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而世之奇伟、瑰怪，非常之观，常在于险远，而人之所罕至焉，故非有志者不能至也。 

 

The marvels and wonders of the world, those extraordinary spectacles, often lie in places perilous 

and remote, where few dare to venture. Therefore, only those with unwavering determination can 

ever reach them. 
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This thesis advances the understanding of the global carbon cycle and atmospheric tracer 

transport by optimizing the use of CO2 and O2 measurements from global airborne campaigns and 

surface stations. The first three chapters provide toolboxes that leverage the use of airborne data 

in many aspects. Chapter 1 introduces a novel transformed isentropic coordinate system, Mθe, 

initially designed to organize airborne data, correct for meteorological variability, and calculate 

atmospheric inventories of trace gases. This system is versatile and has enabled the development 

of several toolboxes and models to assess large-scale atmospheric tracer transport and surface 
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tracer flux rates. In Chapter 2, I present the first comprehensive application of Mθe coordinate, 

focusing on estimating atmospheric potential oxygen (APO ~ O2 + 1.1 CO2) and its seasonal air-

sea fluxes, contributing valuable insights into oceanic carbon cycles, and benchmarking existing 

observation-based and modeled APO flux estimations. In chapter 3, I tackle the challenge of 

uncertainties in atmospheric transport models (ATMs), by developing two evaluative constraints 

based on atmospheric CO2 gradients across Mθe and parameterized diabatic mixing rates (tracer 

transport timescales across Mθe). These constraints lead to a more intuitive evaluation of ATMs, 

and more accurate descriptions of large-scale tracer transport, particularly over the extratropical 

Southern Ocean (SO). I also applied the diabatic mixing rates derived from reanalyses to improve 

seasonal air-sea CO2 flux estimations across different latitudes over the SO. In Chapter 4, I explore 

the role of large-scale CO2 transport in interpreting long-term CO2 variability at low-latitude 

stations like Mauna Loa (MLO). It identifies circulation changes as key contributors to variations 

in CO2 seasonal cycle amplitude at MLO and establishes correlations with climate modes like the 

Pacific Decadal Oscillation. The implications are significant for ecosystem studies, suggesting that 

using observed CO2 at low-latitude to constrain large-scale ecosystem changes requires a correct 

representation of large-scale CO2 transport. 

Collectively, this thesis represents a multifaceted approach to promote our understanding 

of the global carbon cycle and atmospheric tracer transport, by leveraging new data types and 

developing novel analytical tools. The findings support technical advancement in atmospheric 

science and have broad implications for carbon-climate feedback, climate variability, and global 

biogeochemical cycles.
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INTRODUCTION 

 

Long-term observations of atmospheric CO2 and O2 are critical for assessing the exchange 

rates of these trace gases across multiple reservoirs, such as ecosystems, oceans, and the 

atmosphere. These exchange rates are crucial indicators for understanding carbon-climate 

feedback, changes in global climate and biogeochemistry under internal natural variability and 

externally forced variability (e.g., human activities). At surface stations (e.g., Mauna Loa, MLO), 

both CO2 and O2 observations reveal several essential patterns: 

1. Long-term Trends: The increasing atmospheric CO2 and decreasing O2 are primarily 

attributed to anthropogenic factors, most notably the burning of fossil fuels. The increase in CO2 

is partly offset (~45%) by the uptake from the land biosphere and ocean, while the decrease in O2 

is partly offset (~15%) by the net O2 release from the land biosphere due to photosynthesis, and 

from the ocean due to ocean heat flux. 

2. Seasonal Cycles: Both CO2 and O2 show seasonal variations that are closely related to 

land ecosystem photosynthesis and respiration, and the interaction of ocean thermal, biological, 

and ventilation changes. At the mid- to high-latitude stations in the Northern Hemisphere, the 

amplitude of the CO2 seasonal cycle (SCA) has increased since the 1960s, which indicates 

enhanced growing season ecosystem productivity, probably due to rising CO2 (i.e., CO2 

fertilization effect) and land temperature (Graven et al., 2013; Keeling et al., 1996). 

3. Interannual to Decadal Variability: The fluctuations of annual mean CO2 and O2 at 

surface stations are influenced by a variety of factors, including natural climate variability (e.g., 

ENSO, PDO, etc.) and volcanic eruptions. These natural events contribute to variability in global 

temperature, precipitation, and ocean and atmospheric circulation, which effectively alter the 
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corresponding surface fluxes from the land ecosystem and ocean, and the large-scale transport of 

tracer gas to the station.  

Using atmospheric observations at stations to quantify the exchange rates and understand 

the global carbon cycle requires the correct representation of atmospheric tracer transport, which 

is conventionally achieved by atmospheric transport models (ATMs). This approach, which is  

referred to as atmospheric inversions (e.g., Rödenbeck et al., 2018), requires accurate simulation 

of advection, convection, and boundary height parameterizations in ATMs (Schuh et al., 2019). 

The approach also requires filtering observations to avoid signals related to local emissions and 

meteorology conditions which may not be resolved in the ATM. 

Over the past decade, global airborne campaigns (e.g., HIPPO and ATom) have provided 

CO2 and O2 observations with substantial spatial coverage from pole to pole, from surface to above 

tropopause, and with seasonal coverage (Prather et al., 2018; Wofsy, 2017). These airborne data, 

on the one hand, provide additional information on the global carbon cycle from the free 

troposphere that is not sensitive to local conditions (e.g., Graven et al., 2013). On the other hand, 

the spatial gradients of airborne observations also provide constraints on simulated tracer transport 

in the troposphere (e.g., Stephens et al., 2007).  

In this thesis, I develop a series of tools for making the best use of airborne data, which 

includes a transformed coordinate system, and includes box models based on the coordinate to 

invert airborne data. I explore several aspects of using airborne CO2 and O2 data to promote our 

understanding of the global carbon cycle and large-scale atmospheric tracer transport. 

Airborne data have been used to study the spatial and temporal distribution of CO2 and O2, 

for example, the regular seasonal cycles and gradients with pressure and latitudes (Conway & 

Tans, 1999; Ehhalt, 1978; Ishidoya et al., 2022; Randerson et al., 1997; Rasmussen & Khalil, 1981; 
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Tohjima et al., 2012). However, patterns inferred from individual airborne campaigns are 

potentially distorted by synoptic weather disturbances, especially at middle to high latitudes 

(Parazoo et al., 2008; Wang et al., 2007). One approach to correcting synoptic distortion is to use 

transformed coordinates that consider atmospheric dynamics and transport barriers. For example, 

the isentropic coordinate (θ) has been widely applied to evaluate the distribution of CO2 in the 

troposphere (Miyazaki et al., 2008; Parazoo et al., 2011, 2012) taking advantage of two 

characteristics: (1) θ and the tracer tend to be similarly displaced while air parcels moving with 

synoptic disturbances (Keppel-Aleks et al., 2011); (2) vertical mixing tends to be rapid on θ 

surfaces, so θ and tracer contours are often nearly parallel (Barnes et al., 2016). However, θ varies 

greatly with latitude and altitude over seasons due to changes in heating and cooling with solar 

insolation, which complicates the interpretation of θ–tracer relationships on seasonal timescales. 

Chapter 1 introduces a transformed isentropic coordinate Mθe, which is defined as the dry 

air mass under a given equivalent potential temperature surface (θe) within a hemisphere. The Mθe 

coordinate is similar to θe on the synoptic scale, but has a more stable relationship to latitude and 

altitude over seasons (i.e., small seasonal displacement). The Mθe coordinate was originally 

conceived as a means to organize airborne data while correcting for variability due to meteorology 

conditions, and to calculate the atmospheric inventory of trace gases, taking advantage of the 

coordinate having airmass as the unit. These early applications are presented in Chapters 1 and 2. 

Chapter 1 also explore fundamental meteorological questions of what processes control the 

temporal variation in the θe-Mθe relation.  During this work, it become evident that the Mθe 

coordinate had further applications, including deriving atmospheric diabatic mixing rates (i.e., 

mixing across isentropes), which are crucial metrics to validate ATMs, and building Mθe-aligned 
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box models to derive surface tracer flux rate from airborne observations. These two applications 

are described in Chapter 3.  

Chapter 2 explores the application of the Mθe coordinate to study the troposphere 

atmospheric potential oxygen (APO ~ O2 + CO2) and the seasonal air-sea fluxes on the hemispheric 

scale. APO is a tracer for air-sea O2 flux with little sensitivity to the terrestrial exchange of O2 and 

CO2. Precise quantification of seasonal air-sea APO flux cycles helps us to better understand the 

upper-ocean biological activities, thermally-induced solubility changes, and ocean ventilation, 

which effectively add complementary information about the ocean carbon cycle. Observation-

based APO flux estimates are available using surface station data from the Scripps O2 program 

network, and Japanese station and shipboard measurements over the Western Pacific through an 

inversion approach (Rödenbeck et al., 2008). Flux estimates are also available using surface ocean 

dissolved O2 measurements that are interpolated by weighing ocean heat flux anomalies (Garcia 

& Keeling, 2001). Chapter 2 presents the first estimates of the hemispheric scale seasonal flux 

using free troposphere airborne data of HIPPO and ATom campaigns. The seasonal APO flux 

estimates identify clear hemispheric asymmetries, pointing to different physical and biological 

processes that drive the surface ocean dissolved oxygen changes between two hemispheres, 

including the formation of subsurface oxygen maximum zone in the Northern Hemisphere, faster 

oxygen equilibration time in the north, etc. The airborne-based flux estimates benchmark modeled 

O2 outgassing products, highlighting the limitations in the atmospheric inversion approach arising 

from not enough spatial coverage of surface stations and biases in large-scale atmospheric 

transport simulated by ATMs. 

Chapter 3 extends the applications of the Mθe coordinate in two novel contexts: estimating 

seasonal air-sea CO2 flux over three coarse latitudinal bands in the Southern Ocean (SO), and 
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constraining atmospheric tracer transport over the extratropical SO using airborne CO2 data from 

the HIPPO, ORCAS, and ATom campaigns. This research builds on earlier work of Long et al. 

(2021), who employed the same airborne data sets to estimate the seasonal cycle of SO CO2 flux 

in one band (90°S to 45°S) by relying on atmospheric CO2 gradients across potential temperature 

(θ) as emergent constraints on the underlying air-sea flux. Long et al. derive the flux-gradient 

relation using flux from multiple CO2 inversion products or observation-based products, and 

gradients from ATMs which forward transport corresponding flux.  

Chapter 3 improves upon Long et al. in several respects. I conduct a systematic analysis of 

uncertainty in ATMs, arguing that the simulated gradient-flux relationship could be skewed by the 

specific choice of ATM, given that this flux-gradient relation varies across different models. I 

discovered that, in ATMs, the timescale of CO2 transport across Mθe (or θe) serves as the pivotal 

factor influencing large-scale CO2 redistribution. This insight led me to formulate two evaluative 

constraints for ATMs. One constraint is based on observed and simulated atmospheric CO2 

gradients across Mθe surfaces. The other constraint is based on parameterized diabatic mixing rates 

(mixing rates across Mθe) derived from ATMs, and from moist static energy (MSE) budgets of 

reanalyses. These two types of mixing rates are derived from a Mθe-aligned box model. Two 

constraints converge in showing that ATMs overestimate the diabatic mixing rates over the mid- 

to high-latitudes of the SO, and suggest that the mixing rates derived from reanalyses are more 

realistic. The Mθe-aligned box model could further be applied to derive seasonal SO CO2 flux over 

three latitude bands rather than one band in Long et al. (2021), while CO2 exchange between boxes 

is constrained by mixing rates derived from reanalyses. My flux estimate scales down the summer-

time CO2 uptake over the high-latitudes SO as in Long et al. (2021). The derived flux shows clear 

changes in the seasonal cycles over latitudes, suggesting a clear meridional change in biological 
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production/mixing processes and temperature-related solubility changes that drive seasonal 

changes in dissolved inorganic carbon (DIC). 

Understanding the large-scale CO2 transport is also important in interpreting CO2 

variabilities on a station level, for example, at MLO. A prominent feature of long-term CO2 

changes is an increase in the CO2 seasonal cycle amplitude (SCA), which has a larger relative 

increase at higher latitudes at both surface stations and along airborne transects (Forkel et al., 2016; 

Graven et al., 2013). At MLO (19.5°N), a ∼15% increase has been observed from 1959 to the early 

2010s, while at northern high-latitude station Barrow (BRW, 71.3°N), the increase of the same 

time period is ∼35% (Graven et al., 2013). These long-term amplitude trends are superimposed on 

considerable interannual to decadal variability (Keeling et al., 1996), which are driven by enhanced 

growing-season ecosystem productivity over the northern temperate and boreal forest (Graven et 

al., 2013; Lin et al., 2020), but modulated by variations in atmospheric circulation.  

In Chapter 4, I examined the relative contribution of circulation changes to the MLO CO2 

SCA on the decadal scale and over the long term. I find a third of the observed MLO SCA 

increasing trend is offset by circulation changes. On the decadal scale, I find that the MLO SCA 

change is highly correlated with PDO-related wind patterns, which effectively modulate the 

sensitivity of MLO to the ecosystem CO2 flux from the Eurasia boreal forest. The results highlight 

the significant role of changing circulation on the variability and SCA trend at MLO as well as 

other low-latitude stations. The implications of these findings are far-reaching, emphasizing the 

need for nuanced interpretation when using observed SCA variability and trend to constrain large-

scale ecosystem changes, such as the enhanced magnitude of CO2 fertilization effect (Wenzel et 

al., 2016) and North America drought (Buermann et al., 2007). 
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Chapter 1 A mass-weighted isentropic coordinate for mapping chemical tracers and computing 

atmospheric inventories 

 

Abstract 

We introduce a transformed isentropic coordinate Mθe, defined as the dry air mass under a 

given equivalent potential temperature surface (θe) within a hemisphere. Like θe, the coordinate 

Mθe follows the synoptic distortions of the atmosphere, but unlike θe, has a nearly fixed relationship 

with latitude and altitude over the seasonal cycle. Calculation of Mθe is straightforward from 

meteorological fields. Using observations from the recent HIPPO and ATom airborne campaigns, 

we map the CO2 seasonal cycle as a function of pressure and Mθe, where Mθe is thereby effectively 

used as an alternative to latitude. We show that the CO2 seasonal cycles are more constant as a 

function of pressure using Mθe as the horizontal coordinate compared to latitude. Furthermore, 

short-term variability of CO2 relative to the mean seasonal cycle is also smaller when the data are 

organized by Mθe and pressure than when organized by latitude and pressure. We also present a 

method using Mθe to compute mass-weighted averages of CO2 on a hemispheric scale. Using this 

method with the same airborne data and applying corrections for limited coverage, we resolve the 

average CO2 seasonal cycle in the Northern Hemisphere (mass weighted tropospheric 

climatological average for 2009-2018), yielding an amplitude of 7.8 ± 0.14 ppm and a downward 

zero-crossing at Julian day 173 ± 6.1 (i.e., late June). Mθe may be similarly useful for mapping the 

distribution and computing inventories of any long-lived chemical tracer. 

1.1 Introduction 

The spatial and temporal distribution of long-lived chemical tracers like CO2, CH4, and 

O2/N2 typically includes regular seasonal cycles and gradients with latitude and pressure (Conway 

and Tans, 1999; Ehhalt, 1978; Randerson et al., 1997; Rasmussen and Khalil, 1981; Tohjima et 
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al., 2012). These patterns are evident in climatological averages but are potentially distorted on 

short time scales by synoptic weather disturbances, especially at middle to high latitudes (i.e. 

poleward of 30° N/S) (Parazoo et al., 2008; Wang et al., 2007). With a temporally-dense dataset 

such as from satellite remote sensing or tower in-situ measurements, climatological averages can 

be created by averaging over this variability. For temporally sparse datasets such as from airborne 

campaigns, it may be necessary to correct for synoptic distortion.  

A common approach to correct synoptic distortion is to use transformed coordinates rather 

than geographic coordinates (i.e., pressure-latitude), to take into account atmospheric dynamics 

and transport barriers. Such coordinate transformation has been used, for example, to reduce 

dynamically induced variability in the stratosphere using equivalent latitude rather than latitude as 

horizontal coordinate (Butchart and Remsberg, 1986), to diagnose tropopause profile using 

tropopause-based rather than surface-based vertical coordinate (Birner et al., 2002), to study 

transport regime in the Arctic using a horizontal coordinate based on Polar Dome (Bozem et al., 

2019), and to study UTLS (Upper Troposphere Lower Stratosphere) tracer data by using 

tropopause-based, jet-based, and equivalent latitude coordinates (Irina et al., 2019). In the 

troposphere, a transformed coordinate, isentropic coordinate (θ) has been widely applied to 

evaluate the distribution of tracer data (Miyazaki et al., 2008; Parazoo et al., 2011, 2012). As air 

parcels move with synoptic disturbances, θ and the tracer tend to be similarly displaced so that the 

θ-tracer relationship is relatively conserved (Keppel-Aleks et al., 2011). Furthermore, vertical 

mixing tends to be rapid on θ surfaces, so θ and tracer contours are often nearly parallel (Barnes 

et al., 2016). However, θ varies greatly with latitude and altitude over seasons due to changes in 

heating and cooling with solar insolation, which complicates the interpretation of θ-tracer 

relationships on seasonal time scales. 
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During analysis of airborne data from the HIAPER Pole-to-Pole Observations (HIPPO) 

(Wofsy, 2011) and the Atmospheric Tomography Mission (ATom) (Prather et al., 2018) airborne 

campaigns, we have found it useful to transform potential temperature into a mass-based unit, Mθ, 

which we define as the total mass of dry air under a given isentropic surface in the hemisphere. In 

contrast to θ, which has large seasonal variation, Mθ has a more stable relationship to latitude and 

altitude, while varying in parallel with θ on synoptic scales. Also, for a tracer which is well-mixed 

on θ, a plot of this tracer versus Mθ can be directly integrated to yield the atmospheric inventory 

of the tracer, because Mθ directly corresponds to the mass of air. We note that a similar concept to 

Mθe has been introduced in the stratosphere by Linz et al. (2016), in which M(θ) is defined as the 

mass above the θ surface, to study the relationship between age of air and diabatic circulation of 

the stratosphere. 

Several choices need to be made in the definition of Mθ, including defining boundary 

conditions (e.g. in altitude and latitude) for mass integration and whether to use potential 

temperature θ or equivalent potential temperature θe. Here, for boundaries, we use the dynamical 

tropopause (based on potential vorticity unit, PVU) and the Equator, thus integrating the dry air 

mass of the troposphere in each hemisphere. We also focus on Mθ defined using equivalent 

potential temperature (θe) to conserve moist static energy in the presence of latent heating during 

vertical motion, which improves alignment between mass transport and mixing especially within 

storm tracks in mid-latitudes (Parazoo et al., 2011; Pauluis et al., 2008, 2010). We call this tracer 

Mθe. 

In this paper we describe the method for calculating Mθe and discuss its variability on 

synoptic to seasonal scales. We also discuss the time variation of the θe-Mθe relationship within 

each hemisphere and explore the stability of Mθe and θe-Mθe relationship using different reanalysis 
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products. To illustrate the application of Mθe, we map CO2 data from two recent airborne 

campaigns (HIPPO and ATom) on Mθe. Further, we show how Mθe can be used to accurately 

compute the average CO2 concentration over the entire troposphere of the Northern Hemisphere 

using measurements from the same airborne campaigns. We examine the accuracy of this method 

and propose an appropriate way to sample the atmosphere with aircraft to compute the average of 

a chemical tracer within a large zonal domain.  

1.2 Methods 

1.2.1 Meteorological reanalysis products 

The calculation of Mθe requires the distribution of dry air mass and θe. For these quantities, 

we alternately use three reanalysis products: ERA-Interim (Dee et al., 2011), NCEP2 (Kanamitsu 

et al., 2002), and Modern-Era Retrospective analysis for Research and Applications Version 2 

(MERRA-2) (Gelaro et al., 2017). All products have 2.5° horizontal resolution. NCEP2 has daily 

resolution and we average 6-hourly ERA-Interim fields and 3-hourly MERRA-2 fields to yield 

daily fields. ERA-Interim has 32 vertical levels from 1000 mbar to 1 mbar, with approximately 20 

to 27 levels in the troposphere. NCEP2 has 17 vertical levels from 1000 mbar to 10 mbar, with 

approximately 8 to 12 levels in the troposphere. MERRA-2 has 42 vertical levels from 985 mbar 

to 0.01 mbar, with approximately 21 to 25 levels in the troposphere. 

1.2.2 Equivalent potential temperature (θe) and dry air mass (M) of the atmospheric fields 

We compute θe (K) using the following expression: 

θe = (T+
Lv(T)

Cpd
⋅ w) ⋅ (

P0
P
)

Rd
Cpd

(1.1) 

from Stull (2012). T(K) is the temperature of air, w (kg water vapor per kg air mass) is the 

water vapor mixing ratio, Rd (287.04, J kg-1 K-1) is the gas constant for air, Cpd (1005.7 J kg-1 K-

1) is the specific heat of dry air at constant pressure, P0 (1013.25, mbar) is the reference pressure 
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at the surface, and Lv(T) is the latent heat of evaporation at temperature T. Lv(T) is defined as 

2406 kJ kg-1 at 40 °C, and 2501 kJ kg-1 at 0 °C and scales linearly with temperature.  

Following Bolton (1980), we compute water vapor mixing ratio (w) from relative humidity 

(RH, kg kg-1) provided by the reanalysis products and the formula for saturation mixing ratio of 

water vapor (Ps,v, mbar) modified by Wexler (1976). 

Ps,v = 0.06122 ⋅ e
17.67⋅T
T+243.5 (1.2) 

w = RH ⋅ 0.622 ⋅
Ps,v

P − Ps,v
(1.3) 

We compute the total air mass of each grid cell x at time t, Mx(t), shown in Eq. 4, from the 

product of pressure range and surface area, and divided by a latitude and height dependent gravity 

constant provided by Arora et al. (2011). The surface area is computed by using latitude (Փ), 

longitude (λ), radius of the earth (R, 6371 km). The total air mass of each grid cell is computed 

from 

Mx =
ΔP

g
⋅ |Δ sin(Փ) ⋅ Δ λ| ⋅ R2 (1.4) 

where Δ represents the difference between two boundaries of each grid cell.  

The gravity constant (g, kg m-2) is computed following Arora et al. (2011) as: 

g(Փ, h) = g0 ⋅ (1 + 0.0053 ⋅ sin
2(Փ) − 0.000006 ⋅ sin2(2 ⋅Փ)) − 0.000003086 ⋅ h (1.5) 

where the reference gravity constant (g0) is assumed to be 9.78046 m s-2, and the height 

(h) in unit of m is computed from   

P = P0 ⋅ e
−
h
H (1.6) 

where H is the scale height of the atmosphere and assumed to be 8400 m. 

The dry air mass is then computed by subtracting the water mass, computed from relative 

humidity, saturation water vapor mass mixing ratio, and total air mass of the grid cell (Eq. 3). Since 
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this study focuses on tracer distributions in the troposphere, we compute Mθe with an upper 

boundary at the dynamical tropopause defined as the 2 PVU (potential vorticity units, 10-6 K kg-1 

m2 s-1) surface.  

ERA-Interim and NCEP2 include hypothetical levels below the true land/sea surface, for 

example, the 850 hPa level over the Himalayan, which we exclude in the calculation of Mθe. 

1.2.3 Determination of Mθe 

We show a schematic of the conceptual basis for the calculation of Mθe in Figure 1.1. To 

compute Mθe, we sort all tropospheric grid cells in the hemisphere by increasing θe, and sum the 

dry air mass over grid cells following  

Mθe(θe, t) =∑Mx(t)|θex<θe
(1.7) 

where Mx(t) is the dry air mass of each grid cell x at time t, and θex is the equivalent 

potential temperature of the grid cell. The sum is over all grid cells with θex less than θe. 

This calculation yields a unique value of Mθe for each value of θe. We refer to the 

relationship between θe and Mθe as the “θe-Mθe look-up table”, which we generate at daily 

resolution. We provide this look-up table for each hemisphere computed from ERA-Interim from 

1980 to 2018 with daily resolution and from the lowest to the highest θe surface in the troposphere 

with 1 K interval (see data availability). 
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Figure 1.1: Schematic of the conceptual basis to calculate Mθe. Mθe of a given θe surface is 

computed by summing all dry air mass with a low equivalent potential temperature in the 

troposphere of the hemisphere. This calculation yields a unique θe-Mθe relation at a given time 

point. 

 

1.3 Characteristics of Mθe 

1.3.1 Spatial and temporal distribution of Mθe 

Figure 1.2 shows snapshots of the distribution of zonal average θe and Mθe with latitude 

and pressure at two arbitrary time slices (1 January 2009, 1 July 2009). Mθe is not continuous 

across the Equator because it is defined separately in each hemisphere. By definition, each Mθe 

surface is exactly aligned with a corresponding θe surface, and Mθe surfaces have the same 

characteristics as θe surfaces, which decrease with latitude and generally increase with altitude. 

Whereas, the zonal average θe surfaces vary by up to 20 degrees in latitude over seasons, the 

meridional displacement of zonal average Mθe is much smaller, with less than 5 degrees in latitude 

poleward of 30°N/S, as expected, because the zonal average displacement of atmospheric mass 

over seasons is small. This small seasonal displacement is closely associated with the seasonality 

of vertical sloping of θe surfaces (Figure 1.2). As the mass under each Mθe surface is always 

constant, the change in tilt must cause the meridional displacement. In the summer, the tilt is 
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steeper (due to increased deep convection) so Mθe surfaces move poleward in the lower 

troposphere but move equatorward in the upper troposphere.  

 

Figure 1.2: Snapshot of the distribution of (a) zonal average θe surfaces on 1 January 2009 (solid 

lines) and 1 July 2009 (dashed lines), (b) zonal average Mθe surfaces on 1 January 2009 (solid 

lines) and 1 July 2009 (dashed lines). The zonal average tropopause is also shown here for 1 

January 2009 (solid black line) and 1 July 2009 (dashed black line). θe, Mθe and tropopause are 

computed from ERA-Interim. 

 

Mθe surfaces at given meridians (Figure 1.3) in the Northern Hemisphere show clear zonal 

asymmetry, with larger and more complex displacements compared to the zonal averages, 

associated with differential heating by land and ocean, and orographic stationary Rossby waves 

(Hoskins and Karoly, 1981; Wills and Schneider, 2018).  For example, over the Northern 

Hemisphere ocean at 180°E (Figure 1.3a) and from the summer to winter, Mθe surfaces move 



 

 17 

poleward in the mid- to high latitude (e.g. poleward of 45°N), but move equatorward in the mid- 

to low latitude lower troposphere (e.g. equatorward of 45°N, 900 – 700 mbar), with the magnitude 

smaller than 10 degrees latitude in both. In comparison, over the Northern Hemisphere land at 

100°E (Figure 1.3b) and from the summer to winter, Mθe surfaces moves equatorward by up to 30 

degrees latitude, except high latitude middle troposphere (e.g. poleward of 70°N, ~ 500 mbar), 

where the flat Mθe surfaces lead to slightly poleward displacements. In the Southern Hemisphere, 

in contrast, the summer to winter displacements of the 180°E and 100°E sections are similar to the 

zonal average.  

At lower latitudes, the zonal averages of Mθe and θe both exhibit strong secondary maxima 

near the surface associated with the Hadley circulation (Equatorward of 30° N/S) and in the 

summer, driven by high water vapor. From the contours in Figure 1.2, this surface branch of high 

Mθe and θe appears disconnected from the upper tropospheric branch. In fact, these two branches 

are connected through air columns undergoing deep convection, which are not resolved in the 

zonal means shown in Figure 1.2, but are resolved in some meridians (e.g. Figure 1.3a). We also 

note that, over the land at 100°E (Figure 1.3b), the two disconnected Mθe and θe branches in the 

Northern Hemisphere summer are displaced poleward compared to the zonal average, consistent 

with a northward shift of intertropical convergence zone (ITCZ) over southern Asia. The existence 

of these two branches may limit some applications of Mθe, as discussed in Section 4. 
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Figure 1.3: Mθe surfaces as Jan-2009 average (solid lines) and July-2009 average (dashed lines) 

for (a) 180°E (mostly over the Pacific Ocean), and (b) 100°E (mostly over the Eurasia land in the 

Northern Hemisphere). Mθe and tropopause are computed from ERA-Interim. 

 

Figure 1.4 shows the zonal average meridional displacement of θe and Mθe with daily 

resolution. In summer, Mθe surfaces displace poleward in the lower troposphere but equatorward 

in the upper troposphere. The displacements in the lower troposphere (925 mbar) are greater in the 

Northern Hemisphere, where the Mθe = 140 (1016 kg) surface, for example, displaces poleward by 

10 degrees in latitude between winter and summer (Figure 1.4b). Beside the seasonal variability, 

Figure 1.4 also shows evident synoptic-scale variability. 
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Figure 1.4: Time series of meridional displacement of selected zonal average θe (K) surfaces over 

a year at (a) 500 mbar, (b) 700 mbar and (c) 925 mbar. Meridional displacement of selected zonal 

average Mθe (1016 kg) surfaces over a year at (d) 500 mbar, (e) 700 mbar and (f) 925 mbar. The 

value of each surface is labelled. θe and Mθe are computed from ERA-Interim. Results shown are 

for year 2009. 

 

Since the tilting of θe surfaces has an impact on the seasonal displacement of Mθe surfaces, 

the contribution of different pressure levels to the mass of a given Mθe bin must also vary with 

season. In Figure 1.5, we show these contributions as two daily snapshots on 1 January 2009 and 

1 July 2009. Low Mθe bins consist of air masses mostly below 500 mbar near the Pole. As Mθe 

increases, the contribution from the upper troposphere gradually increases while the contribution 

from the surface to 800 mbar decreases to its minimum at around 100 to 120 (1016 kg). The 
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contribution from the surface to 800 mbar increases as Mθe increases above 120 (1016 kg). The 

mass fraction shows only small variations with season, with the lower troposphere (Surface to 800 

mbar) contributing slightly less in the low Mθe bands and slightly more in the high Mθe bands in 

the summer, which is closely related to the seasonal tilting of corresponding θe surfaces. 

 

Figure 1.5: Snapshots (1 January 2009 and 1 July 2009) of the mass distribution of different Mθe 

bins from three pressure bins (surface to 800 mbar, 800 mbar to 500 mbar, and 500 mbar to 

tropopause). Mθe is computed from ERA-Interim. Low Mθe bins are seen to have larger 

contributions from the air near the surface, and high Mθe bins have larger contributions from air 

aloft. Comparing the top and the bottom panels shows that the seasonal differences in pressure 

contributions are small except for the highest Mθe bins (160-180, 1016 kg) and the lowest Mθe bin 

in the northern hemisphere (0-20, 1016 kg). 



 

 21 

1.3.2 θe-Mθe relationship 

Figure 1.6 compares the temporal variation of Mθe of several given θe surfaces (i.e., θe-Mθe 

look-up table) computed from different reanalysis products for 2009. The deviations are 

indistinguishable between ERA-Interim and MERRA-2, except near θe = 340 K, where MERRA-

2 is systematically lower than ERA-Interim by 1.5 to 6.5 (1016 kg). NCEP2 shows slightly larger 

deviations from ERA-Interim, but less than 8.5 (1016 kg). The products are highly consistent in 

seasonal variability, and they also show agreement on synoptic time scales. The small difference 

between products is expected because of different resolutions and methods (Mooney et al., 2011). 

We expect these differences would be negligible for most applications of Mθe. 

Figure 1.6 shows that, in both hemispheres, Mθe reaches its minimum in summer and 

maximum in winter for a given θe surface, with the largest seasonality at the lowest θe (or Mθe) 

values. The seasonality decreases as θe increases, following the reduction in the seasonality of 

shortwave absorption at lower latitudes (Li and Leighton, 1993). The seasonality is smaller in the 

Southern Hemisphere, consistent with the larger ocean area and hence greater heat capacity and 

transport (Fasullo and Trenberth, 2008; Foltz and McPhaden, 2006). Figure 1.6 also shows that 

Mθe has significant synoptic-scale variability but smaller than the seasonal variability. Synoptic 

variability is typically larger in winter than summer, as discussed below. 



 

 22 

 

Figure 1.6: Variability of Mθe of given θe surfaces (i.e., θe-Mθe look-up table) over a year with daily 

resolution in the Northern and Southern Hemisphere. Data from ERA-Interim is shown as a solid 

line, MERRA-2 is shown as a dashed line and NCEP2 is shown as a dotted line.  Results shown 

are for year 2009. 

 

1.3.3 Relationship to diabatic heating and mass fluxes 

A key step of the application of Mθe for interpreting tracer data is the generation of the 

look-up table that relates θe and Mθe. In this section, we address a tangential question of what 

controls the temporal variation of the look-up table, which is not necessary for the application but 

may be of fundamental meteorological interest.  

As shown in Appendix A, the temporal variation of the lookup table, Mθe
̇  = 

∂

∂t
Mθe(θe, t), 

can be related to underlying mass and heat fluxes according to   
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Mθe
̇  = −

1

Cpd

∂Qdia(θe, t)

∂θe
+mT(θe, t) + mE(θe, t) (1.8) 

where 
∂Qdia(θe,t)

∂θe
 (J s-1 K-1) is the effective diabatic heating, integrated over the full θe 

surface per unit width in θe, mT(θe, t) (kg s-1) is the net mass flux across the tropopause and 

mE(θe, t) (kg s-1) is the net mass flux across the Equator, including all air with equivalent potential 

temperature less than θe. Qdia has contributions from internal heating without ice formation (Qint
′ ), 

heating from ice formation (Qice), sensible heating from the surface (Qsen), surface evaporation 

(Qevap), turbulent diffusion of heat (Qdiff), and turbulent transport of water vapor (QH2O) following 

Qdia(θe, t) = Qint
′ (θe, t) + Qice(θe, t) + Qsen(θe, t)

+Qevap(θe, t) + Qdiff(θe, t) + QH2O(θe, t) (1.9)
 

The terms Qevap and QH2O are expressed as heating rates by multiplying the underlying 

water fluxes by Lv(T)/Cpd.  In order to quantify the dominant processes contributing to temporal 

variation of Mθe, the terms in Eqs. 1.8 and 1.9 must be linked to diagnostic variables available in 

the reanalysis or model products. Although there was no perfect match with any of the three 

reanalysis products, MERRA-2 provides temperature tendencies for individual processes, which 

can be converted to heating rates per Eq. 9 following  

∂Qi(θe, t)

∂θe
=
Cpd
 Δθe 

∑(
dT

dt
)
x,i
Mx 

x

(1.10) 

where i refers a specific process (Qint
′ , Qice, etc.), (

dT

dt
)
x
 (K s-1) is the temperature tendency 

of grid cell x, Mx (kg) is the mass of grid cell x, and Δθe is the width of the θe surface.   

There are 5 heating terms provided in the MERRA-2 product, which we can approximately 

relate to terms in Eq. 9, as shown in Table 1.1. The first three terms (Qrad, Qdyn, and Qana) can be 

summed to yield Qint
′ , the forth (Qtrb) is equal to the sum of Qdiff and Qsen, and the fifth (Qmst) 
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approximates the sum of Qice  and Qevap. MERRA-2 does not provide terms corresponding to 

QH2O or Qevap but Qmst represents heating due to moist processes, which includes Qice plus water 

vapor evaporation and condensation within the atmosphere. This water vapor evaporation and 

condensation should be approximately equal to Qevap with small time lag when integrated over a 

θe surface because mixing is preferentially along θe surfaces and water vapor released into a θe 

surface by surface evaporation will tend to transport and precipitate from the same θe surface 

within a short time period (Bailey et al., 2019). Thus, the MERRA-2 term for heating by moist 

processes (Qmst) should approximate Qice + Qevap.  

Table 1.1: Correspondence of heating variables between our derivation (Eq. 1.9) and MERRA-2. 

Diabatic heating terms in our derivation (Eq. 1.9) Diabatic heating terms in MERRA-2, 
∂Qi(θe,t)

∂θe
 

Qint
′  

1. Radiative heating (i.e., sum of shortwave 

and longwave radiative heating, Qrad) 

+ 

2. Absorption of kinetic energy that breaking 

the eddies (Qdyn) 

+ 

3. The analysis tendency introduced during 

the corrector segment of the Incremental 

Analysis Update (IAU) cycle (Qana) 

Qdiff + Qsen 
4. Turbulent heat flux including surface 

sensible heating (Qtrb) 

Qevap + Qice 

5. Moist processes including all latent 

heating due to condensation and 

evaporation as well as the mixing by 

convective parameterization (Qmst) 

QH2O Not available  
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Figure 1.7a compares the temporal variation of Mθe
̇  computed by integrating dry air mass 

(i.e., θe-Mθe look-up table) with Mθe computed from the sum of the diabatic heating terms from 

MERRA-2 (via Eq. 8 to Eq. 10). The comparison focuses on the θe = 300 K surface, which does 

not intersect with the Equator or tropopause, so that the two mass flux terms (mT, mE) vanish. 

These two methods have a high correlation at 0.71. We do not expect perfect agreement because 

Mθe
̇  computed by the sum of heating neglects turbulent water vapor transport (QH2O), and only 

approximates Qevap as discussed above. This relatively good agreement nevertheless demonstrates 

that the formulation based on MERRA-2 heating terms includes the dominant processes that drive 

temporal variations in the look-up table. Figure 1.7a shows poorer agreement from late August to 

October, which we also find in other years (Figure 1.15 and 1.16) and on lower (e.g., θe = 290K, 

Figure 1.17) but not higher surfaces (e.g., θe = 310K, Figure 1.18), where the two methods agree 

better. The poor agreement may reflect a partial breakdown of the assumption that Qmst 

approximates the sum of Qice and Qevap, but further analysis is beyond the scope of this study.  

Figure 1.7b further breaks down the sum of the heating terms in Eq. 8 and 10 from 

MERRA-2 into individual components. Each term clearly displays variability on synoptic to 

seasonal scales. To quantify the contribution of different terms on the different time scales, we 

separate each term into a seasonal and synoptic component, where the seasonal component is 

derived by a two-harmonic fit with constant offset and the synoptic component is the residual. We 

estimate the fractional contribution of each heating term on seasonal and synoptic time scales 

separately in Table 1.2, using the method in Supplementary 1.9.1. On the seasonal time scale, the 

variance is dominated by radiative heating and cooling of the atmosphere and moist processes 

(including both ice formation and extra water vapor from surface evaporation) together, with 
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prominent counteraction between each other. On the synoptic time scale, dissipation of kinetic 

energy of turbulence dominates the variance. 

