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Some ring-theoretic properties of Ainf

Kiran S. Kedlaya

Department of Mathematics, University of California, San Diego, La Jolla, CA 92093,
kedlaya@ucsd.edu, https://kskedlaya.org

Abstract. The ring of Witt vectors over a perfect valuation ring of char-
acteristic p, often denoted Ainf , plays a pivotal role in p-adic Hodge the-
ory; for instance, Bhatt–Morrow–Scholze have recently reinterpreted and
refined the crystalline comparison isomorphism by relating it to a certain
Ainf -valued cohomology theory. We address some basic ring-theoretic
questions about Ainf , motivated by analogies with two-dimensional reg-
ular local rings. For example, we show that in most cases Ainf , which
is manifestly not noetherian, is also not coherent. On the other hand, it
does have the property that vector bundles over the complement of the
closed point in SpecAinf do extend uniquely over the puncture; more-
over, a similar statement holds in Huber’s category of adic spaces.

Keywords: Witt vectors, perfectoid rings

Throughout this paper, let K be a perfect field of characteristic p equipped
with a nontrivial valuation v (written additively), e.g., the perfect closure of
Fp((t)) with the t-adic valuation. (Note that K = Fp is excluded by the non-
triviality condition.) Unless otherwise specified, we do not assume that K is
complete.

A fundamental role is played in p-adic Hodge theory by the ring Ainf :=
W (oK), where oK denotes the valuation ring of K and W denotes the functor of
p-typical Witt vectors. The ring Ainf serves as the basis for Fontaine’s construc-
tion of p-adic period rings and the ensuing analysis of comparison isomorphisms.
Recently, Fargues has used Ainf to give a new description of crystalline represen-
tations via a variant of Breuil–Kisin modules [6], while Bhatt–Morrow–Scholze
have described the crystalline comparison isomorphism via a direct construction
of these modules [3].

We discuss several issues germane to [3] regarding ring-theoretic proposi-
tionerties of Ainf , particularly those related to the analogy between Ainf and
two-dimensional regular local rings. In the negative direction, the ring Ainf is
typically not coherent (Theorem 1.2); in the positive direction, vector bundles
over the complement of the closed point in Spec(Ainf) extend over the puncture
(Theorem 2.7), and similarly if the Zariski spectrum is replaced by the Huber
adic spectrum (Theorem 3.9).

We also discuss briefly some related questions in the case where K is replaced
by a more general nonarchimedean Banach ring. These are expected to pertain
to a hypothetical relative version of the results of [3].
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1 Finite generation properties

Definition 1.1. A ring is coherent if every finitely generated ideal is finitely
presented. Note that an integral domain is coherent if and only if the intersection
of any two finitely generated ideals is again finitely generated [5].

A result of Anderson–Watkins [1], building on work of Jøndrup–Small [11]
and Vasconcelos [19] (see also [8, Theorem 8.1.9]), asserts that a power series ring
over a nondiscrete valuation ring can never be coherent except possibly if the
value group is isomorphic to R. Using a similar technique, we have the following.

Theorem 1.2. Suppose that the value group of K is not isomorphic to R. Then
Ainf is not coherent.

Proof. It suffices to exhibit elements f, g ∈ Ainf such that (f)∩(g) is not finitely
generated. Suppose first that the value group of K is archimedean, i.e., the
valuation v can be taken to have values in R. Since K is perfect, its value
group cannot be discrete, and hence must be dense in R. We can thus choose
elements x0, x1, . . . ∈ oK such that v(x0), v(x1), . . . is a decreasing sequence
with positive limit r /∈ v(oK) and v(x0/x1) > v(x1/x2) > · · · . Put f := [x0] and
g :=

∑∞
n=0 p

n[xn].
Recall that the ring Ainf admits a theory of Newton polygons analogous to

the corresponding theory for polynomials or power series over a valuation ring;
see [13, Definition 4.2.8] for details. To form the Newton polygon of g, we take
the lower convex hull of the set {(n, v(xn)) : n = 0, 1, . . . } in R2; the slopes of this
polygon are equal to −v(xn/xn+1) for n = 0, 1, . . . . If h =

