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Chapter 1 considers agents that aggregate several states of the world (i.e., the

possible different realizations of an uncertain situation) into an event. They then

compare bundles of consumption on these aggregated events, instead of having

to consider bundles on each of the single possible realization. This simplifies the

decision-making, since it decreases the number of distinguished realizations to

consider. The collection of aggregated events of this type is called a subjective

partition. In the case of Subjective Expected Utility, this kind of decision pro-

cess does not affect agents’ choices. However, the presence of ambiguity (i.e.,

when agents do not know the probability associated with each possible realization

of uncertain situations) changes their behavior dramatically: different subjective

partitions lead to different preferences over bundles. Chapter 1 deals with prefer-

ences: we provide axioms for a state aggregation model with ambiguity and show

under which conditions preferences imply uniqueness of the subjective partition.

Chapter 2 discusses choices obtained from the state aggregation model de-

scribed in Chapter 1. We show identification of the subjective partition from

choices in a complete market setting. In addition, we demonstrate that the re-

sults can be applied to deductible insurance choices. Finally, we offer a set of

ii



revealed preference inequalities that allow for testing the model on a dataset.

Chapter 3 introduces a model of electoral choice that allows for derivation of

joint distribution of turnout and voter share from unobservable joint distribution

of costs of voting and preferences. Under a set of mild assumptions, we show

identification and provide non-parametric estimators of joint distribution of costs

of voting and preferences over candidates from observable electoral data. All

estimators are consistent and asymptotically normal.
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CHAPTER 1

Subjective Partition and Its Uniqueness under

Ambiguity

Economists usually assume that people have perfect computational abilities and

a good understanding of how the world works. However, in reality, there are

many states of the world (i.e., many possible realizations of uncertain situations),

and optimizing over all of them together might be difficult even for a machine.

The behavioral literature provides good insights into different ways that people

might simplify decision-making. In our model, agents split one problem into

several problems with fewer variables to optimize. An agent combines several

states into an event, evaluates an act at the event, and then assesses the final

value by treating events as aggregated states. We call a collection of these events

a subjective partition. Note that the agent perfectly realizes the existence of

each state of the world, but prefers to bundle states together. State aggregation

does not affect choices when agents know the probabilities of different realizations

of uncertainty that they face – i.e., when agents’ behavior can be described by

Subjective Expected Utility (SEU). However, a vast literature (Ellsberg (1961),

Kahneman and Tversky (1979), Halevy (2007), etc.) demonstrates that in the

presence of ambiguity - i.e., when agents do not know the probabilities of each

possible realization of uncertainty - people make choices that are not consistent

with SEU. Moreover, under ambiguity, various methods of state aggregation lead

to different choices.

To illustrate the idea of subjective partition, consider the following example.
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Suppose that there is an agent who needs to choose car insurance. Possible states

of the world include an accident with the agent at fault, an accident with the other

party at fault, and no accident. An insurance policy consists of two deductibles:

one applies if the agent caused the accident, and the other applies if the agent

was not responsible. Probabilities of the states are unknown and described by

a set of multiple priors – i.e., all agents face ambiguity. Next, suppose that

the agent is a person that does not aggregate states. If she is ambiguity-averse

then, generally, her choice is a bundle of deductibles such that her consumption is

smoothed between all states. Note that, in this case, there is no state aggregation,

and her subjective partition is the whole state space of the world. Next, imagine

a person who has difficulty analyzing all three states of the world together. In

order to simplify the decision process, she combines both states that involve a

collision into the event “accident,” while keeping the “no accident” state separate

from them. In this case, the state space of the economy is partitioned by events

“accident” (with the agent or the other party at fault) and “no accident.” The

presence of state aggregation changes the way that the agent thinks about the

world. Instead of an accident with the agent at fault, an accident with the other

party at fault, and no accident, her subjective states now are “accident” and “no

accident.” Moreover, the individual generally wants to smooth her consumption

between her aggregated states. As a result, she will buy less insurance (greater

deductibles) for both types of accidents, compared with what would be optimal

for her.

The idea of a subjective partition is closely related to a subjective state space,

which is a private understanding of outcome space due to unforeseen contingencies.

Both notions are supposed to simplify decision-making in one or another way;

however, the relationship between them is even closer than that. If we restrict the

whole act space to partition-measurable acts only, then our subjective partition

can be interpreted as a subjective state space similar to that in Ahn and Ergin
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(2010), where agents aggregate into an event unforeseen contingencies that give the

same payoff. In the above example, an insurance policy with the same deductible

for any accident type is an example of a partition-measurable act. In contrast

to our work, Ahn and Ergin (2010) assume that even though the agent is aware

of the existence of unforeseen contingencies, she does not recognize the existence

of different kinds of accidents. However, the agent still, generally, smooths her

consumption between the events “accident” and “no accident,” as in our model.

Thus, an implication about lower demand for insurance will hold for the subjective

state space with the restriction to partition-measurable acts, too.

In most economic situations, researchers treat the decision-making process like

a black box, and all differences in behavior are usually explained by differences

in preferences or information. This paper allows for situations in which agents

with the same information and preferences might make different choices because

of heterogeneity in the subjective partition. Moreover, such behavior cannot be

obtained by providing the agent with some kind of incomplete information, which

is present in the model in a form of the sets of priors over states. As a result,

understanding the subjective partition is critical for researchers and policy-makers.

For example, in the discussed model, agents with various subjective partitions

will react differently to information provided by policy-makers. Thus, in order to

achieve the desired improvements in welfare, we need to understand what kind of

information to release to agents depending on their subjective partition.

In this Chapter, we (1) offer a model of state aggregation and axioms that

provide the representation of the preferences; and, (2) show that under full-

dimensionality of priors and strict α-MEU ambiguity model, preferences imply

a unique subjective partition.