Similar analyses on different θe surfaces and in different years (Figure 1.15 to 1.18) all 

show that combination of radiative heating and moist processes dominates the temporal variation 

of Mθe on the seasonal time scale, while dissipation of kinetic energy of turbulence dominates on 

the synoptic time scale. 

 

Figure 1.7: (a) Temporal variation of Mθe in the Northern Hemisphere at θe = 300 K computed by 

integrating air mass (blue line) and estimated from the sum of five heating terms (Table 1.1) in 

MERRA-2 (black line).  (b) The heating variables decomposed into five contributions as indicated 

(see Table 1.1).  Results shown are for year 2009. 
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Table 1.2: Fractional contribution of the individual heating terms in Figure 1.7b to their sum for 

θe = 300K. The analysis is done separately on synoptic and seasonal components. The seasonal 

component is based on a 2-harmonic fit and the synoptic component is defined as the residual. The 

fractional contributions sum to 1, while a positive contribution means in phase and negative 

contribution means anti-phase. A contribution in absolute value that is bigger than 1 illustrates that 

the variability of the heating term is larger than the variability of the sum on the corresponding 

time scale. 

Heating terms Seasonal component Synoptic component 

Qrad 2.25 0.03 

Qmst -1.39 0.07 

Qdyn 0.24 0.72 

Qdyn 0.21 0.11 

Qana -0.31 0.07 

Sum 1 1 

 

1.4 Applications of Mθe as an atmospheric coordinate 

To illustrate the potential application of Mθe for interpreting sparse data, we focus on the 

seasonal cycle of CO2 in the Northern Hemisphere as resolved by two series of global airborne 

campaigns, HIPPO and ATom. HIPPO consisted of five campaigns between 2009 and 2011 and 

ATom consisted of four campaigns between 2016 and 2018. Each campaign covered from ~ 150 

m to ~ 14000 m and from nearly Pole to Pole, along both northbound and southbound transects. 

On HIPPO, both transects were over the Pacific Ocean, while on ATom, southbound transects 

were over the Pacific Ocean and northbound transects were over the Atlantic Ocean. The flight 

tracks are shown in Figure 1.8a. We aggregate data from each campaign into northbound and 

southbound transects within each hemisphere, but only use data from the Northern Hemisphere. 

We only consider tropospheric observations by excluding measurements from the stratosphere, 

which is defined by observed water vapor less than 50 ppm and either O3 greater than 150 ppb or 

detrended N2O to the reference year of 2009 less than 319 ppb. Water vapor and O3 were measured 

by the NOAA UCATS (UAS Chromatograph for Atmospheric Trace Species, Hurst) instrument 

and were interpolated to 10-sec resolution. N2O was measured by the Harvard QCLS (Quantum 

Cascade Laser System, Santoni et al., 2014) instrument. Furthermore, we exclude all near-surface 
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observations within ~ 100 seconds of take-offs, within ~ 600 seconds of landings, and missed 

approaches, which usually show high CO2 variability due to strong local influences. In-situ 

measurements of CO2 were made by 3 different instruments on both HIPPO and Atom. Of these, 

we use the CO2 measurements made by the NCAR Airborne Oxygen Instrument (AO2) with a 2.5 

seconds measurement interval (Stephens et al., 2020), for consistency with planned future 

applications to APO (atmospheric potential oxygen) computed from AO2. The differences 

between instruments are small for our application (Santoni et al., 2014). The data used in this study 

are averaged to 10-sec resolution and we show the detrended CO2 values along each airborne 

campaign transect for the Northern Hemisphere in Figure 1.8b. Since we focus on the seasonal 

cycle of CO2, all airborne observations are detrended by subtracting an interannual trend fitted to 

CO2 measured at the Mauna Loa Observatory (MLO) by the Scripps CO2 Program. This trend is 

computed by a stiff cubic spline function plus 4-harmonic terms with linear gain to the MLO 

record. Mθe is computed from ERA-Interim in this section. 
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Figure 1.8: (a) HIPPO and ATom horizontal flight tracks coloured by campaigns. (b) Latitude and 

pressure cross-section of detrended CO2 of each airborne campaign transect. CO2 is detrended by 

subtracting MLO stiff cubic spline trend, which is computed by a stiff cubic spline function plus 

4-harmonic functions with linear gain to MLO record. 
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1.4.1 Mapping Northern Hemisphere CO2 

 

Figure 1.9: Seasonal cycles of airborne Northern Hemisphere CO2 data sorted by (a) Mθe-pressure 

bins and (b) latitude-pressure bins. Mθe bins (1016 kg) and latitude bins are shown on the top of 

each panel. Pressure bins are coloured. The latitude bounds are chosen to approximate the 

meridional coverage of each corresponding Mθe bin in the lower troposphere. The seasonal cycle 

at MLO from 2009 to 2018 is shown on the 90–110 Mθe bin panel, which spans the Mθe of the 

station. Airborne observations are first grouped into Mθe-pressure or latitude-pressure bins, and 

then averaged for each airborne campaign transect, shown as points. We filter out the points 

averaged from less than 20 10-sec observations. The seasonal cycle of airborne data and MLO 

(2009-2018) are computed by a 2-harmonic fit to the detrended time series. The 1σ variability 

about the seasonal cycle fits for each Mθe-pressure or latitude-pressure bin are labelled on top of 

each panel. These 1σ values are based on the distribution of all binned observations (not shown), 

rather than the distribution of average CO2 of each bin and airborne campaign transect (shown). 

 

A conventional method to display seasonal variations in CO2 from airborne data is to plot 

time series of the data at a given location or latitude and different pressure levels (Graven et al., 
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2013; Sweeney et al., 2015). In Figure 1.9, we compare this method using HIPPO and ATom 

airborne data, binning and averaging the data from each airborne campaign transect by pressure 

and latitude bins, with our new method, binning the data by pressure and Mθe. For each latitude 

bin, we choose a corresponding Mθe bin which has approximately the same meridional coverage 

in the lower troposphere. We remind the reader that Mθe decreases poleward, while also generally 

increasing with altitude (Figures 1.2 to 1.4). 

As shown in Figure 1.9, the transect average of detrended CO2 (shown as points) from both 

binning methods resolve well-defined seasonal cycles (based on 2-harmonic fit) in all bins, with 

higher amplitudes near the surface (low pressure) and at high latitude (low Mθe). However, binning 

by Mθe leads to much smaller variations of the mean seasonal cycle (shown as solid curves) with 

pressure, as expected, because moist isentropes are preferential surfaces of mixing. Also, within 

individual pressure bins, the short-term variability relative to the mean cycles based on the 

distribution of all detrended observations (not shown as points but denoted as 1σ values in Figure 

1.9) is smaller when binning by Mθe (F-test, p < 0.01), except in the lower troposphere of the 

highest Mθe bin (90-110 1016 kg). The smaller short-term variability is expected because Mθe tracks 

the synoptic variability of the atmosphere. When binning by latitude, the smallest short-term 

variability is found at the lowest bin (surface-800 mbar) and the largest short-term variability is 

found in the highest bin (500 mbar-tropopause), except the highest latitude bin (45°N-55°N). 

When binning by Mθe, in contrast, the short-term variability in the middle pressure bin is always 

smaller than the higher and lower pressure bins (F-test, p < 0.01), except for the 50 to 70 Mθe bin, 

where the difference between the lowest and middle pressure bins is not significant (based on 1σ 

levels). The lower variability in the mid troposphere may reflect the suppression of variability from 

synoptic disturbances, leaving a clearer signal of the influence of surface fluxes of CO2 and 
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stratosphere-troposphere exchanges. We compare the variance of detrended airborne observations 

within each Mθe-pressure bin with its fitted value. The fitted seasonal cycle of each bin explains 

63.2% to 90.5% of the variability for different bins, with higher fractions in the middle 

troposphere.  

Figure 1.9 also shows the CO2 seasonal cycle at MLO, which falls within a single Mθe-

pressure bin (90-110 1016 kg, 500-800 mbar) at all seasons. Although the airborne data in this bin 

span a wide range of latitudes (~10°N-75°N), the seasonal cycle averaged over this bin is very 

similar to the cycle at MLO (airborne cycle leads by ~10 days with 1.0% lower amplitude). This 

small difference is within the 1σ uncertainty of our estimation from airborne observation, and some 

difference is expected, since we choose a Mθe-pressure bin wider than the seasonal variation of 

Mθe and pressure at MLO.  

It is also of interest to examine how CO2 data from surface stations fit into the framework 

based on Mθe. Figure 1.10 compares the CO2 seasonal cycle of five NOAA surface stations 

(Dlugokencky et al., 2019) with the cycle from the airborne observations binned into selected Mθe 

bins. These surface stations are chosen to be representative of different Mθe ranges. For the 

comparison, we chose Mθe bins that span the seasonal maximum and minimum Mθe value of the 

station. These bins are narrower than the bins used in Figure 1.9, in order to sharply focus on the 

latitude of the station. To maximize sampling coverage, we bin the airborne data only by Mθe 

without pressure sub-bins. For mid- and high latitude surface stations (right three panels), the 

seasonal amplitude of station CO2 and corresponding airborne CO2 are close (within 4-5%), while 

airborne cycles lag by 2-3 weeks. The lag presumably represents the slow mixing from the mid-

latitude surface to the high latitude mid-troposphere (Jacob, 1999). In contrast, for low latitude 

stations (left two panels) which generally sample trade winds, the seasonal cycles differ 
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significantly, indicating that the air sampled at these stations is not rapidly mixed along surfaces 

of constant Mθe or θe with air aloft. As mentioned above (Section 3.1), surfaces of high Mθe within 

the Hadley circulation have two branches, one near the surface and one aloft. A timescale of several 

months for transport from the lower to the upper branch can be estimated from the known 

overturning flows based on air mass flux streamfunctions (Dima and Wallace, 2003). This delay, 

plus strong mixing and diabatic effects (Miyazaki et al., 2008), ensures that the lower and upper 

branches are not well connected on seasonal time scales. Our results nevertheless demonstrate that 

the Mθe framework combining airborne and surface data could help understand details of 

atmospheric transport both along and across θe surfaces. 

 

Figure 1.10: CO2 seasonal cycles of multiple surface stations (2009-2018) compared to seasonal 

cycles of airborne observations averaged over corresponding Mθe bin. The choice of Mθe bin is to 

approximate the range of Mθe at each corresponding surface station and is shown on the top of 

each panel. Daily Mθe of the station is computed from ERA-Interim, based on its location. We 

detrend station and airborne observations by subtracting the MLO stiff cubic spline trend. We 

compute an average detrended CO2 for each airborne campaign transect and each Mθe bin, shown 

as black points. The seasonal cycles are computed from a 2-harmonic fit, with the seasonal 

amplitude (Amp.) shown on the upper right of each panel. 
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1.4.2 Computing the hemispheric mass-weighted average CO2 mole fraction 

We next illustrate the use of Mθe for computing the mass-weighted average of a long-lived 

chemical tracer by performing this exercise for CO2 in the Northern Hemisphere. We calculate the 

Northern Hemisphere tropospheric mass-weighted average CO2 from each airborne transect using 

a method that assumes that CO2 is uniformly mixed on θe surfaces throughout the hemisphere 

(Barnes et al., 2016; Parazoo et al., 2011, 2012). We exclude airborne observation from HIPPO-1 

Northbound due to the lack of data north of 40°N. We use the θe-Mθe lookup table of the 

corresponding date to assign a value of Mθe to each observation based on its θe. The observations 

for each transect are then sorted by Mθe. The hemispheric average CO2 is calculated by trapezoidal 

integration of CO2 as a function of Mθe and divided by the total dry air mass as computed from the 

corresponding range of Mθe. 

To illustrate the Mθe integration method, we choose HIPPO-1 Southbound and show CO2 

measurements and ΔCO2 atmospheric inventory (Pg) as a function of Mθe in Figure 1.11. The 

Northern Hemisphere tropospheric average detrended ΔCO2 is computed by integrating the area 

under the curve (subtracting negative contributions) and dividing by the maximum value of Mθe 

within the hemisphere (here 195.13×1016 kg). This yields a mass-weighted average detrended 

ΔCO2 of 1.13 ppm for the full troposphere of the Northern Hemisphere. The trapezoidal integration 

has a high accuracy because the data are dense over Mθe. The ΔCO2 atmospheric inventory is 

dominated by the domain Mθe < 120 × 1016 kg  (mid- to high latitude), which has a large CO2 

seasonal cycle driven by temperate and boreal ecosystem, with less than 4.1% contributed by the 

additional ~38.8% of the air mass outside this domain in the low latitude or upper troposphere 

(Fig. 11b), where ΔCO2 differs less from the subtracted baseline. 
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Figure 1.11: (a) Detrended CO2 measurements from HIPPO-1 Southbound (from 12 January 2009 

to 17 January 2009) plotted as a function of Mθe in the Northern Hemisphere. The data are 

detrended by subtracting the MLO stiff cubic spline trend. Individual points are connected by 

straight line segments and the area under the resulting curve is shaded. We note that the area under 

the curve has units of ppm × kg, and dividing this by the total dry air mass (i.e., the range of Mθe 

of the integral) gives ppm unit because the mass of dry air is proportional to the moles of dry air. 

The Northern Hemisphere average of 1.13 ppm is indicated by the dashed line. (b) Integral of the 

data in (a), rescaled from ppm to Pg, integrating from Mθe = 0 to a given Mθe value. 

 

We compute a Northern Hemisphere mass-weighted average detrended ΔCO2 for each 

airborne campaign transect and fit the time series to a 2-harmonic fit to estimate the seasonal cycle 

(Figure 1.12). We find that the cycle has a seasonal amplitude of 7.9 ppm and a downward zero-

crossing at Julian day 179, where the latter is defined as the date when the detrended seasonal cycle 

changes from positive to negative.  
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Figure 1.12: Comparison between the CO2 seasonal cycle of Northern Hemisphere tropospheric 

average computed from airborne observation and the Mθe integration method (black points and 

line) and the mean cycle at MLO measured by Scripps CO2 Program from 2009 to 2018 (red line). 

Both are detrended by subtracting a stiff cubic spline trend at MLO. We then compute a mass-

weighted average detrended CO2 for each airborne campaign transect, shown as black points, with 

campaigns and transects be presented in different shapes. The seasonal cycle of both are computed 

by a 2-harmonic fit to the detrended time series. The 1𝛔 variability of the detrended average CO2 

values about the fit line is shown on the lower right. The first half year is repeated for clarity. 

 

To address the error in our estimation of Northern Hemisphere mass-weighted average CO2 

seasonal cycle from HIPPO and Atom airborne observation, we consider two main sources: (1) 

irreproducibility in the CO2 measurements and (2) limited coverage in space and time. For the first 

contribution, we compute the difference between mass-weighted average CO2 from AO2 and mean 

mass-weighted average CO2 from Harvard QCLS, Harvard OMS, and NOAA Picarro for each 
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airborne campaign transect, while masking values that are missing in any of these datasets. We 

compute the standard deviation of these differences (± 0.15 ppm) for mass-weighted average CO2 

of each airborne campaign transect as the 1σ  level of uncertainty. We further compute the 

uncertainties for the seasonal amplitude of ± 0.11 ppm and for the downward zero-crossing of ± 

0.83 days, which are calculated from 1000 iterations of the 2-harmonic fit, allowing for random 

Gaussian uncertainty (σ = ± 0.15 ppm) for each transect. 

For the contribution to the error in the amplitude and phase from limited special and 

temporal coverage, we use simulated CO2 data from the Jena CO2 Inversion Run ID: s04oc v4.3 

(Rödenbeck et al., 2003). This model includes full atmospheric fields from 2009 to 2018, which 

we detrend using the cubic spline fit to the observed MLO trend. From these detrended fields, we 

compute the climatological cycle of the Northern Hemisphere average by integrating over all 

tropospheric grid cells (cutoff at PVU = 2) to produce a daily time series of the hemispheric mean, 

which we take as the model “truth”. We fit a 2-harmonic function to this “true” time series to 

compute a “true” climatological cycle over the 2009-2018 period (Table 1.3), which is our target 

for validation. We then subsample the Jena CO2 Inversion along the HIPPO and ATom flight 

tracks and process the data similarly to the observations, using the Mθe integration method and a 

2-harmonic fit. The comparison shows that the Mθe integration method yields an amplitude which 

is 1% too large and yields a downward zero-crossing date which is 6 days too late. We view these 

offsets as systematic biases, which we correct from the observed amplitude and phase reported 

above. The uncertainties in these biases are hard to quantify, but we take ±100 % as a conservative 

estimate. We thus allow an additional random error of ± 0.08 ppm in amplitude and ± 6.0 days in 

downward zero crossing for uncertainty in the bias. Combining the random and systematic error 

contributions leads to a corrected Northern Hemisphere tropospheric average CO2 seasonal cycle 
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amplitude of 7.8 ± 0.14 ppm and downward zero-crossing of 173 ± 6.1 days. This corrected cycle 

is an estimate of the climatological average from 2009 to 2018. 

Table 1.3: RMSE, seasonal amplitude and day of year of the downward zero-crossing of each 

simulation based on the Jena CO2 Inversion. The true value (daily average CO2) is computed by 

integrating over all tropospheric grid cells of the Jena CO2 Inversion, while troposphere is defined 

by PVU < 2 from ERA-Interim. Seasonal amplitude and downward zero-crossing of true average 

and each simulation is computed from 2-harmonic fit to the detrended value, which is detrended 

by subtracting the MLO cubic stiff spline. Subsample with randomly retaining a certain fraction 

of data are conducted by randomly subsampling for 1000 times, thus, the seasonal amplitude and 

day of year of the downward zero-crossing is computed as the mean ± standard deviation of the 

1000 iterations.  

Method 
RMSE 

(ppm)1 

Seasonal 

Amplitude (ppm) 

Downward Zero-

Crossing (day) 

True Value (Cut off at PVU = 2) / 7.58 175.1 

Evaluation of Mθe Integration Method  

Full Airborne Coverage 0.30 7.65 181.1 

Subsample: Equator to 30°N 1.26 5.74 197.8 

Subsample: Poleward of 30°N 0.82 9.47 179.0 

Subsample: Surface – 600 mbar 0.57 7.77 185.1 

Subsample: 600 mbar – Tropopause 0.38 7.28 180.7 

Subsample: Pacific Only 0.33 7.33 181.6 

Subsample: Randomly retain 10% 0.38 7.64 ± 0.116 182.4 ± 0.82 

Subsample: Randomly retain 5% 0.40 7.65 ± 0.163 182.3 ± 1.08 

Subsample: Randomly retain 1% 0.56 7.72 ± 0.366 182.2 ± 2.24 

Subsample: MEDUSA Coverage 0.48 7.52 181.7 

Evaluation of Latitude-Pressure Weighted Average Method  

Full Airborne Coverage  0.68 9.16 182.2 

1 Each simulation yields 17 data points of different date over the seasonal cycle from 17 airborne 

campaign transects. RMSE of each simulation is computed with respect to the true value. 

 

The error due to limited spatial and temporal coverage can be divided into three 

components: limited seasonal coverage (17 transects over the climatological year), limited 
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interannual coverage (sampling particular years instead of all years), and limited spatial coverage 

(under-sampling the full hemisphere). We quantify the combined biases due to both limited 

seasonal and interannual coverage by comparing the two-harmonic fit of the full “true” daily time 

series of the hemispheric mean to a two-harmonic fit of that data subsampled on the actual mean 

sampling dates of the 17 flight tracks. We isolate the bias associated with limited seasonal coverage 

by repeating this calculation, replacing the “true” daily time series with the daily climatological 

cycle. The bias associated with limited spatial coverage is quantified as the residual. Combining 

these results, we estimate that the limited seasonal, interannual, and spatial coverage, account for 

biases in the downward zero-crossing of 1.1, 1.4, and 3.5 days respectively, all in the same 

direction (too late). The seasonal amplitude bias due to individual components are all small (< 

0.5%). 

It is of interest to compare our estimate of the Northern Hemisphere average cycle with the 

cycle at Mauna Loa, which is also broadly representative of the hemisphere. Our comparison in 

Figure 1.12 shows small but significant differences in both amplitude and phase, with the MLO 

amplitude being ~ 11.5% smaller than the hemispheric average and lagging in phase by ~ 1 month. 

There are also differences in the shape of the cycle, with the MLO cycle rising more slowly from 

October to February, but more quickly from February to May. These features at least partly reflects 

variations in the transport of air masses to the station (Harris et al., 1992; Harris and Kahl, 1990). 

In Figure 1.13, we compare the Mθe integration method with an alternate latitude-pressure 

weighted average method, with no correction for synoptic variability. For this method, we bin 

flight track subsampled Jena CO2 Inversion data into sin(latitude)-pressure bins with 0.01 and 25 

mbar as intervals respectively, while all bins without data are filtered. We further compute a 

weighted average CO2 for each airborne campaign transect. The root-mean-square errors (RMSE) 
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to the true average of the Mθe integration method are ± 0.32 and ± 0.27 ppm for HIPPO and ATom 

campaigns, respectively, which are smaller than the RMSE of the simple latitude-pressure 

weighted average method at ± 0.82 and ± 0.53 ppm.  

 

Figure 1.13: Comparison between the Northern Hemisphere average CO2 from full integration of the 

simulated atmospheric fields from the Jena CO2 Inversion (cutoff at PVU = 2) and from two methods that 

use the same simulated data subsampled with HIPPO/ATom coverage: (1) the Mθe integration method (blue) 

and (2) simple integration by sin(latitude)-pressure (red). We divide the comparison into HIPPO (left) and 

ATom (right) temporal coverage. The lower panel shows the Error for individual tracks using alternate 

subsampling methods. 

 

We also evaluate the biases in the hemispheric average seasonal cycles computed with the 

simple latitude-pressure weighted average method. As summarized in Table 1.3, the latitude-

pressure weighted average method yields a larger error in seasonal amplitude (Mθe method 1.0 % 

too large, latitude-pressure method 20.8% too large), while both methods show similar phasing 

error (6 to 7 days late). The larger error associated with the latitude-pressure weighted average 
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method is consistent with strong influence of synoptic variability. This synoptic variability could 

potentially be corrected using model simulations of the 3-dimensional CO2 fields (Bent, 2014). 

The Mθe integration method appears advantageous because it accounts for synoptic variability, and 

easily yields a hemispheric average by directly integrating over Mθe. 

The relative success of the Mθe integration method in yielding accurate hemispheric 

averages using HIPPO and ATom data is attributable partly to the extensive data coverage. To 

explore the coverage requirement for reliably resolving hemispheric averages, we also test the 

integration method when applied to simulated data with lower coverage. We start with the same 

coverage as for ATom and HIPPO but select only subsets of the points in four groups: poleward 

of 30°N, Equator to 30°N, surface to 600 mbar, and 600 mbar to tropopause. We also examine 

whether we can only utilize observation along the Pacific transect by excluding measurements 

along the Atlantic transects (ATom northbound). We further explore the impact of reduced 

sampling density by subsampling the Jena CO2 Inversion based on the spatial coverage of the 

Medusa sampler, which is an airborne flask sampler that collected 32 cryogenically dried air 

samples per flight during HIPPO and ATom (Stephens et al., 2020). We further randomly retain 

10%, 5%, and 1% of the full flight track subsampled data, repeating each ratio with 1000 iterations. 

We compute the detrended average CO2 from these nine simulations by the Mθe integration method 

and then compute the RMSE relative to the detrended true hemispheric average, together with the 

seasonal magnitude and day of year of the downward zero-crossing, as summarized in Table 1.3. 

HIPPO-1 Northbound is excluded in all these simulations. The number of data points of each 

simulation and number of observations of the original HIPPO and ATom data sets are summarized 

in Table 1.5. These results show that limiting sampling to either equatorward or poleward of 30°N 

yields significant error (24.3% smaller and 24.9% larger seasonal amplitude, respectively). 
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Additionally, there is a ~ 25-day lag in phase if sampling is limited to equatorward of 30°N. 

However, restricting sampling to be exclusively above or below 600 mbar, or only along the 

Pacific transect does not lead to significant errors. Randomly reducing the sampling by 10- to 100- 

fold or only keeping Medusa spatial coverage also have minimal impact. This suggests that, to 

compute the average CO2 of a given region, it may be sufficient to have low sampling density 

provided that the measurements adequately cover the full range in θe (or Mθe).  

1.5 Discussion and summary  

We have presented a transformed isentropic coordinate, Mθe, which is the total dry air mass 

under a given θe surface in the troposphere of the hemisphere. Mθe can be computed from 

meteorological fields by integrating dry air mass under a specific θe surface, and different 

reanalysis products show a high consistency. The θe-Mθe relationship varies seasonally due to 

seasonal heating/cooling of the atmosphere via radiative heating and moist processes. The 

seasonality in the relationship is greater at low θe compared to high θe, and is greater in the Northern 

than the Southern Hemisphere. The θe-Mθe relationship also shows synoptic-scale variability, 

which is mainly driven by the dissipation of kinetic energy of turbulence. Mθe surfaces show much 

less seasonal displacement with latitude and altitude than surfaces of constant θe, while being 

parallel and exhibiting essentially identical synoptic scale variability. As a coordinate for mapping 

tracer distributions, Mθe shares with θe the advantages of following displacements due to synoptic 

disturbances and aligning with surfaces of rapid mixing. Mθe has the additional advantage of being 

approximately fixed in space seasonally, which allows mapping to be done on seasonal time scales, 

and having units of mass, which provides a close connection with atmospheric inventories. 

As a coordinate, Mθe is probably better viewed as an alternative to latitude, due to its nearly 

fixed relationship with latitude over season, rather than as an alternative to altitude (or pressure), 

as typically done for potential temperature (Miyazaki et al., 2008; Miyazaki and Iwasaki, 2005; 
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Parazoo et al., 2011; Tung, 1982; Yang et al., 2016). Even though the contours of constant Mθe 

extend over a wide range of latitudes (from low latitudes at the Earth surface to high latitudes 

aloft), a close association with latitude is provided by the point of contact with Earth’s surface. 

Also, Mθe is nearly always monotonic with latitude (increasing equatorward) while it is not 

necessarily monotonic with altitude in the lower troposphere (Figure 1.2 and 1.3). 

As a first application, we have illustrated using Mθe to map the seasonal variation of CO2 

in the Northern Hemisphere, with data from the HIPPO and ATom airborne campaigns. This 

application shows that Mθe has several advantages as a coordinate compared to using latitude: (1) 

variations in CO2 with pressure are smaller at fixed Mθe than at fixed latitude, and (2) the scatter 

about the mean CO2 seasonal cycle is smaller when sorting data into pressure/Mθe bins than into 

pressure/latitude bins. We have also shown that, at middle and high latitudes, the CO2 seasonal 

cycles that are resolved in the airborne data (binned by Mθe but not pressure) are very similar to 

the cycles observed at surface stations at the appropriate latitude, with a phase lag of ~ 2 to 3 

weeks. At lower latitudes, CO2 cycles in the airborne data (binned similarly by Mθe) are less 

consistent with surface data, as expected due to slow transport and diabatic processes within the 

Hadley Circulation. For characterizing the patterns of variability in airborne CO2 data, we expect 

the advantages of Mθe over latitude will be greatest for sparse datasets, allowing data to be binned 

more coarsely with pressure or elevation while still resolving features of large-scale variability, 

such as seasonal cycles or gradients with latitude.  

As a second application, we use Mθe to compute the Northern Hemisphere tropospheric 

average CO2 from the HIPPO and ATom airborne campaigns by integrating CO2 over Mθe surfaces. 

With a small correction for systematic biases induced by limited hemispheric coverage of the 

HIPPO and ATom flight tracks, we report a seasonal amplitude of 7.8 ± 0.14 ppm and a downward 



 

 44 

zero-crossing at Julian day 173 ± 6.1. This hemispheric average cycle may prove valuable as a 

target for validation of models of surface CO2 exchange.   

Our analysis also clarifies that computing hemispheric averages with the Mθe integration 

method depends on adequate spatial coverage. The coverage provided by the HIPPO and ATom 

campaigns appears more than adequate for computing the average seasonal cycle of CO2 in the 

Northern Hemisphere, and the errors for this application remain small if the coverage is limited to 

either above or below 600 mbar, or reduced to retain only 1% of the measurements. Most critical 

is maintaining coverage in latitude, or Mθe surfaces. The Mθe integration method of computing 

hemispheric averages assumes that the tracer is uniformly distributed and instantly mixed on θe 

(Mθe) surfaces. We have shown that systematic gradients in CO2 are resolved with pressure at fixed 

Mθe, which reflects the finite rates of dispersion on θe surfaces. Further improvements to the 

integration method seem possible by integrating separately over different pressure levels, taking 

account of the different mass fraction in different pressure bins (e.g. Figure 1.5). The need is 

especially relevant for high Mθe bins which are less completely mixed, and which tend to intersect 

the Equator or have separate surface branches. For these Mθe bins, it would be more appropriate to 

integrate over Mθ in the upper and lower atmosphere separately. This complication is of minor 

importance for computing the mass-weighted average CO2 cycle, because the cycle of CO2 is small 

in these air masses.  

The definition of Mθe requires horizontal and vertical boundaries for the integration of dry 

air mass. We use the dynamic tropopause (based on PVU) and the Equator as boundaries, which 

is appropriate for integrating tropospheric inventories in a hemisphere. Other boundaries may be 

more appropriate for other applications. For example, Mθe could be computed from the lowest θe 

surface in the Southern Hemisphere with a latitude cutoff at 30°S, to apply to airborne observations 
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only over the Southern Ocean. On the other hand, the boundary choice only influences Mθe surfaces 

that actually intercept the boundaries, making the choice less important at high latitude in the lower 

troposphere (lowest Mθe surfaces). Some tropospheric applications may also benefit by integrating 

over dry potential temperature (θ) rather than θe. 

Based on our promising results for CO2, we expect that Mθe may be usefully applied as a 

coordinate for mapping and computing atmospheric inventories of many tracers, such as O2/N2, 

N2O, CH4, and the isotopes of CO2, whose residence time is long compared to the time scale for 

mixing along isentropes. Mθe may also prove useful in the design phase of airborne campaigns to 

ensure strategic coverage. Our results show that, to study the seasonal cycle of a tracer on a 

hemispheric scale, it is critical to have well-distributed sampling in Mθe. 

1.6 Code availability 

We provide R code to generate θe-Mθe look-up tables from ERA-Interim meteorological 

fields at https://github.com/yumingjin0521/Mtheta. 

1.7 Data availability 

All HIPPO 10-sec merge data are available from: 

https://doi.org/10.3334/CDIAC/HIPPO_010 (Wofsy et al., 2017b). Besides, all HIPPO Medusa 

merge data are available from: http://dx.doi.org/10.3334/CDIAC/hippo_014 (Wofsy et al., 2017a). 

All ATom 10-sec and Medusa merges data are available from: 

https://doi.org/10.3334/ORNLDAAC/1581 (Wofsy et al., 2018). 

CO2 data from Mauna Loa Observatory are available from the Scripps CO2 Program at: 

https://scrippsco2.ucsd.edu. Other surface station CO2 data, including Trinidad Head, Cold Bay, 

Barrow, Cape Kumukahi, Sand Island are provided by NOAA/ESRL GMD flask sampling 

network (http://www.cmdl.noaa.gov/ccgg/trends) and downloaded from Observation Package 

(ObsPack) at http://dx.doi.org/10.25925/20190812 (Dlugokencky et al., 2019). 

https://github.com/yumingjin0521/Mtheta
https://doi.org/10.3334/CDIAC/HIPPO_010
http://dx.doi.org/10.3334/CDIAC/hippo_014
https://doi.org/10.3334/ORNLDAAC/1581
https://scrippsco2.ucsd.edu/
http://www.cmdl.noaa.gov/ccgg/trends
http://dx.doi.org/10.25925/20190812
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The Jena CO2 Inversion are available at the project website: http://www.bgc-

jena.mpg.de/CarboScope/s/main.html. Run ID: s04oc v4.3 was used in this study.  

ERA-Interim is available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-

datasets/era-interim. NCEP2 is available at: 

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. MERRA-2 is available at the NASA 

Goddard Earth Sciences (GES) Data and Information Services Center (DISC) at: 

https://disc.gsfc.nasa.gov/datasets?keywords=%22MERRA-

2%22&page=1&source=Models%2FAnalyses%20MERRA-2. 

θe-Mθe look-up tables with daily resolution and 1 K intervals in θe from 1980 to 2018 

computed from ERA-Interim are available at https://github.com/yumingjin0521/Mtheta. 

1.8 Appendix A: Temporal variation of Mθe 

Following Walin’s derivation for cross-isothermal volume flow in the ocean (Walin, 1982), 

we show how  Mθe
̇ =

∂

∂t
Mθe(θe, t) can be related to energy and mass fluxes. We start by deriving 

the relationship for Mθ (based on potential temperature θ) but later generalize to apply to Mθe. 

All definitions are summarized in Table 1.4, and Figure 14 is the schematic diagram of 

mass and energy flux.  

  

http://www.bgc-jena.mpg.de/CarboScope/s/main.html
http://www.bgc-jena.mpg.de/CarboScope/s/main.html
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
https://disc.gsfc.nasa.gov/datasets?keywords=%22MERRA-2%22&page=1&source=Models%2FAnalyses%20MERRA-2
https://disc.gsfc.nasa.gov/datasets?keywords=%22MERRA-2%22&page=1&source=Models%2FAnalyses%20MERRA-2
https://github.com/yumingjin0521/Mtheta
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Table 1.4: Definition of variables. 

Variable Definition Unit 

θ′(r, t) Potential temperature at location r and time t. K 

θ Potential temperature of the chosen isentropic surface. K 

R(θ, t) A region in which θ′(r, t) < θ shown as shaded area in Figure A1.  

AT(θ, t) Area at the tropopause where θ′(r, t) < θ. m2 

AE(θ, t) Area at the Equator where θ′(r, t) < θ. m2 

AI(θ, t) Area where θ′(r, t) = θ. m2 

AS(θ, t) Area at the Earth surface where θ′(r, t) < θ. m2 

Mθ(θ, t) Dry air mass of R(θ, t). kg 

FT(θ, t) Mass flux through AT(θ, t). Positive value denotes flux into region R(θ, t). kg s-1 

FE(θ, t) Mass flux through AE(θ, t). Positive value denotes flux into region R(θ, t). kg s-1 

FI(θ, t) Mass flux through AI(θ, t). Positive value denotes flux into region R(θ, t). kg s-1 

QT(θ, t) Heat flux through AT(θ, t). Positive value denotes flux into region R(θ, t). J s-1 

QE(θ, t) Heat flux through AE(θ, t). Positive value denotes flux into region R(θ, t). J s-1 

QI(θ, t) Heat flux through AI(θ, t). Positive value denotes flux into region R(θ, t). J s-1 

Qs(θ, t) 
Surface sensible heat flux to the region R(θ, t). Positive value denotes flux into 

the atmosphere. 
J s-1 

Qint(θ, t) 
Internal heating and cooling within region R(θ, t). Positive value denotes 

absorbing heat. 
J s-1 

∂Qs(θ, t)

∂θ
 

Surface sensible heat flux to the θ surface. Positive value denotes flux into the 

atmosphere (i.e., θ surface). 
J s-1 K-1 

∂Qint(θ, t)

∂θ
 

Internal heating and cooling on the θ surface. Positive value denotes absorbing 

heat. 
J s-1 K-1 

∂Qdiff(θ, t)

∂θ
 

Turbulent diffusive heat fluxes into the θ surface. Positive value denotes heat 

flux into the θ surface 
J s-1 K-1 
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Figure 1.14: Illustration of terms defined in Table A1. Shaded area denotes the region R(θ, t) with 

θ′ lower than θ, which is the area of mass integration to yield Mθ. The curve denotes a given θ or 

Mθ surface. 

 

All mass and heat fluxes are counted positive as into region R(θ, t). The heat fluxes through 

tropopause, Equator and surface of region R(θ, t) can be divided into an advective (F(θ, t)) and a 

turbulent (D(θ, t)) component. Integrating over the tropopause and equatorial boundary, we have: 

QT(θ, t) = Cpd∫
𝜕FT(θ

′, t)

𝜕θ′
θ′𝑑θ′

θ

−∞

+∫
𝜕DT(θ

′, t)

𝜕θ′
𝑑θ′

θ

−∞

(1.11) 

QE(θ, t) = Cpd∫
𝜕FE(θ

′, t)

𝜕θ′
θ′𝑑θ′

θ

−∞

+∫
𝜕DE(θ

′, t)

𝜕θ′
𝑑θ′

θ

−∞

(1.12) 

QI(θ, t) = Cpd ⋅ FI(θ, t) ⋅ θ + DI(θ, t) (1.13) 

where Cpd is the heat capacity of dry air in units of J kg-1 K-1. 
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Based on the continuity of mass and energy for region R(θ, t), we obtain 

∂

∂t
Mθ(θ, t) = FT(θ, t) + FE(θ, t) + FI(θ, t) 

= ∫
𝜕FT(θ

′, t)

𝜕θ′
𝑑θ′

θ

−∞

+∫
𝜕FE(θ

′, t)

𝜕θ′
𝑑θ′

θ

−∞

+ FI(θ, t) (1.14) 

Cpd
∂

∂t
∫

∂Mθ(θ
′, t)

∂θ′
θ′dθ′

θ

−∞

=  QT(θ, t) + QE(θ, t) + QI(θ, t) +

∫
∂Qs(θ

′, t)

∂θ′
dθ′

θ

−∞

+∫
∂Qint(θ

′, t)

∂θ′
dθ′

θ

−∞

(1.15)

 

Substituting Eq. 1.11 to Eq. 1.13 into Eq. 1.15 and differentiating with respect to θ yields 

Cpdθ
∂

∂t

∂Mθ(θ, t)

∂θ
=  Cpdθ(

∂FT(θ, t)

∂θ
+
∂FE(θ, t)

∂θ
+
∂FI(θ, t)

∂θ
) + CpdFI(θ, t) +

∂Qdiff(θ, t)

∂θ
+
∂Qs(θ, t)

∂θ
+
∂Qint(θ, t)

∂θ
(1.16)

 

where, 

Qdiff(θ, t) =  ∫
∂DT(θ

′, t)

∂θ′
dθ′

θ

−∞

+∫
∂DE(θ

′, t)

∂θ′
dθ′

θ

−∞

+ DI(θ, t) (1.17) 

Differentiating Eq. 1.14 with respect to θ, and multiplying Cpd ⋅ θ yields  

Cpdθ
∂

∂t

∂Mθ(θ, t)

∂θ
=   Cpdθ(

∂FT(θ, t)

∂θ
+
∂FE(θ, t)

∂θ
+
∂FI(θ, t)

∂θ
) (1.18)  

Subtracting Eq. 1.18 from Eq. 1.16, we obtain 

CpdFI(θ, t) = −
∂Qdiff(θ, t)

∂θ
−
∂Qs(θ, t)

∂θ
−
∂Qint(θ, t)

∂θ
(1.19) 

Eq. 1.19 divided by Cpd plus Eq. 1.14 yields 

∂

∂t
Mθ(θ, t) = −

1

Cpd
(
∂Qdiff(θ, t)

∂θ
+
∂Qs(θ, t)

∂θ
+
∂Qint(θ, t)

∂θ
) +

∫
∂FT(θ

′, t)

∂θ′
dθ′

θ

−∞

+∫
∂FE(θ

′, t)

∂θ′
dθ′

θ

−∞

(1.20)
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Eq. 1.20 illustrates the temporal variation of Mθ, where Qint includes radiative heating (i.e. 

sum of shortwave and longwave heating), dissipation of kinetic energy of turbulence, and latent 

heat release due to evaporation and condensation.  

