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Exercise Science and Child Health: A Tale of Many Journeys 
Dan M. Cooper 

University of California, Irvine 

Children are the most naturally physically active human beings; reduced physical activity is a cardinal 
sign of childhood disease, and exercise testing provides mechanistic insights into health and disease that 
are often hidden when the child is at rest. The physical inactivity epidemic is leading to increased disease 
risk in children and, eventually, in adults in unprecedented ways. Cardiopulmonary exercise testing 
(CPET) biomarkers are used to assess disease severity, progress, and response to therapy across an 
expanding range of childhood diseases and conditions. There is mounting data that fitness in children 
tracks across the life span and may prove to be an early, modifiable indicator of cardiovascular disease 
risk later in life. Despite these factors, CPET has failed to fulfill its promise in child health research and 
clinical practice. A major barrier to more accurate and effective clinical use of CPET in children is that 
data analytics and testing protocols have failed to keep pace with enabling technologies and computing 
capacity. As a consequence, biomarkers of fitness and physical activity have yet to be widely 
incorporated into translational research and clinical practice in child health. In this review, the author re-
examines some of the long-held assumptions that mold CPET in children. In particular, the author 
suggests that current testing strategies that rely predominantly on maximal exercise may, inadvertently, 
obfuscate novel and clinically useful insights that can be gleaned from more comprehensive data 
analytics. New pathways to discovery may emanate from the simple recognition that the physiological 
journey that human beings undertake in response to the challenge of exercise may be far more important 
than the elusive destination of maximal or peak effort. 

The purpose of this review is to focus on several intersecting journeys, new pathways necessary 
to advance the field of exercise medicine and exercise science in child health. We will cover the journey 
of concept and discovery in which novel technologies are reshaping how we measure and gauge fitness in 
critical periods of growth and development in children, and the physiological journey that integrates 
thermodynamic, biologic, and cognitive mechanisms permitting children to engage in physical activities 
that vary widely in intensity, duration, and skill. Collectively, these journeys are bringing us to a new and 
exciting era of discovery for all of child health research and clinical application.  

The Nobel Laureate A.V. Hill was the pioneering British exercise scientist who in the 1920s 
accessed the novel technologies and conceptualized the existence of a maximum level of oxygen intake. 
In describing a series of exercise tests in several healthy volunteers, Hill et al (48) wrote, “The oxygen 
intake rises steadily as the [running] speed is increased, attaining a maximum, however, beyond which no 
bodily effort can drive it.” Hill and his group were inquisitive experimentalists and also noted that the so-
called maximal levels of V˙ O2 in a given individual intake were dependent on many conditions such as 
the type of exercise and the concentration of inspired oxygen. 

Hill was acutely aware that his laboratory’s focus on exercise in the context of athletics limited 
the generalizability of the nascent discipline of exercise physiology. In his introduction to a series of 
lectures given at Cornell University in 1926–1927, he (47) wrote, “The complaint has been made to me– 
’Why investigate athletics, why not study the process of industry or of disease?’ The answer is twofold. 
(i) The processes of athletics are simple and measureable and carried out to a constant degree, namely to 
the utmost of a man’s powers: those of industry are not; and (ii) athletes themselves, being in a state of 
health and dynamic equilibrium, can be experimented on without danger and can repeat their 
performances exactly again and again.”



Hill’s prescience in grasping that the approach to exercise science depended on the context in 
which physical activity (PA) was considered (eg, athletics, presence of disease) was not shared by the 
majority of physiologists and clinicians over the past century. Historical realities, the cultural zeitgeist, 
and politics have always shaped scientific research (83), and exercise science has not been an exception. 
A century ago, the Russian revolution prompted scientists to better understand the physiological limits of 
physical labor as productivity at that time depended in no small measure on the physical work capacity of 
laborers (87). In the United States, entry into World War I and institution of mandatory conscription to 
military service revealed an alarming percentage of young Americans simply unfit for service. It is not 
surprising that the Harvard Fatigue Laboratory, established in 1927 and housed in the basement of the 
Harvard School of Business, led the nation in understanding the limits of physical capacity in human 
beings with a particular focus on industry and the military (94). 