First, we provide axioms and the representation of the preferences with state

aggregation. We assume that only preferences over acts are observed. Thus, our

primitive is preferences over acts under some subjective partition from which we
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derive conditional preferences. We define conditional preferences only for events

that we call “aggregating.” Such events satisfy a property similar to Savage’s

Sure Thing Principle. After that, if there is a partition of the whole state space

that consists of aggregating events only, then we assume the α-MEU model of

Ghirardato, Maccheroni, and Marinacci (2004) for conditional preferences and

preferences over observed acts, which we call ex-ante preferences.

Second, we find that if all sets of priors are full-dimensional, then prefer-

ences with a strict (i.e., 0 < α < 1) α-MEU stage model imply a unique way of

state aggregation. This means that different state spaces generate distinct pref-

erence relations. We also show that in the case of the MEU stage model, full

identification is possible only when the agent does not aggregate states and has

non-rectangular priors. When priors satisfy rectangularity, a property that pro-

vides dynamic consistency of MEU (Epstein and Schneider (2003)), we are able

to achieve only partial identification: it is not possible to distinguish between the

whole state space with rectangular priors and the aggregation into a partition, for

which rectangularity of priors holds.

This paper contributes to the literature on subjective state spaces. The idea

of an agent with a coarse understanding of the state space was introduced by

Kreps (1992) and followed by Dekel, Lipman, and Rustichini (2001), Epstein,

Marinacci, and Seo (2007), Ghirardato (2001), and Mukerji (1997). The closest

work in this field to our paper is Ahn and Ergin (2010). The authors charac-

terize partition-dependent expected utility on partition-measurable acts. They

interpret the framing of contingencies into a partition that represents a subjective

state space, where unforeseen contingencies have the same payoff and are grouped

together into an event. We also group contingencies together; however, we do not

require partition-measurability of acts. In addition, in order to obtain identifi-

cation results, the authors use non-additive probability. In contrast, we obtain

similar features of behavior by assuming ambiguity. Thus, if we restrict the act
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space to partition-measurable acts, our subjective partition can be interpreted

as a subjective state space under ambiguity. Our paper also contributes to the

literature on decision heuristics or rules of thumb. Pioneering work in the field

was introduced by Simon (1955) and followed by a vast literature afterwards (e.g.,

Akerlof and Yellen (1985), Haltiwanger and Waldman (1985), Ellison and Fuden-

berg (1993)), as well as one of the most widely known papers on prospect theory

by Kahneman and Tversky (1979). Recently, related research has evolved in the

direction of discovery of the decision rule (e.g., El-Gamal and Grether (1995) and

Houser, Keane, and McCabe (2004)).

In addition, our work is related to the literature on dynamic consistency. The

relationship between non-expected utility and problems with dynamic consistency

is well known (Machina (1989), Karni and Schmeidler (1991), Epstein and LeBre-

ton (1993), Ghirardato (2002), etc.). The literature has developed mainly in two

directions: dynamically consistent models (e.g., Klibanoff, Marinacci, and Mukerji

(2009)) and the extension of existing ambiguity models to a dynamically consis-

tent framework (Epstein and Schneider (2003), Wang (2003), Hayashi (2005),

etc.). Our results are closely related to those of Epstein and Schneider (2003),

who find that the rectangularity of priors is an important condition for dynamic

consistency of the MEU model. However, we find that a lack of dynamic consis-

tency often allows for identification of the unique subjective partition. That is

why we can uniquely identify it under the MEU stage model only when the set

of priors is not rectangular. In addition, a strict α-MEU model with full dimen-

sional priors is generally dynamically inconsistent and, as a result, provides full

identification. We expect similar results to hold for other ambiguity stage models.

Finally, the notion of a subjective partition is very close to intermediate infor-

mation. Li (2011) introduced a concept of intermediate information – information

that arrives after a choice has been made and before an outcome is realized. The

author axiomatizes preference relations over pairs of acts and intermediate infor-

5



mation together. In order to obtain such preference relations over pairs, Li derives

preference relations between acts under some specific information by using condi-

tional preferences and basic, “no information” preferences as primitives. A sub-

jective partition can be interpreted as fixed intermediate information. However,

it requires different axiomatization because observable primitives are different.

Together with the Li’s work, our paper is related to the literature on temporal

resolution of uncertainty. In the pioneering paper in this field, Kreps and Por-

teus (1978) axiomatize preferences over timing when risk is resolved. Later, their

work was extended and applied to asset pricing and macroeconomics (Epstein

and Zin (1989, 1991), Tallarini (2000), etc.). Grant, Kajii and Polak (1998, 2000)

reject the reduction of compound lotteries in the Kreps-Porteus framework and

connect intrinsic preferences for information with risk aversion. However, Halevy

(2007) demonstrates empirical evidence of the relationship between non-reduction

of compound lotteries and ambiguity aversion. In the model we characterize, the

reduction also does not hold, and the presence of ambiguity creates preferences

over intermediate information similarly to previous works.

1.1 The Model and Notation

Suppose that X is a convex subset of consequences in R, and Ω is a finite set of

states of the world with an algebra Σ of subsets of Ω. We denote F a set of all

acts, Σ-measurable finite step functions: Ω → ΔX. Let M be a set of elements

π, such that π ⊂ Σ is a partition of Ω. Partitions of the state space represent

different ways of state aggregation.