∑∞
n=0 p

n[hn] ∈ Ainf

is divisible by both f and g, then on one hand, we have h/f =
∑∞
n=0 p

n[hn/x0],
so v(hn) ≥ v(x0) for all n; on the other hand, the Newton polygon of h must
include all of the slopes of the Newton polygon of g, so its total width must be
at least r. It follows that v(h0) ≥ 2v(x0)− r.

Conversely, any h0 ∈ oK with v(h0) ≥ 2v(x0) − r extends to some h ∈ Ainf

divisible by both f and g, e.g., by taking h = g[h0]/[x0]. Since 2v(x0)−r /∈ v(oK),
it follows that the image of (f) ∩ (g) in oK is an ideal which is not finitely
generated; consequently, (f) ∩ (g) itself cannot be finitely generated.

Suppose next that the value group of K is not archimedean. We can then
choose some nonzero x, y ∈ oK such that for every positive integer n, x is divisible
by yn in oK . Let r1, r2, . . . be a decreasing sequence of elements of Z[p−1]>0
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whose sum diverges. Put f := [x] and g :=
∑∞
n=0 p

n[x/yr1+···+rn ]. As above, we
see that if h =

∑∞
n=0 p

n[hn] ∈ Ainf is divisible by both f and g, then on one
hand, we have v(hn) ≥ v(x) for each n; on the other hand, the Newton polygon
of h includes all of the slopes of the Newton polygon of g, so its total width
must exceed r1 + · · · + rn for each n. It follows that v(h0) ≥ v(x) + nv(y) for
every positive integer n; conversely, any h0 with this property occurs this way
for h = g[h0]/[x]. Again, this means that (f)∩ (g) maps to an ideal of oK which
is not finitely generated, so (f) ∩ (g) cannot itself be finitely generated. ut

Remark 1.3. It is unclear whether the ring Ainf fails to be coherent even if the
value group of K equals R, especially if we also assume that K is spherically
complete. It is also unclear whether the ring Ainf [p

−1] is coherent. By contrast,
with no restrictions on K, for every positive integer n the quotient Ainf/(p

n) is
coherent [3, Proposition 3.24].

Remark 1.4. Let mK be the maximal ideal of K. In order to apply the formalism
of almost ring theory (e.g., as developed in [7]) to the ring Ainf , it would be useful
to know that the ideal W (mK) of Ainf has the property that W (mK) ⊗Ainf

W (mK) → W (mK) is an isomorphism. We do not know whether this holds in
general; for example, to prove that this map fails to be surjective, one would
have to produce an element of W (mK) which cannot be written as a finite sum
of pairwise products, and we do not have a mechanism in mind for precluding the
existence of such a presentation. An easier task is to produce elements of W (mK)
not lying in the image of the multiplication map W (mK)×W (mK)→W (mK),
as in the following example communicated to us by Peter Scholze.

Example 1.5. Suppose that v(K×) = Q. We first construct a sequence r1, r2, . . .
of positive elements of Q with sum 1 such that every infinite subsequence with in-
finite complement has irrational sum. To this end, take a sequence 1 = s0, s1, s2, . . .
converging to 0 sufficiently rapidly (e.g., doubly exponentially) and put r1 =
s0 − s1, r2 = s1 − s2, . . . ; any infinite subsequence with infinite complement
can be regrouped into sums of consecutive terms, yielding another infinite se-
quence with rapid decay, and Liouville’s criterion implies that the sum of the
subsequence is irrational (and even transcendental).