The focus on athletic and sports performance has remained the predominant theme in pediatric 
exercise science. As shown in Figure 1, an exponential increase in research in publications focused on 
exercise testing in the pediatric age range in the context of sports and athletics has occurred over the past 
5 to 6 decades. A far smaller increase has occurred over the same period examining exercise testing and 
performance in the context of disease or illness. In Figure 2, I present a 10-year snapshot (2007–2017) of 
the relative focus of research publications in pediatric exercise on relevant diseases and conditions. 

Figure 1 — A bibliometrics search examining the use of exercise testing to assess functional aspects of 
fitness in children in both health and disease. 

Figure 2 — Distribution of publications in exercise testing and childhood conditions, and diseases over 
the past 10 years. 



Physical Activity: An Essential Element of Growth and Development in Children and 
Adolescents 

Exercise in children and adolescents is not merely play but is an essential component of growth and 
development (39,57,91). Children are among the most spontaneously physically active human beings 
(66). It is not surprising that participation in PA is a major determinant of health across the life span and 
health-related quality of life in both healthy children and in children with chronic diseases (46,64,68,76). 
Despite this essential biologic role for PA, children have not been spared the relentless reduction in levels 
of PA, that is, creating a crisis in health care in our nation and throughout the world (58). Recognition of 
the enormous morbidity and cost of physical inactivity–related diseases, such as atherosclerosis, type 2 
diabetes, and osteoporosis, has spurred new policy initiatives targeting preventive medicine early in life 
(18,23,74). The concept of pediatric origins of adult health and disease is gaining scientific merit 
(10,13,44,86), highlighting the need to transform existing notions of how to evaluate health in a growing 
child. A physically inactive (even normal weight) child may have no symptoms of disease, but evidence 
of deterioration in vascular health may already be present (20,51,92). 

Equally worrisome is that the deleterious health effects of physical inactivity and poor fitness are 
exacerbated in children with chronic disease and/or disabilities (1,49,50,62,67,99) or with environmental–
lifestyle conditions like obesity (53). Children with diseases or conditions previously associated with 
excessive mortality and morbidity during the first 2 decades of life (eg, cystic fibrosis, pulmonary 
hypertension, sickle cell disease, congenital heart disease, malignancies, etc) are living longer because of 
remarkable advances in research and care (35,37,43,55,59) but are often unable to achieve levels of PA 
and fitness associated with health benefits in otherwise healthy children (2,60,89,95). Not surprisingly, 
the health span (the period of life free from serious chronic diseases and disability [90]) of children with 
chronic diseases is threatened not only by the underlying disease but also by the compounding effects of 
insufficient PA and sedentary behavior (15,19,33,40,81). Increasing PA and fitness is feasible but has 
proven quite challenging to implement in a systematic manner (38). 

Once a pattern of physical inactivity and a sedentary lifestyle is established, a vicious cycle 
ensues (Figure 3), in which constraints on PA harm immediate health and contribute to lifelong health 
impairment ranging from cardiovascular and metabolic disease to osteoporosis (16,24,32,57,61,63). 
Exactly what constitutes ideal physical fitness in a child with a chronic condition remains unknown. 
Finding beneficial levels of PA in children with chronic disease or disability is challenging because the 
optimal range of exercise is much narrower than in a healthy child (Figure 4). 