1.1.1 α-MEU preferences

As stage preferences, we assume the α-MEU model of Ghirardato, Maccheroni

and Marinacci (2004). If α ∈ [0, 1] is a parameter of ambiguity aversion, u(∙) is
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an increasing continuous utility function, P is a set of priors, and x ∈ F is an act,

then the value of x is assessed by

V (x) = α min
P∈P

[
∑

s∈Ω

u(x(s))P (s)

]

+ (1 − α) max
P∈P

[
∑

s∈Ω

u(x(s))P (s)

]

If we denote Pmin x(s) and Pmax x(s) to be probabilities that minimize and maximize

“expected” utility, then

V (x) =
∑

s∈Ω

u(x(s)) (αPmin x(s) + (1 − α)Pmax x(s)) =
∑

s∈Ω

u(x(s))Pα;x(s).

1.1.2 Costly computation

Every time the agent needs to make a choice, she has to compare acts. For

example, when the agent buys a car, she needs to choose an insurance plan,

and in order to discover her preferences among them, she will spend some time

comparing all available plans. Discovering preferences is costly for the agent and

depends on how she aggregates states into some partition π of the state space Ω.

For instance, it might be easier for the agent to compare plans based on the event

“accident” instead of separating it into states dependent on who is at fault. The

agent is aware that she will have to solve a similar problem again in the future

for n periods (e.g., renew her insurance plan every year). However, if the agent

has already established her preferences under some subjective partition before,

she does not need to do it again for the same subjective partition in the future.

The agent will carry costs in future periods only if she decides to update her

preferences on another subjective partition.

Thus, suppose that there is a discovery cost function ĉ(∙) : M → R. We define
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the computation cost function at every time period t and partition π ∈ M:

ct(π) =






ĉ(π), if π has not been chosen before time t

0, if π has been chosen before time t

We denote one period value of act f given subjective partition π as V (f |π) and

a time t value functional of the agent as It(π) = maxf V (f |π)+β maxπ (It+1(π) − ct+1(π)),

where β is a discount rate. Then, at moment t, the agent solves the following

problem:

It(π) − ct(π) → max
π

.

For the purposes of this paper, we assume that discovery costs ĉ(∙) are so high that

the agent prefers to choose a subjective partition once and uses it for all future

periods. For example, when the agent needs to renew her insurance policy, she

spends less time choosing the plan because she uses her “old,” already discovered

preferences. We also assume that in everything that follows, choices in all periods

are mutually independent given the subjective partition; thus, each period can be

analyzed as a static case.

1.1.3 Subjective partition

A stage in which several states are combined into one event will be called the

conditional stage, and the set of priors P(A) used for aggregation into event A is

the set of conditional priors. We will also call the ex-ante stage (or problem) a

stage in which evaluation of an act across events happens. Given the subjective

partition π, the set of priors over events P(π) will be called the set of ex-ante

priors.

Definition 1.1. The agent’s behavior is said to exhibit α-MEU State Aggrega-

tion Representation (α-MEU SAR) if there exist a partition of the state space π,
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nonempty weak compact and convex sets P(A) and P(π) for any event A ∈ π of

probabilities on Σ, and a continuous monotone function u : X → R, α ∈ [0, 1]

such that the agent optimizes the functional V (∙|π):

V (x|A) = α min
P (∙|A)∈P(A)

∑

s∈A

u(x(s))P (s|A) + (1 − α) max
P (∙|A)∈P(A)

∑

s∈A

u(x(s))P (s|A)

V (x|π) = α min
P∈P(π)

∑

A∈π

V (x|A)P (A|π) + (1 − α) max
P∈P(π)

∑

A∈π

V (x|A)P (A|π).

A set of axioms for the above representation is provided in Section 6. Definition

1 implies that the agent evaluates each act given a partition by a folding-back

procedure: First, she aggregates states into event A and evaluates the act x given

every such event A in the partition π with the set of conditional priors P(A):

V (x|A) = α min
P (∙|A)∈P(A)

[
∑

s∈A

u(x(s))P (s|A)

]

+(1−α) max
P (∙|A)∈P(A)

[
∑

s∈A

u(x(s))P (s|A)

]

,

where α is an agent’s coefficient of ambiguity aversion. Second, the agent evaluates

the act across events that form her subjective partition. Thus, at the ex-ante stage

with the set of ex-ante priors P(π), the agent’s value of the act is obtained similarly

to the way it is obtained in the conditional stage:

V (x|π) = α min
P (∙|π)∈P(π)

[
∑

A∈π

V (x|A)P (A|π)

]

+(1−α) max
P (∙|π)∈P(π)

[
∑

A∈π

V (x|A)P (A|π)

]

.

Example 1.1. Consider the example from the introduction: the agent chooses

an insurance policy under three states of the world: an accident with the agent

at fault, an accident with the other party at fault, and no accident.

Suppose that the probability of no accident (s1) is not smaller than 50%.

However, the probabilities of the accident with the agent at fault (s2) and the

accident with the other party at fault (s3) are still unknown. Imagine two different

situations: (1) the agent does not aggregate states, and her subjective partition
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of the world π0 = {s1, s2, s3} is the whole outcome space; and (2) the agent has

difficulty optimizing over three states, and she splits the whole outcome space

into events “no accident” A1 = {s1} and “accident” A2 = {s2, s3}. We denote the

subjective partition in this case as π = {A1, A2}.

In situation (1), the ex-ante stage implies regular evaluation over the whole

state space. Then, the set of ex-ante priors is P(π0) = {(p1, p2, p3) ∈ R3 : p1 ≥

0.5;
∑

pi = 1}. All conditional stages are degenerate in this case because each

event consists of exactly one state.

In situation (2), the agent’s subjective partition π consists of two events, A1

and A2. In addition, consider that the agent updates prior-by-prior using Bayes’

rule. Thus, the set of ex-ante priors is P(π) = {(pA1 , pA2) ∈ R
2 : pA1 ≥ 0.5; pA1 +

pA2 = 1}. In the case of no accident, the set of conditional on event A1 priors is

degenerate: P(A1) = {p1 ∈ R : p1 = 1}. If the event is “accident,” then the set

of conditional on event A2 priors is P(A2) = {(p2, p3) ∈ R2 : p2 + p3 = 1}.

