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ABSTRACT OF THE Thesis

Deep Learning Approach to Skeletal Performance Evaluation of Physical Therapy Exercises

by

Bhanu Garg

Master of Science in Electrical Engineering (Machine Learning and Data Science)

University of California San Diego, 2023

Professor Sujit Dey, Chair

At-home exercising strongly predicts physical therapy patient outcomes, underscoring

the need for analyzing patient behaviors at-home via remote patient monitoring. Contemporary

methods for remote patient monitoring rely on specialized sensors, i.e., Inertial Measurement

Units, RGB-Depth cameras, motion capture systems, or stereo vision which are costly and not

scalable to all physical therapy patients. Here, we observe a lack of literature using only a

monocular RGB camera. In this thesis, we demonstrate a skeletal feedback model for at-home

exercises using only video acquired from a smartphone camera. We propose models for (i)

Patient Performance Evaluation - which classifies the correctness of exercises, and (ii) Guidance -

which identifies why the exercise went wrong so the patient can correct themselves. We use these

viii



models on our dataset of four common physical therapy exercises labeled by a physical therapist.

Our results demonstrate the feasibility of using skeletal data from state-of-the-art 3D human pose

estimation models for physical rehabilitation exercise evaluation and guidance. Thus, we enable

remote patient monitoring and guidance from a single camera - making it highly cost-effective

and scalable.
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Introduction

The field of human action evaluation (HAE) is broad in its applications, ranging from

gait analysis [30] to judging Olympic performance [25]. Physical rehabilitation is one of many

applications which can significantly benefit from using HAE technologies [4]. Using skeleton

features in HAE was shown to be promising in [11]; however, these studies are limited to low

fidelity exercises, i.e., large amplitude movements.

Using specialized sensors, such as Inertial Measurement Units (IMUs) [20], RGB-D cam-

eras [17] ,[22],[34],[23], or motion capture systems [8] for HAE have shown promising results in

displaying accurate assessment and quantification of rehabilitation and strength exercises. While

these specialized sensor-based assessment technologies provide high accuracy, they are limited

in applicability due to the inherent cost and complex nature of obtaining specialized hardware for

action evaluation. Moreover, standardizing skeleton data and deep feature representation methods

from the sensors is another key issue in developing reliable quality assessment algorithms for

HAE [14]. Thus, relying on specialized hardware limits practical applications of HAE and

prevents the creation of standard datasets required to advance the technology.

Recent advances in 3D Human Pose Estimation (HPE) such as [24], [19] have allowed

for the feature extraction of skeletal key points from a monocular RGB camera. These 3D HPEs

are popularly used to predict key joint positions on the body [13]. In this thesis, we show that

classical machine learning methods such as Dynamic Time Warping (DTW) are limited for

monocular RGB HAE due to the inherent noise associated with predicting the depth dimension

from a monocular RGB camera. Using 2D skeletal information in conjunction with deep learning

has shown promising results for regression analysis [15]. In HAE for physical therapy (PT),
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getting 3D skeletons is necessary to clinically assess range of motion in key joints. Furthermore,

physical rehabilitation requires corrective feedback for improving patient outcomes [10] [12].

Although monocular RGB 3D HPE is promising, we observe no HAE with high-fidelity feedback

in the literature.

In our work, we propose a framework for skeleton-based HAE for PT exercises from

a single camera, that evaluates patient repetitions as correct or not, and offers explainability

for correcting the incorrect movements. For this thesis, we narrow the scope to human Patient

Performance Evaluation and guidance, assuming 3D skeletal features are obtained from a 3D

human pose estimator.
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Chapter 1

Related Work

We review various approaches proposed for general HAE and for PT applications, and

highlight the major differences between them and our work. Although specialized sensor-

based systems for physical rehabilitation are popular in the literature [18], we observe limited

approaches based on a single RGB camera. To our knowledge, there are no 3D skeletal feature,

monocular-based approaches. The literature highlights the importance of 3D skeletal features as

a constituent to HAE in physical therapy; therefore, our work complements existing work that

quantifies physiotherapy metrics such as range-of-motion and joint angle-based success criteria

implicitly, by learning from data.

1.1 HAE based on complex sensors

Rooted in classical signal processing [6], matching techniques have seen some success

in RGB-D applications [32]. Another classical approach [9] was used as a screening tool by

performing anomaly detection on several activities of daily living (ADL). This system allows

for health service provider intervention for given neuromusculoskeletal conditions but does not

address rehabilitation. Moreover, we observe classical analytical methods are insufficient for

datasets with low signal-to-noise ratio, i.e., collected using monocular RGB with skeletal features

engineered using state-of-the-art HPE models.