The Physiological Journey of the Exercise Response: Rethinking the Guideposts 

As previously noted, a major driving concept in exercise science research in both children and adults over 
the past century has been maximal oxygen intake (V̇O2max). Substantial controversy still surrounds this 
term, and many researchers prefer to employ V̇O2peak, particularly when there is no clear plateau of V̇O2 
as work rate (WR) increases. There is no doubt that this approach has enormously advanced our 
understanding of the mechanisms involved in human PA. Maximal exercise tests in children are highly 
dependent on the willingness of each participant to continue exercise at relatively high WRs when 
dyspnea, muscle fatigue, and other stress sensations are commonly experienced. These tests involve 
exercise intensities that are infrequently attained in natural PA (7,12,41) and are not particularly enjoyable 
for many children (Figure 5). As a result, a fair amount of cheerleading by the laboratory personnel is 
often necessary to help the child achieve a maximal effort in cardiopulmonary exercise testing (CPET). 
Despite its proven clinical and research utility, true V̇O2max (finding an unambiguous plateau in V̇O2) 



only occurs in a minority of exercise tests even in healthy children and adults and maybe less so in 
children with chronic disease or disability (17,29,34). 

Figure 3 — Physical inactivity in childhood, be it imposed by environmental factors or chronic diseases 
or conditions, leads to a vicious cycle that impairs health across the life span. 

Figure 4 — Health benefits of exercise are determined, in part, by the energy expenditure associated with 
physical activity. Both too much (excessive) and too little (sedentarism) exercise can impair health. As 

shown, the range of healthy exercise is narrower in the child with chronic disease or disability. CPET and 
physical fitness testing must be designed to identify biological mechanisms that can be translated into 
finding the mode, frequency, duration, and intensity of exercise that can benefit health during critical 

periods of growth. CPET indicates cardiopulmonary exercise testing. 

The conundrum of V̇O2max testing is highlighted in the current controversy surrounding the idea 
that in order to “verify” V̇O2max, one must perform traditional progressive exercise tests to the limit of 
the participant’s tolerance followed within minutes by a constant WR “supramaximal” test at a higher 
WR, again, to the limit of the participant’s tolerance. The very name of the additional test, supramaximal, 
highlights the conceptual difficulty. A maximum is, after all, the greatest or highest amount possible or 
attained. “Supramax” does not exist. The data clearly indicate that V̇O2 in the supramaximal constant 
workload test is often higher than the “V̇O2max” obtained moments before in the progressive test. This is 
a fascinating observation but in no way indicates the discovery of the real V̇O2max. A much more 
reasonable explanation is that the elusive V̇O2max is dynamic that the prior exercise through well-



established impact on time constants, blood flow, lung function, cognitive factors, and so on, 
(9,14,65,103) altered physiological processes and permitted a greater capacity to uptake atmospheric O2. 

One of the transformative discoveries over the past several decades has been the ability of 
exercise to stimulate systemic immune, stress, and both proinflammatory and anti-inflammatory 
mediators and cytokines. The seminal observations by Ostrowski et al (75) in adults have been 
corroborated in children and adolescents (72,73). In retrospect, of course, a stress, “danger” type signaling 
by exercise is not surprising; even brief bouts of sufficiently intense PA lead to a metabolic acidosis, an 
outpouring of catecholamines, and a profound perturbation of cellular homeostasis (28,71). The initial 
acute increase in circulating leukocytes and cytokines such as interleukin-6 is often balanced by anti-
inflammatory mechanisms, and exercise training, such as other short-term stresses, may ultimately prove 
to be, in balance, anti-inflammatory. Nonetheless, exercise stimulus of stress and inflammation can be 
dangerous. A number of studies have demonstrated that high-intensity exercise is aversive or unpleasant 
in both children and adults (36,88), and one is reminded of the popular mantra about exercise, “no pain, 
no gain.” 

Figure 5 — “Found Art” in the pediatric exercise laboratory. Maximal exercise testing is uncomfortable 
and unpleasant for many children. A 9-year-old girl left this note for us. It is time to rethink exercise 

testing in children. 

When a child performs standard CPET but does not reach an exercise level that can be classified 
as maximal, the whole test may be deemed a failure despite the wealth of data successfully collected. For 
example, in a large study of children and adolescents (mean age: 12.3 y) who had undergone the Fontan 
correction for congenital heart disease during childhood, only 40% achieved an acceptable V̇O2max using 
current criteria (77). Many clinically oriented researchers are hesitant about pushing certain patient 
populations during high-intensity exercise when acidosis can ensue and stress mediators are elevated. 
Salvadego et al (85) studied exercise in a group of obese, otherwise healthy, adolescents and stopped 
exercise when the participant achieved a heart rate (HR) of 180 bpm. The authors noted, “A true maximal 
test was not performed to avoid the cardiovascular risks associated with maximal exercise in obese 
subjects.” 