Now choose x =
∑∞
n=0 p

n[xn] ∈ W (mK) with v(xn) = sn; we check that
x 6= yz for all y, z ∈ W (mK). If the equality x = yz were to hold, the Newton
polygons of y and z together would comprise the Newton polygon of x; that is,
each slope occurs in xy with multiplicity equal to the sum of its multiplicities
in the Newton polygons of x and y. Due to the irrationality statement of the
previous paragraph, this is impossible if both y and z have infinitely many slopes;
consequently, one of the factors, say y, has only finitely many slopes in its Newton
polygon. On the other hand, if y =

∑∞
n=0 p

n[yn], there cannot exist c > 0 such
that v(yn) ≥ c for all n, as otherwise we would also have v(xn) ≥ c for all
n. Putting these two facts together, we deduce that v(yn) = 0 for some n, a
contradiction.

The following related remark was suggested by Bhargav Bhatt.
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Remark 1.6. Suppose that the value group of K is archimedean. Consider the
following chain of strict inclusions of ideals:

0 ⊂
⋃

$∈mK

[$]Ainf ⊂W (mK) ⊂ (p) +W (mK)

The quotients by the ideals W (mK) and (p) +W (mK) are the integral domains
W (κ) and κ, where κ := oK/mK is the residue field of K; hence these two ideals
are prime. The ideal

⋃
$∈mK

[$]Ainf is also prime: it contains x =
∑∞
n=0 p

n[xn]
if and only if the total multiplicity of all slopes in the Newton polygon of x is
strictly less than v(x0).

The previous argument shows that the global (Krull) dimension of Ainf is at
least 3. In fact, one can push this further: by adapting a construction of Arnold
[2] that produces arbitrary long chains of prime ideals within the ring of formal
power series over a nondiscrete valuation ring, Lang–Ludwig [15] have shown
that Ainf has infinite Krull dimension.

2 Vector bundles

Recall that for A a two-dimensional regular local ring, the restriction functor
from vector bundles on SpecA (i.e., finite free A-modules) to vector bundles
on the complement of the closed point is an equivalence of categories. This
is usually shown by using the fact that a reflexive module has depth at least
2 [18, Tag 0AVA] in conjunction with the Auslander–Buchsbaum formula [18,
Tag 090U] to see that every reflexive A-module is projective.

During the course of Scholze’s 2014 Berkeley lectures documented in [17],
we explained to him an alternate proof applicable to the case of Ainf ; this ar-
gument appears as [17, Theorem 14.2.1], and a similar argument is given in [3,
Lemma 4.6]. Here, we give a general version of this proof applicable in a variety
of cases, which identifies the most essential hypotheses on the ring A.

Hypothesis 2.1 Throughout §2, let A be a local ring whose maximal ideal p
contains a non-zero-divisor π such that o := A/(π) is (reduced and) a valuation
ring with maximal ideal m. Put L := Frac o; in the case A = Ainf we have
L = K.

Definition 2.2. Put X := Spec(A), Y := X\{p}, and U := Spec(A[π−1]) ⊂ X.
Let B be the π-adic completion of A(π); note that within B[π−1] we have

A[π−1] ∩B = A. (2.2.1)

Let Z be the algebraic stack which is the colimit of the diagram

Spec(A[π−1])← Spec(B[π−1])→ Spec(B).

Lemma 2.3. For ∗ ∈ {X,Y, Z}, let Vec∗ denote the category of vector bundles
on ∗.
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(a) The pullback functor VecX → VecY is fully faithful.
(b) The pullback functor VecY → VecZ is fully faithful.
(c) For F ∈ Vec∗ and M := H0(∗,F), the adjunction morphism M̃ |∗ → F is

an isomorphism.

Proof. For convenience, we write O instead of O∗ hereafter. To deduce (a), note
that by (2.2.1),

H0(X,O) = H0(Y,O) = H0(Z,O) = A.

To deduce (b), choose z ∈ A whose image in A/(π) is a nonzero element of m,
so that

Spec(A) = U ∪ V, V := Spec(A[z−1]);

then note that z is invertible in B, and within B[π−1] we have

A[z−1, π−1] ∩B = A[z−1].