Deep learning approaches have been popular for regression analysis [27] [33] on RGB-D,
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optical tracking system [17], and IMU [29] datasets. These regression models do not provide

any patient feedback. The ability to use deep learning to diagnose and track the progression of

Alzheimer’s Disease was shown in [34].

1.2 HAE based on a single RGB camera

Outside of physical therapy, approaches based on a single RGB camera for HAE have

been shown by [15], which utilized 2D skeletal features extracted from monocular RGB to train

deep learning regression models on the UNLV Olympic Diving and MIT Olympic Ice Skating

Scoring datasets. Pseudo3D was used to extract spatiotemporal features from video on the UNLV

Diving dataset [7]. The feature engineering here [26] is limited to pseudo representations of

human pose estimation.

For physical rehabilitation, [28] uses a regression-based quantitative scoring model

trained on the KIMORE dataset using monocular RGB. A lack of accurate determination of

joint angles from 2D skeleton data limits the extent of evaluation of exercises. For example,

indicators based on range of motion of joints, a prevalent metric used in PT, cannot be modeled

(even implicitly) by 2D joint data. Feedback on static exercises only was shown in [21]; these

comprise a small fraction of rehabilitative exercises.
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Chapter 2

Methodology

We begin by defining key terms and notation in Section 2.1. In Section 2.2, we explain

our data collection method, while in Section 2.3, we build the case to show that classical methods

such as Dynamic Time Warping are not suitable for evaluating repetitions and providing guidance

results for data collected using monocular RGB camera videos. We then describe our proposed

methods in Sections 2.4 and 2.5.

2.1 Terminology

We focus on HAE using a monocular RGB camera which is available in most smartphones

and tablet computers. For simplicity, any data is from a monocular RGB camera unless otherwise

specified.

For Patient Performance Evaluation (PPE), we formulate and define the following tasks

in our processing and data pipeline.

• Skeletonization: Given an RGB frame containing a human, skeletonization refers to the

process of extracting the 3D (x,y,z) coordinates of key joint positions and constructing a

stick figure-like model of the human. The term skeleton refers to the constructed stick

figure. This thesis uses a custom skeletonizer that gives results similar to [24].

• Segmentation: Given a sequence of skeletons from the video feed, segmentation is the

process of extracting exercise repetitions from the entire exercise session. Each exercise

5



Figure 2.1. Process Flow: (A) Patient records a video performing an exercise, (B) each frame is
skeletonized, (C) the skeletons are transformed to an angular domain and post-processed, (D) the resulting
vector is fed to PPE and Guidance models, (E) patient receives feedback.

repetition has start and stop frame numbers in the video. We use r to denote a repetition.

• Patient Performance Evaluation (PPE): Given an exercise repetition, PPE assigns the

exercise repetition a label from the set {good,bad}. Ground truth labels are determined

by an expert, i.e., a licensed physical therapist.

• Guidance: For a repetition that has been tagged bad, guidance is the suggestion to correct

the form of that repetition. For example, while doing a deadlift, possible guidance could

be ”keep back straight” if the patient has a rounded back.

Fig. 2.1 shows the overall flow of our proposed process. Given the abundance of literature on

human pose estimation and segmentation, we narrow our attention to PPE and guidance methods.

2.2 Feature Engineering

We record student volunteers performing exercises on phone cameras. We provide more

details on data collection in Section 4.1. We use a custom skeletonization model as described in
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Section 2.2.1 , which outputs the 3D positions of 17 key joints as in [24]. The videos are then

segmented into individual repetitions, and skeletons are processed as described in Section 2.2.2.

The output after the above processing is fed to downstream models.

2.2.1 Skeletonization

Our custom 3D human pose estimation (HPE) pipeline incorporates YOLOv4 [1] for

human detection, Cascaded Pyramid Network (CPN) [5] for 2D pose estimation, and EvoSkeleton

[16] for lifting the poses from 2D to 3D. This pipeline aims to accurately estimate the three-

dimensional poses of humans from input images.

The first step of the pipeline involves using YOLOv4 [1], a state-of-the-art object detec-

tion model, to detect and localize humans in the input images or frames of a video. YOLOv4 [1]

provides tight bounding box coordinates around each detected human.

Once the humans are detected, the pipeline proceeds to the second step, which employs

CPN [5] for 2D pose estimation. CPN is a deep learning-based model that estimates the 2D joint

locations (e.g., elbows, knees, etc.) from the detected humans in the bounding boxes from the

previos step. It leverages cascaded pyramid networks to iteratively refine the estimated joint

positions, resulting in more accurate 2D poses.