To modify Eq. 1.20 to apply to Mθe rather than Mθ, it is necessary to replace all θ with θe, 

and additionally account for the following: 

1. Condensation and evaporation is conserved on the θe surfaces, but the gaining and losing 

of water vapor through surface evaporation and water vapor transport contributes to θe. This 

contribution can be computed as the product of latent heat of evaporation and the extra water vapor 

content. Thus, the surface contribution (QS ) needs to include both sensible heating of the 

atmosphere (Qsen ) and the water vapor flux from the surface into the atmosphere (Qevap ). 

Similarly, the diffusion term within the atmosphere (Qdiff) needs to include both heat and water 

vapor (QH2O).  

2. Internal heating (Qint) needs to exclude latent heat releasing due to evaporation and 

condensation of liquid water, which cancel in θe, but it still needs to include heating from ice 

formation, which does not cancel in θe. We subtract this ice component from the rest of the internal 

heating, yielding two terms Qint
′  and Qice, with Qint = Qint

′ + Qice.  

Therefore, we can write the temporal variation of Mθe as  

∂

∂t
Mθe(θe, t) = ∫

∂FT(θe
′ , t)

∂θe′
dθe

′
θe

−∞

+∫
∂FE(θe

′ , t)

∂θe′
dθe

′
θe

−∞

−

1

Cpd

(

 
 

∂Qdiff(θe, t)

∂θe
+
∂Qsen(θe, t)

∂θe
+
∂Qevap(θe, t)

∂θe
+

∂Qint
′ (θe, t)

∂θe
+
∂Qice(θe, t)

∂θe
+
∂QH2O(θe, t)

∂θe )

 
 

(1.21)
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1.9 Supplement 

1.9.1 Contribution of each heating term to the overall time variation of Mθe   

The fractional contributions from different heating terms to the temporal variation of Mθe 

on seasonal and synoptic scales are computed by using a vector projection method (Graven et al., 

2013). In this method, each heating term (
∂

∂t
Mθe
i (θe, t)) is projected onto the sum of all the heating 

terms (
∂

∂t
Mθe(θe, t)) via: 

xi =
∑  [

∂
∂t
Mθe
i (θe, t) ·

∂
∂t
Mθe(θe, t)]t  

∑ [
∂
∂t
Mθe(θe, t) ·

∂
∂t
Mθe(θe, t)]t

(1.22) 

with 

∂

∂t
Mθe(θe, t) =∑  

∂

∂t
Mθe
i (θe, t)

𝑖

(1.23) 

where the sum is over all time steps, and the mean of each 
∂

∂t
Mθe
i (θe, t) has been pre-

subtracted (i.e., ∑  
∂

∂t
Mθe
i (θe, t)𝑡 = 0). The sum over xi equals 1, but individual xi can be either 

positive or negative and the absolute value can be either larger or smaller than 1. 
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Figure 1.15: (a) Temporal variation of Mθe in the Northern Hemisphere at θe = 300 K computed 

by integrating air mass (blue line) and estimated from the sum of five heating terms (Table 1.1) in 

MERRA-2 (black line).  (b) The heating variables decomposed into five contributions as indicated 

(see Table 1).  Results shown are for the year 2010. 
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Figure 1.16: Similar to Figure 1.15, but for the year 2011. 
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Figure 1.17: Similar to Figure 1.15, but for the year 2009. 
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Figure 1.18: Similar to Figure 1.17, but on the 310 K θe surface. 
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Table 1.5: Number of data points of each airborne campaign transect for each simulation 
Airborne 

Transect 
Original 

Equator 

to 30 °N 

Poleward of 30 

°N 

Surface – 600 

mbar 

600 mbar – 

Trop. 

Pacific 

Only 

Medusa 

Coverage 

Random 10 

% 

Random 5 

% 

Random 1 

% 

HIPPO1 SB 4837 1454 3383 1794 3043 4837 76 484 242 48 

HIPPO2 SB 4665 1510 3155 1945 2720 4665 82 451 233 45 

HIPPO2 NB 5508 2428 3080 2159 3349 5508 93 543 275 54 

HIPPO3 SB 4439 1371 3068 2038 2401 4439 88 427 222 43 

HIPPO3 NB 4086 1135 2951 1790 2296 4086 84 399 204 40 

HIPPO4 SB 5491 1602 3889 2340 3151 5491 81 534 275 53 

HIPPO4 NB 6411 3134 3277 3142 3269 6411 124 626 321 63 

HIPPO5 SB 5538 1678 3860 2569 2969 5538 78 548 277 55 

HIPPO5 NB 4715 1705 3010 2066 2649 4715 86 392 236 39 

ATom1 SB 9832 2333 7499 3186 6646 9832 83 455 492 46 

ATom1 NB 10685 3186 7499 3665 7020 0 59 893 534 89 

ATom2 SB 11372 3909 7463 4057 7315 11372 84 1109 569 111 

ATom2 NB 10741 3284 7457 3792 6949 0 91 1042 537 104 

ATom3 SB 15143 3751 11392 4817 10326 15143 87 1460 757 146 

ATom3 NB 14039 4173 9866 4764 9275 0 92 1362 702 136 

ATom4 SB 13554 3683 9871 5249 8305 13554 84 1327 678 132 

ATom4 NB 11995 3626 8369 4130 7865 0 89 1187 600 119 
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Chapter 2 Seasonal Tropospheric Distribution and Air-sea Fluxes of Atmospheric Potential 

Oxygen from Global Airborne Observations 

 

Abstract 

Seasonal change of atmospheric potential oxygen (APO ~ O2 + CO2) is a tracer for air-sea 

O2 flux with little sensitivity to the terrestrial exchange of O2 and CO2. In this study, we present 

the tropospheric distribution and inventory of APO in each hemisphere with seasonal resolution, 

using O2 and CO2 measurements from discrete airborne campaigns between 2009 and 2018. The 

airborne data is represented on a mass-weighted isentropic coordinate (Mθe) as an alternative to 

latitude, which reduces the noise from synoptic variability in the APO cycles. We find a larger 

seasonal amplitude of APO inventory in the Southern Hemisphere relative to the Northern 

Hemisphere, and a larger amplitude in high latitudes (low Mθe) relative to low latitudes (high Mθe) 

within each hemisphere. With a box model, we invert the seasonal changes in APO inventory to 

yield estimates of air-sea flux cycles at the hemispheric scale. We find a larger seasonal net 

outgassing of APO in the Southern Hemisphere (518±52.6 Tmol) than the Northern Hemisphere 

(342±52.1 Tmol). Differences in APO phasing and amplitude between the hemispheres suggest 

distinct physical and biogeochemical mechanisms driving the air-sea O2 fluxes, such as fall 

outgassing of photosynthetic O2 in the Northern Hemisphere, possibly associated with the 

formation of the seasonal subsurface shallow oxygen maximum. We compare our estimates with 

four model- and observation-based products, identifying key limitations in these products or in the 

tools used to create them. 

Plain Language Summary 

Better understanding of the air-sea O2 fluxes facilitates the study of marine productivity, 

global carbon cycle and ocean heat transport. Seasonal air-sea exchange of O2 has been estimated 

by combining precise measurements of atmospheric O2 and CO2 into atmospheric potential oxygen 
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(APO ~ O2 + CO2). Using APO observations from nine global airborne campaigns between 2009 

and 2018, we resolve the seasonal cycle of atmospheric APO concentration in multiple pressure 

and latitude bands, yielding estimates of the tropospheric APO inventory, and area-integrated air-

sea APO flux of each hemisphere. To a first approximation, the ocean is a source of APO in the 

spring and summer but a sink in the fall and winter, tracking the seasonal warming and cooling of 

the ocean as well as different ocean biogeochemistry and ventilation regimes. In addition, these 

cycles show clear asymmetry between hemispheres and display a progressive shift in the seasonal 

phase and amplitude across latitudes. It is therefore important to understand the physical and 

biogeochemical processes that lead to these differences. 

2.1 Introduction 

Atmospheric potential oxygen (APO), which is effectively the sum of atmospheric O2 and 

CO2 concentrations, is primarily a tracer of ocean biogeochemistry (Stephens et al., 1998). APO 

is generally insensitive to photosynthesis and respiration of the land biosphere due to compensating 

impacts on O2 and CO2. APO has been observed at surface stations (e.g., Battle et al., 2006; Goto 

et al., 2017; Manning & Keeling, 2006; Tohjima et al., 2003, 2019), on ship transects (Ishidoya et 

al., 2016; Pickers & Manning, 2015; Pickers et al., 2017; Stephens et al., 2003; Thompson et al., 

2007; Tohjima et al., 2012, 2015), and from aircraft (Bent, 2014; Ishidoya et al., 2022; 

Langenfelds, 2002; Stephens et al., 2021). A prominent feature in time series of APO are seasonal 

variations, driven mainly by seasonal air-sea O2 flux due to upper-ocean biological activities, 

thermally-induced solubility changes, and ocean ventilation, with smaller contributions from air-

sea exchanges of CO2 and N2 (Manning & Keeling, 2006; Stephens et al., 1998). APO is also 

sensitive to the burning of petroleum and natural gas, which are characterized by more negative 

O2:C ratios than land photosynthexsis/respiration, but combustion of these products make a 
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negligible contribution to seasonal APO cycles at background stations (Manning & Keeling, 2006; 

Nevison et al., 2008). 

Measurements of seasonal variations in atmospheric APO have been used to estimate 

oceanic net community production (NCP) (Goto et al., 2017; Nevison et al., 2012, 2018), evaluate 

the ocean biogeochemistry components of Earth System Models (Naegler et al., 2007; Nevison et 

al., 2015, 2016; Stephens et al., 1998), and estimate gas-exchange velocities (Keeling et al., 1998). 

These measurements have also been used to validate estimates of climatological seasonal air-sea 

O2 flux, which are calculated based on measurements of dissolved O2 in surface ocean (Garcia & 

Keeling, 2001; Keeling et al., 1998; Najjar & Keeling, 1997, 2000). Atmospheric APO 

observations have also been inverted to yield global air-sea APO fluxes that are optimized to best 

match observed APO at surface stations, thus constraining global-scale seasonal air-sea O2 

exchange (Rödenbeck et al., 2008). The accuracy of air-sea O2 fluxes inferred from atmospheric 

measurements is limited, however, by uncertainties due to vertical transport in atmospheric tracer 

transport models as well as by the limited coverage of atmospheric measurements (Naegler et al., 

2007; Nevison et al., 2008).  

Here we use APO measurements from two global airborne campaigns, the HIAPER Pole-

to-Pole Observations (HIPPO) project (Wofsy, 2011) and the Atmospheric Tomography (ATom) 

mission (Thompson et al., 2022), to quantify climatological seasonal APO distributions, 

tropospheric inventories, and air-sea fluxes at the hemispheric scale. The APO seasonal cycles are 

expressed on a mass-weighted moist isentropic coordinate, Mθe, developed by Jin et al. (2021), 

which is an alternative to latitude and effectively removes the impact of synoptic variability from 

airborne data. Due to the known tendency for rapid adiabatic airmass mixing (mixing along moist 

isentropes) (Parazoo et al., 2011; Pauluis et al., 2008), long-lived atmospheric tracers such as O2 
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and CO2 tend to be well-mixed on Mθe (or θe), which allows hemispheric inventories to be 

estimated by a simple one-dimensional integration over Mθe. We use this method to generate 

hemispheric inventories of APO. We then invert these inventories using a box model to yield 

hemispheric scale air-sea APO fluxes. We apply our estimates as a direct test to other model and 

observation-based products, such as the Jena CarboScope APO inversion (Rödenbeck et al., 2008), 

climatological Garcia & Keeling (2001) O2 fluxes from a heat flux based extension of dissolved 

O2 measurements, and one configuration of the Community Earth System Model (CESM, Yeager 

et al., 2022). 

2.2 Materials and Methods 

2.2.1 Definition of APO and air-sea APO fluxes 

Following Stephens et al. (1998), APO (per meg) is calculated from observations according   

APO = δ(O2/N2) +
1.1

XO2
(CO2 − 350) (2.1) 

with 

δ(O2/N2)  = (
(
O2
N2
) sample

(
O2
N2
) reference

− 1 ) ∙ 106 (2.2) 

where 1.1 is the approximate exchange ratio of O2 production/consumption to CO2 

consumption/production from terrestrial biosphere (Severinghaus, 1995). We note that this ratio is 

generally between 1.01 and 1.14 from aboveground carbon pool over small temporal and spatial 

scales (Gallagher et al., 2017; Hockaday et al., 2009; Worrall et al., 2013). For this study, the 

relevant ratio is that of O2 to CO2 in the seasonally accumulated growth and decay of hemispheric 

biota, which we assume to be 1.1 following the stoichiometric and biological arguments in 

Severinghaus, 1995. Sensitivity results over the range of 1.1±0.05 show only minor effects 
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(±5.1% of the hemispheric average APO, for details see SI Text S2.4), as seasonal APO changes 

are dominated by seasonal changes in δ(O2/N2). δ(O2/N2) is conventionally multiplied by 106 and 

expressed in per meg units, and ΔCO2 is the difference in the CO2 dry-air mole fraction in ppm 

(i.e. μmol mol-1) relative to a reference of 350 ppm. Here XO2(0.2094) is the reference dry-air mole 

fraction of O2 used in the definition of the O2/N2 scale of the Scripps O2 Program (Keeling et al., 

2020). The unit of APO can be converted from per meg to ppm equivalent for flux contributions 

by multiplying XO2. 

The seasonal cycle of atmospheric APO is altered by oceanic emission or uptake of O2, 

CO2, or N2. We define the oceanic flux of APO (FAPO(ocn), Tmol day-1) following: 

FAPO(ocn) = (FO2 + 1.1FCO2 −
XO2
XN2

FN2) × A (2.3) 

where FO2, FCO2, and FCO2 are air-sea flux of O2, CO2, and N2, in unit of Tmol m-2 day-1, 

and A is the ocean area, in unit of m2. XN2 (0.7808) is the reference dry-air mole fraction of N2 in 

the atmosphere (Keeling et al., 2020). We also define the change in APO inventory as the change 

in the total abundance of APO (in Tmol) in a defined atmospheric volume. In a well-mixed 

atmospheric volume, the excess APO inventory in moles (relative to reference air) is equal to 

APO⋅XO2 ⋅M⋅10-6, where M is the total moles of dry air in the volume.  

2.2.2 Airborne campaigns and airborne APO measurements 

Both the HIPPO and ATom campaigns had global coverage (Figure 1a, Table S1), 

extending from the Arctic to the Antarctic and from near the surface (150-300 m) to the lower 

stratosphere (12-15 km) (Thompson et al., 2022; Wofsy, 2011). HIPPO consisted of five 

campaigns between 2009 and 2011 and ATom consisted of four campaigns between 2016 and 

2018. Each campaign included a southbound and a northbound transect. On HIPPO, both 
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southbound and northbound transects were over the Pacific Ocean, while on ATom, southbound 

transects were over the Pacific Ocean and northbound transects were over the Atlantic Ocean. We 

aggregate data from each mission into southbound and northbound transects within each 

hemisphere.  

This study uses airborne measurements of δ(O2/N2) and CO2 made with the NCAR 

Airborne Oxygen Instrument (AO2) (Stephens et al., 2021). The AO2 instrument was supported 

by flask samples collected with the NCAR/Scripps Medusa flask sampler that collects 32 air 

samples in each flight for later analysis at Scripps (Bent, 2014; Stephens et al., 2021). The Medusa 

flasks were used to identify and correct for time-dependent systematic biases in the continuous 

AO2 measurements. AO2 data were adjusted to match Medusa flask using a linear trend versus 

time of flight on a flight-by-flight average basis (Stephens et al., 2021). O2 measurements were 

adjusted for surface effects and detector cell humidity interactions, while CO2 measurements were 

adjusted for surface effects and o-ring permeation effects (Stephens et al., 2021). The magnitude 

of O2 adjustments for each campaign is listed in Table S3 of Stephens et al. (2021), while the 

magnitude of CO2 adjustments per campaign ranges from -0.3 to 0.4 ppm, with an average of 0.01 

ppm and 1σ  standard deviation of 0.19 ppm. Prior to being used for correcting the AO2 

measurements, the Medusa data were also adjusted to reduce the impact of diffusive fractionation 

associated with flask sampling (Bent, 2014; Stephens et al., 2021) by computing 

 

δ (
O2
N2
)
∗

= δ(
O2
N2
)
obs

−
1

3.77
 δ (
Ar

N2
)
𝑜𝑏𝑠

 (2.4) 

where 𝛿(O2/N2)obs is the Medusa observation, and δ(Ar/N2)obs is measured relative to an 

arbitrary reference of 15 per meg, chosen to approximate the global surface average (Stephens et 
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al., 2021). 3.77 is the ratio of the Ar/N2 change to O2/N2 change associated with thermal 

fractionation (Bent, 2014; Keeling et al., 2004). This correction recognizes that 

δ (
O2
N2
)
obs

= δ(
O2
N2
) + δ (

O2
N2
)
fract

(2.5) 

δ (
Ar2
N2
)
obs

= δ(
Ar

N2
) + δ (

Ar2
N2
)
fract

(2.6) 

with 

δ (
O2
N2
)
fract

=
1

3.77
 δ (
Ar2
N2
)
fract

(2.7) 

where the obs subscript denotes the observed value and the fract subscript denotes 

sampling artifacts caused by thermal fractionation at the air intake or flask exit port, which we 

expect are the dominant sampling artifacts. Pressure-driven inlet fractionation was also apparent, 

but with a small enough magnitude and similar enough expected ratio to be included in a single 

correction (section 4.2.1 of Stephens et al., 2021). 

The Medusa-corrected AO2 data are thus effectively measuring δ(O2/N2)* on a mean basis 

per flight, from which we can compute 

APO∗ = δ(
O2
N2
)
∗

+
1.1

XO2
(CO2 − 350) (2.8) 

To calculate seasonal APO from APO*, it is necessary to correct for the true 𝛿(Ar/N2) 

seasonality.  Here we use modeled estimates, which we refer to as δ(Ar/N2)model, and assume that 

δ(Ar/N2)model = δ(Ar/N2)true. The δ(Ar/N2)model is calculated from simulated air-sea N2 exchange 

based on scaling ocean heat flux. Thus 
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APO = APO∗ +
1

3.77
δ (
Ar

N2
)
model

(2.9) 

with 

δ (
Ar

N2
)
model

=
1

XAr
ΔAr −

1

XN2
ΔN2 

=
1

XAr

1

34
ΔN2 −

1

XN2
ΔN2 

= 1.87 ∙ ΔN2 (2.10) 

where ΔN2 is the modeled atmospheric N2 anomaly driven by air-sea N2 exchange, 

calculated as if N2 were a trace gas in ppm-equivalent units (e.g. μmol mol-1). XAr (0.00934) is the 

mole fraction of Ar in the atmosphere. 1/34 is a scaling factor, which is the ratio of Ar and N2 air-

sea fluxes driven by heat flux from Table 3 in Manizza et al. (2012). Air-sea N2 exchange (FN2) is 

calculated from ocean heat fluxes (Q) from the Estimating the Circulation and Climate of the 

Ocean (ECCO) Version 4 Release 3, which interpolates ocean heat flux estimates to a global field 

by a non-linear inverse model (Forget et al., 2015) 

FN2 = −
1

1.3
⋅
dS

dT
⋅
Q

Cp
(2.11) 

where dS/dT (mol kg-1 °C−1) is the temperature derivative of solubility (Weiss, 1970), Q is 

the ocean heat flux (W m-2) and Cp is the specific heat capacity of seawater (3993 J kg-1 °C-1). 

Equation 2.11 is similar to that used by Keeling et al. (1992) but with the introduction of the factor 

of 1/1.3 by Jin et al. (2007). This factor accounts for incomplete equilibration and other processes, 

including mixing-induced super-saturation due to the non-linear dependence of solubility on 

temperature and the penetration of solar radiation below the ocean mixed layer (Dietze & Oschlies, 
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2005; Manizza et al., 2012). We estimate ΔN2 by forward transporting ECCO-based air-sea N2 

exchange using the TM3 atmospheric transport model (Heimann & Körner, 2003).  

The difference between APO and APO* is small, ranging from -4 to 4 per meg (Fig. S1). 

This correction also has small impact on the seasonal amplitude of the APO concentrations, which 

scales up the seasonal amplitude of APO∗ by 0.89 per meg (4.7%) and 1.38 per meg (4.9%) in the 

Northern and Southern Hemisphere, respectively. 

2.2.3 Filtering and detrending of APO airborne observations 

We exclude all measurements from the stratosphere using the criterion of Jin et al. (2021): 

{Water vapor (H2O) < 50 ppm} and {O3 >150 ppb or N2O < 319 ppb}, where N2O has been 

detrended relative to a reference year of 2009. H2O was measured by VCSEL (Zondlo et al., 2010) 

for HIPPO and DLH for ATom (Diskin et al., 2002; Scott et al., 1990). O3 was measured by the 

NOAA Unmanned Aerial Systems Chromatograph for Atmospheric Trace Species (UCATS, 

Hintsa et al., 2021). N2O was measured by the Harvard Quantum Cascade Laser System  (QCLS, 

Santoni et al., 2014). N2O measurements are not available from ATom1, so the stratosphere 

samplings are simply defined by H2O and O3 for this campaign. We also exclude all observations 

near landing sites with the same criteria as in Jin et al. (2021), for example, samples that were 

collected 120s after takeoff, 600s prior to landing, and any missed approaches.  

To focus on APO seasonal cycles, we detrend the airborne measurements by subtracting a 

smoothed interannual trend from a global mean APO time series using data from the Scripps O2 

Program (Hamme and Keeling, 2008). This APO time series is calculated as a weighted average 

of APO measurements from seven surface stations, with the weights based on the latitudinal 

coverage of each corresponding station (Table 2.5, weights are from Hamme and Keeling (2008)). 

The smoothing was based on a least-squares fit consisting of a stiff cubic spline function plus 4-
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harmonic terms (Manning & Keeling, 2006; Reinsch, 1967). Detrended APO is referred to as 

ΔAPO. The latitude and pressure cross section of ΔAPO for each airborne campaign transect is 

shown in Figure 2.1b. 
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Figure 2.1: (a) HIPPO and ATom flight tracks colored by campaigns. (b) Latitude and pressure 

cross-sections of ΔAPO for each airborne campaign transect. Panels are ordered over the course 

of the season. 
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2.2.4 Air-sea APO flux products 

We compare airborne-based estimates of seasonal air-sea APO fluxes with four alternate 

estimates.  

The first product uses APO fluxes from the Jena CarboScope APO Inversion (referred to 

as the Jena inversion, version: apo99XS_v2022), which yields APO fluxes optimized to best match 

observed APO at stations in the Scripps O2 Program surface flask network and at stations and on 

ships (Tohjima et al., 2012) from the National Institute for Environmental Studies (updates of 

Rödenbeck et al., 2008). Details of stations and their locations are in Table 2.4. We use the fluxes 

from 2009 to 2018, to match with the duration of the HIPPO and ATom campaigns. 

The second product is an observation-based semi-empirical product (referred to as GKT), 

using year-to-year repeating climatological FO2  from Garcia and Keeling (2001), climatological 

FCO2  from Takahashi (2009), and climatological FN2  calculated from ocean heat fluxes from 

ECCO version 4 (see section 2.2, Forget et al., 2015). FO2 from Garcia and Keeling (2001) is 

calculated by interpolating dissolved O2 measurements weighted by ocean heat flux anomalies. 

Following Morgan et al. (2021), here we scale down the FO2 by 18% (i.e., multiply by a factor of 

0.82) to accounts for bias in the gas transfer velocity from Wanninkhof (1992), which is used to 

calculate FO2 from Garcia and Keeling (2001). Naegler et al. (2006) showed that the gas transfer 

velocity coefficient of 0.39 from Wanninkhof (1992) should be scaled down by 18% to 0.32. This 

scaling is also supported by Bent (2014). 

The third product is based on a forced ocean-ice configuration of CESM2 (Yeager et al., 

2022, refered to as CESM), which is forced by JRA55-do (Tsujino et al., 2018) atmospheric fields 

and prognostic ocean BGC using the Marine Biogeochemistry Library (MARBL; Long et al., 

2021). The oceanic O2 (FO2), CO2 (FCO2) and N2 (FN2) fluxes are provided directly as model 
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output, with 1° x 1° horizontal resolution and daily resolution from 1986 to 2020. We only analyze 

outputs from 2009 to 2018. 

We calculate area-integrated daily air-sea APO flux cycles in each hemisphere from these 

three products, and fit with a 2-harmonic plus offset to yield average seasonal cycles (Figure 2.5). 

We note that the GKT is defined as a seasonal anomaly, so the annual uptake is pre-subtracted 

(equal to 0). 

2.2.5 Atmospheric simulations 

To translate APO fluxes from these products into atmospheric distributions, we rely on the 

TM3 transport model (Heimann & Körner, 2003) and MIROC4.0-based Atmospheric Chemistry-

Transport Model (ACTM, Patra et al., 2018). TM3 was run at a 5o longitude by 4o latitude spatial 

resolution with 19 vertical levels, using winds from NCEP/NCAR reanalysis with daily temporal 

resolution (Kalnay et al., 1996). With the modeled fluxes as input, the TM3 model yields as output 

excesses or deficits of APO against a prescribed background. The simulated APO atmospheric 

fields are referred to as Jena-TM3, GKT-TM3, and CESM-TM3. These simulations were run from 

2006 to 2018. The first three years are used for model spin-up and are discarded. We use model 

output from 2009 to 2018. 

We also use ACTM to forward transport air-sea APO fluxes from the Jena APO inversion 

(referred to as Jena-ACTM), in order to provide another constraint on interhemispheric-mixing 

time scales (for details see Section 5.1 and Appendix A). ACTM was run from 1999 to 2019 at 

~2.8° longitude by ~2.8° latitude spatial resolution with 67 vertical levels driven by JRA-55 winds 

(Kobayashi et al., 2015). We only use Jena-ACTM output between 2009 and 2018. 

2.2.6 Calculation of Mθe and Mθe-weighted average APO 

Airborne APO observations are sorted and binned on the Mθe coordinate, which is defined 

as the total dry air mass under a specific moist isentropic value (defined by constant θe) in the 
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troposphere of each hemisphere (Jin et al., 2021). Mθe is defined separately in the Northern and 

Southern Hemispheres and is not continuous across the Equator. The coordinate Mθe is similar to 

θe, generally increasing towards the equator and with altitude in each hemisphere (Figure 2.2b). 

The computation of Mθe follows:  

Mθe(θe, t) =∑Mx(t)|θex<θe (2.12) 

where Mx(t) is the dry air mass of each grid cell x at time t, and θex is the equivalent 

potential temperature. The sum is over all air with θex less than θe in the troposphere, which is 

defined as PVU smaller than 2. This calculation yields a unique value of Mθe for each value of θe. 

We refer to the relationship between θe and Mθe as the “θe-Mθe look-up table”, which we generate 

at daily resolution for each hemisphere based on four reanalyses, which are ERA-Interim, (Dee et 

al., 2011), MERRA-2 (Gelaro et al., 2017), NCEP (Kalnay et al., 1996), and JRA-55 (Kobayashi 

et al., 2015). We use the look-up table based on ERA-Interim to organize airborne data. These 

look-up tables are available at https://doi.org/10.5281/zenodo.4420398.   

The Mθe value for each airborne observation was derived from matching the θe value of 

each observation with the ERA-Interim look-up table of the corresponding date.  

We calculate θe (K) following Stull (2012):  

θe = (T+
Lv(T)

Cpd
w) (

P0
P
)

Rd
Cpd

(2.13) 

where w is the water vapor mixing ratio with unit of kg of water vapor per kg of air mass, 

Rd (287.04 J kg−1 K−1) is the gas constant for air, Cpd (1005.7 J kg−1 K−1) is the specific heat of dry 

air at constant pressure, P0 (1013.25 mbar) is the reference pressure at the surface, and Lv(T) 

https://doi.org/10.5281/zenodo.4420398
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(kJ kg−1) is the latent heat of evaporation. Lv(T) is defined as 2406 kJ kg−1 at 40 °C and 

2501 kJ kg−1 at 0  °C and scales linearly with temperature. 

For HIPPO, θe is available from the merged file that is calculated using water vapor mole 

fraction measured by VCSEL (Zondlo et al., 2010). For ATom, θe was computed from static 

pressure, air temperature as measured by the Meteorological Measurement System (MMS), and 

relative humidity of water vapor as measured by the Diode Laser Hygrometer (DLH) (Diskin et 

al., 2002; Scott et al., 1990).  

We also assign a Mθe value for each grid of the modeled daily atmospheric APO field (TM3 

and ACTM) using 3-D atmospheric Mθe fields derived from the corresponding reanalysis used in 

the transport model. 3-D Mθe fields are interpolated to the transport model grids using inverse 

distance weighted interpolation.  

To calculate the mass-weighted average detrended APO for a given Mθe band, we use a 

method that assumes each APO observation represents the APO value on the corresponding Mθe 

surface throughout the hemisphere (Jin et al., 2021).We sort APO by Mθe from low to high and 

compute a mass-weighted average APO by trapezoidal integration of APO as a function of Mθe, 

dividing by the range of Mθe. This method effectively weighs each measurement or modeled value 

by the fraction of the hemispheric airmass with the same θe value that it represents. The method 

yields accurate inventories because, as shown below, the variability in APO along Mθe surfaces is 

small due to rapid adiabatic mixing (see also Jin et al., 2021), and because this variability is also 

partly addressed by averaging data from different elevations.  

2.3 Seasonal atmospheric APO distributions 

We examine the seasonal cycle of airborne APO grouped into five Mθe-pressure bins 

(40×1016 kg intervals) in each hemisphere and four pressure bins (200 mbar intervals), as shown 
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in Figure 2.2a. The approximate geographic distribution of each bin is illustrated by the zonal 

average Mθe surfaces in Figure 2.2b. These cycles are calculated by 2-harmonic fits (with offset 

removed) to each averaged ΔAPO of the Mθe and pressure bin (shown as points in Fig. 2.2a). 

Statistics of the cycles (amplitude and phase) in the different bins are summarized in Figure 2.2c. 

A comparison of observed cycles and simulated cycles (i.e., Jena-TM3, GKT-TM3, and CESM-

TM3) grouped by 20 (1016 kg) Mθe intervals is shown in Figure 8. 

In Figure 2.2a, all bins show well-resolved seasonal APO cycles, with higher amplitudes 

in the Southern Hemisphere compared to the Northern Hemisphere at a given pressure-Mθe bin. 

Within each hemisphere, the amplitudes show a clear gradient across Mθe, with larger amplitudes 

at lower Mθe (higher latitudes). Phasing of the APO cycles also shows clear gradients over Mθe. 

Whereas the cycles within the Southern Hemisphere have earlier phasing (upward zero-crossing 

date) at low Mθe (high latitude), the cycles in the Northern Hemisphere tend to have later phasing 

at low Mθe. These patterns in amplitude and phase are similar to those seen in summaries of surface 

or shipboard measurements (Keeling et al., 1998; Tohjima et al., 2012). 

In a given Mθe bin (Figure 2.2a and c), the amplitude decreases slightly with increasing 

altitude (decreasing pressure), due to the fact that surface fluxes drive the APO seasonal cycle. The 

weak variation with pressure (at constant Mθe) is expected considering that θe (or Mθe) surfaces are 

preferential surfaces for mixing. The phase generally shifts later with decreasing pressure, 

consistent with a time lag for adiabatic mixing of the APO cycle along θe surfaces. An exception 

to this pattern is seen in the high Mθe (120 - 160) bins of the Northern Hemisphere, where the 

earliest phase is found in the mid-troposphere (800 – 400 mbar), while the lower (1000 – 800 

mbar) and upper troposphere (400 – 200 mbar) show clear lags in phase (Figure 2.2a).  
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The gradients in seasonal phasing with respect to Mθe are mainly driven by fluxes at higher 

latitudes in each hemisphere, and are partly driven by delayed propagation of the cycles from the 

opposite hemisphere (Garcia & Keeling, 2001; Keeling et al., 1998; Najjar & Keeling, 2000). 

These effects, together with the ~180° out-of-phase seasonal flux cycle between low-latitudes 

(<20°N) and high-latitudes in the Northern Hemisphere (Figure 2.13), lead to the small and noisy 

seasonal cycle of the highest Mθe band (low latitude) in the Northern Hemisphere. We find that the 

upward zero-crossing date arrives ~5.5 weeks earlier in the high Mθe (120 - 160) of the northern 

mid-troposphere (800 – 600 mbar) relative to the lower troposphere (1000 – 800 mbar), as shown 

in Figure 2.2a and c. This pattern is consistent with Keeling et al. (1998), who found that the 

observed seasonal maximum at the Mauna Loa Observatory (MLO, 3397 masl) is 2 months earlier 

than the seasonal maximum at Cape Kumukahi (KUM, 15 masl), which is only 82 km from MLO, 

but at a lower elevation. 

As an alternative, we also have binned airborne observations by pressure and latitude 

(Figure 2.9b). This approach leads to a much larger scatter of amplitudes and phases in APO 

seasonal cycles with pressure level (at fixed latitude bins) compared to binning data by pressure 

and Mθe (Figure 2.2a and Figure 2.9a). The larger scatter is expected, which illustrates the 

advantage of organizing airborne observations on Mθe. Binning airborne observations by pressure 

and latitude also leads to larger short-term variability (F test, p < 0.01) within individual pressure 

bins relative to the mean cycles, based on the distribution of all detrended observations (not shown 

as points but denoted as 1σ values in Figure 2.9), indicating larger synoptic disturbances. 
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Figure 2.2: (a) Seasonal cycles of detrended airborne APO (ΔAPO) sorted by Mθe–pressure bins 

(columns) and hemispheres (rows). Mθe bins (1016 kg) are shown at the top of each panel and 

pressure bins are colored. Each point represents the mass-weighted average (based on Mθe) ΔAPO 

within the specific Mθe–pressure bins, filtering out bins with less than twenty 10-s observations. 

The curves represent two-harmonic fits to corresponding mass-weighted average ΔAPO of each 

Mθe and pressure bin. Annul mean values are subtracted. The first half year is repeated in each 

panel. Bins in the mid-troposphere (800 – 600 mbar and 600 – 400 mbar) of the highest Mθe value 

(160 - 200) are dropped because these bins contain very little air mass. (b) Schematic of the 

contours of zonal and annual average Mθe in the Latitude-Pressure coordinate, calculates as the 

average Mθe in the year of 2009 using ERA-Interim. (c) Seasonal amplitude (shading) and phase 

(upward zero-crossing Julian date) of the fitted APO seasonal cycles in Figure 2.2a. Negative 

Julian dates are given from November to December. Bins in the mid-troposphere (800 – 600 mbar 

and 600 – 400 mbar) of the highest Mθe value (160 - 200) are dropped because these bins contain 

very little air mass. 
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2.4 Seasonal cycles of tropospheric APO inventories 

2.4.1 Method 

We show our estimates of APO inventory seasonal anomalies (ΔMAPO) of each airborne 

campaign transect in Figure 2.3, and their values are reported in Table 2.6 and 2.7, including 

uncertainties. Inventory estimates from different years are grouped into a climatological year. For 

each of the 18 airborne transects, we calculate mass-weighted average detrended APO (〈ΔAPO〉) 

for each hemisphere. We then compute ΔMAPO (in moles) of each hemisphere from hemispheric 

mass-weighted average ΔAPO (〈ΔAPO〉) as follows: 

ΔMAPO = 〈ΔAPO〉 ⋅ XO2 ⋅ Mtrop ⋅ κ (2.14) 

The parameter Mtrop is the total tropospheric dry air mass of the hemisphere. Here we use 

a constant hemispheric dry air mass of 2.02⋅1018 kg, which ensures that δMAPO is insensitive to 

changes in tropospheric air mass in the absence of changes in APO concentration. The total mass 

of dry air in the troposphere of each hemisphere is computed from integrating all ERA-Interim  

tropospheric (PVU < 2) grid cells. The changes in tropospheric air mass with season are small in 

any case, varying from 2.00⋅1018 kg to 2.04⋅1018 kg in the Southern Hemisphere and from 1.97⋅1018 

kg to 2.06⋅1018 kg in the Northern Hemisphere. The parameter κ  (3.45⋅10-17 Tmol kg-1) is a 

constant that converts an amount of dry air mass from kg to Tmol, which consists of the product 

of 103/28.97 (i.e., converts kg of air mass to mol of air mass), 10-12 (i.e., converts mol of air mass 

to Tmol of air mass) and 10-6 (i.e., converts ppm to mol/mol). Seasonal cycles of tropospheric APO 

inventory of each hemisphere are calculated by 2-harmonic fits with annual offset removed (Figure 

2.3). Related statistics (seasonal amplitude, maximum and minimum date, upward zero-crossing 

date) based on 2-harmonic fits are summarized in Table 2.1. 
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The Mθe integration method can yield unbiased tropospheric APO inventories if the spatial 

coverage of airborne measurements is broad enough (Jin et al., 2021). Also, APO inventories for 

multiple campaigns can define climatological mean seasonal cycles only if their temporal coverage 

is sufficient. We assess the bias due to incomplete coverage by subsampling simulated 3-D fields 

of APO (from Jena-TM3 and Jena-ACTM, see Figure 2.10) as detailed in SI Text S1. This 

approach yields estimated errors for each airborne campaign transect at the corresponding mean 

day of year. We only find small errors, with an average RMSE across the 18 transects of 1.67 per 

meg (based on TM3) or 1.21 per meg (based on ACTM) in the Northern Hemisphere, and 1.42 per 

meg (based on TM3) or 1.68 per meg (based on ACTM) in the Southern Hemisphere, suggesting 

that the airborne data and Mθe integration method could represent hemispheric average APO well. 