To deduce (c), note that in case ∗ = Y , the injectivity of the maps

H0(U,O)→ H0(U ∩ V,O), H0(V,O)→ H0(U ∩ V,O)

implies the injectivity of the maps

H0(U,F)→ H0(U ∩ V,F), H0(V,F)→ H0(U ∩ V,F)

and hence the injectivity of the maps

M → H0(U,F), M → H0(V,F).

It follows easily that the maps

M ⊗R H0(U,O)→ H0(U,F), M ⊗R H0(V,O)→ H0(V,F)

are isomorphisms. The case ∗ = Z is similar. ut

The following lemma is taken from [17, Lemma 14.2.3].

Lemma 2.4. Let κ be the residue field of A, which is also the residue field
of o. Let d be a nonnegative integer. Let N be an o-submodule of Ld. Then
dimκ(N ⊗o κ) ≤ d, with equality if and only if N is a free module of rank d.

Proof. By induction on d, we reduce to the case d = 1. We then see that
dimκ(N ⊗o κ) equals 1 if the set of valuations of elements of N has a least
element, in which case N is free of rank 1, and 0 otherwise. ut

Lemma 2.5. For F ∈ VecZ of rank d, if the elements v1, . . . ,vd ∈ H0(Z,F)
generate both H0(U,F) and H0(Spec(L),F), then they also generate M :=
H0(Z,F).
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Proof. Choose any v ∈ M . Since v1, . . . ,vd generate H0(U,F), there exists a

unique tuple (r1, . . . , rd) over A[π−1] such that v =
∑d
i=1 rivi. In particular,

there exists a nonnegative integer m such that πmr1, . . . , π
mrd ∈ A. If m > 0,

then πmv is divisible by π in M , so it maps to zero in H0(Spec(L),F). Since
v1, . . . ,vd form a basis of this module, πmr1, . . . , π

mrd must be divisible by π in
A and so πm−1r1, . . . , π

m−1rd ∈ A. By induction, we deduce that r1, . . . , rd ∈ A.
This proves the claim. ut

Lemma 2.6. For F ∈ VecZ of rank d, the module M := H0(Z,F) is free of
rank d over A.

Proof. By Lemma 2.3(c), M [π−1] = H0(U,F) is a projective A[π−1]-module
of rank d, so we can find a finite free A[π−1]-module F and an isomorphism
F ∼= M [π−1] ⊕ P for some finite projective A[π−1]-module P . By rescaling by
a suitably large power of π, we may exhibit a basis of F consisting of elements
whose projections to M [π−1] all belong to M . This basis then gives rise to an
isomorphism F ∼= F0[π−1] for F0 the finite free A-module on the same basis.
View

GrM [π−1] :=
⊕
n∈Z

(M [π−1] ∩ πnF0)/(M [π−1] ∩ πn+1F0)

as a finite projective graded module of rank d over the graded ring

GrA[π−1] :=
⊕
n∈Z

πnA/πn+1A ∼= o((π)),

then put
V := (GrM [π−1])⊗o((π)) κ((π)).

Note that for the π-adic topology, the image of M in GrM [π−1] is both open
(because M contains a set of module generators of M [π−1]) and bounded (be-
cause the same holds for the dual bundle). Consequently, the image T of M in
V is a κJπK-sublattice of V . Choose v1, . . . ,vd ∈ M whose images in V form a
basis of T ; the images of v1, . . . ,vd in M ⊗A κ are linearly independent, so by
Lemma 2.4, v1, . . . ,vd project to a basis of M ⊗A o. It follows that v1, . . . ,vd
also project to a basis of M ⊗A A/(πn) for each positive integer n.