The value of alternatives to maximal testing strategies have been recognized for many years, but 
predominantly focused on using data obtained from submaximal portions of exercise tests to estimate a 
predicted V̇O2max rather than on the value of the submaximal data itself. Åstrand and Rhyming (6) 
recognized over 50 years ago that V̇O2max in adults could be predicted by HR measured during 
submaximal exercise. Fitness tests that require HR data alone are more feasible for large cohorts than 
studies in which gas exchange is measured in each participant. For example, Pate et al (78) used HR data 
collected in the National Health and Nutrition Examination Survey (70) to characterize fitness in 3287 
children and adolescents (aged 12–19 y). One must balance the loss of accuracy introduced when V̇O2 is 
estimated from HR (often through complex formulas whose parameters are based on many assumptions) 



with the increased cost and complexity associated with actual breath-by-breath measurements of gas 
exchange. 

New Technology and New Pathways: Impact of Breath-By-Breath Measurement of Gas 
Exchange 

The breakthrough maximal exercise studies in the early 1900s were made possible by technological 
advances in measurement of oxygen concentration. However, large volumes of gas were required, 
limiting the number of data points in which variables such as V̇O2 or V̇CO2 could be obtained during an 
exercise protocol. Progress in gas concentration and gas flow analytics proceeded rapidly with the advent 
of mass spectrometry and rapid detection of flow rates and vectors from small quantities of gas, and by 
the 1970s, breath-by-breath measurement of gas exchange became possible (104). The early devices were 
limited by computing capacity; for example, the then most advanced HP-1000 computer had only 64kb of 
memory and required clever programming and data manipulation to facilitate the calculations necessary 
for breath-to-breath analysis. Breath-by-breath CPET became commercially available in the late 1980s 
and permitted quantification of gas exchange response time over minutes and in adult studies led to a 
revolution in research focused on “gas exchange kinetics,” an engineering and integrative systems 
approach to the adaptive biology of PA. Between 1976–1981 and 2011–2015, a PubMed search revealed 
an increase from 5 to 71 publications in adults using breath-by-breath exercise analytics in clinical trials. 
Over the same interval, studies in children increased only from 2 to 11. The time is opportune to apply 
enabling and new technologies to PA biomarkers in pediatric health. 

In a study of 169 children and adolescents (27), we demonstrated a set of remarkably strong 
relationships among submaximal slopes (obtained from the “forgotten” data of progressive exercise 
CPET), body weight, lean body mass (obtained from dual x-ray absorptiometry [DXA]), and the 
traditional peak V̇O2 (Figures 6 and 7). These observations hold the promise of greatly expanding the 
clinical and translational research utility of CPET. Earlier studies from our group have demonstrated the 
power of slope analysis in children with specific diseases to identify unique pathophysiological 
biomarkers associated with the underlying condition. For example, we found abnormal slopes of 
ΔV̇E/ΔV̇CO2 (the change in ventilations relative to the change in CO2 output) in CF, consistent with 
increased ventilation/perfusion mismatching and dead space (67). In children who had undergone the 
Fontan surgical correction for a variety of congenital heart diseases, we noted reduced slopes of 
ΔV̇O2/ΔWR quantifying the degree of impaired oxygen delivery (99). More recently, abnormal V̇O2/WR, 
V̇E/ V̇O2, V̇O2/HR, and V̇E/V̇CO2 slopes were observed in patients with sickle cell disease (60). These 
observations were made during submaximal phases of maximal work CPET in sickle cell disease patients 
in whom caution should be exercised when encouraging PA at high intensities, characterized by elevated 
catecholamines and stress and inflammatory factors. 