We also find that TM3 and ACTM models generally agree with sign of biases (Figure 2.10). We 

use these calculated errors (averaged from TM3 and ACTM) to correct the observed APO 

inventory seasonal anomalies estimated from each airborne campaign transect (SI Text S1). For 

error analysis, we allow that these corrections for each individual inventory estimate have 

uncertainty amounting to ±100% of the correction (SI Text S2.3).  

We show the corrected hemispheric ΔMAPO  for each airborne campaign in Figure 2.3 

(points), with error bars representing 1𝜎  uncertainty as a quadrature sum from the following 

sources: (1) measurement imprecision and reproducibility; (2) spread of Mθe values for different 

reanalysis products; (3) bias correction due to limited spatial and temporal coverage of the 

observations; (4) the uncertainty of the land biosphere O2:CO2 exchange ratio. To assess 

uncertainties in the harmonic fits, we generate an ensemble of 2000 fits. Details of the uncertainty 

(error bars in Figure 2.3) analysis are presented in SI Text S2. 
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2.4.2 Results and discussion of APO inventories 

In each hemisphere, the seasonal anomaly of APO inventory generally increases in spring 

and summer and decreases in fall and winter (Figure 2.3), consistent with air-sea fluxes of O2 

driving the seasonal cycle of atmospheric APO. In the Southern Hemisphere, the austral 

spring/summer rise is more rapid than the austral fall/winter decrease by ~1.5 months. In the 

Northern Hemisphere, due to a broad summer peak, the rising period is ~3 months shorter than 

that in the Southern Hemisphere. 

Figure 2.3 and Table 2.1 show that the seasonal amplitude of atmospheric APO inventory 

in the Southern Hemisphere (408±41.2Tmol) is significantly larger than in the Northern 

Hemisphere (274±44.4Tmol). The cycle in the Southern Hemisphere is heavily dominated by the 

first harmonic, and the phase indicated by the upward zero-crossing is 4 weeks later relative to the 

cycle in the Northern Hemisphere when measured relative to hemispheric solstice date.  

The period of seasonal maximum APO inventory is broader in the Northern Hemisphere 

than in the Southern Hemisphere. Similar broad maxima are seen at northern land stations (e.g., 

Hateruma Island at 24.1°N, Barrow at 71.3°N, and Alert at 82.5°N) and in the subtropical (20 - 

40°N) Northwest Pacific, as shown by shipborne measurements (Nevison et al., 2015; Tohjima et 

al., 2012, 2019).  

The annual average APO is lower in the Northern Hemisphere by 6.4±1.11 per meg 

(93.3±16.21 Tmol) relative to the Southern Hemisphere, based on the annual mean from the 2-

harmonic fits. In comparison, Resplandy et al. (2016) reported a northern APO deficit of 10.4±0.9 

per meg using HIPPO data in the mid-troposphere between 40°N and 60°N, which they use to 

constrain the interhemispheric ocean heat flux, based on close connection between APO and heat 

fluxes. These two estimates are not directly comparable because our estimate includes data from 
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lower latitudes, where we expect a smaller APO gradient between two hemispheres (Resplandy et 

al., 2016). 

Each APO seasonal inventory estimate has uncertainty up to ±72 Tmol (Error bars in 

Figure 2.3, details in Table 2.6 and 2.7). Of the several contributions to the uncertainty, the 

dominant contribution is measurement imprecision and reproducibility, which is mainly limited 

by  campaign-to-campaign calibration or sampling offsets. The corrections for limited coverage 

and the uncertainty for corrections are small because we have sufficient observations across Mθe 

(or on θe) surfaces in the hemisphere and because the along-Mθe APO gradients are uniformly 

small (Figure 2.2a) in both high and low Mθe bins. For the low Mθe bins, the small gradient is due 

to rapid adiabatic APO mixing along Mθe. For the high Mθe bins, the small gradient can be partially 

attributed to the small magnitude of surface APO flux due to weak seasonal forcing. 
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Figure 2.3: Seasonal anomaly of tropospheric APO inventory (Tmol) or concentration (per meg) 

in the Northern (a) and Southern (b) Hemisphere. Points show estimates of seasonal APO anomaly 

of each airborne campaign transect computed from the Mθe. 

 

Table 2.1: Statistics of the seasonal cycle of tropospheric APO inventory (Figure 2.3) from two-

harmonic fits (annual mean removed) for each hemisphere computed from airborne observations 

with correction for sparse spatial and temporal coverage. 

Product Hemisphere 
Seasonal 

Amplitude (Tmol) 

Maximu

m Date 

Minimu

m Date 

Upward-zero 

Crossing 
Date 

Airborne 

observation 

North 274±44.4 207±34.8 66±10.4 140±10.9 

South 408±41.2 66±21.4 270±8.7 349±8.2 

 



 

 88 

2.5 Seasonal cycles of hemispheric air-sea APO fluxes 

2.5.1 Method  

We calculate total area-integrated APO fluxes (including all sources of exchange, i.e., from 

the ocean and fossil fuel emission) in the Northern Hemisphere (FN
APO) and Southern Hemisphere 

(FS
APO) (Tmol day-1) from airborne observations, using a two-box model:  

FN
APO(t) =

∂MN
APO(t)

∂t
+ LN(t)  (2.15)   

FS
APO(t) =

∂MS
APO(t)

∂t
+ LS(t)  (2.16)   

where 
∂MN

APO(t)

∂t
 and 

∂MS
APO(t)

∂t
 are the tropospheric APO inventory changes (Tmol day-1) of 

each hemisphere and LN(t) and LS(t) are “leakage” terms across the Equator and tropopause. Here 

we calculate daily APO inventory changes in each hemisphere by combining the 2-harmonic fitted 

seasonal APO inventories from Section 4 with the previously removed annual average hemispheric 

APO and the removed long-term APO trend. Combing these components allows us to resolve both 

seasonal and annual mean components of the flux. We base the trend on observations from surface 

stations (Section 2.3), scaled to yield hemispheric inventories (Eq. 2.14). We use the same global 

trend for both hemispheres. 

The leakage terms are included in Eq. 2.17 and 2.18 to account for the transport of ΔAPO 

between hemispheres, and between the troposphere and the stratosphere. Positive leakage 

represents the transport out of the troposphere in each hemisphere. We parameterize the leakage 

according to: 

LN(t) =
(MN

APO(t) − MS
APO(t))

τ(t)
+ STEN  (2.17) 
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LS(t) = −
(MN

APO(t) − MS
APO(t))

τ(t)
+ STES (2.18) 

where τ(t) is a climatological inter-hemisphere APO exchange time scale with unit of year, 

and STEN(t) and STES(t) are climatological stratosphere-troposphere exchange rate (Tmol day-1). 

We estimate τ(t), STEN(t), and STEN(t) using two transport models (TM3 and MIROC-ACTM) 

as described in Appendix A. We show climatological monthly τ(t), STEN(t), and STEN(t) in Figure 

2.4, along with the interannual variability from 2009 to 2018 (shown as ± 1σ ). To yield daily 

values of τ, STES, and STEN for application in Eqs. 2.15 and 2.16, we fit the climatological monthly 

results to a two-harmonic fit (Figure 2.4). 

We validate the two-box model by successfully reconstructing the daily Jena inversion 

APO flux using troposphere APO inventories and parameters τ(t), STEN, and STES from two 

transport models (TM3 and ACTM), as shown in Figure 2.11. This reconstruct shows small RMSE 

up to 0.53 Tmol day-1. Seasonal cycle of air-sea APO flux is dominated by the inventory term  

(
dMAPO

dt
), with relatively small contribution form the leakage term. The leakage term causes the flux 

amplitude to be larger than the inventory amplitude by 22.1% in the Northern Hemisphere and 

23.2% in the Southern Hemisphere, as shown in Figure 2.12. 

The area-integrated APO fluxes calculated using Eq. 2.15 and 2.16 include small 

contributions from APO fluxes directly caused by the burning of fossil-fuel (FAPO(ff)).  To resolve 

APO fluxes due to ocean fluxes alone, we compute residual fluxes according to  

FAPO(ocn) = FAPO − FAPO(ff) 

= FAPO − (FO2(ff) + 1.1FCO2(ff)) (2.19) 

where fossil fuel O2 flux is calculated by scaling corresponding CO2 flux 
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FO2(ff) = −1.35FCO2(ff) (2.20) 

The factor of -1.35 is supported by emission ratios from Keeling et al. (1998) and emissions 

by fuel type from the Global Carbon Budget (Friedlingstein et al., 2022). We use FCO2(ff) averaged 

from Open-source Data Inventory for Anthropogenic CO2 (ODIAC, Oda et al., 2018) and GCP-

GridFEDv2022.2 (Jones et al., 2021) (for details see SI Text S3.2). Fossil fuel emission contributes 

significantly to the loss of APO in the Northern Hemisphere, amounting to an annual uptake of 

208.5 Tmol, but its impact on the seasonal cycle is small, accounting for 1.2% of the air-sea flux 

seasonal amplitude (Figure 2.12). In the Southern Hemisphere, the annual APO uptake of fossil 

fuels is small, amounting  to 15.7 Tmol and 0.06% of the air-sea flux seasonal amplitude (Figure 

2.12). 

We show the seasonal cycle of air-sea APO flux of each hemisphere in Figure 2.5, 

calculated by applying the 2-harmonic seasonal APO inventory anomalies in each hemisphere that 

are resolved in Section 4 to the 2-box model and correcting for the fossil fuel component. The flux 

uncertainties are calculated from an ensemble of model runs that uses 2000 iterations of harmonic 

fits from the previous section and convolving these with additional uncertainties in the box-model 

transport parameter and fossil fuel correction (SI Text S3). Related statistics (maximum and 

minimum fluxes, maximum and minimum date, APO seasonal net outgassing (SNO), upward zero-

crossing date, and annual flux) are summarized in Table 2.2. SNO is defined as the area under the 

positive portion of the 2-harmonic fitted seasonal cycle curve after removing the annual mean flux, 

which is a measure of the contribution of air-sea APO flux to the seasonal cycle of atmospheric 

APO (Garcia & Keeling, 2001). The annual mean flux is calculated as the integration of daily flux 

over the course of the seasonal cycle. 
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2.5.2 Results and discussion of air-sea APO fluxes 

We find significantly larger SNO in the Southern Hemisphere (518±52.6Tmol) than in the 

Northern Hemisphere (342±52.1 Tmol). Dividing SNO by the ocean area in each hemisphere, we 

find a flux per unit area that is also larger (within 1σ uncertainty) in the south (2.49±0.253 mol m-

2) than the north (2.21±0.337 mol m-2). 

In both hemispheres (Figure 2.5a-b), the APO flux cycle is non sinusoidal, with the rise 

occurring more rapidly than the decline. Compared to the hemispheric solstice date, the timing of 

this rise, based on the upward zero-crossing, is earlier by 3 weeks in the Northern Hemisphere 

(late March) compared to the Southern Hemisphere (mid-October) (Figure 2.5c and Table 2.2).  

Similarly, the date of maximum summer outgassing is earlier by 5 weeks in the Northern 

Hemisphere. These estimated phase asymmetries are not very sensitive to assumptions about 

interhemispheric APO leakage (Figure 2.12).  

Differences are also notable in the shape of the declining portion of the cycle. The Southern 

Hemisphere decrease is relatively steady, while the Northern Hemisphere decrease starts with a 

slow drop from May to August followed by a late summer plateau till October, and then a rapid 

drop through January. This near zero flux during the summer plateau leads to a broad atmospheric 

APO peak in the Northern Hemisphere (Figure 2.3a), corresponding to a period of longer (but 

weaker) APO outgassing in the Northern Hemisphere (Figure 2.5c). A similar summer plateau is 

clearly manifested in the CESM, but is weak in the Jena inversion. This feature, however, is not 

observed in GKT (Figure 2.5d). 

Could the phase asymmetry in the APO cycles between the hemispheres be caused by 

differences in the phasing of seasonal ocean warming and cooling?  The simulated flux cycle from 

GKT, which is calculated by assuming air-sea O2 flux is in phase with ocean heat flux, does not 
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support this hypothesis because it does not show such phase asymmetry between hemispheres 

(Figure 2.5d).  

The phase asymmetry is likely caused by other physical and biogeochemical processes that 

drive the surface ocean O2 change. A significant factor may be differences in the timing of the 

spring bloom between hemispheres. Satellite-based chlorophyll concentrations suggest that the 

spring bloom is roughly one month earlier in the Northern compared to the Southern Hemisphere, 

with the bloom peaking in April and May over the mid-latitudes (30-50°N) of the North Atlantic 

and Pacific and peaking in November to January at mid-latitudes (30-50° S) of the Southern 

Hemisphere (Sapiano et al., 2012). The earlier spring-time O2 outgassing in the Northern 

Hemisphere may also be influenced by differences in O2 equilibration time scale in the mixed 

layer.  As shown in de Boyer Montégut et al. (2004), the mixed layer depth in the mid-latitude 

Northern Hemisphere is between 10 to 100 meters in spring (April), whereas the depth in the mid-

latitude Southern Hemisphere is generally between 100 to 300 meters in spring (October). 

Assuming a gas exchange velocity of 3 m day-1 and a difference in mixed layer depth of 100 m, 

the equilibration time in the Northern Hemisphere would be about 1 month faster than in the 

Southern Hemisphere. 

The asymmetry in the breadth of the late summer and fall outgassing period (broader and 

stronger in the Northern Hemisphere) may be influenced by the presence of the shallow oxygen 

maximum (SOM) in the North Pacific (Hayward, 1994; Shulenberger & Reid, 1981), as noted by 

Ishidoya et al. (2016). The SOM is generated by the strong surface ocean stratification in the 

summer, which traps photosynthetically-produced O2 below the mixed layer, delaying O2 

outgassing until the fall, when the mixed layer deepens. The SOM is confirmed by Argo float 

measurements over western subtropical North Pacific (17.7-20.2°N and 162-164.5°E), which show 
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clear oxygen supersaturation beneath the mixed layer from May till November (Yang et al., 2017). 

We also find, in the CESM configuration, an oxygen supersaturation zone at around 40-60 meters 

deep over the mid-latitude (20 - 45°N) of the Northern Pacific from July to October (not shown), 

suggesting that the summer-to-fall plateau in CESM is SOM-related. We could not find a similarly 

strong late summer and fall plateau in the Southern Hemisphere in both airborne-based flux 

estimates and the CESM, consistent with the summer mixed layer being deeper in the Southern 

Hemisphere (Kara et al., 2003).  

The phase and SNO differences between hemispheres may also have contributions from 

tropical ocean fluxes. The CESM and the Jena inversion suggest clear seasonal fluxes in the 20°S 

- 20°N band (Figure 2.13). The APO fluxes integrated over this band have similar phasing to fluxes 

in the extratropical Southern Hemisphere, with ocean APO uptake during the austral winter and 

outgassing during the austral summer. These tropical fluxes therefore contribute to a larger SNO 

in the Southern Hemisphere and smaller SNO in the Northern Hemisphere, while also contributing 

to earlier phasing in the north  (Figure 2.13). 

Table 2.2 also provides annual APO fluxes, based on the secular components of the box 

model, yielding net global ocean APO uptake of 207 Tmol. The gain of APO in the global ocean 

is expected from the ocean uptake of anthropogenic CO2, with small impact from a climate driven 

net outgassing of APO due to ocean heat uptake from the atmosphere (32±19.6 Tmol net releasing 

per year) and aerosol-related APO outgassing due to ocean fertilization driven by atmospheric 

deposition of anthropogenic aerosol (8±4.1 Tmol net releasing per year) (Resplandy et al., 2019). 

Here we estimate an annual ocean anthropogenic CO2 uptake of 2.7±0.25 PgC (converted from 

247±22.8 Tmol of APO) by subtracting the global climate-driven APO impact and aerosol-related 

impact from our global annual oceanic APO uptake estimates (for method see SI Text S4). Our 
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estimation is close to the value (2.8±0.4 PgC) reported in Global Carbon Budget 2021 during the 

decade 2011-2020 (Friedlingstein et al., 2022).  

The hemispheric flux estimates are transport model-dependent because we use TM3 and 

ACTM models to correct for sparse spatial and temporal sampling and to derive leakage terms in 

the box model. This impact is small because the flux cycles are dominated by the atmospheric 

inventory change on the hemispheric scale (Figure 2.12). Using TM3 model alone or ACTM alone 

only leads to a small SNO differences of 14 Tmol (4.1%) and 17 Tmol (3.3%) in the Northern and 

Southern Hemisphere, respectively (larger if using ACTM). 

Can the airborne data resolve changes in the seasonal cycles over time? Comparing the 

SNO estimated using HIPPO (2009-2011) data alone or ATom (2016-2018) data alone (by 

harmonic fits to subsets of the transects), we find SNO of ATom is 5% and 2% larger than that of 

HIPPO in the Northern and Southern Hemisphere respectively. These changes are not significant 

compared to uncertainties. 

 

Figure 2.4: (a) Climatological monthly seasonal APO exchange time scale ( τ ) between the 

Northern and the Southern troposphere. (b) and (c) Troposphere-stratosphere APO exchange rate 

(Tmol day-1) in the Northern Hemisphere (STEN) and Southern Hemisphere (STES), respectively. 

Positive value denotes troposphere to stratosphere APO transport. τ , STEN, and STES are 

computed using air-sea APO flux from Jena CarboScope APO inversion and tropospheric APO 

inventory from Jena-TM3 and Jena-ACTM (model descriptions see section 2.5). The 1 σ 

uncertainty is computed as the standard deviation of τ for each corresponding month from 2009 to 

2018. Methods are presented in Appendix A. 
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Figure 2.5: Seasonality of area-integrated daily air-sea APO fluxes in the Northern (a) and 

Southern (b) Hemisphere. We show our estimate of the flux cycle as black curves. The 1σ 

uncertainty (gray shading) is calculated as the standard deviation of 2000 iteration of 2-harmonic 

fit to flux estimates (for details see SI Text S3).  For comparison, we also show the modeled daily 

air-sea APO fluxes from Jena (orange), GKT (red), CESM (blue). The first half-year is repeated. 

(c) – (f) Comparing the seasonal cycle of APO fluxes from airborne observations and other 

products in the Northern and Southern Hemisphere, with the cycle in the Southern Hemisphere 

shifted by 6 months (starting from July, see blue ticks on the bottom). The first half year is 

repeated. We note that only GKT is adjusted to have zero annual flux. 
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Table 2.2: Statistical indices of the seasonal cycle of air-sea APO fluxes from two-harmonic fits 

for each hemisphere computed from airborne observations, Jena inversion, GKT, and CESM. We 

note that seasonal net outgassing (SNO) and upward zero-crossing date is calculated based on the 

flux cycles with annual mean flux removed. 

Product Hem. 

Max. 

fluxes 

(Tmol 

day-1) 

Max. 

Date 

Min. fluxes 

(Tmol day-

1) 

Min. 

Date 

SNO 

(Tmol) 

Upward 

Zero-

crossing 

Date 

Annual 

Flux 

(Tmol) 

Airborne 

observatio

n 

North 2.9±0.83 135±25.3 -4.4±0.88 16±11.9 
342±52.

1 
79±14.4 

-

111±34.7 

South 4.7±0.79 354±14.1 -5.1±0.86 214±15.9 
518±52.

6 
284±7.8 -96±34.6 

Jena 

inversion 

North 2.4 147 -3.3 5 311 77 -101 

South 4.1 363 -4.1 200 471 283 -113 

GKT 
North 2.3 183 -2.1 354 250 90 / 

South 3.9 362 -3.5 174 430 271 / 

CESM 
North 2.0 154 -3.6 21 312 92 -71 

South 3.2 354 -4.2 206 415 281 -66 

 

2.6 Comparisons to other APO flux estimates 

2.6.1 Comparison to GKT 

We find systematic differences in seasonal amplitudes and phases between our airborne 

observation-based estimates and the GKT climatology (Figure 2.5). The comparison suggests there 

are significant limitations to GKT fluxes at mid- to high-latitudes of the Northern Hemisphere, 

based on discrepancies in the seasonal phases of APO inventory cycle in the mid- to high Mθe bins 

(Figure 2.8). The O2 fluxes from the GKT climatology used dissolved O228 data with large gaps in 

spatial and temporal coverage, especially over the high latitudes (Najjar & Keeling, 1997). To 

interpolate these sparse data, Garcia and Keeling (2001) assumed that O2 fluxes are exactly in 

phase with ocean heat fluxes at a constant ratio over large latitude bands, an approach which has 

known limitations (Bent, 2014; Sun et al., 2017). These limitations in the coverage of samplings 

and assumptions lead to a significant underestimate of the northern winter-time O2 uptake (Figure 
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2.5a). We find that, in the Labrador Sea, the Garcia & Keeling (2001) climatology yields winter-

time (Oct. to Mar.) O2 uptake of 9.1 mol m-2, compared to more recent estimates of 22.1±2.5 mol 

m-2 for 2016 (Atamanchuk et al., 2020) and 29.1±3.8 mol m-2 for 2015 (Koelling et al., 2017).  

2.6.2 Comparison to Jena APO inversion 

We find relatively good agreement between our hemispheric flux estimates and from the 

Jena inversions (Figure 2.5 and Table 2.2). The most obvious differences in the Northern 

Hemisphere are the too weak northern summer plateau and too small northern winter-time oceanic 

APO uptake. The too small winter-time uptake in inversion estimates based on surface data relative 

to airborne-based estimates is also found in Resplandy et al. (2016), and is attributed to an 

underestimation of the vertical mixing by the atmospheric transport models over the north Atlantic. 

In the Southern Hemisphere, we find evident differences of atmospheric APO seasonal cycles in 

individual Mθe bins, where the Jena-TM3 shows a smaller change in APO amplitude from low to 

high Mθe than the observations (Figure 2.8). This discrepancy may point to the TM3 model 

overestimating mixing (across Mθe) in the Southern Hemisphere. This interpretation is also 

supported by comparison (not shown) between the Jena inversion and shipboard measurements 

over the Western Pacific from 5°S to 24°S from Tohjima et al. (2012) where the Jena inversion 

yields amplitudes that are too large by up to 40%. 

2.6.3 Comparison to CESM 

In the Northern Hemisphere, the CESM shows a too weak spring (MAM) APO outgassing 

of ~1.5 Tmol day-1 but too large fall (SON) outgassing of ~1.2 Tmol day-1. (Figure 2.5a). These 

discrepancies may result from limitations in the combination of modelled spring-summer export 

production and fall-time ventilation, as seen in an earlier version of CESM (Nevison et al., 2015). 

Nevison et al. (2015) pointed out that fall deep water ventilation in multiple Earth System Models 



 

 98 

is too weak, which reduces the transport of O2-depleted deep water into the surface ocean during 

the northern fall.  

In the Southern Hemisphere, the seasonal phases of the CESM are close to airborne 

observations but peak-to-peak amplitude and SNO are lower than the airborne results.  

2.7 Summary and outlook 

We use APO observations from two recent airborne projects, HIPPO and ATom, to resolve 

climatological seasonal APO tropospheric distributions (Section 3), tropospheric inventories 

(Section 4), and air-sea fluxes (Section 5) at the hemispheric scale. Airborne observations are 

organized on a mass-weighted moist isentropic coordinate (Mθe) as an alternative to latitude, to 

analyze atmospheric distributions and to compute tropospheric inventories.  

The airborne data resolve clear seasonal APO changes within and between hemispheres 

(Figure 2.2). The seasonal amplitude is larger in the Southern Hemisphere and is larger in the high-

latitudes (low Mθe) of each hemisphere. The seasonal phase also shows a clear gradient over 

latitudes (Mθe). In the Northern Hemisphere, we find an earlier phase in the lowest latitude (highest 

Mθe), while in the Southern Hemisphere, we find an earlier phase in the high latitude (lowest Mθe). 

These different patterns are also observed at surface stations and shipboard measurements over the 

Pacific Ocean (Keeling et al., 1998; Tohjima et al., 2012). 

We also compute hemispheric-scale air-sea fluxes from hemispheric inventories using a 2-

box model (Appendix A) that accounts for the surface APO flux, the inter-hemispheric APO 

exchange, and the troposphere-stratosphere APO exchange. We compare our box-model inverted 

flux to other model and observation-based products, such as the Jena APO inversion (updates of 

Rödenbeck et al., 2008), the Garcia and Keeling (2001) O2 flux climatology, and one configuration 

of CESM, to identify limitations in these products (Section 6). 
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Our estimates of air-sea APO fluxes (Figure 2.5) show clear seasonal cycles in both 

hemispheres, with the ocean releasing APO in the spring and summer and taking up APO in the 

fall and winter. The cycle in the Northern Hemisphere has a smaller seasonal amplitude, an earlier 

(relative to the hemispheric solstice date), and a longer period of net outgassing (Figure 2.5) 

compared to the cycle in the Southern Hemisphere, suggesting differences between the 

hemispheres in physical and biogeochemical mechanisms, such as a strong subsurface oxygen 

maximum (SOM) and faster mixed layer equilibration time scale in the Northern Hemisphere. 

Our results point to two important flux features in the Northern Hemisphere. The first 

feature is a strong oceanic O2 uptake in January. This strong uptake feature is clearly 

underestimated in observation-based products (i.e., GKT). We attribute the bias in GKT to limited 

coverage of dissolved O2 measurements over northern high latitudes and the assumption that O2 

fluxes are exactly in phase with ocean heat fluxes at a constant ratio over large latitude bands, 

which fails to account for processes during winter-time deep convection events.  

The second feature is a period of weak APO outgassing in the northern late summer and 

fall. This signal is likely related to the development of the SOM, which stores spring-time 

photosynthetically produced O2 below the mixed layer, and delays the O2 outgassing until the fall, 

when the mixed layer deepens. In comparison with airborne-based estimates during the northern 

late summer and fall, the CESM shows too strong APO outgassing. On the other hand, two 

observation-based products (GKT and the Jena inversion) do not capture this northern APO 

outgassing during the late summer and fall. 

Given the evident limitations of the Garcia and Keeling (2001) O2 flux climatology, our 

study motivates creation of an improved climatology, taking advantage of expanded measurements 

of O2 with atmospheric calibration on biogeochemical Argo floats (Bittig & Körtzinger, 2015, 
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2017; Bushinsky et al., 2016, 2017; Claustre et al., 2020; Johnson et al., 2015). Our study also 

motivates future work focusing on regions with winter-time deep convection (e.g., Labrador Sea 

and western boundary currents) and summer-time stratification (e.g., northwest Pacific) from both 

modeling and observational perspectives. More realistic depictions of ocean ventilation in general 

circulation models (e.g., CESM) are needed, along with improved coverage in atmospheric APO 

station measurements that better target convective regions along with improved skill of modeled 

atmospheric transport over these regions. Finally, a regular program of hemispheric to global scale 

airborne transects, such as HIPPO and ATom but at higher frequency, would greatly improve our 

ability to constrain APO fluxes and resolve interannual variations and trends tied to climate and 

biogeochemical forcing.  

2.8 Appendix A: Box model 

 

Figure 2.6: Schematic of the box model. 

 

We use a box model (Figure 2.6) as a modified version of the two-box model in Lintner et 

al. (2004) and Patra et al. (2009) to quantify the hemispheric APO leakage. The model follows: 

LN(t) = FN
APO(t) −

∂MN
APO(t)

∂t
=
(MN

APO(t) − MS
APO(t))

τ(t)
+ STEN(t)  (2.21) 
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LS(t) = FS
APO(t) −

∂MS
APO(t)

∂t
= −

(MN
APO(t) − MS

APO(t))

τ(t)
+ STES(t) (2.22) 

with climatological monthly τ(t) as the inter-hemisphere APO exchange time with unit of 

year, and monthly STEN and STES as the stratosphere-troposphere APO exchange with unit of 

Tmol day-1. 

STEN and STES are directly calculated from daily Jena-TM3 and Jena-ACTM as the time 

derivative of stratosphere APO inventory of each hemisphere, assuming interhemispheric APO 

exchange in the stratosphere is negligible compared to the exchange across tropopause (Butchart, 

2014; Stohl et al., 2003), following: 

STEN(t) =
∂MN

APO(Strat)
(t)

∂t
(2.23)   

STES(t) =
∂MS

APO(Strat)(t)

∂t
(2.24) 

where MN
APO(Strat)(t)  and MS

APO(Strat)(t)  are the stratosphere APO inventory in the 

Northern and Southern Hemisphere, respectively. We report climatological monthly STE in Figure 

2.4b and c, with the 1𝜎 uncertainty showing interannual variability. 

We solve for the parameter τ(t) according to: 

τ(t) =
2 (MN

APO(t) − MS
APO(t))

FN
APO(t) − FS

APO(t) −
∂ (MN

APO(t) − MS
APO(t))

∂t
− STEN(t) + STES(t)

(2.25)
 

We use monthly FN
APO(t) and FS

APO(t) averaged from daily Jena inversion APO flux, and 

monthly MN
APO(t) and MS

APO(t) averaged from daily Jena-TM3 or Jena-ACTM, to compute the 
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climatological monthly τ(t) (averaged for each month from 2009 to 2018). We report τ(t) of each 

model in Figure 2.4a, with the 1𝜎 uncertainty showing interannual variability. In Figure 2.4a, we 

show that both TM3 and ACTM transport model suggest a faster inter-hemisphere mixing in 

summer and winter, and a slower mixing in spring and fall.  

To examine the skill of the box model in producing daily air-sea APO fluxes, we compare 

simulated APO fluxes (Jena inversion) with reconstructed APO fluxes calculated using simulated 

APO inventories based on the Jena inversion APO flux forward transported by the TM3 model 

(Jena-TM3), and the ACTM model (Jena-ACTM), together with corresponding climatological 

TM3-based or ACTM-based τ and STE (Figure 2.11). The daily τ and STE is computed by a 2-

harmonic fit to climatological monthly τ and climatological monthly STE. We show (Figure 2.11) 

that this box model can reconstruct the hemispheric air-sea APO flux reasonably well, with RMSE 

of daily flux smaller than 0.53 Tmol day-1. This method does not bias the SNO results, as we find 

a small difference of averaged SNO (2009-2018) between the reconstructed APO flux and the 

original APO flux of 18 Tmol (5.8%) in the Northern Hemisphere and 32 Tmol (6.3%) in the 

Southern Hemisphere. 

2.9 Data Availability Statement 

All HIPPO 10 s merge data are available from https://doi.org/10.3334/CDIAC/HIPPO_010 

(Wofsy, 2017). Besides, all HIPPO Medusa merge data are available from 

https://doi.org/10.3334/CDIAC/HIPPO_014 (Wofsy, 2017). All ATom 10s and Medusa merge 

data are available from https://doi.org/10.3334/ORNLDAAC/1581 (Wofsy et al., 2018).  

Jena CarboScope APO inversion (version: apo99XS_v2022) is available from 

https://www.bgc-jena.mpg.de/CarboScope/?ID=apo99XS_v2022 (Rödenbeck et al., 2008). 

Garcia and Keeling (2001) climatological monthly O2 flux data and climatological monthly N2 

https://doi.org/10.3334/CDIAC/HIPPO_010
https://doi.org/10.3334/CDIAC/HIPPO_014
https://doi.org/10.3334/ORNLDAAC/1581
https://www.bgc-jena.mpg.de/CarboScope/?ID=apo99XS_v2022
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flux data from ECCO version 4 are available from https://doi.org/10.5281/zenodo.6516046. The 

CESM air-sea APO flux fields are available upon request. The atmospheric field of APO forward 

transported by TM3 and ACTM model are available upon request. 

θe–Mθe look-up tables with daily resolution and 1 K intervals in θe from 1980 to 2018 

computed from ERA-Interim are available at https://doi.org/10.5281/zenodo.4420398 (Jin, 2021). 

2.10 Supplement 

2.10.1 Possible Sampling Biases in APO Inventories 

We identify three potential sampling biases in the estimated climatological cycles of 

atmospheric APO inventory: (1) limited seasonal coverage (18 transects over the climatological 

year); (2) limited interannual coverage (sampling particular years instead of all years); (3) limited 

spatial coverage (under-sampling the full troposphere of each hemisphere). To constrain the likely 

magnitude of these biases, we compared the true simulated (Jena-TM3 and ACTM-TM3) APO 

inventory seasonal anomaly averaged over the full 2009-2018 period (computed by integrating 

over all daily model detrended tropospheric grid cells with a cutoff at PVU = 2) to the 

“subsampled” anomaly estimated by subsampling simulated APO atmospheric fields (detrended) 

along 18 flight tracks on corresponding flight dates and using the Mθe integration method. 

Simulated 3-D APO fields are first detrended by subtracting a daily smoothed interannual trend 

from a global mean APO time series using observed data from the Scripps O2 Program (Hamme 

& Keeling, 2008). The true seasonal anomaly is calculated using the detrended daily 3-D APO 

atmospheric field from 2009 to 2018, which yields a true climatological hemispheric APO 

inventory anomaly cycle based on 2-harmonic fit to daily detrended inventory estimates. We 

conduct this comparison for each airborne campaign transect at the corresponding mean day of 

year, calculating the difference between true anomaly and subsampled anomaly, as shown in 

Figure 2.10. For each transect, the difference between the true anomaly and subsampled anomaly 

https://doi.org/10.5281/zenodo.6516046
https://doi.org/10.5281/zenodo.4420398
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is small, with an average RMSE across the 18 transects of 1.67 per meg (based on TM3) or 1.21 

per meg (based on ACTM) in the Northern Hemisphere, and 1.42 per meg (based on TM3) or 1.68 

per meg (based on ACTM) in the Southern Hemisphere. We therefore apply these differences 

(Figure 2.10) to correct observed hemispheric seasonal APO anomaly of each airborne campaign 

transect. The uncertainties in these biases are hard to quantify, and are likely transport model 

dependent, so we take ±100 % as a conservative estimate.  

2.10.2 Uncertainties in the seasonal cycle of troposphere APO inventory 

We allow for random error in the estimation of each observed ΔMAPO (points in Figure 

2.3) with the following sources of uncertainty: (1) The irreproducibility of the Medusa and 

corrected AO2 measurements, potentially causing flight or campaign specific offsets; (2) the 

computation of Mθe associated with different reanalysis products; (3) the uncertainty of the above-

mentioned spatial and temporal bias correction in SI Text S1; (4) the uncertainty of the exchange 

ratio of O2 production/consumption to CO2 consumption/production from terrestrial biosphere. We 

now discuss these errors in turn. 

2.10.2.1 Measurement imprecision and reproducibility 

The δ(O2/N2) measurements from the Medusa flasks and from the AO2 instrument adjusted 

to match Medusa have several potential sources of bias, including errors in propagating calibration 

scales, surface effects in flasks or tubing, and sample fractionation, as discussed in detail by 

Stephens et al. (2021). The imprecision in AO2 is negligible after averaging 1000s of 

measurements. A comparability imprecision of the Medusa δ(O2/N2) measurements is presented 

in Stephens et al. (2021), which compared AO2 measurements, adjusted to match Medusa, to 10 

stations in the Scripps O2 Program network, with very broad coincidence criteria (±1000 km 

horizontally, ±1000 m altitude, and ±10 days). The mean offsets per campaign were typically 

within ±5 per meg. These means had a standard deviation of ±3.3 per meg, reflecting a 
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conservative estimate as they are based on many fewer flasks than the full hemispheric inventory. 

We also allow for uncertainty in the calibration of the δ(O2/N2) and CO2 measurements due to 

possible long-term drift in calibration gases in the lab at Scripps, which amounts to ±2 per meg 

per campaign. We report a quadrature 1σ uncertainty of hemispheric average APO concentration 

per campaign of ±3.86 per meg, equaling to ±56.31 Tmol of the troposphere inventory of each 

hemisphere, which is systematic for each airborne campaign. 

2.10.2.2 Spread of Mθe values for different reanalysis products   

Different reanalysis products produce different daily θe-Mθe relationships. To quantify the 

sensitivity of ΔMAPO to the choice of reanalysis product, we alternately use θe-Mθe look-up table 

tables generated from NCEP, JRA-55 and MERRA-2 (Gelaro et al., 2017; Kalnay et al., 1996; 

Kobayashi et al., 2015). Uncertainty is then calculated as the standard deviation of the difference 

in hemispheric average APO computed from the look-up table generated by using ERA-Interim, 

NCEP, and MERRA-2 for all airborne campaign transects (18 in each hemisphere). We report that 

the use of different reanalysis products leads to uncertainty of hemispheric APO inventory 

amounting to ± 3.65 Tmol and ± 2.19 Tmol in the Northern and Southern Hemisphere, 

respectively.  

2.10.2.3 Spatial and temporal bias correction  

Each estimate of seasonal APO inventory anomaly could be biased by spatial and temporal 

sparseness of airborne observations. We correct these biases, as shown above (in Supplement Text 

2.10.1). The uncertainty of the correction is assumed to be ±100 % of the corresponding correction 

to each airborne campaign transect. 

2.10.2.4 Biosphere O2:CO2 exchange ratio  

We conduct sensitivity test by generating ensemble of hemispheric average APO estimates 

using the exchange ratio over the range of 1.1±0.05. We find that the varying ratio would alter 
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each estimate by ±5.1%. We use ±5.1% of the averaged ΔMAPO value as the uncertainty of 

corresponding airborne campaign transect due to the uncertainty of exchange ratio. 

2.10.2.5 Overall uncertainties  

We calculate the quadrature 1σ uncertainty of each atmospheric seasonal APO inventory 

anomaly based on uncertainty sources reported above (SI Text S2.1-S2.4). To quantify the 1𝜎 

uncertainty of seasonal cycles based on 2-harmonic fits, we generate 2000 iterations of 2-harmonic 

fits to airborne observed ΔMAPO with random 1𝜎 uncertainty reported above to yield ensembles 

of fits. We note that the uncertainty induced by measurement imprecision of each campaign and 

in each iteration has the same value in both hemispheres and from both transects. We report 

uncertainties of the 2-harmonic fitted seasonal cycles (black curves in Figure 2.3) as the standard 

deviation of these 2000 iterations. 

2.10.3 Uncertainties in the seasonal cycle of air-sea APO flux 

We allow for random error in the estimation of 2-harmonic fitted seasonal air-sea APO 

flux estimates with the following sources of uncertainty: (1) uncertainty of 2-harmonic fitted 

seasonal APO inventory (described in SI Text S2); (2) the uncertainty of the hemispheric APO 

leakage which comes from the uncertainty of τ(t) and STE (for details see Appendix A); and (3) 

the uncertainty of the fossil fuel CO2 emission correction (FAPO(ff)). We note that FAPO(ocn) are 

mostly driven by the time derivative of APO inventory (
∂MAPO

∂t
), with small contribution from 

leakage (Figure 2.12). We now discuss these errors in turn. 