Again by considering the dual bundle, we see that the image of F0 in M [π−1]
contains πnM for any sufficiently large integer n. Let e1, . . . , em be the images in
M of the chosen basis of F0; using the previous paragraph, we can find elements
e′1, . . . , e

′
m ∈ Av1 + · · ·+Avd such that e′j =

∑
iXijei for some matrix X over A

with det(X)− 1 ∈ πA ⊂ p. The matrix X is then invertible, whence v1, . . . ,vd
generate M [π−1]. By Lemma 2.5, v1, . . . ,vd generate M , necessarily freely. ut

Theorem 2.7. The pullback functors VecX → VecY → VecZ are equivalences
of categories.

Proof. By Lemma 2.3(a), the functors VecX → VecY → VecZ are fully faithful,
so it suffices to check that VecX → VecZ is essentially surjective. For F ∈ VecZ ,
by Lemma 2.6, M = H0(Z,F) is a finite free A-module. By Lemma 2.3(c), we
have M̃ |Z ∼= F , proving the claim. ut
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3 Adic glueing

We next show that vector bundles on Spec Ainf can be constructed by glueing
not just for a Zariski covering, but for a covering in the setting of adic spaces;
this result is used in [17] as part of the construction of mixed-characteristic local
shtukas. In the process, we prove a somewhat more general result. Along the way,
we will use results of Buzzard–Verberkmoes [4], Mihara [16], and Kedlaya–Liu
[13].

We begin by summarizing various definitions from Huber’s theory of adic
spaces, as described in [10]. See also [12, Lecture 1].

Definition 3.1. We say that a topological ring A is f-adic if there exists an
open subring A0 of A (called a ring of definition) whose induced topology is the
adic topology for some finitely generated ideal of A0 (called an ideal of defini-
tion). Such a ring is Tate if it contains a topologically nilpotent unit; in certain
cases (as in [12, Lecture 1]), one may prefer to instead assume only that the
topologically nilpotent elements generate the unit ideal, but we will not do this
here.

We will only need to consider f-adic rings which are complete for their topolo-
gies, which we refer to as Huber rings. Beware that this definition is not entirely
standard: some authors use the term Huber ring as a synonym for f-adic ring
without the completeness condition.

For A a Huber ring, let A◦ denote the subring of power-bounded elements
of A; we say that A is uniform if A◦ is bounded in A. (This implies that A is
reduced, but not conversely.) A ring of integral elements of A is a subring of A◦

which is open and integrally closed in A.
A Huber pair is a pair (A,A+) in which A is a Huber ring and A+ is a

ring of integral elements of A. To such a pair, we may associate the topological
space Spa(A,A+) of equivalence classes of continuous valuations on A which
are bounded by 1 on A+. This space may be topologized in such a way that a
neighborhood basis is given by subspaces of the form

{v ∈ Spa(A,A+) : v(f1), . . . , v(fn) ≤ v(g) 6= 0}

for some f1, . . . , fn, g ∈ A which generate an open ideal; such spaces are called
rational subspaces of Spa(A,A+). (When A is Tate, every open ideal of A is the
unit ideal, and so the condition v(g) 6= 0 becomes superfluous.) For this topology,
Spa(A,A+) is quasicompact and even a spectral space in the sense of Hochster
[9].

In addition, Huber defines a structure presheaf O on Spa(A,A+); in the
case where A is Tate and U is the rational subspace defined by some parameters

f1, . . . , fn, g, the ring O(U) may be identified with the quotient A
〈
f1
g , . . . ,

fn
g

〉
of

the Tate algebra A〈T1, . . . , Tn〉 by the closure of the ideal (gT1−f1, . . . , gTn−fn).
We say that A is sheafy if O is a sheaf for some choice of A+; with a bit

of work [12, Remark 1.6.9], the same is then true for any A+. For example, by
Proposition 3.3 below, this holds if A is stably uniform, meaning that (again for
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some, and hence any, choice of A+) for every rational subspace U of Spa(A,A+),
the ring O(U) is uniform.

Proposition 3.2. Let (A,A+) be a Huber pair with A Tate.