Now, for simplicity, consider utility function u(x) = x and a parameter of

ambiguity aversion 0 < α < 1. First, imagine the agent without state aggre-

gation. Then, her value of act x = (x1, x2, x3) that represents the amount of

money/consumption in every state is

V (x|π0) =
1

2
x1 +

α

2
min

i
(xi) +

1 − α

2
max

i
(xi).

In case (2), the value of act x at event A2 is

V (x|A2) = α min(x2, x3) + (1 − α) max(x2, x3),

while the value of act x under subjective partition π is

V (x|π) =
1

2
x1 +

α

2
min(x1, V (x|A2)) +

1 − α

2
max(x1, V (x|A2)).
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As long as 0 < α < 1, V (x|π0) 6= V (x|π). To easily see this, consider, for

example, x such that x1 > x2 > x3. Then, V (x|π0) = 2−α
2

x1+
α
2
x3, while V (x|π) =

2−α
2

x1 + α(1−α)
2

x2 + α2

2
x3. Thus, with the subjective partition π, preferences differ

from the optimal. Notice that if α = 0, 1, then V (x|π0) = V (x|π).

1.2 Axiomatization

1.2.1 Preliminaries

We denote for all f, g ∈ F , A ∈ Σ, fAg an act: fAg(s) = f(s) if s ∈ A, and

fAg(s) = g(s) if s /∈ A. The mixture of acts is defined statewise. We will abuse

notation and define X as a set of constant acts in what follows below.

1.2.2 Axioms and representation

The purpose of this section is to provide axioms of preference relation � between

acts f over F that can be represented by the model of state aggregation, as

described in Section 1.1. We take as a primitive a preference relation between

acts. After that, we induce conditional preferences whenever we can guarantee

their completeness.

First, we assume that � satisfies the classical axioms of Gilboa and Schmeidler

(1989):

Axiom 1.1 (Invariant Biseparable Preferences - IBP). For all f, g, h ∈ F and

x ∈ X: (i) � is complete and transitive; (ii) if λ ∈ (0, 1]: f � g ⇔ λf +(1−λ)x �

λg + (1 − λ)x; (iii) if f � g, and g � h, then there exist λ, μ ∈ (0, 1) such that

λf + (1 − λ)h � g and g � μf + (1 − μ)h; (iv) if f(s) � g(s) for all s ∈ Ω, then

f � g; and (v) � is not degenerate.

In order to introduce state aggregation and obtain complete conditional pref-

erences, we define a concept of an aggregating event:
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Definition 1.2. Event A is called aggregating if for any f, g, h, h′ ∈ F : fAh �

gAh ⇔ fAh′ � gAh′.

An aggregating event satisfies a property similar to Savage’s Sure Thing Prin-

ciple. The independence axiom does not hold in this model, so it is not equivalent

to the existence of a unique probability. The aggregating event implies that the

value of the act at the event is the only aspect that matters in act evaluation, and

not each state value separately.

Denote a set of all aggregating events A. Note that {Ω} trivially belongs to it,

and each separate state is in there due to monotonicity. Now, for all aggregating

events A, we define conditional preferences �A:

Axiom 1.2 (Conditional Preferences - CP). For all f, g, h ∈ F : f �A g ⇔

fAh � gAh.

Note that conditional preferences �A are complete and satisfy all analogous

axioms for IBP.

In order to obtain the α−MEU stage preferences, we follow Ghirardato, Mac-

cheroni, and Marinacci (2004) to define unambiguous preferences �∗
A:

Definition 1.3. For any A ∈ A and acts f, g, h ∈ F , f is unambiguously preferred

to g given event A, f �∗
A g, if λf + (1 − λ)h �A λg + (1 − λ)h for all λ ∈ (0, 1].

For each possible partition π, we define a set of π-measurable acts Fπ. Then,

the unambiguous π-measurable preference relation is �∗
π:

Definition 1.4. For any acts f, g, h ∈ Fπ, f is unambiguously preferred to g given

π, f �∗
π g, if λf + (1 − λ)h � λg + (1 − λ)h for all λ ∈ (0, 1].

We now define “possible” certainty equivalence sets for act f on event A:

CA(f) = {x ∈ X : ∀y ∈ X : if y �∗
A f , then y �∗

A x, and if y �∗
A f , then y �∗

A x}

12



Similarly, the “possible” certainty equivalence set for π-measurable act f ∈ Fπ

is:

Cπ(f) = {x ∈ X : ∀y ∈ X : if y �∗
π f then y �∗

π x, and if y �∗
π f then y �∗

π x} .

The above sets contain all constant acts with which unambiguous preferences

for f are not defined. Now we adapt Axiom 7 from Ghirardato, Maccheroni, and

Marinacci (2004) to fix parameters of ambiguity aversion at each stage for all acts.

Axiom 1.3 (α-MEU). For all acts f, g, h, h′ ∈ F , there exist a partition π of Ω

such that π ⊂ A, and aggregating events A,B ∈ π: (i) If CA(f) = CA(g), then

f ∼A g; (ii) if CA(f) = CB(g), then there exists x ∈ X: f ∼A x and g ∼B x; and

(iii) if Cπ(f) = CA(g), then there exists x ∈ X: f ∼ x and g ∼A x.