2.10.3.1 Uncertainty of leakage correction 

We report the climatological monthly τ(t), STEN, and STES based on Jena-TM3 and Jena-

ACTM in Appendix A. For 2000 iterations of seasonal APO inventory cycles in each hemisphere, 

we use monthly τ(t) and STE including 1σ uncertainties from two transport models to invert the 

seasonal surface APO fluxes. Therefore, 1000 iterations are applied to TM3-based τ and STE, 
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while another 1000 iterations are applied to ACTM-based τ and STE. The uncertainty of leakage 

correction is included in the spread of inverted flux estimates. 

2.10.3.2 Uncertainty of fossil fuel CO2 flux correction 

We use the average of two monthly fossil fuel CO2 emission dataset to correct for FAPO(ff). 

One is the Open-source Data Inventory for Anthropogenic CO2 (ODIAC, Oda et al., 2018). 

Another one is the GCP-GridFED (Jones et al., 2021). For both datasets, we first calculate a 

climatological (2009-2018) monthly average CO2 emission for each hemisphere. We then 

interpolate monthly flux to daily using linear interpolation. ODIAC suggests an annual fossil fuel 

CO2 emission (2009 to 2018 average) of 8.51 PgC yr-1 and 0.64 PgC yr-1 in the Northern and 

Southern Hemisphere respectively. GCP-GridFED suggests an annual fossil fuel CO2 emission 

(2009 to 2018 average) of 8.25 PgC yr-1 and 0.62 PgC yr-1 in the Northern and Southern 

Hemisphere respectively. The annual emission is highly comparable between these two datasets, 

but GCP-GridFED suggests a seasonal amplitude that is twice as large as that in ODIAC. 

Converting anthropogenic CO2 emission to FAPO(ff) (Eq. 2.19 and 2.20), we yield 208.5 

Tmol yr-1 and 15.7 Tmol yr-1 APO lost in the Northern and Southern Hemisphere. The uncertainty 

in the Northern Hemisphere is particularly important due to large emission, which we assumed to 

be ±0.5 PgC yr-1 based on the uncertainty of global fossil CO2 emission in Global Carbon Budget 

of ±0.5 PgC yr-1 (Friedlingstein et al., 2022). The uncertainty in the Southern Hemisphere is 

assumed to be ±0.10 PgC yr-1 as a conservative estimate. Therefore, we report uncertainty of daily 

FAPO(ff) to be ±0.034 Tmol d-1 and ±0.006 Tmol d-1 in the Northern and Southern Hemisphere 

respectively. We also generate 2000 iterations of climatological cycle of daily FAPO(ff) in each 

hemisphere. 
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2.10.3.3 Overall uncertainty  

The overall uncertainties of 2-harmonic fitted seasonal air-sea APO flux cycles are further 

computed as the standard deviation of 2000 iterations of box-model inverted flux cycle with fossil 

fuel APO exchange (FAPO(ff)) corrected (for details see Section 5.1). We note that we do not 

explicitly quantify the uncertainty of multi-stations average long-term APO trend, which is 

expected to be negligibly small compared to the uncertainty of airborne APO measurements. 

S4 Deriving annual ocean uptake of anthropogenic CO2 from annual ocean APO uptake 

We first calculate the net APO changes due to ocean sink for anthropogenic carbon 

(𝐅𝐀𝐎(𝐂𝐚𝐧𝐭)) following Resplandy et al (2019): 

FAPO(Cant) = FAPO(ocn) − FAPO(Climate) − FAPO(AtmD) (2.26) 

where FAPO(Climate) is climate driven net outgassing of APO due to ocean heat uptake from 

the atmosphere (32±19.6 Tmol net releasing per year), and FAPO(AtmD) is aerosol-related APO 

outgassing due to ocean fertilization driven by atmospheric deposition of anthropogenic aerosol 

(8±4.1 Tmol net releasing per year), as reported in Resplandy et al. (2019).  

Net ocean anthropogenic CO2 uptake (FCant)) can be estimated from FAPO(Cant) following: 

FAPO(Cant) =
FAPO(Cant)

1.1
(2.27) 
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Figure 2.7: Difference between airborne observation of Ar/N2-corrected APO (ΔAPO) and 

ΔAPO*, computed as ΔAPO-ΔAPO*. 

 

 

Figure 2.8: APO inventory seasonal cycle (annual mean subtracted) of selected Mθ bins. Cycles 

are calculated by 2-harmonic fit to mass-weighted average detrended APO of each Mθe bin with 

offset removed. We compare airborne observations (black) with four simulations which are Jena-

TM3 (orange), non-scaled GKT-TM3 (red), CESM-TM3 (blue), and CESM2-TM3 (light blue) . 

The first half year is repeated. The calculation of daily simulated APO inventory of each Mθe band 

follows Eq. 2.14, using the same troposphere criteria (PVU < 2). 
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Figure 2.9: Seasonal cycles of airborne Northern Hemisphere APO data sorted by (a) Mθe-pressure 

bins and (b) latitude-pressure bins. Mθe bins (1016 kg) and latitude bins are shown on the top of 

each panel. Panel (a) is similar to figure 2a, but with different Mθe bin. The latitude bounds are 

chosen to approximate the meridional coverage of each corresponding Mθe bin in the lower 

troposphere. Airborne APO observations are first grouped into Mθe-pressure or latitude-pressure 

bins, and then averaged for each airborne campaign transect, shown as points. We filter out the 

points averaged from less than twenty 10-sec observations. The 1σ variability about the seasonal 

cycle fits for each Mθe-pressure or latitude-pressure bin are labelled on top of each panel. These 

1σ values are based on the distribution of all binned observations (not shown), rather than the 

distribution of average APO of each bin and airborne campaign transect (shown). 
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Figure 2.10: Quantification of biases in estimates of hemispheric average troposphere seasonal 

APO anomaly due to the limited temporal and spatial coverage of HIPPO and ATom airborne 

campaigns, and the Mθe integration method, based on simulated atmospheric data using fluxes 

from the Jena APO inversion and TM3 in (a) and (b), or based on ACTM in (c) and (d). The black 

line shows the  true modeled hemispheric average APO seasonal cycle, which is computed by 

integrating all detrended model tropospheric (cutoff at PVU = 2) grid cells in each hemisphere 

from 2009 to 2018 and fitted by a 2-harmonic. Points show the hemispheric average APO 

calculated using the method from Section 4.1, based on subsampling models (Jena-TM3 and Jena-

ACTM) with the coverage of the flight track at corresponding flight dates. The differences between 

subsampled averages and corresponding true average in each hemisphere are shown in the inserted 

histogram. These histograms use the same color assignment to represent airborne campaigns as in 

the main figures (points). 
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Figure 2.11: Comparison between simulated air-sea APO fluxes (from Jena inversion) and box 

model reconstructed flux. This reconstruction follows Eq. 2.21-25, with the knowledge of model 

tropospheric APO inventory and parameter τ(t) and STE computed from TM3 model in (a) and 

from ACTM model in (b). We show the linear fit of simulated and reconstructed fluxes as orange 

line, and compute the slope of the fit and Root-mean-square error (RMSE). 
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Figure 2.12: Seasonal cycles of air-sea APO fluxes (FAPO(ocn), same as the black line in Figure 

2.5a and b), with additional components that sum to yield FAPO(ocn), as detailed in Eqs. 2.15, 2.16, 

and 2.19.  These components include the time derivative of total atmospheric APO inventory 

(
∂MAPO

∂t
), leakage ( LAPO , positive as transport out of the hemisphere) and atmospheric APO 

inventory change due to fossil fuel emission (FAPO(ff), negative as APO lost in the atmosphere). 

The first half year is repeated. 
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Figure 2.13: Comparing simulated air-sea APO fluxes from the hemispheric scale (Equator to 90°, 
solid line) and equatorial region (Equator to 20°, dashed line) in each hemisphere. 
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Table 2.3: Summary of longitude, latitude, and time range of each airborne campaign transect. Each 

airborne campaign transect is consisted of campaign name, leg name, and correspondent hemisphere. 

Campaign Transect Hemisphere Longitude  Latitude Duration 

HIPPO1 

Northbound 
North 105.0W - 84.0W  0.3N - 39.8N 2009.01.28 – 2009.01.30 

South 169.4E - 94.4W 66.2S – 1.5S 2009.01.20 – 2009.01.28 

Southbound 
North 165.3W - 147.7W 0.5N - 80.1N 2009.01.12 - 2009.01.17 

South 169.5E - 165.9W  66.2S – 1.4S 2009.01.17 - 2009.01.21 

HIPPO2 

Northbound 
North 171.9E - 147.8W 0.0N – 83.1N  2009.11.17 – 2009.11.22 

South 151.3E - 174.0 W 66.0S – 0.0S 2009.11.11 – 2009.11.17 

Southbound 
North 165.0W – 145.0W  15.0N – 80.0N 2009.11.02 – 2009.11.07 

South 172.3E – 160.4W 66.0S – 1.6S 2009.11.08 - 2009.11.12 

HIPPO3 

Northbound 
North 165.3W – 147.7W 0.6N -85.1N 2010.04.10 – 2010.04.16 

South 169.6E – 165.7W 66.9S – 0.7S 2010.04.05 – 2010.04.10 

Southbound 
North 165.4W – 147.0W 0.0N – 84.8N 2010.03.26 – 2010.03.31 

South 169.6E – 165.4W 66.9S – 0.0S 2010.03.31 – 2010.04.06 

HIPPO4 

Northbound 
North 132.2E – 143.0W 0.35N – 82.1N 2011.07.03 – 2011.07.11 

South 128.2E – 172.5E 58.0S – 0.3S 2011.06.28 – 2011.07.03 

Southbound 
North 165.0W – 141.5W 0.0N -83.6N 2011.06.16 – 2011.06.23 

South 145.0E – 160.0W 58.0S – 0.0S 2011.06.23 – 2011.06.29 

HIPPO5 

Northbound 
North 165.0W – 145.2W 0.0N – 87.0N 2011.09.04 – 2011.09.08 

South 163.9E – 159.9W 67.2S – 0.0S 2011.08.29 – 2011.09.04 

Southbound 
North 165.5W – 147.5W 0.5N – 82.0N 2011.08.19 - 2011.08.24 

South 163.9E – 159.8W 67.2S – 0.6S 2011.08.24 – 2011.08.30 
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Table 2.4: A list of stations used in the Jena APO Inversion s99XS_v2022. The ship data used in 

this study is from Tohjima et al. (2012). 

Station name Abbrevia

tion 

Latitude Longitude Altitude (masl) 

Alert ALT 82.45°N 62.52°W 210 

Cold Bay CBA 55.20°N 162.72°W 25 

Cape Ochiishi COI 43.16°N 145.50°E 55 

La Jolla LJO 32.87°N 117.25°W 15 

Hateruma Island HAT 24.06°N 123.81°E 47 

Mauna Loa MLO 19.53°N 155.58°W 3397 

Cape Kumukahi KUM 19.52°N 154.82°W 3 

American Samoa SMO 14.25°S 170.57°W 42 

Cape Grim CGO 40.68°S 144.68°E 94 

Palmer Station PSA 64.92°S 64.00°W 10 

South Pole SPO 89.98°S 24.8°W 2810 

 

Table 2.5: A list of stations used in calculating global mean APO time series (based on the 

latitudinal weights from Hamme & Keeling, 2008). 

Station name Abbrevia

tion 

Latitude Longitude Altitude (masl) Latitudinal 

weights 

Alert ALT 82.45°N 62.52°W 210 0.05 

Cold Bay CBA 55.20°N 162.72°W 25 0.11 

La Jolla LJO 32.87°N 117.25°W 15 0.12 

Cape Kumukahi KUM 19.52°N 154.82°W 3 0.2 

American Samoa SMO 14.25°S 170.57°W 42 0.24 

Cape Grim CGO 40.68°S 144.68°E 94 0.17 

Palmer Station PSA 64.92°S 64.00°W 10 0.11 
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Table 2.6: Airborne observation of APO inventory seasonal anomalies in the Northern 

Hemisphere, including overall uncertainty of each estimate. We also include each APO inventory 

anomaly estimate without correction for sparse spatial and temporal coverage of airborne 

observations. These uncorrected values and the corrections are shown Figure 2.10. We note that 

the inventory anomalies are estimated relative to the annual average inventory. In the transect 

column, SB refers to a southbound transect, NB refers to as a northbound transect, P is referred to 

as the Pacific transect, while A is referred to as the Atlantic transect. 

Airborne 

campaign 
Transect Mean date (DOY) 

APO inventory 

anomaly (Tmol) 

Non-corrected 

APO inventory 

anomaly (Tmol) 

HIPPO1 
SB (P) 2009-01-14 (14) -87±53.9 -88 

NB (P) 2009-01-30 (30) -150±58.0 -137 

HIPPO2 
SB (P) 2009-11-04 (308) 68±55.3 82 

NB (P) 2009-11-19 (323) 71±56.7 87 

HIPPO3 
SB (P) 2010-03-29 (88) -118±57.9 -101 

NB (P) 2010-04-14 (104) -117±57.5 -124 

HIPPO4 
SB (P) 2010-06-18 (169) 101±55.3 86 

NB (P) 2010-07-07 (188) 98±53.4 93 

HIPPO5 
SB (P) 2011-08-22 (234) 91±57.6 102 

NB (P) 2011-09-07 (250) 71±60.7 97 

ATom1 
SB (P) 2016-08-03 (215) 90±58.6 106 

NB (A) 2016-08-19 (231) 149±72.1 193 

ATom2 
SB (P) 2017-02-01 (32) -124±56.6 -134 

NB (A) 2017-02-17 (48) -121±59.0 -141 

ATom3 
SB (P) 2017-10-04 (277) 56±64.2 88 

NB (A) 2017-10-23 (296) 80±60.8 106 

ATom4 
SB (P) 2018-04-29 (119) -84±55.0 -89 

NB (A) 2018-05-17 (137) -27±61.5 -59 
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Table 2.7: Similar to Table 2.6, but showing the seasonal anomalies of APO inventory in the 

Southern Hemisphere. 

Airborne 

campaign 
Transect Mean date (DOY) 

APO inventory 

anomaly (Tmol) 

Non-corrected 

APO inventory 

anomaly (Tmol) 

HIPPO1 
SB (P) 2009-01-19 (19) 101±61.1 74 

NB (P) 2009-01-24 (24) 160±63.8 123 

HIPPO2 
SB (P) 2009-11-10 (314) -138±56.8 -121 

NB (P) 2009-11-14 (318) -139±63.7 -104 

HIPPO3 
SB (P) 2010-04-03 (93) 169±57.3 180 

NB (P) 2010-04-08 (98) 157±58.5 166 

HIPPO4 
SB (P) 2010-06-26 (177) 16±54.0 20 

NB (P) 2010-07-30 (181) -9±55.0 -5 

HIPPO5 
SB (P) 2011-08-28 (240) -203±61.9 -183 

NB (P) 2011-09-01 (244) -213±62.9 -187 

ATom1 
SB (P) 2016-08-10 (222) -159±64.4 -126 

NB (A) 2016-08-14 (226) -112±62.2 -85 

ATom2 
SB (P) 2017-02-07 (38) 173±58.1 190 

NB (A) 2017-02-12 (43) 151±57.3 163 

ATom3 
SB (P) 2017-10-11 (282) -203±57.2 -212 

NB (A) 2017-10-16 (289) -225±62.7 -197 

ATom4 
SB (P) 2018-05-06 (126) 127±55.0 128 

NB (A) 2018-05-11 (131) 140±57.7 125 
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Chapter 3 Improved Atmospheric Constraints on Southern Ocean CO2 Exchange 

 

Abstract 

The net air-sea CO2 exchange over the Southern Ocean (SO), which includes a significant 

anthropogenic carbon sink superimposed on strong natural fluxes, is poorly constrained due to 

sparse observations. Here we present an improved estimate of SO CO2 exchange over three latitude 

bands using atmospheric CO2 measurements from global airborne campaigns and an atmospheric 

4-box model based on a mass-indexed isentropic coordinate (Mθe). Our estimates show two 

features not clearly resolved by previous atmospheric measurements: a weak winter-time 

outgassing in the polar region, and a sharp phase transition of the seasonal flux cycles between 

polar/subpolar and subtropical regions. Our estimates suggest much stronger summer-time uptake 

in the polar/subpolar regions than estimated using pCO2 derived from profiling floats, but 

somewhat weaker uptake than a recent study by Long et al (Long et al., 2021) that used the same 

airborne data as this study while quantifying atmospheric transport using atmospheric transport 

models (ATMs). The box-model approach requires knowledge of diabatic air mixing rates between 

boxes (transport across θe or Mθe surfaces), which we estimate from moist static energy (MSE) 

budgets derived from meteorological reanalyses. This mixing rate can also be derived from ATMs, 

but we show clear summer-time discrepancies with the MSE-based mixing rates. These 

discrepancies of mixing rates and differences between simulated and observed CO2 gradients 

indicate that most ATMs tend to have excessive diabatic mixing at high southern latitudes in 

austral summer.   

Significance Statement 

Precise estimates of Southern Ocean (SO) CO2 uptake are lacking due to sparse surface-

ocean observations. This study presents an alternate approach applying airborne CO2 observations 
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to constrain the SO air-sea CO2 flux using a multi-box atmospheric model aligned with moist 

isentropes. This study improves upon prior studies that estimate flux based on atmospheric CO2 

measurements by using better-constrained estimates of atmospheric diabatic transport (transport 

across moist isentropes). It also allows fluxes to be resolved in finer latitude bands, thus facilitating 

a closer comparison with surface ocean pCO2 observations and identifying CO2 flux components 

driven by marine photosynthesis, ventilation, and warming/cooling. Our study underscores the 

value of aircraft measurements for precisely quantifying long-term changes in CO2 uptake by the 

SO. 

3.1 Introduction 

Precise assessments of the air-sea CO2 flux of the Southern Ocean (SO), which includes 

both natural and anthropogenic components, are of critical importance to understanding the global 

carbon cycle and to predicting future oceanic carbon uptake under climate change (2–5). The high-

latitude SO (<58°S) was likely a significant natural source of CO2 to the atmosphere in the 

preindustrial era, but has switched to being a net sink in the present-day (6). Available estimates 

suggest that uptake over the entire SO (<35°S) strengthened from 1980 to 2015, with significant 

decadal variability (5, 7–11). 

Observation-based flux estimates of the entire SO remain highly uncertain. The net SO 

CO2 flux has been quantified using pCO2 measurements from ship-based and Argo float 

observations  (12–18) and from atmospheric CO2 measurements at surface stations that are 

inverted by atmospheric transport models (ATMs) (19–25). These products, however, show a large 

spread of flux estimates, and are limited by sparse observations, possible measurement biases, and 

uncertainties in near-surface wind speed, gas exchange coefficients, and modeled atmospheric 

transport. 
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Recently, Long et al. (1, henceforth Long21) used atmospheric CO2 observations from a 

series of global airborne campaigns to estimate the seasonal cycle of SO (90°S to 45°S) CO2 flux, 

averaged from 2009 to 2018, and reported an annual oceanic uptake of 0.53±0.23 PgC yr-1. This 

annual sink estimate is consistent with the average of atmospheric inversion products (henceforth 

3-D inversions) and ship-based pCO2 products (Surface Ocean CO₂ Atlas, SOCAT), but larger 

than recent pCO2-based estimates using profiling floats data from Southern Ocean Carbon and 

Climate Observations and Modeling project (SOCCOM) (16, 18). Long21 also identified a larger 

summer-time CO2 uptake compared to the SOCCOM-based flux estimates and the average of 

multiple atmospheric inversion products. The method of Long21 uses the atmospheric CO2 

gradient across potential temperature (θ) as an emergent constraint on the underlying air-sea flux, 

taking advantage of the tendency of CO2 to be well-mixed on θ surfaces (26–28).  

Here we apply the same airborne datasets (detailed in Material and Methods and SI 

Appendix, Fig. 3.6) as Long21 to infer seasonal cycles of air-sea CO2 flux using a novel 4-box 

tropospheric inverse method (Fig. 3.1a, henceforth 4-box inversion), in which the boxes are 

aligned with a mass-indexed moist isentropic coordinate, Mθe (29). This coordinate has a nearly 

constant relationship with latitude and season over the SO and, like both θ and θe coordinates, is 

the preferential mixing surface of CO2 in the troposphere (27, 29). The method invokes a mass 

balance, accounting for the CO2 inventory change within each box using observations and the 

exchange of CO2 between boxes determined by cross-Mθe diabatic transport calculated as the 

product of observed CO2 gradients and parameterized diabatic mixing rates from the moist static 

energy (MSE) budgets of meteorological reanalyses. The 4-box inversion allows fluxes to be 

resolved at scales smaller than in Long21, in three zonal bands between 90°S and ~37°S (Fig. 3.1b 

and SI Appendix, Fig. 3.7) which we label as “polar,” “subpolar,” and “subtropical,” and identifies 
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finer-scale discrepancies with pCO2-based flux products (16, 30–34). Our flux estimates also help 

to identify the latitudinal structure of processes driving seasonal pCO2 changes and CO2, such as 

the interactions between marine photosynthesis, ocean ventilation, and warming/cooling (35, 36). 

Accurate assessment of atmospheric transport, especially diabatic transport, is critical for 

inverting surface CO2 fluxes. Diabatic transport is conventionally determined using ATMs (37), 

but these models show a large spread of simulated transport, which is related to uncertainty in 

advection, convection and boundary height parameterizations (21, 38–40). Prior studies have 

identified errors in ATMs by pointing to vertical CO2 gradients being overestimated in simulations 

at mid-latitude (41, 42).  

In this paper, we start by describing the structure of the Mθe-aligned box-model inversion 

and validate this method. We conduct a systematic analysis of uncertainty in simulated diabatic 

mixing rates across three Mθe surfaces over the mid- to high-latitude SO by developing two 

relevant constraints, one based on moist static energy (MSE) budgets and the other based on 

atmospheric CO2 gradients across Mθe surfaces. We present our airborne-based seasonal flux 

estimates and discuss key features and mechanisms that cause the flux cycles to vary meridionally. 

Estimates obtained from airborne measurements are further compared with other flux products to 

identify any limitations these products may have. We also discuss the broad implications of our 

method for resolving decadal variability and long-term trends in SO CO2 fluxes, resolving surface 

fluxes of other species and in other regions, and the potential to improve ATMs in general. 

3.2 Results and Discussions   

3.2.1 Box-model Architecture and Evaluation  

The 4-box inversion model, shown in Figure 3.1a (detailed in Materials and Methods) 

divides the troposphere in the Southern Hemisphere into discrete boxes, with lateral boundaries 

aligned with fixed values of Mθe (26). The Mθe coordinate is aligned with θe, but a given Mθe 
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surface constantly adjusts to keep the total dry airmass under it conserved. Each Mθe surface is 

indexed to the corresponding contained airmass (29). The three primary boxes of the model each 

contain 15×1016 kg of dry air, and intersect the surface of the Earth in zonal bands (Fig. 3.1b). The 

northern-most fourth box provides a boundary condition for the third box. The CO2 flux at the 

bottom of each primary box is calculated from mass balance, based on diagnosed CO2 transport 

between boxes and observed inventory changes within the boxes (Eq. 3.1). A key assumption of 

the 4-box model is that the adiabatic transport (along θe or Mθe transport) is sufficiently rapid that 

CO2 meridional transport is mainly controlled by bi-directional diabatic transport (across θe or Mθe 

transport) between boxes, thus effectively reducing the troposphere to a discrete 1-dimensional 

mixing system. This assumption and performance of the box-model is validated below. In this 

model, diabatic transport is parameterized based on the cross-Mθe CO2 gradient and a seasonally-

dependent diabatic mixing rate, expressed in kg2 day-1 (Eq. 3.2). Because airmass (kg) has replaced 

latitude or length in our box model, these mixing rates are analogous to diffusion coefficients, with 

the advantage of representing fundamental properties of the atmosphere that are independent of 

model discretization. 
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Figure 3.1: (a) Schematic of the box model. Boundaries of the box model are selected Mθe surfaces 

at 15, 30, 45, and 60 Mθe values (1016 kg), which are shown as zonal and 2009-2018 averages. (b) 

Selected near-surface Mθe contours as 2009-2018 averages. Mθe is computed from 3-hourly 

MERRA-2 reanalysis. These Mθe bands are nearly fixed with season (SI Appendix, Fig. 3.7). Red 

triangles show the location of surface stations that are used in the Carbon Tracker 2019b 3-D CO2 

inversion product. 

 

We calculate climatological monthly diabatic mixing rates using two approaches, one 

based on atmospheric transport model simulations of total CO2 (ATM-based mixing rates), and 

one based on moist static energy budgets derived from MERRA-2 and JRA-55 reanalyses (MSE-

based mixing rates) (see Materials and Methods). We find a large difference among ATM-based 

mixing rates, while the two MSE-based mixing rates are highly consistent, and are generally 

smaller than ATM-based mixing rates, especially in austral summer (Fig. 3.2 and SI Appendix, 

Fig. 3.8). MSE-based mixing rates are also more precisely defined, because MSE is exactly parallel 

with the Mθe coordinate by definition and because MSE has strong gain/loss and gradients (as 

needed to diagnose diabatic mixing rates) in all seasons.  
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Figure 3.2: Diabatic mixing rates of the 30 (1016 kg) Mθe surface. These mixing rates are 

parameterized from four 3-D CO2 inversion products and moist static energy budget of two 

reanalysis products (MERRA-2 and JRA-55). Error bars represent only the interannual variability 

of parameterized mixing rates, which is shown to be small, with the exception of CAMS in 

September because of the close-to-zero CO2 gradient across the 30 (1016 kg) Mθe surface. Diabatic 

mixing rates of the 15 and 45 (1016 kg) Mθe surface are shown in SI Appendix, Fig. 3.8. 

 

We validate the 4-box inversion approach by applying the method to reconstruct surface 

CO2 fluxes in each 3-D inversion (Fig. 3.3), using the full 3-D gridded atmospheric CO2 fields of 

each product, averaged over each box, and using the corresponding parameterized climatological 

ATM-based mixing rates from the same model (detailed in Materials and Methods). This method 

provides an internally consistent system for each 3-D inversion, and the reconstructed surface 

fluxes align well with original inverted fluxes over each zonal band (RMSE ≤ 0.12 PgC yr-1, Fig. 

3.3a, SI Appendix, Fig. 3.9-3.11, SI Appendix, Table 3.1), especially over the climatological 

seasonal cycle (Fig. 3.3b). The 4-box inversion also reconstructs the interannual variability (IAV) 

of fluxes (e.g., Fig. 3.3a), even with the box-model CO2 transport being driven by interannually-

constant mixing rates, showing that flux IAV can be learned from variations in atmospheric CO2 

gradients, while the impact of IAV in the atmospheric dynamics is relatively small. The validation 
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confirms that the complex 3-dimensional circulation of the atmosphere at high southern latitudes 

can be approximated by mixing along one dimension (the coordinate Mθe), at least for the purpose 

of resolving zonally-averaged SO CO2 fluxes. 

 

Figure 3.3: (a) Monthly reconstructed air-sea CO2 fluxes (solid gray) for the 0-30 (1016 kg) Mθe 

band (south of ~ 43°S near the Earth surface) based on CarbonTracker 2019b, compared with the 

original monthly 3-D inversion fluxes for the same Mθe band (dashed black). The other components 

(i.e., diabatic CO2 transport and CO2 inventory change, detailed in Materials and Methods, and Eq. 

3.1) of the box-model reconstruction are shown as well. Positive values of the diabatic transport 

represent CO2 transport into the 0-30 Mθe band (poleward transport). We note that the inventory 

change (blue) equals the sum of fluxes (black) and diabatic transport (red). (b) Similar to (a), but 

showing the flux and other components as climatological monthly averages (2009 to 2018). 

Shaded regions show interannual variability, which is calculated as the standard deviation over 10 

years for the corresponding month. We also show these reconstructions for other 3-D inversion 

products and other surface Mθe bands in SI Appendix, Fig. 3.9-3.11. 

 

3.2.2 Diabatic Mixing Rate Evaluation  

The large spread in ATM-based mixing rates and the systematic difference from MSE-

based mixing rates (Fig. 3.2) in austral summer emphasize the need for constraints on this critical 

mixing parameter. We find that the ATM-simulated gradients are strongly anti-correlated with 

corresponding ATM-based mixing rates (Fig. 3.4), which is expected because a larger mixing rate 

corresponds to more rapid homogenization across Mθe surfaces, leading to a smaller gradient. 

Based on the intercept of the fits to the ATM gradient-mixing rates relationship, the two MSE-

based mixing rates are highly comparable to observed CO2 gradients (Fig. 3.4), suggesting that the 

two sets of MSE-based mixing rates are more realistic than estimates of ATM-based mixing rate. 
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All but one of the ATMs simulate CO2 gradients that are too small compared to observations, 

suggesting these ATMs overestimate summer-time mixing. The exception is the ACTM model, 

which yields a realistic summer gradient and mixing rates compatible with the MSE budget. In the 

rest of the year, both MSE-based mixing rates and ATM-based mixing rates, as well as simulated 

and observed CO2 gradients are generally within the 1𝜎 uncertainty of the observed gradients and 

close to two MSE-based mixing rates (SI Appendix, Fig. 3.12). 

For the 4-box inversions presented here, we alternately use two sets of MSE-based mixing 

rates to invert airborne CO2 observations, where we allow for uncertainty in mixing based on the 

spread between these two estimates and their small IAV (detailed in SI Appendix, Text 3.7.2).  

 

Figure 3.4: Exploring the correlation between Jan. and Feb. ATM-based mixing rates at each Mθe 

surface and simulated atmospheric CO2 gradients across the corresponding Mθe surface of four 

transport models (3-D CO2 inversion products). Simulated gradients are from 3-D concentration 

fields averaged at the mean dates of five airborne campaigns or sub-campaigns that took place 

during January and February (HIPPO1, ATom2, and ORCAS1-3). The corresponding ATM-based 

mixing rate is calculated as the January and February average. For comparison, we show the 

observed CO2 gradients (spatial bias corrected, as detailed in SI Appendix, Text 3.7.1) as horizontal 

black lines, which are calculated as the average of the same five campaigns or sub-campaigns, 

while the dashed lines show the 1 𝛔  uncertainty (measurement and spatial bias correction 

uncertainty). We also show two MSE-based mixing rates (January and Feburary average) as 

vertical brown lines. A similar figure exploring the correlation between April to November 

averaged CO2 gradient and averaged diabatic mixing rate is presented in SI Appendix, Fig. 3.12. 
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3.2.3 Airborne-based air-sea CO2 fluxes  

We calculate air-sea CO2 fluxes using the observed CO2 inventory of each Mθe box and 

CO2 gradients across Mθe surfaces from each airborne campaign, which are resolved by binning 

airborne data into four Mθe bands (detailed in Materials and Methods). We correct for small biases 

in CO2 inventory and gradient induced by sparse spatial coverage of the airborne observations (SI 

Appendix, Text 3.7.1 and Table 3.5) by comparing averaged CO2 from full 3-D model data and 

flight track-subsampled model data. We also correct the contribution of small non-oceanic CO2 

flux to the CO2 mass balance based on flux estimates in four inversion products (SI Appendix, 

Figure 3.13). We conduct a thorough analysis of flux uncertainty induced by CO2 measurement 

imprecision, spread and IAV of MSE-based diabatic mixing rates, spatial coverage corrections, 

flux interannual variability due to insufficient temporal sampling, and non-oceanic CO2 flux 

corrections (SI Appendix, Text 3.71-3.7.2).  
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Figure 3.5: (a)-(d) Seasonal cycle of air-sea CO2 fluxes (negative as net oceanic uptake) estimated 

using 4-box model based on airborne CO2 observations and two sets of MSE-based diabatic mixing 

rates (see Materials and Methods). Each individual point represents the calculated fluxes using 

airborne observations from the corresponding campaign, centering on the mean date of each 

campaign, while the black line is a 2-harmonic fit. Error bars represent the 1σ uncertainty of each 

flux estimate, while shaded regions represent the 1σ uncertainty of the 2-harmonic fits (detailed in 

SI Appendix, Text 3.7.1-3.7.2). Values of air-sea CO2 fluxes calculated for each airborne campaign 

transect and for each band are summarized in SI Appendix, Table 3.4. Annual fluxes are from the 

constant term of the 2-harmonic fitted climatological flux cycles, which is equivalent to integrating 

the fit over a year. These approximate latitude bands (see top of each panel) are calculated as the 

zonal average latitude of the corresponding annual average (2009 to 2018) Mθe surface over the 

ocean (SI Appendix, Fig. 3.7). We also show box-model resolved fluxes calculated using the 

average of 6 sets of mixing rate and each set of mixing rate in SI Appendix, Fig. 3.15 and 3.16. In 

(e)-(h), we compare our estimates with four 3-D CO2 inversion products, and two neural network 

interpolated surface ocean pCO2 products using SOCAT pCO2 observations alone and SOCCOM 

pCO2 observations alone. Details of these products are in SI Appendix, Text 3.7.6. The SOCCOM 

product is a sensitivity run where all shipboard data from SOCAT were excluded (only SOCCOM 

float data were included). We note that the ocean CO2 flux in Jena sEXTocNEET_v2020 is a prior, 

which is provided by assimilation of surface ocean pCO2 observations (i.e., not neural-network 

derived pCO2) from SOCAT (63) by the Jena mixed-layer scheme (64). The seasonal cycle of each 

product is calculated as the average between 2009 and 2018, except for SOCCOM, which is 

averaged from 2015 to 2017. In (i)-(l), we compare our estimates with thermally-driven air-sea 

CO2 flux cycles (dashed red, methods in SI Appendix, Text 3.7.3), which is derived from assuming 

4% pCO2 increase per degree Celsius increase in sea-surface temperature (SST) and using wind-

speed dependent gas exchange. We calculate the correlation between the airborne observed flux 

cycle and the estimated thermal-driven flux cycle of each band. Black solid curves and shaded 

regions in (e)-(l) are corresponding airborne observed fluxes and 1σ uncertainty. Panels (i) to (l) 

have a different y-axis range compared to panels (a) to (h). We also compare our estimates with 

nine global ocean biogeochemistry models that are used in the Global Carbon Budget 2020 (8, 49) 

in SI Appendix, Fig. 3.14. 
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The 4-box inversion resolves clear seasonal cycles of air-sea CO2 flux in all three latitude 

bands, with clear differences in amplitude and phasing between the bands. Over the polar band 

(Fig. 3.5a), we find a strong CO2 uptake in the summer (DJF) and a weak outgassing in the winter 

(JJA). Over the subpolar band (Fig. 3.5b), we find a strong uptake in the summer and a weak 

uptake in the winter. In the subtropical band (Fig. 3.5c), the seasonality is reversed, with a weak 

uptake in the summer and a strong uptake in the rest of the year. Averaged over the full year, all 

bands show net uptake. We now discuss each of these prominent features in turn. 

The airborne-based estimates suggest a weak winter-time CO2 outgassing of 0.05±0.03 

PgC integrated from June to August (equivalent to 0.56±0.35 gC m-2 mon-1) in the polar band 

(Fig. 3.5a). Winter outgassing is expected from strong winter-time upwelling which brings carbon-

rich deep water to the surface (7). This outgassing pattern is consistent with several recent pCO2-

based flux estimates, for example, observations from uncrewed surface vehicles in the Antarctic 

Zone during June and July of 2019 (0.7 gC m-2 mo-1) (33), reconstructed winter-time (July, 2004-

2014 average) fluxes using summer-time measurements (0.04±0.008 PgC) (34), and ship-based 

SOCAT measurements (0.03 PgC, Fig. 3.5e) (17), but is smaller than estimates solely based on 

recent profiling floats deployed by the SOCCOM project during 2014 and 2017 (~ 0.23 PgC, Fig. 

3.5e) (16, 32). The small winter-time outgassing in our results is also consistent with several 3-D 

inversions that used surface station CO2 observations (Jena inversion, ACTM, and CAMS), but is 

significantly more positive than one 3-D inversion (CT 2019b, Fig. 3.5e).  

The airborne-based flux estimates show a clear phase shift between the polar/subpolar 

bands (Fig. 3.5a-b) and the subtropical band (Fig. 3.5c). The boundary between these two boxes 

in the 4-box model roughly aligns with the subtropical front over the Atlantic and the Indian Ocean 

but is ~5° south of the subtropical front over the Pacific Ocean. This phase shift is likely due to 
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the latitudinal change of the dominant mechanism that drives the surface-ocean pCO2 seasonal 

changes. To the north of this boundary, the pCO2 cycle is dominated by temperature-related 

solubility changes. To the south, it is dominated by biological production/mixing processes driving 

seasonal changes in dissolved inorganic carbon (DIC) (35, 36, 43). A similar shift across ~40°S 

has been resolved in surface ocean pCO2 data (36, 43, 44) and also in flux estimates based on these 

pCO2 data, but the seasonal amplitudes of fluxes in these estimates are weaker in both regions than 

we find from airborne data (Fig. 3.5e-g). The phase shift, however, is not clearly resolved in the 

3-D inversions (Fig. 3.5e-g).   

To quantify the contribution of temperature-related solubility changes to the CO2 fluxes 

(Fig. 3.5i-l), we compare the airborne-based fluxes to results from a simple thermal model, which 

assumes pCO2 increases by 4% per degree Celsius increase in sea-surface temperature (SST) 

change and uses wind-speed dependent gas exchange (methods in SI Appendix, Text 3.7.3) (45, 

46).  In the polar zone (Fig. 3.5i-j), the thermal model yields fluxes that are strongly out of phase 

compared with observations (correlation ρ = -0.81 and -0.83). In the subtropical region (Fig. 3.5k), 

the cycle from the thermal model broadly aligns with the observed cycle (ρ =0.62).  

Despite the correlation, the observed flux cycle in the subtropical band has significant 

deviations in the austral spring compared to the thermal-driven cycle. The strengthening of CO2 

uptake from January to April is faster than expected from warming alone (Fig. 3.5k), which 

requires a contribution from biologically-driven changes, possibly associated with the fall 

phytoplankton bloom (47, 48). 