(a) Choose f ∈ A and suppose that

0 −→ A −→ A 〈f〉 ⊕A
〈
f−1

〉 (x,y)7→x−y−→ A
〈
f±1

〉
99K 0

is exact without the dashed arrow. (It is then also exact with the dashed
arrow; e.g., see [12, Lemma 1.8.1].) Then the functor

VecSpec(A) → VecSpec(A〈f〉)×VecSpec(A〈f±1〉)
VecSpec(A〈f−1〉)

is an equivalence of categories.
(b) The conclusion of (a) holds whenever A is (Tate and) uniform.
(c) If A is (Tate and) sheafy, then the pullback functor VecSpec(A) → VecSpa(A,A+)

is an equivalence of categories, with quasi-inverse given by the global sections
functor.

Proof. For (a), see [12, Lemma 1.9.12]. For (b), see [13, Corollary 2.8.9] or
[12, Lemma 1.7.3, Lemma 1.8.1]. For (c), see [13, Theorem 2.7.7] or [12, Theo-
rem 1.4.2]. ut

Using Proposition 3.2(a,b), one can deduce the following. However, we give
references in lieu of a detailed argument.

Proposition 3.3 (Buzzard–Verberkmoes, Mihara). Any stably uniform
Huber ring is sheafy.

Proof. The original (independent) references are [4, Theorem 7] and [16, Theo-
rem 4.9]. See also [13, Theorem 2.8.10] or [12, Theorem 1.2.13]. ut

With these results in mind, we set some more specific notation.

Hypothesis 3.4 For the remainder of §3, let R be a Huber ring which is perfect
of characteristic p and Tate, and let R+ be a subring of integral elements in R
(which is necessarily also perfect). For example, we may take R = K, R+ = oK
in case K is complete for a rank 1 valuation. Let x ∈ R be a topologically
nilpotent unit; note that necessarily x ∈ R+.

For the geometric meaning of the following definition, see the proof of The-
orem 3.8.

Definition 3.5. Topologize

A1 := W (R+)[p−1], A2 := W (R+)[[x]−1], A12 := W (R+)[(p[x])−1]

as Huber rings with ring of definition W (R+) and ideals of definition generated
by the respective topologically nilpotent units p, [x], p[x]. Then put

B1 := A1

〈
[x]

p

〉
, B2 := A2

〈
p

[x]

〉
, B12 := A12

〈
[x]

p
,
p

[x]

〉
;
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note that there are canonical isomorphisms of topological rings

B12
∼= B1

〈
p

[x]

〉
∼= B2

〈
[x]

p

〉
.

Also put

B′1 := A2

〈
[x]

p

〉
, B′2 := A1

〈
p

[x]

〉
;

note that there are canonical isomorphisms of underlying rings

B′1
∼= B1[[x]−1], B′2

∼= B2[p−1]

but these are not homeomorphisms for the implied topologies. For example, in
the first isomorphism, the rings of power-bounded elements coincide, but on this

common subring the induced topology from B′1 is the [x]
p -adic topology while the

induced topology from B1[[x]−1] is the p-adic topology.

Proposition 3.6. The following statements hold.

(a) The Huber rings C = A1, A12, B1, B2, B12, B
′
2 are stably uniform, and hence

sheafy by Proposition 3.3.
(b) The Huber ring C = A2 is uniform. (The same is true for C = B′1, but we

will not need this. See also Remark 3.7.)

Proof. To prove (a), note that for C = A1, A12, B1, B12, B
′
2, p is a topologically

nilpotent unit in C. In these cases, by [13, Theorem 5.3.9], taking the completed

tensor product over Zp with Zp[pp
−∞

] yields a perfectoid ring in the sense of

[13] (which must be a Qp-algebra). By splitting from Zp[pp
−∞

] to Zp using the
reduced trace, we deduce that C is stably uniform; see [13, Theorem 3.7.4] for
further details. For C = B2, p is no longer a unit in C but is still topologically
nilpotent, and a similar argument applies using perfectoid rings in the sense of
Fontaine; see [14, Corollary 4.1.14] or [12, Lemma 3.1.3].