The final step of the pipeline utilizes EvoSkeleton [16], a technique for lifting the 2D

poses to their corresponding 3D representations. EvoSkeleton [16] employs a learned 3D human

pose model to estimate the depth and orientation of each joint. By considering geometric

constraints and prior knowledge, EvoSkeleton [16] generates a 3D human pose estimation from

the previously obtained 2D joint positions.

The above pipeline outputs the 3D positions of 17 key joints as in [24]. Based on our

research, we found the above pipeline to comprise of open source components, and meeting

our needs of near real time inference speed. Further analysis on accuracy and time complexity

during inference is beyond the scope of the thesis.
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2.2.2 Feature Extraction

We begin by selecting joint angles relevant to the exercise E as determined by an expert.

We note that the selected joint angles a j could be those that move during the exercise as well as

those that might be required to stay stationary. Let AE = {a j} be the set of such selected joint

angles for exercise E.

To formalize, for a repetition r belonging to exercise E of time length T video frames, we

skeletonize to obtain a tensor of shape (T,17,3), for 17 joints and 3 spatial dimensions. For each

frame i ∈ [1, ..,T ], we compute the angles for the joints in AE . Let v( j,i) be the angle for joint a j

at time i. The 2D tensor V = [[v( j,i)]] of dimensions (|AE |,T ) is then smoothed and subsampled

as described in the paragraph below to get Ṽ. This Ṽ is used as an input to the models described

in Sections 2.4.1 and 2.4.2.

Smoothing filter: We use an averaging filter with window size 5 on the time series of

individual joint angles to smooth out outliers.

Subsampling: As different subjects perform exercise repetitions at different rates, the V

vary in width. This can cause problems in training deep neural networks including difficulties

in batch training and data preprocessing. Based on our discussions with the physical therapist,

the exercise rate is seldom useful in classifying a repetition as good or bad. More importance is

given to the form, which does not depend on the rate. Hence, we subsample each repetition to 20

equidistant frames.

2.3 Classical Methods: Dynamic Time Warping

Dynamic Time Warping (DTW) is a method for measuring similarity between two

temporal sequences. It was used successfully in the context of physical therapy exercises in

[32] where data was collected with a Microsoft Kinect Camera. In our experiments, DTW

could be applied to patient repetitions to compare them with a ”ground truth” coming from our

physical therapist consultant. In concept, it could allow the cumulative difference across all key

8



Figure 2.2. The distributions of similarity scores produced by DTW on good (green) and bad (blue)
repetitions are highly overlapping.

angles to be used as a general threshold for PPE while using angle-specific thresholds to provide

feedback on any particularly incorrect angles. Despite its efficacy with RGB-D based datasets,

we observed poor results on our 3D HPE skeletal data. Fig. 2.2 plots the distribution of similarity

scores per joint angle from DTW for good and bad repetitions; the substantial overlap between

the two distributions makes the thresholding-based approach infeasible. Thus, we turn to deep

learning-based methods that are more potent in finding fine patterns in the data.

2.4 Patient Performance Evaluation (PPE)

In this section, we describe our neural network-based approach to PPE. We first describe

the data processing steps and then the model architectures.

2.4.1 CNN-based PPE

In this section, we describe the convolutional neural network (CNN) architecture used

for classifying Ṽ to the PPE label set Y = {good,bad}. In the first layer, we apply a convolution

filter on the time axis (temporal convolution), i.e., a kernel of shape (3,1) and output channels

32. Then the next layer is convolution on the angles (spatial convolution), i.e., a kernel of shape

(1, |AE |) and output channels 64. After each of these two convolutions, a ReLU non-linearity is

followed by a batch norm. Finally, the feature map from the last convolution is average-pooled,

9



Figure 2.3. CNN based PPE: Temporal Convolution followed by Spatial Convolution, Avg Pooling and
Classification Head

followed by a binary classification head. The intuition for choosing the above architecture is

that the temporal convolution learns the temporal context at time ti of the angle a j. Once the

context of the angle has been set, the model learns the interdependence relations among the joint

angles. To the best of our knowledge, ours is the first method to view human Patient Performance

Evaluation as a Spatio-Temporal convolution network.

2.4.2 Attention based PPE

In this section, we describe the architecture of the attention-based transformer classifier

used for PPE. Attention networks have gained popularity by learning to attend to values at

different timestamps and have been successful in natural language processing and computer

vision [31]. The number of heads is chosen to be 2, with a 512 embedding dimension for the

encoder. A classification head follows the encoding head.