Taking full advantage of enabling technologies and computing capacity, new testing strategies 
have emerged over the past several decades. As valuable as traditional progressive-exercise CPET has 
proven, it tends to overlook one of the critical components of successful PA in children, namely the 
ability to rapidly respond to and recover from brief bouts of exercise. The evolutionary pressures of 
successfully gathering or hunting food and/or escaping predation led to integrated physiological systems 
in which (in response to exercise) cardiac output increased rapidly, oxygen was delivered quickly to 
working muscles, and blood flow maintained to key nonexercising organs, such as the brain, so that 
executive function could be maintained and wise decisions (where to run; when to hide) made. Testing 
strategies have emerged that accentuate the ability to gauge impairment in the critical onset and recovery 
phases of the exercise response. 



 
Figure 6 — Enhancing the value of CPET. Shown here is a schematic of the type of data derived from 

progressive exercise in children and adolescents. Traditional CPET relies on maximal or peak values. We 
propose to better capture dynamic relationships of breath-by-breath data during submaximal phases of 
progressive CPET and transform how we measure the physiologic response to acute exercise. CPET 

indicates cardiopulmonary exercise testing; WR, work rate; HR, heart rate; V̇O2, oxygen uptake; 
V̇O2max, maximal V̇O2 uptake. 

 
Figure 7 — Scatterplots of CPET variables predicted to be relatively body size dependent versus TBM 
determined by standard scale (A, B, and C) and LBM determined by DXA (D, E, and F). Females are 
shown as open circles and males as closed circles. The correlation and the corresponding 95% CI are 



shown for each plot. In all cases, the correlations with TBM were high but were significantly improve 
with LBM. CPET indicates cardiopulmonary exercise testing; CI, confidence interval; TBM, total body 

mass; LBM, lean body mass; V˙ O2, oxygen uptake. 

Interestingly, one of A.V. Hill’s most important contributions was the concept of oxygen debt and 
deficit, an idea that arose from observations that V̇O2 increased exponentially, not immediately, in 
response to a constant WR perturbation. Hill et al surmised the existence of stores and energy 
mechanisms that provided the immediate requirements of muscular work and were not immediately 
dependent on oxygen uptake from the atmosphere. The deficit incurred was then “paid back” as 
evidenced by the delayed (exponential) return of V̇O2 to baseline after the termination of physical work.  

Pioneering work from a number of investigators is emerging to examine gas exchange dynamics 
in children in health and disease (3,4,26). For example, Barker et al (9) combined breath-by-breath 
measurements of gas exchange with near-infrared spectroscopy to simultaneously measure muscle O2 
delivery, O2 utilization, and muscle activity following priming exercise to better understand the factors 
limiting V̇O2 kinetics during high-intensity exercise tolerance in youth. Their findings were intriguing 
(Figure 8); despite an enhanced aerobic energy provision following the priming intervention, exercise 
tolerance was reduced between exercise bouts due, perhaps, to inadequate recovery of the muscle 
metabolic status before the subsequent exercise perturbation commenced. Earlier work in otherwise 
healthy children has demonstrated key differences in gas exchange kinetics between children and adults, 
most notably in the dynamics of ventilation and V̇CO2 (26,69). 

Figure 8 — Mean HHb (top panel) and TOI (bottom panel) dynamics obtained from near-infrared 
spectroscopy during an initial exercise bout (dotted line) rapidly followed by a repeat bout (solid line). 

The vertical dotted line signifies the onset of exercise. Note that in the second bout, the TOI is elevated at 
baseline and throughout the exercise transition. Despite this, exercise tolerance was not improved by the 

priming bout. Reprinted with permission from Barker et al (9). TOI indicates tissue oxidation index; 
HHb, deoxyhemoglobin. 