Theorem 1.1. (Representation Theorem) A binary relation � satisfies axioms 1-

3 if and only if there exist nonempty weak compact and convex sets P(A) and P(π)

for any event A ∈ π of probabilities on Σ, a unique up to affine transformation

nonconstant continuous monotone function u : X → R, and α ∈ [0, 1] such that

�A is represented by the unique preference functional V (∙|A) : F → R, and � is

represented by unique V (∙|π) : F → R such that agent’s behavior exhibits α-MEU

SAR, and u(∙), V (∙|∙),P(A) and P(π) represent �∗
A and �∗

π, as defined above.

Moreover, for each A and π, P(A) and P(π) are unique, and α is unique if

P(π) is not a singleton, and there exist A ∈ π such that P(A) is not a singleton,

too.

The uniqueness of representation is related to specific partition π, which is

studied below. Also parameters and priors are unique in their representation

of unambiguous preferences. However, Ghirardato, Maccheroni, and Marinacci

(2004) find that some other set of priors and parameters representing the same

preferences might exist, but they will not be related to the unambiguous prefer-
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ences �∗. Moreover, the proposed set of priors will be bigger, and the parameter

of ambiguity aversion will be closer to 1
2
.

1.3 Uniqueness

This section discusses conditions when preferences � imply a unique subjective

partition, i.e., when the subjective partition is identified from preference relations.

It is important to note that the whole state space partition Ω and a trivial partition

{Ω}, which consists of one event that includes all states, always result in the same

preferences, and, as a result, it is not possible to distinguish between them. From

now on, we will treat them as one partition π0.

As the above example demonstrates, strict α-MEU and MEU models might

provide different results when it comes to identification. The two following sub-

sections discuss uniqueness under these models separately.

1.3.1 Strict α-MEU

Assumption 1.1. For any event A ∈ π, the sets of priors P(A) and P(π) are

full-dimensional.

The differences in preferences that arise due to distinct state aggregations

come from various ways of bundling ambiguity. If assumption 1.1 does not hold,

we know that some information is not ambiguous. Thus, we might get different

subjective partitions depending on which states we bundle together. In order to

see this, consider the following example:

Example 1.2. Suppose that the objective probability of no accident is 0.15.

The agent’s subjective partition is π = {A1, A2}, where A1 = {s1} (no accident)

and A2 = {s3, s2} (accident). The set of priors P(Ω) is such that P (s3|Ω) +

P (s2|Ω) = 0.85 and P (s1|Ω) = 0.15. Notice that P(Ω) is not a full dimensional
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polytope. Let’s compare behavior under subjective partition π with no state

aggregation π0. The probability of no accident is objective and does not depend

on act x itself Px(s1|π) = Px(s1|π0) = 0.15. We denote payoff at state i as

xi = x(si); then, in order to evaluate an act, the agent without state aggregation

has to solve the following problem:

π0 : P (s1)u(x1) + P (s2)u(x2) + P (s3)u(x3) → max / min

s.t. P (s1) = 0.15; P (s2) + P (s3) = 0.85.

The agent with subjective partition π will have to split the problem into two tasks.

First, the conditional stage:

P (s2|A2)u(x2) + P (s3|A2)u(x3) → max / min

s.t. P (s2|A2) + P (s3|A2) = 1.

Second, the ex-ante stage, which is degenerate in this case:

P (s1)u(x1) + P (A2)V (x|A2) → max / min

s.t. P (s1) = 0.15; P (A2) = 0.85.

Note that the problem of the agent without state aggregation is equivalent to

the set of problems with the subjective partition π. Thus, Px(si|π) = Px(si|π0).

This implies that V (x|π) = V (x|π0) for any act x ∈ F . It happens because

unambiguous state s1 might be put together with or separated from all other

states as long as it does not affect the bundling of ambiguity.

Proposition 1.1. Suppose that 0 < α < 1, assumption 1.1 holds, and π, π′ ∈ A

both α-MEU SAR of preferences �; then, π = π′.
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Figure 1.1: Probability simplex

1.3.2 MEU

Under the MEU model, full identification is not always possible. Rectangularity

of priors is an important property for identification in this case.

Definition 1.5. The set of priors P(π0) is called π-rectangular if and only if there

is a set P(π) and for any event A ∈ π, there exist sets P(A) such that for any

state s ∈ A:

P(π0)(s) = {pspA : ps ∈ P(A)(s), pA ∈ P(π)(A)} = P(A)(s)P(π)(A).

It is easy to understand rectangularity graphically in a probability simplex.

Let Ω = {s1, s2, s3} and partition π = {A1, A2}, where A1 = s1 and A2 = {s2, s3}.

A point in the triangle represents one prior: the probability of state is the distance

from the point to the side opposite to the vertex corresponding to the state. Now,

suppose that we are interested in showing, conditional on event A2, probabilities in

the simplex. First, if P (A1) = a, then all priors that satisfy it can be represented

in the simplex as a line parallel to the side s2s3 at distance a from it. In this case,

P (s2|A2) = c is the point such that the ratio of the right part of the line P (A1) = a

to the whole line is c (see Figure 1.1). Thus, the conditional probability splits the

line of P (A1) = a in a given ratio. Next, we allow the probability of event A1 to
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Figure 1.2: Rectangular priors

vary from 0 to 1. In this case, P (s2|A2) = c is a line that starts in s1 and ends at

the side s2s3.

Now we consider what rectangular priors look like in the simplex. The def-

inition specifies that a rectangular set can be obtained from the multiplication

of conditional and ex-ante sets of priors. For example, suppose that P(π) =

{(pA1 , pA2) ∈ R
2 : 0.25 ≤ pA1 ≤ 0.5; pA1 + pA2 = 1} and P(A2) = {(p2, p3) ∈ R2 :

0.2 ≤ p2 ≤ 0.7; p2 + p3 = 1}. Then, ABCD in Figure 1.2 is the π-rectangular set

of priors that is obtained from the intersection of the sets P(π) and P(A2).