We find a summer-time ocean CO2 uptake of 0.13±0.04 PgC (integrated from December 

to February, DJF) in the polar band (Fig. 3.5a) and 0.14±0.04 PgC in the subpolar band (Fig. 3.5b), 

which contributes to most of the annual uptake of 0.36±0.16 PgC south of ~43°S (Fig. 3.5d). Our 
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results are qualitatively consistent with prior estimates using the same airborne observations 

(Long21). However, our annual uptake estimate integrated over the polar and subpolar band is 

smaller (within uncertainty) than that of Long21 (0.53±0.23 PgC) (Fig. 3.5d). The difference is 

mainly explained by larger summer-time CO2 uptake in Long21, but the comparison is 

complicated by small differences in ocean domains between these two studies (the 30 Mθe surface, 

compared to 45°S, displaces ~2° southward over the western Pacific and ~3° in other basins). The 

larger summer uptake in Long21 can be attributed to the dependence on ATMs, which we suggest 

have unrealistically fast mixing rates in summer (Fig. 3.2). Summertime fluxes from our box model 

are especially sensitive to the diabatic mixing rate because summertime cross-Mθe gradients are 

large, and the inventory change is small (Fig. 3.4). The winter-time fluxes are less sensitive to the 

diabatic mixing rate because wintertime CO2 gradients are small, and the inverted flux is mainly 

diagnosed from the observed atmospheric CO2 inventory change. 

Our airborne based flux estimates generally agree with 3-D inversions. Our estimates 

suggest a weaker winter-time sink (within uncertainty) in the subpolar region (Fig. 3.5f), and show 

a more pronounced change in phasing between subtropical and subpolar regions. These deviations 

can partly be attributed to the excess diabatic transport in most models, as suggested by the CO2 

gradient constraint (Fig. 3.4). 

Our airborne-based flux estimates differ significantly from an estimate solely based on 

neural-network interpolation of SOCCOM float data. We find that the SOCCOM-based estimate, 

compared to our airborne-based estimate, suggests a too weak CO2 uptake in all seasons in both 

the polar (significant, Fig. 3.5e) and subpolar regions (within uncertainty, Fig. 3.5f), as well as a 

too weak seasonal cycle in the subtropical band (Fig. 3.5g). Flux estimates based on SOCAT 

measurements are generally consistent with our estimates but also suggest a too weak seasonality 
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in the subtropical band (Fig. 3.5g). Possible bias in SOCCOM pCO2 data has been identified by 

Wu et al. (30), and SOCCOM float data remain sparse in our lowest latitude band 43-37°S  (16). 

Our airborne-based estimates also show large differences from global ocean 

biogeochemistry models, which have known difficulties in representing CO2 exchange over the 

Southern Ocean (49, 50) given the large competing process drivers. We find several models that 

suggest a similar phase shift, but we did not find any model that agrees well with our estimates in 

all three bands (SI Appendix, Fig. 3.14).  

3.3 Overview and outlook 

We have resolved air-sea CO2 fluxes over three zonal bands of the SO using airborne data 

and a 4-box inversion approach based on Mθe coordinates. This framework adequately describes 

large-scale CO2 transports needed for resolving fluxes at the scale of three zonal bands over the 

mid- to high latitudes of the SO, showing that the complex meridional CO2 transport can be 

simplified to diabatic transport. This framework also incorporates constraints on the diabatic 

mixing rate from MSE budgets of atmospheric reanalyses, without requiring an atmospheric 

transport model. We demonstrate that the diabatic mixing rates inferred from the MSE budgets are 

realistic, based on a CO2 gradient-mixing rate constraint, but the mixing in most ATMs is too fast 

in the austral summer. These differences in representing mixing led to our summer uptake 

estimates being somewhat smaller than uptake estimated by Long21, despite using the same 

airborne CO2 data. In the austral winter, ATM- and MSE-based mixing rates are generally 

comparable. 

Our study illustrates the potential for using MSE as a constraint on diabatic transport, which 

has implications for improving ATMs in general. The MSE constraints are relevant for improving 

estimates of vertical mixing, which has been highlighted as a major source of error in CO2 fluxes 

estimated via inverse model calculations using both satellite and in situ data (41, 42). Vertical 
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mixing in the mid-troposphere has both along- and cross-Mθe components, and the cross-Mθe 

mixing (diabatic) component would typically be rate limiting because the along-Mθe (adiabatic) 

mixing is more rapid. We find a larger spread in diabatic mixing rates between four ATM-based 

mixing rates compared to two MSE-based mixing rates (Fig. 3.2), which suggests that errors are 

introduced during the construction of ATMs. Future studies should focus on better understanding 

the inconsistency between transport models and reanalyses, which are likely to be associated with 

coarser resolution in models relative to the original reanalysis and multiple schemes of model 

parameterizations. 

Our study motivates obtaining airborne data with higher temporal coverage. Here we only 

attempted to resolve a seasonal climatology of the SO CO2 flux, but resolving flux interannually 

would be feasible given regular sampling on future aircraft campaigns, with spatial coverage over 

the SO similar to HIPPO, ORCAS, and ATom. Our box model framework is suitable also for 

studying the sources and sinks of other tracers, for example, computing the surface O2 flux, and 

atmospheric CH4 chemical loss rate. 

3.4 Materials and methods 

3.4.1 Airborne campaigns and airborne CO2 observations 

We use airborne CO2 observations from three aircraft campaigns, the HAIPER Pole-to-

Pole Observation project (HIPPO, (51)), the O2/N2 Ratio and CO2 Airborne Southern Ocean Study 

(ORCAS, (52)), and the Atmospheric Tomography Mission (ATom, (53)). HIPPO and ATom have 

global coverage, mostly along a Pacific or Atlantic transect, while ORCAS focused on the 

Southern Ocean adjacent to Drake Passage (horizontal flight tracks are shown in SI Appendix, Fig. 

3.6). HIPPO consisted of five campaigns (HIPPO1-5) and ATom consisted of four campaigns 

(ATom1-4), each with several flights south of 35°S. ORCAS was a single 6-week campaign, but 

with much denser temporal sampling, so we have split it into three sub-campaigns (ORCAS1-3) 
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in our analysis. Detailed descriptions of these airborne campaigns are in SI Appendix, Text 3.7.4 

and SI Appendix, Table 3.2. We primarily use CO2 airborne measurements collected by the NCAR 

AO2 instrument (54). To evaluate potential uncertainty (detailed in SI Appendix, Text 3.7.2.1), we 

also use measurements from three other in-situ instruments, the Harvard QCLS instrument (55), 

Harvard OMS instrument (56), and NOAA Picarro, and measurements from two flask samplers, 

the NCAR/Scripps Medusa flask sampler (51, 54) and NOAA Portable Flask Packages (PFP, 55). 

AO2 and QCLS are available on all campaigns. However, OMS did not fly on ORCAS or ATom, 

NOAA PFPs did not fly on ORCAS, and the NOAA Picarro did not fly on HIPPO. The in-situ 

measurements are averaged to 10-sec intervals. 

3.4.2 Mass-indexed moist isentropic coordinate (Mθe) 

The Mθe coordinate, first introduced in Jin et al. (29), is defined as the total dry air mass 

under a specific moist isentropic surface (θe) in the troposphere of a given hemisphere. Surfaces 

of constant Mθe align with surfaces of constant θe but the relationship changes with season, as the 

atmosphere warms and cools. A schematic of annual zonal average atmospheric Mθe value is in 

shown Fig. 3.1a, while climatological positions of the near-Earth surface contours of three Mθe 

surfaces (15, 30, and 45 1016 kg) are shown in Fig. 3.1b and SI Appendix, Fig. 3.7. Details of the 

calculation of Mθe are described in SI Appendix, Text 3.7.5.  

We also relate bands of constant Mθe to approximate latitude bands (see Fig. 3.5) based on 

the zonal average latitude of corresponding daily surface Mθe (averaged from 2009 to 2018) over 

the ocean.  

3.4.3 Box model architecture and diabatic mixing rates 

We build a 4-box atmospheric model using selected Mθe surfaces (15, 30, 45, and 60, 1016 

kg) as boundaries, shown in Fig. 3.1a. This box model takes advantage of θe (or Mθe) being the 

preferential mixing surface of CO2 throughout the hemisphere, especially over mid-latitude storm 
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tracks (26, 27). The box model allows surface CO2 fluxes (Fi, PgC year-1) to be computed from the 

CO2 mass balance of each Mθe box, based on the knowledge of atmospheric CO2 inventory (Mi, 

PgC) in each box and the diabatic transport of CO2 between boxes (Qi,i+1, PgC year-1) 

∂Mi
∂t

= {
Fi + Qi,i+1

Fi + Qi,i+1 − Qi−1,i

if i = 1
if i > 1

(3.1)  

where i = 1 is the highest latitude (lowest Mθe) box.  

In Eq. 3.1, Qi,i+1 represents the transport (PgC year-1) of CO2 between the ith and i+1th box, 

with poleward flux as positive. Qi,i+1 is parameterized according to:  

Qi,i+1 = Di,i+1 ·
(χi+1 − χi)

ΔMθe
(3.2) 

where Di,i+1 is the diabatic mixing rate (kg2 day-1) that represents the mixing rate across 

the boundary of box i and i+1, χi is the CO2 concentration (PgC per kg air mass) of the ith box, 

calculated as CO2 inventory of the box divided by the total airmass of the box (15×1016 kg), and 

Mθe is the distance in Mθe coordinates between box centers, which for evenly spaced boxes is the 

same as the total airmass of each box. Equation 3.2 is a variant of Fick’s law, with Mθe as an 

effective distance coordinate, and 
(χi+1−χi)

ΔMθe
 is a measure of the CO2 concentration gradient. With 

this approach, Di,i+1 is a property of the corresponding Mθe surface and is insensitive to the choice 

of box size. 

We adopt two independent methods to estimate climatological (2009 to 2018 average) 

monthly diabatic mixing rates (Di,i+1 ). The first method extracts diabatic mixing rates from 

transport models using total CO2 fields from 3-D inversion products (SI Appendix, Table 3.3). We 

first use the daily 3-D atmospheric field of Mθe computed from MERRA-2 to assign a Mθe value 

to each daily model grid cell from 2009 to 2018. The atmospheric 3-D CO2 fields and surface CO2 
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flux fields of inversions are interpolated to the MERRA-2 reanalysis grids (1°x1°, 26 vertical levels 

from 1000 mbar to 100 mbar). We then calculate a daily CO2 inventory (Mi) of each Mθe band as 

the sum of CO2 mass for all 3-D grid boxes within the corresponding Mθe domain. We calculate 

monthly CO2 inventory change (
dMi

dt
) by taking the time derivative of monthly atmospheric CO2 

inventory. We note that monthly CO2 inventory change is computed by first averaging daily CO2 

inventory by month but shifting the phase of the averaging window by 15 days to center at the 

beginning of each month, and then differencing these values to obtain a rate of change centered 

mid-month. We calculate monthly CO2 gradients between two Mθe boxes (χi+1-χi) by averaging 

daily gradients. We calculate monthly surface CO2 flux (Fi) by averaging daily flux, which is 

computed by integrating all daily 3-D inversion flux grids with surface Mθe values within the 

corresponding Mθe range.  

The CO2 transport across the north boundary of each Mθe box in the model can be calculated 

from the CO2 inventory change and surface flux of that box and the boxes further southward, 

according to:  

Qi,i+1(t) = ∑ (
dMi′(t)

dt
− Fi′(t))

i′=i

i′=1

(3.3) 

Combining Eq. 3.2 and 3.3, climatological average (2009 to 2018 average) monthly Di,i+1 

is calculated following: 

Di,i+1(t) =

[∑ (
dMi′(t)
dt − Fi′(t))

i′=i
i′=1 ]

[χi+1(t) − χi(t)]
· ΔMθe (3.4)

 

where [] denotes the average of corresponding monthly values of all years (2009 to 2018). 

The 1σ uncertainty is calculated as the standard deviation of resolved Di,i+1(t) for that month over 

all years, representing the interannual variability, which is shown to be small (Fig. 3.2 and SI 
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Appendix, Fig. 3.8), with the exception of CAMS in September because of close-to-zero CO2 

gradients across the 30 (1016 kg) Mθe surface. 

The second method relies on moist static energy (MSE) budgets from meteorological 

reanalyses, of which we use MERRA-2 and JRA-55 (59, 60). MSE is a measure of static energy 

that is conserved in adiabatic ascent/descent and during latent heat release due to condensation, 

and is thus aligned with surfaces of θe or Mθe. This method provides a much more well-defined D 

because finite MSE gradients exist in each reanalysis time step and do not reverse sign, in contrast 

to CO2. MSE is defined following 

MSE(t) =  Cp · T(t) + g · z + Lv(T) · q(t) (3.5) 

where  Cp (1005.7 J kg−1 K−1) is the specific heat of dry air at a constant pressure, T is 

temperature (K), g is the gravity constant assumed to be 9.81 m s−2, q is the specific humidity of 

air (kg water vapor per kg air mass), and Lv is the latent heat of evaporation at temperature T (K). 

Lv is defined as 2406 kJ kg−1 at 40℃ and 2501 kJ kg−1 at 0℃ and scales linearly with temperature. 

MSE transport at the northern boundary of each box is calculated by energy conservation 

within the box, which follows Eq. 3.3 but has a small modification to account for atmospheric 

energy sources or sinks (Ei, J day-1): 

Qi,i+1(t) = ∑ (
dSi′(t)

dt
− Fi′(t) − Ei′(𝑡))

i′=i

i′=1

(3.6) 

where S is the total MSE (J) that is calculated using temperature (T) and specific humidity 

(q) from corresponding reanalyses (Eq. 3.5). Fi is modified as surface heat flux (J day-1), including 

surface sensible and latent heat flux, which is directly available from MERRA-2 and JRA-55. Ei 

is defined as heating rate due to radiative imbalance, and is calculated using temperature tendency 

analysis (
∂Ti

∂t
, K day-1) of these reanalyses, following: 
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Ei(t) = Cp(T) ·
∂Ti(t)

∂t
· Mθe (3.7) 

With MERRA-2, the temperature tendency due to radiative imbalance is directly available, 

while with JRA-55, it is calculated as the sum of heating rates due to longwave and shortwave 

radiation. 

To estimate climatological monthly Di,i+1 from reanalysis, the gradient (χi+1 − χi) in Eq. 

3.4 is modified to be the energy density gradient (J per kg airmass), calculated from the total MSE 

of each box divided by the total airmass of the box (15×1016 kg in this study). 

We thus calculate monthly 
dSi′(t)

dt
, Fi′(t), Ei′(t) from 2009 to 2018 by averaging 6-hourly 

data from MERRA-2 and JRA-55, with 6-hourly Si shifted by 15 days before calculating  
dSi′(t)

dt
 , 

as for ATM CO2. 

The calculation of monthly D based on MSE is according to a modified version of Eq. 3.4: 

Di,i+1(t) =
[∑ (

dSi′(t)
dt

− Fi′(t) − Ei′(𝑡))]
i′=i
i′=1

[χi+1(t) − χi(t)]
· ΔMθe (3.8) 

We show six (four ATM-based and two MSE-based) sets of monthly diabatic mixing rates 

for the Mθe surfaces at 15, 30, and 45 (1016 kg) in Fig. 3.2 and SI Appendix, Fig. 3.8. Climatological 

daily mixing rates are further calculated by 4-harmonic fits to monthly data. 

3.4.4 Validation of box-model approach  

We validate the use of the 4-box model for estimating surface CO2 flux by showing that 

this approach successfully reconstructs monthly surface CO2 fluxes for each of the four 3-D CO2 

inversion products. This approach uses Eq. 3.1 and 3.2, with χi based on the gridded atmospheric 

CO2 fields averaged over grid cells within corresponding Mθe box and uses Di,i+1 calculated using 

CO2 gradients from each transport model as described in the previous section. We then average 



 

 156 

daily reconstructed fluxes to monthly, centered at the middle of each month, shown as solid black 

curves in Fig. 3.3 and SI Appendix, Fig. 3.9-3.11. 

3.4.5 Airborne estimates of air-sea CO2 fluxes 

We use the 4-box model (Eq. 3.1 and 3.2) and airborne CO2 observations to calculate air-

sea CO2 fluxes for each surface Mθe band and each airborne campaign, centering on the mean date 

of the campaign, shown as points in Figure 3.5a-d. This calculation includes the following steps. 

We first detrend airborne CO2 observations by subtracting a smoothed interannual CO2 

trend at the South Pole (SPO) (61). The trend is calculated by a stiff cubic spline function to the 

monthly average SPO data (62).We then compute detrended average CO2 (χî) for each campaign 

and each box by trapezoidal integration of detrended CO2 as a function of Mθe (as in Jin et al. (29)), 

and dividing by the Mθe range of the box (i.e., 15×1016 kg). (62). Prior to trapezoidal integration, 

we extrapolate airborne observations to Mθe = 0 surface using the average of the 100 observations 

with the lowest Mθe values near 0. The extrapolation only results in a slightly different averaged 

CO2 for the lowest Mθe box compared to the value without extrapolation (< 0.03 ppm) because we 

have sufficient measurements across Mθe surfaces. The exceptions are HIPPO1 and 4 (difference 

≈0.1 ppm), in which we do not have observations on low Mθe surfaces (SI Appendix, Fig. 3.20). 

For HIPPO4, however, we extrapolate to Mθe = 15 (1016 kg) using the average of the 100 

observations with the lowest Mθe values near 15 because due to the absence of observations in the 

entire first Mθe box, and only estimate fluxes for the 30-45 (1016 kg) box. We then correct for bias 

in CO2 estimates due to limited spatial coverage (detailed in SI Appendix, Text 3.7.1). For each 

Mθe box, we conduct a 2-harmonic fit with annual offset to χî of 12 campaigns, yielding a fitted 

seasonal cycle (with offset) of χî. We then compute the long-term (2009 to 2018) time series of 

observed χi as the sum of the climatological seasonal cycle of χî and the CO2 trend at SPO. We 

note that we use the same trend for each Mθe band, preserving each band’s annual mean offset 
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from SPO. The time series of CO2 inventory (Mi) of each box is therefore computed by multiplying 

χi and the Mθe range of the box (i.e., 15×1016 kg in this study). Fitted χi and Mi values of each 

campaign are defined as the values at the mean date of the corresponding campaign. Observed 

surface CO2 fluxes for each airborne campaign is then calculated as the combination of two 

components, namely the CO2 inventory change 
∂Mi

∂t
 and CO2 diabatic transport Qi,i+1, following Eq. 

3.1 and 3.2. We calculate the component 
∂Mi

∂t
 as the time derivative of the daily timeseries of Mi 

from the combined seasonal plus SPO trend fit. The component Qi,i+1 for each airborne campaign 

mean date is calculated as the product of the observed atmospheric CO2 gradient (without fitting) 

between two boxes and the 4-harmonic fitted diabatic mixing rate at the campaign mean date 

(average of 2 MSE-based mixing rates) of the corresponding Mθe surface.  

The surface CO2 fluxes estimated from the 4-box model are the total fluxes that also contain 

any land ecosystem CO2 emission/uptake and fossil fuel CO2 emission. We correct for these non-

oceanic components by subtracting the corresponding flux components using the average of four 

3-D CO2 inversion products. The magnitude of this correction is small compared to the total air-

sea fluxes, as shown in SI Appendix, Fig. 3.13. 

We estimate the uncertainty of each individual flux estimate and the seasonal flux cycle by 

generating an ensemble (2000 iterations) of flux estimates, allowing for uncertainty of these 

sources: (1) uncertainty of CO2 measurements; (2) uncertainty of the correction for spatial bias 

due to insufficient airborne coverage; (3) interannual variability of the diabatic mixing rate; (4) 

spread of the diabatic mixing rate between the two reanalyses; (5) correction for the biosphere and 

fossil fuel CO2 flux; and (6) interannual variability of the flux. Detailed bias and uncertainty 

analyses are presented in SI Appendix, Text 3.7.1-3.7.2. The overall uncertainties of each flux 



 

 158 

estimate are shown as error bars in Fig. 3.5a-d. The overall uncertainties of 2-harmonic fitted 

seasonal flux cycles are shown as shaded regions in Fig. 3.5a-d. 

We also show the averaged air-sea CO2 fluxes calculated using 6 sets of diabatic mixing 

rates (4 sets of ATM-based and 2 sets of MSE-based) in SI Appendix, Fig. 3.15. These are 

estimated using the average and 1σ uncertainty of 6000 iterations of flux estimates, with 1000 

iterations for each set of mixing rates. We also show the air-sea CO2 fluxes calculated using each 

set of mixing rates in SI Appendix, Fig. 3.16. 

We calculate the annual CO2 uptake of each Mθe box from the constant term of the 2-

harmonic fitted seasonal flux cycles (shown as text in Fig. 3.5). 
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3.7 Supporting Information Appendix 

3.7.1: Bias due to sparse airborne spatial coverage 

We showed in Fig. 3.3 and SI Appendix, Fig. 3.9-3.11 that, using the true 3-D atmospheric 

fields of models, we could successfully reconstruct the underlying surface CO2 fluxes from 

knowledge of the true inventories of CO2 within the Mθe bands.  Our estimated inventories from 

the airborne data may be biased, however, due to sparse coverage. To assess this bias, we compare 

the true χi of models (i.e., the 3-D atmospheric field of each inversion product) with χi calculated 

by subsampling the model atmospheric field along flight tracks. The true model χi is computed by 

averaging over all inversion product tropospheric grid cells (cutoff at PVU = 2) of flight dates of 

each airborne campaign within the corresponding Mθe surfaces. The subsampled average χi  is 
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computed by subsampling model data along the flight tracks at flight dates and by trapezoidal 

integration of subsampled model data as a function of Mθe, as in Jin et al. (2021), using Mθe 

calculated from MERRA-2 and interpolated to the model grids. Prior to the trapezoidal integration, 

the subsampled data is also extrapolated to Mθe = 0 surface using the average of the 100 

observations with the lowest Mθe values, except for HIPPO4, in which we only extrapolate to Mθe 

= 15. We show the differences between true and subsampled average in SI Appendix, Fig. 3.17 and 

Table 3.5. This comparison is conducted for each inversion posterior atmospheric CO2 field, for 

each airborne campaign and for each Mθe band. These four inversion products generally agree on 

the sign of the bias in CO2 concentration due to sparse airborne spatial coverage. We correct our 

χi calculated from airborne observations for each Mθe band and each airborne mission using the 

corresponding bias averaged over 4 inversion products. The 1𝜎 uncertainty of the correction for 

each campaign (or sub-campaign) and Mθe band is assumed to be the standard deviation of the 

corresponding corrections of four 3-D CO2 inversions. The day-to-day variability (1𝜎) in model 

χi computed from the 3-D fields is small ( < 0.05 ppm), thus this correction for sparse spatial 

sampling also effectively corrects for any temporal sampling biases from sampling on particular 

flight days. 

3.7.2: Uncertainty  

We access the uncertainty of airborne-based seasonal air-sea CO2 flux estimates of each 

Mθe band by generating a large ensemble (2000 iterations) of flux estimates incorporating 

uncertainty from the following sources: (1) uncertainty of airborne CO2 measurements of 

instrument; (2) uncertainty of the bias correction for CO2 concentration of each Mθe band due to 

sparse airborne spatial coverage; (3) interannual variability of the diabatic mixing rates; (4) 

differences of diabatic mixing rates between two reanalyses; (5) uncertainty of correction for the 

biosphere and fossil fuel CO2 flux; (6) interannual variability of air-sea CO2 flux. 
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We first generate 2000 iterations of the airborne AO2 data that accounts for AO2 CO2 

measurement uncertainty (detailed below in SI Appendix, Text 3.7.2.1). For each iteration, we 

resolve detrended CO2 for each Mθe band and each airborne campaign or sub-campaign, while 

correcting for spatial bias with 1σ  uncertainty of the correction incorporated (detailed in SI 

Appendix, Text 3.7.1). We then apply each iteration to the 4-box model to calculate surface CO2 

flux estimates for each Mθe band and for each airborne campaign. We apply MERRA-based mixing 

rates to the first 1000 iterations and JRA-based mixing rates to last 1000 iterations, with both sets 

incorporating interannual variability of the diabatic mixing rates as random errors (detailed in 

Materials and Methods). For individual flux (12 estimates) in each iteration, we add additional 

uncertainty due to flux interannual variability as suggested by MIROC-ACTM (details see below 

in SI Appendix, Text 3.7.2.2). Flux estimates from each campaign or sub-campaign and iteration 

are corrected for the small non-oceanic flux as the average of corresponding fluxes from four 3-D 

inversion models, while allowing 1σ uncertainty amounting to the standard deviation of four 

models (detailed in Materials and Methods). For each campaign, the overall 1σ uncertainty of flux 

(error bars in Fig. 3.5a-d) is calculated as the standard deviation of the 2000 iterations of flux 

estimates. We also calculate an ensemble of daily seasonal CO2 flux cycles by carrying out 2-

harmonic fits to each iteration of CO2 flux estimates (12 campaigns or sub-campaigns) and for 

each Mθe band. The 1σ uncertainty is calculated as the standard deviation of the 2-harmonic fitted 

daily flux of the large ensemble (2000 iterations), shown as shaded regions in Fig. 3.5a-d. 

3.7.2.1: Uncertainty of AO2 CO2 measurement 

The AO2 instrument is primarily an atmospheric oxygen instrument, which also includes 

a CO2 sensor. Although this sensor is not as precise as the other sensors flown in these campaigns, 

the short-term random error essentially averages out over the large spatial integrals used here. 

However, we allow that the AO2 CO2 measurements may have systematic errors due to drift in 
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calibration or other artifacts during or between flights. To address measurement error, we generate 

an ensemble (2000 iterations) of 10-sec airborne measurements (aligned with data in HIPPO, 

ORCAS, and ATom merged files), with each iteration representing a plausible representation of 

the AO2 CO2 signal with error, following: 

CO2
i (t) = CO2

AO2 (t) + [within flight error] + [between flight error] (S1) 

where CO2
i (t)  represents the ith iteration of CO2, where i runs from 1 to 2000, and 

CO2
AO2 represents the original AO2 CO2 data. Both within- and between-flight errors are estimated 

based on the differences in CO2 (CO2
Diff) measured between the AO2 instrument and other in-situ 

instruments (Harvard QCLS, Harvard OMS, or NOAA Picarro), assuming that the other 

measurements are correct and AO2 is wrong, which effectively provides a conservative 

assumption of errors in AO2. In this study, we estimate the error using AO2 and QCLS or OMS 

for HIPPO flights, and using AO2 and QCLS or NOAA Picarro for ORCAS and ATom flights. 

The within-flight error is modeled as a random variable across all flights and 

measurements.  For each flight and each pair of instruments (AO2 and the other), we build an 

autoregressive model using the method of Elorrieta et al. (1), which is suitable for irregular time 

series due to sampling gaps. The within-flight error is modeled as follows:  

 CO2
Diff(t) = AR10−sec

j,k
· CO2

Diff(t − 1) + ϵj,k(t) (S2) 

where AR10−sec
j,k

 is the autocorrelation coefficient that indicates the dependence of CO2 of 

current time step CO2
Diff(t) on that of previous time step CO2

Diff(t − 1), and ϵj,k(t) is the random 

error, drawn from a Gaussian distribution, with a new sample drawn for each data point. Both the 

AR coefficient and the standard deviation (1σ) of ϵ(t) are unique for each flight (j) and for each 

instrument pair (k), which we summarize in SI Appendix, Table 3.7. The 1σ random error is 

dominated by short-term imprecision of the AO2 instrument. We note that the mean CO2 offset of 
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the flight (j) between two instruments is pre-subtracted while constructing the autoregressive 

model (Eq. S2), because between-flight error is considered separately. For HIPPO flights, 1000 

iterations are based on coefficients resulting from AO2 minus QCLS and 1000 iterations are based 

on AO2 minus OMS. For ORCAS and ATom flights, 1000 iterations are based on coefficients 

resulted from AO2 minus QCLS and 1000 iterations are based on AO2 minus NOAA Picarro. The 

order of these 2000 iterations is randomized for other error analysis. For flights where one of the 

instruments is unavailable (the target instrument AO2 and/or other instruments), we use the 

averaged AR coefficient and the averaged 1𝜎 value for ϵ(t) of the corresponding campaign sub-

campaign and the corresponding instrument to generate simulated CO2
Diff(t).  

The between-flight error is sampled from a Gaussian distribution centered on zero with a 

new sample drawn for each flight and applied as a uniform offset to all data in that flight. We use 

a standard deviation (1𝜎 ) of ± 0.26 ppm for all HIPPO flights, and ± 0.13 for all ATom and 

ORCAS flights based on AO2-QCLS differences. To establish these 1𝜎  values, we compare the 

averaged CO2 differences of each flight between AO2 and QCLS. The 1𝜎  values are therefore 

calculated as the standard deviation of all flight-averaged CO2 differences between two 

instruments, as shown in SI Appendix, Fig. 3.18. This approach gives a conservative estimate of 

AO2 flight-to-flight stability, as some variability could result from biases in the other sensor. Fig. 

3.18 also shows differences between AO2 and other in-situ instruments (i.e., OMS and NOAA-

Picarro) and NOAA portable flask packages (PFP) (2). Using ± 0.25 ppm for HIPPO based on 

AO2-OMS differences, ± 0.13 ppm for ORCAS and ATom based on AO2-NOAA Picarro 

differences, or ± 0.23 ppm for ORCAS and ATom based on AO2-PFP differences would not 

significantly change our results. The larger 1𝜎 value for PFP comparisons might result from less 

data per flights with the flask system. We did not compare with another flask dataset (Medusa) 
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because the AO2 CO2 measurements are already adjusted to match Medusa on a flight-average 

basis (3). 

3.7.2.2: Flux interannual variability (IAV) 

In this study, we estimate 12 separate snapshots of the flux on particular dates that spread 

over 10 years, and fit a 2-harmonic seasonal flux cycle. Due to interannual variability of the flux, 

our approximate seasonal cycle estimate will not conform to a true climatology. To estimate errors 

relative to a true climatology, we rely on IAV from inverted oceanic CO2 fluxes estimated using 

MIROC-ACTM. We access the flux bias due to limited temporal sampling for each airborne 

campaign (or sub-campaign) by comparing the ACTM modeled flux of a 15-day flight window 

and a 10-year averaged flux of the same 15-day window repeating from 2009 to 2018 (SI Appendix, 

Fig. 3.19). The 15-day flight window is selected as the mean campaign flight day ±7 days. We 

could correct for interannual variability, in principle, based on the difference of the modeled flux 

in a specific year and the 10-year averaged flux for each campaign. We find, however, only a small 

potential correction (bars in SI Appendix, Fig. 3.19, mean absolute correction of 0.04 PgC yr-1). 

This bias also does not contribute to a clear seasonal flux cycle bias (black curves in SI Appendix, 

Fig. 3.19). Therefore, we do not correct for this bias but rather consider flux IAV of each campaign 

(sub-campaign) as a random error, calculated as the standard deviation of the 15-day averaged flux 

from 2009 to 2018, as summarized in SI Appendix, Table 3.8. We use MIROC-ACTM to evaluate 

IAV because the simulated diabatic mixing rates and CO2 gradients of ACTM match best with 

reanalysis and airborne observations. 

3.7.3 Thermal-driven CO2 flux cycle 

We estimate the thermal-driven flux cycle (Fig. 3.5m-p) using the following expression as 

suggested by Takahashi et al. (2009).  

FCO2
thermal =  k ∙ α ∙ pCO2

eq
∙ 0.04 ∙ (SST−< SST >) (S3) 
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where k is the CO2 gas transfer velocity (cm hr-1), α is the CO2 solubility in sea water 

(mmol m-3 atm-1), pCO2
eq

 is the CO2 partial pressure at equilibrium, assumed to be 400 μatm, SST 

is the sea surface temperature, < SST > represents the annual average SST. 0.04 denotes a 4% 

pCO2 change per 1°C SST change, also as suggested by Takahashi et al. (2009). 

We use monthly gridded (lon × lat = 1° × 1°) SST data from the NOAA Optimum 

Interpolation (OI) SST V2 product (5). The α ∙ pCO2
eq

 term is a function of sea surface temperature 

(SST) and is calculated from CO2cal (6), by assuming salinity at 34 PSU, total alkalinity at 2250 

μmol kgSW-1, sea water density at 1.02 g cm-3, and using monthly SST data from the NOAA 

OISST V2 product (5). 

The gas exchange coefficient k is calculated following Wanninkhof, 1992 (7): 

k = 0.31 ∙ U10
2 ∙ (

Sc

660
)
−
1
2

(S4) 

where U10 is 10-m surface wind speed, which we obtained from MERRA-2 reanalysis (8), 

Sc is the Schmidt number, and 660 is the Schmidt number of CO2 in seawater at 20°C. We calculate 

gridded monthly Sc from 2009 to 2018 using the expression below, as suggested in Wanninkhof, 

1992 (7) : 

Sc = 2073.1 − 125.62 ∙ SST + 3.6276 ∙ SST2 − 0.043219 ∙ SST3 (S5) 

where we use monthly SST data from NOAA OISST V2 (5). 

3.7.4: Airborne campaigns 

Both the HIPPO and ATom campaigns had broad coverage in the Southern Hemisphere, 

extending from the Equator to the Antarctic, and from near the surface (150-300 m) to the lower 

stratosphere (12-15 km) (SI Appendix, Fig. 3.6). HIPPO consisted of five missions (referred to as 

HIPPO1-5) between 2009 and 2011 and ATom consisted of four missions (refer to as ATom1-4) 
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between 2016 and 2018 (detailed in SI Appendix, Table 3.2). HIPPO missions were over the Pacific 

Ocean, while ATom missions covered both the Pacific Ocean and the Atlantic Ocean.  

ORCAS had 19 research flights during Jan. and Feb. of 2016, with spatial coverage from 

~35°S to 75°S. These flights collected samples over the Drake Passage and surrounding South 

America and Antarctic Peninsula coastal regions. Since the ORCAS campaign spans about two 

months, we divide ORCAS flights into three groups (detailed in SI Appendix, Table 3.2) to yield 

the average CO2 of each Mθe band.  

We exclude all observations near landing sites with the same criteria as in Jin et al. (2021), 

for example, samples that were collected 120s after takeoff, 600 s prior to landing, and likewise 

for any missed approaches. 

3.7.5: Calculation of Mθe for each airborne observation 

The computation of Mθe is presented in Jin et al. (9), follows:  

Mθe(θe, t) =∑Mx(t)|θex<θe
(S7) 

where x indicates an individual grid cell of the atmospheric field, Mx(t) is the dry air mass 

of each grid cell x at time t, and θex is the equivalent potential temperature of the grid cell. For a 

given θe threshold, the corresponding Mθe value is calculated by integrating the airmass of all grid 

cells with θe value smaller than the threshold. We only integrate airmass in the troposphere, which 

is defined as potential vorticity unit (PVU) smaller than 2. This calculation yields a unique value of Mθe for each 

value of θe as well as a 3-D field of atmospheric Mθe, which we generate at daily resolution in the 

Southern Hemisphere based on MERRA-2 reanalysis (8). We also calculate Mθe using other 

reanalyses (NCEP, JRA-55, and ERA-5) and we find that the differences are generally small (9). 

We define surface Mθe as the Mθe value of the lowest altitude level in the MERRA-2 

reanalysis at a given longitude and latitude. 
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The Mθe value of each airborne observation is computed by matching the observed θe value 

with our daily θe-Mθe lookup table. We compute observed θe following  

θe = (T+
Lv(T)

Cp
q) (

P0
P
)

Rd
Cp

(S8) 

where T (K) is the temperature of air; q (kg of water vapor per kg of air mass) is the water 

vapor mixing ratio; Rd (287.04 J kg−1 K−1) is the gas constant for air; Cpd (1005.7 J kg−1 K−1) is the 

specific heat of dry air at constant pressure; P0 (1013.25 mbar) is the reference pressure at the 

surface, and Lv(T) is the latent heat of evaporation at temperature T. Lv(T) is defined as 2406 kJ 

kg−1 at 40°C and 2501 kJ kg−1 at 0°C and scales linearly with temperature. 

For HIPPO and ORCAS, we calculate θe using the recommended static pressure and air 

temperature variables (PSX and ATX), and water vapor mole fraction measured by VCSEL (10; 

H2Oppmv_vxl for HIPPO and VMR_VXL for ORCAS). We interpolate specific humidity in 

MERRA-2 to any missing water vapor mole fraction measurement along HIPPO flights. For 

ATom, we calculate θe from static pressure and air temperature as measured by the Meteorological 

Measurement System (MMS, P), and relative humidity of water vapor as measured by the Diode 

Laser Hygrometer (DLH, Sat_Vapor_Press_H2O) (11, 12).  

3.7.6: Atmospheric CO2 inversion products, empirical surface ocean pCO2 products, global 

biogeochemistry models, and prior airborne estimate 

We use estimated air-sea CO2 fluxes and posterior atmospheric CO2 concentration from 

four atmospheric inversion products. The transport model, resolution, and meteorology of each 

inversion product is summarized in SI Appendix, Table 3.3. In these inversions, the fossil fuel and 

fire CO2 fluxes are prescribed, while the ocean and land CO2 fluxes are optimized to match in-situ 

CO2 observations, except Jena sEXTocNEET_v2020 which uses prescribed ocean CO2 fluxes 



 

 178 

provided by assimilation of surface ocean pCO2 observations from SOCAT (13) by the Jena 

mixed-layer scheme (14). The land fluxes in Jena sEXTocNEET_v2020 are optimized. 

Surface ocean pCO2 products used forcomparison purposes in this study were derived 

using neural-network approaches to interpolate pCO2 data from SOCAT (13) or SOCCOM (15), 

as described in Landschützer et al. (16). Here we use two different flux estimates from 

Landschützer et al. (17, 18), with the methodology presented by Bushinsky et al. (19) and listed 

here by the names used in Figure 3.5i-l:  

1. SOCAT: only shipboard pCO2 measurements were used to train the neural 

network and generate extrapolated pCO2 fields used to estimate fluxes, no profiling float 

data were included. 

2. SOCCOM(only): a sensitivity run where all shipboard data from SOCAT were 

excluded (only SOCCOM float data were included) south of 35°S after the year 2014. 

We compare to modeled air-sea CO2 flux fields from nine global ocean biogeochemistry 

models that were submitted to the Global Carbon Budget 2020 (20). These models are all general 

circulation models coupled with biogeochemistry modules. Details can be found in Hauck et al. 

(21) and Table A2 of Friedlingstein et al. (20). We downloaded flux fields from Hauck et al. (21), 

which have been previously regridded to 1° x 1°. 

We use monthly surface Mθe maps (averaged from the daily maps based on MERRA-2) 

that are interpolated to model grids to assign a Mθe value to each surface grid of the CO2 flux fields. 