Dynamic exercise testing has also been done to elucidate disease mechanisms in childhood 
illnesses. For example, Hebestreit et al (45) used oxygen uptake kinetics to demonstrate an impairment of 
oxygen delivery in children with cystic fibrosis. A number of years ago, our group was able to 
demonstrate large differences in gas exchange responses to exercise in children who had undergone the 
Fontan surgical correction for congenital heart diseases. We used a relatively simple approach, the 
recovery from a 1-minute bout of constant WR exercise (99) (Figure 9). 

Figure 9 — (A) HR response before, during, and after 1 minute of exercise in a 14-year-old Fontan group 
subject. The recovery kinetics were quantified using a single exponential, as shown. (B) HR and V˙ O2 
recovery times for control and Fontan group subjects. In control subjects, recovery times were longer 

after the higher work rate protocols (*P < .05). In Fontan group subjects, recovery times were prolonged 
compared with the same absolute (2 W/kg) and relative (3.5 W/kg) protocols in control subjects (**P < 

.001). HR indicates heart rate; V˙ O2, oxygen consumption. 

The Journey From “Noise” to “Signal”: Modern Approaches to CPET and Habitual PA 
Data Analysis Using Biologic Variability and Machine Learning 

Cardiopulmonary exercise testing produces large data sets comprised of a variety of measures of breath-
by-breath gas exchange and heart rate. Advanced computing has revolutionized analysis of large data sets, 
and many physiological data sets previously considered too noisy for predictive analysis can now yield 
valuable signals in biomedicine with statistics and machine learning expertise. In CPET, for example, 
Beltrame et al (11) recently found that it is possible to predict V̇O2max from steady-state and exercise 
transitions based on easy-to-obtain inputs and machine learning paradigms. Variability (and its related 
volatility and entropy) is increasingly used as biomarkers in assessing physiologic data in exercise and in 



adult diseases (8,21,30,100,105). Early work in children has proved promising as well. Reybrouck et al 
(82) found that increased interbreath variability with oscillatory changes of V̇O2 during exercise in
children with heart disease was predictive of peak V̇O2. In our own data (unpublished), as shown in
Figure 10, we found increased CPET variability in younger compared with older children and as the
intensity of exercise progressed.

One of the key challenges in assessing aerobic function in children and adolescents in health and 
disease is to link seemingly diverse testing strategies: formal CPET and measures of habitual PA (HPA) 
in the real lives of human beings. Surprisingly, in many studies, the correlation between CPET results and 
HPA metrics in both children and adults is poor. Either we are measuring phenomenon that is biologically 
minimally related, or alternatively, the way we are measuring these phenotypes is suboptimal. Earlier 
studies from this and other laboratories had suggested, for example, that the pattern of PA (eg, its tempo 
and intensity) might be useful in characterizing real-life PA in children (7,12), but these studies involved 
labor-intensive techniques, such as direct observation and manual recording of PAin field settings. 
Technological advances in wearable monitoring has led to an outpouring of new research on HPA in child 
health, and the actual measurement of HPA using techniques such as accelerometry, in contrast to recall 
or survey methodologies, may lead to a better understanding of the mechanisms that link laboratory CPET 
testing and HPA (106). Specific patterning of sedentary behaviors may also prove of benefit in linking 
HPA to cardiovascular disease risk in children and adolescents (31). 

Figure 10 — A series of constant work rate exercise bouts (closed squares) reveals striking maturational 
differences in the relationship between V̇E and V̇O2. This ratio (related to the oxygen uptake efficiency 

slope in standard CPET) is proving useful as a biomarker in a variety of cardiac and pulmonary diseases. 
Note the value of a test that uncovers data during both the onset and recovery from a brief exercise bout. 

CPET indicates cardiopulmonary exercise testing; V̇O2, oxygen consumption. 