Rectangularity is the reason for dynamic consistency for MEU in Epstein and

Schneider (2003). In contrast, we find that a lack of dynamic consistency allows for

the identification of the subjective partition. Unfortunately, with MEU, behavior

under any subjective partition π could be also modeled by the whole state space

as the subjective partition with π-rectangular priors. Thus, in this situation, we

can obtain only partial identification.

Proposition 1.2. Suppose that α = 1, and a subjective partition π provides

α-MEU SAR of preferences �; then, the preferences can also be represented by

partition π0 with π-rectangular priors.

However, when the subjective partition is the whole state space and priors are
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non-rectangular, we can uniquely identify the partition.

Proposition 1.3. Suppose that α = 1, assumption 1.1 holds, π0, π both provide

α-MEU SAR of preferences �, and priors P(π0) are not π-rectangular; then,

π = π0.

1.4 Conclusions

We have provided axiomatization of the preferences over acts for the state ag-

gregation model. The model assumes the presence of ambiguity and the α-MEU

stage behavior. We have also shown that the lack of dynamic consistency in the

stage model might implicitly suggest a unique subjective partition for preferences.

1.5 Appendix to Chapter 1

Proof of Theorem 1.1. First, due to Proposition 19 from Ghirardato, Mac-

cheroni, Marinacci (2004), axioms 1.1, 1.2, and 1.3(i) guarantee unique V (∙|A),P(A), β(A)

and a unique up to affine transformation u(∙) that represent �∗
A. Moreover,

V (f |A) = β(A) min
P (∙|A)∈P(A)

∑

s∈A

u(f(s))P (s|A)+(1−β(A)) max
P (∙|A)∈P(A)

∑

s∈A

u(f(s))P (s|A).

We now show that β(A) = β for all A ∈ A. Suppose that CA(f) = CB(g) =

[x1, x2]. Then, by axiom 1.3(ii), f ∼A β(A)x1 + (1 − β(A))x2 ∼A x; g ∼B

β(B)x1 + (1 − β(B))x2 ∼B x. The last implies that β(A) = β(B) = β.

Next, we demonstrate that monotonicity with respect to events in π holds

for the preferences �. We need to show that if f �A g for all A ∈ π, then

f � g. Suppose that π = {A1, A2, ..., An}. Consider a constant act xAi
f such that
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f ∼Ai
xAi

f and fAih ∼ xAi
f Aih. Also, notice that

f ∼ xA1
f A1f ∼ xA1

f A1x
A2
f A2f ∼ ... ∼ xA1

f A1x
A2
f A2...x

An
f An.

The same will hold for act g, by analogy. However, if f �Ai
g, then xAi

f �Ai
xAi

g ,

meaning that xf has a value higher than or equal xg at each state. Thus, by

monotonicity

xA1
f A1x

A2
f A2...x

An
f An � xA1

g A1x
A2
g A2...x

An
g An. ⇒ f � g

Now we demonstrate that axiom 1.3(iii) implies that if Cπ(f) = Cπ(g), then

f ∼ g. Suppose that Cπ(f) = Cπ(g); then, we take an act h such that there exists

an event A ∈ π: Cπ(f) = Cπ(g) = CA(h). Then, there exists x ∈ X: f ∼ x and

g ∼ x, so f ∼ g.

Next, we apply Proposition 19 from Ghirardato, Maccheroni, Marinacci (2004)

again. However, we will treat events from π as states. We obtain unique V (∙|π),

P(π), α and unique up to affine transformation I(∙) that represent �∗, and the

representation

V (f |π) = α min
P∈P(π)

∑

A∈π

I(f |A)P (A|π) + (1 − α) max
P∈P(π)

∑

A∈π

I(f |A)P (A|π).

Note that I(x|A) and V (x|A) represent the same preferences, and this means

that they are monotone transformations of each other. However, they have to be

equal on constant acts, so they coincide. Also, notice that α = β follows straight

from axiom 1.3(iii).

Suppose that there are two different partitions, π and π′. Denote a set π̃ =

{C ∈ Σ : ∃A ∈ π,B ∈ π′ : C = A ∩ B}.

Lemma 1.1. If π, π′ ∈ A and C ∈ π̃, then C ∈ A.
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Proof. Take events A ∈ π and B ∈ π′ such that C = A ∩ B. Then, fCx �A

gCx ⇔ fCx(A \C)h � gCx(A \C)h. The last relation is equivalent to fCh(B \

C)x(A \ C)h � gCh(B \ C)x(A \ C)h ⇔ fCh �B gCh.

Now, by providing the same argument from event B back to A, one can easily

obtain that fCh �A gCh.

Lemma 1.2. Suppose that f(C1∪C2)xf ∼B xf ; fC1x1 ∼A1 x1 and fC2x2 ∼A2 x2,

x1 6= x2 and Ai ∩ B = Ci. Then, there exists i (1 or 2) such that xi = xf if and

only if α = 0, 1 and for any s ∈ B: P (s|B) = 0 is in the set of priors P(B).

Proof. x1C1x2C2xf ∼B xf . Then,

V (x1C1x2C2xf ) − u(xf ) = α min
p

(P (C1|B)(u(x1) − u(xf )) + P (C2|B)(u(x2) − u(xf ))) +

+(1 − α) max
p

(P (C1|B)(u(x1) − u(xf )) + P (C2|B)(u(x2) − u(xf ))) = 0.

Suppose that xj = xf , and, for simplicity, xi > xf . Then,

V (xjCjxiCixf ) − u(xf ) = (u(xi) − u(xf ))(αPmin + (1 − α)Pmax) = 0,

which implies that either α = 0 and Pmax(Ci|B) = 0 or α = 1 and Pmin(Ci|B) = 0.