Total fluxes of each month are calculated by integrating all selected grids of the corresponding 

Mθe range. Seasonal cycles of total fluxes are calculated by a 2-harmonic fit to the monthly fluxes 

from 2009 to 2018, except for SOCCOM and FESOM, which are from 2015 to 2017, and from 

2009 to 2017, respectively.  
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For each product, we calculate annual uptake by integrating the monthly fluxes of each 

year, and we report the mean annual uptake from 2009 to 2018, with 1σ uncertainty as the standard 

deviation of 10 years. 

3.7.7: Discussion of diabatic mixing rates 

We find that diabatic mixing rates are generally larger at a high Mθe surface (lower 

latitudes) relative to a low surface (Fig. 3.2 and SI Appendix, Fig. 3.8), suggesting a faster diabatic 

transport time scale in low latitudes. Diabatic mixing rates also show a clear seasonal cycle at 

higher Mθe surfaces (30 and 45), which display slower transport time scales (low values) in the 

austral summer relative to the winter. We show a large spread of mixing rates that are calculated 

from four different inversion products, corresponding to four different atmospheric transport 

models driven by four different reanalysis wind products (SI Appendix, Table 3.8). Among all four 

ATM-based mixing rates, CT-based mixing rates display the fastest transport, while ACTM-based 

mixing rates display the slowest transport. Jena-based mixing rates only show a small seasonal 

cycle and is close to ACTM-based mixing rates in the winter (small mixing rate), but relatively 

close to CT-based mixing rates in the summer (larger mixing rate). CAM-based mixing rates show 

a fast transport in the winter that is close to CT-based mixing rates, but show a slow transport in 

the summer that is close to ACTM-based mixing rates. On the other hand, mixing rates computed 

using moist static energy from reanalyses (MSE-based mixing rates) generally show a slower 

transport compared to the average of ATM-based mixing rates. The two MSE-based mixing rates 

are highly comparable and show a slow transport time scale that is close to ACTM-based mixing 

rates in the summer. Diabatic mixing rates only show very small interannual variability at each 

Mθe surface and from each product, indicated by the small 1𝜎 uncertainty bars in Fig. 3.2 and SI 

Appendix, Figure 3.8. We note that ATM-based mixing rates are poorly constrained when the 

atmospheric CO2 gradient across Mθe is small (e.g., from September to November in CAMS). This 
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suggests that, provided we use the same transport model, a different mixing rate would be derived 

if we base our calculations on a single component of atmospheric CO2 (e.g., ocean flux alone), or 

if we use other chemical tracers (e.g., O2) that have different gradients compared to CO2. 

 

Figure 3.6: HIPPO, ORCAS and ATom horizonal flight tracks, colored by campaigns or sub-

campaigns. The aircraft profiled continuously from near the ocean surface to 12-14 km (see Fig. 

3.6 in Long et al. 2021 (22)). 
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Figure 3.7:  Similar to Fig. 3.1b, but showing Mθe surface contours for each season (by color, 

averaged from 2009 to 2018 based on MERRA-2 reanalysis) of three Mθe surfaces (1016 kg). 

 

Figure 3.8: Diabatic mixing rates of the (a) 15 (1016 kg), (b) 30 (1016 kg), and (c) 45 (1016 kg) Mθe 

surface. These mixing rates are parameterized from four 3-D CO2 inversion products and moist 

static energy budgets of two reanalysis products. Error bars represent only the interannual 

variability of parameterized mixing rates, which is shown to be small. Panel (b) is identical to 

Figure 3.2, but with a larger y-range.  
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Figure 3.9: (a) – (d) Monthly reconstructed air-sea CO2 fluxes (solid black) of the 0-15 (1016 kg) 

Mθe band (~ south of 51°S near the Earth surface, detailed in Fig. 3.1b and SI Appendix, Fig. 3.6) 

based on four 3-D inversions, comparing with the original monthly inversion fluxes of the same 

Mθe band (dashed black). Each component (i.e., diabatic CO2 transport and CO2 inventory change, 

detailed in Materials and Methods, and Eq. 3.1) of the box-model reconstruction is shown as well. 

Negative values of the diabatic transport represents CO2 transport into the 0-15 Mθe band 

(poleward transport). (e) – (h) Similar to (a) – (d), but showing the flux and each component as a 

climatological monthly average (2009 to 2018). 
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Figure 3.10: Similar to Figure 3.7, but showing reconstruction of surface CO2 flux for the Mθe 

band of 15 to 30 (1016 kg). 
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Figure 3.11: Similar to Figure 3.7, but showing reconstruction of surface CO2 flux for the Mθe band 

of 30 to 45 (1016 kg). 
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Figure 3.12: Similar to Fig. 3.4a-c but exploring the correlation between April to November 

averaged ATM-based mixing rates for three Mθe surfaces and simulated atmospheric CO2 gradients 

across the corresponding Mθe surfaces of four transport models (inversion products). Simulated 

gradients are averaged at the mean dates of seven airborne campaigns that took place during April 

to November (HIPPO2-5, and ATom1, 3, 4). The corresponding ATM-based mixing rate is 

calculated as the April to November average. For comparison, we show the observed CO2 

gradients (spatial bias corrected) in horizontal black lines, which are calculated as the average of 

the same seven campaigns, while the dashed lines show the 1σ uncertainty (measurement and 

spatial bias correction uncertainty). We also show two MSE-based mixing rates (April to 

November average) as vertical brown lines. 
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Figure 3.13: Seasonal cycles (2009 to 2018 average) of biosphere and anthropogenic CO2 fluxes 

estimated by the atmospheric inversion products for three approximate latitude bands (calculated 

based on surface Mθe range). The seasonal cycles are calculated by 2-harmonic fits to monthly 

fluxes from 2009 to 2018. For each Mθe band, we subtract the mean biospheric and anthropogenic 

flux (averaged from the four flux estimates) from our surface CO2 flux estimates (based on 

airborne observation and box model) to yield air-sea CO2 fluxes. This correction has 1 σ 

uncertainty amounting to the standard deviation of the four flux estimates. 

 

 

Figure 3.14: Similar to Fig. 3.5e-h, but comparing our airborne-based estimates (black) with ocean 

biogeochemistry models that are used in Global Carbon Project 2020 (20, 21). 
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Figure 3.15: Similar to Fig. 3.5a–d but showing the fitted flux cycles calculated using the mean of 

four ATM-based mixing rates and 2 MSE-based mixing rates. 

 

 

Figure 3.16: Similar to Fig. 3.5a–d but showing the fitted flux cycles calculated using each set of 

diabatic mixing rate (i.e., 4 ATM-based and 2 MST-based). 
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Figure 3.17: Identifying bias in our estimates of CO2 concentration for each Mθe box due to limited 

spatial coverage of the airborne CO2 measurements. We compare the true model CO2 (i.e., 

calculated from the 3-D atmospheric field of each inversion product) with values calculated by 

subsampling the model atmospheric field along the flight track of each airborne mission (method 

see SI Appendix, Text 3.7.1) and processing identically to the observations. The bias is calculated 

as the subsampled average minus the true average, and therefore, a positive bias indicates that the 

limited spatial coverage biases the estimated CO2 concentration too large. We adjust our 

measurements using the average across models for each campaign or sub-campaign. 
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Figure 3.18: Histogram of CO2 differences, averaged over each flight, between the AO2 instrument 

and other instruments (for method see SI Appendix, Text 3.7.2.1). One value is generated per flight 

and the histogram shows these differences across all flights and campaigns. We also show the 

mean and standard deviation of CO2 offsets for each instrument, and the number of flights that are 

available. 
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Figure 3.19:  Identifying bias in CO2 flux estimates for each Mθe box and each airborne campaign 

or sub-campaign due to limited temporal coverage (interannual variability), based on estimated 

flux from MIROC-ACTM. For each campaign, we quantify the bias (shown as bars) as the 

differences between modelled flux of a 15-day flight window around the corresponding campaign 

mean date and the 10-year averaged flux of the same 15-day window repeating from 2009 to 2018. 

The 15-day flight window is selected as the mean campaign flight day ±7 days. A positive bias 

indicates that the limited temporal coverage biases the estimated air-sea CO2 flux too large (more 

outgassing or less uptake). We also show the corresponding seasonal cycle of these interannual 

flux biases as black curves, estimated by 2-harmonic fits of corresponding bars for each Mθe band. 

We do not adjust for interannual sampling biases, but do include a component in our uncertainty 

budget from inverted flux in MIROC-ACTM. 
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Figure 3.20: Detrended airborne CO2 observations (ΔCO2) expressed on the Mθe coordinate. We 

note that we have dense measurements across all Mθe surfaces in each campaign except close-to-0 

Mθe during HIPPO1, ATom1, and ATom2. We also do not have measurements in the entire first 

Mθe band during HIPPO4 (no observation lower than 17.88 Mθe). 

 

Table 3.1: RMSE (PgC yr-1) of reconstructed monthly surface CO2 fluxes compared to the 

original fluxes. 

Mθeband (1016 

kg) 

RMSE of each inversion products 

Jena CO2 inversion 

sEXTocNEET_v2020 

CarbonTracker 

2019b 
CAMS V20r1 

MIROC-

ACTM2020 

0-15 0.067 0.097 0.048 0.094 

15-30 0.066 0.086 0.081 0.067 

30-45 0.083 0.118 0.113 0.109 
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Table 3.2: Summary of research flight number latitude coverage, and duration of each airborne 

mission in the Southern Hemisphere. 

Campaign Flight numbers Latitude coverage Date 

HIPPO1 5 – 10 66.2°S – 0.0°S  2009.01.16 – 2009.01.28 

HIPPO2 4 – 8 66.0°S – 0.0°S 2009.11.07 – 2009.11.16 

HIPPO3 4 – 8 66.9°S – 0.0°S 2010.03.31 – 2010.04.10 

HIPPO4 4 – 8 58.0°S – 0.0°S 2011.06.22 – 2011.07.03 

HIPPO5 7 – 11 67.2°S – 0.0°S 2011.08.24 – 2011.09.03 

ORCAS1 1 – 6 69.0°S – 33.3°S  2016.01.15 – 2016.01.25 

ORCAS2 7 – 11 75.0°S – 35.0°S 2016.01.30 – 2016.02.12 

ORCAS3 12 – 19 68.5°S – 18.3°S 2016.02.18 – 2016.02.29 

ATom1 4 – 8 65.3°S – 0.0°S 2016.08.06 – 2016.08.17 

ATom2 4 – 8 65.3°S – 0.0°S 2017.02.03 – 2017.02.15 

ATom3 4 – 9 80.1°S – 0.0°S 2017.10.06 – 2017.10.19 

ATom4 4 – 9 86.2°S – 0.0°S 2018.05.01 – 2018.05.14 

 

Table 3.3: Atmospheric inversion products. 

Product Years Transport 

Model 

Resolution 

(lon x lat x 

vertical level) 

Meteorology Reference 

Jena Inversion 

sEXTocNEET_v2020 

1999-

2019 

TM3 4 x 5 x 19 NCEP (23) 

Carbon Tracker 

2019b 

2000-

2018 

TM5 3 x 2 x 25 ERA-

Interim 

(24) 

CAMS v20r1 1979-

2020 

LMDZ6A 3.75 x 1.875 x 

39 

ERA5 (25–27)  

MIROC-ACTM2020 1996-

2019 

MIROC4-

ACTM 

2.8 x 2.8 x 67 JRA-55 (28) 
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Table 3.4: Airborne-based air-sea CO2 fluxes estimated for each campaign and Mθe band. The 

mean day of year of each airborne campaign is also listed. Positive flux denotes net outgassing 

into the atmosphere. Latitudes represent mean annual locations of Mθe boundaries. We did not 

resolve flux estimates in the first two bands of HIPPO4 because there is no observation data 

within the entire first Mθe band (0-15 1016 kg). 

Campaign 
Day of 

year 

Mθe(1016 kg): 0-15 

Latitude: 90°S - 51°S 

Mθe(1016 kg): 15-30 

Latitude: 51°S - 43°S 

Mθe(1016 kg): 30-45 

Latitude: 43°S - 39°S 

Mθe(1016 kg): 0-30 

Latitude: 90°S - 43°S 

Flux 

(PgC yr-1) 

Uncertainty 

(PgC yr-1) 

Flux 

(PgC yr-1) 

Uncertainty 

(PgC yr-1) 

Flux 

(PgC yr-1) 

Uncertainty 

(PgC yr-1) 

Flux 

(PgC yr-1) 

Uncertaint

y 

(PgC yr-1) 

HIPPO1 22 -0.68 0.24 -0.28 0.39 -0.01 0.50 -0.97 0.40 

HIPPO2 314 -0.03 0.15 -0.35 0.42 -0.24 0.50 -0.39 0.46 

HIPPO3 95 0.20 0.15 -0.54 0.46 -0.54 0.74 -0.34 0.47 

HIPPO4 179 / / / / -0.61 1.48 / / 

HIPPO5 241 0.10 0.21 -0.02 0.63 -0.47 1.21 0.08 0.64 

ORCAS1 20 -0.61 0.24 -0.66 0.24 -0.19 0.39 -1.27 0.32 

ORCAS2 37 -0.50 0.24 -0.73 0.37 -0.25 0.36 -1.23 0.42 

ORCAS3 55 -0.44 0.19 -0.45 0.25 -0.34 0.36 -0.90 0.28 

ATom1 223 0.28 0.16 -0.15 0.30 -0.52 0.73 0.13 0.32 

ATom2 40 -0.61 0.24 -0.99 0.41 -0.02 0.77 -1.61 0.46 

ATom3 286 0.15 0.14 -0.46 0.28 -0.38 0.49 -0.31 0.33 

ATom4 127 0.23 0.14 -0.30 0.34 -0.45 0.60 -0.07 0.38 
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Table 3.5: Atmospheric CO2 gradients across Mθe bands observed by each airborne campaign. 

The adjusted gradient is also shown here, which is calculated by subtracting the bias due to 

limited spatial coverage (detailed in SI Appendix, Text 3.7.1 and Fig. 3.18) 

Campaign 

Mθe
15−30-Mθe

0−15 Mθe
30−45-Mθe

15−30 Mθe
45−60-Mθe

30−45 

Gradient 

(ppm) 

Adjusted 

gradient 

(ppm) 

 

Uncertainty 

(ppm) 

Gradient 

(ppm) 

Adjusted 

gradient 

(ppm) 

 

Uncertainty 

(ppm) 

Gradient 

(ppm) 

Adjusted 

gradient 

(ppm) 

 

Uncert

ainty 

(ppm) 

HIPPO1 0.53 0.51 0.16 0.32 0.32 0.17 0.08 0.18 0.10 

HIPPO2 0.09 0.03 0.11 0.23 0.20 0.17 0.14 0.27 0.10 

HIPPO3 0.08 0.09 0.11 0.18 0.23 0.15 0.08 0.23 0.13 

HIPPO4 / / / 0.08 0.12 0.21 0.08 0.16 0.13 

HIPPO5 0.14 0.05 0.15 0.16 0.06 0.14 0.15 0.14 0.14 

ORCAS1 0.71 0.60 0.09 0.66 0.64 0.10 0.20 0.47 0.08 

ORCAS2 0.31 0.50 0.15 0.65 0.57 0.12 0.22 0.42 0.07 

ORCAS3 0.38 0.53 0.09 0.59 0.42 0.08 0.39 0.44 0.07 

ATom1 -0.01 -0.06 0.10 0.12 0.07 0.06 0.14 0.15 0.09 

ATom2 0.68 0.47 0.16 0.52 0.62 0.15 0.31 0.32 0.19 

ATom3 0.03 0.03 0.08 0.24 0.23 0.08 0.21 0.31 0.08 

ATom4 0.29 0.22 0.05 0.13 0.22 0.08 0.14 0.21 0.06 
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Table 3.6: Bias of averaged CO2 concentration due to limited spatial coverage (detailed in SI 

Appendix, Text 3.7.1). A positive value indicates that the limited spatial coverage would bias the 

observed average CO2 of the corresponding Mθe band too high. We also show the 1σ uncertainty 

of these corrections (± values), which are calculated as the standard deviation of the correction of 

four models for each campaign or sub-campaign and Mθe band. 

Campaign 

(sub-

campaign) 

Mθe(1016 kg) band 

0-15 15-30 30-45 45-60 

HIPPO1 0.01±0.06 0.02±0.09 0.02±0.06 -0.07±0.06 

HIPPO2 0.00±0.09 0.06±0.02 0.09±0.04 -0.04±0.06 

HIPPO3 0.23±0.08 0.22±0.03 0.18±0.02 0.03±0.06 

HIPPO4 / 0.13±0.08 0.09±0.07 0.00±0.05 

HIPPO5 0.03±0.03 0.12±0.07 0.21±0.07 0.23±0.09 

ORCAS1 0.05±0.07 0.16±0.05 0.18±0.07 -0.09±0.01 

ORCAS2 0.05±0.05 -0.14±0.11 -0.07±0.02 -0.26±0.04 

ORCAS3 -0.06±0.05 -0.20±0.03 -0.03±0.04 0.02±0.04 

ATom1 -0.02±0.06 0.02±0.01 0.07±0.01 0.06±0.08 

ATom2 -0.21±0.07 0.00±0.11 -0.09±0.08 -0.11±0.15 

ATom3 0.00±0.06 -0.01±0.04 0.00±0.04 -0.10±0.05 

ATom4 0.07±0.02 0.13±0.03 0.14±0.05 0.07±0.02 
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Table 3.7: AR10−sec coefficient (unitless) and 1σ uncertainty (ppm) of random error ϵ(t) estimated 

from the autoregressive model for each pair of in situ instruments (detailed in SI Appendix, Text 

3.7.2.1). Here we only show the mean values for each campaign, averaged from all flights of the 

campaign. We note that the variability of parameters within a campaign is generally small. 

Campaign 

(sub-

campaign) 

Instrument 

AO2 - QCLS AO2 - OMS AO2 - NOAA Picarro 

AR10-sec 1𝜎 of ϵ(t) AR10-sec 1𝜎 of ϵ(t) AR10-sec 1𝜎 of ϵ(t) 

HIPPO1 0.85 0.41 0.83 0.44   

HIPPO2 0.83 0.43 0.83 0.47   

HIPPO3 0.82 0.44 0.84 0.46   

HIPPO4 0.80 0.45 0.82 0.46   

HIPPO5 0.82 0.47 0.82 0.48   

ORCAS1 0.83 0.27   0.83 0.27 

ORCAS2 0.85 0.30   0.83 0.26 

ORCAS3 0.85 0.29   0.85 0.29 

ATom1 0.77 0.47   0.74 0.47 

ATom2 0.79 0.51   0.79 0.52 

ATom3 0.84 0.28   0.83 0.27 

ATom4 0.81 0.27   0.82 0.27 
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Table 3.8: 1σ Interannual variability (IAV, PgC yr-1) of air-sea CO2 flux for each Mθe band and 

each airborne campaign or sub-campaign, as suggested by the MIROC-ACTM model. IAV is 

calculated as detailed in SI Appendix, Text 3.7.2.2. 

Campaign 
Mθe(1016 kg) band 

0-15 15-30 30-45 

HIPPO1 0.090 0.042 0.044 

HIPPO2 0.062 0.032 0.023 

HIPPO3 0.076 0.038 0.039 

HIPPO4 / 0.049 0.032 

HIPPO5 0.085 0.045 0.045 

ORCAS1 0.091 0.043 0.045 

ORCAS2 0.076 0.027 0.024 

ORCAS3 0.071 0.024 0.023 

ATom1 0.090 0.048 0.048 

ATom2 0.077 0.026 0.023 

ATom3 0.083 0.043 0.026 

ATom4 0.064 0.037 0.041 
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Chapter 4 Impact of Changing Winds on the Mauna Loa CO2 Seasonal Cycle in Relation to the 

Pacific Decadal Oscillation 

 

Abstract 

Long-term measurements at the Mauna Loa Observatory (MLO) show that the CO2 

seasonal cycle amplitude (SCA) increased from 1959 through 2019 at an overall rate of 

0.22±0.034 ppm decade-1 while also varying on interannual to decadal time scales. These SCA 

changes are a signature of changes in land ecological CO2 fluxes as well as shifting winds. 

Simulations with the TM3 tracer transport model and CO2 fluxes from the Jena CarboScope CO2 

inversion suggest that shifting winds alone have contributed to a decrease in SCA of -0.10±0.022 

ppm decade-1 from 1959 to 2019, partly offsetting the observed long-term SCA increase associated 

with enhanced ecosystem net primary production. According to these simulations and MIROC-

ACTM simulations, the shorter-term variability of MLO SCA is nearly equally driven by varying 

ecological CO2 fluxes (49%) and varying winds (51%). We also show that the MLO SCA is 

strongly correlated with the Pacific Decadal Oscillation (PDO) due to varying winds, as well as 

with a closely-related wind index (U-PDO). Since 1980, 44 % of the wind-driven SCA decrease 

has been tied to a secular trend in the U-PDO, which is associated with a progressive weakening 

of westerly winds at 700mbar over the central Pacific from 20°N to 40°N. Similar impacts of 

varying winds on the SCA are seen in simulations at other low-latitude Pacific stations, illustrating 

the difficulty of constraining trend and variability of land CO2 fluxes using observations from low 

latitudes due to the complexity of circulation changes. 

Plain Language Summary 

The CO2 seasonal amplitude is an indicator of the growing season productivity of land 

ecosystems. CO2 observation at Mauna Loa Observatory (MLO) showed an increasing amplitude 

from 1959 through 2019, probably due to significantly enhanced productivity over the Eurasia 
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temperate and boreal forest. In this study, we show that about a third of this observed amplitude 

increase at MLO was offset by long-term circulation changes, which isolated the air at low latitudes 

from the influence of northern high-latitude ecosystems. This wind-driven impact is also important 

at other low latitude Pacific stations. The CO2 seasonal amplitude at MLO also has considerable 

short-term variability (on the scale of multiple years to decades), roughly half of which is regulated 

by the changing winds, while the remaining half is driven by the variability of ecological CO2 

fluxes. We show that the wind influence is closely associated with a climate index known as the 

Pacific Decadal Oscillation. Our study indicates that the attribution of amplitude changes at low 

latitudes stations to ecosystem changes is complicated by wind shifts. 

4.1 Introduction 

In the Northern Hemisphere, the concentration of CO2 at remote atmospheric stations 

undergoes a clear seasonal cycle driven mostly by CO2 uptake and release from the land biosphere 

(Keeling, 1960; Randerson et al., 1997) as modulated by atmospheric mixing. Since the early 

1960s, an increase in the CO2 seasonal cycle amplitude (SCA) has been observed at surface stations 

and airborne transects, with a larger relative increase at higher latitudes (Forkel et al., 2016; Graven 

et al., 2013). At Mauna Loa (MLO, 19.5° N), a ~ 15% increase has been observed from 1959 to 

the early 2010s, while at northern high-latitude station Barrow (BRW, 71.3° N), the increase of 

the same time period is ~ 35% (Graven et al., 2013). These long-term amplitude trends (henceforth 

“trend”) are superimposed on considerable interannual to decadal variability (henceforth 

“variability”) (Keeling et al., 1996). For example, at MLO, as shown in Figure 4.1a, the amplitude 

was relatively constant from 1960 to 1970, and grew by 15% over the 1970s, but then increased 

by only 5% from 1980 to 2020 with considerable interannual variability. 

The SCA increase is an important indicator of enhanced growing-season ecosystem 

productivity over the northern temperate and boreal forest (Graven et al., 2013; Lin et al., 2020). 
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Increasing SCA has been used as an emergent constraint on CO2 fertilization of primary production 

(Wenzel et al., 2016), which is possible because simulations from land ecosystem models that are 

coupled with atmospheric transport models attribute much of the simulated SCA increase to CO2 

fertilization (Bastos et al., 2019; Ito et al., 2016; Piao et al., 2017; Zhao et al., 2016). However, 

most of these coupled models systematically underestimate the SCA increase at high latitudes and 

in the mid-troposphere (500mbar) from 1960-2010, suggesting that the ecosystem models are 

missing key mechanisms (Graven et al., 2013; Thomas et al., 2016). Possibilities include 

underestimating CO2 fertilization on light-use efficiency (Haverd et al., 2020; Thomas et al., 2016), 

or underestimating response of changing land carbon cycle to climate change. Early studies which 

examined SCA changes up until the mid-1990s attributed the SCA increase to enhanced 

photosynthetic CO2 uptake due to warming-induced lengthening of the growing season, especially 

in spring (Keeling et al., 1996; Randerson et al., 1999). In contrast, recent studies focusing on 

trends after 1990 suggest that the CO2 uptake has become increasingly limited by water stress tied 

to continued warming (Lian et al., 2020; Peñuelas et al., 2017; Smith et al., 2021; Wang et al., 

2018; Zhang et al., 2020). The SCA trend has likely also been strongly influenced by warming-

driven changes in vegetation cover (Forkel et al., 2016; Liu et al., 2020), and changes in agriculture 

and other land-use changes (Gray et al., 2014; Zeng et al., 2014). Interannual to decadal climate 

change, including soil temperature and water supply availability, has been suggested as a major 

source of SCA variability (Buermann et al., 2007). 

Our ability to infer changes in growing-season productivity or constrain CO2 fertilization 

from changes in SCA may be complicated, however, by variations in atmospheric circulation. 

Taguchi et al. (2003) and Lintner et al. (2006) found that the MLO SCA is sensitive to the 

interannual variations in the airflow from Siberia, where the biospheric CO2 signal is especially 
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strong. Murayama et al. (2007) found significant year-to-year variabilities of the seasonal cycle at 

two high-latitude stations (BRW and Alert) caused by changing atmospheric circulation alone. 

Higuchi et al. (2002) showed that atmospheric transport alone produced significant variations in 

SCA on interannual to quasi-decadal timescales at both MLO and at high-latitude station BRW. 

Wang et al. (2020) showed that, since 1959, MLO has become more influenced by CO2 exchanges 

from Amazonia, which could be connected with an expansion of the Hadley Cell in the Southern 

Hemisphere. These studies, which explore the connection between SCA changes and atmospheric 

circulation, however, did not discuss connections between decadal climate modes and wind 

influences on SCA, and did not discuss possible impacts of long-term wind shifts within the 

Northern Hemisphere. 

Here we study the contribution of varying winds and varying ecological CO2 fluxes to the 

trend and variability of SCA, using surface-to-atmosphere CO2 fluxes transported by the 

Atmospheric Tracer Model 3 (TM3, Heimann & Körner, 2003), and the MIROC4.0-based 

Atmospheric Chemistry-Transport Model (ACTM, Patra et al., 2018). We focus primarily on 

impacts at MLO, but also briefly examine impacts on other low-latitude stations as well as high-

latitude station BRW. For MLO, we examine the correlation between MLO SCA and several 

climate indices, including the Pacific Decadal Oscillation (PDO, Mantua et al., 1997), a closely-

related wind index U-PDO ( based on the first EOF of subtropical 700 mbar winds), land 

temperature and Palmer Drought Severity Index (PDSI). We also examine MLO 10-day back 

trajectories under different phases of the PDO to better understand transport pathways. We discuss 

these results in connection with changes in MLO SCA variability and circulation changes on the 

interannual to decadal scale and the long-term trend. The results highlight the significant role of 

changing circulation on the variability and SCA trend at MLO as well as other low-latitude 
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stations, which complicates using SCA at these stations to quantify large-scale ecological changes 

(e.g., Wenzel et al., 2016). 

4.2 Data and Methods 

4.2.1 CO2 observation and its seasonal cycle amplitude 

We use monthly averaged atmospheric in situ CO2 measurements at MLO, from the 

Scripps CO2 Program (Keeling et al., 2001). All the missing values from February to April in 1964 

are filled by linear interpolation. We compute the seasonal cycle amplitude (SCA) by using the 

Thoning function following the steps below (Thoning and Tans, 1989): 

1. Fit the observed MLO SCA with a cubic polynomial for the trend and 4-harmonics for 

the climatological seasonal cycle (Eq. 4.1). 

CO2(t) =  ∑ait
i

i=3

i=0

+∑[bi sin(2jπt) + ci cos(2jπt)]

j=4

j=1

+ σ(t) (4.1) 

where t is the decimal year; ai  are coefficients for the long-term trend; bj  and cj  are 

coefficients for the climatological seasonal cycle; and σ(t) is the residual term.   

2. Apply a Butterworth band-pass filter to the residual (σ(t)) with 90- and 540-day cutoffs.  

3. Compute the seasonal amplitude of the sum of the harmonic and band-passed residual, 

using the peak and trough values for each calendar year.  

We note that our choice of parameters is slightly different compared to the default setup of 

the Thoning function, but the impact on calculated SCA is negligibly small with RMSE of 0.023 

ppm from 1959 to 2019. We then compute the long-term growth rate (ppm decade-1) of CO2 SCA 

using generalized least-square (GLS) regression (Fox & Weisberg, 2019; Pinheiro et al., 2021). 

We choose this method in order to address serial correlation, as we find significant first-order 

autocorrelation of the SCA time series suggested by partial autocorrelation function.  
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4.2.2 Modeled MLO CO2 seasonal cycle 

We simulate CO2 concentrations at MLO using two models. The first model is the global 

Atmospheric Tracer Model 3 (TM3, Heimann and Körner, 2003), which was run at 5° in longitude 

and 4° in latitude with 19 vertical levels, using 6-hourly NCEP/NCAR reanalysis meteorological 

fields (Kalnay et al., 1996) from 1951 to 2019, and surface fluxes from the Jena CarboScope CO2 

Inversion (version ID: s57Xoc_v2020, Rödenbeck et al., 2003; 2018a). The first six years (1951 

to 1956) are model spin-up period. The inversion only uses available CO2 observations from 4 

stations (MLO, BRW, La Jolla, and South Pole) over the period of 1958 to 2019. We use two TM3 

simulations: one driven by year-to-year variations in both winds and fluxes (Jena-WF), and one 

driven by year-to-year varying winds but climatological average cyclostationary fluxes from 1957 

to 2019 (Jena-W). The difference between Jena-WF and Jena-W is referred to as Jena-F, which 

can approximate the impact of varying ecological CO2 fluxes alone on the variability and trend of 

MLO SCA. On average, Jena-WF overestimates the MLO SCA by 5% compared to the 

observation. To correct for this systematic offset, we scale these simulated SCA (Jena-WF, Jena-

W, and Jena-F) down by 5%. This correction only has a small impact on our analysis, since we 

primarily focus on the SCA variability relative to each other, and the long-term SCA trend.  

In order to account for uncertainties of the transport model and reanalysis wind fields, we 

also simulate CO2 with MIRCO-ACTM (Patra et al., 2018). The ACTM model was run at ~2.8° 

in longitude and ~2.8° in latitude with 67 vertical levels driven by JRA-55 winds (Kobayashi et 

al., 2015) from 1981 to 2019, with the first four years (1981 to 1984) as model spin-up period. The 

simulation (ACTM-W) uses cyclostationary fluxes for the ocean from Takahashi et al. (2009), and 

for the land from CASA (Randerson et al., 1997). It also uses fossil-fuel fluxes from Jones et al. 

(2021) which vary both by month and by year. The impact of changing fossil-fuel emissions on 
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MLO SCA is very small (Nevison et al., 2008; Wang et al., 2020). We also found the impact of 

biomass burning to the MLO SCA is negligibly small in the ACTM simulations. 

For the modeled MLO CO2 time series, we compute seasonal cycle amplitudes and the 

growth rate of the amplitude using the same approach as for observations (Section 4.2.1). 

4.2.3 Climate data 

As in Buermann et al. (2007), we compute 11-year moving-window correlations between 

MLO SCA and several climate indices to understand which time periods show the strongest 

correlation. These climate indices include PDO, land temperature, and Palmer Drought Severity 

Index (PDSI), with each time series detrended by removing the long-term linear trend and 

smoothed by a five-point binomial filter to focus on interannual to decadal variability. The p-value 

of correlations is computed using 1000 iterations of 2-tail random phase test (Ebisuzaki, 1997). 

The monthly PDO index is provided by National Centers for Environmental Information 

(NCEI) computed from NOAA’s extended reconstruction of SSTs (ERSST Version 5) (Huang et 

al., 2017; Mantua et al., 1997; Zhang et al., 1997). We compute the annual average PDO as the 

average of the twelve monthly PDO values for each calendar year.  

We use the monthly land temperature data at 1 ° ×1°  spatial resolution provided by 

Berkeley Earth (Muller et al., 2013). We use the monthly Palmer Drought Severity Index (PDSI) 

index at 0.5° ×0.5° spatial resolution provided by the Climatic Research Unit (Van Der Schrier et 

al., 2013). We compute the growing-season average land temperature and PDSI as the average 

from May to October of each year, and an area-weighted average for Eurasia (LandTEU, PDSIEU) 

and North America (LandTNA, PDSINA). Eurasia is defined as all land within 30°N to 70°N and 

120°N to 160°N, while North America is defined as all land between 20°N to 70°N. 

We also generate a wind-based climate index, which we call the U-PDO, based on the first 

EOF of the 700mbar monthly wind field from NCEP/NCAR within the domain of 10°N to 40°N 
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and 120°E to 100°W (method see Legler (1983) and Appendix Text S1). The U-PDO is the U-

wind component (West-East) of this first EOF, as discussed below in Figure 4.4 and section 4.3.3. 

The choice of 700mbar is to approximate the pressure level of MLO at ~680mbar. 

4.2.4 Backward trajectories 

We calculate 10-day back trajectories at MLO using the HYSPLIT program (Draxler & 

Rolph, 2010; Stein et al., 2015) driven by NCEP/NCAR winds every 6 hours from 1985 to 2019 

(Kalnay et al., 1996). The choice of 10-day conforms with prior studies of airmass originates at 

MLO (Harris et al., 1992; Harris & Kahl, 1990; Hess, 1996; Miller, 1981). Particles are released 

at 19.53°N, 155.58°W, and 3437.00 m.a.s.l.. The vertical motion is forced to be along isentropes. 

All trajectories that reach above 10000 m altitudes are excluded in our analysis. We compute the 

fraction of backward trajectories that end above Eurasia or North America on day 10 as a function 

of the month and the monthly PDO index value.  

4.3 Results 

4.3.1 Observed and modeled seasonal cycle amplitude at MLO 

In Figure 4.1a, we show the observed MLO SCA (1960-2019) compared with simulations 

using Jena-WF. The Jena-WF model approximates the observed variability well (RMSE = 0.27 

ppm, r = 0.86). Over the whole record from 1959 to 2019, Jena-WF simulates a long-term SCA 

increase of 0.21±0.040 ppm decade-1, close to the observed increase of 0.22±0.034 ppm decade-

1. Jena-WF also captures well the slowing of the SCA growth since the mid-1980s and all-time 

largest amplitudes around 2015-2017. The simulated growth from 1986 to 2019 is 0.14±0.103 

ppm decade-1, compared to 0.16±0.095 ppm decade-1 from observations.  

In Figure 4.1b, we show the two components of MLO SCA, one driven by varying winds 

alone (Jena-W), and one driven by varying ecological CO2 fluxes alone (Jena-F). Jena-F shows a 

persistent increase of SCA over time with a growth rate at 0.31±0.024 ppm decade-1 over the 
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whole record and 0.29±0.086 ppm decade-1 since 1986. In contrast, the Jena-W shows a SCA 

decrease of -0.10±0.022 ppm decade-1 over the whole record, accelerating to -0.15±0.057 ppm 

decade-1 after 1986. In comparison, ACTM-W simulates a relatively smaller SCA decrease of -

0.09±0.068 ppm decade-1 from 1986 to 2019 (see Table 4.1, not shown in Figure). The growth rate 

of the SCA trend based on observation, Jena-WF, Jena-W, and ACTM-W are also summarized in 

Table 4.1. 

In Figure 4.1c, we show detrended time series for the observations, Jena-WF, Jena-W, and 

Jena-F, where the detrending involves subtracting a long-term linear trend. Projecting the 

detrended Jena-W and detrended Jena-F onto the detrended Jena-WF (method see Supplement 

Text 4.7.2), we find the varying winds alone and varying ecological CO2 fluxes alone play equal 

roles in driving the SCA variability from 1959 to 2019, accounting for 51% and 49% of the 

variability, respectively. The SCA variability explained by winds alone increases slightly to 60% 

during the period from 1986 to 2019. 
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Figure 4.1: (a) Observed MLO SCA and modeled MLO SCA from Jena-WF. The Jena-WF 

simulation is scaled down by 5% since it systematically overestimates the SCA. (b) Anomalies 

(reference year 1959) of MLO SCA components simulated by Jena-W and Jena F. Each simulation 

is scaled down by 5%. The growth rates in (a) and (b) are computed by GLS method (see Section 

4.2.1), from 1959 to 2019, and from 1986 to 2019. (c) Anomalies of detrended MLO SCA, 

simulated and detrended MLO SCA from Jena-WF, Jena-W, and Jena-F. Each time series is 

detrended by removing its long-term linear trend. We also show the correlation (r) between each 

detrended simulation and detrended observations, and the corresponding p-value based on 1000 

iterations of 2-tailed random phase test of each correlation (Ebisuzaki, 1997). 
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Table 4.1: Observed and simulated (Jena-WF, Jena-W, and ACTM-W) long-term SCA trends in 

ppm decade-1 at selected stations (methods see Section 4.2.1). Observation data at MLO, BRW, 

KUM, and CHR are from Scripps CO2 Program. Observation data at MID are from NOAA 

ObsPack (Schuldt et al., 2021). Trends are computed using GLS method (see section 4.2.1). 

Stations Years 
SCA trend (ppm decade-1) 

Observation Jena-WF Jena-W ACTM-W 

Mauna Loa (MLO, 

19.5° N, 155.6° 

W) 

1959-2019 0.22±0.034 0.21±0.040 -0.10±0.022  

1986-2019 0.16±0.095 0.14±0.103 -0.15±0.057 -0.09±0.068 

Barrow (BRW, 

71.2° N, 156.4° 

W) 

1961-2019 0.81±0.099 0.83±0.076 0.01±0.054  

1986-2019 0.96±0.183 0.95±0.156 -0.07±0.127 -0.10±0.206 

Midway Island 

(MID, 27.8° N, 

176.7 W) 

1986-2019 0.53±0.211 0.21±0.101 -0.10±0.051 -0.05±0.072 

Cape Kumukahi 

(KUM, 19.5° N, 

154.8° W) 

1976-2019 0.19±0.060 0.18±0.043 -0.08±0.047  

1986-2019 0.24±0.071 0.19±0.072 -0.10±0.081 -0.05±0.061 

Christmas Island 

(CHR, 2.0° N, 

157.3° W) 

1975-2019 0.06±0.104 0.05±0.049 -0.06±0.031  

1986-2019 0.05±0.137 0.02±0.062 -0.04±0.036 -0.01±0.082 

 

4.3.2 Correlation between MLO CO2 seasonal cycle amplitude and climate indices 

To understand the sources of variability of MLO SCA, we examine the correlation between 

the observed MLO SCA and a suite of climate indices in Figure 4.2. This analysis duplicates the 

method of Buermann et al. (2007), but updates to 2019 and adds PDO and U-PDO to the suite of 

indices. Over the full record from 1959 to 2019, the correlation with PDO (r = 0.71, p-value < 

0.005) and U-PDO (r = 0.52, p-value < 0.005) are both relatively strong. A marginally significant 

correlation is also found between MLO SCA and PDSINA (r = 0.42, p-value = 0.021). There is no 

significant correlation between MLO SCA and other climate indices (PDSIEU, LandTEU, and 

LandTNA). 

