order
for the fsp program to use this �le after it has generated it the user has to manually copy
inc.duration.out to inc.duration.in. See the discussion in Section 5.3.2 for a more
complete discussion of the problems that this generates.

NO FIX INC DURATION: Don't attempt to �x the incident duration at all.

FIX INC DURATION FROM DATA: This will attempt to �x the incident dura-
tion by reading in the car data and matching up the incidents. This routine will only
process the car data that has been speci�ed in the run�le. In order for this routine
to work you HAVE to have generated the time vs. distance �les for the car data.
This routine will save the output to a �le named inc.duration.out that resides in
the incident data directory.

FIX INC DURATION FROM FILE: This will attempt to �x the incident duration
by reading in a �le that contains the times that cars drove by an incident and didn't
witness it. You don't have to do any processing on the car data for this option to
work. This �le is named inc.duration.in and must reside in the incident data
directory.

The default for this parameter is NO FIX INC DURATION.

FIX INC LOCATION Specify whether to �x the placement of the incidents.

One of the things that the program attempts to do is to re�ne the position of the incidents.
The standard way of doing this is to read in all of the car data and to try to match
up the key presses in the car data with the incident database, as was discussed under
the parameter CORRELATE CARS DATABASE. Well, this takes quite a bit of time:
someplace on the order of 2 or 3 hours. We have come up with a much faster way of doing
this. What we did was �rst to produce the correlation plots between the incident data
and the car data. These plot are generated for each day and each shift and they have all
of the key presses that all of the cars made and all of the incidents on them. We then
visually lined up where we thought the incidents belonged. Then we coded this into a �le
which can be read in at runtime to adjust the position of the incidents. This parameter
tells the program whether or not to load in this �le and adjust the incidents with it. This
is much faster than adjusting the position of the incidents based on the car data each
time and the results are the same. The various options are:

NO FIX INC LOC: Don't read in the incident placement �x �le.

YES FIX INC LOC: Read in the incident placement �x �le and adjust the location
of the incidents accordingly.

The default for this parameter is NO FIX INC LOC.

7.3. PARAMETERS TO THE RUNFILE 91

FLOOP CLEANUP Specify whether to keep the temporary
oop �les around.

There are three di�erent stages that the program can go through when it generates the
loop data: the
oop, gloop, and hloop stages. There are di�erent parameters that deter-
mine which of these stages are used. In each stage the program makes some temporary
�les that can be deleted when the program is done with them. This parameter lets the
user decide whether they want the �les from a certain stage, the
oop stage, to be left
on the system. For a complete description of the di�erent stages that the program goes
through when calculating the loop data see Chapter 11. A couple of things to note:

� There is basically no reason to leave these �les laying around except for debugging
purposes or to make sure that the various stages are working correctly.

� The program will not delete �les that it might need later on in the program. For
example, if you are going to calculate the delay for the incidents then the program
will not allow you to automatically delete the last set of loop �les, whatever those
may be, because they are going used later on. You can still delete them by hand if
you wish.

The various options are:

DELETE EVERYTHING: Delete all of the �les from the
oop stage.

DELETE ALL LANES: When the program generates the loop data for the
oop stage
it makes a couple of �les for each lane in the freeway. This will delete only the lane
�les.

DELETE MAIN LINE ONLY: The program also generates �les that correspond to
the average over all of the lanes. This will delete only the average �les.

DELETE RAMPS ONLY: There are �les generated for each on and o� ramp as well.
This option will delete all of the on and o� ramp �les.

DELETE NOTHING: This will leave all of the �les from the
oop stage.

The default for this parameter is DELETE EVERYTHING.

FSP DATA FILE NAME Specify the name of the fsp data �le.

This lets you specify the name of the fsp �le that was generated by the computer in the
car. This is the �le that holds the INRAD data. This probably shouldn't be changed.

The default for this parameter is fsp.dat.

GLOOP CLEANUP Specify whether to keep the temporary gloop �les around.

This parameter is basically the same as the parameter FLOOP CLEANUP except that it
deals with the gloop stage. See the discussion under the parameter FLOOP CLEANUP
for a short explanation. See Chapter 11 for a more detailed explanation. The various
options are:

DELETE EVERYTHING: Delete all of the �les from the gloop stage.

92 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

DELETE MAIN LINE ONLY: The program generates �les that correspond to the
average over all of the lanes. This will delete only the average �les.

DELETE RAMPS ONLY: There are �les generated for each on and o� ramp as well.
This option will delete all of the on and o� ramp �les.

DELETE NOTHING: This will leave all of the �les from the gloop stage.

The default for this parameter is DELETE EVERYTHING.

GNU PRINTER Specify which printer to have as the default printer for the plotting.

This is the name of the printer to use when generating the gnuplot �les. This only works
with a UNIX system and when you are generating plots with gnuplot. See Section 13.1
on making plots with gnuplot for a complete explanation.

The default for this parameter is s307 (the printer in my o�ce).

GORE POINTS Specify whether to �nd the gore points or not.

When the drivers are driving around the course they periodically hit a key that signi�es
that they passed a certain point in the road that we call gore points. When they hit this
special key, it is saved in they key.dat �le with a time and distance stamp. Since there
are usually two gore points for each direction, one at the start of the run and one at the
end of the run, you can �gure out the travel time between the two points. If you choose
to �gure out the gore points then the program does a couple of things:

� The program picks out all of the gore points from each car.

� It �gures out the travel time for each section from the di�erence between the time
stamps of two adjacent gore points.

� It attempts to weed out any mistakes that it detects. This includes multiple hits
of gore point keys, missing gore points, and any gore point travel times that are
too short. The critical low value is de�ned in the �le fsp.h by the de�ned value
GORE LOW THRESHOLD. It is currently de�ned to be 200 seconds. If a travel
time is less than this value then the program assumes something is wrong and deletes
that gore point.

� It combines all of the valid gore travel times from all of the cars for that shift and
makes a plot of travel time vs. run start time for both the south bound tra�c and
northbound tra�c. It places these �les in the main car directory. Note that a shift
is either morning or afternoon.

� For information on how to make the plots see Section 13.1.

The various options are:

NO CALC GORE POINTS: Calculate points.

YES CALC GORE POINTS: Don't calculate points.

The default for this parameter is NO CALC GORE POINTS.

7.3. PARAMETERS TO THE RUNFILE 93

HEADWAY TIME VAL Specify the headway time to use.

Since there were only 4 - sometimes 3 - probe vehicles traveling around the study section
there is a granularity in the sighting of incidents. The headway time is the average time
between any two probe vehicles. This parameter, which must be speci�ed in seconds,
allows the user to specify the average headway time. Half of the headway is added to
each side of the duration of the incident when calculating the delay. The problem with
this is that the variance of the headway is quite large. For a more detailed description of
how we calculate the delay per incident see Chapter 11.

The default for this parameter is 420.

HLOOP CLEANUP Specify whether to leave the temporary hloop �les around.

This parameter is basically the same as the parameter FLOOP CLEANUP except that it
deals with the hloop stage. See the discussion under the parameter FLOOP CLEANUP
for a short explanation. See Chapter 5 for a more detailed explanation. The various
options are:

DELETE EVERYTHING: Delete all of the �les from the hloop stage.

DELETE MAIN LINE ONLY: The program generates �les that correspond to the
average over all of the lanes. This will delete only the average �les.

DELETE RAMPS ONLY: There are �les generated for each on and o� ramp as well.
This option will delete all of the on and o� ramp �les.

DELETE NOTHING: This will leave all of the �les from the hloop stage.

The default for this parameter is DELETE NOTHING.

INC CONTOUR DELAY PLOT Specify whether to generate the contour delay plots for
the incidents.

We found that a very useful way to visualize the e�ect of an incident is to generate a plot
of distance versus time that has the incident locations marked as well as the contours of
delay (or density) that were calculated from the loop data. This parameter lets the user
decided if they want to generate these plots or not. If they do want to generate them
then one plot is generated for each shift, direction, and day. So for each day there are
four plots made. The incidents that are placed on the plots are only the incidents that
make it through the incident �lter. For a discussion of the incident �lter see Chapter 9,
and for a discussion of how we use the contour delay plots see Chapter 11. If you want to
generate the contour delay plots then the loop data averages need to have been computed.
Section 12.7 gives an example of how this is done. The various options are:

NO INC CONTOUR DELAY PLOTS: Don't generate the contour delay plots.

YES INC CONTOUR DELAY PLOTS: Generate the contour delay plots.

The default for this parameter is NO INC CONTOUR DELAY PLOTS.

94 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

INC CORRELATION GRAPH Specify whether to generate the graphs from correlating
the car data and the incident database.

This option will tell the program to generate the incident correlation graphs. This is only
relevant if the program is already attempting to correlate the incident database with the
car data by using the parameter CORRELATE CARS DATABASE. If that parameter is
not set then this option is ignored.

The correlation graphs are an easy way to visualize what the program is attempting to
do when it is trying to correlate the incident database with the car data. A correlation
graph is a plot of the incidents from the incident database with the key presses from the
car data on a time versus distance plot. This option will generate one correlation graph
for each direction and each shift of car data that is speci�ed. The way that these plots are
generated is discussed in Chapter 5 and examples of these plots are given in Chapter 11.
The various options are:

NO INC CORR GRAPHS: Don't generate the correlation graphs.

YES INC CORR GRAPHS: Generate the correlation graphs.

The default for this parameter is NO INC CORR GRAPHS.

INC DUR EXPAND FRACTION Specify what fraction of time to expand the incident
duration.

This parameter is used in conjunction with the run�le parameter FIX INC DURATION.
When we attempt to �x the incident durations we have the time that we last witnessed
an incident and the time that a car drove by the same location and the incident wasn't
there. This parameter tells the program how much of this time di�erence to take and
add onto the duration. This is usually set to 50% to indicate that we should just take
half of the time. Note that the same analysis is done for the starting time and that both
the starting and ending times are expanded. See the discussion in Section 5.3.2 for more
details. As was discussed in that section, this method of �xing the incident durations
gives an estimate of the durations that is biased.

The default for this parameter is 50.

INC EXPLANATION Specify what title string to put on the incident graphs.

This parameter is a little di�erent from all of the others in that it is a string. It can be
multiple words, it can have commas, etc. The only restriction is that it has to be on a
single line and it should probably be less than 50 or 60 characters. The restriction on the
length is because it probably won't �t on the graph if it's too long. The graphs that this
title string will be placed on are:

� The delay vs duration graph.

� The histogram of the number of incidents vs. duration.

� The histogram of the percentage of incidents vs. duration.

� The cumulative distribution of incidents vs. duration.

7.3. PARAMETERS TO THE RUNFILE 95

The default for this parameter is Plot (which is really descriptive).

INC FINISHED GRAPHS Specify whether to make a graph of the delay versus duration
for the incidents.

This parameter tells the program whether to generate a graph of the delay versus duration
for all of the incidents that passed through the incident �lter. For an example of this type
of graph see Chapter 16. A couple of things to note:

� This will only have an e�ect if you are already processing the incidents.

� The only incidents that will be plotted are those that passed through the incident
�lter.

� This does not govern whether the three incident histograms are made. Those are
generated whenever you process the incidents.

NO FINISHED GRAPH: Don't generate the graph.

YES FINISHED GRAPH: Generate the delay vs. duration graph.

The default for this parameter is NO FINISHED GRAPH.

INC FINISHED OUTPUT Specify where you want the �nished textual output from the
incident analysis to go.

This option tells the program where to put the �nished incident output. The �nished
output is the output that explains the results of the incident database - probe vehicle
correlation, the results of the delay calculation for each incident, a table of delay vs
incident duration, and various histograms of the incidents. For a discussion of the �nished
incident output see Chapter 16. The various options are:

NO FINISHED OUTPUT: This will simply not generate any output at all.

FILE FINISHED OUTPUT: This will place the output in a �le.

SCREEN FINISHED OUTPUT: This will simply place the output on the screen.
This is probably the most useful option.

The default for this parameter is NO FINISHED OUTPUT.

INC FINISHED OUT LEVEL Specify what level of �nished output you want from the
incident analysis.

This option tells the program how much to print out about the �nished incidents. The
�nished incidents are simply the incidents that have been processed. There are quite a
few di�erent types of output for the �nished incidents. For a complete discussion of the
output see Chapter 16. The various options are:

INC FIN OUT SPARSE: Don't print out much.

INC FIN OUT MEDIUM: Print out the right amount of information. This is what
most people probably want to use.

96 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

INC FIN OUT VERBOSE: Print out way too much information.

The default for this parameter is INC FIN OUT SPARSE.

INC GRAPH MAX NUM Specify what the y-axis range should be for the histogram of
the number of cars vs duration.

This parameter allows the user to set the vertical axis scale on a certain histogram. The
reason that we added this parameter is because we noticed that we wanted to be able to
visually compare two di�erent plots and that was sort of hard because gnuplot usually
sets it's axes scales automatically.

The default for this parameter is 10.

INC GRAPH MAX PERCENT Specify what the y-axis range should be for the histogram
of the percentage of cars vs duration.

This parameter allows the user to set the vertical axis scale on a certain histogram. The
reason that we added this parameter is because we noticed that we wanted to be able to
visually compare two di�erent plots and that was sort of hard because gnuplot usually
sets it's axes scales automatically.

The default for this parameter is 10.

INC MATCH ZERO WIDTH Specify whether you want to match incidents that were only
witnessed once.

This option tells the program whether it should attempt to match incidents that have
zero width. The reason that they have zero width is because they were only witnessed
once by one driver, so there is only one entry in the incident database. The program can
still calculate a value for the delay caused by this incident because it takes into account
the probe vehicle headway. The vehicle headway is a run�le parameter that the user can
set that is an estimate of the time between any two probe vehicles. See the text under
HEADWAY TIME VAL for the relevant discussion. Usually, the incidents that are just
witnessed once are small events that aren't really going to contribute to any delays. So
this parameter lets you weed those out right o� the bat. The various options are:

NO MATCH ZERO WIDTH INC: Throw out incidents witnessed once.

YES MATCH ZERO WIDTH INC: Process incidents witnessed once.

The default for this parameter is NO MATCH ZERO WIDTH INC.

INC RAW MATCH OUTPUT Specify where you want the raw output from the incident
analysis to go.

This option tells the program where to put the raw incident output. The raw output
is the output before any processing is done on the incidents. So it's just a listing of the
incidents that made it through the �lter. This could be useful if you just wanted to search
for di�erent types of incidents and you didn't want to bother with calculating the delays.
The various options are:

7.3. PARAMETERS TO THE RUNFILE 97

NO RAW MATCH OUTPUT: This will simply not generate any output at all.

FILE RAW MATCH OUTPUT: This will place the output into a �le. For a discus-
sion of the raw incident output see Chapter 16.

SCREEN RAW MATCH OUTPUT: This will simply place the output on the screen.
This is probably the most useful option.

The default for this parameter is NO RAW MATCH OUTPUT.

INC RAW OUTPUT LEVEL Specify what kind of raw output you want from the incident
analysis.

This option tells the program how much to print out about the raw incidents. The raw
incidents are simply the incidents that made it through the incident �lter. The various
options are:

INC RAW OUT SPARSE: Don't print anything. This is probably what most people
want to use because the interesting output is in the �nished output.

INC RAW OUT MEDIUM: Print some information but not too much.

INC RAW OUT VERBOSE: Print out all the �elds of the incident database for each
incident that was matched. This is quite a bit of information.

The default for this parameter is INC RAW OUT SPARSE.

INCIDENT DATA DIRECTORY Specify which main incident directory to use.

This is the complete path of the directory that holds the incident data. This directory
must also hold the incident con�guration �les. For more information on the directory
structure that the fsp program expects see Chapter 6.

The default for this parameter is /home/clair0/PATH/FSP/Set1/Incidents.

INCIDENT POINTS Specify whether to look for the incidents or not.

This will tell the program to look for the incident points in the car data or not. This
option must be turned on if you are going to generate the correlation plots between the
incident database and the car data. Since this looks in the car data �le key.dat, you
need to specify some car data for this to have any e�ect.

NO INCIDENT POINTS: Don't record the incident locations.

YES INCIDENT POINTS: Record the incident locations.

The default for this parameter is NO INCIDENT POINTS.

INRAD POINTS Specify whether to �gure out where the INRAD points are.

In each car is an INRAD system that records whenever the car goes over a speci�c radio
beacon in the road. These time stamps are placed in the �le fsp.dat. This option tells
the program to place the INRAD points on the trajectory plots of the cars, and to make
a plot of the travel time between INRAD points. Unfortunately, there are only three

98 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

INRAD points on the whole route: one at the start of the southbound run, one at the
end of the southbound run, and one at the start of the northbound run. So we can only
calculate travel times for the southbound direction. Another drawback is that the drivers
don't always drive over the INRAD loops in the road, so sometimes we can't get any
travel times at all. When we can get the INRAD points we use them to aid in �guring
out where the probe vehicle was when the driver pressed a key to indicate that they were
passing an incident.

NO INRAD POINTS: Don't do anything with the INRAD points.

YES INRAD POINTS: Determine the INRAD points and mark them on any relevant
plots and generate the travel time plot.

The default for this parameter is NO INRAD POINTS.

KEY DATA FILE NAME Specify the name of the keyed in �le.

This lets you specify the name of the keyed in data �le. This �le holds all of the key
presses that the drivers made while on their runs. This �lename probably shouldn't be
changed.

The default for this parameter is key.dat.

LOOP AGGREGATE VALUES Specify whether you want to calculate the aggregate de-
lay and
ow.

This option will tell the program to calculate the total delay and
ow for all of the loop
detectors for a �xed time period. There are two time periods that the program uses: a
morning period and an evening period. The morning period is from 6:30am until 9:30am
and the evening period is from 3:30pm until 6:30pm. These times correspond to the times
that we had probe vehicles on the freeway. We only looked at these times because we
wanted to know the aggregate
ow and delay only for the times that we knew there were
incidents.

To �nd these aggregate values the program simply reads in all of the loop delay and
ow
�les that have been calculated and sums up the values for the �xed time period. This is
done for each set of loop data speci�ed. This will also sum up over all of the loop data sets
speci�ed. This should give you a feel for how much delay was taking place over certain
days. The various options are:

NO CALC AGGREGATE VALUES: Don't calculate the aggregate delay and
ow.

YES CALC AGGREGATE VALUES: Calculate the aggregate delay and
ow.

The default for this parameter is NO CALC AGGREGATE VALUES.

LOOP AVERAGE Specify whether to calculate the averages from the loop data.

This option will tell the program whether to calculate the average values for the speeds,
counts, occupancies and densities. For each di�erent data type the average is calculated
at each time of day with respect to the various days. For example, if you started o� with

7.3. PARAMETERS TO THE RUNFILE 99

four days worth of speed data that covered the time period from 8am until 10am in steps
of 1 minute then this routine would calculate the average speed over the four days from
8am until 10am in steps of 1 minute. So the average speed value at 8am would be the
average of four values, each one corresponding to the speed of the di�erent days at 8am.

These average values are used by the fsp program in a few di�erent ways. The �rst
way is in the calculation of the delay with respect to the average. The fsp program
needs to know what the average speed is before it can calculate the delay this way. For
a complete example of how to calculate the averages and to then use them to calcu-
late the delay with respect to the average see Section 12.7. The second way the aver-
ages are used is in the generation of the contour delay plots. If the run�le parameter
INC CONTOUR DELAY PLOT is set properly then the fsp program will generate var-
ious contour plots that give a space-time picture of the density around an incident. The
contour delay plots are described in more detail in Chapter 16.

There is an average �le created for every loop detector for each value. These average �les
are placed under a special directory named \Avg" that lies under the main loop output
directory. These �les are named according to the following scheme: WloopX.YZa.
Where we have the following:

W: is either \g" or \h" corresponding to the gloop or hloop �les. The gloop �les are the
loop �les with the holes �xed and the hloop �les are the gloop �les that have been
�xed to be consistent.

X: is the loop number.

Y: is either \n" for northbound or \s" for southbound.

Z: is either \s," \c," \o," or \d," for speeds, counts, occupancies or densities respectively.

For example, the �le holding the average speed for �xed northbound loop data at detector
#17 would be named gloop17.nsa.

There are a few things to note about creating the averages:

� The averages are created for only the speeds (mph), counts (vehicles/lane/hour),
occupancies (%), and densities (vehicles/mile).

� The fsp program can only make the averages for the loop data with the holes �lled
in. That means that the loop data �le pre�x needs to be either \g" or \h" in order
for this to work. If you attempt to make the averages for the data with the hole not
�lled in then the program will crash.

� The fsp program will only make the average for the loop data sets that were declared
in the run�le. This means that if you are only working with a subset of the data
and you tell the program to compute the averages then the program will compute
the averages on only a subset of the data - the original averages, if there were any,
will be overwritten.

NO LOOP AVERAGE: Don't calculate the loop averages.

YES LOOP AVERAGE: Calculate the loop averages.

100 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

The default for this parameter is NO LOOP AVERAGE.

LOOP CONSISTENCY FIX Specify whether you want to attempt to �x the consistency
errors in the loop data.

It turns out that there are certain loop detectors that consistently over counted or under
counted the cars going over them. To correct this problem we allow the user to read in
a set of prede�ned �les that tell the program how to correct for these consistency errors.
This is explained in detail in Section 5.2.2. If this is turned on then this constitutes the
third stage in the loop data processing. There are a couple of things to note about the
algorithm that does the consistency �x:

� You can only run the consistency �x after the loop hole �x has been run. So you
need to set up the program to run the hole �x algorithm at the same time that you
want to run the consistency �x. See the discussion under LOOP HOLES FIX.

� The consistency �x is only run on the averages across the lanes, not the individual
lane �les themselves.

� You need to have the consistency �x tables in place in order for this to run. See the
discussion in Chapter 6.

The various option are:

NO FIX CONSISTENCY ERRORS: Don't attempt to �x the consistency errors.

YES FIX CONSISTENCY ERRORS: Attempt to �x the consistency errors.

The default for this parameter is NO FIX CONSISTENCY ERRORS.

LOOP DATA COMPRESSED Specify whether the loop data is compressed or not.

This will allow the user to store the loop data in the compressed format. See the discussion
under CAR DATA COMPRESSED for the relevant information. The various options are:

DATA NOT COMPRESSED: The data is not compressed.

DATA IS COMPRESSED: The data is compressed.

The default for this parameter is DATA NOT COMPRESSED.

LOOP DATA DIRECTORY Specify which main loop directory to use.

This is the complete path of the directory that holds the loop data. It must also hold the
loop con�guration and report directories. For more information on the directory structure
that the fsp program expects see Chapter 6.

The default for this parameter is /home/clair0/PATH/FSP/Set1/Loopdata.

LOOP HOLES FIX Specify whether you want to attempt to �x the holes that show up in
the loop data.

7.3. PARAMETERS TO THE RUNFILE 101

This parameter will tell the program to attempt to �x the holes in the loop data or
not. It does this by �guring out where there is missing data and then making up for
it by using the data that surrounds it (i.e. the adjacent loop detectors). This routine
will read in the
oop �les, which are the 1st stage in the loop data processing, and then
generate the gloop �les, which are the 2nd stage in the loop data processing. Whether the
program does the third stage of loop processing is determined by the run�le parameter
LOOP CONSISTENCY FIX. In order for the hole �x routine to work correctly you need
to set a couple of parameters:

� LOOP FLOW PLOTS needs to be set to YES CALC ALL FLOW PLOTS. This
tells the program to generate the
oop �les.

� LOOP TEXT needs to be set to LOOP ERR REPORT ONLY. This tells the pro-
gram to process the
oop �les.

� DROPOUT TIMES needs to be set to YES DROPOUT FILE. This tells the pro-
gram to �gure out where the holes in the data are.

� LOOP HOLES FIX needs to be set to YES FIX HOLE ERRORS. This tells the
program to attempt to �x the
oop �les based on what dropout times it was passed.
This will generate the gloop �les.

So what this routine will do is generate a set of loop �les exactly like the
oop �les except
that they are named the gloop �les and there shouldn't be any holes in the data. Also
note that the gloop �les don't have the individual on and o� ramp data �les. These have
been compressed into two �le types: the on counts and the o� counts. For a complete
explanation of the procedure to �x the loop holes see Chapter 5. The various options are
given below:

NO FIX HOLE ERRORS: Don't attempt to �x the holes in the loop data.

YES FIX HOLE ERRORS: Attempt to �x the holes in the loop data.

The default for this parameter is NO FIX HOLE ERRORS.

LOOP DIRECTORY Specify a main loop directory to process.

This is one of the two commands that specify data sets for the program to work on (the
other one being MAIN DIRECTORY). This one speci�es a loop directory to work on.
Just like the car directories, you can have multiple loop directories for each run�le. These
directories all need to be subdirectories of LOOP DATA DIRECTORY.

The �rst entry after the equals sign should be the name of the loop directory. After that,
the numbers of the loop �les for that day should be placed in a row with spaces between
each number. An example of specifying several di�erent loop directories is given below:

LOOP_DIRECTORY = lp031793 1 2 3 4 5 6 7 8 9 10

LOOP_DIRECTORY = lp031893 1 2 3 4 5 6 7 8 9 10

LOOP_DIRECTORY = lp031993 1 2 3 4 5 6 7 8 9 10

102 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

In this example there were three loop directories that were speci�ed and all of them
contained data for the loop detectors 1 thru 10. The operations that are de�ned in the
rest of the run�le will be performed on all three of these directories. Some things to point
out:

� The loop directories have to reside in the directory speci�ed in the run�le parameter
LOOP DATA DIRECTORY. See Chapter 4 on downloading the data and Chapter 6
on the directory structure for more details.

� Even though this command speci�es the loop data set it doesn't tell the program
what to do with the data. So if you aren't getting any output then try to specify
one of the following commands: LOOP TEXT, or LOOP FLOW PLOTS.

LOOP FILTER FACTOR Specify the �ltering factor for the loop data.

This is exactly the same principle as the parameter CAR SPD FILTER FACTOR except
that this is for the loop data. See the discussion there for an explanation of the algorithm
used. This �lter will be applied to all of the loop data; the speeds, occupancies, and
counts. All analysis and error checking will be performed on the �ltered data.

The default for this parameter is 0.9.

LOOP FLOW PLOTS Specify what kind of plots to make from the loop data.

This is one of the options to control what kind of data to extract from the loop data.
The other one is LOOP TEXT. TEXT. The loop data contains occupancies, speeds, and
counts for every main line lane, and every demand and passage detector. This option will
dictate what gets extracted into various �les for generating plots. The output period for
the data set is governed by the parameter LOOP OUTPUT PERIOD and the time period
by LOOP START TIME and LOOP END TIME. Once the plots are generated they can
be viewed on the screen or printed, using the gnuplot program, to the printer speci�ed
by the parameter GNU PRINTER. See Section 13.1 on gnuplot for further information
on printing and viewing the �les.

The various options are:

NO CALC LOOP FLOW PLOTS: Don't generate any plots at all.

YES CALC OCC FLOW PLOTS: Generate only the plots for occupancy.

YES CALC SPD FLOW PLOTS: Generate only the plots for speed.

YES CALC PPS FLOW PLOTS: Generate only the plots for PPS or counts.

YES CALC ALL FLOW PLOTS: Generate all of the plots.

The default for this parameter is NO CALC LOOP FLOW PLOTS.

LOOP END TIME Specify the ending time of the loop data set.

This is the ending time, in seconds since midnight, of the loop data.

The default for this parameter is 72000 (8:00pm).

7.3. PARAMETERS TO THE RUNFILE 103

LOOP OUTPUT PERIOD Specify the output period for the loop data set.

This is the output time period for the loop data. The output period is the period at which
the data is generated. This value has to be between 1 and 3600 seconds. Note that all of
the data generated from the loop data will have this period.

The default for this parameter is 60 seconds.

LOOP START TIME Specify the starting time of the loop data set.

This is the starting time, in seconds, of the loop data. This time is in seconds measured
from midnight the night before.

The default for this parameter is 18000 (5:00am).

LOOP TEXT Specify what kind of reports to generate from the loop data.

This allows the user to focus in on a detailed section of the loop data and to extract data
from it. This is one of the two commands that actually extract information from the
loop data. The other one is LOOP FLOW PLOTS. With this parameter one can focus
in on a speci�c time by specifying the parameters LOOP START TIME, for the starting
time, LOOP END TIME, for the ending time, and LOOP OUTPUT PERIOD for the
output period. The output will then be generated for that period of time. Note that
these are also the variables that govern over what time period the LOOP FLOW PLOTS
are generated.

The various options are:

LOOP NO REPORTS: No output at all.

LOOP ERR REPORT ONLY: Only print out the error report.

LOOP TEXT REPORT ONLY: Only print out the loop data. Using this will just
convert the loop data from raw form to text form.

LOOP BOTH REPORTS: Do both reports.

The default for this parameter is LOOP NO REPORTS.

MAIN DIRECTORY Specify a main car directory to process.

This is one of the two commands that specify data sets for the program to work on (The
other one being LOOP DIRECTORY). This one speci�es a car directory to work on. You
can have multiple car directories speci�ed for each run�le, you just need to put a line in
the run�le for each main car directory that you wish to process.

Since this is not a parameter that has default values the format of this statement is impor-
tant. The �rst entry after the equals sign should be the name of the car main directory.
After that, the numbers of the car directories should be placed in a row with spaces
between each number. An example of specifying several di�erent main car directories is
given below:

104 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

MAIN_DIRECTORY = am031793 1 3 4 5

MAIN_DIRECTORY = pm031793 1 4 5

MAIN_DIRECTORY = am031893 1 4 5

MAIN_DIRECTORY = pm031893 1 4 5

MAIN_DIRECTORY = am031993 1 3 4 5

MAIN_DIRECTORY = pm031993 1 3 4 5

In this example there were six main directories that were speci�ed. All of the operations
that are de�ned in the rest of the run�le will be performed on all of the directories. Some
things to point out:

� The main car directories have to reside in the directory speci�ed in the run�le pa-
rameter LOOP DATA DIRECTORY.

� Since you have to specify which main car directories you are talking about, there is
no default value for this parameter. Therefore you have to specify a directory if this
parameter is going to be in the run�le.

� Even though this command speci�es the car data set it doesn't tell the program
what to do with the data. So if you aren't getting any output then try specifying
some commands.

NAV DATA FILE NAME Specify the name of the nav.dat data �le.

This lets you specify the name of the navigation data �le. This is the �le that holds the
data that was taken from the PC in the car. This �le should be in the raw data format.
This probably shouldn't be changed.

The default for this parameter is nav.dat.

NUMBER INC CORR GRAPHS Specify whether to put the numbers on the incident
correlation graphs.

This option will tell the program to place the incident numbers on the incident correlation
graphs. This is only relevant if the program is already attempting to correlate the incident
database with the car data and is trying to make the correlation plots. If those options
are not set then this option is ignored.

If this option is set then the program will place the incident number on the lower left
hand corner of each incident box. The reason that you might not want to use this option
is because when there are a lot of incidents and a lot of key presses it might become really
hard to see the numbers. For a more thorough discussion see Chapter 11. The various
option are given below:

NO NUMBER INC CORR GRAPHS: Don't place the numbers on the incident
correlation graphs.

YES NUMBER INC CORR GRAPHS: Place the numbers on the incident corre-
lation graphs.

The default for this parameter is NO NUMBER INC CORR GRAPHS.

7.3. PARAMETERS TO THE RUNFILE 105

OUTPUT DIRECTORY Specify which directory to use for the output.

This is the complete path of the directory that will hold the output from the fsp program.
One of the �rst things that the fsp program does when runs is it creates a mirror of the
input data directories under the output data directory. Then, all of the output data,
meaning the graphs, the text, the error reports, etc., is place in this directory. This is
done so that multiple users can process the data without having to worry about messing
up other users. The only requirement is that the stem of the output directory must
already exist. The stem directory is assumed to be the �rst directory up from the output
directory. So if the output directory is /home/data/FSP/Output then the stem directory
is assumed to be /home/data/FSP. The directory named Output may or may not exist. If
it does exist then that's �ne. If it doesn't then the fsp program will create it. For more
information on the directory structure that the fsp program expects see Chapter 6.

The default for this parameter is /home/clair0/PATH/FSP/Out1.

OUTPUT FLOW AVG FACTOR Specify whether the counts value in the loop data is
per second or per output period.

When displaying the PPS value from the loop data you can either have this value mean
pulses per second, or pulses per period. If you are trying to generate a plot of the volume
of cars (eg: cars/lane/hour) then you need this value to be MATCH OUTPUT PERIOD.
This will make the value of PPS be the number of cars that have passed over the detec-
tor in the current time period. For example, if the value of LOOP OUTPUT PERIOD
was 60, meaning a data point is spit out every 60 seconds, and the value of OUT-
PUT FLOW AVG FACTOR was MATCH OUTPUT PERIOD then the PPS values are
the number of counts per output period, which in this case is 60 seconds.

In another example, let's assume that the value of LOOP OUTPUT PERIOD was 4
seconds. And that during each of the �rst two seconds there was 1 car that went over
the detector and then during the last two seconds there were no cars that went over the
detector. If the value of OUTPUT FLOW AVG FACTOR was PER ONE SEC then the
PPS value would be 0.5 cars/sec. If the value of OUTPUT FLOW AVG FACTOR was
MATCH OUTPUT PERIOD then the PPS value would be 2 cars/output period.

Note if OUTPUT FLOW AVG FACTOR is set to MATCH OUTPUT PERIOD that
when you generate the �les for the counts data then the individual lane and the on
and o� ramp data is in counts/output period but that the �le for the aggregate
ow on
the main line is counts/hour/lane.

The various options are:

MATCH OUTPUT PERIOD: Causes the true number of cars that went over the
detector in the time period to be displayed as the PPS value. For all of the analysis
routines the program expects that this setting will be used.

PER ONE SEC: Causes the PPS value to be the number of counts per second, averaged
over the output period.

The default for this parameter is MATCH OUTPUT PERIOD.

106 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

PERCENT DIESEL TRUCKS Specify the percentage of vehicles on the freeway that are
diesel trucks.

This allows the user to specify what percentage of vehicles on the freeway were diesel
trucks. This information is used in the calculation of the emission factors. The types of
vehicles on the freeway are either passenger cars, diesel trucks, or gas trucks. Since the
percentage of diesel trucks and gas trucks are speci�ed in the run�le, the percentage of
passenger cars is just whatever is left over.

The default for this parameter is 2.0.

PERCENT GAS TRUCKS Specify the percentage of vehicles on the freeway that are gas
trucks.

This allows the user to specify what percentage of vehicles on the freeway were gas trucks.
See the discussion under PERCENT DIESEL TRUCKS.

The default for this parameter is 3.0.

PROCESS INCIDENTS Specify whether to do any processing on the incidents.

This option tells the program whether to process the incidents or not. If you want to do
anything with the incidents then this has to be turned on. If this is turned on then the
program will read in the incident �lter and the incident database and attempt to �lter
the incidents. Once it has done that it will �x the placement of the incidents if told to
do so, and then it will attempt to correlate the incidents with the car data if told to do
so. Then the program will calculate the delay for each incident. Whether any of this is
displayed to the user is determined by the various incident output parameters.

NO PROC INCIDENTS: Don't do any incident processing.

YES PROC INCIDENTS: Process the incidents.

The default for this parameter is NO PROC INCIDENTS.

REPORT OPTION Specify what type of car data diagnostics to perform.

When the program runs it tries to determine if the car data is valid or not. This parameter
tells the program what kind of error reports to generate on the car data. You can make
a total of four di�erent types of reports varying from short and not very informative to
long and detailed; or you can make all four reports. The various report type options are:

SHORT REPORT ONLY: This only lists out what data was collected.

MEDIUM REPORT ONLY: Will print out a report about every car listing the driver
name, start time, gps data results, etc.

HUGE REPORT ONLY: Will print out a very detailed report about every car and
every run the car makes.

KEY REPORT ONLY: Will print out a very detailed report about the key strokes
that the drivers typed in during their runs. This will only be generated if the car
data set is of type 2. See Section 4.3 for a discussion of the di�erent car data sets.

7.3. PARAMETERS TO THE RUNFILE 107

EVERYTHING: This makes all of the reports.

The �les are saved in the directory \Reports" under the car output directory. For more
information on the expected directory structure see Chapter 6. The various �les are
named with the following scheme: fkey,huge,med,smgZZZZZ.err. This means that the
�rst few characters are either key, huge, med, or sm corresponding to the key, huge,
medium, or small report. The Z's correspond to the 3rd through 7th characters of the
run�le that was speci�ed for this run. That might seem a little strange but you need to
remember that the whole process is under computer control from the data disks to the
�nal reports and this �ts into the scheme very nicely. For example, if the run�le was
called rf09230.run, then the car error reports would be called:

key09230.err

huge09230.err

med09230.err

sm09230.err

For more information on the naming scheme of the run�les and the whole process in
general see Chapter 17.

The default for this parameter is EVERYTHING.

SPEED DIST PLOTS Specify whether to make distance vs. time plots of the car trajectory.

This option is exactly like the SPEED TIME PLOTS option except that it tells the
program whether to generate the distance vs. time plots of the car data or not. If the
data is �ltered by specifying something for the parameter CAR SPD FILTER FACTOR
then the �ltered data is plotted. The incidents, from the key presses, are always recorded
and plotted on the distance vs. time plot. If the parameter INRAD POINTS is set to
the value YES INRAD POINTS then the INRAD points are also plotted. The various
options are:

NO SPEED DIST PLOTS: Don't generate the plots.

YES SPEED DIST PLOTS: Generate the plots.

The default for this parameter is NO SPEED DIST PLOTS.

SPEED TIME PLOTS Specify whether to make speed vs. time plots of the car trajectory.

This option tells the program whether to generate the speed vs. time plots of the car
data or not. If the data is �ltered by specifying something for the run�le parameter
CAR SPD FILTER FACTOR then the �ltered data is plotted. The incidents, from the
key presses, are always recorded and plotted on the speed vs. time plot. If the parameter
INRAD POINTS is set to YES INRAD POINTS then the INRAD points are also plotted.
The various options are:

NO SPEED TIME PLOTS: Don't generate the plots.

108 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

Time

Incident end time

Incident start time

}

}

Time error bounds

Distance error bounds

Distance
Incident location

Figure 7.1: Basic Incident Plot.

YES SPEED TIME PLOTS: Generate the plots.

The default for this parameter is NO SPEED TIME PLOTS.

TIME DIST PLOTS Specify whether to make the time vs. distance plots of the car trajec-
tory.

This option tells the program whether to generate the time vs. distance plots of the car
data or not. If the data is �ltered by specifying something for the run�le parameter
CAR SPD FILTER FACTOR then the �ltered data is plotted. The incidents, from the
key presses, are always recorded and plotted on the speed vs. time plot. If the parameter
INRAD POINTS is set to YES INRAD POINTS then the INRAD points are also plotted.
The various options are:

NO TIME DIST PLOTS: Don't generate the plots.

YES TIME DIST PLOTS: Generate the plots.

The default for this parameter is NO TIME DIST PLOTS.

TIME ERROR BOUND Specify the time error bound for the incident correlation analysis.

This option will tell the program to expand the size of the incident box in the time domain
for the routine that does the correlation between the incident database and the car data.
This parameter can be seen in Figure 7.1. This parameter expands the region of the
time-distance space that the program searches for key presses to match. This option is
useful if the clocks on the cars were not synchronized with each other and with the person
recording the information for the incident database. Note that the time error bound is
added to both sides of the box. It is obvious that if this bound is too large then the
program will start to match key presses that should not be matched. For a discussion of
the correlation procedure see Chapter 5.

The default for this parameter is 600.

7.4. DEFAULT PARAMETERS VALUES 109

TRAFFIC DELAY Specify whether to calculate the loop tra�c delay or not.

This tells the program whether to calculate the loop delay or not. Note that this option
only tells the program whether to physically go through and generate the loop delay �les
from the loop
ow �les. It does not tell the program whether to use a constant speed
or the average speed as the threshold. The reason for this is because the calculation of
the delay for each individual incident relies only on what sort of reference speed you are
using. It does not care if the program has calculated the the loop delay �les during this
run - they could have been calculated once a long time ago. Even though this may seem
like a useless option it can save you time because you won't have to calculate the loop
delay �les multiple times.