Thus, P (Ci|B) = 0 is available in the set of priors.

Now, suppose that for each state s: P (s|B) = 0 is available. Suppose that

xj > xf > xi:

(u(xj)− u(xf ))(αP j
min + (1−α)P j

max) + (u(xi)− u(xf ))(αP i
min + (1−α)P i

max) = 0.

Then, P j
min = P i

max = 0 and P i
min = P j

max = 1. This implies that u(xf ) =

αu(xi)+(1−α)u(xj). Note that if α 6= 0, 1, then there is no such i that xf = xi.

Lemma 1.3. If there exists C 6∈ π, but C ∈ A, and there exists A ∈ π: C ⊂ A

and C consists of two or more states, then one of the following must be true:
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1. P (C|A) =
∑

s∈C P (s|A) is a constant;

2. For all s ∈ C: P (s|C) = P (s|A)∑
s∈C P (s|A)

is a constant;

3. α = 0, 1 and either ∃s ∈ C: P (s|A) = 0 is in the set of priors P(A) or

P(A) is C-rectangular.

Proof. We define constant act xf : fCxf ∼A xf . This implies that fCh ∼A xfCh

for any act h. To simplify calculations, instead of h, we take some constant act y.

Thus, V (fCy|A) = V (xfCy|A), where values are

V (fCy|A) = α min
p(∙|A)




∑

s∈C

p(s|A)u(f(s)) +
∑

s∈A\C

p(s|A)u(y)





+(1 − α) max
p(∙|A)




∑

s∈C

p(s|A)u(f(s)) +
∑

s∈A\C

p(s|A)u(y)





V (xfCy|A) = α min
p(∙|A)



P (C|A)u(xf ) +
∑

s∈A\C

p(s|A)u(y)





+(1 − α) max
p(∙|A)



P (C|A)u(xf ) +
∑

s∈A\C

p(s|A)u(y)



 .

Now, by subtracting u(xf ) from both expressions and setting them equal to

each other, one can obtain the following:

α min
p(∙|A)

(
∑

s∈C

p(s|A)(u(f(s)) − u(xf )) + (1 − P (C|A))(u(y) − u(xf ))

)

+

+(1 − α) max
p(∙|A)

(
∑

s∈C

p(s|A)(u(f(s)) − u(xf )) + (1 − P (C|A))(u(y) − u(xf ))

)

=

= α min
p(∙|A)

(1 − P (C|A))(u(y) − u(xf )) + (1 − α) max
p(∙|A)

(1 − P (C|A))(u(y) − u(xf )).
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The above expression must hold for any acts y and f such that fCxf ∼A xf .

If the C-related part inside min and max is always 0, then one of the following

is true: (1) for any s ∈ C: P (s|C) = const; (2) α = 0, 1 and there always exists s

such that P (s|A) = 0 is available in the set of priors that, by Lemma 1.2, would

imply that there is always u(f(s)) = u(xf ).

If the C-related part is not always 0, then the set of priors has to satisfy some

kind of separability between events C and A \ C. It means one of the following

must hold: (1) P (C|A) = const; (2) α = 0, 1 and P(A) is C-rectangular.

Lemma 1.4. Suppose that there are events A1, A2 ∈ π and B ∈ π′, Ai ∩ B = Ci

and there is i such that Ai 6= Ci; then, one of the following holds:

1. P (Ai) is a constant;

2. P (Ai)
P (A1)+P (A2)

is a constant;

3. α = 0, 1 and there is state s ∈ Ci such that P (s|Ai) = 0 is available in the

set of priors P(Ai) or P (Ai) = 0 is available in the set of priors P(π).

Proof. Define f(C1 ∪ C2)xf ∼π xf and fCixi ∼Ai
xi. Note that f(C1 ∪ C2)h ∼π

xf (C1∪C2)h. Now, instead of act h, we take an act such that it gives xi on Ai \Ci

and some constant act y everywhere else. Then,

xfC1x1(A1\C1)xfC2x2(A2\C2)y ∼π f(C1∪C2)x1(A1\C1)x2(A2\C2)y ∼π x1A1x2A2y.

We denote act g = xfC1x1(A1 \ C1)xfC2x2(A2 \ C2)y. Note that

V (g) − u(xf ) = α min
P (∙|π)

(
∑

Ai

P (Ai|π)(V (xfCixi|Ai) − u(xf )) + (1 −
∑

Ai

P (Ai))(u(y) − u(xf ))

)

+

+(1 − α) max
P (∙|π)

(
∑

Ai

P (Ai|π)(V (xfCixi|Ai) − u(xf )) + (1 −
∑

Ai

P (Ai))(u(y) − u(xf ))

)

,
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where

V (xfCixi|Ai) − u(xf ) = α min
P (∙|Ai)




∑

s∈Ai\Ci

P (s|Ai)(u(xi) − u(xf ))



+

+(1 − α) max
P (∙|Ai)




∑

s∈Ai\Ci

P (s|Ai)(u(xi) − u(xf ))



 = (u(xi) − u(xf )) (1 − (αPmin(Ci|Ai)+

+(1 − α)Pmax(Ci|Ai)) = (u(xi) − u(xf )) (1 − Pα(Ci|Ai)).

V (xfCixi|Ai)− u(xf ) can be 0 either if Ci = Ai or if xi = xf . By Lemma 1.2, the

last implies that α = 0, 1, and there is s ∈ Ci such that P (s|Ai) = 0 is in the set

of priors P(Ai). Thus,

V (g) − u(xf ) = α min
P (∙|π)

(
∑

Ai

(u(xi) − u(xf )) (1 − Pα(Ci|Ai))P (Ai) + (1 −
∑

Ai

P (Ai))(u(y) − u(xf ))

)

+(1 − α) max
P (∙|π)

(
∑

Ai

(u(xi) − u(xf )) (1 − Pα(Ci|Ai))P (Ai) + (1 −
∑

Ai

P (Ai))(u(y) − u(xf ))

)

=
∑

Ai

(u(xi) − u(xf )) (1 − Pα(Ci|Ai))P̃α(Ai) + (1 −
∑

Ai

P̃α(Ai))(u(y) − u(xf )).