The moving-window correlation with the PDO remains uniformly high (r  ≳ 0.5) 

throughout the record, except for the period from 1984 to 1995. The correlation with U-PDO shows 

similar time variations. There is no persistent high correlation between MLO SCA and other 
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climate indices. As noted in Buermann et al. (2007), the correlation between the MLO SCA and 

PDSINA increased after the late 1970s, with a high correlation found from 1980 to 1990, from 1995 

to 2004. Our analysis also shows that correlation with the PDSINA is similarly high over the recent 

period from 2011 to 2019. 
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Figure 4.2: Correlations between MLO SCA (observation), and various climate indices: annual 

average PDO, annual average U-PDO, annual growing season (May to October) average land 

temperature, and Palmer Drought Severity Index (PDSI) over the Eastern Eurasia (LandTEU, 

PDSIEU) and Northern America (LandTNA, PDSINA). Eastern Eurasia is defined as 30°N to 70°N 

and 120°N to 160°N over the Eurasia land while North America is defined as 20°N to 70°N over 

the North America land. Each time series (points) is first detrended by removing the long-term 

linear trend and normalized by its standard deviation. We also smooth each time series using a 

five-point binomial filter, shown as curves. We compute the correlation between each smoothed 

time series and MLO SCA (observation) in the right of the upper panel, while the p-value is 

computed by 1000 iterations of  2-tailed random phase test (Ebisuzaki, 1997). In the bottom, we 

show the 11-year moving window correlation between each smoothed time series and MLO SCA 

(observation). The moving-window correlations are plotted by using the same color assignments 

as in the upper panel. The correlation and moving-window correlation between MLO SCA 

(Observation) and land temperature is computed with land temperature leading by 1 year, 

following Keeling et al. (1996). Black dashed lines in the lower panel denote the ±0.5 value. 
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4.3.3 Correlation between components of amplitude variability and PDSI or PDO 

To address whether the SCA-PDSINA and SCA-PDO correlations are flux- or wind-driven, 

we examine the separate correlations with ACTM-W, Jena-W, and Jena-F, as shown in Figure 4.3. 

Each time series is detrended, normalized, and smoothed, using the same method as described in 

section 4.3.2. As shown in Figure 4.3a, we find a high correlation between PDO and ACTM-W (r 

= 0.68, p-value = 0.007), and Jena-W (r = 0.73, p-value = 0.008), showing the importance of wind-

shifts in driving variability in SCA associated with the PDO. The correlation between PDO and 

Jena-W is stronger since 1980 (r = 0.89, p-value < 0.005). The 11-year moving-window correlation 

in the lower panel of Figure 4.3a suggests that the connection between PDO and Jena-W is 

relatively low before 1977 and around 1990, while the connection between PDO and ACTM-W is 

relatively low before 1993 and from 2003 to 2009. The PDO index shows a relatively weak 

correlation between Jena-F at 0.31 (p-value = 0.142), as in Figure 4.3a. The 11-year moving-

window correlation (lower panel of Figure 4.3a) switches between positive and negative, with a 

positive high correlation only found around 1975 and since 2008, and a negative high correlation 

found from 1979 to 1994. Replacing PDO with U-PDO, the moving-window correlations between 

ACTM-W, Jena-W, and Jena-F are very similar (Figure 4.7). 

As shown in Figure 4.3b, we do not find a high correlation between PDSINA with either 

Jena-W (r = 0.29, p-value = 0.302) or Jena-F (r = 0.06, p-value = 0.958) over the full record from 

1959 to 2018. However, the 11-year moving-window correlation in the bottom panel suggests a 

relatively tight connection between Jena-W and PDSINA around 1980, around 1990, from 1995 to 

2005, and from 2009 onward. We also find a relatively high correlation between PDSINA and 

ACTM-W (r = 0.56, p-value = 0.041) from 1986 to 2018, with a relatively low connection before 

1995. 
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Figure 4.3: Correlations between (a) annual average PDO or (b) between PDSINA and various 

decompositions of the MLO SCA variations: modeled MLO SCA from ACTM-W, Jena-W, and 

Jena-F. Each time series is detrended, normalized, and smoothed using the same method in Figure 

4.2. We compute the correlation between each smoothed time series and the corresponding target 

(thick black curve) in the right of the upper panel. The target is annual average PDO in (a), and 

PDSINA in (b). The p-value of the correlation is computed by 1000 iterations of two-tailed random 

phase test (Ebisuzaki, 1997). In the bottom panel, we show the 11-year moving window correlation 

between each smoothed time series and corresponding target (thick black curve in the upper panel). 

The moving-window correlations are plotted by using the same color assignments as in the upper. 

Black dashed lines in the lower panel denote the ±0.5 value. 

 

4.3.4 Large-scale wind-patterns associated with PDO variability 

To explore the mechanism by which wind shifts impact the MLO SCA variability in 

association with the PDO, we examine the related U-PDO index, defined based on the first EOF 

of the Pacific wind field at 700mbar (Section 4.2.3). The spatial pattern of the wind EOF is shown 

in Figure 4.4a and the temporal variations are shown in Figure 4.4b. The temporal variation 

demonstrates a very close association between the U-PDO and the PDO (r = 0.83, p-value < 0.005). 

The high temporal variability of the east-west (U) component of the EOF (i.e. the U-PDO) shows 

the importance of shifting zonal wind strength in connection with the PDO. When the PDO and 
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U-PDO are positive, a stronger westerly anomaly occurs in the domain from 20°N to 40°N, 

together with a stronger northerly anomaly in the spatial domain west of 160°E but a stronger 

southerly anomaly in the spatial domain from 130°W to 160°W. This pattern makes MLO more 

exposed to air transported from Eurasia in a positive PDO year. We note that, around MLO, the 

flow pattern shows both western and eastern air-mass origins at all times of a year, but generally 

progresses from more westerly in winter to easterly in summer (Harris et al., 1992; Harris & Kahl, 

1990). 

Similar insight is found using HYSPLIT back trajectories at Mauna Loa (Figure 4.5 and 

Figure 4.8), which show a larger Eurasian footprint and smaller North American footprint 

associated with positive PDO (Figure 4.5 and Figure 4.8). The back-trajectories also resolve 

seasonality in this pattern. From September to May, the back trajectories favor Eurasian air-mass 

origins, and from July to August, they favor North American origins. This is true regardless of the 

phase of the PDO, but the North American influence is strengthened at all seasons during low PDO 

years, while the Eurasian influence is strengthened from Sept-May during high PDO years. 

Analysis of individual back trajectories (Figure 4.8) shows that during the winter (DJF) of positive 

PDO years, most trajectories originate to the west of MLO centered between 20 °  to 40°N, 

suggesting strong zonal flow. In contrast, during the winter of negative PDO years, the trajectories 

originate over a much wider range of latitudes, both north and south. These winters still have a 

cluster of trajectories from the west, typically following a curved pathway involving eastward flow 

at higher latitudes (e.g. 30-50°N) and bending south or southwest on the approach to MLO. 

The PDO-related wind shifts are closely associated with the strength of the Aleutian Low 

(Newman et al., 2016), as shown in Figure 4.6. In a positive PDO year (Figure 4.6a), the Aleutian 

low strengthens and moves equatorward, exposing MLO to the influence of westerly winds. In a 
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negative PDO year (Figure 4.6b), the Aleutian low shrinks and moves poleward, leaving MLO 

more exposed to air from North America and the eastern Pacific.  

 

Figure 4.4: (a) Spatial pattern of the first EOF of 700 mbar monthly average wind (NCEP/NCAR) 

from 1959 to 2020 within the domain of 10°N to 40°N and 120°E to 100°W. (b) Temporal pattern 

of U (solid blue, U-PDO) and V (dashed blue) winds of the first EOF, and PDO (solid black). Each 

time series with the monthly resolution is smoothed by a five-point binomial filter and normalized 

by its standard deviation. A positive amplitude of U wind temporal pattern represents a stronger 

westerly anomaly in the domain from 20°N to 40°N, while a positive amplitude of V wind temporal 

pattern represents a stronger northerly anomaly in the spatial domain west of 160°E but a stronger 

southerly anomaly in the spatial domain from 160°W to 130°W. Normalized monthly PDO (black) 

smoothed by the same filter are compared here. 

 

Figure 4.5: Seasonally-varying fraction of MLO 10-day back-trajectories that originate from 

Eurasia (red) versus North America (blue), sorted by PDO range. 
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Figure 4.6: (a) Example of a map of climate variables for a positive PDO year (1997). (b) Example 

of a map of climate variables for a negative PDO year (2008). The North Pacific sea level pressure 

and 700 mbar winds (not anomalies) are presented as the January average of the corresponding 

year, while the sea surface temperature anomaly is presented as the spatial pattern of the first EOF 

of the monthly Pacific sea surface temperature data from 1980 to 2019. Climate data used here are 

from MERRA-2 (Gelaro et al., 2017). The location of MLO is marked by the circle cross symbol. 

 

4.4 Discussion 

4.4.1 The impact of varying winds on the SCA trend 

Our analysis allows dividing the observed MLO SCA increase of 0.22±0.034 ppm decade-

1 (3.3±0.51 % decade-1) from 1959 to 2019 into components driven by variable winds and variable 

ecological CO2 fluxes. From winds alone, we find a decreasing trend of -0.10±0.022 ppm decade-

1 (-1.5±0.33 % decade-1) since 1959 based on Jena-W simulations, offsetting ~30% of the increase 

of 0.22+0.10 = 0.32 ppm decade-1 (4.8 % decade-1) expected from ecological flux changes alone. 

This decreasing trend accelerates to -0.15±0.057 ppm decade-1 from 1986 to 2019. Simulations 

with ACTM-W suggests a slightly smaller decreasing trend (-0.09±0.068 ppm decade-1) from 

1986 to 2019. Over the whole record from 1959 to 2019, our results based on Jena-W show a larger 

wind effect than found by Wang et al. (2020), who suggested a negligibly small overall trend due 

to changing winds alone. Over the period from 1986 to 2019, the impacts of wind in our study are 
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consistent with Wang et al. (2020), who reported a trend of -0.1 to -0.2 ppm decade-1. This wind 

impact appears to be an important factor contributing to the relatively smaller SCA increase at 

MLO (low latitude at 19.5°N) compared to BRW (high latitude at 71.2°N), where Jena-W suggests 

an insignificant wind-induced trend of 0.01±0.054 ppm decade-1 (p-value = 0.97 based on Cox-

Stuart trend test) from 1961 to 2019. Similarly, ACTM-W suggests an insignificant trend at BRW 

of -0.07±0.127 ppm decade-1 (p-value = 0.83 based on Cox-Stuart trend test) from 1986 to 2019, 

as shown in Table 4.1. The long-term winds impact at MLO is mostly driven by reduced Eurasia 

influence, with additional small contributions from reduced North America influence (Figure 4.9). 

Wind shifts also lead to a smaller SCA at other low-latitude stations, offsetting the observed 

increases. As shown in Table 4.1, Jena-W yields similar SCA trends between -0.06 to -0.10 ppm 

decade-1 at the nearby Pacific stations of Midway Island (MID, 27.8° N, 176.7 W) from 1986 to 

2019, at Cape Kumukahi (KUM, 19.5° N, 154.8° W) from 1979 to 2019, and at Christmas Island 

(CHR, 2.0° N, 157.3° W) from 1975 to 2019. Wind shifts thereby offset 16% (at MID), 30% (at 

KUM), and 50% (at CHR) of the SCA trend expected from ecological flux changes alone. ACTM-

W also suggests decreasing SCA from 1986 to 2019 at these three stations, but the magnitude is 

smaller than that of Jena-W (Table 4.1). We note that, although Jena-WF underestimated the SCA 

trend at MID by 50% compared to observation (Table 4.1), this discrepancy is not necessarily due 

to error in winds, as it might alternately result from errors in the CO2 fluxes fields. 

The impact of winds at KUM is of importance in relation to the study of Wenzel et al. 

(2016), who applied the SCA trend at KUM as an emergent constraint on the magnitude of global 

CO2 fertilization effect on gross primary production. However, their study did not evaluate the 

impact of wind shifts on this constraint. 
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The long-term wind-driven influence on MLO SCA trend and at other stations may have a 

connection with a poleward shift and weakening of the subtropical jet stream in the Northern 

Hemisphere (Archer & Caldeira, 2008). This change leads to a weakened influence of fluxes from 

northern high latitudes of both Eurasia and North America at MLO (Figure 4.9c). These northern 

landmasses are the main contributors to the MLO SCA variability and trend (Figure 4.9b), 

explaining 58.6% of the total SCA variabilities (method see Supplement Text 4.7.2).  

The changes of subtropical jet stream are also reflected in the U-PDO index (Figure 4.4). 

A notable feature of the U-PDO, which is distinct from the PDO, is a stronger downward trend 

since 1980, which indicates a progressive weakening of westerly anomalies at 700mbar within the 

domain from 20°N to 40°N. To assess the contribution of the U-PDO index to the long-term wind-

driven SCA trend since 1980, we use a simple statistical model SCA(year) = α ⋅ year + γ + β ⋅

U-PDO̅̅ ̅̅ ̅̅ ̅̅ ̅(year), where U-PDO̅̅ ̅̅ ̅̅ ̅̅ ̅ is the annual average U-PDO. The parameters are computed using 

GLS method (similar to Section 4.2.1). The parameter β (0.21±0.105, ppm U-PDO-1) is largely 

independent of α, indicated by a negligibly small correlation between β and α (|r| < 0.05), and the 

same model with detrended SCA only leads to a slightly smaller β (0.19±0.132 ppm U-PDO-1). 

Using β = 0.21, the trend in U-PDO from 1980-2019 yields an SCA trend of -0.07±0.032 ppm 

decade-1 which explains ~ 44 % of the full wind-driven effect estimated by Jena-W over this period. 

Over the full record from 1959 to 2019, the U-PDO term yields an SCA trend of -0.01±0.041 ppm 

decade-1, which is not significant. 

The poleward shift of the subtropical jet stream is possibly tied to a long-term expansion 

of the Hadley cell. Wang et al. (2020) argued that a southward expansion of the Hadley cell in the 

Southern Hemisphere made MLO more influenced by CO2 fluxes from Amazonia, which reduce 

the CO2 SCA at MLO because the phase is approximately opposite of the signal from the northern 
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hemisphere. Our analysis partly agrees with Wang et al. (2020), but we only find small increasing 

tropical influence since 2010, as shown in Figure 4.9. Here we suggest that the northward 

displacement of the northern boundary of the Hadley cell may also have been important (Figure 

4.11, method see Text S3 and Adam et al. (2018)), associated with northward displacement of 

Aleutian Low under greenhouse warming, corresponding to a wider region of easterly trade winds 

(Gan et al., 2017; Grise et al., 2019; Staten et al., 2019).  

One important caveat in our study is the reliability of winds fields and transport models. 

The Jena-W (based on TM3 transport model and NCEP reanalysis), the ACTM-W (based on 

MIROC-ACTM model and JRA-55 reanalysis) simulations and the Wang et al. (2020) study all 

yield slightly different estimates of the wind impact on the MLO SCA trend from 1986 to 2019 

(Table 4.1). Even larger uncertainties may apply to our estimated trends from 1959 to 2019, which 

entirely depends on TM3 and NCEP reanalysis. NCEP might have larger errors before the satellite 

era starting in 1979 (Bromwich & Fogt, 2004). Although climate models and reanalysis products 

generally show an expanding Hadley cell in the Southern Hemisphere, the similar expansion in 

the Northern Hemisphere is highly uncertain, with a larger trend from reanalyses than from model 

ensemble means (Allen et al., 2014; Allen & Kovilakam, 2017; Grise et al., 2019; Johanson & Fu, 

2009; Lu et al., 2007; Staten et al., 2018; Tao et al., 2016).  

Will shifting winds continue to contribute to decreasing SCA at low latitudes in the future? 

The answer may depend on whether the Hadley cell expansion over the past decades has resulted 

from an internal climate mode or from anthropogenic forcing. This topic remains controversial, 

with some studies arguing for connection with increasing greenhouse gases (Lu et al., 2007, 2009), 

and anthropogenic aerosols (Allen et al., 2012, 2014; Allen & Ajoku, 2016), and others pointing 
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to connections with PDO and ENSO indices (Allen et al., 2014; Allen & Kovilakam, 2017; Amaya 

et al., 2018; Grassi et al., 2012). 

4.4.2 The impact of varying winds on the variability of MLO SCA 

We find that varying winds alone contribute significantly (~51%) to the 

interannual/decadal variability of MLO SCA. Much of the wind-related variability is tied to the 

PDO, which modulates the relative impact of Eurasian versus North American influences on the 

MLO SCA variability. Years with high PDO tend to have large Eurasian influence and larger 

seasonal cycles. This result is consistent with Lintner et al. (2006), who reported that during the 

months from April to June (near the seasonal CO2 peak at MLO), synoptic patterns favoring strong 

Eurasia influence are associated with high springtime CO2 anomalies, and patterns favoring North 

American influence are associated with low springtime CO2 anomalies. Buermann et al. (2007) 

similarly attributed part of the long-term MLO SCA decreasing in the early 1990s to the 

progressively declining Eurasia influence in the northern spring. However, neither of these 

previous studies noted the close association with the PDO. As shown in Figure 4.12 we also find 

high correlation between MLO SCA and ENSO index (NOAA ONI) in some periods, but not 

consistently over the whole period from 1959 to 2019. Lintner et al. (2006) suggested that the 

connection between SCA and ENSO index can be explained by the flow patterns associated with 

ENSO phases. This connection can also be tied to the PDO phases, as PDO resembles ENSO on 

the decadal scale. 

We find that the contribution from variations in ecological CO2 fluxes to the PDO-SCA 

correlation is small, as indicated by the weak correlation between PDO and Jena-F of 0.33 (Figure 

4.3b). A relatively weak correlation is expected considering that the changes in land temperature 

or precipitation/evaporation associated with the PDO are quite heterogeneous in space and time 

(Figure 4.10).  
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Our analysis suggests that the controls of winds on the MLO SCA variability were 

unusually weak during the period from the mid-1980s to the early 1990s. The SCA was low in the 

late 1980s and higher in the early 1990s. During the 1985-1995 period, the SCA-PDO correlation 

(Figure 4.3a, r = -0.18, not smoothed) and the SCA-Jena-W correlation (Figure 4.1c, r = -0.03, not 

smoothed) was unusually weak, while the SCA-Jena-F correlation was relatively stronger (Figure 

4.1c, r = 0.45, not smoothed), suggesting that the variability within this period was dominated by 

fluxes that were not associated with the PDO. A severe drought in North America in 1988 may 

have reduced the North American contribution to the SCA variability (Schwalm et al., 2012), while 

the eruption of the Mt. Pinatubo in 1991 may have strengthened summer CO2 uptake throughout 

the Northern Hemisphere (Angert et al., 2004; Gu et al., 2003; C. D. Jones & Cox, 2005). 

The long-term wind shifts might complicate the attribution of the MLO SCA trend to 

ecological changes. For example, Buermann et al. (2007) suggested that the decrease or stable 

SCA trend from 1990 to 2003 was mostly due to more frequent droughts over North America, with 

additional contributions from wind shifts that led to an overall weakening of spring-time Eurasia 

influence. Our results partially agree with Buermann et al. (2007), as Jena-F driven by mid-latitude 

North America fluxes alone (Figure 4.9c) shows decreasing SCA anomalies from 1990 to 2000. 

Over the long-term, however, Jena-F shows North American fluxes contributing to the overall 

increasing trend in SCA, with this trend persisting after 2000. Also, we do not find a persistent 

high correlation between PDSINA and Jena-F, as shown in Figure 4.3b, but we do find a generally 

high correlation of PDSINA with Jena-W since 1980, which is also when PDSINA show a significant 

correlation with observed MLO SCA, as in Figure 4.2. This suggests that the higher PDSI-SCA 

correlation since the mid-1980s (Figure 4.2 and in Buermann et al. (2007)) was not driven 

primarily by CO2 fluxes tied to drought but rather by wind variability that happens to be correlated 
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with the PDSINA. On the other hand, the PDSINA-Jena-F correlation is high after 2008, possibly 

implying an increased role of hydrological variability after 2008. More generally, Jena-WF shows 

that the SCA variability is dominated by the Eurasia influence due to both varying winds and 

varying ecological CO2 fluxes, with relatively small contributions from North America (Figure 

4.9b). 

4.5 Summary and conclusion 

We find that varying winds alone contribute significantly to the trend and variability of 

MLO SCA. 

Since 1959, the Jena-W simulations suggest that varying winds by themselves caused a 

downward SCA trend of -0.10±0.022 ppm decade-1, offsetting ~30% of the long-term SCA 

increase (0.22+0.1=0.32 ppm decade-1) due to ecological CO2 flux changes alone. The wind-driven 

decrease simulated by Jena-W accelerated after 1986 to -0.15±0.057 ppm decade-1, while this 

decrease simulated by ACTM-W since 1986 is relatively smaller at -0.09±0.068 ppm decade-1. 

Both of these two simulations are consistent within uncertainties to Wang et al. (2020), who 

reported SCA decreasing between -0.1 to -0.2 ppm decade-1 driven by changing circulation alone 

after 1986. Roughly 44% of the post-1980 downward trend is explained by a secular trend of U-

PDO (Figure 4.4b). We also find a wind-driven decreasing tendency in SCA at other low-latitude 

stations (MID, KUM, and CHR), with Jena-W suggests a larger decrease than ACTM-W (Table 

4.1). Whereas Wang et al. (2020) speculated that the wind effect may be related to Hadley cell 

expansion in the Southern Hemisphere, we suggest a possibly important role of poleward 

expansion in the Northern Hemisphere, which acts to isolate the air at low latitudes from the 

influence of northern high-latitude ecosystems. 

On interannual/decadal timescales, we find a high correlation between detrended MLO 

SCA and the annual average PDO index, as well as a closely related wind index, U-PDO. This 
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high correlation is closely tied to PDO-related wind patterns: (1) In a positive PDO year (Figure 

4.6a), the Aleutian Low is stronger and moves equatorward, resulting in a stronger and 

equatorward-displaced westerly jet over the Pacific which transports air from Eurasia to MLO. (2) 

In a negative PDO year (Figure 4.6b), the Aleutian Low shrinks and moves poleward and 

westward, leading to a weaker and poleward-displaced westerly jet, and leaving MLO more 

exposed to CO2 transported from North America and the Eastern Pacific. 

Our analyses suggest that long-term circulation changes can partly explain the smaller 

relative SCA growth rate at low latitudes compared to high latitudes, observed at both surface 

stations and mid-troposphere airborne data, as shown in Graven et al. (2013). Especially at low 

latitudes, the changing circulation makes it hardto simply relate SCA changes to ecological 

changes, such as the enhanced magnitude of CO2 fertilization effect (Wenzel et al., 2016) and 

North America drought (Buermann et al., 2007). 

4.6 Data Availability Statement 

CO2 observations at MLO, KUM, and CHR are available from the Scripps CO2 Program 

at https://scrippsco2.ucsd.edu/ (last access: March 15, 2021). CO2 observations at MID are 

provided by the NOAA CML cooperative global air sampling network (CO2 GLOBALVIEWplus 

v6.1 ObsPack) and downloaded from http://doi.org/10.25925/20201204 (Schuldt et al., 2021). 

The monthly PDO index is provided by National Centers for Environmental Information 

and downloaded from https://www.ncdc.noaa.gov/teleconnections/pdo/ (last access: April 10, 

2021) (Huang et al., 2017; Mantua et al., 1997; Zhang et al., 1997). The monthly Oceanic Niño 

Index (ONI) data are provided by NOAA and downloaded from 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (last 

access: Jan 4, 2022). Land temperature data are provided by Berkeley Earth and downloaded from 

http://berkeleyearth.lbl.gov/auto/Global/Complete_TAVG_complete.txt (last access: October 23, 

https://scrippsco2.ucsd.edu/
http://doi.org/10.25925/20201204
https://www.ncdc.noaa.gov/teleconnections/pdo/
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
http://berkeleyearth.lbl.gov/auto/Global/Complete_TAVG_complete.txt
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2020) (Muller et al., 2013). PDSI data are provided by the Climatic Research Unit and downloaded 

from https://crudata.uea.ac.uk/cru/data/drought/ (last access: August 28, 2020) (Van Der Schrier 

et al., 2013). 

Wind data that are used to conduct EOF analysis are from NCEP/NCAR reanalysis and 

downloaded from https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html (last 

access: December 10, 2020) (Kalnay et al., 1996). 

Simulated CO2 time series data based on Jena CO2 inversion and TM3 transport model, 

and MIROC-ACTM are available from https://doi.org/10.5281/zenodo.5514400. 

4.7 Supplement 

4.7.1 Empirical orthogonal function (EOF) analysis of winds 

Following Legler (1983), the U and V winds components are combined into one vector as 

a complex number at each geographic location and time step, following 

W(λ,Φ, t)  =  U(λ, Φ, t)  +  iV(λ, Φ, t) (4.2) 

where λ denotes longitude, Φ denotes latitude, and t denotes a time step. 

Elements of W(λ,Φ, t) are organized into a matrix with N (λ × Φ) geographic locations 

and M time steps,  

W = [

W1,1 ⋯ W1,M
⋮ ⋱ ⋮

WN,1 ⋯ WN,M

] (4.3) 

The mean values over the full time series at each location (row of matrix W) is subtracted 

to sharply focus on variability following, 

W′ = W−WN,∗̅̅ ̅̅ ̅̅ (4.4) 

We then apply singular value decomposition to the matrix W′, to decompose it into three 

components, which include the spatial pattern (S), the matrix of singular values (Σ), and the 

temporal pattern (T), following: 

https://crudata.uea.ac.uk/cru/data/drought/
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html
https://doi.org/10.5281/zenodo.5514400
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W′ = SΣT (4.5) 

with 

S = [

S1,1 ⋯ S1,min(N,M)
⋮ ⋱ ⋮
SN,1 ⋯ SN,min(N,M)

] (4.6) 

T = [

T1,1 ⋯ T1,min(N,M)
⋮ ⋱ ⋮
TM,1 ⋯ TM,min(N,M)

] (4.7) 

and Σ as a diagonal matrix whose diagonal entries contain the singular values. 

Each column in the S and T matrices represents the spatial and temporal pattern of winds 

W′ of the Mth EOF. We note that each vector in matrix S and T is a complex number, with the real 

part as U winds direction and the imaginary part as V winds direction. Therefore, the temporal 

pattern of the Mth EOF of U winds and V winds is represented by the real part of S∗,M, and the 

imaginary part of S∗,M, respectively, with ‘*’ representing the entire column.  

 4.7.2 Vector projection method 

The fractional contributions of either varying winds (Jena-W, xw) or varying fluxes (Jena-

F, xF) to the overall CO2 SCA variability (Jena-WF) are computed by using a vector projection 

method (Graven et al., 2013). In this method, Jena-W or Jena-F is projected onto Jena-WF via: 

xW =
∑  [Jena-W(t) · Jena-WF(t)]t  

∑ [ Jena-WF(t) · Jena-WF(t)]t

(S8) 

xF =
∑  [Jena-F(t) · Jena-WF(t)]t  

∑ [ Jena-WF(t) · Jena-WF(t)]t

(S9) 

We note that Jena-W, Jena-F, Jena-WF are pre-detrended and satisfy 

Jena-WF(t) = Jena-W(t) + Jena-F(t) (S10) 
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4.7.3 North edge of the Hadley cell 

We compute the latitude of the Hadley cell north edge using seven commonly-used metrics 

(see Figure 4.10) following Adam et al. (2018). These calculations yield annual average latitudes, 

which are based on wind, temperature, and pressure fields from NCEP/NCAR reanalysis data with 

monthly resolution (Kalnay et al., 1996). A brief description of each method is presented here: 

1. PSI: the latitude which the streamfuction at 500 mbar shifts from negative to positive in 

the Northern Hemisphere. 

2. PSL: the latitude with maximum zonal average sea level pressure. 

3. TPB:  the latitude with maximum poleward zonal average tropopause height decreasing, 

while tropopause is defined as height with lapse rate decreases to 2K km-1, and remains lower than 

this between this level and all higher levels within 2 km. 

4. STJ: the latitude of the maximum zonal wind difference between upper-level (200 mbar) 

and lower-level (850 mbar). 

5. EDJ: the latitude with the maximum zonal average zonal wind at 850 mbar. 

6. UAS: the latitude which zonal wind shifts from easterlies to westerlies at 1000 mbar. 

7. OLR: the first latitude which maximum outgoing long-wave radiation drops to 20 W/m2 

below its peak value. 
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Figure 4.7: Similar to Figure 4.3 but exploring the correlations between annual average U-PDO 

and various decompositions of the MLO SCA variations: modeled MLO SCA from ACTM-W, 

Jena-W, and Jena-F. Each time series is detrended, normalized, and smoothed using the same 

method in Figure 4.2. We compute the correlation between each smoothed time series and U-PDO 

in the right of the upper panel. The p-value of the correlation is computed by 1000 iterations of 

two-tailed random phase test (Ebisuzaki, 1997). In the bottom panel, we show the 11-year moving 

window correlation between each smoothed time series and U-PDO. The moving-window 

correlations are plotted by using the same color assignments as in the upper. Black dashed lines in 

the lower panel denote the ±0.5 value. 
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Figure 4.8: HYSPLIT back trajectories of different seasons and PDO phases. (a) DJF of positive 

PDO years (PDO index ≥ 1), (b) DJF of positive PDO years (PDO index ≤ -1), (c) JJA positive 

PDO years (PDO index ≥ 1), and (d) JJA of positive PDO years (PDO index ≤ -1). 
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Figure 4.9: Simulated MLO CO2 seasonal amplitude using fluxes from each tagged region (map 

in (a)) of Jena CarboScope CO2 Inversion (version ID: s57Xoc_v2020) transported by TM3 model. 

We show simulations driven by both varying winds and fluxes in (b) and simulations driven by 

either varying winds or varying fluxes in (c). 
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Figure 4.10: Correlation between annual average PDO and land temperature (detrended) within 

the time slice from (a) 1960 to 1979, (b) 1980 to 1999, and (c) 2000 to 2019. Correlation between 

annual average PDO and PDSI (detrended) within the time slice from (d) 1960 to 1979, (e) 1980 

to 1999, and (f) 2000 to 2019. Land temperature and PDSI are detrended by removing the long-

term linear trend for each grid cell. We show that the correlation between PDO and land 

temperature or PDSI is heterogeneous in time and space. 

 

 

Figure 4.11: Anomaly of the annual average latitude of the Hadley cell north edge from 1959 to 

2019 computed based on NCEP reanalysis. Curves of different colors correspond to different 

definitions of the northern boundary, as shown in Text 4.7.3, following Adam et al. (2018). The 

black curve shows the average of the seven individual estimates. 
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Figure 4.12: Similar to Figure 4.3 but exploring the correlations between observed MLO SCA and 

annual average ENSO index. We use NOAA Oceanic Niño Index (ONI). Each time series is 

detrended, normalized, and smoothed using the same method in Figure 4.2. In the bottom panel, 

we show the 11-year moving window correlation. Black dashed lines in the lower panel denote the 

±0.5 value. 
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Chapter 5 Concluding Remark 

 

Over the past few decades, our quest to understand Earth's climate has led to a surge in 

data acquisition. This growth stems from a sophisticated network of monitoring systems that cover 

various layers of our atmosphere. Taking CO2 observations as an example, we gather data from 

Earth's surface using stations, ships, and profiling floats. We also collect airborne observations 

from the free troposphere. More recently, satellites offer global insights from the atmosphere's 

uppermost layer. These platforms collectively offer an in-depth perspective on our climate and the 

global carbon cycle. Airborne data, in particular, provides a wide spatial view, capturing large-

scale atmospheric features and offering vertical profiles less influenced by uncertainties in the 

atmospheric boundary layer.  

This thesis focuses on the use of airborne data to promote our understanding of the global 

carbon cycle and atmospheric circulation. Making the best use of airborne data, however, is limited 

by its coverage and sensitivity to synoptic-scale disturbances. Here I pioneer the development of 

several toolboxes to leverage the use of airborne data, which builds upon a transformed isentropic 

coordinate system, Mθe, that is developed in Chapter 1 of my thesis. This coordinate, similar to the 

equivalent potential temperature (θe), is the preferential mixing surface of the atmosphere. Using 

Mθe to study tracer distribution in the atmosphere allows me to leverage the way the atmosphere 

moves and focus sharply on the information content of CO2 observations and corresponding 

surface fluxes, rather than the synoptic transport uncertainty. 

Chapter 1 discuss the characteristic of the coordinate, which is of fundamental meteorology 

interest, and also illustrate two important applications of the coordinate for carbon cycle 

applications. One is to organize airborne observations to study the spatial and temporal pattern, for 

example, gradients over latitude, and seasonal cycles at different latitudes. The other is to calculate 
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tracer inventory in the troposphere. These two basic applications are the method foundation for 

other broader applications. 

In Chapters 2 and 3, I apply this coordinate to calculate hemispheric-scale air-sea O2 flux, 

and the Southern Ocean (SO) air-sea CO2 flux over three latitude bands using the Mθe-aligned box 

model. The air-sea O2 flux shows clear hemispheric asymmetry, suggesting key differences in the 

physical and biogeochemical processes that module the mixed layer dissolved oxygen changes. 

One major finding is the existence of subsurface oxygen maximum zones in the Northern 

Hemisphere, which prevents biological-driven O2 outgassing. The SO CO2 flux resolved in my 

thesis shows clear meridional shifts, with a biological-driven cycle that suggests strong summer-

time CO2 uptake in the high latitudes to a thermal-driven cycle that suggests strong winter-time 

CO2 uptake in the mid-latitudes. We also find a weak winter-time outgassing in the high-latitude, 

which is driven mainly by ventilation processes that bring CO2-rich water from the deep ocean to 

the surface ocean. This transition and winter-time outgassing features are seen in surface ocean 

pCO2 measurements, but it is the first time we have resolved this from airborne data.  

Air-sea O2 and CO2 flux estimates on regional to global scales are available also from other 

methods, such as from surface ocean pCO2 and dissolved oxygen measurements, from inverse 

models that optimize surface station and ship data, and from Earth system models. This thesis also 

uses airborne-based estimates as a direct test on these models, identifying key limitations in these 

models, and tools that are used to create these models. These limitations include the insufficient 

coverage of surface ocean dissolved oxygen and pCO2 measurements, uncertainty in gas-exchange 

velocity, and underrepresentation of stratification and biogeochemistry in general circulation 

models and ocean biogeochemistry models. 
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A noteworthy discovery in Chapter 3 is the ability to use Mθe to evaluate the biases in 

atmospheric transport models (ATMs), which is crucial for determining the fluxes in inverse 

models. The Mθe-aligned box model suggests that the complex 3-D atmospheric circulation over 

the mid- to high-latitude SO could be simplified to 1-D, recognizing that the cross-isentrope 

diabatic transport is the most critical transport pathway. The timescale for this transport pathway 

is referred to as the diabatic mixing rate, which is similar to a diffusion coefficient. I propose two 

methods to derive this mixing rate, one is to parameterize the ATMs used in inverse models, and 

the other is based on the moist static energy budget (MSE) of meteorology reanalyses. I find that, 

in the high-latitude Southern Hemisphere, ATMs-based mixing rates are biased to suggest too 

rapid mixing in the austral summer, while MSE-based mixing rates are more realistic. This finding 

is confirmed by the fact that model-simulated CO2 gradients across Mθe are biased smaller than 

observed CO2 gradients. Chapter 3 also establishes that the diabatic mixing rate derived from the 

MSE budget of reanalyses could help to further constrain ATMs. One path forward is to integrate 

MSE within atmospheric transport models (ATMs) as a passive tracer, similar to how CO2 is 

currently represented. Comparing the simulated and observed (i.e., from reanalysis) MSE spatial 

distribution could help to identify key limitations in ATMs.  

The applications of Mθe coordinate have broader applications than originally anticipated. 

Mθe is useful in the design phase of future airborne campaigns to ensure strategic coverage. 

Traditional airborne campaigns aimed at collecting air samples have often emphasized an 

extensive array of vertical profiles. I find that comprehensive coverage across various isentropes, 

rather than extensive coverage in latitude and pressure, is the main requirement for applications 

like resolving large-scale tracer gradients, and regional to hemispheric surface flux. Thus, future 

airborne campaigns with similar coverage as HIPPO, ORCAS, and ATom will have more 
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redundancy. This atmospheric coordinate not only ensures a strategic evolution in data acquisition 

and interpretation but is also a potential avenue for more cost-effective campaigns.  

The Mθe box model can be applied to calculate the surface fluxes for various tracers and 

spatial domains. For instance, one can use this model to estimate CO2 fluxes in the Northern 

Hemisphere to understand the balance between tropical land CO2 source and boreal forest uptake. 

One could also use this model to determine O2 fluxes within the Southern Ocean, which has 

broader implications for understanding the SO carbon cycle. The model has implications for 

studying atmospheric chemistry, more specifically, quantifying the CH4 chemical loss rate in the 

Southern Hemisphere. I note that CH4 undergoes significant chemical loss in the atmosphere, while 

the exchange with the ocean is negligible. By employing this box model, we can pivot from 

traditional air-sea flux calculations to ascertain the atmospheric loss rate of CH4, offering insights 

into a critical facet of its lifecycle. Collectively, these diverse applications underscore the 

versatility of the model, positioning it as a valuable tool for atmospheric and tracer studies. 

This thesis introduces innovative methods essential for understanding atmospheric 

circulation, carbon cycles, and ocean biogeochemistry. Subsequent research can leverage the tools 

presented in this thesis to further enhance the utilization of airborne data and deepen our 

understanding of the global climate system. 
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