To prove (b), note that A◦2 is p-adically saturated in A2, W (R◦) is contained
in A◦2, and the image of A◦2/(p) → A2/(p) ∼= R is contained in R◦. These facts
together imply that A◦2 = W (R◦), which is evidently a bounded subring of A2.

ut

Remark 3.7. We believe that A2 is stably uniform, which would then imply that
B′1 is stably uniform; but we were unable to prove either of these statements.
One thing we can observe is that if B′1 were known to be stably uniform, then
combining the preceding results with Proposition 3.2(a) and [12, Theorem 1.2.22]
would imply that A2 is sheafy (and then stably uniform).

We now obtain a comparison between algebraic and adic vector bundles.

Theorem 3.8. Put A := W (R+) and let X (resp. Y ) be the complement in
SpecA (resp. Spa(A,A)) of the closed subspace where p = [x] = 0. Then pullback
along the morphism Y → X of locally ringed spaces defines an equivalence of
categories VecX → VecY .
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Proof. For A1, A2, A12, B1, B2, B12, B
′
1, B

′
2 as in Definition 3.5, we have the fol-

lowing coverings of adic spaces by rational subspaces.

U ∪ V U V U ∩ V
Y Spa(B1, B

◦
1) Spa(B2, B

◦
2) Spa(B12, B

◦
12)

Spa(A1, A
◦
1) Spa(B1, B

◦
1) Spa(B′2, B

′◦
2 ) Spa(B12, B

◦
12)

Spa(A2, A
◦
2) Spa(B′1, B

′◦
1 ) Spa(B2, B

◦
2) Spa(B12, B

◦
12)

Spa(A12, A
◦
12) Spa(B′1, B

′◦
1 ) Spa(B′2, B

′◦
2 ) Spa(B12, B

◦
12)

For i ∈ {1, 2, 12}, we may apply Proposition 3.2(c) and Proposition 3.6(a) to
see that the pullback functor VecSpec(Bi) → VecSpa(Bi,B◦i ) is an equivalence.
We may also apply Proposition 3.2(a,b) and Proposition 3.6(b) to obtain an
equivalence

VecSpec(Ai) → VecSpec(B?
1)×VecSpec(B12)

VecSpec(B?
2), B?

j =

{
Bj j ∈ i
B′j j /∈ i;

using the fact that Aj → B′j factors through Bj (at the level of rings without
topology), it follows that

VecSpec(A1)×VecSpec(A12)
VecSpec(A2) → VecSpec(B1)×VecSpec(B12)

VecSpec(B2)

is an equivalence. In the 2-commutative diagram

VecX // VecY

VecSpec(A1)×VecSpec(A12)
VecSpec(A2)

��
VecSpec(B1)×VecSpec(B12)

VecSpec(B2)
// VecSpa(B1,B◦1 )×VecSpa(B12,B◦12)

VecSpa(B2,B◦2 )

every arrow except VecX → VecY is now known to be an equivalence; we thus
obtain the desired result. ut

As a corollary, we obtain the following theorem.

Theorem 3.9. Let v0 be the valuation on W (oK) induced by the trivial val-
uation on the residue field of oK . Put A := W (oK), X := Spa(A,A), Y :=
X \ {v0}. Let Modff

A be the category of finite free A-modules. Then the cate-
gories Modff

A,VecX ,VecY are equivalent via the functor Modff
A → VecX tak-

ing M to M̃ , the pullback functor VecX → VecY , and the global sections functor
VecY →Modff

A.

Proof. Combine Theorem 2.7 with Theorem 3.8. ut

One might like to parlay Theorem 3.9 into a version with K replaced by R.
However, one runs into an obvious difficulty in light of the following standard
example in the category of schemes.
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Example 3.10. Let k be a field, put S := k[x, y, z], and let M be the S-module

ker(S3 → S : (a, b, c) 7→ ax+ by + cz).