2.5 Guidance and Exercise Feedback

This section proposes our method for generating guidance and feedback mechanisms for

the bad repetitions. An autoencoder is a model that encodes the input into a feature map and

10



Figure 2.4. Guidance Process: Autoencoder trained on good reps learns the intrinsic features of exercises.
Reconstruction error is used to get feedback cues.

then uses the encoding to decode it back to the input. It is used to train an underlying model

distribution of the data. With this context, we first train an autoencoder using only the good

repetitions to make the neural network learn a robust good template of the exercise. The mean

and variance (µa j ,σa j) of the reconstruction error for each joint angle are collected. Then for a

given bad repetition, the reconstruction error ea j from the autoencoder is computed. The angles

with the highest z-score: za j =
ea j−µa j

σa j
are selected as the ones responsible for the repetition

being bad. The process is shown visually in Fig. 2.4.

AutoEncoder:

Following similar arguments on the efficacy of attention-based models on time series

data as described in Section 2.4, we propose to use an attention based autoencoder. While

implementing a corresponding CNN-based auto-encoder, we found maintaining the convolutional

upsampling layers to consistently output the same size vector as the input for different exercises

non-trivial, and adding unnecessary complexity to our model pipeline. In the attention-based

autoencoder model, we use the default number of dimensions for the embeddings, with the

11



number of heads equal to |AE |, and mean square error (MSE) as the loss function.
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Chapter 3

Experiments

3.1 Data

In this section, we discuss the details of our dataset, which we use to demonstrate the

efficacy of our proposed PPE and guidance models. As existing datasets [17] [3] [2] do not have

corrective feedback and classification scores, we were required to create our own.

3.1.1 General Setup

Based on consultation with a physical therapist, we selected four exercises that are

frequently prescribed in physical therapy, involve compound movements, and collectively cover

multiple focus areas (shoulder, legs, hips). The exercises are: double leg Romanian dead-lift

(DoubleRDL), single leg Romanian dead-lift (SingleRDL), single leg mini squat (SingleMS),

and rotator cuff (RotatorCuff).

The exercises selected are commonly prescribed by physical therapists to target different

muscle groups and improve overall strength and stability. The double leg Romanian dead-lift

(DoubleRDL) is a bilateral exercise that primarily targets the posterior chain, including the

hamstrings, glutes, and lower back. It involves hinging at the hips while keeping the back

straight and lowering the weight down towards the ground. The single leg Romanian dead-lift

(SingleRDL) is a unilateral variation of the exercise, where the focus shifts to improving balance,

stability, and targeting each leg individually. It helps strengthen the same muscle groups as the

13



DoubleRDL but with an added emphasis on stability and symmetry. The single leg mini squat

(SingleMS) is another unilateral exercise that targets the quadriceps, hamstrings, and glutes. It

involves squatting on one leg while keeping the other leg elevated, helping to enhance stability,

balance, and strength. Lastly, the rotator cuff (RotatorCuff) exercises specifically target the

muscles responsible for shoulder stabilization and mobility. These exercises usually involve the

use of resistance bands or light weights and aim to strengthen the rotator cuff muscles, which

can help prevent shoulder injuries and improve overall shoulder function.

Students working on the project volunteered to be recorded performing exercises. A

total of 10 subjects were selected to partake in the study, with ages ranging from 21 to 27 years.

The participant pool consisted of 8 males and 2 females. Before recording each exercise, the

subjects were shown a demonstration video of approximately one minute, created by the physical

therapist that showed several repetitions of the exercise with proper form, with instructions to do

so. The subjects were asked to recreate 10 repetitions seen in the video to the best of their ability.

For unilateral exercises, subjects were asked to perform 5 repetitions on each side. After the first

10 repetitions, subjects were informed about common mistakes seen in physical rehabilitation.

For example, a DoubleRDL is often performed with the subject’s spine being too rounded with

too much scapular protraction or the subject’s knees being too bent or locked out. These subtle

mistakes have a profound impact on muscle activation during the exercise. The subjects were

instructed to incorporate these incorrect postures into an additional 10 repetitions. The duration

of the recordings ranged from 2 to 3.5 minutes.

To test our proposed methods’ robustness to different viewing angles and camera types,

we recorded subjects using five different smartphones (iPhone Models X, 11, 7, 8, and Google

Pixel 3A) placed on tripods approximately 4 feet high and at five different angles (30, 60, 90,

120, and 150 degrees) to the subject. To summarize, data consists of 1000 repetitions for each

exercise from 10 subjects, and 5 camera angles.
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Table 3.1. Results: F1 scores of the PPE models, and top-2 accuracy of the Guidance models. The
Baseline used is the DTW method proposed in [32].