Note that the loop delay is not the same as the delay per incident. To calculate the
loop delay the program simply reads in the loop �les and calculates the delay for each
loop segment for each time slice and saves this to another �le. The delay per incident
calculation looks at speci�c parts of these �les to �gure out the delay for a speci�c incident.
For a complete discussion of how the loop delay is calculated see Chapter 11. The various
options are:

NO CALC TRAFFIC DELAY: Don't calculate the loop tra�c delay.

YES CALC TRAFFIC DELAY: Calculate the loop tra�c delay.

The default for this parameter is NO CALC TRAFFIC DELAY.

TRAFFIC LOW SPEED Specify the congestion speed.

This parameter lets the user specify what the congestion speed, in miles per hour, should
be when calculating the loop delay. In order for this parameter to have any e�ect the
run�le parameter DELAY CALCULATION should be set to WRT CONSTANT SPEED.
See the discussion under the parameter DELAY CALCULATION for a short discussion
of what TRAFFIC LOW SPEED does. For a more thorough discussion see Chapter 11.

The default for this parameter is 60.

7.4 Default Parameters Values

Tables 7.1 - 7.5 are just a list of the default values for the various parameters. You can cause
the default value to be used by either not including the parameter name in the run�le or by
including the parameter name and an equals sign and then nothing else. If there is a blank
space where the default should be then that means that there is no default and you have to
specify a value.

7.5 Summary Of Parameter Values

Tables 7.6 - 7.14 are just a summary of all of the parameters and their options. You should
probably print this little section out for future reference. If the option has an *" then that
means that you need to provide either a numerical value or a string.

110 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

Parameter Default Value

CAR DATA DIRECTORY /home/clair0/PATH/FSP/Set1/Cardata
DEBUG LEVEL SILENT DEBUG
GNU PRINTER s307
INCIDENT DATA DIRECTORY /home/clair0/PATH/FSP/Set1/Incidents
LOOP DATA DIRECTORY /home/clair0/PATH/FSP/Set1/Loopdata
OUTPUT DIRECTORY /home/clair0/PATH/FSP/Out1

Table 7.1: Default values for the main parameters.

Parameter Default Value

CAR CLEANUP DELETE FILES
CAR DATA COMPRESSED DATA NOT COMPRESSED
CAR DATA SET NUMBER 1
CAR DIRECTORY ROOT car
CAR SPD FILTER FACTOR 0.9
ERROR FILE NAME EXT err
FSP DATA FILE NAME fsp.dat
GORE POINTS NO CALC GORE POINTS
INCIDENT POINTS NO INCIDENT POINTS
INRAD POINTS NO INRAD POINTS
KEY DATA FILE NAME key.dat
MAIN DIRECTORY
NAV DATA FILE NAME nav.dat
REPORT OPTION EVERYTHING
SPEED DIST PLOTS NO SPEED DIST PLOTS
SPEED TIME PLOTS NO SPEED TIME PLOTS
TIME DIST PLOTS NO TIME DIST PLOTS

Table 7.2: Default values for the car parameters.

7.5. SUMMARY OF PARAMETER VALUES 111

Parameter Default Value

DELAY CALCULATION WRT CONSTANT SPEED
DELAY TYPE ONLY HAVE POSITIVE DELAY
DROPOUT TIMES NO DROPOUT FILES
EMISSION CALC NO CALC EMISSIONS
FLOOP CLEANUP DELETE EVERYTHING
GLOOP CLEANUP DELETE EVERYTHING
HLOOP CLEANUP DELETE NOTHING
LOOP AGGREGATE VALUES NO CALC AGGREGATE VALUES
LOOP AVERAGE NO LOOP AVERAGE
LOOP CONSISTENCY FIX NO FIX CONSISTENCY ERRORS
LOOP DATA COMPRESSED DATA NOT COMPRESSED
LOOP HOLES FIX NO FIX HOLE ERRORS
LOOP DIRECTORY
LOOP FILTER FACTOR 0.9
LOOP FLOW PLOTS NO CALC ALL FLOW PLOTS
LOOP END TIME 72000
LOOP OUTPUT PERIOD 60
LOOP START TIME 18000
LOOP TEXT LOOP NO REPORTS
OUTPUT FLOW AVG FACTOR MATCH OUTPUT PERIOD
PERCENT DIESEL TRUCKS 2.0
PERCENT GAS TRUCKS 3.0
TRAFFIC DELAY NO CALC TRAFFIC DELAY
TRAFFIC LOW SPEED 60

Table 7.3: Default values for the loop parameters.

112 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

Parameter Default Value

DELAY DOWNSTREAM NUM 0
DELAY UPSTREAM NUM -1
FIX INC DURATION NO FIX INC DURATION
FIX INC LOCATION NO FIX INC LOC
HEADWAY TIME VAL 420
INC DUR EXPAND FRACTION 50
INC EXPLANATION Plot
INC FINISHED GRAPHS NO FINISHED GRAPH
INC FINISHED OUTPUT NO FINISHED OUTPUT
INC FINISHED OUT LEVEL INC FIN OUT SPARSE
INC GRAPH MAX NUM 10
INC GRAPH MAX PERCENT 10
INC MATCH ZERO WIDTH NO MATCH ZERO WIDTH INC
INC RAW MATCH OUTPUT NO RAW MATCH OUTPUT
INC RAW OUTPUT LEVEL INC RAW OUT SPARSE
PROCESS INCIDENTS NO PROC INCIDENTS

Table 7.4: Default values for the incident parameters.

Parameter Default Value

CORRELATE CARS DATABASE NO CORRELATE
FIX INC DELAY BOX NO FIX INC DELAY
INC CONTOUR DELAY PLOT NO INC CONTOUR DELAY PLOTS
INC CORRELATION GRAPH NO INC CORR GRAPHS
NUMBER INC CORR GRAPHS NO NUMBER INC CORR GRAPHS
TIME ERROR BOUND 600

Table 7.5: Default values for the analysis parameters.

7.5. SUMMARY OF PARAMETER VALUES 113

Parameter Options Explanation

CAR DATA DIRECTORY Car data dir
*

GNU PRINTER Printer name for plots
*

DEBUG LEVEL Debug stu�...
SILENT DEBUG - Be very, very quite
MINIMUM DEBUG - Print out sparse info
DETAIL DEBUG - Print out a lot
VERBOSE DEBUG - Don't use this

INCIDENT DATA DIRECTORY Incident data dir
*

LOOP DATA DIRECTORY Loop data dir
*

OUTPUT DIRECTORY Output dir
*

Table 7.6: Summary of main parameters.

Parameter Options Explanation

CAR DATA SET NUMBER Before or after study
1 or 2

CAR DIRECTORY ROOT Default subdir name
*

CAR SPD FILTER FACTOR Filter factor for car speed
*

ERROR FILE NAME EXT Error �le extension
*

FSP DATA FILE NAME FSP data �le
*

KEY DATA FILE NAME Key data �le
*

MAIN DIRECTORY The main sets of car data
*

NAV DATA FILE NAME Navigation data �le
*

Table 7.7: Summary of car parameters with no pre-de�ned options.

114 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

Parameter Options Explanation

DELAY DOWNSTREAM NUM # downstream dets. to use
*

DELAY UPSTREAM NUM # upstream dets. to use
*

LOOP DIRECTORY The main sets of loop data
*

LOOP FILTER FACTOR Filtering factor for data
*

PERCENT DIESEL TRUCKS % diesel trucks
*

PERCENT GAS TRUCKS % gas trucks
*

LOOP END TIME End time in seconds for
* loop data

LOOP OUTPUT PERIOD Seconds per period for the
* loop data

LOOP START TIME Start time in seconds for
* loop data

TRAFFIC LOW SPEED Tra�c congestion speed
*

Table 7.8: Summary of loop parameters with no pre-de�ned options.

7.5. SUMMARY OF PARAMETER VALUES 115

Parameter Options Explanation

HEADWAY TIME VAL Average probe headway
*

INC DUR EXPAND FRACTION Fraction of time to take
*

INC EXPLANATION Title to put on plots
*

INC GRAPH MAX NUM Vertical scale on one histogram
*

INC GRAPH MAX PERCENT Vertical scale on one histogram
*

TIME ERROR BOUND Width of correlation search area
*

Table 7.9: Summary of incident parameters with no pre-de�ned options.

116 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

Parameter Options Explanation

CAR CLEANUP Do what with car tmp �les
DELETE FILES - Delete them
LEAVE FILES - Leave them there

CAR DATA COMPRESSED Is car data compressed?
DATA NOT COMPRESSED - No
DATA IS COMPRESSED -Yes

GORE POINTS Calculate gore points?
NO CALC GORE POINTS - No
YES CALC GORE POINTS - Yes

INCIDENT POINTS Calculate incident points?
NO INCIDENT POINTS - No
YES INCIDENT POINTS - Yes

INRAD POINTS Calculate INRAD points?
NO INRAD POINTS - No
YES INRAD POINTS - Yes

REPORT OPTION Types of reports to make
KEY REPORT ONLY - Detail on the keys
HUGE REPORT ONLY - Lot's of detail
MEDIUM REPORT ONLY - More detail
SHORT REPORT ONLY - A short summary
EVERYTHING - Make all of the reports

SPEED DIST PLOTS Make speed vs. distance plots?
NO SPEED DIST PLOTS - No
YES SPEED DIST PLOTS - Yes

SPEED TIME PLOTS Make speed vs. time plots?
NO SPEED TIME PLOTS - No
YES SPEED TIME PLOTS - Yes

TIME DIST PLOTS Make time vs. distance plots?
NO TIME DIST PLOTS - No
YES TIME DIST PLOTS - Yes

Table 7.10: Summary of pre-de�ned car parameters.

7.5. SUMMARY OF PARAMETER VALUES 117

Parameter Options Explanation

DELAY CALCULATION How to calculate delay
WRT CONSTANT SPEED - wrt a constant speed
WRT AVERAGE SPEED - wrt an average speed

DELAY TYPE Can delays be negative?
ONLY HAVE POSITIVE DELAY - No
HAVE POSITIVE AND NEGATIVE DELAY - Yes

DROPOUT TIMES Calculate the dropout times?
NO DROPOUT FILES - No
YES DROPOUT FILE - Yes

EMISSION CALC Calculate the emissions?
NO CALC EMISSIONS - No
YES CALC CO EMISSIONS - Only for CO
YES CALC VOC EMISSIONS - Only for VOC
YES CALC NITRO EMISSIONS - Only for NITRO
YES CALC ALL EMISSIONS - Yes - for everything

FLOOP CLEANUP Which temp
oop �les to delete
DELETE EVERYTHING - All of them
DELETE ALL LANES - Just the lanes
DELETE MAIN LINE ONLY - Just the main line
DELETE RAMPS ONLY - Just the ramps
DELETE NOTHING - Leave them all

GLOOP CLEANUP
DELETE EVERYTHING - All of them
DELETE MAIN LINE ONLY - Just the main line
DELETE RAMPS ONLY - Just the ramps
DELETE NOTHING - Leave them all

HLOOP CLEANUP
DELETE EVERYTHING - All of them
DELETE MAIN LINE ONLY - Just the main line
DELETE RAMPS ONLY - Just the ramps
DELETE NOTHING - Leave them all

Table 7.11: Summary of pre-de�ned loop parameters.

118 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

Parameter Options Explanation

LOOP AGGREGATE VALUES Calculate aggregate values?
NO CALC AGGREGATE VALUES - No
YES CALC AGGREGATE VALUES - Yes

LOOP AVERAGE Calculate the averages?
NO LOOP AVERAGE - No
YES LOOP AVERAGE - Yes

LOOP CONSISTENCY FIX Fix the consistency errors?
NO FIX CONSISTENCY ERRORS - No
YES FIX CONSISTENCY ERRORS - Yes

LOOP DATA COMPRESSED Is loop data compressed?
DATA NOT COMPRESSED - No
DATA IS COMPRESSED - Yes

LOOP FLOW PLOTS Which
ow plots to make
NO CALC LOOP FLOW PLOTS - Don't make any
YES CALC OCC FLOW PLOTS - Make occupancy plots
YES CALC SPD FLOW PLOTS - Make speed plots
YES CALC PPS FLOW PLOTS - Make counts plots
YES CALC ALL FLOW PLOTS - Make all plots

LOOP HOLES FIX Fix holes in the loop data?
NO FIX HOLE ERRORS - No
YES FIX HOLE ERRORS - Yes

LOOP TEXT Whether to print data
LOOP NO REPORTS - Don't print anything
LOOP ERR REPORT ONLY - Print error reports
LOOP TEXT REPORT ONLY - Print text reports
LOOP BOTH REPORTS - Print both reports

OUTPUT FLOW AVG FACTOR What "PPS" means
MATCH OUTPUT PERIOD - #counts per output period
PER ONE SEC - #counts per second

TRAFFIC DELAY Calculate tra�c delay?
NO CALC TRAFFIC DELAY - No
YES CALC TRAFFIC DELAY - Yes

Table 7.12: Summary of more pre-de�ned loop parameters.

7.5. SUMMARY OF PARAMETER VALUES 119

Parameter Options Explanation

FIX INC DURATION Fix duration errors?
NO FIX INC DURATION - No
FIX INC DURATION FROM DATA - Yes, from car data
FIX INC DURATION FROM FILE - Yes, from made �le

FIX INC LOCATION Fix placement errors?
NO FIX INC LOC - No
YES FIX INC LOC - Yes

INC FINISHED GRAPHS Generate �nished graphs?
NO FINISHED GRAPH - No
YES FINISHED GRAPH - Yes

INC FINISHED OUTPUT Generate �nished output?
NO FINISHED OUTPUT - No
FILE FINISHED OUTPUT - Yes, to a �le
SCREEN FINISHED OUTPUT - Yes, to the screen

INC FINISHED OUT LEVEL Finished output level?
INC FIN OUT SPARSE - Don't print much
INC FIN OUT MEDIUM - Print just enough
INC FIN OUT VERBOSE - Print way too much

INC MATCH ZERO WIDTH Match incidents witnessed once?
NO MATCH ZERO WIDTH INC - No
YES MATCH ZERO WIDTH INC - Yes

INC RAW MATCH OUTPUT Generate raw output?
NO RAW MATCH OUTPUT - No
FILE RAW MATCH OUTPUT - Yes, to a �le
SCREEN RAW MATCH OUTPUT - Yes, to the screen

INC RAW OUTPUT LEVEL Raw output level?
INC RAW OUT SPARSE - Don't print much
INC RAW OUT MEDIUM - Print just enough
INC RAW OUT VERBOSE - Print way too much

PROCESS INCIDENTS Do any processing on incidents?
NO PROC INCIDENTS - No
YES PROC INCIDENTS - Yes

Table 7.13: Summary of pre-de�ned incident parameters.

120 CHAPTER 7. PROGRAM INPUT: THE RUNFILE

Parameter Options Explanation

CORRELATE CARS DATABASE Correlate cars and incidents?
NO CORRELATE - No
YES CORRELATE - Yes

FIX INC DELAY BOX Use space-time boxes?
NO FIX INC DELAY - No
YES FIX INC DELAY - Yes

INC CONTOUR DELAY PLOT Make contour delay plots?
NO INC CONTOUR DELAY PLOTS - No
YES INC CONTOUR DELAY PLOTS - Yes

INC CORRELATION GRAPH Make correlation graphs?
NO INC CORR GRAPHS - No
YES INC CORR GRAPHS - Yes

NUMBER INC CORR GRAPHS Put numbers on them?
NO NUMBER INC CORR GRAPHS - No
YES NUMBER INC CORR GRAPHS - Yes

Table 7.14: Summary of pre-de�ned analysis parameters.

Chapter 8

Run�le Parameters To xfsp Strings

Tables 8.1 and 8.2 below give a complete cross reference between the run�le parameters and
the windows in the xfsp program. The individual options for each parameter are not listed out
because they should be obvious (most of the responses are \yes" or \no"). This section has an
alphabetical list of the run�le parameters and what window they reside under. Note that none
of the loop tests are listed below because they all reside under the \Loop Tests" button.

8.1 xfsp Windows To Run�le Parameters

Tables 8.3 to 8.11 in this section translate from a speci�c xfsp window to a run�le parameter
string.

121

122 CHAPTER 8. RUNFILE PARAMETERS TO XFSP STRINGS

Parameter Window or Button Subwindow or Title

CAR CLEANUP Car Output/Processing CAR CLEANUP FILES
CAR DATA COMPRESSED Car Output/Processing CAR DATA COMPRESSED
CAR DATA DIRECTORY General Options Set Directories
CAR DATA SET NUMBER General Options Set Directories
CAR DIRECTORY ROOT Car Output/Processing Car directory root
CAR SPD FILTER FACTOR Car Output/Processing CAR SPEED FILTER
CORRELATE CARS DATABASE Correlate Data CORRELATE CAR OPTION
DEBUG LEVEL General Options Set Main Options
DELAY CALCULATION Emissions/Delays CALCULATION OPTIONS
DELAY DOWNSTREAM NUM Incident Delays Number Of Downstream Detectors
DELAY TYPE Emissions/Delays DELAY TYPE OPTION
DELAY UPSTREAM NUM Incident Delays Number Of Upstream Detectors
DROPOUT TIMES Loop Output/Processing DROPOUT TIMES
EMISSION CALC Emissions/Delays Emission Options
ERROR FILE NAME EXT Car Output/Processing Error �le name
FIX INC LOCATION Fix Inc Data FIX INCIDENT LOCATION
FIX INC DELAY BOX Fix Inc Data FIX INCIDENT DELAY BOX
FIX INC DURATION Fix Inc Data FIX INCIDENT DURATION
FLOOP CLEANUP Loop Output/Processing LOOP CLEANUP FILES (
oop)
FSP DATA FILE NAME Car Output/Processing FSP �le name
GLOOP CLEANUP Loop Output/Processing LOOP CLEANUP FILES (gloop)
GNU PRINTER General Options Set Main Options
GORE POINTS Car Output/Processing GORE POINTS
HEADWAY TIME VAL Incident Delays HEADWAY TIME
HLOOP CLEANUP Loop Output/Processing LOOP CLEANUP FILES (hloop)
INCIDENT DATA DIRECTORY General Options Set Directories
INCIDENT POINTS Car Output/Processing INCIDENT POINTS
INC CONTOUR DELAY PLOT Incident Delays CONTOUR PLOTS
INC CORRELATION GRAPH Correlate Data CORRELATION GRAPHS
INC DUR EXPAND FRACTION Fix Inc Data Incident Duration Expand Fraction
INC EXPLANATION Incident Delays GRAPH EXPLANATION
INC FINISHED GRAPHS Incident Delays FINISHED OUTPUT GRAPH
INC FINISHED OUTPUT Incident Delays FINISHED OUTPUT LOCATION
INC FINISHED OUT LEVEL Incident Delays FINISHED OUTPUT LEVEL

Table 8.1: Run�le parameters to xfsp location.

8.1. XFSPWINDOWS TO RUNFILE PARAMETERS 123

Parameter Window or Button Subwindow or Title

INC GRAPH MAX NUM Incident Delays Maximum number on graph
INC GRAPH MAX PERCENT Incident Delays Maximum percentage on graph
INC MATCH ZERO WIDTH Incident Output/Processing MATCH ZERO WIDTH
INC RAW MATCH OUTPUT Incident Output/Processing RAW OUTPUT LOCATION
INC RAW OUTPUT LEVEL Incident Output/Processing RAW OUTPUT LEVEL
INRAD POINTS Car Output/Processing INRAD POINTS
KEY DATA FILE NAME Car Output/Processing Key �le name
LOOP AGGREGATE VALUES Emissions/Delays AGGREGATE VALUES
LOOP AVERAGE Loop Output/Processing LOOP AVERAGE
LOOP CONSISTENCY FIX Fix Loop Data FIX LOOP CONSISTENCY
LOOP DATA COMPRESSED Loop Output/Processing LOOP DATA COMPRESSED
LOOP DATA DIRECTORY General Options Set Directories
LOOP FILTER FACTOR Loop Output/Processing LOOP FILTER FACTOR
LOOP FLOW PLOTS Loop Output/Processing LOOP FILES
LOOP HOLES FIX Fix Loop Data FIX LOOP HOLES
LOOP END TIME Loop Output/Processing Loop end time
LOOP OUTPUT PERIOD Loop Output/Processing Loop output period
LOOP START TIME Loop Output/Processing Loop start time
LOOP TEXT Loop Output/Processing LOOP TEXT REPORTS
NAV DATA FILE NAME Car Output/Processing Nav �le name
NUMBER INC CORR GRAPHS Correlate Data GRAPH NUMBERS
OUTPUT DIRECTORY General Options Set Directories
OUTPUT FLOW AVG FACTOR Loop Output/Processing OUTPUT FLOW FACTOR
PERCENT DIESEL TRUCKS Emissions/Delays Percent Gas Trucks
PERCENT GAS TRUCKS Emissions/Delays Percent Diesel Trucks
PROCESS INCIDENTS Incident Output/Processing PROCESS INCIDENTS
REPORT OPTION Car Output/Processing REPORT OPTION
SPEED DIST PLOTS Car Output/Processing SPEED DISTANCE PLOTS
SPEED TIME PLOTS Car Output/Processing SPEED TIME PLOTS
TIME DIST PLOTS Car Output/Processing TIME DISTANCE PLOTS
TIME ERROR BOUND Correlate Data TIME ERROR BOUND
TRAFFIC DELAY Emissions/Delays LOOP DELAY OPTIONS
TRAFFIC LOW SPEED Emissions/Delays CONGESTION SPEED

Table 8.2: More run�le parameters to xfsp location.

124 CHAPTER 8. RUNFILE PARAMETERS TO XFSP STRINGS

Parameter Window or Button Subwindow or Title

CAR CLEANUP Car Output/Processing CAR CLEANUP FILES
CAR DATA COMPRESSED Car Output/Processing CAR DATA COMPRESSED
CAR SPD FILTER FACTOR Car Output/Processing CAR SPEED FILTER
CAR DIRECTORY ROOT Car Output/Processing Car directory root
ERROR FILE NAME EXT Car Output/Processing Error �le name
FSP DATA FILE NAME Car Output/Processing FSP �le name
GORE POINTS Car Output/Processing GORE POINTS
INCIDENT POINTS Car Output/Processing INCIDENT POINTS
INRAD POINTS Car Output/Processing INRAD POINTS
KEY DATA FILE NAME Car Output/Processing Key �le name
NAV DATA FILE NAME Car Output/Processing Nav �le name
REPORT OPTION Car Output/Processing REPORT OPTION
SPEED DIST PLOTS Car Output/Processing SPEED DISTANCE PLOTS
SPEED TIME PLOTS Car Output/Processing SPEED TIME PLOTS
TIME DIST PLOTS Car Output/Processing TIME DISTANCE PLOTS

Table 8.3: Run�le parameters in the Car Output/Processing window.

Parameter Window or Button Subwindow or Title

CORRELATE CARS DATABASE Correlate Data CORRELATE CAR OPTION
INC CORRELATION GRAPH Correlate Data CORRELATION GRAPHS
NUMBER INC CORR GRAPHS Correlate Data GRAPH NUMBERS
TIME ERROR BOUND Correlate Data TIME ERROR BOUND

Table 8.4: Run�le parameters in the Correlate Data window.

Parameter Window or Button Subwindow or Title

DELAY CALCULATION Emissions/Delays CALCULATION OPTIONS
DELAY TYPE Emissions/Delays DELAY TYPE OPTION
EMISSION CALC Emissions/Delays Emission Options
LOOP AGGREGATE VALUES Emissions/Delays AGGREGATE VALUES
PERCENT DIESEL TRUCKS Emissions/Delays Percent Gas Trucks
PERCENT GAS TRUCKS Emissions/Delays Percent Diesel Trucks
TRAFFIC DELAY Emissions/Delays LOOP DELAY OPTIONS
TRAFFIC LOW SPEED Emissions/Delays CONGESTION SPEED

Table 8.5: Run�le parameters in the Emissions/Delays window.

Parameter Window or Button Subwindow or Title

FIX INC DELAY BOX Fix Inc Data FIX INCIDENT DELAY BOX
FIX INC DURATION Fix Inc Data FIX INCIDENT DURATION
FIX INC LOCATION Fix Inc Data FIX INCIDENT LOCATION
INC DUR EXPAND FRACTION Fix Inc Data Incident Duration Expand Fraction

Table 8.6: Run�le parameters in the Fix Inc Data window.

8.1. XFSPWINDOWS TO RUNFILE PARAMETERS 125

Parameter Window or Button Subwindow or Title

LOOP CONSISTENCY FIX Fix Loop Data FIX LOOP CONSISTENCY
LOOP HOLES FIX Fix Loop Data FIX LOOP HOLES

Table 8.7: Run�le parameters in the Fix Loop Data window.

Parameter Window or Button Subwindow or Title

CAR DATA DIRECTORY General Options Set Directories
CAR DATA SET NUMBER General Options Set Directories
DEBUG LEVEL General Options Set Main Options
GNU PRINTER General Options Set Main Options
INCIDENT DATA DIRECTORY General Options Set Directories
LOOP DATA DIRECTORY General Options Set Directories
OUTPUT DIRECTORY General Options Set Directories

Table 8.8: Run�le parameters in the General Options window.

Parameter Window or Button Subwindow or Title

DELAY DOWNSTREAM NUM Incident Delays Number Of Downstream Detectors
DELAY UPSTREAM NUM Incident Delays Number Of Upstream Detectors
HEADWAY TIME VAL Incident Delays HEADWAY TIME
INC CONTOUR DELAY PLOT Incident Delays CONTOUR PLOTS
INC EXPLANATION Incident Delays GRAPH EXPLANATION
INC FINISHED GRAPHS Incident Delays FINISHED OUTPUT GRAPH
INC FINISHED OUTPUT Incident Delays FINISHED OUTPUT LOCATION
INC FINISHED OUT LEVEL Incident Delays FINISHED OUTPUT LEVEL
INC GRAPH MAX NUM Incident Delays Maximum number on graph
INC GRAPH MAX PERCENT Incident Delays Maximum percentage on graph

Table 8.9: Run�le parameters in the Incident Delays window.

Parameter Window or Button Subwindow or Title

INC MATCH ZERO WIDTH Incident Output/Processing MATCH ZERO WIDTH
INC RAW OUTPUT LEVEL Incident Output/Processing RAW OUTPUT LEVEL
INC RAW MATCH OUTPUT Incident Output/Processing RAW OUTPUT LOCATION
PROCESS INCIDENTS Incident Output/Processing PROCESS INCIDENTS

Table 8.10: Run�le parameters in the Incident Output/Processing window.

126 CHAPTER 8. RUNFILE PARAMETERS TO XFSP STRINGS

Parameter Window or Button Subwindow or Title

DROPOUT TIMES Loop Output/Processing DROPOUT TIMES
FLOOP CLEANUP Loop Output/Processing LOOP CLEANUP FILES (
oop)
GLOOP CLEANUP Loop Output/Processing LOOP CLEANUP FILES (gloop)
HLOOP CLEANUP Loop Output/Processing LOOP CLEANUP FILES (hloop)
LOOP AVERAGE Loop Output/Processing LOOP AVERAGE
LOOP DATA COMPRESSED Loop Output/Processing LOOP DATA COMPRESSED
LOOP FILTER FACTOR Loop Output/Processing LOOP FILTER FACTOR
LOOP FLOW PLOTS Loop Output/Processing LOOP FILES
LOOP END TIME Loop Output/Processing Loop end time
LOOP OUTPUT PERIOD Loop Output/Processing Loop output period
LOOP START TIME Loop Output/Processing Loop start time
LOOP TEXT Loop Output/Processing LOOP TEXT REPORTS
OUTPUT FLOW AVG FACTOR Loop Output/Processing OUTPUT FLOW FACTOR

Table 8.11: Run�le parameters in the Loop Output/Processing window.

Chapter 9

Program Input: The Incident Filter

The second parameter that the fsp program takes on the command line is the name of an
incident �lter. The incident �lter tells the program which incidents to pull out of the incident
database. All of the processing on the incidents is done on the �ltered set of incidents. This
chapter explains how to use the incident �lter and its required format.

9.1 The Incident Filter Format

The format of the incident �lter is pretty straight forward. It is a text �le that can be edited
with any text editor. Each line indicates one �eld in the incident database that you wish to
�lter. Every line has a descriptor word followed by an equals sign followed by the desired values.
For a list of all of the descriptor words see Section 9.2. An example of a line in an incident
�lter is given below:

SHIFT = 0

In the line above the descriptor word is \SHIFT" and the value that we are looking for is \0."
If this line was the only line in your incident �lter then you would be telling the program to
only allow the incidents whose shift �eld was 0 through the �lter. When I say that an incident
is allowed through the �lter it means that the program will read that incident from the incident
database and do more processing on it. If there are more lines in the incident �lter then the
�nal �lter is a logical \AND" of all of the lines. So if the two lines in the �lter were:

SHIFT = 0

DIRECTION = 1

The the �lter would only match incidents that had a shift of 0 AND a direction of 1. Probably
the most important conceptual thing to understand about the incident �lter is that it can not
do a logical \OR" across �elds. You can not have the incident �lter match incidents that had a
shift of 0 or had a direction of 1. But you can do a logical \OR" within a single �eld. If there
is a �eld with a few di�erent possible values, like the automobile color �eld which has values in
the range 0-12, then the incident �lter can match multiple values. You specify this by typing
each value that you want the �lter to match in that �eld on the same line:

127

128 CHAPTER 9. PROGRAM INPUT: THE INCIDENT FILTER

VEHICLE_1_COLOR = 1 4 7

This would match any vehicle that had a color of black, gold, or orange. If there
are two lines like this in the incident �lter then the �lter still performs an \AND" across the
�elds and an \OR" within the �elds. So if you had something like:

VEHICLE_1_COLOR = 1 4 7

VEHICLE_1_TYPE = 2 3 4

Then this would look for incidents that were black, gold, or orange and that were a pickup
truck, van, or station wagon. Another thing to note about the incident �lter is that it can't do
a logical \NOT" of a �eld. So if you wanted to look for all incidents where the vehicles were not
red then you would have to tell the �lter to speci�cally look for all of the other colors besides
red.

While most of the incident �elds are simply integer values a few of them are time or
date values. These are speci�ed in the incident �lter in a pretty straight forward way as seen
by the examples below:

DATE = 2/16/93 - 2/18/93

TIME = 16:00 - 19:00

The date �eld above is listed out from the starting date to the ending date in the standard
month/day/year format. The date �eld is closed on the left and open on the right. This means
that the left date is included but that the right date is not. To specify one day then make
the dates one day apart. Note that there needs to be a space between the \-" and the values.
The time �eld has the starting and ending time values in military time. If you mess up the
times and list out an ending time that is before the starting time then the incident �lter will
not match anything. So the incident �lter above will match incidents that occurred on either
February 16th or 17th and happened between 4pm and 7pm.

Finally, the \#" character is a comment character. So if a line starts with the \#"
character then the whole line is discarded. This is useful if you want to rapidly switch between
options in an incident �lter without retyping.

9.2 Fields Of The Incident Filter

As was mentioned above, when the fsp program reads in the incident �lter it expects there to
be a one word �eld descriptor at the start of each line. In Tables 9.1 and 9.2 I have listed out
the �eld descriptor words that you should use for each �eld.

9.3 Incident Filter Examples

Below are a few examples of how to use the incident �lter to obtain some interesting results.
Since the run�le dictates how the incidents are processed I have listed out the relevant run�le
parameters as well. Note that the numbers in parentheses to the right of each line are not part
of the incident �lter or the run�le - they are only there for reference purposes. There are a few

9.3. INCIDENT FILTER EXAMPLES 129

Column Name Field Descriptor Field Type

A Type DATA TYPE char (F,C,T)
B Incident INC NUMBER integer
C Date DATE date
D Shift SHIFT integer
E Time TIME time
F Direction DIRECTION integer
G Beginning AT BEGINNING integer
H End AT END integer
I Link Identity LINK ID integer
J Location LOCATION integer
K Relative RELATIVE LOC integer
L Exit Distance EXIT DISTANCE integer
M Primary Lane LANE 1 AFFECTED integer
N 2nd Lane LANE 2 AFFECTED integer
O 3rd Lane LANE 3 AFFECTED integer
P Incident Type INCIDENT DESCRIPTION integer
Q Type 1 INCIDENT TYPE 1 integer
R Type 2 INCIDENT TYPE 2 integer
T Begin/End BEGIN END integer
S Type 3 INCIDENT TYPE 3 integer
U Num Vehicles NUM VEHICLES integer
V Vehicle 1 Type VEHICLE 1 TYPE integer
W Vehicle 2 Type VEHICLE 2 TYPE integer
X Vehicle 3 Type VEHICLE 3 TYPE integer
Y Vehicle 1 Color VEHICLE 1 COLOR integer
Z Vehicle 2 Color VEHICLE 2 COLOR integer

Table 9.1: Some �eld descriptors for incident �lter.

steps that you want to follow every time that you want to create an incident �lter and process
the incidents. Below I have listed out two di�erent lists: a short list and a long list. The short
list gives a very quick overview of the general principles of �ltering incidents. The longer list
spells out most of the steps that you need to follow in order to do any �ltering. The short list:

1. Specify what incidents you want to �lter.

2. Specify what kind of �xes you want to perform on the incidents.

3. Specify any loop or car data that you need for the �xes you chose.

4. Specify what kind of output you want.

These four steps encompass all that you need to do to �lter and process incidents.
These steps are expanded out in more detail below in the longer list:

1. Decide which incidents you want to �lter:

130 CHAPTER 9. PROGRAM INPUT: THE INCIDENT FILTER

Column Name Field Descriptor Field Type

AA Vehicle 3 Color VEHICLE 3 COLOR integer
AB Ticket For Tow TICKETED integer
AC CHP CHP integer
AD Entries In Log NUM TIMES IN LOG integer
BF No Tow TT NO REMOVE integer
BG Main Clear TIME MAIN CLEAR time
BH FSP Arrival FSP ARRIVAL integer
BI CHP Arrival CHP ARRIVAL time
BJ Tow Truck Arrival TOW ARRIVAL time
BK Ambulance Arrival AMB ARRIVAL time
BL Fire Arrival FIRE ARRIVAL time
BM CHP Departure CHP DEPART time
BN Tow Truck Departure TOW DEPART time
BO Ambulance Departure AMB DEPART time
BP Fire Departure FIRE DEPART time
BQ Comments COMMENTS integer
BR O�cial NUM OFFICIAL integer
BS Non-O�cial NUM NON OFFICIAL integer
BT Two Truck Response TOW TRUCK RESPONSE time
BU Two Truck Clearance TOW TRUCK CLEARANCE time
CX Duration DURATION time
CY Weather WEATHER integer

Table 9.2: More �eld descriptors for incident �lter.

(a) Figure out what the �eld descriptors are for the �elds that you want.

(b) Figure out what the values are for each �eld that you are interested in.

(c) Create the incident �lter.

2. Set the run�le parameter PROCESS INCIDENTS to YES PROC INCIDENTS.

3. Decide if you want to match incidents witnessed once and set the run�le parameter
INC MATCH ZERO WIDTH.

4. Decide what kind of �xes you want to perform on the incident data:

(a) Decide if you want to �x the duration of the incidents and set the run�le parameters
FIX INC DURATION and INC DUR EXPAND FRACTION.

(b) Decide if you want to �x the location of the incidents and set the run�le parameters
FIX INC LOCATION and CORRELATE CARS DATABASE.

(c) Decide if you want to �x the bounding box of the incidents for the delay calculation
and set the run�le parameter FIX INC DELAY BOX.

5. Decide what kind of output you want on the raw incidents and set the run�le parameters
INC RAW MATCH OUTPUT and INC RAW OUTPUT LEVEL.

9.3. INCIDENT FILTER EXAMPLES 131

6. Decide what kind of output you want on the �nished incidents and set the run�le param-
eters INC FINISHED OUTPUT and INC FINISHED OUT LEVEL.

7. Decide if you want any graphs:

(a) Decide if you want to generate a graph of the delay vs. duration and set the run�le
parameter INC FINISHED GRAPHS.

(b) Decide what you want the title to be and set the run�le parameter INC EXPLANATION.

(c) Decide what you want the scales on the graphs to be and set the run�le parameters
INC GRAPH MAX NUM and INC GRAPH MAX PERCENT.

8. Decide if you want (or need) to process any other loop or car data and set those parameters
accordingly.

9. Set the general parameters like the debug level and data directories.

9.3.1 Example 1: Examining Incident Fields

For the �rst example we are not going to do any processing on the incidents at all. We are just
going to list out all of the incident �elds. The way that we will do this is by specifying the
incident number that we want to examine in the incident �lter like so:

INC_NUMBER = 16 (1)

This will tell the incident �lter to only pull out incidents that have an incident
number of 16. Of course, there should only be one incident in the incident database that has
an incident number of 16. If we wanted to pull out multiple incidents, like incidents 16-20, we
could have an incident �lter that looks like this:

INC_NUMBER = 16 17 18 19 20 (1)

Note that there aren't any commas between the various numbers. If you wanted
the incident �lter to extract a lot of incidents then the incident numbers all have to be on the
same line - you can't specify two lines for the same �eld. The only restriction is that any single
line can't be more than 2000 characters long. Hopefully, this is long enough for most needs. To
just list out the �elds of these incidents the following run�le would work just �ne:

PROCESS_INCIDENTS = YES_PROC_INCIDENTS (1)
INC_RAW_MATCH_OUTPUT = SCREEN_RAW_MATCH_OUTPUT (2)
INC_RAW_OUTPUT_LEVEL = INC_RAW_OUT_VERBOSE (3)
INC_FINISHED_OUTPUT = NO_FINISHED_OUTPUT (4)

Line by line, these run�le parameters will do the following:

1) Process the incident data.

2) Send the raw incident output to the screen.

132 CHAPTER 9. PROGRAM INPUT: THE INCIDENT FILTER

3) Generate a lot of output for the raw incident output - this will print out all of the incident
�elds for every incident that matched the �lter. There are approximately 50 �elds per
incident that are printed out.

4) Don't generate any �nished output on the incidents.

There are a couple of things that were not listed out in the run�le above. We didn't list out any
general parameters like DEBUG LEVEL or GNU PRINTER, we didn't specify any parameters
that dealt with loop or car data, and we didn't list out any parameters that dealt �xing the
incident data. We didn't specify these parameters because we are assuming that if a parameter
is not listed in the run�le then it is set to NO or OFF - whichever is appropriate. For a more
complete discussion of the various types of incident output see Chapter 16.

9.3.2 Example 2: Accidents With Little Processing

For this example let's �lter out all of the incidents that are in-lane accidents. The incident �lter
should look like this:

DATA_TYPE = F (1)
LANE_1_AFFECTED = 1 2 3 4 5 (2)
INCIDENT_TYPE_2 = 1 2 (3)

This will pull out all of the incidents that are (1) �eld data, (2) that occur in lanes 1-5, and (3)
that are either a single car or multi-car accident. We assume here that if the accident occurs
in one of the lanes that that lane will be listed in the �lter �eld LANE 1 AFFECTED. If we
just wanted to pull out these incidents and list them out without �nding the delay or doing any
�xing of the incident data then we could have a run�le that looks like the following:

PROCESS_INCIDENTS = YES_PROC_INCIDENTS (1)
INC_MATCH_ZERO_WIDTH = YES_MATCH_ZERO_WIDTH_INC (2)
INC_RAW_MATCH_OUTPUT = SCREEN_RAW_MATCH_OUTPUT (3)
INC_RAW_OUTPUT_LEVEL = INC_RAW_OUT_SPARSE (4)
INC_FINISHED_OUTPUT = SCREEN_FINISHED_OUTPUT (5)
INC_FINISHED_OUT_LEVEL = INC_FIN_OUT_MEDIUM (6)
HEADWAY_TIME_VAL = 0 (7)

Note that this run�le is not complete. The parameters listed out are only the ones speci�c to
processing the incident data. The lines in the run�le do the following (listed according to line
number):

1) Process the incident data.

2) Include incidents that were only witnessed once.

3) Send any preprocessed incident output to the screen.

4) Don't generate too much preprocessed incident output.

5) Send any processed incident output to the screen.

9.3. INCIDENT FILTER EXAMPLES 133

6) Generate a medium amount of processed incident output.

7) Set the additive headway value to zero.

This combination of incident �lter and run�le will do the least amount of processing
and the produce the least amount of output. There will be no attempt to �x the incident
location, duration, or to get the proper delay.