A number of researchers are rethinking how to analyze data obtained from wearable 
accelerometers in the quantification of HPA. Although the application of cut points continues to be 
common research practice, there is growing recognition that the relationship between proprietary 
accelerometer counts and energy expenditure is highly activity dependent and that a single regression 
equation cannot accurately determine energy expenditure across a wide range of activities. Validation 
studies involving independent samples indicate that regression-based cut-point approaches misclassify the 



true intensity of HPA 35%to 45% of the time (93,97). An alternative approach to accelerometer data 
reduction that has significantly improved sensor-based measurement of HPA and sedentary behavior is 
pattern recognition through machine learning. A number of researchers have demonstrated that machine 
learning algorithms, such as artificial neural networks (22,42,52,80,98), provide highly accurate 
predictions of activity type and intensity from accelerometer data collected in children and adolescents. 
While the potential for data science advanced analytics in quantifying HPA in adults and children is great, 
much work needs to be done to achieve consensus and harmonization before this promise can be realized 
(56). 
 
Physical Fitness as a Right of Children: The Journey Toward Robust Metrics 
 
Physical inactivity as a leading cause of chronic illness is a global phenomenon, distributed across both 
low- and high-income nations (25,54,79). In a remarkable report card on the PA of children and youth in 
38 countries from 6 continents (representing 60% of the world’s population), Tremblay et al (96) recently 
noted, “The wide distribution of [PA for children] grades results in global average grades for all 
indicators being D or C [and] shows that the challenge of enhancing PA behaviors and opportunities for 
children and youth around the world remains unresolved.” 

Two transformative concepts highlight the need to provide clinicians with metrics of physical 
fitness in children that are accurate, cost-effective, and reproducible. First, there is growing recognition 
that “social determinants of health,” defined by the World Health Organization (108) as “the conditions in 
which people are born, grow, live, work and age,” must be identified if we are to mitigate health 
disparities. While it is evident that physical fitness and PA interact with social determinants of child and 
adolescent health in many ways (102), research is needed to identify, prioritize, and develop interventions 
that most effectively use exercise as medicine to address health disparities during critical periods of 
growth and development. 

Second, the notion that children have unique rights was codified in the 1989 United Nations 
Convention on the Rights of the Child (101). The history of the United Nations Convention indicates the 
strong connection to child health (107). Among, the rights specified are as follows: 

• The right of the child to the enjoyment of the highest attainable standard of health and to facilities 
for the treatment of illness and rehabilitation of health; 

• The right of the child to develop the fullest potential of mental and physical abilities. 

Although it is clear that the adoption the Convention on the Rights of the Child has benefited the lives 
of children and adolescents (84), no mention is made of the profound role that physical fitness during 
childhood has on health. It would seem timely that the community of pediatric exercise scientists and 
clinicians promotes a clear role for physical fitness as a right of children throughout the world. A key 
challenge facing the community of pediatric exercise clinicians and scientists is the development of 
testing strategies that can be used to gauge physical fitness robustly, repeatedly, and cost effectively. 

Much work needs to be done to achieve this goal. Over a 3-year period, a group of key stakeholders 
in pediatric exercise partners convened a working group to identify challenges facing optimal utilization 
of exercise testing in child health research (5). 
The major recommendations of that group were as follows: 

(1) Build a formal framework for data harmonization and terminology interoperability in child health 
exercise science. This is essential to support the hoped-for expansion of clinical trials using 
CPET. 



(2) Create a network of child health–focused clinical and research exercise laboratories with the
ultimate goal of establishing a data consortium. The network will

(a) Work to establish robust reference values in child health CPET;
(b) Begin to more precisely define the impact of disease and therapy on exercise responses

during growth and development in children.
(3) Engage and collaborate with existing child health– and adult exercise–focused groups and

organizations to support life span research, global health initiatives, and create economies of scale
in the data harmonization efforts.

(4) Promote formal programs to train child health care professionals in essential areas of exercise
physiology, PA assessment, and relevant concepts of fitness in children.

(5) Utilize the network to establish common protocols for CPET to ensure, in particular, that data
obtained from multicenter trials are truly comparable.

(6) Empower the network to become a resource for review, data sharing, and innovation across the
broad spectrum of PA research and clinical application in child health.

These challenges can guide our ultimate journey: To improve child health and health across the
life span through PA research and its clinical application. 
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