Exercise Evaluation (F1 Scores) Guidance (top-2)
Baseline Ours Baseline Ours

DTW CNN Attention DTW Attention
DoubleRDL 0.197 0.262 0.255 0.846 0.884
SingleRDL 0.052 0.222 0.274 0.652 0.679
SingleMS 0.435 0.544 0.519 0.805 0.858
RotatorCuff 0.569 0.78 0.769 0.652 0.758

3.1.2 Labeling

For each video recording, each exercise was segmented manually into repetitions which

were classified as being good or bad, and the two most erroneous movements that needed

correction were noted. Our final dataset includes 19% good repetitions for DoubleRDL, 15%

for SingleRDL, 42% for SingleMS, and 50% for RotatorCuff. This variation is due to the fact

that subjects were more knowledgeable about proper exercise form for some exercises compared

to others.

3.2 Results

We split the 10 subjects into 3 folds (with 4, 3, and 3 subjects), and train the model on 2

of the folds, and evaluate the model on the remaining fold. We show the mean F1 score of the

3-fold cross validation.

Patient Performance Evaluation For PPE, we use negative log likelihood loss for

training. We use the Adam optimizer for training with learning rate 1e−4 and default weight

parameters β = (0.9,0.98), and batch size 16. We report the F1 score of the binary classification

model. We see that both the CNN and Attention-based models consistently outperform DTW

(see Table 3.1). Between the CNN and Attention-based models, the Attention-based model

performs slightly better than the CNN-based model.

Our results show promise that our novel solutions can classify exercises based on single

camera input.
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Table 3.2. Guidance cues defined by PT.

Exercise Guidance Criteria
DoubleRDL Knees Too Bent, Knees Locked, Back Too Round, Feet Too Far Apart
SingleRDL Knees Too Bent, Knee Locked, Back Too Round, Leg Not In-Line
SingleMS Hips Not Level, Squat Too Low, Twisting Torso
RotatorCuff Twisting Torso, Arm Too Extended, Lifting Arm Too High/Low

Guidance We map each joint angle to an action item that the subject could do to correct

that angle based on the output of the autoencoder. For guidance models, we report the top−2

accuracy. Specifically, it is considered correct if either of the two most erroneous predicted

angles match the PT judgment. Human body movements have constraints and the joint angles do

not operate in isolation from one another. Correcting one angle could affect the correctness of

the other angle - for example, in DoubleRDL, making the back straight would still be conducive

to correcting locked knees. Hence, the top-2 accuracy metric is justified.

For training the Attention autoencoder, we use the Adam optimizer with learning rate

1e−3 and default weight parameters β = (0.9,0.98) with batch size 32. In Table 3.1, we see that

the Attention-based autoencoder method outperforms DTW. Ours is the first deep learning-based

approach to PT guidance.
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Chapter 4

Conclusion and Future Work

Our proposal entails the development of deep-learning models for Patient Performance

Evaluation (PPE) and guidance in physical therapy rehabilitation, utilizing only a smartphone

camera. By employing Convolutional Neural Networks (CNN) and Attention networks, our

approach demonstrates enhanced results across all four exercises. Notably, we emphasize the

significance of a robust dataset, which emerges as a key priority for future endeavors. Conversely,

Dynamic Time Warping (DTW) does not exhibit similar benefits from such a dataset. To the best

of our knowledge, our work represents the first deep learning-based approach for PT guidance.

Moving forward, it is recommended to explore additional deep learning architectures, specifically

autoencoders, within the guidance models. Furthermore, our future plans encompass conducting

clinical trials to evaluate the efficacy of our method on patient outcomes. Additionally, we aim

to expand our exercise library to encompass a wider range of exercises, thereby broadening the

scope and applicability of our approach.

Through an extensive industry review, it has been observed that the field of physical

therapy encompasses diverse schools of thought, leading to variations in exercise forms and

evaluation methods. Furthermore, patients arriving from different medical backgrounds introduce

further complexity, as the criteria for evaluating their progress may differ. Deep learning models

thrive on standardized data to generate generalized predictions across individuals, whereas the

industry demands a personalized approach. Hence, reconciling the need for standardization with
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the requirement for individualization poses a significant challenge in leveraging deep learning

models effectively within the physical therapy domain. By carefully considering these factors,

future work can pave the way for effective and commercially valuable solutions that balance

standardization with the indispensable aspect of personalized care in physical therapy.
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