9.3.3 Example 3: Red Cars With Lots Of Processing

For this example let's look at the incidents that happened in the morning in the southbound
direction between A-Street and Whipple that involved a red car but that was not a ticketing
incident. This incident �lter would look like this:

DATA_TYPE = F (1)
SHIFT = 0 (2)
DIRECTION = 1 (3)
LOCATION = 4 5 6 7 8 9 (4)
VEHICLE_1_COLOR = 8 (5)
INCIDENT_TYPE_3 = 0 (6)

And if we wanted to do a bit more processing with these incidents our run�le might
look something like this:

PROCESS_INCIDENTS = YES_PROC_INCIDENTS (1)
FIX_INCIDENT_DATA = YES_FIX_INC_DATA (2)
CORRELATE_CARS_DATABASE = NO_CORRELATE (3)
FIX_INC_DURATION = FIX_INC_DURATION_FROM_FILE (4)
INC_DUR_EXPAND_FRACTION = 50 (5)
FIX_INC_DELAY_BOX = YES_FIX_INC_DELAY (6)
INC_CONTOUR_DELAY_PLOT = YES_INC_CONTOUR_DELAY_PLOTS (7)
INC_MATCH_ZERO_WIDTH = YES_MATCH_ZERO_WIDTH_INC (8)
INC_RAW_MATCH_OUTPUT = SCREEN_RAW_MATCH_OUTPUT (9)
INC_RAW_OUTPUT_LEVEL = INC_RAW_OUT_SPARSE (10)
INC_FINISHED_OUTPUT = SCREEN_FINISHED_OUTPUT (11)
INC_FINISHED_OUT_LEVEL = INC_FIN_OUT_MEDIUM (12)
INC_FINISHED_GRAPHS = YES_FINISHED_GRAPH (13)
INC_EXPLANATION = Morning, southbound, red cars (14)
INC_GRAPH_MAX_NUM = 10 (15)
INC_GRAPH_MAX_PERCENT = 20 (16)
HEADWAY_TIME_VAL = 0 (17)

Where the lines in the run�le do the following (listed according to line number):

1) Process the incident data.

2) Attempt to �x the location of the incidents from a �le read in at runtime.

134 CHAPTER 9. PROGRAM INPUT: THE INCIDENT FILTER

3) Don't attempt to correlate the incident database with the car data. This is taken care of
by item 2.

4) Attempt to �x the duration of the incidents from a �le read in at runtime.

5) Expand the starting and ending times of the incident 50% of the way to when a di�erent
car passed this location without spotting the incident.

6) Attempt to set the bounding box for the delay of the incidents from a �le read in at
runtime.

7) Generate the contour, density, and di�erential density plots of the loop detector data
overlaid with the incident locations.

8) Include incidents that were only witnessed once.

9) Send any preprocessed incident output to the screen.

10) Don't generate too much preprocessed incident output.

11) Send any processed incident output to the screen.

12) Generate a medium amount of processed incident output.

13) Generate a graph of the delay vs duration for all of the incidents.

14) Put the title \Morning, southbound, red cars" on the plots.

15) Set the vertical scale to be 10 cars on one histogram plot.

16) Set the vertical scale to be 20 percent on another histogram plot.

17) Set the additive headway value to zero since this is taken care of by items 4 and 5.

9.3.4 Example 4: Tow Truck Incidents

In this example we are trying to list out all of the incidents that occurred on March 16th or
17th that had a tow truck respond. These are referred to as the assisted incidents. We also
want to exclude incidents that started before we arrived or incidents that ended after we left.

DATA_TYPE = F (1)
DATE = 2/16/93 - 2/18/93 (2)
TOW_ARRIVAL = 6:00 - 20:00 (3)
BEGIN_END = 0 (4)

We list out the tow truck arrival time in line 3 because in order to know if a tow truck showed
up we can just check to see if a tow truck arrival time is listed. If it is then we are assured
that a tow truck arrived. The BEGIN END �eld in line 4 was a �eld that we added that is
the logical \OR" of �elds G and H. A value of \0" for this �eld means that we are excluding
incidents that started before we got there and incidents that ended after we left. So the only
incidents that we want to look at are ones that started and ended during our shift. In this
example we are going to assume that we want to process everything from scratch. The run�le
is listed out below in various parts according to function. The �rst section of the run�le deals
with the car data:

MAIN_DIRECTORY = am021693 1 2 3 4 (1)

9.3. INCIDENT FILTER EXAMPLES 135

MAIN_DIRECTORY = pm021693 2 3 4 (1)
MAIN_DIRECTORY = am021793 1 3 4 (1)
MAIN_DIRECTORY = pm021793 1 2 3 4 (1)
GORE_POINT_OPTION = YES_CALC_GORE_POINTS (2)
INCIDENT_POINTS = YES_INCIDENT_POINTS (3)
INRAD_POINTS = YES_INRAD_POINTS (4)
SPEED_TIME_PLOTS = YES_SPEED_TIME_PLOTS (5)
SPEED_DIST_PLOTS = YES_SPEED_DIST_PLOTS (6)
TIME_DIST_PLOTS = YES_TIME_DIST_PLOTS (7)

This section of the run�le will process the car data so that it can be used later on when the
program needs to �x the incident durations and locations. Line by line, this section does the
following:

1) Simply list out the car data that we have available for the days of February 16th, and
17th.

2) Find all of the gore points in the car data - used when attempting to �x the incident
locations.

3) Find all of the places were the drivers pressed an incident key - used when attempting to
�x the incident locations.

4) Find all of the INRAD points in the car data - once again, used when attempting to �x
the incident locations.

5) Generate the speed vs. time plots - just nice to have.

6) Generate the speed vs. distance plots - just nice to have.

7) Generate the distance vs. time plots - needed to �nd the incident durations.

As you can see, the part of the run�le that deals with the car data basically tells the program
to process the car data and to record everything. The next section of the run�le deals with the
loop data that we need:

LOOP_DIRECTORY = lp021693 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 19 20 (1)
LOOP_DIRECTORY = lp021793 1 2 3 4 5 7 8 9 10 11 12 13 15 16 17 19 20 (1)
LOOP_START_TIME = 18000 (2)
LOOP_END_TIME = 72000 (3)
LOOP_OUTPUT_PERIOD = 300 (4)
OUTPUT_FLOW_AVG_FACTOR = MATCH_OUTPUT_PERIOD (5)
LOOP_FLOW_PLOTS = YES_CALC_ALL_FLOW_PLOTS (6)
LOOP_TEXT = LOOP_ERR_REPORT_ONLY (7)
DROPOUT_TIMES = YES_DROPOUT_FILE (8)
LOOP_HOLES_FIX = YES_FIX_HOLE_ERRORS (9)
TRAFFIC_DELAY = YES_CALC_TRAFFIC_DELAY (10)
DELAY_CALCULATION = WRT_CONSTANT_SPEED (11)
DELAY_TYPE = HAVE_POSITIVE_AND_NEGATIVE_DELAY (12)
TRAFFIC_LOW_SPEED = 55 (13)

136 CHAPTER 9. PROGRAM INPUT: THE INCIDENT FILTER

Much like the last section of the run�le, this section will massage the loop data such that it
can be used later on when processing the incident data. Line by line, this section of the run�le
does the following:

1) Simply list out the loop data that we have available for the days of February 16th and
17th.

2) Make the starting time for the loop data 18000 seconds since midnight - 5am. This is the
starting time of our loop data.

3) Make the ending time for the loop data 72000 seconds since midnight - 8pm. This is the
ending time of our loop data.

4) Generate the loop data every 300 seconds.

5) Make the PPS �le be "Counts per output period." See the discussion in Chapter 7 under
the parameter OUTPUT FLOW AVG FACTOR for more information.

6) Generate the
ow, occupancy, and speed �les from the loop data.

7) Generate an error report for the loop data - this is needed to �x the holes in the loop
data.

8) Generate a report on the holes in the loop data - this is needed to �x the holes in the
loop data.

9) Actually �x the holes in the loop data. This will take the
oop �les and generate the
gloop �les.

10) Calculate the tra�c delay for each loop. This is used when calculating the delay per
incident.

11) When calculating the delay at each loop, perform the calculation with respect to a constant
congestion speed.

12) When calculating the delay at each loop, allow the delay to become negative.

13) Use 55 mph as the congestion speed in the delay calculation.

Finally, this last section of the run�le deals with the processing of the incidents themselves:

PROCESS_INCIDENTS = YES_PROC_INCIDENTS (1)
CORRELATE_CARS_DATABASE = YES_CORRELATE (2)
TIME_ERROR_BOUND = 360 (3)
INC_CORRELATION_GRAPH = YES_INC_CORR_GRAPHS (4)
NUMBER_INC_CORR_GRAPHS = YES_NUMBER_INC_CORR_GRAPHS (5)
FIX_INC_DURATION = FIX_INC_DURATION_FROM_DATA (6)
INC_DUR_EXPAND_FRACTION = 100 (7)
INC_CONTOUR_DELAY_PLOT = YES_INC_CONTOUR_DELAY_PLOTS (8)
INC_RAW_MATCH_OUTPUT = SCREEN_RAW_MATCH_OUTPUT (9)
INC_RAW_OUTPUT_LEVEL = INC_RAW_OUT_SPARSE (10)
INC_FINISHED_OUTPUT = SCREEN_FINISHED_OUTPUT (11)
INC_FINISHED_OUT_LEVEL = INC_FIN_OUT_MEDIUM (12)
INC_FINISHED_GRAPHS = YES_FINISHED_GRAPH (13)

9.3. INCIDENT FILTER EXAMPLES 137

INC_EXPLANATION = February 16th and 17th (14)
INC_GRAPH_MAX_NUM = 10 (15)
INC_GRAPH_MAX_PERCENT = 20 (16)
HEADWAY_TIME_VAL = 0 (17)

This last section tells the program to use the car and loop data that was processed earlier to
attempt to �x the durations and locations of the incidents. Line by line, this section of the
run�le does the following:

1) Simply tells the program to process the incidents.

2) Attempt to correlate the incidents that made it through the �lter with the car data that
was processed. This will �x the locations of the incidents.

3) When doing the correlation expand the incident duration by 360 seconds. See the discus-
sion in Section 5.3.1 for a complete explanation.

4) Make the correlation graphs that give a visual representation of how the car data matches
up with the incident database.

5) Put the incident numbers on the correlation graphs.

6) Attempt to �x the incident durations from the car data.

7) When �xing the durations expand the incident start or end time 100% of the way to when
the last car went by the incident location.

8) Make the loop contour plots of delay, density and di�erential density with the incidents
on them.

9) Send any preprocessed incident output to the screen.

10) Don't send too much preprocessed incident output anywhere.

11) Send any processed incident output to the screen.

12) Generate a medium amount of processed incident output.

13) Generate a graph of the delay vs duration for all of the incidents.

14) Put the title \February 16th and 17th" on the plots.

15) Set the vertical scale to be 10 cars on the histogram plot of the number of incidents.

16) Set the vertical scale to be 20 percent on the histogram plot of the percentage of incidents.

17) Set the additive headway value to zero since this is taken care of by items 6 and 7.

The results of this search are given below:

Individual incident statistics:

Inc. Type Good Bad

Inc # Date D 1 2 3 Time South Link Loop Files Files Duration Delay

4 2/16/93 0 0 2 0 7:34 1 13 12 13 0 0:26:01 7.53

43 2/16/93 0 0 2 0 16:11 0 7 19 7 0 0:39:44 37.81

50 2/16/93 0 5 0 0 17:40 0 1 5 1 0 0:30:24 0.53

68 2/17/93 0 3 0 0 8:38 1 16 15 16 0 0:17:41 28.27

138 CHAPTER 9. PROGRAM INPUT: THE INCIDENT FILTER

87 2/17/93 0 5 0 0 17:23 1 5 20 5 0 1:18:17 10.96

Stats on all incident delays:

Match incidents witnessed once = YES

ALL results include headway time of = 0:00

Number of Incidents = 5

Number witnessed once = 1

Min Max Mean Std. Dev. Std. Error

Incident Duration 17 78 38.42 23.66 10.58

TT Response (5) 0 31 7.60 13.43 6.00

TT Clearance (5) 0 28 7.40 11.78 5.27

Incident Delay 0.53 37.81 17.02 15.47 6.92

Chapter 10

Program Input: The Loop Detector

Tests

At the start of the project there was great concern as to whether the loop detectors were
performing properly. To address this concern there were a number of tests that were devised to
detect problems with the loop data. This chapter describes all of these tests, what parameters
they take, and how to initiate them.

10.1 Generating The Tests

Each test has a couple of run�le parameters associated with it. One of the parameters is a
simple on or o�
ag to indicate whether to run this test at all. The other parameters for a test
are needed to specify the conditions of the test. For example, there is a test to
ag when the
speed goes above a certain value. In order to run this test you need to set the main parameter,
LP SPEED HIGH TEST, to YES. An example of this in a run�le is:

LP_SPEED_HIGH_TEST = YES

Once that is done you need to specify what speed you want to have
agged. This is done with
the parameter LP SPEED HIGH THRESHOLD MPH as in the example below:

LP_SPEED_HIGH_TEST = YES

LP_SPEED_HIGH_THRESHOLD_MPH = 65

Finally, since the loop data can tend to be noisy, you can specify the number of
times that the speed has to be above the threshold value before it is
agged. Remember
that the speed on each lane is extracted once every time period as speci�ed by the parameter
LOOP OUTPUT PERIOD. So if you have the output value set to 60 seconds and you want
to
ag every time that the speed goes above 65 mph for three times in a row then that would
mean that the speed would need to be above 65 mph for three minutes before it is
agged. The
way to do this is with the parameter LP SPEED HIGH THRESHOLD NUM:

LP_SPEED_HIGH_TEST = YES

LP_SPEED_HIGH_THRESHOLD_MPH = 65

LP_SPEED_HIGH_THRESHOLD_NUM = 3

139

140 CHAPTER 10. PROGRAM INPUT: THE LOOP DETECTOR TESTS

If the speed should go above 65 mph for only one or two samples then it will not be

agged at all. A graphical illustration of this is given in Figure 10.1.

Speed

0

70

Time

High
value

Too short Long enough

Car speed

65

Figure 10.1: High Speed Test.

Figure 10.1 is a drawing of a �ctional speed time plot for some lane on the freeway.
The small squares are the actual data points from the loop data and the line just connects
them. In reality all of these points would be evenly spaced. In this �gure, the speed goes above
the high value twice. The �rst time that it does so it only stays above the high value for one
time period, therefore that event is not
agged. The second time that the speed goes above the
high threshold it stays there for �ve time periods. Since this is longer than the value speci�ed
by LP SPEED HIGH THRESHOLD NUM this would be
agged.

When I say that an event will be
agged then that means that an entry will be
made in the error �le. An entry contains the starting time of the event, the ending time, the
duration (for those of us who can't subtract), the trap number, and a short description of the
problem. An example of an entry in an error �le for our example above is:

From Till Duration Trap # Problem

6:00:00 6:04:00 0:04:00 1 SPEED passed high threshold.

This says that the problem started at 6:00am and continued until 6:04am; a total
of 4 minutes. It was at trap 1 and the problem was that the speed passed the high threshold
that we set.

There are a few other types of tests. They are \cross" tests and \range" tests. In
a cross test we are checking that the values between lanes don't exceed a certain percentage:
we are checking across lanes. One of these tests is the cross occupancy test. This is speci�ed

10.1. GENERATING THE TESTS 141

by the test parameter LP CROSS OCC TEST. If we wanted to check that the values of the
occupancies didn't change more than 5 percent from lane to lane then we would specify the
following parameters:

LP_CROSS_OCC_TEST = YES

LP_CROSS_OCC_RANGE_PERCENT = 5

A graphical illustration of this is given in Figure 10.2.

0

Time

%
 O

cc
u

p
an

cy

100

Lane 1

Lane 2

Section where difference was
more than 5%

Figure 10.2: Cross Lane Test.

Figure 10.3 is a picture of what the typical section of a loop detector looks like.
There are four lanes and the boxes represent the loop detectors. In the cross tests we test the
values between the lanes as indicated on the �gure. The program knows what the layout of the
freeway is and it knows to only check adjacent lanes. On this particular section of freeway for
the cross lane occupancy test, the program would check that the occupancies match within 5
percent of each other for lanes 1 and 2, lanes 2 and 3, and lanes 3 and 4, for both the upstream
and downstream detectors. There are four di�erent cross tests that you can run: occupancies,
on times, speeds, and counts. The run�le parameters are:

LP_CROSS_OCC_TEST

LP_CROSS_ON_TEST

LP_CROSS_PPS_TEST

LP_CROSS_SPEED_TEST

The range test is basically the same as the cross test except that you test between
the upstream and downstream detectors in the same pair. There are two di�erent range test
that you can run: occupancies, and counts. The run�le parameters are:

142 CHAPTER 10. PROGRAM INPUT: THE LOOP DETECTOR TESTS

1

2

3

4

Upstream

Downstream

Cross lane test

Lane numberRange test

Figure 10.3: The Loop Detectors In The Freeway.

LP_OCC_RANGE_TEST

LP_PPS_RANGE_TEST

There are some things to point out about the error reports.

� The error criterion that you specify are run on every trap, on every detector, and for
every day that you specify. If you specify a lot ot tests to run then this will slow down
the analysis quite a bit, so be prepared to wait.

� For every parameter there are defaults. The defaults are listed out below in the Table 10.2.

� To turn o� a specify test then just set the main parameter to NO instead of YES.

� At the top of every error �le is a listing of the criterion for every test. This is helpful in
remembering what tests were actually run.

� All of the error reports for a certain day are placed in one �le in the directory de�ned
in the include �le fsp.h by the de�ned variable LOOPDATA SUMMARY DIR. The
error �le name corresponds to the name of the data directory with the extension .sum. So
if you were generating the error report for all of the loop data in the directory lp030193

then the error reports for all of the days is placed in the �le lp030193.sum in the directory
LOOPDATA SUMMARY DIR. Currently, this directory is de�ned as \Reports" and
it is always located under the loop output directory.

� If there are tests being done on something other than speed then there is an extra piece of
information in the error �le entry. This is the speci�c trap which encountered the problem.

10.2. LISTING OF THE VARIOUS TESTS 143

It could have been the upstream trap or the downstream trap. The speed doesn't have
this feature because it takes two traps to generate speed data, so there is no upstream or
downstream. The extra information looks like this:

From Till Duration Trap # Problem

6:30:00 6:54:00 0:24:00 1 - Down OCC passed range threshold.

Where Down means downstream and Up, paradoxically enough, means upstream.

� If the parameter DROPOUT TIMES is speci�ed correctly then there will be infor-
mation at the end of the error report on the times that the loop detector didn't collect
data.

10.2 Listing Of The Various Tests

All of the tests that can be run on the loop data are listed out below. The parameter to turn
the test on or o� is referred to as the main parameter and the other parameters are called the
auxiliary parameters. The various tests are listed out below alphabetically according to the
main parameter. The value given for the typical entry is the default value for the various tests.

LP CROSS OCC TEST This allows the user to specify the maximum percentage change in
occupancy between lanes that is allowable.

OUTPUT IN ERROR FILE: The error �le entry contains the two o�ending lanes
in a two character code. The �rst character is either S, for southbound, or N,
for northbound, and the second character is the lane number. In this example the
occupancy in the southbound lane 4 was more than the speci�ed percentage away
from southbound lane 5.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Up Cross lanes OCC: S4, S5

AUXILIARY PARAMETERS: The one auxiliary parameter for this test is the per-
centage change allowable. The typical entry is:

Auxiliary parameters Default

LP_CROSS_OCC_RANGE_PERCENT 15

LP CROSS ON TEST This allows the user to specify the maximum percentage change in
on time between lanes that is allowable.

OUTPUT IN ERROR FILE: The error �le entry contains the two o�ending lanes
in a two character code. The �rst character is either S, for southbound, or N, for
northbound, and the second character is the lane number. In this example the on
time in the southbound lane 4 was more than the speci�ed percentage away from
southbound lane 5.

144 CHAPTER 10. PROGRAM INPUT: THE LOOP DETECTOR TESTS

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Up Cross lanes ON: S4, S5

AUXILIARY PARAMETERS: The one auxiliary parameter for this test is the per-
centage change allowable. The typical entry is:

Auxiliary parameters Default

LP_CROSS_ON_RANGE_PERCENT 15

LP CROSS PPS TEST This allows the user to specify the maximum percentage change in
counts between lanes that is allowable.

OUTPUT IN ERROR FILE: The error �le entry contains the two o�ending lanes
in a two character code. The �rst character is either S, for southbound, or N,
for northbound, and the second character is the lane number. In this example the
counts in the southbound lane 4 was more than the speci�ed percentage away from
southbound lane 5.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Up Cross lanes PPS: S4, S5

AUXILIARY PARAMETERS: The one auxiliary parameter for this test is the per-
centage change allowable. The typical entry is:

Auxiliary parameters Default

LP_CROSS_PPS_RANGE_PERCENT 10

LP CROSS SPEED TEST This allows the user to specify the maximum percentage change
in speed between lanes that is allowable.

OUTPUT IN ERROR FILE: The error �le entry contains the two o�ending lanes
in a two character code. The �rst character is either S, for southbound, or N,
for northbound, and the second character is the lane number. In this example the
speed in the southbound lane 4 was more than the speci�ed percentage away from
southbound lane 5.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Up Cross lanes SPEED: S4, S5

AUXILIARY PARAMETERS: The one auxiliary parameter for this test is the per-
centage change allowable. The typical entry is:

Auxiliary parameters Default

LP_CROSS_SPEED_RANGE_PERCENT 20

LP OCC HIGH TEST This allows the user to specify the maximum value that the occu-
pancy can take, and for how long.

OUTPUT IN ERROR FILE: This simply states that the value was exceeded.

10.2. LISTING OF THE VARIOUS TESTS 145

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Up OCC passed high threshold.

AUXILIARY PARAMETERS: One auxiliary parameter for this test is the maximum
value and the other is the number of times that it should pass this threshold before
it is
agged.

Auxiliary parameters Default

LP_OCC_HIGH_THRESHOLD_PERCENT 60

LP_OCC_HIGH_THRESHOLD_NUM 4

LP OCC LOW TEST This allows the user to specify the minimum value that the occupancy
can take, and for how long.

OUTPUT IN ERROR FILE: This simply states that the value was too low.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Up OCC passed low threshold.

AUXILIARY PARAMETERS: One auxiliary parameter for this test is minimum
value and the other is the number of times that it should pass this threshold before
it is
agged.

Auxiliary parameters Default

LP_OCC_LOW_THRESHOLD_PERCENT 5

LP_OCC_LOW_THRESHOLD_NUM 8

LP OCC NUM ZEROS TEST This allows the user to specify the maximum number of
zeros that can occur in a row for the OCC value before it is
agged.

OUTPUT IN ERROR FILE: This simply states that the value was exceeded.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Down OCC was zero too often.

AUXILIARY PARAMETERS: The one auxiliary parameter for this test is the max-
imum number of zeros that can occur in a row.

Auxiliary parameters Default

LP_OCC_NUM_ZEROS 5

LP OCC RANGE TEST This allows the user to specify the maximum percentage di�erence
in the values of the upstream and downstream detectors for the OCC value. There is no
threshold time associated with this test - the instant that this condition is detected it is

agged. Note that this is in terms of percentages.

OUTPUT IN ERROR FILE: This simply states that the value was exceeded.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Down OCC passed range threshold.

146 CHAPTER 10. PROGRAM INPUT: THE LOOP DETECTOR TESTS

AUXILIARY PARAMETERS: The one auxiliary parameter for this test is the max-
imum percentage di�erence in the values of the upstream and downstream detectors.

Auxiliary parameters Default

LP_OCC_RANGE_PERCENT 10

LP ON TIME CRITICAL TEST This allows the user to specify the maximum value that
the on time can ever take. If the on time exceeds this value just once then it is
agged.
This is used to look for serious errors in a detector.

OUTPUT IN ERROR FILE: This simply states that the value was exceeded.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Down On time passed CRITICAL.

AUXILIARY PARAMETERS: The one auxiliary parameter for this test is the max-
imum critical value.

Auxiliary parameters Default

LP_ON_TIME_CRITICAL 2000

LP ON TIME TEST This allows the user to specify the maximum value that the on time
can take, and for how long. This maximum value is in milliseconds.

OUTPUT IN ERROR FILE: This simply states that the value was exceeded.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Up On time passed threshold.

AUXILIARY PARAMETERS: One auxiliary parameter for this test is the maximum
value and the other is the number of times that it should pass this threshold before
it is
agged.

Auxiliary parameters Default

LP_ON_TIME_HIGH_THRESHOLD_MSEC 300

LP_ON_TIME_HIGH_THRESHOLD_NUM 4

LP PPS HIGH TEST - Warning: between match output period and per sec This allows
the user to specify the maximum value that the counts can take, and for how long. Note
that if you change the value of OUTPUT FLOW AVG FACTOR then you will a�ect
the outcome of this test. Just remember that if you are generating count values that are
in counts per second then it is never going to get above 2 or 3. But that if you generating
count values in counts per output period then you can get very large numbers. You should
set your tests appropriately.

OUTPUT IN ERROR FILE: This simply states that the value was exceeded.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Down PPS passed high threshold.

10.2. LISTING OF THE VARIOUS TESTS 147

AUXILIARY PARAMETERS: One auxiliary parameter for this test is the maximum
value and the other is the number of times that it should pass this threshold before
it is
agged.

Auxiliary parameters Default

LP_PPS_HIGH_THRESHOLD_COUNTS 10

LP_PPS_HIGH_THRESHOLD_NUM 4

LP PPS LOW TEST This allows the user to specify the minimum value that the counts
can take, and for how long. Note that if you change the value of the run�le parame-
ter OUTPUT FLOW AVG FACTOR then you will a�ect the outcome of this test.
Just remember that if you are generating count values that are in counts per second
then it is never going to get above 2 or 3. But that if you generating count values in
counts per output period then you can get very large numbers. You should set your tests
appropriately.

OUTPUT IN ERROR FILE: This simply states that the value was exceeded.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Down PPS passed low threshold.

AUXILIARY PARAMETERS: One auxiliary parameter for this test is the minimum
value and the other is the number of times that it should pass this threshold before
it is
agged.

Auxiliary parameters Default

LP_PPS_LOW_THRESHOLD_COUNTS 1

LP_PPS_LOW_THRESHOLD_NUM 4

LP PPS NUM ZEROS TEST This allows the user to specify the maximum number of
zeros that can occur in a row for the PPS value before it is
agged.

OUTPUT IN ERROR FILE: This simply states that the value was exceeded.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Down PPS was zero too often.

AUXILIARY PARAMETERS: The one auxiliary parameter for this test is the max-
imum number of zeros that can occur in a row.

Auxiliary parameters Default

LP_PPS_NUM_ZEROS 5

LP PPS RANGE TEST This allows the user to specify the maximum percentage di�erence
in the values of the upstream and downstream detectors for the PPS value. There is no
threshold time associated with this test - the instant that this condition is detected it is

agged. Note that this is in terms of percentages.

OUTPUT IN ERROR FILE: This simply states that the value was exceeded.

148 CHAPTER 10. PROGRAM INPUT: THE LOOP DETECTOR TESTS

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 - Down PPS passed range threshold.

AUXILIARY PARAMETERS: The one auxiliary parameter for this test is the max-
imum percentage di�erence in the values of the upstream and downstream detectors.

Auxiliary parameters Default

LP_PPS_RANGE_PERCENT 10

LP SPEED HIGH TEST This allows the user to specify the maximum value that the speed
can take, and for how long. This maximum value is in miles per hour.

OUTPUT IN ERROR FILE: This simply states that the value was exceeded.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 SPEED passed high threshold.

AUXILIARY PARAMETERS: One auxiliary parameter for this test is the maximum
value and the other is the number of times that it should pass this threshold before
it is
agged.

Auxiliary parameters Default

LP_SPEED_HIGH_THRESHOLD_MPH 65

LP_SPEED_HIGH_THRESHOLD_NUM 5

LP SPEED LOW TEST This allows the user to specify the minimum value that the speed
can take, and for how long. This minimum value is in miles per hour.

OUTPUT IN ERROR FILE: This simply states that the value was exceeded.

From Till Duration Trap # Problem

8:48:00 8:54:00 0:06:00 4 SPEED passed low threshold.

AUXILIARY PARAMETERS: One auxiliary parameter for this test is the minimum
value and the other is the number of times that it should pass this threshold before
it is
agged.

Auxiliary parameters Default

LP_SPEED_LOW_THRESHOLD_MPH 20

LP_SPEED_LOW_THRESHOLD_NUM 5

10.3 The Default Values For The Loop Tests

All of the defaults for the tests are NO, meaning that they are turned o�. These are listed here
in Table 10.1 only for completeness (not because I wanted to make the manual any longer).

All of the default values for the auxiliary parameters are listed out in Table 10.2.
Also, listed out in Table 10.3 are the main parameters for the tests and the entries that they
place in the error �le. The characters XN means the direction and the lane number.

10.3. THE DEFAULT VALUES FOR THE LOOP TESTS 149

Parameter Default

LP CROSS OCC TEST NO
LP CROSS ON TEST NO
LP CROSS PPS TEST NO
LP CROSS SPEED TEST NO
LP OCC HIGH TEST NO
LP OCC LOW TEST NO
LP OCC NUM ZEROS TEST NO
LP OCC RANGE TEST NO
LP ON TIME CRITICAL TEST NO
LP ON TIME TEST NO
LP PPS HIGH TEST NO
LP PPS LOW TEST NO
LP PPS NUM ZEROS TEST NO
LP PPS RANGE TEST NO
LP SPEED HIGH TEST NO
LP SPEED LOW TEST NO

Table 10.1: Test parameter defaults.

Auxiliary Parameter Default

LP CROSS OCC RANGE PERCENT 15
LP CROSS ON RANGE PERCENT 15
LP CROSS PPS RANGE PERCENT 10
LP CROSS SPEED RANGE PERCENT 20
LP OCC HIGH THRESHOLD NUM 4
LP OCC HIGH THRESHOLD PERCENT 60
LP OCC LOW THRESHOLD NUM 8
LP OCC LOW THRESHOLD PERCENT 5
LP OCC NUM ZEROS 5
LP OCC RANGE PERCENT 10
LP ON TIME CRITICAL 2000
LP ON TIME HIGH THRESHOLD MSEC 300
LP ON TIME HIGH THRESHOLD NUM 4
LP PPS HIGH THRESHOLD COUNTS 10
LP PPS HIGH THRESHOLD NUM 4
LP PPS LOW THRESHOLD COUNTS 1
LP PPS LOW THRESHOLD NUM 4
LP PPS NUM ZEROS 5
LP PPS RANGE PERCENT 10
LP SPEED HIGH THRESHOLD MPH 65
LP SPEED HIGH THRESHOLD NUM 5
LP SPEED LOW THRESHOLD MPH 20
LP SPEED LOW THRESHOLD NUM 5

Table 10.2: Auxiliary parameter defaults.

150 CHAPTER 10. PROGRAM INPUT: THE LOOP DETECTOR TESTS

Main Parameter Error Entry

LP CROSS OCC TEST Cross lanes OCC: XN, XN
LP CROSS ON TEST Cross lanes ON: XN, XN
LP CROSS PPS TEST Cross lanes PPS: XN, XN
LP CROSS SPEED TEST Cross lanes SPEED: XN, XN
LP OCC HIGH TEST OCC passed high threshold.
LP OCC LOW TEST OCC passed low threshold.
LP OCC NUM ZEROS TEST OCC was zero too often.
LP OCC RANGE TEST OCC passed range threshold.
LP ON TIME CRITICAL TEST On time passed CRITICAL.
LP ON TIME TEST On time passed threshold.
LP PPS HIGH TEST PPS passed high threshold.
LP PPS LOW TEST PPS passed low threshold.
LP PPS NUM ZEROS TEST PPS was zero too often.
LP PPS RANGE TEST PPS passed range threshold.
LP SPEED HIGH TEST SPEED passed high threshold.
LP SPEED LOW TEST SPEED passed low threshold.

Table 10.3: Main parameters and error entries.

Chapter 11

Program Input: Cross Data

Analysis

One goal of the fsp program is to calculate the delay for each speci�c incident. In order to do
this, quite a few things need to be done. This chapter will explain in detail all of the steps that
were taken to calculate the incident delay and all of the formulas that were used.

I would like to start out with an overview of how the data is processed. In the
following sections I'll explain each step in detail.

FSP Data Flow

Output

Fix Loop Data

Loop Data Incident Data

Fix Incident data

Car Data

Delays
Calculate Incident

Delays
Calculate Loop

Figure 11.1: Big Picture For FSP Program.

Figure 11.1 is a rough view of what the data
ow looks like in the fsp program.
There are three main branches of the program: the loop data, the incident data, and the car
data. Since the overall goal is to calculate the delay per incident the loop and car branches
merge into the incident data branch at various points. The car data is used mainly to correct
the location and duration of each incident. The loop data is then used to calculate the delay

151

152 CHAPTER 11. PROGRAM INPUT: CROSS DATA ANALYSIS

per incident. The loop data processing is done in two main steps. First we �x the loop data
and then we generate the loop delay �les. The things that we try to �x in the loop data are
the various holes that show up and the consistency errors. Both of these �xes are discussed in
Chapter 5. The loop delay �les are simply the delay calculated for each loop for every time
segment. The car data is �rst read in to generate some diagnostic graphs and then it is used to
�x various �elds in the incident database. The incident data processing involves �rst �ltering
the incidents, then �xing their locations, and �nally calculating the delay for each incident. At
each step in the data
ow there are many di�erent types of plots and tables that are made to
explain what is happening. These are not shown in Figure 11.1 because it would obscure the
simple message that I am trying to convey. Below is a list of steps that the program will take
when calculating the delay per incident:

� Loop data processing

1. Convert from raw data to ascii.

2. Fix the loop data.

3. Compute the loop averages.

4. Compute the loop delays.

� Car data processing

1. Convert from raw data to ascii.

2. Record all key presses.

3. Record all INRAD points.

� Incident data processing

1. Filter out the proper incidents.

2. Fix the incident locations from the car data.

3. Fix the incident durations from the car data.

� Calculate the delay per incident

1. Read in the incident bounding boxes.

2. Read in the loop �les corresponding to those boxes.

In the following sections I will discuss what processing goes on in each of the boxes in Figure 11.1
and in each of the steps in the list above.

11.1 Generating The Loop Speeds

It turns out that there are a couple of di�erent ways to calculate the delay on a section of the
freeway. The standard equation for calculating the delay at a particular loop segment is:

D = L
�T

60
F

�
1

V
�

1

VT

�
(11.1)

11.1. GENERATING THE LOOP SPEEDS 153

Where D is the delay for a particular segment of the freeway, L is the length, F is the
ow, V
is the speed, and VT is the speed of congestion. Even though this is pretty straight forward it
is not clear exactly how to apply this formula. Since we have the
ows and the speeds for each
lane at every loop segment should we calculate the delay for each lane and then add them up
to get a total delay for each segment? Or should we average the
ows and the speeds over the
lanes and then calculate the delay? Well, if we look at these two di�erent methods then we will
see that they are not the same. The delay that we get by �rst calculating the delay for each
lane and then adding up all of the lanes (assuming that there are N lanes) is the following:

Di = L
�T

60
Fi

�
1

Vi
�

1

VT

�
(11.2)

D =
NX
i=1

Di (11.3)

D =
NX
i=1

L
�T

60
Fi

�
1

Vi
�

1

VT

�
(11.4)

D = L
�T

60

NX
i=1

�
Fi
Vi

�
Fi
VT

�
(11.5)

Note that anything indexed by i is an individual lane. These equations have been carried out
this far so that we can compare them to the second way of calculating the delay which is to �rst
compute the average
ow and speed over the freeway and then to just do one delay calculation:

F =
NX
i=1

Fi (11.6)

V =

PN
i=1 FiViPN
i=1 Fi

(11.7)

D = L
�T

60
F

�
1

V
�

1

VT

�
(11.8)

D = L
�T

60

NX
i=1

Fi

! PN
i=1 FiPN

i=1 FiVi

!
�

1

VT

!
(11.9)

As you can see, equation 11.5 is not the same as equation 11.9. So the question arises, \which
one represents the proper delay calculation?" The solution that the fsp program implements is
the �rst: conceptually it �gures out the delay for each lane and then �gures out the total delay
by summing up over all of the lanes. It does it conceptually because it never actually calculates
the delay for each lane. Instead, the fsp program does a calculation like equations 11.6 thru 11.9
but it uses a di�erent type of average for the speed. It uses the weighted harmonic average
speed instead of the arithmetic speed. If we do this we get a total speed for the freeway as:

Vh =

PN
i=1 FiPN
i=1

Fi
Vi

(11.10)

Plugging this average into equation 11.1 we get:

D = L
�T

60
F

�
1

Vh
�

1

VT

�
(11.11)

154 CHAPTER 11. PROGRAM INPUT: CROSS DATA ANALYSIS

D = L
�T

60

NX
i=1

Fi

! PN
i=1

Fi
ViPN

i=1 Fi

!
�

1

VT

!
(11.12)

D = L
�T

60

NX
i=1

�
Fi
Vi

�
Fi
VT

�
(11.13)

This is the same as equation 11.5. There are two reasons for wanting to calculate the delay for
the segment by using equations of the form 11.6 thru 11.9:

� In order to �x the holes at all we need to have one value for the speed and one value
for the
ow at the detectors adjacent to each hole. Therefore, we need the averages over
all the lanes for all of the loop detectors. Finally, since we can't do the individual lane
calculations on the �xed data and since we already have the averages we might as well do
the speed calculation as in equation 11.10.

� Equations 11.6 thru 11.9 are more computationally e�cient than equations 11.2 thru 11.5.

The whole point of the previous discussion is that the average loop speed �les
contain the weighted harmonic average instead of the arithmetic average. In normal tra�c
ow
conditions these two speeds shouldn't vary by more than a few percent. But when the spread
in the speed between the lanes is high, the arithmetic and weighted harmonic averages can vary
by up to 20%. Usually, the only time when the speeds across the lanes will vary signi�cantly is
when there is an incident on a section of the freeway where there is a high occupancy vehicle
(HOV) lane. Since cars won't change into the HOV lane to avoid the congestion for fear of a
�ne, the tra�c in the non-HOV lanes tends to build up rather quickly and hence the speeds
across the lanes starts to vary.

11.2 Fixing The Loop Data

The �rst thing that needs to be done after the speeds have been calculated and before any
analysis can take place is to �x the loop data. As was discussed in Section 5.2, the loop data
has a number of things wrong with it. The fsp program will try to make two main �xes: a
hole �x and a consistency �x. I have referred to these as the various stages of the loop data
processing. Figure 11.2 shows the loop data
ow.

Each box produces a di�erent type of loop �le. There is a short synopsis of each �le
type below. The sections that follow explain each step in detail.

Raw loop data The raw loop data is an encoded �le that holds the data stream from the 170
controller. The �les have names like: loop5.dat.

Extract to ascii text These �les are separated according to lane number and data type. This
means that each lane and each type of data (
ows, occupancies, or speeds) is in it's own
�le. A typical �le name from this set of loop �les would be: floop3.nc2. This corresponds
to the ascii text �le from loop detector #3 and the northbound
ows from lane 2. These
�les are called the \
oop" �les and are referred to as the �rst stage in the loop processing.
For more information on the naming scheme of the loop output �les see Chapter 15.

11.2. FIXING THE LOOP DATA 155

Loop Data Flow

Good loop data

Fix consistency errors

Fix holes in loop data

Extract to ascii text

Raw loop data

Figure 11.2: Fixing The Loop Data.

Fix holes in loop data These �les are exactly like the \
oop" �les except that the holes have
been �xed. These �les have �lenames that start with \gloop" and hence are referred to
as the \gloop" �les. These are generated in the second stage of the loop processing.

Fix consistency errors These �les are the same as the \gloop" �les except that the consis-
tency errors have been corrected. These �les have �lenames that start with \hloop" and
hence are referred to as the \hloop" �les. This is the third and �nal stage of the loop
processing.

So when the program gets done processing the loop data there could be three dif-
ferent sets of loop �les on your system:
oop, gloop, and hloop. The fsp program gives you
the option of deleting the sets of loop �les that you don't need. This is done via the run�le
parameters FLOOP CLEANUP, GLOOP CLEANUP, and HLOOP CLEANUP.