Put X := SpecS, Y := X \ {(x, y, z)}, Z := X \ {(x, y)}; then M̃ /∈ VecX but
M̃ |∗ ∈ Vec∗ for ∗ ∈ {Y,Z}. Since X \ Y has codimension 3 in X and Y \Z has
codimension 2 in Y , M̃ |Z has a unique extension to an S2 sheaf (in the sense of
Serre) on either X or Y , namely M̃ itself. In particular, M̃ does not lift from
VecZ to VecX .

With a bit of care, this argument can be translated into an example that
shows that Theorem 3.9 indeed fails to generalize to the case where K is replaced
by R.

Remark 3.11. For (R,R+) as in Hypothesis 3.4, let p be the radical of the ideal

(p, [x]); it is generated by p and [x]p
−n

for all n. Put

X := Spec(W (R+)), Y := X \ {p},

and let Z be the algebraic stack which is the colimit of the diagram

Spec(W (R+)[p−1])← Spec(W (R)[p−1])→ Spec(W (R)).

As in Lemma 2.3, we see that the functors VecX → VecY ,VecY → VecZ are
fully faithful, and that for ∗ ∈ {Y,Z}, F ∈ Vec∗, M = H0(∗,F), the adjunction
morphism M̃ |∗ → F is an isomorphism. However, one may emulate Example 3.10
so as to produce an object of VecY and VecZ which does not lift to VecX ; see
Example 3.14 below.

Lemma 3.12. With notation as in Remark 3.11, for F ∈ Vec∗ and M =
H0(∗,F), the natural homomorphism M∨ → H0(∗,F∨) is an isomorphism.
Consequently, the map M →M∨∨ is an isomorphism, i.e., M is reflexive.

Proof. From Remark 3.11, we see that the map is injective. To check surjectivity,
note that any f ∈ H0(∗,F∨) restricts to maps M → W (R+)[p−1], M → W (R)
which induce the same map M → W (R)[p−1]. We again deduce the claim from
the equality W (R+)[p−1] ∩W (R) = W (R+). ut

Remark 3.13. Recall that for any ring S, a regular sequence in S is a finite se-
quence s1, . . . , sk such that for i = 1, . . . , k, si is not a zero-divisor in S/(s1, . . . , si−1).
If s1, . . . , sk is a regular sequence in S, one computes easily that

TorSk (S/(s1, . . . , sk), S/(s1, . . . , sk)) ∼= S/(s1, . . . , sk) 6= 0;

in particular, S/(s1, . . . , sk) has projective dimension at least (and in fact ex-
actly) k as an S-module.

Example 3.14. Let k be a perfect field of characteristic p. Let R+ be the (y, z)-
adic completion of the perfect closure of kJy, zK. Put x := yz ∈ R+. This notation
is consistent with Hypothesis 3.4, so we may adopt notation as in Remark 3.11.
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Put I := ([y], [z], p)W (R+); note that the generators of I form a regular
sequence. By Remark 3.13, W (R+)/I has projective dimension at least 3, I has
projective dimension at least 2, and

M := ker(W (R+)3 → I : (a, b, c) 7→ a[y] + b[z] + cp)

has projective dimension at least 1. In particular, M is not projective.
For ∗ ∈ {Y,Z}, the sequence

0→ M̃ |∗ → O⊕3 → O → 0 (3.14.1)

of sheaves is exact, so M̃ |∗ ∈ Vec∗. Because H0(∗,O) = W (R+), applying the
functor H0(∗, •) to (3.14.1) yields an isomorphism H0(∗, M̃ |∗) ∼= M .

However, if M̃ |∗ could be extended to an object F ∈ VecX , we would have
F ∼= Ñ for some finite projective W (R+)-module N , and per Remark 3.11 we
would have N ∼= H0(∗,F) = H0(∗, M̃ |∗) ∼= M . This yields a contradiction.
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