11.2.1 The
oop Files

We start o� with the raw loop data and the �rst thing that we do is convert the data from raw
form to ascii form. This is called the �rst stage and it generates a bunch of �les called \
oop"
�les. The raw data has one �le for each loop detector that contains all of the counts, speeds,
and occupancies for every lane. For example, let's say that we are looking at loop detector #1.
Then the raw loop data �le will be loop1.dat. What the �rst stage of processing does is it
extracts into separate �les the data for each lane and for each on and o� ramp at that detector,
and it does this for the counts, speeds, and occupancies at each lane. Since detector #1 has
5 southbound and 5 northbound lanes the �rst stage would generate a total of 36 �les for just
that detector. These are listed out below:

oriel 1: ls floop1.*

floop1.nc1 floop1.ns1 floop1.so1

floop1.nc2 floop1.ns2 floop1.so2

floop1.nc3 floop1.ns3 floop1.so3

floop1.nc4 floop1.ns4 floop1.so4

floop1.nc5 floop1.ns5 floop1.so5

floop1.ncd floop1.nsd floop1.sod

156 CHAPTER 11. PROGRAM INPUT: CROSS DATA ANALYSIS

floop1.no1 floop1.sc1 floop1.ss1

floop1.no2 floop1.sc2 floop1.ss2

floop1.no3 floop1.sc3 floop1.ss3

floop1.no4 floop1.sc4 floop1.ss4

floop1.no5 floop1.sc5 floop1.ss5

floop1.nod floop1.scd floop1.ssd

As you can see, the reason that these are called the \
oop" �les is because they all
start with the pre�x \
oop." You can also see that this is quite a few �les for just one loop
detector. The naming scheme for these �les is:
oopWW.XYZ. Where:

oop: this is just the standard �le pre�x.

WW: this is the loop detector number (or cabinet number).

X: this is either \n" or \s" for the northbound or southbound direction.

Y: explains the type of data and can be one of the following:

c: means counts or pps.

s: means speed.

o: means occupancy.

Z: this is the lane number or the on or o� ramp number.

For example, the �le floop1.ns4 is the raw speed data for lane 4 of the northbound
direction of detector # 1. If the last character is not a number but a \d" then that means the
�le is the value of the average of all of the lanes. There are a couple of important things to
note about the naming of the loop �les but that would take us too far astray. The complete
discussion can be found in Section 15.3.

11.2.2 The gloop Files

Once the \
oop" �les have been extracted from the raw data the program can attempt to �x
the holes that appear in the data. This is called the second stage and it will generate a bunch
of �les called the \gloop" �les. The \gloop" �les are just the \
oop" �les with the holes �lled
in. If it turns out that there aren't any holes in a particular \
oop" �le then that �le is simply
copied over to the appropriate \gloop" �le. See the discussion in Section 5.2.1 for a complete
explanation of how the loop data is recreated. The naming scheme for both sets of �les is
the same. For example, floop1.sod and gloop1.sod both refer to the average southbound
occupancy at detector # 1. It's just that the �rst �le is the raw data and could have holes in it,
whereas the second �le is the corrected data and hence won't have any holes at all. There are
a couple of important things to note about the hole �x algorithm that generates the \gloop"
�les:

� The algorithm only operates on the average �les, not on the individual lane �les. Subse-
quently, there is no way to �x the individual lane �les.

11.3. THE LOOP DELAY FILES 157

� The algorithm combines all of the on ramp �les into a single �le depending on type. So
all of the on ramp occupancy �les are combined to give a single on ramp occupancy �le.
The same holds for the
ow �les on the on ramps.

� The algorithm combines all of the o� ramp �les into a single �le depending on type exactly
like the on ramp �les.

� See the discussion under the run�le parameter LOOP_HOLES_FIX for a discussion of what
other parameters need to be set in order for this �x to run successfully.

If you are generate the \gloop" �les then you probably don't need any of the \
oop"
�les on the system anymore. You can tell the program to delete them when it's done with them
by setting the run�le parameter FLOOP_CLEANUP to be DELETE_EVERYTHING This is discussed
in Chapter 7.

11.2.3 The hloop Files

Finally, the program will attempt to �x the consistency errors in the loop data. The algorithm
can only �x the consistency errors in the \gloop" �les. This means that in order to �x the
consistency errors that the user has to �rst run the hole �xing algorithm. The consistency �x
algorithm itself is described in Section 5.2.2. The �les that this �x generates are the same as
the \gloop" �les in terms of �lenames except that there is an \h" where there used to be a \g"
and hence these are referred to as the \hloop" �les.

Once you generate the \hloop" �les you can have the program delete the \
oop"
and \gloop" �les by setting the run�le parameters FLOOP_CLEANUP and GLOOP_CLEANUP to
DELETE_EVERYTHING.

11.3 The Loop Delay Files

After the �xes have been done on the loop data the next major step that the program takes is
to calculate the loop delay �les. The loop delay algorithm can take in any one of the loop sets,
either the \
oop," \gloop," or the \hloop" �les. I would recommend that you only run this on
the \gloop" or \hloop" �les because there are so many holes in the \
oop" data.

When we say that we are going to calculate the loop delay we mean that we are
going to �gure out the following value:

Di
k = L

�T

60
F i
k

1

V i
k

�
1

VT

!
(11.14)

Where Di
k is the delay on segment k during time slice i, L is the segment length in miles, �T

is the time slice in minutes, F i
k is the
ow on segment k during time slice i, V i

k is the speed
on segment k during time slice i, and VT is the threshold or congestion speed1. For each loop
detector we calculate this value for every time slice. The resulting �les are called the loop delay
�les.

1Note that the indices here mean something di�erent than in equation 11.2.

158 CHAPTER 11. PROGRAM INPUT: CROSS DATA ANALYSIS

11.3.1 The Run�le Parameters Needed

The loop delay �les are the basis of the delay per incident calculation. The routine in the
program that calculates the delay per incident reads in the loop delay �les to �gure out the
delay surrounding an incident. You should be aware that the parameters that you set when
calculating the loop delay �les also e�ect the delay per incident calculation. There are a couple
of run�le parameters that you can set that govern the generation of the loop delay �les. These
are all explained in Chapter 7 but are listed here for convenience. These are:

TRAFFIC DELAY Whether or not to calculate the loop delay.

DELAY CALCULATION Specify whether to calculate the delay with respect to a constant
congestion speed or the average.

TRAFFIC LOW SPEED Specify what the congestion speed should be.

DELAY TYPE Specify whether to allow negative delays or not.

The parameter TRAFFIC_DELAY simply tells the fsp whether to run the routine that
calculates the loop delay �les. In the overall
ow of the fsp program the loop data is processed
�rst followed by the incident data. When the incident data is processed, it needs to read in
the loop delay �les. Well, these �les are not stored in the computer memory, they are stored
in speci�c directories. So it doesn't matter if the loop delay �les were generated by this run of
the fsp program or a run that was done last week - the �les will still be in the directories. If
you had to calculate the delay �les every time that you wanted to do something di�erent with
the incidents then the program would take way too much time. By turning o� the calculation
of the loop delay �les and just using the ones that are on the hard disk you save quite a bit of
time. Of course there are problems with this:

� If somebody deletes the loop delay �les and the routine that processes the incidents can't
�nd them then the program will halt.

� If you want to change ANY of the parameters that governed the generation of the loop
delay �les then you have to recalculate them. This includes, but is not limited to: the
congestion speed, the relevant time period, the output period, the loop �lter factor, etc.

The parameter DELAY_CALCULATION is probably the most important run�le param-
eter involved in calculating the delays. This parameter tells the program to calculate the delays
with respect to a constant congestion speed or with respect to an average congestion speed.
This is the same as setting VT in equation 11.14 to a constant or to an average speed. For a
constant congestion speed this can be seen in Figure 11.3. This is a typical speed vs. time plot
for a single loop detector. Note that the delay here can be positive or negative - this can be
changed so that the delay can only be positive. On our study section there is recurrent conges-
tion at a particular time of day at a particular location and we didn't want this congestion to
be counted as delay. We decided that if we �nd the average speed over all of the days that this
would give us a pretty good measure of where the recurrent congestion was taking place. If the
congestion speed is taken to be the average then the picture will look more like Figure 11.4.
In order to use the average speeds you need to �rst calculate them. In Chapter 12 there is a

11.3. THE LOOP DELAY FILES 159

Time

Speed

Congestion Speed

Main Line SpeedNegative Congestion Positive Congestion

Figure 11.3: Delay Calculation wrt A Constant.

complete example of how to calculate the average speeds and how to then calculate the loop
delay �les and the delay per incident.

If the run�le parameter DELAY_CALCULATION is set to indicate that the congestion
speed should be a constant, then the program will get the congestion speed from the parameter
TRAFFIC_LOW_SPEED.

The parameter DELAY_TYPE tells the program whether or not to allow negative
delays. If the value of VT is larger than the value of V i

k in equation 11.14 then the delay can be
negative. Since it is not known whether it is meaningful for the delay to be negative or not we
leave this up to the user. If delays are not allowed to be negative then all negative delays are
set to zero.

11.3.2 Extra Loop Files

Even though I don't want to lead the discussion too far astray, I need to mention that there
are some other �les that are generated, or can be generated, when the program is calculating
the loop delay �les. On the �rst reading the reader can skip to Section 11.4 without any loss
of continuity.

The Loop Delay Tables: For each time slice a table is made that holds the various param-
eters for the delay calculation. These tables are placed into a LaTEX�le that can be
processed to produce a postscript document that can be printed to any printer. The
details on how to do this are given in Chapter 13 with the �le naming conventions given
in Chapter 15.

The Cumulative Loop Delay Files: For each time period a �le is made that is the cumu-
lative loop delay for the whole freeway. This is discussed in Chapter 15.

160 CHAPTER 11. PROGRAM INPUT: CROSS DATA ANALYSIS

Time

Speed

Main Line SpeedNegative Congestion Positive Congestion

Average Speed

Figure 11.4: Delay Calculation wrt The Average.

The Loop Emission Files: The amount of emissions produced on the freeway is calculated
for each loop segment and each time slice. The emissions calculated are for hydrocar-
bons, nitrogen compounds, and carbon monoxide. Once again, these are discussed in
Chapter 15.

11.4 Fixing The Incident Data

In addition to processing the loop �les to generate the good loop data, the program also needs to
process the car data in order to �x various �elds in the incident database. Since the processing
of the car data and the �xing of the incident data are so closely tied together, I will discuss
them in the same section.

When processing the incident data the �rst step that is taken is to �lter the incident
data. The format of the incident �lter is discussed in Chapter 9. Since the �ltering of the
incidents is pretty straight forward we will assume in this section that the incidents have
already been �ltered. A more detailed look at the data
ow for �xing the incidents is given in
Figure 11.5.

There are two things that the program tries to �x about the incidents: the incident
position and the incident duration. The box labeled \Fix incident placement" in Figure 11.5 has
three di�erent arrows pointing to it. The arrow in the middle simply represents the incidents
being passed from the routine that �lters out the correct incidents. The two other arrows come
from the car data and a runtime �le. These are meant to represent that the data for the incident
location �x can come directly from the car data or from a runtime �le. Since processing the car
data takes so long what we prefer to do is to process the car data once and then save the results
in a �le. This �le can then be read in at runtime instead of processing the car data. This saves
a considerable amount of time. The box labeled \Fix incident duration" does almost the same

11.5. FINDING THE DELAY FOR EACH INCIDENT 161

Incident Data Flow

Good incident data

Fix incident duration

Fix incident placement

Raw incident data Car data

Runtime

file

Runtime

file

Figure 11.5: Data Flow For Fixing The Incidents.

thing as the \Fix incident placement" box except that it �xes the incident durations instead of
their locations.

Either of these �xes can use the car data or the runtime �le independently of the
other. There are some run�le parameters that you have to set if you want to use the car data
to �x the incident data. The algorithms used to �x the incident data are explained in detail in
Sections 5.3.1 and 5.3.2 and examples of doing each of these �xes are given in Chapter 12. We
will assume that the runtime �les are going to be used from now on.

There are so many �les that are generated during the processing of the car data that
I won't even give a quick summary here. A complete list, with examples, is given in Chapter 14.

11.5 Finding The Delay For Each Incident

The �nal goal of all of this processing is to �gure out the delay for each incident. The data
ow
of the incident delay calculation looks like Figure 11.6. The routine takes in the loop delay �les
and �ltered incidents and then calculates the delay per incident.

11.5.1 Incident Delays By Distance

On way to calculate the incident delay is to simply sum up the delay over the adjacent loop
detectors for the time period of the incident. This can be represented with the following
equation:

Dincident =
X

i2ADJ

X
j2[Ts;Te]

Dj
i (11.15)

162 CHAPTER 11. PROGRAM INPUT: CROSS DATA ANALYSIS

Delay Calculation Flow

Delay vs. Duration

HistogramsDelay per incident

Process incidents
Delay

bounding
box

Good incident dataGood loop data

Cumulative distributions

Figure 11.6: Processing The Incidents.

Where ADJ is the set of adjacent loop detectors de�ned below, Ts is the incident start time, Te
is the incident end time and Dj

i is the delay on segment i during time slice j. This is probably
the most straight forward way of calculating the delay per incident. The set of adjacent loop
detectors, or ADJ in formula 11.15, is de�ned by the following run�le parameters:

DELAY UPSTREAM NUM: This parameter tells the program the number of upstream
loop detectors that you want to include in the delay calculation. A value of -1 indicates
that you want to go all of the way back to the beginning of the study section. Note that
the current loop detector is always included.

DELAY DOWNSTREAM NUM: This parameter tells the program the number of down-
stream loop detectors that you want to include in the delay calculation. A value of -1
indicates that you want to go all of the way down to the end of the study section. This is
usually set to zero to indicate that you don't want to look at any detectors downstream.

For example, if DELAY_UPSTREAM_NUM was set to 3 and DELAY_DOWNSTREAM_NUM was set to 1
then the 3 upstream detectors and the �rst downstream detector from the incident site, for
a total of 5 detectors, would be used in the delay calculation. Figure 11.7 is a picture of a
typical speed vs. distance plot for a single time slice. In this picture, there was an incident that
occurred at detector #6. We can see that the incident caused tra�c to slow down upstream of
the incident for approximately 4 detectors. We should probably include the upstream detectors
20, 9, 2 and 11, and the downstream detector 18 in our calculation of the delay for this incident.

11.5. FINDING THE DELAY FOR EACH INCIDENT 163

Congestion speed

Loop speed

Incident

16 3 1 7 20 9 2 11 6 18 19 13

Speed

Distance / Loop Detectors

Figure 11.7: Incident At One Time Slice.

The main problem this method of incident delay calculation is that the number of
detectors to include in the set ADJ is �xed for all of the incidents. When you tell the fsp
program that you want to go upstream 4 detectors to calculate the delay then this means you
want to do that for every incident. This is obviously going to be a problem. If there are two
incidents of di�erent duration during di�erent periods of tra�c
ow then there is no reason to
expect that the length of the queue buildup would be the same. One possible way to get around
this is to use all of the upstream detectors when calculating the delay. But if there are multiple
incidents during the same time period then you will be double counting the delay from one of
the incidents. The way around these problems is to perform the incident delay calculation a
di�erent way.

11.5.2 Incident Delays By Bounding Box

There is a di�erent way to calculate the delay per incident that is speci�c to each incident.
This is done by �guring out where the e�ect of each incident ends and de�ning a bounding box
around this region. This is done in a few steps:

1. Calculate the density for each loop detector for each time slice - exactly like the loop
delay but for tra�c density.

2. Make a contour plot of the tra�c density for each shift with the incidents plotted on top.

3. Determine from the contour plot how far upstream the e�ect of the incident is felt. This
can be done by �guring out where the density returns to normal.

4. Determine how long the incident has an e�ect on the density. This can be done by looking
for the time that the density returns to normal.

164 CHAPTER 11. PROGRAM INPUT: CROSS DATA ANALYSIS

5. These parameters form a box in time-space coordinates. Save these parameters, for each
incident, to a �le.

6. Read this �le in at runtime and calculate the delays only over that bounding box.

An example of this can be seen in Figure 11.8. Figure 11.8 is a plot of the di�erential density

Distance
Loop Detector

T s T e

L s

L
e

17

Southbound Diff. Density: lp031993 (Ref spd = AVG)

Time

T e
’

Figure 11.8: Density Contour With Incident.

over distance and time. The di�erential density is the density for a speci�c day divided by the
average density for the whole study period. This specify plot is for the southbound section on
3/19/93. The only incident plotted on this graph is incident #17. The dark solid box is the
time that we think the incident occurred. This duration could be the duration in the incident
database or it could be the �xed duration - it depends on what parameters you speci�ed in
the run�le. The height of the box has no meaning - it is just there so that you can see the
incident. The midpoint of the box is centered where we believe the incident took place. As
you can see, there are some contours that start right when our incident starts and then build
upstream. Once the incident is cleared the density starts to dissipate. The dotted box on the
plot is the bounding box that should be de�ned for this incident. Note that it completely covers
the bubble in density that was caused by this incident. With this new information the program
can calculate the delay for this incident in step 6 above as:

Dincident =
X

i2[Le;Ls]

X
j2[Ts;T

0

e]

Dj
i (11.16)

The bounding box �le that is read in at runtime is shown as the circle in Figure 11.6.
The run�le parameter that you need to set to perform this type of incident delay calculation is
FIX_INC_DELAY_BOX. This parameter has two possible values:

11.5. FINDING THE DELAY FOR EACH INCIDENT 165

NO FIX INC DELAY: This will cause the method described in Section 11.5.1 to be used
to calculate the incident delay.

YES FIX INC DELAY: This will tell the program to read in the bounding box at runtime
and to use equation 11.16 to calculate the delay per incident.

Once again, there are a number of problems with using this method:

� The bounding boxes have to be square. There is no fundamental reason for this other
than programming simplicity.

� If an incident doesn't have a bounding box de�ned in the runtime �le then the delay for
that incident is assumed to be zero.

� Even when inspecting the density plots by hand it is hard to separate multiple incidents.
At present, there is no way to deal with multiple incidents where the congestion, or the
queues, overlap.

166 CHAPTER 11. PROGRAM INPUT: CROSS DATA ANALYSIS

Chapter 12

Examples With The Run�le

Since manipulating the run�le can be pretty daunting I have included some helpful hints and
quite a few examples. The hints �rst:

� Always start with another run�le. There are usually too many parameters to type in for
you to type in everything every time.

� Don't delete lines in the run�le, just comment them out. This will allow you to switch
back and forth between di�erent options really quickly and you won't have to remember
all of those parameter names. The comment character is the \#" symbol.

� If the program can't read in a line in the run�le then try deleting the line entirely and
re-typing it. Sometimes control characters can hide themselves in lines.

� You can not have more than 500 lines in the run�le. If you need more lines then you have
to change the de�ned variable MAX_NUM_RUNFILE_STRINGS in the �le fsp.h to be larger
and then recompile the program and run it again.

� You have to have an equals sign in each one of the lines, even if you are just going to use
the default value.

� If you are trying to generate error reports for the loop data and nothing is coming out
then make sure that you have speci�ed some tests to run. Remember that the default for
all of the loop tests is OFF.

� If you think that some parameter is not being read in then you can put the program in
preliminary debug mode. This is done by placing an extra \1" on the end of the command
line. Something like:

clair 10: fsp my.runfile my.inc.filter 0 1

This will simply print out all of the parameters that the program �nds in the run�le.

167

168 CHAPTER 12. EXAMPLES WITH THE RUNFILE

12.1 General Parameters

There are a few general parameters to the run�le that are usually never changed. I will list these
out here and then assume that they are always speci�ed in the following examples. Almost all of
the parameter defaults are either \NO" or \OFF," whichever is appropriate. So if a parameter
is ever left out of a run�le then it is assumed to be set to the default. The following is only a
part of a run�le. You could say that it's the run�le header because it doesn't do anything by
itself - it only sets up boring general parameters:

This is my boring runfile header. (1)
GNU_PRINTER = lw273 (2)
ERROR_FILE_NAME_EXT = err (3)
NAV_DATA_FILE_NAME = nav.dat (4)
KEY_DATA_FILE_NAME = key.dat (5)
CAR_DIRECTORY_ROOT = car (6)
REPORT_DESTINATION = FILE (7)
DEBUG_LEVEL = SILENT_DEBUG (8)
#DEBUG_LEVEL = MINIMUM_DEBUG (9)
#DEBUG_LEVEL = DETAIL_DEBUG (10)
#DEBUG_LEVEL = VERBOSE_DEBUG (11)

The numbers after each line are not part of the run�le - they are just there for reference
purposes. A line by line explanation of the above run�le follows:

1) This is a comment. It is ignored by the program.

2) This speci�es which printer all of the plots should go to. This string is placed directly in
the gnuplot executable �les.

3) This will specify the extension for the car error �les.

4) This will specify the name of the �le that holds the digital compass data.

5) This will specify the name of the �le that holds the key presses from the probe vehicles.

6) This will specify the pre�x of the directory names that hold the car data.

7) This will send all of the car reports to a �le.

8) This will tell the program to not print out any debugging information.

9) Lines 9 - 11 are all comments. I usually leave lines like this in my run�le so that I can
switch between options without having to remember what the exact spelling is.

Most of these parameters won't ever need to be changed. Except for GNU PRINTER, they
are all relics from the early days of this project. Instead of taking them out, I have decided to
leave them in place in case somebody thinks up a use for them.

12.2. EXAMPLE 1: JUST CAR DATA 169

12.2 Example 1: Just Car Data

This example will deal only with the car data. Let's say that we had three main directories of
car data and the �rst two had 4 cars worth of data and the last one had 3. So our directory
structure inside of the car data directory looked like this:

am111492 <= one main directory...

|

|-- car1 <= car data...

|-- car2

|-- car3

|-- car4

pm111492 <= main directory...

|

|-- car1 <= car data...

|-- car2

|-- car3

|-- car4

am111592 <= main directory...

|

|-- car1 <= car data...

|-- car2

|-- car3

And we wanted to have a lot of reports and we wanted to delete the intermediate
�les. Then one possible run�le would be:

MAIN_DIRECTORY = am111492 1 2 3 4 (1)
MAIN_DIRECTORY = pm111492 1 2 3 4 (2)
MAIN_DIRECTORY = am111592 1 2 3 (3)
REPORT_OPTION = EVERYTHING (4)
REPORT_DESTINATION = FILE (5)
CLEAN_UP_OPTION = DELETE_FILES (6)
GORE_POINTS = YES_CALC_GORE_POINTS (7)
ERROR_FILE_NAME_EXT = (8)

Things to note:

� The value of ERROR_FILE_NAME_EXT goes to the default value of \err" because nothing
was speci�ed.

� The value of DEBUG_OPTION goes to the default value because it wasn't even listed.

� When specifying the MAIN_DIRECTORY there is at least one space after the directory name
and before the numbers of the car subdirectories. If there wasn't then the program
wouldn't be able to distinguish between the main directory name and the car subdirectory
numbers.

170 CHAPTER 12. EXAMPLES WITH THE RUNFILE

� The gore points are calculated and stored in the appropriate �les. The incidents are not
calculated and therefore are not stored. The plots of distance vs. time for both the car
position and the incident position are saved in appropriate �les.

12.3 Example 2: More Car Data

Next, let's say that we had 12 sets of data, some with 4 cars and some with 3, with the names
of the various main car directories being:

chevy1 morning1 ford1 ford4

chevy2 morning2 ford2 evening

chevy3 morning3 ford3 day1

So the data is spread out over various directories. Then one possible run�le would be:

This is our runfile. (This line is a comment line)

MAIN_DIRECTORY = chevy1 1 2 3

MAIN_DIRECTORY = chevy2 2 3 4

MAIN_DIRECTORY = chevy3 1 2 3 4

MAIN_DIRECTORY = ford1 1 2 3 4

MAIN_DIRECTORY = ford2 1 2 3

MAIN_DIRECTORY = ford3 1 2 3

MAIN_DIRECTORY = ford4 1 2 4

MAIN_DIRECTORY = morning1 1 2 3 4

MAIN_DIRECTORY = morning2 1 2 3 4

MAIN_DIRECTORY = morning3 1 2 3 4

MAIN_DIRECTORY = evening 1 4

MAIN_DIRECTORY = day1 1 4

CAR_DIRECTORY_ROOT = car

REPORT_OPTION = EVERYTHING

REPORT_DESTINATION = FILE

CLEAN_UP_OPTION = DELETE_FILES

ERROR_FILE_NAME_EXT =

In this example the only output that that will be generated is the diagnostic reports
for the cars and those will be stored in the directory de�ned in the �le fsp_dirs.h by the
de�ned variable CARDATA_REPORTS_DIR.

12.4 Example 3: Lots Of Car Data

This is another car example. In this example we want to generate a couple of di�erent plots
for the data in the directory am031093 for car 1. The speci�cations are as follows:

1. Generate all of the car error reports.

2. Place the car error reports in �les.

12.5. EXAMPLE 4: GENERAL LOOP DATA EXAMPLE 171

3. Clean up the temporary car �les that were made.

4. Don't spit out any debug information.

5. Include the information from the GORE points.

6. Don't include the INRAD points.

7. Generate the speed-time plots.

8. Don't generate the speed-distance plots.

9. Use the default speed �ltering factor.

10. Specify the printer name as \s307".

11. Use the default of everything else.

The run�le for this example follows. Note that you shouldn't put the numbers on
each line - those are just there to point out which step is which.

Example runfile

#

REPORT_OPTION = EVERYTHING (1)

REPORT_DESTINATION = FILE (2)

CAR_CLEANUP = DELETE_FILES (3)

DEBUG_LEVEL = SILENT_DEBUG (4)

GORE_POINT_OPTION = YES_CALC_GORE_POINTS (5)

INRAD_POINTS = NO_INRAD_POINTS (6)

SPEED_TIME_PLOTS = YES_SPEED_TIME_PLOTS (7)

SPEED_DIST_PLOTS = NO_SPEED_DIST_PLOTS (8)

CAR_SPD_FILTER_FACTOR = (9)

GNU_PRINTER = s307 (10)

MAIN_DIRECTORY = am031093 1

This run�le will process the data in the directory am031093 for car number 1.

12.5 Example 4: General Loop Data Example

Loop data is handled the same way as car data except for the parameter strings. If you had
loop data on February 4, 1993 and you had data for the detectors 1, 2, 5, 10, and 15, then the
line in the run�le would look like this:

LOOP_DIRECTORY = lp020493 1 2 5 10 15

So a full
edged loop example looks like this:

172 CHAPTER 12. EXAMPLES WITH THE RUNFILE

REPORT_OPTION = FILE

REPORT_DESTINATION = EVERYTHING

CAR_CLEANUP = DELETE_FILES

DEBUG_LEVEL = SILENT_DEBUG

ERROR_FILE_NAME_EXT =

NAV_DATA_FILE_NAME =

KEY_DATA_FILE_NAME =

CAR_DIRECTORY_ROOT =

LOOP_TEXT = LOOP_BOTH_REPORTS

LOOP_DIRECTORY = lp030993 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19

A few things to note about this example:

� In this example we still had the parameters that deal with the car data, CAR_CLEANUP,
CAR_DIRECTORY_ROOT, etc. This is perfectly all right. Since there is no car data to process
these parameters are read in but then nothing is done with them.

� This example will attempt to produce the text and error report for the loop data set.

� Since the time periods for the loop data set are not speci�ed, the default values will be
used.

� Since LOOP_TEXT was set to LOOP_BOTH_REPORTS, you could assume that the user wanted
to generate an error report. But since the default for all of the loop tests is OFF no tests
are run and therefore the error report won't have any results in it. This is probably a
mistake and the user should specify some tests to perform.

12.6 Example 5: Complicated Loop Data Example

A more sophisticated loop data example would entail the following:

1. Generate all of the car error reports. This setting will have no e�ect since we don't specify
any car data sets.

2. Place the car error reports in �les. This setting will have also no e�ect since we don't
specify any car data sets.

3. Don't spit out any debugging information.

4. Specify the printer name as \s307".

5. Set the value of PPS to mean \counts per output period."

6. For the loop data generate both an error report and a text report.

7. Start the loop report at 6:00am (i.e.: 21600 seconds since midnight the night before).

8. End the loop report at 8:00am (i.e.: 28800 seconds since midnight the night before).

12.7. EXAMPLE 6: COMPUTING THE DELAY WRT THE AVERAGE 173

9. For the loop report, print out a value every 60 seconds.

10. For the loop report, generate the speed, occupancy, and count plots.

11. For the error reports, only test if the speed or occupancy is above a certain value. Don't
test for anything else.

The run�le for this example follows. Note that you shouldn't put the numbers on
each line - those are just there to point out which step is which.

This runfile was made automatically

by the PC software ftran.

#

REPORT_OPTION = EVERYTHING (1)

REPORT_DESTINATION = FILE (2)

DEBUG_LEVEL = SILENT_DEBUG (3)

GNU_PRINTER = s307 (4)

OUTPUT_FLOW_AVG_FACTOR = MATCH_OUTPUT_PERIOD (5)

LOOP_TEXT = LOOP_BOTH_REPORTS (6)

LOOP_START_TIME = 21600 (7)

LOOP_END_TIME = 28800 (8)

LOOP_OUTPUT_PERIOD = 60 (9)

LOOP_FLOW_PLOTS = YES_CALC_ALL_FLOW_PLOTS (10)

LP_SPEED_HIGH_TEST = YES (11)

LP_OCC_HIGH_TEST= YES (11)

LP_SPEED_HIGH_THRESHOLD_MPH = 90 (11)

LP_SPEED_HIGH_THRESHOLD_NUM = 2 (11)

LP_OCC_HIGH_THRESHOLD_PERCENT = 50 (11)

LP_OCC_HIGH_THRESHOLD_NUM 5 (11)

LOOP_DIRECTORY = lp030993 1 10 16

12.7 Example 6: Computing The Delay WRT The Average

One of the more complicated things to do is to calculate the delay with respect to the average.
The loop averages are the averages over the all of the days of the speeds, counts, occupancies,
and densities. These �les are used to calculate the delay for each incident with respect to the
average and to generate the contour plots of di�erential density. The nice thing about the
loop averages is that they probably only have to be calculated once. Unfortunately, that �rst
calculation is a bit hard. For programming reasons this calculation needs to be done in a couple
of passes of the program. The steps that we are going to follow are given below:

174 CHAPTER 12. EXAMPLES WITH THE RUNFILE

1. In the �rst pass of the program we will calculate the standard speed,
ow, occupancy,
and density values for each loop detector for each day. We will also calculate the average
of these values over the days.

2. In the second pass we will calculate the delay at each loop detector with respect to the
average.

3. As a �nal step we will copy the delay �les to a special directory so that they are not
corrupted by further runs of the program. This is done with the fsp-generated program
called copydat.

Since we are only going to be dealing with the loop data in the run�le listings that
follow I will not include any parameters that deal with the car data or the incident data.

12.7.1 The First Pass: Standard Values

In this pass we will calculate the speeds,
ows, occupancies, and densities for the loop data.
We will also calculate the averages for these values over the days. Note that the averages are
only generated from the loop data speci�ed. If you only specify 1 day of loop data then you'll
have a pretty boring average. If you look below you will notice that we specify that we want
to calculate the tra�c delay with respect to a constant. Actually, we don't really care about
the tra�c delay at this point. The reason that we have to run the routine that calculates the
tra�c delay is because that's where the densities are calculated as well. The density calculation
routine probably shouldn't be mixed in with the delay calculation stu� but tradition is a very
strong force.

Once the standard values are calculated the program will attempt to calculate the
average for these values over all the days. It will place these values in a subdirectory namedAvg
under the main loop output directory. The run�le to do all of this is given below. Note that
this run�le is distributed with the source code for the fsp project. It's name is lp.avg.1.run.

In the list that follows there are quite a few run�le parameters that have been left
out because they don't have anything to do with what I am trying to show. You should set
those to appropriate values when running the fsp program.

LOOP_START_TIME = 18000

LOOP_END_TIME = 72000

LOOP_OUTPUT_PERIOD = 300

OUTPUT_FLOW_AVG_FACTOR = MATCH_OUTPUT_PERIOD

CAR_DATA_SET_NUMBER = 1

LOOP_DATA_DIRECTORY = /home/pal2/FSP/Set1/Loopdata

CAR_DATA_DIRECTORY = /home/pal2/FSP/Set1/Cardata

INCIDENT_DATA_DIRECTORY = /home/pal2/FSP/Set1/Incidents

OUTPUT_DIRECTORY = /home/pal2/FSP/Tempout

FLOOP_CLEANUP = DELETE_EVERYTHING

GLOOP_CLEANUP = DELETE_NOTHING

HLOOP_CLEANUP = DELETE_NOTHING

LOOP_FLOW_PLOTS = YES_CALC_ALL_FLOW_PLOTS (1)
LOOP_TEXT = LOOP_ERR_REPORT_ONLY (2)

12.7. EXAMPLE 6: COMPUTING THE DELAY WRT THE AVERAGE 175

DROPOUT_TIMES = YES_DROPOUT_FILE (2)
LOOP_DATA_COMPRESSED = DATA_IS_COMPRESSED

LOOP_CONSISTENCY_FIX = NO_FIX_CONSISTENCY_ERRORS

LOOP_HOLES_FIX = YES_FIX_HOLE_ERRORS (2)
TRAFFIC_DELAY = YES_CALC_TRAFFIC_DELAY (3)
DELAY_CALCULATION = WRT_CONSTANT_SPEED (3)
DELAY_TYPE = ONLY_HAVE_POSITIVE_DELAY (3)
TRAFFIC_LOW_SPEED = 55 (3)
LOOP_AVERAGE = YES_LOOP_AVERAGE (4)
LOOP_DIRECTORY = lp021693 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 19 20

LOOP_DIRECTORY = lp021793 1 2 3 4 5 7 8 9 10 11 12 13 15 16 17 19 20

LOOP_DIRECTORY = lp021893 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20

There are a few things that should be pointed out about the list above. These items
are marked on the right hand side with various numbers:

1. The item marked (1) tells the fsp program to generate the speeds, occupancies, and
ows
for the loop detectors.

2. The items marked (2) are necessary to specify that the program should �x the holes in
the loop data. The average probably isn't going to be very good if you don't use the �xed
loop data.

3. The items marked (3) tell the program to calculate the delay on the loops with respect
to a constant. Note that a side e�ect of doing this is that the program calculates the
density values for the loops and this is what we will use later on. Note that at this point
we can not calculate the delay with respect to the average and that it must be done with
respect to a constant. The reason for this is that the average �les don't exist yet (you are
in the process of making them right now).

4. Finally, item (4) tells the program to calculate the loop averages and to place them in the
special directory called Avg under the loop output directory. For this run�le the complete
path name of this directory would be /home/pal2/FSP/Tempout/Loopdata/Avg. The
averages in this example will only be over the three days 2/16, 2/17, and 2/18.

12.7.2 The Second Pass: Calculating The Delay

In the second pass we will use the loop average �les that were computed during the last pass
to calculate the delay with respect to the average. The listing is given below:

LOOP_START_TIME = 18000

LOOP_END_TIME = 72000

LOOP_OUTPUT_PERIOD = 300

OUTPUT_FLOW_AVG_FACTOR = MATCH_OUTPUT_PERIOD

CAR_DATA_SET_NUMBER = 1

LOOP_DATA_DIRECTORY = /home/pal2/FSP/Set1/Loopdata

CAR_DATA_DIRECTORY = /home/pal2/FSP/Set1/Cardata

176 CHAPTER 12. EXAMPLES WITH THE RUNFILE

INCIDENT_DATA_DIRECTORY = /home/pal2/FSP/Set1/Incidents

OUTPUT_DIRECTORY = /home/pal2/FSP/Tempout

FLOOP_CLEANUP = DELETE_EVERYTHING

GLOOP_CLEANUP = DELETE_NOTHING

HLOOP_CLEANUP = DELETE_NOTHING

LOOP_FLOW_PLOTS = NO_CALC_LOOP_FLOW_PLOTS (1)
LOOP_TEXT = LOOP_NO_REPORTS

DROPOUT_TIMES = NO_DROPOUT_FILES

LOOP_DATA_COMPRESSED = DATA_IS_COMPRESSED

LOOP_CONSISTENCY_FIX = NO_FIX_CONSISTENCY_ERRORS

LOOP_HOLES_FIX = YES_FIX_HOLE_ERRORS (2)
TRAFFIC_DELAY = YES_CALC_TRAFFIC_DELAY (3)
DELAY_CALCULATION = WRT_AVERAGE_SPEED (3)
DELAY_TYPE = ONLY_HAVE_POSITIVE_DELAY

TRAFFIC_LOW_SPEED = 55

LOOP_AVERAGE = NO_LOOP_AVERAGE (4)
LOOP_DIRECTORY = lp021693 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 19 20

LOOP_DIRECTORY = lp021793 1 2 3 4 5 7 8 9 10 11 12 13 15 16 17 19 20

LOOP_DIRECTORY = lp021893 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20

A couple of things to point out about this listing:

1. We no longer need to generate the standard loop �les of speeds, occupancies, and
ows
because this was done in the 1st pass. This is done on the line labeled (1).

2. We still need to specify that we want to use the loop data that has had the holes �xed.
This is done on the line labeled (2).

3. We now calculate the loop delay with respect to the average instead of with respect to a
constant. This is done on the lines labeled (3).

4. Finally, note that on the line labeled (4) that we don't have to compute the average more
than once.

12.7.3 The Final Step: Moving The Files To A Safe Place

Once the delay with respect to the average �les have been calculated we need to move them
to a special directory so that they will not be overwritten by subsequent passes of the fsp
program. This special directory is called Delay and it is located in the main loop output
directory. Underneath the Delay directory is a directory for each day of loop data. These
directories will hold the loop delay �les that were computed with respect to the average.

Note that safety is not the only reason for moving the loop delay �les �les to this
special directory. When the program attempts to calculate the delay for each incident it reads
in the loop delay �les that correspond to the space-time box that the incident covers and adds
up the delay in that box. Well, there are two di�erent places the program can get the delay
�les from depending on what type of calculation it is doing. If the program is doing the delay
calculation with respect to a constant then the loop delay �les are pulled out of the normal

12.8. EXAMPLE 7: GENERATING THE CONTOUR PLOTS 177

loop day directories. The program assumes that the �les there were calculated with respect to
a constant. If the program is doing the delay calculation with respect to the average then the
loop delay �les are pulled out of the Delay directory structure.

These �les can be moved with the help of a shell script program that is generated
by the fsp program in the loop output directory. If you change into the loop output directory
you will see that there is a �le called copydat. This �le will copy all of the loop delay �les to
the appropriate place under the Delay directory. To run this program simply type copydat at
the command line.

clair 10: copydat

Starting to copy files...

Processing: lp021693

Processing: lp021793

Processing: lp021893

Done

Once you have copied the �les the program will be completely set up to take advan-
tage of the average loop delay �les.

12.8 Example 7: Generating The Contour Plots

One very helpful analysis tool is to be able to generate the various contour plots of the loop
data with the incidents on them. This is helpful when you want to draw the space-time boxes
around the incidents so that you can get a more accurate measurement of the delay per incident.
The run�le that is needed to do this is straight forward. The only requirement is that the loop
average �les need to have been calculated. This was done in Section 12.7.

The steps that we have to take to generate the contour plots are pretty straight
forward:

1. We don't have to do any more calculation with the loop data. This, of course, assumes
that the loop delays have already been calculated.

2. We need to tell the program to process the incidents and to generate the contour plots
with those incidents.

3. We need to create an incident �lter to our liking. In the example below we will �lter out
all of the accidents that occurred within our shift.

Once again, a few parameters have been left out because they don't concern us. This
run�le is also in the source code that came with the fsp program. It is called contour.run:

LOOP_FLOW_PLOTS = NO_CALC_LOOP_FLOW_PLOTS

LOOP_TEXT = LOOP_NO_REPORTS

DROPOUT_TIMES = NO_DROPOUT_FILES

LOOP_CONSISTENCY_FIX = NO_FIX_CONSISTENCY_ERRORS

LOOP_HOLES_FIX = YES_FIX_HOLE_ERRORS (1)

178 CHAPTER 12. EXAMPLES WITH THE RUNFILE

TRAFFIC_DELAY = NO_CALC_TRAFFIC_DELAY

LOOP_AVERAGE = NO_LOOP_AVERAGE

LOOP_AGGREGATE_VALUES = NO_CALC_AGGREGATE_VALUES

LOOP_DIRECTORY = lp021693 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 19 20

LOOP_DIRECTORY = lp021793 1 2 3 4 5 7 8 9 10 11 12 13 15 16 17 19 20

LOOP_DIRECTORY = lp021893 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20

PROCESS_INCIDENTS = YES_PROC_INCIDENTS (2)
FIX_INC_DURATION = NO_FIX_INC_DURATION (3)
FIX_INC_LOCATION = YES_FIX_INC_LOC (3)
FIX_INC_DELAY_BOX = NO_FIX_INC_DELAY (3)
INC_CONTOUR_DELAY_PLOT = YES_INC_CONTOUR_DELAY_PLOTS (4)
CORRELATE_CARS_DATABASE = NO_CORRELATE (5)

Some things to point out about the run�le listed out above:

� All of the loop calculation parameters are turned o�. It is assumed that the loop averages
have already been made as was done in Section 12.7.

� We still need to specify that the holes in the loop data were �xed as is done in the line
labeled (1). Actually, this parameter is used throughout the program to indicate whether
we should use the
oop, gloop, or hloop �les. So it's required that you always specify
this.

� We need to tell the program to process the incidents as is done in the line labeled (2).

� The various incident �xes can be on or o�, it doesn't matter. You can see in the lines
labeled (3) that I have chosen to �x the incident locations but not their durations or the
delay boxes.

� The most important item is on the line labeled (4). This line tells the program to
generate the contour plots. The program will make contour plots for the delay, density
and di�erential density.

� We don't need to correlate the incident database with the car data (actually, we probably
never want to do this because it takes too long).

� Note that there are a few parameters that deal with the incident output that were not
mentioned.

As was mentioned above, this example is going to generate the contour plots with
the accident incidents on them. Therefore, we need to provide an incident �lter that will �lter
out the accidents. The incident �lter that was used to do this is given below:

DATE = 2/16/93 - 2/19/93 (1)
INCIDENT_TYPE_2 = 1 2 (2)
BEGIN_END = 0 (3)

12.9. EXAMPLE 8: FIXING THE INCIDENT LOCATIONS 179

12.9 Example 8: Fixing The Incident Locations

One useful thing to be able to do is to �x the incident locations with the help of the probe
vehicle data. This is going to be done with the incident database-probe vehicle correlation
routine. Much like the example involving the calculation of the loop averages in Section 12.7,
this procedure involves a couple of steps. The steps that we will take to do this are as follows:

1. In the �rst pass of the fsp program we will specify the incident and car data that we wish
to examine and have the program generate the corresponding correlation plots.

2. Next, we will print these plots out and �gure out which incidents should be shifted. We
will then code this information into the incident location �x �le.

3. In the second pass of the fsp program we will tell the program to attempt to �x the
incident locations with the incident location �x �le that we just made.

4. In the �nal step we will look at the results of the correlation that we just and examine
the new incident location �x table that the fsp program generates. This table will then
become our �nal incident �x �le.

12.9.1 Step 1: Generating The First Plot

In the example that follows I will only deal with one shift of car data and incidents. In reality,
you should probably do this for all of the incidents but it would just take too long in this
example. The incident �lter that we will use only pulls out the incidents that occurred on
February 22, 1993 during the morning shift. It is given below:

DATA_TYPE = F

DATE = 2/22/93 - 2/23/93

SHIFT = 0

The �rst run�le that we will need should just process the appropriate car data and
then generate the correlation graph. A run�le that does this is given below. Note that there
are quite a few parameters that aren't provided in the run�le. These were left out because they
obscure the message. You should set them to appropriate values when attempting this �x.

CAR_DATA_SET_NUMBER = 1

LOOP_DATA_DIRECTORY = /home/pal2/FSP/Set1/Loopdata

CAR_DATA_DIRECTORY = /home/pal2/FSP/Set1/Cardata

INCIDENT_DATA_DIRECTORY = /home/pal2/FSP/Set1/Incidents

OUTPUT_DIRECTORY = /home/pal2/FSP/Tempout

GORE_POINT_OPTION = YES_CALC_GORE_POINTS (1)
INCIDENT_POINTS = YES_INCIDENT_POINTS (1)
INRAD_POINTS = YES_INRAD_POINTS (1)
SPEED_TIME_PLOTS = NO_SPEED_TIME_PLOTS (2)
SPEED_DIST_PLOTS = NO_SPEED_DIST_PLOTS (2)
TIME_DIST_PLOTS = NO_TIME_DIST_PLOTS (2)
MAIN_DIRECTORY = am022293 1 3 4 (3)

180 CHAPTER 12. EXAMPLES WITH THE RUNFILE

PROCESS_INCIDENTS = YES_PROC_INCIDENTS

FIX_INC_DURATION = NO_FIX_INC_DURATION (4)
FIX_INC_LOCATION = NO_FIX_INC_LOC (4)
FIX_INC_DELAY_BOX = NO_FIX_INC_DELAY (4)
INC_CONTOUR_DELAY_PLOT = NO_INC_CONTOUR_DELAY_PLOTS

CORRELATE_CARS_DATABASE = YES_CORRELATE (5)
INC_CORRELATION_GRAPH = YES_INC_CORR_GRAPHS (5)
NUMBER_INC_CORR_GRAPHS = YES_NUMBER_INC_CORR_GRAPHS (5)
INC_MATCH_ZERO_WIDTH = NO_MATCH_ZERO_WIDTH_INC (6)

A couple of things to point out about this listing:

� When processing the car data we needed to have the fsp program record the key presses
that correspond to incidents. In order to make these more accurate we also need to tell
the program to record the gore points and the INRAD points. Remember that these
points help to locate the incident key press on the freeway. This is all done on the lines
labeled (1).

� On the lines labeled (2) we tell the program to not generate the various car trajectory
plots. We simply don't need them for what we are doing.

� On line (3) we specify the car data that we want to look at. For this day we only had
three cars in the �eld.

� On the lines labeled (4) we tell the program to not attempt to �x any part of the incidents.

� On the lines labeled (5) we tell the program to do the incident database-probe vehicle
correlation and to generate the correlation plots.

� Line (6) tells the program that it should leave out incidents that were only witnessed
once. I have done this simply because it makes the correlation plots look better. The
normal user might want to leave those incidents in.

The main result of the fsp program run with this run�le is that there is a correlation �le that is
saved in the car shift directory. For this example that directory is /home/pal2/FSP/Tempout/Cardata/am022293
and the gnuplot executable to print the �le out is called incidentcor.gp. The plot is given in
Figure 12.1. This plot gives a really good example of why you would want to attempt to �x
the incident locations. If we accept that the car key presses mark the correct location of the
incidents then it is obvious that incidents 205, 219, 223, and 238 all need to be shifted.

You could also see from the textual output below that things are not so good.

Incident database match statistics:

Total: # incidents, # covered, ratio = 9, 9, 100.0%

Total: # time entries, # matched, ratio = 57, 22, 38.6%

Total: # covered incidents, # changed, avg change(ft) = 9, 7, 1715

Total: # with new loop, ratio = 0, 0.0%

Probe vehicle match statistics:

12.9. EXAMPLE 8: FIXING THE INCIDENT LOCATIONS 181

6:006:00

6:30

7:00

7:30

8:00

8:30

9:00

9:30

10:00

0 5 10 15 20

T
im

e

Position (miles)

Car and database correlation: am022293

205

210

213

216

219220

223

236
238

Figure 12.1: Incident Database-Probe Vehicle Correlation Plot.

Total number of entries = 102

Number of entries in study section = 54

matched entries in study section = 22

ratio = 40.7%

The statistics above are all interpreted in Section 16.2.3, but what we will look at is the last
line which says ratio = 40.7%. This means that only 40.7% of the key presses from the probe
vehicles were matched with incidents. We will attempt to get this ratio as high as possible.

12.9.2 Step 2: Generating The Location Fix File

From looking at Figure 12.1 you can see how much the incidents need to be moved. Which
incidents need to be moved is completely subjective. Take incident 220, for example. There is a
key press right before it and a couple right after it. One could argue that this incident should be
shifted so that it covers the key press directly to the left. One could also argue that shifting it to
the right, to cover the multiple key presses there, is the correct thing to do. Unfortunately, we
have not come up with a methodology that will tell us what the drivers actually saw when they
pressed their keys. As a result, the shifting of the incidents to cover key presses is completely
up to you. I have chosen this day because it is relatively easy to judge what to do for quite a
few incidents. If you look at the correlation plots for some of the other days you'll see that in
quite a few cases it is nearly impossible to tell how to shift the incidents.

182 CHAPTER 12. EXAMPLES WITH THE RUNFILE

In the input incident directory we will create a �le named inc_fix_loc.dat. This
�le will hold the incident numbers that we would like to move and how much we would like to
move them. The format is pretty simple: the �rst column is the incident number and the second
column is the amount that we would like to shift the incident (in miles). A positive number
means that we would like to shift them to the right on the correlation plot and a negative
number means that we would like to shift them to the left. When we are shifting the incidents
around we would like to make the incident box land right on top of the key presses. So for
incident 223 we should probably shift the incident box 1=2 mile to the left. If we did this the
entry in the location �x �le would be:

223 -0.5

A complete incident location �x �le for this day would look something like this:

205 -0.5

210 -0.25

219 -0.25

220 -0.5

223 -0.5

236 -0.1

238 -0.25

Note that there were a few incidents that were not included. For example, incident 213 is buried
in a haze of numbers and key presses. Since I couldn't �gure out where to shift this incident I
didn't shift it at all.

12.9.3 Step 3: Adjusting The Incidents

Once the �rst incident location �x �le has been made we can generate the correlation plot again
to see how our �xes performed. This is done by applying almost the same run�le as was used
in step 1 except for one change. We need to use the following parameter setting:

FIX_INC_LOCATION = YES_FIX_INC_LOC

This, of course, tells the program to read in the incident location �x �le1 that we have just
created and use it to shift the incidents around. Note that the shift from the incident location
�x routine is done before the correlation routine. Once this has been done we can take a look
at the textual report and the correlation plot to see how we did. The correlation plot for this
second run is given in Figure 12.2 and the textual output is given below:

Incident database match statistics:

Total: # incidents, # covered, ratio = 9, 9, 100.0%

Total: # time entries, # matched, ratio = 57, 42, 73.7%

Total: # covered incidents, # changed, avg change(ft) = 9, 8, 739

Total: # with new loop, ratio = 5, 55.6%

1Note that this �le must be in the incident input directory and it must be named \�x inc loc.dat."

12.9. EXAMPLE 8: FIXING THE INCIDENT LOCATIONS 183

6:006:00

6:30

7:00

7:30

8:00

8:30

9:00

9:30

10:00

0 5 10 15 20

T
im

e

Position (miles)

Car and database correlation: am022293

205

210

213

216

219220

223

236
238

Figure 12.2: Correlation Plot With Fixed Incident Locations.

Probe vehicle match statistics:

Total number of entries = 102

Number of entries in study section = 54

matched entries in study section = 42

ratio = 77.8%

The textual output indicates that 77.8% of the key presses now match up with some incident.
From looking at Figure 12.2 we can see that the incidents now match up nicely with the key
presses. It's hard to see how we could possibly match up any more. You would think that these
results would indicate that we are done, but we aren't. If we were to stop here then each time
that we applied the incident location �x the incidents would be shifted only by the amount in
the �le. The results above say that we only got a 77.8% match, but that was only after the
correlation routine shifted the incidents some more. Remember that the correlation routine
collects all of the key presses that fall within an incident box and it �nds the average location
for those key presses. It then sets the new incident location to be this average location. What
we want is to make the incident location �x �le have the correct shifts such that the correlation
routine doesn't have to move the boxes around at all. The way to tell if the correlation routine
is moving the boxes around is to look at the table it produces:

SUMMARY of all COVERED incidents:

184 CHAPTER 12. EXAMPLES WITH THE RUNFILE

Inc # # Entries # Matched Dist(ft) Loop New Dist(ft) New Loop Change

205 26 19 35640 12 35764 13 0.02

210 3 2 21040 20 20474 7 -0.11

213 3 3 41360 17 38824 17 -0.48

216 2 0 39600 4 39600 4 0.00

219 2 3 47770 5 47619 5 -0.03

220 2 1 29640 18 29160 11 -0.09

223 5 4 79400 1 79031 20 -0.07

236 3 2 82832 1 81901 1 -0.18

238 11 8 68760 19 68003 13 -0.14

This table was generated after the correlation routine was done a second time. The column
labeled \Change" tells how much the correlation routine changed the incident location (in
miles). This is simply the distance between the column labeled \New Dist(ft)" and the column
labeled \Dist(ft)." Note that the column labeled \Dist(ft)" is the location of the incident after
the incident location �x was applied. Our goal is to make the values in the column labeled
\Change" as small as possible.

12.9.4 Step 4: Adjusting One Last Time

The way to make the values in the \Change" column as small as possible is to add the incident
shifts that we already placed in the incident location �x �le to the values in the column labeled
\Change." Fortunately, the fsp program will do this for you. It will even generate a new
incident location �x table that you can plug directly into the incident location �x �le. The
table that the fsp program generates looks something like this:

Possible new incident location fix table:

Incident Shift (miles)

205 -0.48

210 -0.36

213 -0.48

216 0.00

219 -0.28

220 -0.59

223 -0.57

236 -0.28

238 -0.39

You can now take these numbers and place them in the incident location �x �le, fix_inc_loc.dat
and run the fsp program again. The resulting correlation output table will look something like
this:

Inc # # Entries # Matched Dist(ft) Loop New Dist(ft) New Loop Change

205 26 19 35746 12 35764 13 0.00

210 3 2 20460 20 20474 7 0.00

213 3 3 38826 17 38390 4 -0.08

12.10. EXAMPLE 9: FIXING THE INCIDENT DURATIONS 185

216 2 1 39600 4 38897 4 -0.13

219 2 3 47612 5 47619 5 0.00

220 2 1 29165 18 29160 11 -0.00

223 5 4 79031 1 79031 20 0.00

236 3 2 81882 1 81901 1 0.00

238 11 8 68021 19 68003 13 -0.00

As you can see, the values in the \Change" column have almost all gone to zero. This means
that the correlation routine is having almost no e�ect on the locations of the incidents. In other
words, what we have done, by making the incident location �x �le, is to subtract o� the e�ect
that the correlation routine can have on the incident locations.

There are a couple of things to note about the steps that we just took to produce
the �nal incident location �x �le:

� In order for the fsp program to generate the new incident location �x table the run�le
parameter FIX_INC_LOCATION needs to be set to YES_FIX_INC_DELAY.

� You might be thinking that you could possibly get all of the numbers in the \Change"
column to be zero. Actually, that's pretty hard to do. Sometimes when you shift incidents
around they get moved over di�erent key presses and those key presses pull the incident
even farther in the direction that it was just moved. The result is some chatter around a
stable point. If you get the values to be almost all zero, or even close, then that should
be good enough.

� A valid question to ask is why don't we just run the incident correlation routine and take
the incident location �x table that the fsp program suggests and make that the incident
location �x �le for future runs. Well, the correlation routine can't �gure out if the key
presses lie just outside of an incident box or not. It only takes the key presses that fall
inside the incident box and it shifts the new location to be the average location of these
key presses. This means that you have to get the incidents close to their correct locations
before the correlation routine can be useful.

12.10 Example 9: Fixing The Incident Durations

One �x that you can perform on the incident database is the incident duration �x. As was dis-
cussed in Section 5.3.2, the incident durations that are recorded in the incident database are not
accurate. Since the starting and ending times are only the witnessed times, the durations that
are in the incident database are all too short. One way to �x this is to simply add a �xed time
to all of the incidents. This is easily done by setting the run�le parameter HEADWAY_TIME_VAL
to the average probe vehicle headway time. Another, possibly
awed2, way to correct for the
incident durations is to record the times when probe vehicles passed the incident location and
didn't witness the incident. You can then make the corrected incident time (either start time or

2See the discussion at the end of Section 5.3.2 for an explanation as to why this routine may give biased

results.

186 CHAPTER 12. EXAMPLES WITH THE RUNFILE

end time) someplace between the time the incident was witnessed and the time that somebody
drove by and it wasn't witnessed.

What we will do here in this example is show how to run the routine that adjusts
the incident durations by �guring out when a probe vehicle passed an incident location and the
incident wasn't there. This is done in two steps:

� First, we will specify what incidents we wish to examine, determine what probe vehicle
data we need, and then tell the fsp program to process this data and attempt to �x the
incident locations from the probe vehicle data.

� We will then take the incident duration �x �le that was generated by the fsp program
and use that as a runtime �le.

12.10.1 Step 1: Using The Probe Data To Correct The Durations

The �rst thing that we need to do is to attempt to �x the incident durations from the probe
vehicle data. To do this we need to specify what incidents we wish to look at and what car
data we need. In this example, I will only look at incidents that occurred on February 22, 1993
during the morning shift. An incident �lter that will pull these incidents out of the incident
database is given below:

DATA_TYPE = F

DATE = 2/22/93 - 2/23/93

SHIFT = 0

The run�le for this example should tell the program to process the probe vehicle data and to
try to correct the incident durations using this data. A run�le that will do this is given below.
Note that there are quite a few parameters that aren't provided in the run�le. These were
left out because they obscure the message. You should set them to appropriate values when
attempting this �x.

CAR_DATA_SET_NUMBER = 1

LOOP_DATA_DIRECTORY = /home/pal2/FSP/Set1/Loopdata

CAR_DATA_DIRECTORY = /home/pal2/FSP/Set1/Cardata

INCIDENT_DATA_DIRECTORY = /home/pal2/FSP/Set1/Incidents

OUTPUT_DIRECTORY = /home/pal2/FSP/Tempout

GORE_POINT_OPTION = YES_CALC_GORE_POINTS (1)
INCIDENT_POINTS = YES_INCIDENT_POINTS (1)
INRAD_POINTS = YES_INRAD_POINTS (1)
SPEED_TIME_PLOTS = NO_SPEED_TIME_PLOTS (2)
SPEED_DIST_PLOTS = NO_SPEED_DIST_PLOTS (2)
TIME_DIST_PLOTS = YES_TIME_DIST_PLOTS (3)
MAIN_DIRECTORY = am022293 1 3 4 (4)
PROCESS_INCIDENTS = YES_PROC_INCIDENTS (5)
FIX_INC_DURATION = FIX_INC_DURATION_FROM_DATA (6)
INC_DUR_EXPAND_FRACTION = 50 (6)
FIX_INC_LOCATION = YES_FIX_INC_LOC (7)

12.10. EXAMPLE 9: FIXING THE INCIDENT DURATIONS 187

CORRELATE_CARS_DATABASE = NO_CORRELATE

INC_MATCH_ZERO_WIDTH = NO_MATCH_ZERO_WIDTH_INC

INC_FINISHED_OUTPUT = SCREEN_FINISHED_OUTPUT

INC_FINISHED_OUT_LEVEL = INC_FIN_OUT_MEDIUM (8)

There are a few things that should be pointed out in the run�le above:

1. When processing the car data we needed to have the fsp program record the key presses
that correspond to incidents. In order to make these more accurate we also need to tell
the program to record the gore points and the INRAD points. Remember that these
points help to locate the incident key press on the freeway. This is all done on the lines
labeled (1).

2. On the lines labeled (2) we tell the program to not generate the speed vs. time and speed
vs. distance car trajectory plots. We simply don't need them for what we are doing.

3. But, on line (3) well tell the program to generate the time vs. distance plot. When
the program generates the time vs. distance plot it also records when the probe vehicles
passed the various loop detectors. This information is used when attempting to correct
the durations.

4. On line (4) we specify the car data that we want to look at. For this example we are just
looking at one day.

5. On line (5) we tell the program to process the incidents - the incident duration �x routine
is in the incident processing section.

6. On the lines labeled (6) we tell the program to �x the incident durations from the car
data. The expansion fraction is set to 50%. Note that if we hadn't speci�ed any car data
that the fsp program would not allow us to attempt to �x the incident durations using
the car data.

7. On line (7) we tell the program to correct the locations of the incidents from the incident
location runtime �le. We don't have to have this option set - it won't e�ect the duration
�x at all.

8. Finally, on line (8) we tell the program to generate a medium amount of diagnostic
information about the incident processing. We do this so that the incident duration �x
routine will generate a diagnostic table for us.

The output that the fsp program generates that we are interested in is in two parts:
a diagnostic table that is placed on the screen, and a �le that is placed in the incident output
directory. The table that was generated by the �x incident duration routine is given below:

Incident duration correction statistics:

Before New After New Final

Inc Start Start Start End End End Duration Duration

205 23880 23775 23827 34140 34140 34140 10260 10313

210 27180 26918 27049 28260 28810 28535 1080 1486

188 CHAPTER 12. EXAMPLES WITH THE RUNFILE

213 30060 29672 29866 30780 31136 30958 720 1092

216 31080 30440 30760 31560 32663 32111 480 1351

219 32760 31564 32162 33120 33431 33275 360 1113

220 32940 32521 32730 33300 34061 33680 360 950

223 24180 24180 24180 25920 26296 26108 1740 1928

236 29220 28211 28715 30000 30305 30152 780 1437

238 29820 29479 29649 33900 33917 33908 4080 4259

This table lists out the start and end times of each incident as well as the times that a probe
vehicle went by the incident location but didn't witness it. The columns labeled \New Start"
and \New End" are the new starting and ending times of the incident. These should lie
somewhere between the original times and the times when the incident wasn't witness. The
column labeled \Duration" is the original incident duration and the column labeled \Final
Duration" is the corrected duration.

The second piece of information that is generated by the �x incident duration routine
is the �le inc.duration.out that is placed in the incident output directory. This �le holds
columns 1, 3 and 6 from the table above. With these columns you can adjust the incident
durations no matter what the expansion fraction is.

12.10.2 Step 2: Using The Runtime File To Correct The Durations

Now that we have the �x incident duration �le, inc.duration.out, we no longer have to
use the probe vehicle data to �x the durations. But before we can use this runtime �le we
need to copy the �le, which was generated in the previous step, to a place where the pro-
gram will recognize it. In our example the �le was place in the incident output directory
/home/pal2/FSP/Tempout/Incidents. The fsp program will expect any incident �x runtime
�les to be in the incident data directory which is /home/pal2/FSP/Set1/Incidents. Also, the
�le needs to be named inc.duration.in instead of inc.duration.out. To copy the �le can
execute the following command from the incident output directory:

cp inc.duration.out /home/pal2/FSP/Set1/Incidents/inc.duration.in

Now when we attempt to �x the incident durations we can tell the program to use the runtime
�le instead of the probe vehicle data:

FIX_INC_DURATION = FIX_INC_DURATION_FROM_FILE

This should work exactly the same as using the probe vehicle data but the running time should
be a lot faster.

12.11 Example 10: Calculating The Incident DelayWith Space-

Time Boxes

Probably the most interesting this to do with the incidents is to calculate the delays. In this
example we will go through the steps needed to calculate the delay for each incident by using
prede�ned space-time boxes. We will assume that the loop delay �les have all been calculated,

12.11. EXAMPLE 10: CALCULATING THE INCIDENT DELAYWITH SPACE-TIME BOXES189

and that the contour plots, with the correct incidents on them, have all been generated. These
steps were done in Sections 12.7 and 12.8. Since these major steps are out of the way, what we
need to do now is the following:

� Look at each contour plot and decide what the bounding box should be for each incident.
Code these boxes into the incident delay box �le.

� Run the fsp program and specify to calculate the incident delay using the bounding boxes.

Note that even though we can't really deal with incidents that overlap, this is probably the best
way to calculate the delay for each incident. A complete discussion of the di�erent incident
delay calculation can be found in Chapter 11.

12.11.1 Step 1: Figuring Out The Bounding Boxes

The contour plot that I will use in the example is the delay contour for the southbound,
morning shift of 2/18/93. I will assume that the delay contour has already been generated. We
will make space-time boxes for all of the incidents on this plot. The contour plot is given in
Figure 12.3. You can see on this �gure that there are a few incidents where the space-time boxes

Southbound Delay: lp021893 (Ref spd = AVG)

Time

Det. #

104

105

107

108

110

112

116

117

 3
 1

5:005:00 5:30 6:00 6:30 7:00 7:30 8:00 8:30 9:00 9:30

16

3

1

7

20

9

2

11

6

18

19

13

12

4

17

15

5

Figure 12.3: Delay Contour Plot.

are really obvious and a few where they aren't. After you have printed this contour plot out you
should attempt to to draw reasonable space-time boxes around each incident. For example, for

190 CHAPTER 12. EXAMPLES WITH THE RUNFILE

incident number 117 it is pretty obvious that the whole region around the incident box should
be included. On the other hand, you'll need to de�ne the boundary between incidents 104 and
108 pretty carefully.

Code these boxes into an ascii text �le with the following 5 columns: incident
number, the amount of time, in minutes, that you should extend the box to the left, the
number of loop detectors that you should go upstream, the amount of time, in minutes again,
that you should extend the box to the right, and �nally the number of loop detectors that you
should go downstream. So the order of changes that you are describing is left, down, right, up.
The number of detectors that you should go upstream includes the current detector. So a value
of 1 means that you should only look at this detector, a value of 2 means that you should look
at the current detector and the one just upstream, and so on. In some cases where incidents
overlapped and there was a small incident that was right in the middle of the delay from another
big incident we decided that the delay should be zero. In this case we said that the number of
upstream detectors should be 0, which meant that it shouldn't include any detectors. Whether
this is the correct thing to do when you have multiple incidents is still up for debate. If you take
a look at incident number 112 on Figure 12.3 you can see that this is exactly what happened.
In our coding scheme we will make the delay for this incident zero.

The incident space-time boxes that I generated for this contour plot are given below:

Incident Left Down Right Up

104 20 4 10 0

105 0 1 0 0

107 10 3 0 0

108 20 11 60 0

110 0 1 0 0

112 0 0 0 0

116 0 1 0 0

117 10 7 20 1

Any line that begins with a \#" sign is a comment line. I put the �rst line in the �le to remind
myself what all of the numbers mean. If you look at incident number 104 you'll see that we
thought that the bounding box should stretch 20 minutes to the left of the reported incident
start time, it should stretch 4 loop detectors upstream, and 10 minutes to the right of the
incident end time. For incident number 105 you can see from the coding scheme that we didn't
change the times at all and that we speci�ed a bounding box that only included the current
loop detector. The reason that we did this is because we looked at the contour delay plots and
we noticed that there wasn't any appreciable delay. So as a default we simply speci�ed that the
program should only look at the current detector. Note that there has to be spaces between
the numbers. Not commas, not hyphens, but spaces.

Finally, this �le should be placed in the incident data directory and it should be
named fix_inc_delay.dat. Note that the �le name is speci�c and if the program doesn't �nd
this �le then it will halt. You should also make sure that the program has permission to read
this �le.

12.11. EXAMPLE 10: CALCULATING THE INCIDENT DELAYWITH SPACE-TIME BOXES191

12.11.2 Step 2: Incident Delays From The Bounding Boxes

Now that the incident delay box �le is in the proper place we can run the fsp program and tell it
to calculate the incident delays with the bounding boxes. Of course, the key run�le parameter
to change is:

FIX_INC_DELAY_BOX = YES_FIX_INC_DELAY

A section of the output from this run should look like this:

Individual incident statistics:

Inc. Type Good Bad

Inc # Date D 1 2 3 Time South Link Loop Files Files Duration Delay

104 2/18/93 0 0 2 0 6:52 1 14 4 4 0 0:07:00 38.86

105 2/18/93 0 5 0 0 6:56 1 7 2 1 0 0:19:00 0.13

107 2/18/93 0 0 2 0 7:24 1 17 5 3 0 0:33:00 129.55

108 2/18/93 0 0 2 0 7:35 1 14 4 11 0 0:09:00 445.16

110 2/18/93 0 5 0 0 8:05 1 3 1 1 0 0:06:00 0.09

112 2/18/93 0 0 2 0 8:11 1 8 11 8 0 0:09:00 0.00

116 2/18/93 0 5 0 0 8:51 1 5 20 1 0 0:17:00 0.19

117 2/18/93 0 0 2 0 8:57 1 14 4 8 0 0:19:00 211.95

As you can see, the incidents where we de�ned large bounding boxes have large delays and the
incidents that had small bounding boxes don't. There are a few things to note about calculating
the incident delays this way:

� If an incident is not listed in the delay box �le then the incident will be discarded. Note
that it is not counted as having zero delay, it is thrown away completely. This takes place
after the incidents have passed through the incident �lter.

� If you are using this method to calculate the delay then you should set the vehicle headway
time to be zero. It doesn't make any sense to say that you should add some extra time
to the incident durations when you are calculating the delays this way.

� If you use this feature then a few other features become obsolete. These are the incident
duration �x, and the incident location �x. Since we are de�ning the incident delay to
be only the delay inside the bounding box the actually incident location and duration
are irrelevant. You can leave them on if you want to but they won't e�ect the delay
calculation.

� It would be nice if the computer could draw these bounding boxes by simply looking at
the delay contours. This would eliminate the time consuming and irritating step of having
to draw the boxes by hand and then code them in. It seems that from the simple picture
above that this would be possible. If you look at a typical delay or density contour plot
you will quickly realize that this is almost impossible to do (at least by me).

192 CHAPTER 12. EXAMPLES WITH THE RUNFILE

Chapter 13

Program Output: How To View It

Since the Freeway Service Patrol data set contains so many di�erent types of data it is useful
to be able to view them graphically. The fsp program can be thought of as a big �lter that is
used to extract various pieces of data from the I-880 data set and to generate plots. The plots
that this program generates are speci�cally designed to be used with gnuplot version 3.5, but
you can use xgraph to display most of the data.

13.1 GNUPLOT

The gnuplot program comes with the gnu software that is publicly available. If you don't have
it you could download it from gatekeeper.dec.com via anonymous ftp. You could also just tell
your system administrator that you need the gnuplot program and ask her to get it. Make
sure that they get the gnuplot x11 program to display the stu� on your screen. It shouldn't
be that hard.

The gnuplot program needs two �les to run. One �le is the data �le in two columns,
x vs. y. This is called the gnuplot data �le. The other �le is the gnuplot executable �le. This is
the �le that holds all of the information for the plot, like what to use for the title, what range
to use for the x and y axis, where to display the plot, etc. My program generates the data �les
and the executable �les automatically. To display a particular set of data then just type:

gnuplot gnuplot.executable.filename

This will �nd the data, make the graph and display it on the screen. In certain cases, the fsp
program will also make gnuplot executable �les that will direct the graph to a printer instead
of to the screen.

The advantages to using gnuplot is that you can make really nice plots. The labels
can be perfect, the axis are exactly how you want them, etc. The bad part, is that if you don't
have the gnuplot executable �le then it's hard to get anything. If you want to make plots of
anything other than what I planned then you probably shouldn't try to do it with gnuplot. The
only hard part about using gnuplot is that you have to �gure out what the gnuplot executable
�le is named for each type of plot. Since the fsp program generates many, many di�erent types
of plots this can sometimes be very confusing. The various gnuplot executable �les that the
program makes are discussed in Chapters 14, 15, and 16. To plot a particular set of data you
just need to �nd the gnuplot executable �le that goes with it.

193

194 CHAPTER 13. PROGRAM OUTPUT: HOW TO VIEW IT

13.2 XGRAPH: An Alternative

The program xgraph is a very quick and simple way to generate graphs. It can be used as
an alternative to gnuplot. It only takes in one �lename, which is the data in two columns,
and then generates a graph. Once this graph is made you can then dump it to a printer. The
problem with xgraph is that you can't really set the axis to be whatever you want, the labeling
isn't that great, etc. But, if you just want to see the data really fast then this is probably the
best way to do it. The really nice thing about xgraph is that in Unix you can use shell wildcard
characters in specifying the data sets to graph. For example, if you wanted to graph the counts
data from the northbound section of loop 3 for all of the lanes then you could type in:

xgraph floop3.nc1

xgraph floop3.nc2

xgraph floop3.nc3

xgraph floop3.nc4

xgraph floop3.nc5

Each one of these commands will read in the appropriate �le and will create a plot on the
screen. These �le names correspond to the count data for the individual northbound lanes of
loop 3. To learn more about the naming convention then see Section 15.3. Once the plots are
on the screen there is a button that xgraph presents to you that allows you to print each one
of these out and compare them. But, since you allowed to use wildcard characters in naming
the �les, instead of typing the �ve commands listed out above you could type:

xgraph floop3.nc*

and the wildcard character *" will expand to be all of these �les. This is exactly the same as
typing in:

xgraph floop3.nc1 floop3.nc2 floop3.nc3 floop3.nc4 floop3.nc5

Either of these last two commands will cause xgraph to display all of the data sets on one
graph and then generate a key in the upper right hand corner. If you have a color monitor
then each one of the lines will be a di�erent color. If you don't have a color monitor then the
lines will be various patterns of dots and dashes. This feature is very useful when attempting
to compare di�erent sets of data.

The xgraph program should come with the release of X that is on your system.
Talk to your system administrator about where it is on your system. Of course, both of these
programs, gnuplot and xgraph, require that you have X running on your workstations in
order to run them. If you don't then you won't be able to see the plots at all. You should note
that the �le that xgraph takes as an argument is the data �le whereas the �le that gnuplot
takes is the special �le made by the fsp program speci�cally for gnuplot.

13.3 LaTEX Tables

Most of the output that the fsp program generates is in the form of a plot or a textual table. In
some cases it would be nice to have a better table than just an ASCII printout. In those cases

13.3. LaTEX TABLES 195

the fsp program generates LaTEX tables that have really nice formatting. LaTEX is a typesetting
language that allows the user to create nice postscript documents from text �les by putting
special commands in the text �le. When you have a �le that was written with LaTEX commands
in it you can either view that �le on the screen or print it out to a postscript printer. This
section will describe the commands that you need to type to view or print any LaTEX �les that
the fsp program might generate.

There are two steps to processing a LaTEX �le:

1. The �le �rst needs to be converted from a LaTEX �le to what is called a \dvi" �le. A \dvi"
�le is a �le that is device independent. This means that the commands in the �le are not
speci�c to any output device. A complete description of why a device independent �le is
need would take us too far a�eld. The important thing to note is that once you have the
\dvi" �le that you can display it on the screen with the program xdvi.

2. Once you have the \dvi" if you want to display it on the screen then you can use the
command xdvi. If you want to print it out then you have to translate it to a postscript
�le. This is done with a program called dvi2ps. You can then pipe this �le directly to a
printer.

Let's do an example of converting a LaTEX �le to a postscript �le. The �le that we will
start o� with was generated by the fsp program and is named delay.55.tex. This �le holds
various tables of delay values for each time period. An explanation of these tables is given in
Section 15.4.1. We start with the �le delay.55.tex and we want to convert it to a \dvi" �le
so that we can �rst view the �le on the screen. This is done with the following command:

clair 1: latex delay.55.tex

This is TeX, C Version 3.141

(delay.55.tex

LaTeX Version 2.09 <14 January 1991>

(/usr/local/tex/inputs/book.sty

Document Style `book' <24 Nov 89>.

(/usr/local/tex/inputs/bk11.sty)) (/usr/local/tex/inputs/amssymbols.sty)

No file delay.55.aux.

[1] (delay.55.aux))

Output written on delay.55.dvi (1 page, 2956 bytes).

Transcript written on delay.55.log.

In the output above the LaTEX program tells us that it has created a �le named delay.55.dvi.
This �le can then be displayed at your local workstation by the command:

clair 2: xdvi delay.55.dvi

Note that the �le extension on all LaTEX �les that the fsp program generates is \tex"
and that the �le extension on all \dvi" �les is \dvi." Once the \dvi" �le has been generated it
can be printed to your local printer by converting it to a postscript �le and then dumping it to
the printer. This can be done with the following command:

196 CHAPTER 13. PROGRAM OUTPUT: HOW TO VIEW IT

clair 3: dvips delay.55.dvi | lpr -Pyour_printer_name

[/usr/tools/lib/ps/tex.ps][1]

Where \your printer name" is the name of your local printer. Note that on some machines, the
program dvips will dump the postscript output directly to a printer. In this case, you don't
need to pipe the output to a printer as well. If you don't want to print the table out to the
printer right away then you can generate a postscript �le named delay.55.ps from the \dvi"
�le with the following command:

clair 3: dvips delay.55.dvi > delay.55.ps

[/usr/tools/lib/ps/tex.ps][1]

Once you have a postscript �le you can print it out to the printer by simply typing:

clair 4: lpr -Pyour_printer_name delay.55.ps

Although it is not required, it is usually a good idea to make the extension of any postscript
�les \ps." There are a few things that you should note about generating and printing LaTEX
�les:

� All of these commands assume that the appropriate programs are in your path. These
programs are all pretty common on workstation machines but you might have to contact
your system administrator to �gure out where the programs are kept.

� Whenever the fsp program generates a �le of tables there is always one table per output
period per direction per page. This means that if the output period is 1 minute and you
run the program over the whole time period that there is going to be approximately 1400
pages of output. Well, this will take a long time for LaTEX to process and it will take
forever to print out. It is recommend that you only process the tables when the time
period of interest is very short or the output period is very long.

Chapter 14

Program Output: The Car Data

The �rst type of data output that will be discussed is the car data. This chapter will talk about
the various graphs and tables that the fsp program generates for the car data. Graphs that
involve both the car data and the incident data, or the car data and the loop data are described
in Chapter 16.

14.1 The Car Textual Output

With all of the di�erent types of data there are two types of output that the fsp program
generates. The �rst type of output is text output. This includes error reports, summaries of
the data, and estimates of the data validity. The second type of output is graphical. This
includes various plots of the data that can be displayed on the screen or printed to a printer.
This chapter will discuss the di�erent types of car text �les that are generated, their di�erent
formats, and where they are placed in the directory structure. A similar discussion for the car
plots will take place a little later on in Section 14.2.

The �rst type of car textual output that I will discuss are the error reports. The
generation of the car error reports is governed by the run�le parameter REPORT_OPTION. For
more information on the run�le parameters see Chapter 7. I will assume that this parameter
has been set to EVERYTHING_NUM. This will generate four di�erent car error reports: a key one,
a huge one, a medium one, and a small one. All of these reports are placed under the car output
directory in the directory de�ned by the variable CARDATA_REPORTS_DIR, which is de�ned in
the include �le fsp.h. This variable is current de�ned to be \Reports." The various �les are
named with the following scheme: fkey,huge,med,smgZZZZZ.err. This means that the �rst few
characters are either key, huge,med, or sm corresponding to the key, huge, medium, or small
report respectively. The Z's correspond to the 3rd through 7th characters of the run�le that
was speci�ed for this run. That might seem a little strange but you need to remember that the
whole process is under computer control from the data disks to the �nal reports and this �ts
into that scheme very nicely. For an overview of the entire data processing
ow see Chapter 17.
For example, if the run�le was called rf09230.run, then the car error reports would be called:

key09230.err

huge09230.err

med09230.err

197

198 CHAPTER 14. PROGRAM OUTPUT: THE CAR DATA

sm09230.err

14.1.1 The Key Error Report

The key error report displays statistics about the keys that the drivers press while driving
during their shift. This �le is only generated when the data set is speci�ed as the second data
set. In Section 4.3 there was a discussion about how we decided that we needed more detailed
information from the cars. In that section I described how to tell what kind of car data you
are dealing with. You should refer to that section if you don't know what the two types of car
data sets are. To understand what the various keys are you should refer to Figure 4.4. The key
error �le lists out quite a few things:

1. The starting time of each run (or loop).

2. The number of times that the southbound start and end key was pressed per run.

3. The travel time between the two southbound keys per run.

4. The number of times that the northbound start and end key was pressed per run.

5. The travel time between the two northbound keys per run.

6. The number of times the southbound gore key was pressed per run.

7. The travel time between the two southbound gore keys per run.

8. The number of times the northbound gore key was pressed per run.

9. The travel time between the two northbound gore keys per run.

10. A summary of the number of times that the drivers hit the keys correctly for each type
of key.

11. The drivers name and the fraction of correctly pressed keys for the whole day.

A short sample of a key error report is given below:

******* Car Data Report: *******

Number of Data Sets: 1

3- 9-93 PM

#South #North #South #North

Car Loop# Start Points TT Points TT Gore TT Gore TT

1 15:20:21

1 15:51:04 2 0:14:54 2 0:14:27 2 0:09:56 2 0:11:13

2 16:23:25 2 0:22:15 2 0:15:05 2 0:05:04 2 0:02:47

3 16:54:15 2 0:13:15 2 0:16:08 2 0:07:59 1

4 17:27:41 2 0:12:41 1 0 0

5 17:59:09 2 0:09:30 1 2 0:07:35 2 0:07:21

5/5 3/5 4/5 3/5

driver = Hisham Noeimi score = 75%

14.1. THE CAR TEXTUAL OUTPUT 199

This is the key error report for car number 1 on the afternoon shift of March 9,
1993. The label \TT" stands for \Travel Time." The travel times are for the type of key press
directly to the left of the column. For example, the �fth column of data, which is the �rst
column that says \TT", lists the travel times for the southbound points. Since we need to have
two key presses of a certain type in order to get a travel time if there aren't two key presses
then a travel time is not calculated and there is just a blank. If you look at the travel time for
the northbound points then you'll see that in the 4th and 5th loop the driver only pressed the
northbound key once. This means that they forgot to press it at the start of the run or at the
end of the run. Since we don't have two points, we can't calculate a travel time for these cases.
The summary at the bottom is just the total number of times that the driver correctly hit two
key presses of a certain type in a single run. The score is the percentage of times that they hit
all of the di�erent types of keys correctly. It seems that this driver, Hisham Noeimi, did very
well for the �rst two runs and then got lazy later on in the day.

14.1.2 The Huge Car Error Report

The huge car error report displays statistics on every run that every car makes. It lists the
starting time, the run time, the total distance traveled, and even tries to give an estimate as
to whether the run was good or not. It should be pointed out that this estimate might not be
accurate. The best way to see if a particular run was good or not is to plot out the trajectory
as explained in Section 14.2. A short sample of a huge error report is given below:

******* Car Data Report: *******

Number of Data Sets: 1

3-10-93 AM

Car Loop# Start time #Points Run time Distance Suggestion

1 6:32:55 10820 3:20:20 105.9

1 6:38:29 2074 0:34:34 19.7 Good run

2 7:13:04 1679 0:27:59 19.3 Good run

3 7:41:02 2781 0:46:21 20.1 Good run

4 8:27:23 1831 0:30:31 18.1 Bad distance

5 8:57:54 1403 0:23:23 19.2 Good run

6 9:21:17 717 0:11:57 9.4 Bad distance

3 6:06:04 12449 3:29:28 109.1

1 6:08:50 2774 0:46:14 28.5 Bad distance

2 6:52:58 2245 0:37:25 19.7 Good run

3 7:30:09 2988 0:49:48 19.3 Good run

4 8:19:30 1982 0:33:02 19.1 Good run

5 8:52:32 1571 0:26:11 19.8 Good run

6 9:22:06 889 0:14:49 2.8 Bad distance

This is the huge error report for cars number 1 and 3 for the morning shift of March
the 10th. The �rst line of each car lists out the total run time and the total distance traveled for
the whole shift. Each line with a loop# lists out the run time and the distance traveled only for

200 CHAPTER 14. PROGRAM OUTPUT: THE CAR DATA

that particular loop. If you look at car 3, loop 1, you will see that the distance traveled for that
loop was 28.5 miles. Since the whole course is only around 19 miles it is a pretty safe bet that
there was something wrong with that particular loop. A closer study is de�nitely warranted.
The suggestion that is given in the last column is merely an attempt to determine if the data is
correct. Don't take this suggest as the �nal word on whether or not a particular loop is valid.

14.1.3 The Medium Car Error Report

The medium car error report only lists out the drivers name, the number of loops that they
made during the shift, the total distance driven during the shift, and an estimate as to whether
the GPS data was any good. To estimate whether the GPS data is any good the program just
tries to see if the GPS data falls within some bounding box. If it does then it is labeled as good,
and if it doesn't then it is labeled as bad. Clearly a better test could be devised. A sample of
a medium error report is listed out below:

******* Car Data Report: *******

Number of Data Sets: 1

3-10-93 AM

Car # Driver name #Loops Start time Tot distance GPS sug

1 Jun Huang 6 6:32:55 105.9 Good data.

3 Adnan Qadeer 6 6:06:04 109.1 Too noisy.

This medium error report is for cars 1 and 3 for the morning shift on March the 10th.

14.1.4 The Small Car Error Report

The small car error report just records if there was data taken at all for the car on the speci�c
day. A sample is listed out below:

Quick Data Summary:

car1 car2 car3 car4 car5

3-10-93 AM X X

Note that this doesn't give very much information, but if you just want to know if you got the
correct data then it could be helpful.

14.2 The Car Graphical Output

There are quite a few plots that are made from the car data. There are plots that are made
for each run, or loop, of each car and then there are plots that are made for all of the cars for
a particular shift. I will discuss the two di�erent types of plots separately.

14.2. THE CAR GRAPHICAL OUTPUT 201

14.2.1 The Graphs For Each Loop

When the car data is collected in the �eld there is only one �le, called nav.dat, that contains
the location data for all of the runs that car made for the entire shift. The �rst thing that
the fsp program does is to parse up this large �le into the various runs that the car made. It
then takes these single run �les and generates various types of plots. The various types of plots
generated for each run of each car are listed out below:

1. x-y plots

2. time-distance plots

3. speed-distance plots

4. speed-time plots

When the program generates the individual run �les by parses the main nav.dat �le
it names them according to the following scheme: \cXloopY.*" Where \X" is the car number,
\Y" is the loop, or run, number, and *" is the �le type extension. The �le pre�x \cXloopY"
will be referred to as the base �le name. For example, if we were talking about the second loop
that car 1 took then the base �le name would be \c1loop2" and the base �le name for the third
loop of car 5 is \c5loop3."

These �les are all stored in the individual car directories. For example, the input
car directory structure will look something like this:

am110492 <= This is the main car directory

|

|-- car1 <= Sub car dir 1

|- fsp.dat

|- nav.dat

|- key.dat

|- gps.dat

|

|-- car2 <= Sub car dir 2

|

|-- car3 <= Sub car dir 3

.

.

After processing the output car directory would look like this:

am110492 <= This is the main car directory

|

|-- car1 <= Sub car dir 1

|- c1loop1.cxy <= New file

|- c1loop2.cxy <= New file

|- c1loop3.cxy <= New file

202 CHAPTER 14. PROGRAM OUTPUT: THE CAR DATA

.

.

|

|-- car2 <= Sub car dir 2

|- c2loop1.cxy <= New file

|- c2loop2.cxy <= New file

|- c2loop3.cxy <= New file

.

.

|

|-- car3 <= Sub car dir 3

.

.

For each type of graph there are �ve di�erent �les. There is the car trajectory, the incident
locations, the INRAD locations, the gnuplot executable to view the plot on the screen, and
the gnuplot executable to print the plot to the printer. Before I discuss the various �le types
I would like to explain how the �le extensions are created. The base �le name, as discussed
above, is always going to be of the form \cXloopY." Well, the �le extension is three letters long
and it is of the form \WZZ." Where \W" signi�es the data type and \ZZ" signi�es the plot
type. The various possible values are listed out below.

1. Data types:

(a) Car trajectory: \c"

(b) Incident locations: \i"

(c) INRAD locations: \r"

(d) Gnuplot executable to view plot: \v"

(e) Gnuplot executable to print plot: \p"

2. Plot types:

(a) X-Y plot: \xy"

(b) Time-distance plot: \td"

(c) Speed-distance plot: \sd"

(d) Speed-time plot: \st"

For example, the �le that holds the car trajectory on the speed vs. distance plot
would have an extension of \csd." Or the gnuplot plot executable �le that would generate a
graph on the screen of the time vs. distance plot would have a �le extension of \vtd." If we
combine this with what we learned above about the base �le names then we can form the whole
�le name. So the �le that holds the incident locations for the speed vs. time plot for the second
run of the the third car is named \c3loop2.ist."

Figure 14.1 is a quick reference to help you �gure out the �le extensions based on
the plot type and the data type. The two holes that occur in the INRAD row are there because

14.2. THE CAR GRAPHICAL OUTPUT 203

Car Traj. .cxy .ctd .csd .cst

Inrad .rxy .rtd

Incident .ixy .itd .isd .ist

Gnu view .vxy .vtd .vsd .vst

.pstGnu print .pxy .ptd .psd

X-Y Speed-Dist Speed-TimeTime-Dist

INCIDENT POINTS

INRAD POINTS

TIME DISTANCE PLOTS SPEED TIME PLOTS

SPEED DISTANCE PLOTSX-Y PLOTS

Plot type

Data type

Figure 14.1: Car File Name Extensions.

the INRAD points aren't plotted on the speed vs. distance or speed vs. time graphs, so the �les
aren't generated by the fsp program.

An explanation of the various graph types and the �les that go with them follows.

X-Y plots: These plots are the plots of the car trajectory on an X-Y graph. They also have
the INRAD points and the incidents marked on the graph.

File type Extension/File name

Car trajectory on X-Y plot .cxy
INRAD points on X-Y plot .rxy
Incidents on X-Y plot .ixy
gnuplot �le to view plot .vxy
gnuplot �le to print plot .pxy
File to view all X-Y plots for car viewxy
File to print all X-Y plots for car printxy

An example of this naming scheme for car 1, loop 1 would be:

204 CHAPTER 14. PROGRAM OUTPUT: THE CAR DATA

c1loop1.cxy <= Data file: car position on X-Y plot

c1loop1.rxy <= Data file: INRAD points on X-Y plot

c1loop1.ixy <= Data file: Incidents on X-Y plot

c1loop1.vxy <= gnuplot file: Executable to view plot

c1loop1.pxy <= gnuplot file: Executable to print plot

viewxy <= Script file: View all of the X-Y plots

printxy <= Script file: Print all of the X-Y plots

Time-distance plots: These plots are the plots of the car trajectory on a time vs. distance
graph. They also have the INRAD points and the incidents marked on the graph. I have
used the abbreviation T-D for time vs. distance below.

File type Extension/File name

Car trajectory on T-D plot .ctd
INRAD points on T-D plot .rtd
Incidents on T-D plot .itd
gnuplot �le to view plot .vtd
gnuplot �le to print plot .ptd
File to view all T-D plots for car viewdt
File to print all T-D plots for car printdt

An example of this naming scheme for car 1, loop 1 would be:

c1loop1.ctd <= Data file: car position on T-D plot

c1loop1.rtd <= Data file: INRAD points on T-D plot

c1loop1.itd <= Data file: Incidents on T-D plot

c1loop1.vtd <= gnuplot file: Executable to view plot

c1loop1.ptd <= gnuplot file: Executable to print plot

viewtd <= Script file: View all of the T-D plots

printtd <= Script file: Print all of the T-D plots

Speed-distance plots: These plots are the plots of the car trajectory on a speed vs. distance
graph. They also have the incidents marked on the graph. I have used the abbreviation
S-D for speed vs. distance below.

File type Extension/File name

Car trajectory on S-D plot .csd
Incidents on S-D plot .isd
gnuplot �le to view plot .vsd
gnuplot �le to print plot .psd
File to view all S-D plots for car viewsd
File to print all S-D plots for car printsd

14.2. THE CAR GRAPHICAL OUTPUT 205

An example of this naming scheme for car 1, loop 1 would be:

c1loop1.csd <= Data file: car position on S-D plot

c1loop1.isd <= Data file: Incidents on S-D plot

c1loop1.vsd <= gnuplot file: Executable to view plot

c1loop1.psd <= gnuplot file: Executable to print plot

viewsd <= Script file: View all of the S-D plots

printsd <= Script file: Print all of the S-D plots

Speed-time plots: These plots are the plots of the car trajectory on an speed vs. time graph.
They also have the INRAD points and the incidents marked on the graph. I have used
the abbreviation S-T for speed vs. time below.

File type Extension/File name

Car trajectory on S-T plot .cst
Incidents on S-T plot .ist
gnuplot �le to view plot .vst
gnuplot �le to print plot .pst
File to view all S-T plots for car viewst
File to print all S-T plots for car printst

An example of this naming scheme for car 1, loop 1 would be:

c1loop1.cst <= Data file: car position on S-T plot

c1loop1.ist <= Data file: Incidents on S-T plot

c1loop1.vst <= gnuplot file: Executable to view plot

c1loop1.pst <= gnuplot file: Executable to print plot

viewst <= Script file: View all of the S-T plots

printst <= Script file: Print all of the S-T plots

The �les that start with \print" or \view" are script �les that allow the user to
view or print all of a certain �le type right in a row. For example, if the user were to type
\printxy" then that would print the x-y plots for all of the loops for that car to the printer
without prompting for a return before each �le. If there were �ve loops then this would be the
same as typing:

gnuplot c1loop1.pxy

gnuplot c1loop2.pxy

gnuplot c1loop3.pxy

gnuplot c1loop4.pxy

gnuplot c1loop5.pxy

206 CHAPTER 14. PROGRAM OUTPUT: THE CAR DATA

If you look at the �le \printxy", you'll see that that's exactly what it does. The \viewxy" �le
would allow you to view all of the x-y plots right in a row but it will prompt you between each
one for a carriage return. You will notice that there are basically two types of �les in each
category: the data �les and the gnuplot executable �les. You should note that you can always
print the data �les with something like xgraph instead of using gnuplot. Of course, you won't
get the fancy labeling, but you can generate plots very quickly this way. Examples of all of the
car plots are given in Section 14.3.

14.2.2 The Graphs For Each Shift

The second category of car plots that the fsp program generates deal with the travel times as
the cars travel northbound and southbound. The program will generate four di�erent types of
plots:

1. Travel times from INRAD points

2. Travel times from northbound gore points

3. Travel times from southbound gore points

4. Travel times from southbound INRAD and southbound gore points

These plots are for all of the cars for a speci�c shift. These �les are all stored in
the main car output directory. For example, the �nal directory structure after the fsp program
was run would look something like this:

am110492 <= This is the main car directory

|

|-- car1 <= Sub car dir 1

|

|-- car2 <= Sub car dir 2

|

|-- car3 <= Sub car dir 3

|

|-- car4 <= Sub car dir 4

|

|-- inrad.dat <= New file

|-- inrad.gtp <= New file

|-- inrad.gtv <= New file

.

.

.

The actual starting and ending points that are used to calculate the travel times are
either the gore points or the INRAD points. Unfortunately, there is only one INRAD point on
the northbound run so we couldn't calculate any travel times for the northbound section based
on the INRAD data. There aren't nearly as many travel time plots as there are individual car
loop �les and therefore the naming scheme is pretty straight forward. An explanation of the
various �le types follows.

14.3. THE CAR PLOTS 207

Travel times: INRAD: These are the travel times as computed from the INRAD points for
the southbound run. The total distance traveled is about 5.5 miles.

inrad.dat <= Data file: INRAD data points

inrad.gtv <= gnuplot file: Executable to view plot

inrad.gtp <= gnuplot file: Executable to print plot

Travel times: Northbound gore points: These are the travel times as computed from the
gore points for the northbound run. The total distance traveled is about 7.0 miles.

ngore.dat <= Data file: gore data points

ngore.gtv <= gnuplot file: Executable to view plot

ngore.gtp <= gnuplot file: Executable to print plot

Travel times: Southbound gore points: These are the travel times as computed from the
gore points for the southbound run. The total distance traveled is about 7.0 miles.

sgore.dat <= Data file: gore data points

sgore.gtv <= gnuplot file: Executable to view plot

sgore.gtp <= gnuplot file: Executable to print plot

Travel times: Southbound INRAD and gore points: These are the travel times as com-
puted from the INRAD points and the gore points for the southbound run. This just uses
the other data �les to generate the plot - it doesn't need any of its own.

stimes.gtv <= gnuplot file: Executable to view plot

stimes.gtp <= gnuplot file: Executable to print plot

14.3 The Car Plots

Figures 14.2 thru 14.9 are the various plots that can be made from the car data. The gnuplot
executable �le that was used to view each plot is listed in the caption.

208 CHAPTER 14. PROGRAM OUTPUT: THE CAR DATA

-8

-7

-6

-5

-4

-3

-2

-1

0

1

0 1 2 3 4 5

P
os

iti
on

 (
m

ile
s)

Position (miles)

Car and incident data: /am021693/car1/c1loop2

Incidents
INRAD points

Figure 14.2: Car Trajectory (X-Y). Gnuplot �le: c1loop2.vxy

7:17

7:20

7:25

7:30

7:35

7:40

0 5 10 15 20

T
im

e

Position (miles)

Car and incident data: /am021693/car1/c1loop2

Incidents
INRAD points

Figure 14.3: Car Trajectory (time vs. distance). Gnuplot �le: c1loop2.vtd

14.3. THE CAR PLOTS 209

0

10

20

30

40

50

60

70
S

pe
ed

 (
m

ph
)

Position (miles) (start time = 7:17:20)

Car and incident data: /am021693/car1/c1loop2

0 5 10 15 20

16

3

1

7

20

9

2

11

6

18

19

13

12

4

17

15

5

5

15

17

4

12

13

19

18

6

11

2

10

20

7

1

3

16

8

Incidents

Figure 14.4: Car Trajectory (speed vs. distance). Gnuplot �le: c1loop2.vsd

0

10

20

30

40

50

60

70

S
pe

ed
 (

m
ph

)

Time

Car and incident data: /am021693/car1/c1loop2

7:20
|

7:25
|

7:30
|

7:35
|

7:40
|| | | | | | | | | | | | | | | | | | |

16

3

1

7

20

9

2

11

6

18

19

13

12

4

17

15

5

5

15

17

4

12

13

19

18

6

11

2

10

20

7

1

3

16

8

Incidents

Figure 14.5: Car Trajectory (speed vs. time). Gnuplot �le: c1loop2.vst

210 CHAPTER 14. PROGRAM OUTPUT: THE CAR DATA

0:000:00

2:00

4:00

6:00

8:00

10:00

12:00

14:00

16:00

18:00

20:00

6:006:00 6:20 6:40 7:00 7:20 7:40 8:00 8:20 8:40 9:00 9:20 9:40 10:00

T
ra

ve
l t

im
e

(m
in

ut
es

)

Start of travel time

INRAD travel times: am021693

INRAD (5.5)

Figure 14.6: Travel Times With INRAD Points. Gnuplot �le: inrad.gtv

0:000:00

2:00

4:00

6:00

8:00

10:00

12:00

14:00

16:00

18:00

20:00

6:006:00 6:20 6:40 7:00 7:20 7:40 8:00 8:20 8:40 9:00 9:20 9:40 10:00

T
ra

ve
l t

im
e

(m
in

ut
es

)

Start of travel time

Gore travel times (northbound): am021693

North Gore (6.9)

Figure 14.7: Travel Times With nbd Gore Points. Gnuplot �le: ngore.gtv

14.3. THE CAR PLOTS 211

0:000:00

2:00

4:00

6:00

8:00

10:00

12:00

14:00

16:00

18:00

20:00

6:006:00 6:20 6:40 7:00 7:20 7:40 8:00 8:20 8:40 9:00 9:20 9:40 10:00

T
ra

ve
l t

im
e

(m
in

ut
es

)

Start of travel time

Gore travel times (southbound): am021693

South Gore (7.0)

Figure 14.8: Travel Times With sbd Gore Points. Gnuplot �le: sgore.gtv

0:000:00

2:00

4:00

6:00

8:00

10:00

12:00

14:00

16:00

18:00

20:00

6:006:00 6:20 6:40 7:00 7:20 7:40 8:00 8:20 8:40 9:00 9:20 9:40 10:00

T
ra

ve
l t

im
e

(m
in

ut
es

)

Start of travel time

INRAD and southbound gore travel times: am021693

South Gore (7.0)
INRAD (5.5)

Figure 14.9: Travel Times With Gore And INRAD Points. Gnuplot �le: stimes.gtv

212 CHAPTER 14. PROGRAM OUTPUT: THE CAR DATA

Chapter 15

Program Output: The Loop Data

Like the car data there are various types of output for the loop data. This chapter will discuss
the textual and graphical output for just the loop data. The discussion of the output that
results from the mixture of the loop data with either the car data or the incident database is
deferred until Chapter 16.

15.1 The Loop Textual Output

There are three di�erent kinds of text output from the loop data:

1. Text reports for the loop data set.

2. Error reports for the loop data set.

3. Dropout times for the loop data set.

A more thorough discussion of the loop error reports is given in Chapter 10. Below
is a brief description of each type of output �le.

Text reports for the long data set: These �les hold the actual text of the loop data for the
long data set. The format of the text records is described in Chapter 4. These �les are
named in the following scheme: loopZZ.txt, where \ZZ" is the loop number. So if you
wanted to �nd the text report for the long data set for loop number 2 then the �le would
be named loop2.txt. The �le extension is de�ned in the �le fsp_ext.h as follows:

#define LOOP_TEXT_FILE_EXTENSION "txt"

This can be changed to whatever you prefer. Whether these �les are generated or not is
determined by the run�le parameter LOOP_LONG_TEXT. It needs to be set to either:

LOOP_LONG_TEXT_REPORT_ONLY

or

LOOP_LONG_BOTH_REPORTS

213

214 CHAPTER 15. PROGRAM OUTPUT: THE LOOP DATA

in order for these �les to be made. See the discussion in Chapter 7 for a detailed description
of the run�le parameters. You should note that these �les take up a lot of space and you
should only generate them as a last resort. These �les are stored under the loop output
directory in the individual day directories.

Error reports for the long data set: These �les hold the error reports from the loop data
for the long data set. The format of each line in the error report is described in Chapter 10.
These �les are named in the following scheme: loopZZ.err, where \ZZ" is the loop number.
So if you wanted to �nd the error report for the long data set for loop number 15 then
the �le would be named loop15.err. The �le extension is de�ned in the �le fsp_ext.h

as follows:

#define LOOP_ERROR_FILE_EXTENSION "err"

This can be changed to whatever you prefer. Whether these �les are generated or not is
determined by the run�le parameter LOOP_LONG_TEXT. It needs to be set to either:

LOOP_LONG_ERR_REPORT_ONLY

or

LOOP_LONG_BOTH_REPORTS

in order for these �les to be made. See the discussion in Chapter 7 for a detailed description
of the run�le parameters. These �les are stored under the loop output directory in the
individual day directories.

Dropout times for the long data set: This �le holds the list of times that the cabinets were
not taking data. Sometimes the cabinets skip an output period or two and sometimes
they stop working for hours at a time. What this �le holds is a list of the times that there
is no data at all from the cabinets. A short segment of one of these �les is given below:

Summary of Loop Data Dropout Times:

The requested data times are: 5:00 - 10:00, 14:00 - 20:00

/home/clair0/PATH/FSP/Set1/Loopdata/lp031893/loop1:

/home/clair0/PATH/FSP/Set1/Loopdata/lp031893/loop2:

15:47 - 15:49

17:19 - 17:21

17:30 - 17:32

/home/clair0/PATH/FSP/Set1/Loopdata/lp031893/loop3:

/home/clair0/PATH/FSP/Set1/Loopdata/lp031893/loop4:

/home/clair0/PATH/FSP/Set1/Loopdata/lp031893/loop5:

/home/clair0/PATH/FSP/Set1/Loopdata/lp031893/loop6:

8:29 - 9:45

/home/clair0/PATH/FSP/Set1/Loopdata/lp031893/loop7:

8:56 - 8:58

15.1. THE LOOP TEXTUAL OUTPUT 215

/home/clair0/PATH/FSP/Set1/Loopdata/lp031893/loop8:

/home/clair0/PATH/FSP/Set1/Loopdata/lp031893/loop9:

/home/clair0/PATH/FSP/Set1/Loopdata/lp031893/loop10:

The �le lists at the top the times that the �le covers. In this case the times are from
5:00am until 10:00am and then from 2:00pm until 8:00pm - the whole data set. The
program places on each line the �lename for each cabinet and then places on the lines
below it the times that that cabinet didn't have any data. So cabinet #1 is the �rst one
and there are no lines below it with times. This means that there weren't any times when
cabinet #1 didn't have data. But if we look at cabinet #2, it seems that it didn't have
data for three di�erent time periods. Something very important to note is that the data
is checked only for every output period. So if the output period is set for 15 minutes
then there might be a 10 minute segment in the middle of the period where the cabinet
isn't taking data and this program wouldn't spot it. To avoid this you should make the
output period as �ne as possible. The trade o�, of course, is speed: the smaller the output
period the longer the running time. The output period is set by the run�le parameter
LOOP_LONG_OUTPUT_PERIOD. Refer to the discussion in Chapter 7 for more details.

The dropout times �le for the long data set is named long.bad.times. The �lename is
de�ned in the �le fsp_ext.h as follows:

#define LONG_DROPOUT_TIMES_FILENAME "long.bad.times"

This can be changed to whatever you prefer. Whether these �les are generated or not is
determined by the run�le parameter DROPOUT_TIMES. It needs to be set to either:

LONG_DROPOUT_FILE

or

BOTH_DROPOUT_FILES

in order for this �le to be made. See the discussion in Chapter 7 for a detailed description
of the run�le parameters. This �le is stored under the loop output directory in the
individual day directories.

Text reports for the short data set: These �les hold the actual text of the loop data for
the short data set. They are identical to the �les that hold the text for the long data
set except that they hold the data for the short set and the �le extension is di�erent.
These �les are named: loopZZ.stxt. The �le extension is de�ned in the �le fsp_ext.h as
follows:

#define LOOP_SUM_TEXT_FILE_EXTENSION "stxt"

This can be changed to whatever you prefer. Whether these �les are generated or not is
determined by the run�le parameter LOOP_TEXT. It needs to be set to either:

216 CHAPTER 15. PROGRAM OUTPUT: THE LOOP DATA

LOOP_TEXT_REPORT_ONLY

or

LOOP_BOTH_REPORTS

in order for these �les to be made. See the discussion in Chapter 7 for a detailed description
of the run�le parameters. These �les are stored under the loop output directory in the
individual day directories.

Error reports for the short data set: These �les hold the error reports from the loop data
for the short data set. These �les are almost the same as the long error report �les. The
di�erence is that these �les hold all of the error reports for all of the loops from a single
day and the data dropout report for that day as well. All of these reports are just stored
one after the other with the data dropout report, if it is generated, being last. These �les
are named in the following scheme: XXXXXX.sum. Where \XXXXXX" is the name of
the loop directory. So the error reports for the short data set are stored in terms of days
instead of in terms of cabinets. If you wanted to �nd the error report for the short data
set for March 10th then the �le would be named, according to the naming scheme that I
have on my machine, lp031093.err. The �le extension is de�ned in the �le fsp_ext.h

as follows:

#define LOOP_SUMMARY_FILE_EXTENSION "sum"

This can be changed to whatever you prefer. Whether these �les are generated or not is
determined by the run�le parameter LOOP_TEXT. It needs to be set to either:

LOOP_ERR_REPORT_ONLY

or

LOOP_BOTH_REPORTS

in order for these �les to be made. The data dropout report will only be placed at the end
of the �le if the run�le variable DROPOUT_TIMES is set appropriately. See the discussion
in Chapter 7 for a detailed description of the run�le parameters. These �les are stored in
the loop output reports directory de�ned by the variable LOOPDATA_SUMMARY_DIR in the
�le fsp.h. This is currently de�ned to be Reports.

Dropout times for the short data set: This �le holds the times when the data is not avail-
able from the di�erent cabinets. This is basically the same as the long dropout report
except that it just covers the short data set. The dropout times for the short data set are
placed at the end of the short error report and in the �le named short.bad.times. This
�lename is de�ned in the �le fsp_ext.h as follows:

#define DROPOUT_TIMES_FILENAME "bad.times"

This can be changed to whatever you prefer. Whether these �les are generated or not is
determined by the run�le parameter DROPOUT_TIMES. It needs to be set to:

15.2. THE LOOP TEXT REPORTS SUMMARY 217

YES_DROPOUT_FILE

in order for this �le to be made. See the discussion in Chapter 7 for a detailed description
of the run�le parameters.

15.2 The Loop Text Reports Summary

Table 15.1 is a short summary of the key points about each type of output text �le.

File Type Run�le Parameter Default Extension Output Place

Loop Text LOOP_TEXT .stxt Loop directory
Loop Error LOOP_TEXT .sum LOOPDATA_SUMMARY_DIR

Loop Dropout DROPOUT_TIMES bad.times Loop directory, and error �le

Table 15.1: Summary of loop output text �les.

15.3 The Basic Data Set

The loop data �les that are generated from the raw loop data can be divided into two categories:
the basic data set and the calculated data set. The basic data set contains values that were
already in the raw data, and the calculated data set contains values that were calculated from the
basic data set. Unfortunately, it can get a little more complicated than that. By manipulating
the run�le properly you can apply di�erent �xes to the loop data and each loop �x generates
a di�erent set of �lenames. These complications will be discussed at the appropriate places
below.

The basic data set consists of the
ows, speeds, and occupancies for each individual
loop detector. This data is extracted into an individual �le for each value and for each lane
at every loop detector. The �le has two columns: the �rst column is the number of seconds
since midnight and the second column is the value for that time period. There are also gnuplot
executable �les that are made to display or print each value. The basic data �lename looks
something like this:

{f,g,h}loopXX.{n,s}{s,c,o}Y

This is basically a mess when you �rst look at it. The notation ff,g,hg means that there is
either an \f," \g," or an \h" at that one spot. So the �rst character of the �le can either be an
\f," \g," or an\h." Let me explain what all of these symbols mean:

ff,g,hg The �rst character of the �le can be one of these three characters. These characters
correspond to the various �xes that can be applied to the loop data. The �les with the
\f" character mean that there has been no �x applied, the \g" means that the holes in
the loop data were �xed, and the \h" means that the holes were �xed and the consistency
errors were corrected. A complete discussion of the various �xes is given in Section 5.2.
Which set of data gets generated is of course determined by the parameters in the run�le.
In the rest of the discussion here I will assume that we are dealing with the \gloop" �les
because some of the calculations can only be done on the \gloop" �les.

218 CHAPTER 15. PROGRAM OUTPUT: THE LOOP DATA

XX The \XX" mean the loop detector number. So the �le name pre�x \gloop7" corresponds
to the loop data from loop 7 that has had the holes corrected.

fn,sg This corresponds to either the northbound or southbound detectors. For most loop sta-
tions there are southbound as well as northbound detectors. This character distinguishes
between the two.

fs,c,og This corresponds to the type of data that the �le holds. The character \s" means speed,
\c" means counts, or
ows, and \o" means occupancies. So the �le pre�x \
oop3.sc"
means the
ow data from the southbound direction of loop #3 that hasn't had any �xes
done to it.

Y This last character can either be a number or the character \d." A number will correspond
to either a speci�c lane or an on or o� ramp. The character \d" means that the �le is for
the average over all lanes.

Let's take a look at a speci�c example. Let's say that we want the speed data from loop 4,
northbound, lane 2. This means that XX, the loop number, will be 4, and Y, the lane number,
will be 2. Finally since this is northbound speed data we have our �nal �lename of:

floop4.ns2

I don't mean to mislead you to thinking that the individual lane �les are easy to
identify - they aren't. But the complications are discussed a little bit later on.

The fsp program also makes gnuplot executable �les to facilitate viewing the various
loop data values. The gnuplot executable �lenames have a speci�c pattern to them so that you
can recognize them. It is:

{f,g,h}loopXX.g{s,c,o}{v,p}

You'll notice that this looks a lot like the loop data �les. It was done that way on
purpose. The �rst thing that is di�erent with the �lename is that you now no longer specify
whether you want the northbound or southbound. Instead you put a \g" in that spot. This is
because each gnuplot executable makes plots of both the northbound and southbound values.
The second thing that is di�erent is that the last character no longer speci�es the lane. Instead
it speci�es whether the gnuplot �le will generate a plot to view or a plot to print. For example,
if you wanted to view the occupancy data for the average over all of the lanes at loop 7, which
is stored in the data �les named floop7.nod and floop7.sod (assuming that you wanted the
un�xed data), then you would need to use the gnuplot executable �le named floop7.gov. To
actually view the �le you would type:

gnuplot floop7.gov

To print this �le out to the printer you would just use the extension \gop" instead of \gov".
Note that the gnuplot executable �les can only generate plots of the average data, not of the
individual lanes.

Examples of all of the loop plots are given in Section 15.5. Remember that the
printer where the output goes is speci�ed by the run�le variable GNU_PRINTER. So if you have

15.3. THE BASIC DATA SET 219

a favorite printer then you need to change this parameter in the run�le before you run the fsp
program. If you have already generated the �les and you want to choose a di�erent printer
without rerunning the program then simply edit the gnuplot executable �le and substitute your
new printer name for the old one.

Below is a listing of all of the loop plot �le type extensions. The �le pre�x, when
there is one, is enclosed in parentheses.

PPS SPD OCC

Individual lanes (gloopXX) .fn,sgcY .fn,sgsY .fn,sgoY

Summary (gloopXX) .fn,sgcd .fn,sgsd .fn,sgod

GNU view 1 (gloopXX) .gcv .gsv .gov

GNU print 1 (gloopXX) .gcp .gsp .gop

GNU view all of 1 (gnuview) .pps .spd .occ

GNU print all of 1 (gnuprint) .pps .spd .occ

GNU view everything gnuview.all

GNU print everything gnuprint.all

To view a whole bunch of �les right in a row then you would use the shell script
gnuview.*, or gnuview.all. For example, if you wanted to view all of the PPS data right in a
row without having to type in all of the individual commands you would type

gnuview.pps

Let's look at some examples of this naming scheme. Below is a listing of a certain
portion of the output:

clair 1: ls floop6.*

floop6.gcp floop6.gov floop6.ncd floop6.scd

floop6.gcv floop6.gsp floop6.nod floop6.sod

floop6.gop floop6.gsv floop6.nsd floop6.ssd

These are the output �les that are generated from the data �le loop6.dat when the
following parameters are speci�ed in the run�le:

LOOP_FLOW_PLOTS = YES_CALC_ALL_FLOW_PLOTS

LOOP_TEXT = LOOP_NO_REPORTS

220 CHAPTER 15. PROGRAM OUTPUT: THE LOOP DATA

Note that there are other parameters that you have to specify but these are the
main ones. The question that I am trying to answer is, \What are all of these �les?" Let's �rst
look at just one �le: floop6.ncd. As we said above the \f" in front of the word \loop" means
that it's the un�xed loop data. The \6" means that it's for loop #6. And the extension, \ncd",
means North Counts Data. The rest of the �les follow the same naming convention:

floop6.ncd <- Northbound Counts Data

floop6.nod <- Northbound Occupancy Data

floop6.nsd <- Northbound Speed Data

floop6.scd <- Southbound Counts Data

floop6.sod <- Southbound Occupancy Data

floop6.ssd <- Southbound Speed Data

The gnuplot executable �les follow a similar type of naming scheme:

floop6.gcp <- Gnuplot Counts Print (to printer)

floop6.gcv <- Gnuplot Counts View

floop6.gop <- Gnuplot Occupancy Print (to printer)

floop6.gov <- Gnuplot Occupancy View

floop6.gsp <- Gnuplot Speed Print (to printer)

floop6.gsv <- Gnuplot Speed View

So the gnuplot executable �le floop6.gcv would display the plots of the counts
data on the screen. It will �rst display the northbound plot and then it will prompt you for a
return. When you have pressed return it then displays the southbound plot. If you had chosen
the �le floop6.gcp, meaning Gnuplot Counts Print, then the two graphs would be printed
out to the printer and the program would not prompt you for a return.

As was said above, if you wanted to view all of the PPS data �les for the current
directory then you can just use the �le gnuview.pps. Note that the �les that start with the
key word \gnu", like gnuview and gnuprint, are not gnuplot executable �les. They are shell
script �les that can be run from the command line by just typing their name.

Finally, as promised, the last thing to discuss about the loop �les is the individual
lanes �les and the individual ramp �les. When the program generates the �les for the main
line lanes it �rst goes through and pulls out all of the data for the individual lanes and places
them in �les. If the program is told to pull out the on ramp and o� ramp data then it does
this at the same time. Well, this generates a lot of �les and as you can imagine, the naming
problem becomes quite complex. Just to recap, for the individual lane �les the basic �lename
is: VloopWW.XYZ. Where:

V: this is either \f," \g," or \h" depending on what gets �xed.

WW: this is the loop number (or cabinet number).

X: this is either \n" or \s" for the northbound data or the southbound data.

Y: this is one of:

c: means counts or pps.

15.3. THE BASIC DATA SET 221

s: means speed.

o: means occupancy.

Z: this is the lane number or the on or o� ramp number. This is a little tricky so let me
explain a little bit more.

The Z value is a value that starts at 1 with the �rst �le name, which corresponds
to the inside most lane, and then counts up with each successive �lename, and each lane. The
way that the �les are ordered, or saved, is:

1. main line lanes

2. on ramps

3. o� ramps

4. ramp demand detectors

5. ramp queue detectors

So the main line lane �lenames get the lower numbers and the ramp queue detectors
get the higher numbers. I don't want to lead you to believe that they get any arbitrary higher
number - there is a set pattern. Let's look at an example.

If we had 5 main lanes, 1 on ramp, 2 o� ramps, 2 demand detectors, and 2 queue
detectors then the labeling scheme would go like this:

floopWW.XY1 - lane 1 data

floopWW.XY2 - lane 2 data

floopWW.XY3 - lane 3 data

floopWW.XY4 - lane 4 data

floopWW.XY5 - lane 5 data

floopWW.XY6 - on ramp 1 data

floopWW.XY7 - off ramp 1 data

floopWW.XY8 - off ramp 2 data

floopWW.XY9 - demand detector 1 data

floopWW.XY10 - demand detector 2 data

floopWW.XY11 - queue detector 1 data

floopWW.XY12 - queue detector 2 data

Notice how the \Z" parameter kept on increasing with each new �le name. Let's
look at a real example. If we wanted to take a look at cabinet #4 we would see that we have:

� Southbound: 4 main lanes, 1 o� ramp

222 CHAPTER 15. PROGRAM OUTPUT: THE LOOP DATA

� Northbound: 4 main lanes, 2 on ramps, 2 demand, and 2 queue detectors

So the labeling scheme for the PPS data would be like this:

floop4.nc1 - northbound lane 1 data

floop4.nc2 - northbound lane 2 data

floop4.nc3 - northbound lane 3 data

floop4.nc4 - northbound lane 4 data

floop4.nc5 - northbound on ramp 1 data

floop4.nc6 - northbound on ramp 2 data

floop4.nc7 - northbound demand detector 1 data

floop4.nc8 - northbound demand detector 2 data

floop4.nc9 - northbound queue detector 1 data

floop4.nc10 - northbound queue detector 2 data

floop4.ncd - northbound main line data aggregate

floop4.sc1 - southbound lane 1 data

floop4.sc2 - southbound lane 2 data

floop4.sc3 - southbound lane 3 data

floop4.sc4 - southbound lane 4 data

floop4.sc5 - southbound off ramp 1 data

floop4.scd - southbound main line data aggregate

Notice how the \Z" parameter started back over from 1 when it switched to a
di�erent kind of �le: it went back to 1 when it started generating the southbound �les. Also,
notice that if you don't know what the structure of the freeway is at a particular point then it
is very hard to �gure out from the �lenames what is what. My point being that you have to
know what the lane structure is before you can �gure out what the �lenames mean.

15.4 The Calculated Data Set

When I refer to the calculated data set I mean the data �les that were calculated from the basic
loop data. These �les are used later on by the fsp program to calculate things like incident
delay and to generate the contour plots. But since they are generated only from the loop data
they are discussed here instead of in Chapter 16 where the rest of the cross data analysis output
is discussed. There are two major types of calculated data, these are the delay �les and the
emission �les. With each type data the fsp generates some raw data �les and some LaTEX tables
that can be processed with LaTEX and printed out on any postscript printer.

15.4. THE CALCULATED DATA SET 223

15.4.1 The Loop Delay And Density Files

The �rst set of calculated �les are the delay and density �les. There are a couple of di�erent
types of delay �les. There are �les that hold the data for each time period, or instantaneous
�les, there are �les that hold the cumulative delay over the whole study section, and then there
are �les that hold tables of delay values.

15.4.1.1 Instantaneous Loop Files

The program calculates the delay, density and di�erential density for each time period for every
loop detector. These values are then used later on to calculate the delay for each incident and
to generate various contour plots. A short list of these �les is given below:

1. The delay data �les. These are the delay at each loop detector for each time period.

2. The density data �les. These are the density of tra�c at each loop detector for each time
period.

3. The di�erential density data �les. These are percentage that the current density is over
the average density for that loop detector for every time period.

These �les are referred to as data �les because they hold only the raw calculated
values and they have the standard fsp �le format of two columns: the �rst column being the
time in seconds since midnight and the second column being the value for that time. The �le
naming conventions for these three di�erent �les are exactly the same as for the basic loop data
except for one character. So the naming scheme is:

{f,g,h}loopXX.{n,s}{t,d,e}d

Where the \t" stands for the delay �les, the \d" stands for the density �les, and the
\e" stands for the di�erential density �les. There are a couple of things that I should point out
about these �les:

1. The last character in the �lename of these �les is always \d" which means that the �le is
for the whole section of freeway, not for a single lane. These �les are not generated for
each individual lane.

2. These �les were not meant to be viewed as individual �les like the basic data set. There-
fore, no gnuplot executable �les are made to display them.

3. These �les are used by a di�erent section of the program to generate contour plots. The
contour plots are described in Chapter 16.

15.4.1.2 The Cumulative Delay Files

Along with the instantaneous delay �les the fsp program will also generate a cumulative delay
�le for the whole study section. The fsp program will calculate the total delay at each time
period for the whole freeway by summing up the delay at each loop detector. It will then
generate a �le that has the cumulative delay over the whole time period. There is one �le for
each direction. The �les are named according to the following format:

224 CHAPTER 15. PROGRAM OUTPUT: THE LOOP DATA

Figure 15.1: Cumulative Loop Delay.

delay.{n,s}tc.ZZ

Where the \ZZ" stands for the reference speed of the congestion. The �les are stored with
respect to the reference speed so that multiple runs of the fsp program can be run without
overwriting the �les. If the delay calculation is done with respect to the average speed then
\ZZ" will be an \a."

The cumulative speed �le can be viewed with xgraph in the following manner:

xgraph delay.ntc.55

This will generate a plot on your screen that looks like Figure 15.1. The horizontal axis of
Figure 15.1 is the number of seconds since midnight (5am is 18000 and 2pm is 50400). The
vertical axis is the cumulative delay in vehicle-hours. Notice that there is a spot in the middle
of the graph from 36000 until 50400 that is
at. During this time there was no data collected
and therefore there are no delay values. There is a line there because the xgraph program
draws it's own line from point to point and it doesn't car if there is a gap in the data. If the
time period of interest doesn't cover the dead zone then you won't have this a�ect.

15.4.1.3 The Loop Delay Tables

The fsp program also generates a LaTEX table of the delay values. Section 13.3 explains how
to view and print any LaTEX table. Figure 15.2 is an example of one page of a table that was

15.4. THE CALCULATED DATA SET 225

Figure 15.2: Loop Delay Table.

generated by the fsp program. This table is for the time period from 5:01 am until 5:02 am
in the northbound direction on February 16th, 1993. There is one table for each output period
and each direction. The table in Figure 15.2 has at the top a few lines about the conditions
under which the delay was calculated. We can see in this example that the delay was calculated
with respect to a congestion speed of 55 mph. The table itself lists out the parameters and
conditions at each loop detector and the calculated delay. You'll notice that the calculated
delay for most of the loops is zero. This is because the congestion speed is 55 mph and most
of the speeds on the freeway are higher than that. The number at the bottom that is labeled
\TOTAL" is the sum of the delay over all of the loop detectors.

15.4.2 The Loop Emission Files

The second type of calculated data set are the emissions �les. These �les hold the emissions
of carbon monoxide, hydrocarbons, and nitrogen compounds for the loop data. The nice thing
about these �les is that they are exactly like the loop �les except for one character. The naming

226 CHAPTER 15. PROGRAM OUTPUT: THE LOOP DATA

scheme of these �les is as follows:

{f,g,h}loopXX.{n,s}{g,h,n}Y

You can see that the �le naming scheme is a lot like the regular loop �les. The only di�erence
is the second character in the �le extension. The \g," \h," and \n," stand for the carbon
monoxide, hydrocarbon, and nitrogen emissions, respectively. Some things to note about the
emissions output:

� The emissions generation routine is exactly like the loop delay generation routine. You
can calculate the emissions with respect to the average speed or with respect to a constant
speed.

� The fsp program will generate emission LaTEX tables just like the loop data. These are
named emissions.{co,voc,no}.tex. You need to process these the same way as the
delay tables.

� A cumulative emissions �le is also made (just like the cumulative delay �les). The �le nam-
ing scheme is emissions.{co,voc,no}.{n,s}c.Z where the \Z" is the reference speed
at which the calculation was done.

� The emissions �les are all placed in the individual loop day output directories.

15.4.3 The Aggregate Loop Files

One useful thing that the fsp program does1 is it will calculate the total delay and the total
number of vehicle-miles traveled for each individual loop directory. This is only done when the
run�le parameter LOOP_AGGREGATE_VALUES is set to YES_CALC_AGGREGATE_VALUES. When this
happens the following table is generated for each day:

Aggregate Delay:

Loop data: /home/pal2/FSP/Set1/Loopdata/lp021693

Southbound delay am, pm = 69.56, 851.71

Northbound delay am, pm = 229.35, 423.51

Aggregate Vehicle Miles:

Loop data: /home/pal2/FSP/Set1/Loopdata/lp021693

Southbound veh-mi am, pm = 108856.43, 114284.34

Northbound veh-mi am, pm = 113834.71, 113697.62

This simply gives the the delay and vehicle-miles traveled for each direction and each shift.
Note that the delay is in vehicle-hours and that the vehicle-miles traveled is in vehicle-miles
(who would have though?). There are some things that I should point out about the aggregate
tables:

1Maybe the only useful thing.

15.5. THE LOOP PLOTS 227

� The aggregate values are only summed up over a speci�c time period. These time periods
are from 6:30am until 9:30am, for the morning shift, and 3:30pm until 6:30pm, for the
evening shift. These were the times that we had probe vehicles driving around on the
freeway.

� The routine that does the aggregate calculation assumes that the proper loop �les have
already been calculated. If they haven't then all of the results will be zero.

� The aggregation routine can only be run on the loop �les that have had the holes �xed.
The fsp program will not allow it to run on the un�xed loop data.

� The aggregate tables are only printed out to the screen - there are never saved to a �le. If
you want to save them then you'll need to either cut and paste with the mouse or redirect
the output of the fsp program to a �le.

After processing all of the loop data the aggregation routine will generate a table
that sums up all of the values. A sample of one of these tables is given below:

Total Aggregate Delay:

Southbound total delay am, pm = 302.35, 1083.40

Northbound total delay am, pm = 562.49, 917.46

Overall total delay = 2865.70

Total Aggregate Flow:

Southbound total veh-mi am, pm = 208387.78, 224509.69

Northbound total veh-mi am, pm = 221243.72, 224889.83

Overall total flow = 879031.02

Total Delay per 10^6 vehicle miles:

Southbound total delay/10^6 veh-mi am, pm = 1450.91, 4825.62

Northbound total delay/10^6 veh-mi am, pm = 2542.39, 4079.58

Overall total delay/10^6 veh-mi = 3260.06

The total aggregate values are simply the summation of the various values for all of the days.
The only thing that is new here is the delay per million vehicle-miles. We thought that this
was an interesting statistic so we had the program calculate it. You can relate this to the delay
caused by so many incidents per million vehicle-miles.

15.5 The Loop Plots

Table 15.2 is a print out of the six di�erent plots from one loop. They could be generated by
using the following commands:

gnuplot floop6.gcv

gnuplot floop6.gsv

gnuplot floop6.gov

228 CHAPTER 15. PROGRAM OUTPUT: THE LOOP DATA

0

500

1000

1500

2000

14:00 15:00 16:00 17:00 18:00 19:00

F
l
o
w

(
v
e
h
/
l
a
n
e
/
h
o
u
r
)

Time

Northbound flow (PPS) data (6 min samp): /lp031893/floop2

0

500

1000

1500

2000

14:00 15:00 16:00 17:00 18:00 19:00

F
l
o
w

(
v
e
h
/
l
a
n
e
/
h
o
u
r
)

Time

Southbound flow (PPS) data (6 min samp): /lp031893/floop2

0

20

40

60

80

100

14:00 15:00 16:00 17:00 18:00 19:00

S
p
e
e
d

(
m
p
h
)

Time

Northbound speed (SPD) data (6 min samp): /lp031893/floop2

0

20

40

60

80

100

14:00 15:00 16:00 17:00 18:00 19:00

S
p
e
e
d

(
m
p
h
)

Time

Southbound speed (SPD) data (6 min samp): /lp031893/floop2

0

20

40

60

80

100

14:00 15:00 16:00 17:00 18:00 19:00

O
c
c
u
p
a
n
c
y

(
%
)

Time

Northbound occupancy (OCC) data (6 min samp): /lp031893/floop2

0

20

40

60

80

100

14:00 15:00 16:00 17:00 18:00 19:00

O
c
c
u
p
a
n
c
y

(
%
)

Time

Southbound occupancy (OCC) data (6 min samp): /lp031893/floop2

Table 15.2: Loop plots.

Chapter 16

Program Output: The Incident and

Cross Data Analysis

Probably some of the most interesting output that the fsp program generates comes from the
incident data. Since one of the main goals of the program was to be able to calculate the delay
per incident there is a lot of emphasis on the incident output. As a matter of fact, the default
setup for the program is to only print out incident statistics and to hide all of the loop and car
data output. The fsp program generates quite a bit of output that deals with the incidents.
It reports on the correlation between the incident database and probe vehicle trajectory data.
It reports on the various �xes that are applied to the incident data to make it more accurate.
It reports on the delay calculations that are performed for each incident. It reports on quite a
few things. But the point that I am trying to make is that most of the reports made on the
incident involve one of the other data sources. As a result, it is hard to talk about the output
that only deals with the incidents without mixing in something else. As a result, this chapter
will discuss the incident output and the cross data analysis output.

16.1 Quick Overview Of The Incident And Analysis Output

When the fsp program processes the incidents it basically has two things that it can report
on. These are the various �xes that it has applied to the incident data, and the incident delay
calculations. As was shown before, Figure 16.1 show us a simple conceptual picture of what
the program does to �x the incident data. Depending on what the user tells the program to do,
it can attempt to �x the incident data directory from the probe vehicle data or it can �x the
incident data from the already generated incident �x �les. Whichever option the user chooses
the program will want to report on how it did attempting to �x the incidents.

For the delay calculations, the program would like to report not only on what the
delays were for each incident, but also how it got those delay. So there is some text that is
printed to the screen reminding them of the delay calculation conditions. The program will also
generate some graphs of the analysis. A review of what this process looks like can be seen in
Figure 16.2. In that �gure you can see that there are a few di�erent graphs that the program
will generate: histograms, cumulative distributions, and incident delay versus incident duration.
Finally, the contour plots are also generated in the incident processing section. The reason that

229

230CHAPTER 16. PROGRAM OUTPUT: THE INCIDENT AND CROSS DATA ANALYSIS

Incident Data Flow

Good incident data

Fix incident duration

Fix incident placement

Raw incident data Car data

Runtime

file

Runtime

file

Figure 16.1: Data Flow For Fixing The Incidents.

this is done here instead of in the loop data processing section is because the contour plots have
the incidents on them. In order for the program to know what the incidents are it �rst needs
to �lter them out and process them.

16.2 Textual Output

The fsp program gives the user many options on how much text they would like to see
with the incident and data analysis output. These options are set by the run�le parame-
ters INC_RAW_OUTPUT_LEVEL and INC_FINISHED_OUT_LEVEL. The various categories of output
are listed out below:

� Working directories.
� Incident �lter listing.
� Initial number of matched incidents.
� Basic characteristics of initial incidents.
� Complete characteristics of initial incidents.
. Incident database - probe vehicle correlation results.
� Incident duration �x results.
? Incident distribution over the various days.
? Delay calculation conditions.

16.2. TEXTUAL OUTPUT 231

Delay Calculation Flow

Delay vs. Duration

HistogramsDelay per incident

Process incidents
Delay

bounding
box

Good incident dataGood loop data

Cumulative distributions

Figure 16.2: Generating The Incident Delays.

? Vital characteristics of �nished incidents.
? Incident space-time boxes for delay calculation.
? Incident queue length analysis.
? Delay calculation results.

The item that is listed with a \�" is something that always shows up no matter
how you set the options. This can be considered the base case output. The items that are
listed with a \�" are generated depending on how the parameters are set for the raw incident
output. The item with a \." beside it is generated by the correlation analysis. If you run the
correlation analysis then this will be generated. The incident duration �x results - the item
with the � beside it - are generated when you attempt to �x the incident durations either from
the probe data or from a premade �le. Finally, the items listed out with a \?" are items that
are generated depending on how the parameters are set for the �nished incident output. In the
subsections that follow we will discuss �rst the base case output, then the raw incident output,
then the incident database - probe vehicle correlation results, and �nally the �nished incident
output options.

16.2.1 The Base Case Output

If you are processing the incident data then you aren't guaranteed to get any output at all.
The run�le parameters INC_RAW_MATCH_OUTPUT and INC_FINISHED_OUTPUT, which I will call

232CHAPTER 16. PROGRAM OUTPUT: THE INCIDENT AND CROSS DATA ANALYSIS

the incident output control parameters, dictate if you will get any output. If these are both set
to indicate that no output should be generated then the only thing that will come up on the
screen is the following:

clair 1: fsp Runfiles/rf11111.run Incidents/my_inc.dat 0

Start of fsp

Using the following data directories:

Loopdata directory = /home/pal2/FSP/Set1/Loopdata

Cardata directory = /home/pal2/FSP/Set1/Cardata

Incident directory = /home/pal2/FSP/Set1/Incidents

Data output directory = /home/pal2/FSP/Out5min

Loop output directory = /home/pal2/FSP/Out5min/Loopdata

Car output directory = /home/pal2/FSP/Out5min/Cardata

Incident output directory = /home/pal2/FSP/Out5min/Incidents

****** END OF PROGRAM ******

This is not very interesting. This simply reminds the user what directories the fsp program is
using to read in data and where it will place the output. For analyzing the incident data this
is worthless. So it is imperative that you set the two incident output control parameters such
that you actually get some output.

16.2.2 The Raw Incident Output

The raw incident output is generated from the incidents that justed passed through the incident
�lter. No �xes have been applied to them and their delays have not been calculated. This is
sort of a �rst check to make sure that everything is going ok. In order to get any output here at
all the raw incident control parameter, INC_RAW_MATCH_OUTPUT, needs to be set to something
other than NO_RAW_MATCH_OUTPUT. We will assume that it is set to SCREEN_RAW_MATCH_OUTPUT
so that the output comes up on the screen. If this was set to FILE_RAW_MATCH_OUTPUT then
the results would have been placed in the �le named inc.matched.raw in the incident output
directory. For a complete listing of the various options see Chapter 7.

If the raw incident output level parameter, INC_RAW_MATCH_OUTPUT, is set to
INC_RAW_OUT_SPARSE then the raw incident output section will look something like this:

Matching incident structure:

Field Heading Values

0 DATA_TYPE F

2 DATE 2/16/93 - 2/17/93

Incidents matched: 46

This will list out all of the �elds that the program is using to �lter incidents with. In this case
the incident �lter is looking for �eld data that occurred only on 2/16/93. Remember that in

16.2. TEXTUAL OUTPUT 233

the incident �lter in order to specify one date you have to have the start date and the end date
be one day apart (like they are above). It will also list out the number of incidents that made
it through the �lter.

If INC_RAW_MATCH_OUTPUT is set to INC_RAW_OUT_MEDIUM then in addition to the
listing above there will be a listing that contains a few basic characteristics of each incident. It
will look something like this:

Stats on raw incident match:

Incident # Date Time South Link #

1 2/16/93 6:49 1 3

2 2/16/93 6:54 1 3

3 2/16/93 7:00 1 8

You can see that this listing is only very basic. It only lists out the date, time, direction,
and link number of the incident. Note that the column labeled \South" is simply the �eld in
the incident database that holds the direction. So a 1 in this column means that it's in the
southbound direction and a 0 means that it's in the northbound direction.

If INC_RAW_MATCH_OUTPUT is set to INC_RAW_OUT_VERBOSE then instead of the sparse
listing above, the program will print out all of the �elds of every incident. The start of this
output looks something like this:

Field Heading Value Meaning

0 DATA_TYPE F Field data

1 INC_NUMBER 1 Incident number

2 DATA_TYPE 2/16/93 Date

3 SHIFT 0 AM Shift

4 TIME 6:49 Time

.

.

.

If you are �ltering out more than a just a few incidents then this is probably so
much output that it's not useful. Actually, there probably isn't much need to ever use anything
more than the sparse output on the raw data - you can get everything else that you need from
looking at the �nished incident output.

16.2.3 Incident Database - Probe Vehicle Correlation Results

The incident database - probe vehicle correlation is done when the program is trying to �gure
out the correct locations for the incidents. The program reads in the probe vehicle data and
records the locations of all of the key presses. It then reads in the incident database and
attempts to match up the incidents with the key presses. When the program is �nished with
that process it generates some text to inform the user of the results and it generates some
graphs so that the user can see how the correlation turned out. The graphs are discussed in
Section 16.3.2 below.

The correlation routine will generate two levels of text depending on the setting of
the �nished incident output level parameter INC_FINISHED_OUT_LEVEL. If this run�le parameter

234CHAPTER 16. PROGRAM OUTPUT: THE INCIDENT AND CROSS DATA ANALYSIS

is set to INC_FIN_OUT_SPARSE then the output from the correlation routine will look like the
following:

Correlation Results:

Incident database match statistics:

Total: # incidents, # covered, ratio = 46, 46, 100.0%

Total: # time entries, # matched, ratio = 151, 89, 58.9%

Total: # covered incidents, # changed, avg change(ft) = 46, 29, 1160

Total: # with new loop, ratio = 8, 17.4%

Probe vehicle match statistics:

Total number of entries = 154

Number of entries in study section = 117

matched entries in study section = 89

ratio = 76.1%

The �rst thing that you will note is that there are two types of statistics: the incident database
match statistics and the probe vehicle match statistics. When the correlation routine tries to
match the two data sets up it keeps statistics on how well each data set matched the other.
These values might seem a little confusing at �rst so a line by line explanation is given below.
The �rst set of statistics that I will explain deal with the incident database:

Total: # incidents, # covered, ratio = 46, 46, 100.0%

This is the number of incidents that made it through the incident �lter. The number of covered
incidents is the number of incidents that had some probe data that coincided with it that was
speci�ed in the run�le. In this case, every incident had some probe data that covered the same
time period. If, for example, in the incident �lter you speci�ed that you wanted to look for
the incidents that occurred on February 19th, but in the run�le you only speci�ed the car data
for March 3rd then these two data sets would not overlap. In that case, none of the incidents
would have been covered.

Total: # time entries, # matched, ratio = 151, 89, 58.9%

For each incident in the incident database there is a listing of the number of times that the
incident was witnessed by the probe vehicle drivers. The number of time entries here, is the
summation, over all of the incidents, of the number of times each incident was witnessed. The
number matched is the number of these entries that the computer matched with a speci�c key
press from the probe vehicles, and the ratio is just the percentage that were matched.

Total: # covered incidents, # changed, avg change(ft) = 46, 29, 1160

The number of covered incidents here is the same as in the �rst line - it's just the number
of incidents that had coinciding car data with them. The number changed is the number of
incidents that had their location changed due to the correlation routine. The \avg change" is
the average amount of change in feet for all of the incidents.

16.2. TEXTUAL OUTPUT 235

Total: # with new loop, ratio = 8, 17.4%

This is the number of incidents that were changed enough to have a new loop number assigned
to them. If this number is zero then the correlation with the car data had no e�ect. If this
number is zero then it could be that the key presses all matched up exactly with where the
drivers said that incidents occurred. Unfortunately, a more likely explanation is that all of the
key presses were outside of the incident boxes.

This second set of statistics deal with the probe vehicle data:

Total number of entries = 154

This is the total number of times that the drivers in the probe vehicles hit a key indicating that
they were driving past an incident.

Number of entries in study section = 117

This is the number of entries that fell within the study area on the freeway. There was a section
of the road that already had the Freeway Service Patrol tow trucks operating on it and so we
took all of the incidents in this area out of the database. Therefore, we should exclude the key
presses that show up in that area as well. This number should be the same as \# time entries"
in the incident statistics above but it usually isn't.

matched entries in study section = 89

This is the number of key presses that the computer thinks it can match up with driver recorded
witness points in the incident database. This number is the same as \# matched" in the incident
statistics above.

ratio = 76.1%

This is the ratio of the number matched to the number of entries in the study section (this is
still only within the probe vehicle data). We usually use this as a measure of how good our �t
is. The closer this number is to 100% the better.

If the �nished output level parameter is set to INC_FIN_OUT_MEDIUM or
INC_FIN_OUT_VERBOSE then the output from the correlation routine, in addition to the output
described above, will include the following table:

SUMMARY of all COVERED incidents:

Inc # # Entries # Matched Dist(ft) Loop New Dist(ft) New Loop Change

205 26 19 35640 12 35764 13 0.02

210 3 2 21040 20 20474 7 -0.11

213 3 3 41360 17 38824 17 -0.48

216 2 0 39600 4 39600 4 0.00

219 2 3 47770 5 47619 5 -0.03

236CHAPTER 16. PROGRAM OUTPUT: THE INCIDENT AND CROSS DATA ANALYSIS

This table lists out for each incident the number of entries in the incident database, the number
of those entries that got matched up with a key press in the probe vehicle data, the original
location (in feet) of the incident1, the original loop detector of the incident, the new incident
location and loop detector, and �nally, the change in miles between the old distance and the
new. Note that although the distance may change this doesn't necessarily mean that there
will be a new loop detector. Also note that the distance in feet is from the starting point of
the probe vehicle run. Since the probe vehicle starts in the southbound direction �rst, if an
incident occurs on the northbound section then the distance to that incident is the distance
from the starting point all the way to the turn-around point and then back up (north) to the
incident. The �nal thing to notice is that if there are more key presses in an incident box than
there are entries in the incident database then the program will still allow those key presses to
be matched to that incident. You can see that this happened for incident #219 above.

Finally, if the �nished output level parameter is set to INC_FIN_OUT_VERBOSE then
the correlation routine will print out one additional table. This table is an incident location
shift table than can be used as the new incident location �x �le. This table is only generated
when the run�le parameter FIX_INC_LOCATION is set to YES_FIX_INC_DELAY. A small sample
of one of these tables is given below:

Possible new incident location fix table:

Incident Shift (miles)

205 -0.48

210 -0.36

213 -0.48

216 0.00

.

.

A complete example of how to use this table is given in Section 12.9. The basic idea is that by
using these values in a new incident location �x �le you could possibly reduce the e�ect of the
correlation routine nothing. This is very handy if you don't want to have to process the car
data and run the correlation routine each time that you want to get accurate incident locations.

One thing that you will notice about the correlation statistics is that they should
probably have been generated for each shift and not for the study period as a whole. While
that may be true, we still needed an overall measure of how well the correlation routine was
doing. As a result we opted for the large measure instead of a bunch of smaller measures.

16.2.4 The Incident Duration Fix Output

The incident duration �x output is only generated when the fsp program is attempting to �x
the incident durations by looking at when the di�erent probe vehicles drove by an incident and
didn't witness it. It doesn't matter if the duration �x is being derived from the probe data
or from a runtime �le, this table will alway be generated. The methodology behind this type
of duration �x is discussed in Section 5.3.2 and an example of how to do this with a run�le is

1This location is the location after the incident location �x has been applied

16.2. TEXTUAL OUTPUT 237

given in Section 12.10. A sample of the table that the incident duration �x routine generates
is given below:

Incident duration correction statistics:

Before New After New Final

Inc Start Start Start End End End Duration Duration

205 23880 23794 23837 34140 34150 34145 10260 10308

210 27180 26717 26948 28260 28829 28544 1080 1596

213 30060 29686 29873 30780 31152 30966 720 1093

Besides the incident number, which is in the �rst column, all of the values in this table are in
seconds. The second column, which is labeled \Start," is the starting time of the incident that is
recorded in the incident database. The column right after it, which is labeled \Before Start" is
the last time before an incident occurred when any probe vehicle drove by the incident location
and didn't witness the incident. The column labeled \New Start" is the adjusted start time that
should be between the original start time and the time when the previous probe vehicle passed
the incident location. The next three columns, columns 4-6, deal with the incident ending time.
They follow the same format as the start time columns: \End" is the incident ending time,
\After End" is the �rst time a probe vehicle drove by and didn't witness the incident, and \New
End" is sometime between the two. The column labeled \Duration" is the original duration
and the \Final Duration" is the new duration.

This table is only generated when the �nished incident level parameter, INC_FINISHED_OUT_LEVEL,
is set to INC_FIN_OUT_MEDIUM or INC_FIN_OUT_VERBOSE. This table is placed either on the
screen on in the �nished incident output �le as determined by the parameter INC_FINISHED_OUTPUT.

16.2.5 The Finished Incident Output

The �nished incident output is generated from the incidents after all of the �xes have been ap-
plied and the delay for each incident has been calculated. To get output for the �nished incidents
the �nished incident control parameter, INC_FINISHED_OUTPUT needs to be set to something
other than NO_FINISHED_OUTPUT. We will assume that it is set to SCREEN_FINISHED_OUTPUT

so that the output comes up on the screen. If this was set to FILE_FINISHED_OUTPUT then the
results would have been placed in the �le named inc.finished in the incident output directory.
For a complete listing of the various options see Chapter 7.

If the �nished incident output level parameter, INC_RAW_MATCH_OUTPUT, is set to
INC_FIN_OUT_SPARSE then the �nished incident output section will contain three distinct parts:
the incident distribution over the various days, the delay calculation conditions, and the delay
calculation results. The incident distribution section is simply a listing of the number of in-
cidents that occurred on each day during the study period and whether or not they occurred
during the morning or the afternoon shift. A section of this table is given below:

Incident count by day:

Date #Incs/Day #Incs/Shift

2/16/93 46 AM 24 PM 22

2/17/93 0 AM 0 PM 0

.

238CHAPTER 16. PROGRAM OUTPUT: THE INCIDENT AND CROSS DATA ANALYSIS

.

3/19/93 0 AM 0 PM 0

Average # incs: 1.9 AM 1.0 PM 0.9

Note that all of the days of the study section are listed out even if there aren't any incidents
on those days (I cut out a large section in the middle for space considerations). Since in this
example we are only looking at incidents on 2/16/93, nothing shows up on any of the other
days.

The next piece of text that is generated under the �nished incident routine is a
listing of the various conditions that were used to calculate the delay for the incidents. This
section looks like this:

Delay Calculation Conditions:

Incident Explanation = All incidents

Car Headway = 420 seconds

Delay Calculation = WRT_AVERAGE_SPEED

Delay Calc Type = ONLY_HAVE_POSITIVE_DELAY

Congestion Speed = 55 mph

Fix Loop Holes Option = YES_FIX_HOLE_ERRORS

Incident Delay Method = Fixed number of detector:

Num Upstream Det. = -1

Num Downstream Det. = 0

The incident explanation is the user supplied title that is put on the incident graphs that are
discussed in Section 16.3.1. The car headway is the average headway time between the probe
vehicles. Whether this gets used in the calculation is determined by the line below labeled
\Incident Delay Method." If this line says \Fixed number of detectors," like it does now, then
the car headway, along with a �xed number of detectors, is used to de�ne the the incident
space-time box that the delay is calculated from. If the \Incident Delay Method" instead says
\Prede�ned space-time boxes" then the user de�ned space-time boxes are used and the headway
time is ignored. The rest of the lines are pretty straight forward.

The last piece of output generated by the �nished incident section under the output
level parameter of INC_FIN_OUT_SPARSE is the delay calculation results. This is probably the
section that will be used the most. It contains summary information on quite a few things:

Stats on all incident delays:

Match incidents witnessed once = YES

ALL results include headway time of = 7:00

Number of Incidents = 46

Number witnessed once = 23

Min Max Mean Std. Dev. Std. Error

Incident Duration 7 165 27.80 43.72 6.45

TT Response (4) 0 37 16.25 18.50 9.25

TT Clearance (3) 0 28 17.33 15.37 8.88

Incident Delay 0.00 446.74 22.77 69.84 10.30

16.2. TEXTUAL OUTPUT 239

Incident delay vs. duration line:

Slope = 0.915

Intercept = -2.671

Sigma_slope = 0.197

Sigma_intercept = 10.149

Chi^2 = 147485.766

The �rst two lines tell the user whether the program attempted to match the in-
cidents that were only witnessed once and what headway time the program used. The third
line is the total number of incidents and the fourth line is the number of incidents that were
witnessed once. The table below that gives the minimum, maximum, mean, standard devia-
tion, and standard error for incident duration, tow truck response, tow truck clearance, and
incident delay. Note that the numbers after the tow truck response and clearance headings
are the number of each type. So in the table above, there were 4 incidents that had a tow
truck respond, and the incident database had the tow truck clearance time for 3 incidents. The
statistic that we used the most was the mean incident delay. The incident delay versus duration
section gives the results of an attempt to �t a straight line to a plot of incident delay versus
incident duration. This plot is discussed in Section 16.3.1.

These are the basic incident and data analysis statistics. The two other levels of the
�nished incident control parameter simply give a more detailed picture of the �xes that were
done on the incident data and the delay calculation.

If the �nished incident output level parameter, INC_RAW_MATCH_OUTPUT, is set to
INC_FIN_OUT_MEDIUM then in addition to the output above, the �nished incident output section
will contain a table that lists out all of the vital statistics on the incidents. A section of this
table looks like this:

Individual incident statistics:

Inc. Type Good Bad

Inc # Date D 1 2 3 Time South Link Loop Files Files Duration Delay

1 2/16/93 0 5 0 0 6:49 1 5 20 5 0 0:00:00 1.54

2 2/16/93 0 3 0 0 6:54 1 4 7 4 0 0:27:00 4.36

3 2/16/93 0 5 0 0 7:00 1 17 5 17 0 0:06:00 1.32

4 2/16/93 0 0 2 0 7:34 1 13 12 13 0 0:00:00 0.58

The various columns to this table are as follows:

Inc # : This is simply the incident number.

Date : This is the date that the incident took place.

Inc. Type D : This is �eld P in the incident database that is labeled \Incident Type" in Sec-
tion 4.5 and has the incident �lter parameter INCIDENT_DESCRIPTION. This �eld basically
tells you whether or not the incident is debris or not.

Inc. Type 1 : This is �eld Q in the incident database that is labeled \Type 1" in Section 4.5
and has the incident �lter parameter INCIDENT_TYPE_1. This �eld tells you whether or
not the incident is a breakdown or not.

240CHAPTER 16. PROGRAM OUTPUT: THE INCIDENT AND CROSS DATA ANALYSIS

Inc. Type 2 : This is �eld R in the incident database that is labeled \Type 2" in Section 4.5
and has the incident �lter parameter INCIDENT_TYPE_2. This �eld tells you whether or
not the incident is an accident or not.

Inc. Type 3 : This is �eld S in the incident database that is labeled \Type 3" in Section 4.5
and has the incident �lter parameter INCIDENT_TYPE_3. This �eld tells you whether or
not the incident is a CHP ticketing incident.

Time : This is the time that the incident was �rst witnessed by a probe vehicle.

South : This is a 1 if the incident occurred in the southbound direction and a 0 if the incident
occurred in the northbound direction.

Link : This is �eld I in the incident database that is labeled \Link Identity" in Section 4.5
and has the incident �lter parameter LINK_ID. This simply tells you the rough location
of the incidents.

Loop : This gives you the loop number that is just upstream of the incident.

Good Files : If you are attempting to calculate the incident delay based on the non-�xed loop
data then certain loop delay �les might not be present. When the program reads in the
loop delay �les to calculate the incident delay it realizes that some of the �les might not
be there. This column gives the number of �les that it did �nd.

Bad Files : This is the counterpart to \Good Files." This gives the number of �les that it
attempted to �nd and couldn't. If you are allows working with the corrected loop data
then this column should always be zero. If it isn't then something is wrong.

Duration : This is the uncorrected duration of each incident.

Delay : This, of course, is the incident delay in vehicle- hours.

The table above is probably all that you'll ever need when working with the incident
delays. But, if for some reason you would like to have an even more detailed analysis of what the
program has done then you can set the �nished incident output level to INC_FIN_OUT_VERBOSE.
This will give you two more pieces of information. The �rst is another table that has some
extra �elds in it:

Summary of fixes to incidents:

Fixed Fixed Fixed Start End

Inc # Start End Dur. Start End Dur. Lp Lp Lp Delay

1 6:49:00 6:49:00 0:00:00 6:45:30 6:52:30 0:07:00 20 16 20 1.54

2 6:54:00 7:21:00 0:27:00 6:50:30 7:24:30 0:34:00 7 16 7 4.36

3 7:00:00 7:06:00 0:06:00 6:56:30 7:09:30 0:13:00 5 16 5 1.32

4 7:34:00 7:34:00 0:00:00 7:30:30 7:37:30 0:07:00 12 16 12 0.58

This table basically lists out the �nal space time box that the program uses to calculate the
delay for each incident. An explanation of each column is given below:

Inc # : This is simply the incident number.

16.2. TEXTUAL OUTPUT 241

Start : This is the original starting time of the incident.

End : This is the original ending time of the incident.

Dur. : This is the original duration of the incident.

Fixed Start : This is the �xed starting time of the incident.

Fixed End : This is the �xed ending time of the incident.

Fixed Dur. : This is the �xed duration of the incident.

Lp : This is the number of the loop detector that is just upstream from the incident.

Start Lp : This is the number of the loop detector upstream of the incident that the program
will start to calculate the delay from.

End Lp : This is the number of the loop detector downstream of the incident where the
program will stop calculating the delay.

Delay : This is the incident delay in vehicle-hours.

The second piece of information that the program will generate under the verbose
setting is a short analysis of the queue length for each incident. The program will generate
a table for each incident that has the total cumulative delay versus the number of detectors
upstream of the incident. A typical table would look like this:

Analysis of incident delay/queue length:

Detector Back Delay

Incident #: 36

1 4.90

2 6.48

3 6.92

4 16.11

5 20.88

6 21.65

7 21.66

8 21.66

.

.

Note that the column \detector back" is just the number of detectors upstream of the incident
- it is not the incident detector number. For this incident you can see that the delay tapered
o� to zero right after the seventh detector upstream from this incident. This probably means
that the queue only extended back to the seventh detector as well. I must strongly warn you
to look at the contour delay plots when attempting to interpret these tables.

242CHAPTER 16. PROGRAM OUTPUT: THE INCIDENT AND CROSS DATA ANALYSIS

16.3 Graphical Output

The fsp program will generate a couple of di�erent types of incident and data analysis graphs.
These are:

� Incident histograms.

� The incident delay versus duration.

� The correlation plots.

� The contour plots.

The �rst two types of plots, the incident histograms and the delay versus duration
plot, are placed in the incident output directory. The correlation plots are placed in the in-
dividual car shift output directories and the contour plots are placed in the loop data output
directories.

16.3.1 The Incident Plots

If the user sets the run�le parameter INC_FINISHED_GRAPHS to YES_FINISHED_GRAPH then the
fsp program will generate four di�erent plots:

� A histogram plot with the number of incidents.

� A histogram plot with the percentage of incidents.

� A cumulative distribution plot.

� An incident delay vs. duration plot.

There are a couple of run�le parameters that determine how these plots turn out.
These are:

INC EXPLANATION : This is an explanation that is placed at the top of all of the plots.
There is some other information that is also placed in the plot title that the user has no
control over. The maximum length that you should probably make any title is around 50
characters.

INC GRAPH MAX NUM : This sets the range of the y-axis on the histogram plot with
the number of incidents. This allows the user to set the range to a pleasing level. The
reason that we don't let gnuplot set this is because gnuplot will always set the range to
the maximum value. If we want to compare two di�erent plots side-by-side then this can
be very irritating. Unfortunately, what this means is that you have to �rst run the fsp
program to see what the appropriate ranges should be and then come back and set the
ranges in the run�le and then run the program again.

INC GRAPH MAX PERCENT : This sets the range of the y-axis on the histogram plot
with the percentage of incidents. This is just like the parameter above.

16.3. GRAPHICAL OUTPUT 243

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

N
um

be
r

of
 In

ci
de

nt
s

Corrected duration (minutes)

Histogram, All incidents (N=46, Avg=20.80, Sd=43.72)

Figure 16.3: Histogram Of The Number Of Incidents.

A sample of each one of these plots is given on the next couple of pages by Fig-
ures 16.3 - 16.6. There are a couple of things to note about generating these plots:

� The maximum duration that an incident can have is set in the program to be 150 minutes
- just over two hours. Any incident that falls outside of that range is discarded. Since this
length of time covered our study period this shouldn't be too much of a problem. The
disconcerting thing is that the fsp program spits out the following error message each
time that it has to discard an incident:

ERROR: Incident histogram overflow: Have to discard an incident.

You should just ignore these messages.

� The line that is draw on the delay vs. duration plot is only a linear �t of the data. There
no is evidence to suggest that the relationship between the duration and the delay should
be linear.

The �lenames that are used to save these plots in the incident output directory are
as follows:

chist.dat.X : This is the data �le for the cumulative histogram plot.

del.dur.dat.X : This is the data �le for the delay versus duration plot.

fhist.dat.X : This is the data �le for the histogram of the percentage of incidents.

244CHAPTER 16. PROGRAM OUTPUT: THE INCIDENT AND CROSS DATA ANALYSIS

0

5

10

15

20

0 20 40 60 80 100 120 140

%
 o

f I
nc

id
en

ts

Corrected duration (minutes)

Histogram, All incidents (N=46, Avg=20.80, Sd=43.72)

Figure 16.4: Histogram Of The Percentage Of Incidents.

gnuprint.ddX : This is the gnuplot executable �le that will print the delay versus duration
plot out to the printer.

gnuprint.hX : This is the gnuplot executable �le that will print the histogram plots out to
the printer.

gnuview.ddX : This is the gnuplot executable �le that will allow the user to view the delay
versus duration plot.

gnuview.hX : This is the gnuplot executable �le that will allow the user to view the various
histogram plot.

hist.dat.X : This is the data �le for the histogram of the number of incidents.

The \X" in each of the �le names above represents the incident �le number or run
number. Each time that the fsp program is run a run number is passed to it. This run number
is used to index all of the output �les so that the user can save multiple runs without having to
copy �les around. If you are using the xfsp program then this is taken care of automatically.

16.3.2 The Correlation Plots

The correlation plots are generated as a results of the program attempting to correlate the
incident database and the probe vehicle data. A complete discussion of how the correlation
plots are generated is given in Section 5.3.1. A typical correlation plot is given in Figure 16.7.
The useful thing about the correlation plots is that they can be used to adjust the incident

16.3. GRAPHICAL OUTPUT 245

0

20

40

60

80

100

0 20 40 60 80 100 120 140

P
er

ce
nt

ag
e

(%
)

Corrected duration (minutes)

Cumulative Distribution, All incidents (N=46, Avg=20.80, Sd=43.72)

Figure 16.5: Cumulative Distribution Plot.

location via the incident location �x runtime �le. An example of this is given in Section 12.9.
There are a couple of run�le parameters that need to be set in order for the correlation plots
to be made:

� Since the correlation routine is part of the incident processing section you need to tell
the fsp program to process the incidents. This is done by setting the run�le parameter
PROCESS_INCIDENTS to YES_PROC_INCIDENTS .

� The correlation routine is only turned on when the parameter CORRELATE_CARS_DATABASE
is set to YES_CORRELATE. The correlation routine needs to be turned on in order for any
graphs to be made.

� The run�le parameter INC_CORRELATION_GRAPHneeds to be set to YES_INC_CORR_GRAPHS.
This will tell the correlation routine to generate the graphs.

� Whether the incident numbers are placed on the plots is determined by the run�le parame-
ter NUMBER_INC_CORR_GRAPHS . Even though you probably want to have the incident num-
bers on the plots, if there are too many incidents then it can get a little hard to see which
number goes with which box. If this parameter is set to YES_NUMBER_INC_CORR_GRAPHS

then the numbers will be placed on the plots.

� You have to process some car data so that the correlation routine will know where the
key presses are. This means that you have to specify some car data and you have to tell
the program to look for the incident key presses in the car data by setting the run�le
parameter INCIDENT_POINTS to YES_INCIDENT_POINTS.

246CHAPTER 16. PROGRAM OUTPUT: THE INCIDENT AND CROSS DATA ANALYSIS

-100

0

100

200

300

400

500

0 50 100 150 200

D
el

ay
 (

ve
h-

hr
)

Duration (min., 420 min. headway)

Duration vs Delay, All incidents (N = 46, Ref spd = AVG)

y = 0.91x-2.67

’del.dur.dat.0’
Linear_fit(x)

Figure 16.6: Incident Delay Versus Duration.

� The incidents that are placed on the correlation plots are only the ones that make it
through the incident �lter. Therefore you should generate an incident �lter that will
allow everything to pass through.

There is only one correlation plot for each shift of car data so the naming scheme is
pretty straight forward. There are two main �les that generated by the correlation routine that
are named incidentcor.gp and incidentcor.gv. Both of these �les generate a correlation
plot but the �rst one dumps it to the printer and the second one displays it on the screen. The
way to remember this is to think of the �le extension as \Gnuplot Print" or \Gnuplot View."
Although the only �les the normal user would have to deal with are the two �les mentioned
above, there are a few di�erent �les that the correlation routine generates that are placed in
the car shift directories. The naming scheme of these auxiliary �les is as follows:

carX.idt : These �les hold the key presses that the drivers made when they passed by an
incident. The \X" stands for the car number.

dYY.b : These �les hold the incident locations. The \YY" stands for the incident number -
there is one �le for each incident. These �les have such short �lenames due to a restriction
in gnuplot on the length of the command line. There is nothing that can be done about
this.

So a typical shift directory might look something like this:

car1/ d10.b d19.b d3.b

16.3. GRAPHICAL OUTPUT 247

6:006:00

6:30

7:00

7:30

8:00

8:30

9:00

9:30

10:00

0 5 10 15 20

T
im

e

Position (miles)

Car and database correlation: am021693

1
2

3

4

56
9

1011

12 13
14

15 16 17
18

19 20
21

23
24

25

28

29

Figure 16.7: Incident Correlation Plot.

car1.idt d11.b d2.b d4.b

car2/ d12.b d20.b d5.b

car2.idt d13.b d21.b d6.b

car3/ d14.b d23.b d9.b

car3.idt d15.b d24.b incidentcor.gp

car4/ d16.b d25.b incidentcor.gv

car4.idt d17.b d28.b

d1.b d18.b d29.b

As you can see, there are quite a few �les with names of the form dYY.b and hence quite a
few incidents. Note that I have left out the all of the travel time �les that are normally found
in this directory. All of the correlation �les are stored under the car output directory in the
individual shift directories.

16.3.3 The Contour Plots

When told to do so, the fsp program will generate contour plots of the loop data with the
incidents placed on them. One important use of the contour plots is that they give you an
easy way to �gure out where the end of the queue is that built up behind an accident. This
is important if you are attempting to �gure out the incident space-time boxes for the delay
calculations. An example of doing this is given in Section 12.11. The program will make three
di�erent types of contour plots:

Delay : These are plots where the contour lines are delay, which is in vehicle-hours. The root
�le name for these is contour. I know that it probably should have been delay but it

248CHAPTER 16. PROGRAM OUTPUT: THE INCIDENT AND CROSS DATA ANALYSIS

just didn't turn out that way.

Density : These are plots where the contour lines are density, which is in vehicles per mile.
The root �le name for these is density1.

Di�erential density : These are plots where the contour lines are the percentage over the av-
erage density. So if the density of tra�c for one day at one spot was 200 vehicles/mile and
the average density for that spot was 100 vehicles/mile then the di�erential density would
be 1, which means 100% over the average. So the di�erential density are percentages.
The root �le name for these is density2.

For each type of contour plot the program will generate a plot for each direction and
for each shift, for a total of 4 di�erent plots for each day. The �lenames for the gnuplot exe-
cutable �les that generate the contour plots have two parts: a root �le name and an extension.
The root �le name tells what the contour lines are (either delay, density or di�erential density)
and the extension speci�es the direction, time, and output device. The naming convention for
the gnuplot executable �les is given below:

contour.g{n,s}{a,p}{p,v}

density1.g{n,s}{a,p}{p,v}

density2.g{n,s}{a,p}{p,v}

As was discussed above, the individual plot types each have their own root �le name, but the
extensions all have the same format. The brackets in the extensions above each represent one
character that can be chosen out of the two characters inside the brackets. Something like
{n,s}, which represents the second character in the extension, means that you can only choose
the \n" or the \s" but not both. So the naming scheme is as follows: the second character in
the extension signi�es the northbound or southbound direction, the third character signi�es the
AM or PM shift, and the fourth character signi�es whether to print the plot to a printer or to
view it on the screen. For example, to view the delay contour plot for the northbound, AM shift
you would use the gnuplot executable �le contour.gnav. To print out the di�erential density
plot of the southbound, evening shift you would use the gnuplot executable �le density2.gspp.

There are also a couple of data �les that the gnuplot executable �les read in when
making the plots. The naming scheme for these �les is similar to the gnuplot executable �les:

contour.{n,s}{a,p}

density1.{n,s}{a,p}

density2.{n,s}{a,p}

The �rst character in the extension signi�es the direction, and the second character signi�es
the shift. Since these �les hold the raw data, they were not meant to be read or processed by
normal users - they are only read in by the gnuplot executable �les.

There are couple of run�le parameters that need to be set in order to generate the
contour plots:

� Since the contour plot generation routine is part of the incident processing section you
need to tell the fsp program to process the incidents. This is done by setting the run�le
parameter PROCESS_INCIDENTS to YES_PROC_INCIDENTS .

16.3. GRAPHICAL OUTPUT 249

� The parameter INC_CONTOUR_DELAY_PLOT controls whether the contour plots are gener-
ated or not. This needs to be set to YES_INC_CONTOUR_DELAY_PLOTS.

� The incidents that are placed on the correlation plots are only the ones that make it
through the incident �lter. Therefore you should make an incident �lter to your liking.
One suggestion is to just �lter out the accidents and see what kind of congestion they
cause.

The contour plots are all placed in the individual loop day output directories. In
Section 12.8 there is an example that shows how to generate the contour plots. Note that you
�rst need to generate the loop averages before you can make the contour plots. Figures 16.8
through 16.10 give examples of the various contour plots that the program can generate.

Southbound Delay: lp021693 (Ref spd = AVG)

Time

Det. #

30

31

32

33

34

35

36

38

39

4041

 3
 1

14:0014:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30

16

3

1

7

20

9

2

11

6

18

19

13

12

4

17

15

5

Figure 16.8: Contour Plot Of Delay.

250CHAPTER 16. PROGRAM OUTPUT: THE INCIDENT AND CROSS DATA ANALYSIS

Southbound Density: lp021693

Time

Det. #

30

31

32

33

34

35

36

38

39

4041

 254
 170
 85.6

14:0014:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30

16

3

1

7

20

9

2

11

6

18

19

13

12

4

17

15

5

Figure 16.9: Contour Plot Of Density.

Southbound Diff. Density: lp021693 (Ref spd = AVG)

Time

Det. #

30

31

32

33

34

35

36

38

39

4041

14:0014:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30

16

3

1

7

20

9

2

11

6

18

19

13

12

4

17

15

5

Figure 16.10: Contour Plot Of Di�erential Density.

Chapter 17

A Larger Picture: The Whole FSP

Data Flow

Up to this point I have talked almost exclusively about how to run the fsp once the data is on
the hard drive. Well, due to the large size of the data set, this begs the question, \How did the
data get on the hard drive in the �rst place?" In this chapter I will try answer this question
and to also give a slightly larger picture of the whole process than what I have done previously.

The data started o� being generated in the test cars and the loop detectors. There
were four probe cars that drove up and down the freeway for three hours in the morning and
three hours in the afternoon. During that time period the loop detectors were also taking data.
All of this data was stored on 31

2 inch
oppy disks. Every few days the data from the cars and
the loop detectors was collected and brought to the lab where they were transferred to the Sun
Workstation. All of this is represented in Figure 17.1.

As you can see, the data started with the cars and the loop detectors which are
underneath label 1 in this picture. The transfer of the data was done with the help of a PC
and a device called a disk loader. A disk loader is an add on device to the PC that allows you
to stack a bunch of disks in a hopper and then to automatically feed them into a disk drive
one by one. A software program runs on the PC to control the transfer of the data from the

oppy disks to the Sun. This program, called ftran, controls the disk loader, stores the data
on the PC hard drive temporarily - step 3 in Figure 17.1 - and then transfers the data to the
Sun across the local ethernet in step 4.

The ftran program actually does quite a bit of setup on the Sun every time that it
runs. The �rst thing that it does is to create the directory structure that the fsp program is
expecting. It then places the data in these directories. Next, it makes a run�le that corresponds
to this data and places it in the run�le directory. It then makes a log �le that lists out the
what data was just transferred and places this in the log �le directory. Finally, it makes a
special script �le and places it in the home directory of the main user. When run, this special
script �le will execute the fsp program with the recently generated run�le and will print out
the error reports to the local printer. Once the analysis on the data has been run, the data
can be transferred to a magnetic tape for easy storage. Currently, all of the data for an entire
month can be stored on one 8mm tape. Since an 8mm tape costs about $9, this is a very cost
e�ective way to store the data if you are done with it.

251

252 CHAPTER 17. A LARGER PICTURE: THE WHOLE FSP DATA FLOW

Cars:
FSP

x 4

Loops:
FSP

x 20

Disk
Loader PC

4

1 2 3

Ethernet

Workstation

5

Figure 17.1: The Larger Picture.

253

Just to sum up what the ftran program does:

1. Control the disk loader such that it can read in all of the disks.

2. Figure out what data is present on the disks.

3. Make a run�le that corresponds to the data.

4. Make a log �le that corresponds to the data.

5. Log onto the Sun.

6. Create the appropriate directory structure on the Sun.

7. Place the car and loop data in these directories.

8. Transfer the new run�le and log �le.

9. Create a script �le to run the fsp program with the new run�le and to print the error
reports out to the printer.

10. Transfer the special script �le to the home directory of the main user.

11. Log o� the Sun and delete the data from the PC hard drive.

The program was designed this way so that somebody that was not very familiar
with the fsp program could analyze the data. In order to run through the whole process, from
the disks to the printouts of the error reports, they would only have to do a few tasks:

1. Place the disks in the disk loader.

2. Run the ftran program on the PC.

3. Log onto the Sun and run the special script �le.

4. Pick up the printouts.

The slowest part in this whole process was the reading of the
oppy disks by the
disk loader. What was envisioned was that we could stack a bunch of disks in the disk loader
and then go out to lunch. When we came back, all of the data would be transferred to the Sun
waiting for us to run the analysis program. At the point, this process works pretty well.

One �nal point should be made about the way the ftran program names the run�les
that it generates and transfers to the Sun. Since �le names on a PC can only be 8 characters
long I had to come up with a naming scheme that had only 8 characters. What I came up with
was the following format: rfXXYYZ.run. Where \XX" stands for the month, \YY" stands
for the day, and \Z" stands for the transfer number of that day. The ftran program keeps
track of the transfers that it does and it marks each one with a speci�c number for that day.
This needed to be done so that the �le name wasn't dependent on just the date. If it was and
somebody transferred two batches of disks to the Sun then there is a possibility for confusion
in what to name the �les. For example, if there were 5 batches of disks that were transferred
to the Sun on March 10th, then the run�les would be named:

254 CHAPTER 17. A LARGER PICTURE: THE WHOLE FSP DATA FLOW

rf03101.run

rf03102.run

rf03103.run

rf03104.run

rf03105.run

Appendix A

Frequently Asked Questions and

Warnings

This appendix contains a list of frequently asked questions and warnings about the fsp program.
These were collected by having a few people around the country beta test the program. The
points noted here are mainly from the questions that they asked. Since most people just want
to work with the loop data, most of the information deals with that.

Note that these questions only deal with the current version of the software which
is fsp 1.1. If you are using an earlier version, you might want to �rst glance at the changes
that have been made. They are listed out in Appendix B.

A.1 General

Pointer: Before downloading the support software for the xfsp program, you should check to
see if it is already on your system.

The xfsp program was written in a scripting language called Expect. In order for you to
run the xfsp program you need to have the program expectk on your system. You can
download the Expect software from the ftp server at UC Berkeley and install it yourself,
but you should �rst check to see if it is installed on your machine. It is a very common
program and most system administrators will have already installed this program. To
see if you have the program expectk try the command: which expectk. This will tell
you if you have it or not. Chapter 3 has instructions on how to download and install the
program if you don't already have it.

Question: Can I process data from both the before study and the after study at the same time?

No, you can't. The fsp program can only process one type of data at a time. You can't
work with two di�erent data sets in the same run�le. You have to split up the work into
two run�les.

Question: Can I ask the author any questions?

Of course. I'd be happy to answer any questions that you might have. You can just send
me email at pettyk@eecs.berkeley.edu.

255

256 APPENDIX A. FREQUENTLY ASKED QUESTIONS AND WARNINGS

A.2 The Loop Data

Pointer: Download the processed loop data instead of generating it yourself.

You should always try to download the processed loop data and use that. Learning to
use the fsp program can be a pain. There are usually a couple of di�erent processed data
sets on the ftp server in the directory /pub/PATH/FSP/Data/Processed.

Question: What is the format of the loop data?

The loop data �les are in two columns. The �rst column is the number of seconds since
midnight and the second column is the value - either speed, occupancy,
ow, delay, etc.
You should look at the warnings about the units of the loop data �les to make sure that
you realize what each �le contains.

Warning: The units for the loop
ow data �les are not consistent.

The units for the various loop data
ow �les are all di�erent. The units for the individual
lane
ow �les are in vehicles per time period. So if your output time period is 60 seconds,
then the units are the number of vehicles per 60 seconds. An individual lane �le is a loop
output �le that ends with a number. So the �le floop3.nc1 is the �le that contains the
counts, or
ow, at detector #3 in the northbound direction for lane #1. A more thorough
explanation of the loop �le naming scheme is given in Section 15.3.

The units for the loop
ow data that has been averaged over all of the lanes is in vehicles
per lane per hour. These �les all have extensions that end with the letter \d". The units
for the on and o� ramps are in vehicles per time period.

Question: I made the individual lane �les but there are lots of holes in the data. Why is this?
Can this be �xed?

The short answer is \no." The individual lane �les have holes in them due to the 170 loop
controllers being buggy. The program won't do anything to �x these holes. What the
program does �x is the data that is aggregated over all of the lanes. There is an extended
discussion of this point in Section 11.2.

Question: I created the loop data speed �les and I noticed that at some times the speed was
409 (miles/hour). How could that happen?

The loop detector speed is calculated by �guring out the amount of time that it takes for
a vehicle to pass over both loop detectors. What the program does is it looks at the time
di�erence in the falling edges of the pulses generated by a vehicle moving over the loop
detectors. You should refer to Figure 4.5 and the discussion there if you don't know how
speeds are calculated. The key thing is that the vehicle needs to be picked up by both
detectors.

There are couple of things that could happen that could cause the loop speeds to be
incorrect:

� If a truck goes over the loop detector, the loop detector might pick up each axle as
a separate vehicle. This is probably the most likely cause of incorrect speeds.

A.2. THE LOOP DATA 257

� If a car is switching lanes and it is picked up by the �rst detector but not the second
then this could mess up the speeds.

� On the other hand, if a car is switching into the lane then it's possible that the
second detector will pick up the car but not the �rst.

� The thresholds in the loop detectors could be calibrated incorrectly. This would be
more likely to cause the occupancy reading to be incorrect than the speed to wrong,
though.

The best way around this is to use data of a higher output time period. This will cause
the spurious spikes to be averaged out.

Warning: The speed for the loop �les averaged over all of the lanes is not the normal average.

The speed in the loop output speed �les is the weighted harmonic mean speed. This
is slightly di�erent from the mean average speed. The mean average speed would be
something like:

Vm =

PN
i=1 FiViPN
i=1 Fi

;

and the weighted harmonic mean speed is:

Vh =

PN
i=1 FiPN
i=1

Fi
Vi

:

Where Fi is the
ow for lane i of the freeway, V is the speed for lane i, and N is the
number of lanes. You should refer to Section 11.1 to see why the speed is calculated this
way.

Question: I generated the loop speeds for a 1 second output period and there are a lot of values
that are zero. Then I tried to �lter this data with the exponential �lter and the average
wasn't correct. Why is this?

What's going on here is that whenever you are �ltering the loop data and there is a zero
speed on the freeway the fsp program just sticks in the last speed. So if there is a whole
series of zero speeds, then there could be a whole series of values that are the same.

This was done because if the data aggregation period is small then in the early morning
periods there were times when there wouldn't be any cars travelling over the detectors
and the fsp program was simply putting zeros in those spots. When we went to �lter this
data (with our exponential �lter) all of those zeros were causing the �ltered speed data
to be arti�cially low. Hence our delay calculations were completely o�. The way that we
�xed this is to have the speed at a detector be the last speed when no cars went over the
detector.

The reason that this is ok, for our purposes, is because we always want to get the delay
or the density. And this involves multiplying the speed by the
ow. So whenever no cars
have past over the detector, and hence the
ow is zero, the speed doesn't matter.

258 APPENDIX A. FREQUENTLY ASKED QUESTIONS AND WARNINGS

If you need to have the speed data be zero when there are no cars that travel over the
detector then just don't �lter the data and this feature will be turned o�. So if you
generate the loop data with a 1 second output period without �ltering then there will be
a lot of time periods that have zero speeds.

If you want the program to carry speeds forward but you don't want to �lter the data
then you can specify a �lter value of 0:01. This is such a small �lter value that the e�ect
on the data will be negligible.

Warning: The loop data speed value �lter is reset in the morning.

If the loop speed starts o� at zero, which is very common in the early morning, then the
�lter is reset the �rst time it changes from zero. This way the �lter doesn't get \stuck"
at a low number. So if you are �ltering the loop data with a large �lter value you may
notice that for the morning period there is a jump in the speed, that shouldn't happen in
a true �lter, when it changes from zero to some positive value.

Warning: Although the data for the PM period starts at 2:00 pm, the �rst data point for the
PM period never includes 2:00 pm.

If you are generating the loop data with an output period of 5 minutes, the loop data
reported for some time is the data corresponding to the previous 5 minutes. The program
simply sums and/or averages the data over the previous 5 minutes and reports it to you.
Since there is a skip from 10am until 2pm the 5 minutes previous to 2pm are not in the
raw loop data. Therefore, the program has to wait until 2:05 to make its �rst report.

Warning: The AM data is missing the �rst second of data.

The �rst line of each loop data �le is read in and used to setup the system (things like
con�gure the output, initialize the variable structures). This line of data is then discarded.
The program then starts reading in the data for real. Since each line of raw loop data
corresponds to a second of data, the �rst second is always missing. The problem arises
when the program tries to get an average for the di�erent variables. The program thinks
that the data was collected for an entire time period, not for a time period minus one
second. Therefore, the data for the �rst time period will be slightly o�. It might even be
fractional.

Warning: The loop data �le extensions are longer than three characters.

The �le extensions are too long for a PC. There are �les that have �le name extensions
of more than three characters, like floop4.ss10. If you try to untar these �les then
they will be saved with only three characters in the extension. This means that the �le
floop4.ss10 will be saved as floop5.ss1. This is unfortunate because this will overwrite
the proper �le by that name.

If you need to have these �les then what you need to do is to extract the troublesome �les
one at a time and then move them to a safe place. This can be done by specifying to the
tar program which �les you want to extract. For example, if you were trying to extract
the �les floop13.sc1 and floop13.sc10 from the tar �le lp021693.tar then the steps
would look something like this:

A.2. THE LOOP DATA 259

pettyk 1: ls

lp021693/ lp021693.tar

pettyk 2: tar xvf lp021693.tar lp021693/floop13.sc1

x lp021693/floop13.sc1, 554287 bytes, 1083 tape blocks

pettyk 3: ls

lp021693/ lp021693.tar

pettyk 4: ls lp021693

floop13.sc1

pettyk 5: mv lp021693/floop13.sc1 lp021693/lp13sc1.dat

pettyk 6: tar xvf lp021693.tar lp021693/floop13.sc10

x lp021693/floop13.sc10, 554293 bytes, 1083 tape blocks

pettyk 7: ls lp021693

floop13.sc1 lp13sc1.dat

pettyk 8: mv lp021693/floop13.sc1 lp021693/lp13sc10.dat

pettyk 9: ls lp021693

flp13sc1.dat lp13sc10.dat

As you can see above, I �rst extracted the �le floop13.sc1 from the tar �le and then I
moved it to a di�erent �le: lp13sc1.dat. Then, I extracted the �le floop13.sc10 from
the tar �le. Note that this �le was saved as floop13.sc1 because of the �le extension
limitation. I then moved this �le to lp13sc10.dat.

Question: Can I use the xfsp program without downloading all of the raw data?

The answer is \Yes" but the explanation is rather long - so bear with me.

Before I answer the question, I think that I should point out why it is being asked. What
this person wanted to do was to �nd the delays for various incidents but they didn't have
enough disk space to download the raw loop data. So they wanted to know if it would be
possible to put only the processed data on their machine and then use the xfsp program
to calculate the delays.

If you are just using the fsp program without the xfsp program the the answer to this
is \yes" because when the fsp program is calculating the delay for an incident, it doesn't
need to have the raw loop data �les on the system - only the processed loop data. To
do this you simply specify in the run�le that you don't want to regenerate the processed
data from the raw data. The fsp program will notice this in the run�le and it won't look
for the raw loop data �les. It will only look for the processed �les because that's what it
needs to calculate the delay for each incident. So if you were using only the fsp program
then you would have to download only the processed data and not the raw loop data.

But a problem shows up when you try to do this with the xfsp program. One of the
screens of the xfsp program presents the user with a list of the raw loop detector data
that is available. The program gets this list by searching through the loop data directories
for loop data �les of the form loop3.dat or loop3.dat.Z. For each �le that it �nds in
that format it makes a button in the loop data select window that you can set to indicate
whether to use that data or not. The problem with not downloading the raw loop data is
that the xfsp program will �nd the loop directories but it won't �nd the raw loop data
�les inside of them. Therefore it will get confused and say something bad.

260 APPENDIX A. FREQUENTLY ASKED QUESTIONS AND WARNINGS

But you can fool the xfsp program into thinking that it has the raw loop data �les when
it fact it doesn't. To do this you need to create a \stub �le" for each possible raw loop
data �le. A stub �le is a �le that has the same name as a raw loop data �le, but the
�le itself is empty. This way, when you click on the \Loop Data Select" button the xfsp
program will see these �les and mistakenly think that it has them (the program will not
check the size of the �les and see that they have nothing inside them). You can download
the stubs from the anonymous ftp server at UC Berkeley. See the discussion in Section 2.1
if you don't know how to download stu� using ftp. The �les are in the following locations:

/pub/PATH/FSP/Misc/lp.stub.set1.tar.Z

/pub/PATH/FSP/Misc/lp.stub.set2.tar.Z

To successfully fool the xfsp program, you will need to do a couple of things:

1. Grab one or both of the stub �les.

2. Uncompress and untar this �le. You will get a directory called Loopdata (make sure
that you untar this in a place that doesn't already have a \Loopdata" directory).

3. When you run the xfsp program specify the directory that you just made as the
\Loop data directory". You should be able to open up the \loop data select" button
and see all of the loop �les.

4. Place the processed loop data �les that you downloaded under an output directory.
You should probably change the permissions on these �les to make then un-writable.
The reason for this is that there are options in the fsp program to delete certain
output �les and you wouldn't want to lose them accidentally.

5. When you run the xfsp program specify the output directory to the proper directory.

Your �nal directory structure should look something like this:

A) /home/FSP/Set1/Input/Loopdata

B) /home/FSP/Set1/Input/Cardata

C) /home/FSP/Set1/Input/Incdata

D) /home/FSP/Set1/Output

E) /home/FSP/Set1/Output/Loopdata

F) /home/FSP/Set1/Output/Loopdata/lp031093

G) /home/FSP/Set1/Output/Loopdata/lp031193

H) /home/FSP/Set1/Output/Loopdata/lp031293

I) /home/FSP/Set1/Output/Loopdata/lp031393

J) .

So your input loop directory is (A). This is where you should place the stub directories
and �les. The main output directory is (D). You should place the processed loop data
�les that you downloaded from UC Berkeley in directory (E). Examples of these processed
loop �le directories are (F) - (J). Note that you don't need to create the directories (B)
or (C). You only need these if you want to do something with the car data or the incident
data.

A.3. THE PROBE VEHICLE DATA 261

A.3 The Probe Vehicle Data

Question: What is the probe data used for?

Unfortunately, the probe data was not very reliable. There are long discussions in Sec-
tions 5.1 and 5.3 discussing the problems with the probe vehicle data. In summary I will
say that we didn't use the probe vehicles for anything in our study other than generating
the incident logs.

Question: Sometime when I generate the incident pass times (the times when a probe went
passed an incident and didn't see it) the time are the same as the time that the incident
was �rst witnessed.

This can happen if the �rst probe vehicle at the start of the shift witnessed the incident.
In this case, there were no probe vehicles that went down the freeway before the �rst
one. Therefore, there wasn't a vehicle that drove by the incident location and didn't see
the incident. In this case, the program simply says that the before pass time is the same
as the time that the incident was �rst witnessed. You should see Section 16.2.4 for a
discussion of the incident pass times.

Question: What exactly are the distances travelled by the probe vehicles?

The distance travelled down the freeway by the probe vehicles can be broken down into
four di�erent components:

Southbound travel distance: This is the distance on the freeway that the vehicle trav-
els in the southbound direction.

Southern turn-around distance: This is the distance at the southern end of the free-
way that the vehicle needs to travel to get back on the freeway heading northbound.
It is the distance of the southbound o� ramp, the freeway overpass, and the north-
bound on ramp.

Northbound travel distance: This is the distance on the freeway that the vehicle trav-
els in the northbound direction.

Northern turn-around distance: This is the same as the souther turn-around dis-
tance but in reverse.

So the equation for the total distance traveled per loop would look like:

Dtot = [Southbound distance] + [Southern turn around]

+[Northbound distance] + [Northern turn around]

The values given in Table A.3 are the starting and ending distances of the parameters and
they are in feet. Note that the values for the southbound and northbound travel distances
are the entire length of the freeway - they are not the distance over which we have loop
detector data. Also note that we don't have a lot of con�dence in these numbers.

If you are looking for these distances in the car run �les then you might not �nd them.
Some of the reasons that these �les might be messed up are as follows:

262 APPENDIX A. FREQUENTLY ASKED QUESTIONS AND WARNINGS

Parameter Start End Length

Southbound travel distance 0 47600 47600
Southern turn around 47600 49870 2270
Northbound travel distance 49870 97620 47750
Northern turn around 97620 �100000 �2300

Table A.1: Travel Distances (in feet).

1. If the driver didn't press the start key during one of their runs then there will be
two runs pushed together. This is a very common mistake - but it is easy to spot
because the �le will be twice as long.

2. The vehicles didn't always make a loop when they were driving during the study
period. Sometimes, if they arrived too early, they were told to drive to the Denny's
by the entrance of the freeway. Since this data is stored at the end of the �le (because
the program doesn't know that the run is over), the total length of each run might
vary.

3. There are many driver errors. Sometimes the drivers forgot to press the start keys
at the start of the run and instead pressed them once they were down the road a
ways. The program of course assumes that when the start keys were pressed that
the car was at one speci�c location. What this means is that the car distance �le for
this run will be incorrect. This is a very hard error to spot.

4. I thought that the turn around point in the run had changed during the course of
the experiment. But it seems that the distance that that change was not signi�cant.

A more thorough discussion of the probe vehicle data is given in Section 4.3 and in
Chapter 14.

A.4 The Incident Database

Question: Do I have to specify an incident �lter? What if I don't want to �lter any incidents?

The incident �lter always has to be speci�ed on the command line. If you don't want to
do anything with the incidents then you need to set the following run�le parameter:

PROCESS_INCIDENTS = NO_PROC_INCIDENTS

This will tell the program to not �lter any incidents. If you want to make a dummy
incident �lter �le you can create a �le with the following lines:

#DATA_TYPE = F

#INC_NUMBER =

Actually, you can have any size �le as long as the �rst characters in all the lines are #'s
(which is the comment character for the incident �lter).

A.4. THE INCIDENT DATABASE 263

Question: How do I �gure out the tow truck assisted incidents?

In order to know if a tow truck showed up we can just check to see if a tow truck arrival
time is listed. If it is then we are assured that a tow truck arrived. So in the incident
�lter, you should have the following line:

TOW_ARRIVAL = 6:00 - 20:00

Since we only have probe vehicle data from 6:30am until 9:30am and then again from
3:30pm until 6:30pm, the time period from 6:00am until 8pm should cover all of the tow
truck arrival times. You should look at the example given in Section 9.3.4.

Question: How do I �nd out how many incidents occurred at some section of the road during
some time period?

You can do this by specifying the correct incident �lter. The best thing to do is to review
the examples presented in Section 9.3. They talk about the way to �lter di�erent stu�
out of the incident database. A terse list of what to do is given below:

1. Look at the table in Section 4.5 that discusses the incident database and �gure out
the incident database �elds that you need to �lter. To �lter out the incidents for a
certain section of the road and a certain time period, then you want the �elds:

Column Name Description

E Time: Time listed in military time

I Link Identity: Link identity according to between exits

2. Look at Tables 9.1 and/or 9.2 to learn what the parameters are in the incident �lter
that correspond to these �elds. In this case they are:

Column Name Field Descriptor

E Time TIME

I Link Identity LINK_ID

3. Specify the desired quantities for these parameters in the incident �lter. For example,
if you want incidents that occurred on the link between A-Street and Winton from
2pm until 4pm you would put the following lines in the incident �lter:

TIME = 14:00 - 16:00

LINK_ID = 4

4. Run the fsp program with this incident �lter and a run�le that processes the inci-
dents.

Question: Is the time recorded in the \time" �eld of the incident database when an operator
discovered it, when police, etc reported it, or what has been determined to be the start of
the incident?

The time �eld in the incident database is the time that the �rst probe vehicle witnessed
the incident. Note that since there were only four probe vehicles, with an average headway
time between them of seven minutes, the starting and ending times of the incidents are
sampled by seven minutes. One part of the fsp program attempted to �x this but it
didn't quite work. See the discussion in Sections 5.3.2 and 16.2.4 for more information.

264 APPENDIX A. FREQUENTLY ASKED QUESTIONS AND WARNINGS

Question: What does the DATA TYPE �eld mean in the incident �lter?

The DATA TYPE descriptor was meant to distinguish between incidents from di�erent
sources. The \F" meant that the incident was from our �eld data, the \C" meant that
the incident was from the CADD database, and the \T" meant something that I can't
remember. As it turns out, we never included the incidents from any source other than our
�eld data. As a result, you don't need to �lter on this descriptor because every incident
in the database has this as an \F".

Appendix B

Changes From Version 1.0 to 1.1

This appendix contains a list bugs that were �xed, and changes that were made, since the �rst
release of the fsp software. They are more or less in descending order of importance.

� The xfsp program no longer uses the extended version of Tcl or BLT. These program
were extensions to the standard Tcl/Tk program that were needed to control the running
of the fsp program from the xfsp program. Now the xfsp program uses the standard
program Expect which should already be installed on most systems. This should reduce
the amount of time it takes to install the xfsp program considerably.

� The fsp program no longer has a short and a long data set. There is only a short data
set and it is only referred to as the data set. I realized that there was no reason to have
a long data set because all of the subroutines only worked with the short data set. Note
that this means that the run�le parameters have changed. Although you can still use the
old run�le parameters, I would encourage you to use the new ones.

� The correction factors for the loop data were put in the code. You can now �x the loop
data when there are consistency errors. Quite a bit of code was changed in log_fsp.c to
accommodate this. The �les that this generates are the hloop �les. For a more thorough
discussion of the consistency correction see Sections 5.2.2 and 11.2.3.

� If the duration of the incident is zero and there is no user-added headway then the delay
is automatically zero. The program used to sometimes pull in the delay for that one time
period but now it doesn't. This was changed in the �le inc_util.c.

� The program now spits out the processed loop data �les with only one digit past the
decimal place. This should reduce the amount of space needed to store the data by 1

3 in
some cases!!!

� The program used to carry the loop speed over when the current speed was zero. This
was only done because we needed to �lter the speed and all of those zeros were pulling
down the loop speed. Now, if the loop �ltering factor is zero, the speeds are not carried
over.

� In the �le fsp_calc.c I changed an error in fprintf() where I wasn't passing the �le name.

265

266 APPENDIX B. CHANGES FROM VERSION 1.0 TO 1.1

� In the �le fsp_calc.c I �xed the calculation of the interpolated speed so that it checks
for a zero before doing the division. What was happening before is that I wasn't checking
to make sure that the divisor wasn't zero before doing division.

� I increased the number of holes in the loop data that you can �ll. This was de�ned in
the parameter MAX NUM LOOP HOLES in fsp.h. If you were generating the data for
a very small output period then it was possible for the table used to hold the holes to run
out of room and cause the program to crash.

� There was a problem with the �rst entry after the start of the pm time period. I had to
rede�ne the start of the PM period to be 50401 instead of 50400, reset the data structures
once we got to the PM period, and reset the loop �lter. The result is that there is one
less value in the PM study now.

Bibliography

[1] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1993.

[2] Don Libes. Exploring Expect: A Tcl-based Tookit for Automating Interactive Applications.
O'Reilly and Associates, Inc., 1994.

[3] A. Skabardonis, H. Noeimi, K. Petty, D. Rydzewski, P. P. Varaiya, H. Al-Deek. Freeway Ser-
vice Patrols Evaluation. Technical Report UCB-ITS-PRR-95-5, Institute of Transportation
Studies, University of California, Berkeley, June 1994.

267

Index

average
car data, 84
contour plots, 177

loop data, 102, 103
loop speed, 152

car data, 261
distances travelled, 261{262

downloading, 37
via World Wide Web, 40

�lter factor, 84
output �les, 197{207

raw data format, 41{45
size of data set, 40

CAR_CLEANUP, 83
CAR_DATA_COMPRESSED, 83

CAR_DATA_DIRECTORY, 84
CAR_DATA_SET_NUMBER, 84
CAR_DIRECTORY_ROOT, 84
CAR_SPD_FILTER_FACTOR, 84

Chen, L., 15
con�guration �les

car, 73
incident, 78

loop, 75
consistency errors, 61
contour plot, 163, 247{249

delay, 248

delay calculation, 164
density, 248
run�le example, 134, 137, 188{191

run�le parameter, 89, 93
with loop averages, 99

CORRELATE_CARS_DATABASE, 85, 245
correlation routine

example, 179
explanation, 64

output, 233
plots, 244
run�le parameter, 85

data
car data, see car data
downloading, 37, see netscape, see ftp
incident data, see incident data

loop data, see loop data
size, 40

data dropouts, 58
DEBUG_LEVEL, 86

debugging, 86
delay

calculating, 59, 157
incident, 161{165

DELAY_CALCULATION, 86
DELAY_DOWNSTREAM_NUM, 87
DELAY_TYPE, 87
DELAY_UPSTREAM_NUM, 87

delete
car �les, 83
loop �les, 91, 93

density

calculating loop delay, 163{165
correcting, 62
output contour plots, 247{249
run�le example, 173{177

run�le parameter, 93
directories

input, 72

car, 72, 84
incident, 78, 97
loop, 74, 100

output, 79, 105

loop, 79
DROPOUT_TIMES, 87

268

INDEX 269

EMISSION_CALC, 88
ERROR_FILE_NAME_EXT, 88
errors

car reports, 197
huge, 199
key, 198
medium, 200
small, 200

histogram over
ow, 243
loop reports, 213

examples
car data, 169, 170
�x incident durations, 185
�x incident location, 179
general parameters, 168
loop averages, 173
loop data, 171, 172
space-time boxes, 188

Expect, 13, 23, 25, 255
installing, 28

�lter
car data, 84, 107, 108, 171
incident, see incident data, �lter
loop data, 63, 102

FIX_INC_DELAY_BOX, 89
FIX_INC_DURATION, 89
FIX_INC_LOCATION, 90, 185, 236
FLOOP_CLEANUP, 91, 155
FSP_DATA_FILE_NAME, 91
ftp, 17, 26, 37, 193

locations, 27

GLOOP_CLEANUP, 91
GNU_PRINTER, 92
gnuplot

car �les, 202{207
density plots, 248
incident �les, 244
loop �les, 218{220
printer, 92

GORE_POINTS, 92
GPS, 14, 45, 106, 200
graph, 193

gnuplot, 193
incident, 95

title, 94
xgraph, 194

HEADWAY_TIME_VAL, 93, 185
histogram, 242

axis, 96
�le names, 243
title, 94

HLOOP_CLEANUP, 93
HOV lane, 154

INC_CONTOUR_DELAY_PLOT, 93, 249
INC_CORRELATION_GRAPH, 94, 245
INC_DUR_EXPAND_FRACTION, 94
INC_EXPLANATION, 94
INC_FINISHED_GRAPHS, 95
INC_FINISHED_OUT_LEVEL, 95
INC_FINISHED_OUTPUT, 95
INC_GRAPH_MAX_NUM, 96
INC_GRAPH_MAX_PERCENT, 96
INC_MATCH_ZERO_WIDTH, 96
INC_RAW_MATCH_OUTPUT, 96
INC_RAW_OUTPUT_LEVEL, 97
incident

database coding scheme, 49
incident data

assisted incident, 134
downloading, 37
via World Wide Web, 40

�lter, 48, 262
example, 131{134, 263

�lter �elds, 48{52, 128
�lter format, 127
incident duration, 68{70, 261, 263
incident location, 64{68
output �les, 229{249
raw data format, 48{53
size of data set, 40

INCIDENT_DATA_DIRECTORY, 97
INCIDENT_POINTS, 97, 245
INRAD_POINTS, 97

KEY_DATA_FILE_NAME, 98

LaTEX tables, 194
loop data, 224

270 INDEX

long data set, 48
loop data

averaging, 103
downloading, 37
via World Wide Web, 40

dropout times, 58{61
errors
consistency, 61{63

�lter, 103, 257, 258
�lter factor, 102
�xing, 256
consistency, 61{63, 100, 155, 157
dropout times, 58{61, 100, 155, 156,
256

output �les, 213{227, 258
output format, 217, 256
raw data format, 45{48
size of data set, 40
validity tests, 139{148

LOOP_AGGREGATE_VALUES, 98, 226
LOOP_AVERAGE, 98
LOOP_CONSISTENCY_FIX, 100
LOOP_DATA_COMPRESSED, 100
LOOP_DIRECTORY, 100, 101
LOOP_END_TIME, 102
LOOP_FILTER_FACTOR, 102
LOOP_FLOW_PLOTS, 102
LOOP_HOLES_FIX, 100
LOOP_OUTPUT_PERIOD, 103
LOOP_START_TIME, 103
LOOP_TEXT, 103
lynx, 40

MAIN_DIRECTORY, 103
map, 37
mosaic, 40

NAV_DATA_FILE_NAME, 104
netscape, 40
Noeimi, H., 15, 48
NUMBER_INC_CORR_GRAPHS, 104, 245

OUTPUT_DIRECTORY, 105
OUTPUT_FLOW_AVG_FACTOR, 105

PERCENT_DIESEL_TRUCKS, 106

PERCENT_GAS_TRUCKS, 106
Petty, K., 255
probe data, see car data
PROCESS_INCIDENTS, 106, 245, 248

ramp
con�guration, 48, 76
deleting �les, 91{93, 109
�le names, 156, 220{222
output �les, 157
output units, 105

REPORT_OPTION, 106
run number, 13, 21, 34, 244
run�le, 81

examples, 167
parameters, 82{109

Rydzewski, D., 15, 48

Sanwal, K., 15, 61
short data set, 48
Skabardonis, A., 16
speed

harmonic average, 153, 257
loop speeds, 152{154
errors, 256

SPEED_DIST_PLOTS, 107
SPEED_TIME_PLOTS, 107

Tcl/Tk, 13, 23, 255
downloading, 27
environment variables, 29
installing, 27

TIME_DIST_PLOTS, 108
TIME_ERROR_BOUND, 108
tow truck, 134, 239, 263
TRAFFIC_DELAY, 109
TRAFFIC_LOW_SPEED, 109
travel time, 42, 56

gore points, 92, 207
INRAD points, 97, 207
plots, 206, 210, 211
tables, 198

Varaiya, P., 16

World Wide Web, 40

INDEX 271

xfsp, 13, 23
downloading, 26
installing, 29{31
run�le, 81
run�le parameters to windows, 121
running, 31, 33, 259{260
setup �les, 33
support software, 23{25
windows to run�le parameters, 121

xfspview, 34
xgraph, 194

wildcards, 194