We now compare it with the value of x1A1x2A2y:

V (x1A1x2A2y) − u(xf ) = α min
P (∙|π)

(
∑

Ai

P (Ai)(u(xi) − u(xf )) + (1 −
∑

Ai

P (Ai))(u(y) − u(xf ))

)

+

+(1 − α) max
P (∙|π)

(
∑

Ai

P (Ai)(u(xi) − u(xf )) + (1 −
∑

Ai

P (Ai))(u(y) − u(xf ))

)

=

=
∑

Ai

Pα(Ai)(u(xi) − u(xf )) + (1 −
∑

Ai

Pα(Ai))(u(y) − u(xf )).

The above expressions will trivially coincide if Ai-related parts are always 0. This

is possible in one of the following situations: (1) P (Ai)
P (A1)+P (A2)

is a constant and

Ci = Ai; (2) P (Ai) is constant; (3) there exists some i: xi = xf , and P (Aj) = 0

is in the set of priors P(π), which imply that α = 0, 1, and si ∈ Ai such that

P (si|Ai) = 0 is in the set of priors.

23



Now, suppose that Ai-related parts are not always 0. The expressions must

be equal to each other for any value of y, which implies that P̃α(A1) + P̃α(A2) =

Pα(A1)+Pα(A2). Note that u(xf ) = wu(x1)+ (1−w)u(x2), where w ∈ (0, 1). By

substituting it into both expressions and setting them equal to each other, one

can obtain:

w =
Pα(A1) − (1 − Pα(C1|A1))P̃α(A1)

Pα(A1) − (1 − Pα(C1|A1))P̃α(A1) + Pα(A2) − (1 − Pα(C2|A2))P̃α(A2)
.

The above ratio must be constant for any value of y, while Pα(Ci|Ai) does not

change, depending on y. This implies that Pα(A1)−(1−Pα(C1|A1))P̃α(A1)

Pα(A2)−(1−Pα(C2|A2))P̃α(A2)
= c, where c

is a constant. If Pα(A2) and P̃α(A2) are not equal to 0 (this would imply that 0

is in the set of priors for Ai), then the last statement can be rewritten as follows

(
Pα(A1)

Pα(A2)
− c

)
Pα(A2)

P̃α(A2)
= (1 − Pα(C1|A1))

P̃α(A1)

P̃α(A2)
− c(1 − Pα(C2|A2)).

On the other hand, P̃α(A1) + P̃α(A2) = Pα(A1) + Pα(A2), which can be rewritten

as (
Pα(A1)

Pα(A2)
+ 1

)
Pα(A2)

P̃α(A2)
=

P̃α(A1)

P̃α(A2)
+ 1.

By dividing the first expression by the second one, we get:

Pα(A1)
Pα(A2)

− c

Pα(A1)
Pα(A2)

+ 1
=

(1 − Pα(C1|A1))
P̃α(A1)

P̃α(A2)
− c(1 − Pα(C2|A2))

P̃α(A1)

P̃α(A2)
+ 1

.

The above expression depends only on the ratios Pα(A1)
Pα(A2)

and P̃α(A1)

P̃α(A2)
and not on the

actual values. It is possible in one of the following situations:

1. c = 0 implies Pα(C1|A1) = 0 and Pα(Ai) = P̃α(Ai). It means that either

α = 0, 1 and P (C1|A1) = 0 is available in P(A1) or P (C1|A1) = 0.

2. c 6= 0 implies that Pα(Ci|Ai) = 0.
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Proof of Proposition 1.1. Suppose that π 6= π′. Then, in one of the partitions

(suppose π), there exists event A such that it intersects with at least two events

from another partition (π′). Then, only two options are possible: either A = ∪iBi

or A 6= ∪iBi for some Bi ∈ π′.

First, suppose that A = ∪iBi. Now, in order to use Lemma 1.3, replace si with

Bi, C with A, and A with π. Then, either P (A|π′) or P (Bi|A) is a constant. Unless

A = Ω, the last two implications suggest that priors are not full-dimensional. If

at least one of Bi consists of two or more states, then, again, by Lemma 1.3,

either P (Bi|A) is a constant or for s ∈ Bi P (s|Bi) is a constant. Thus, the only

possibility left is when A = Ω and all Bi = si, which means that we are comparing

π0 = {Ω} and π∗ = Ω, that we consider to be the same in this paper.

Finally, suppose that A 6= ∪iBi. Then, by Lemma 1.4, we know that either

P (Bi) or P (Bi)∑
P (Bi)

is a constant, which contradicts full-dimensionality of priors.

Proof of Proposition 1.2. Suppose that preferences are represented by some π

and α = 1 with priors P(π) and P(A) for each A ∈ π. Then, the value functional

is

V (f |π) = min
q∈P(π)

∑

A∈π

q(A)

(

min
p∈P(A)

pu(f)

)

= min
p∈P(π0)

pu(f),

where P(π0)(s) = P(π)(A) ∙ P(A)(s) if s ∈ A – i.e., P(π0) is π-rectangular.

Proof of Proposition 1.3. Preferences are represented by some partition π, so

by Proposition 1.2, the value functional can be rewritten through the trivial par-

tition π0 with π-rectangular priors P̃(π0). On the other hand, preferences can be

represented by the trivial partition with non π-rectangular priors P(π0). Due to

the uniqueness of representation of MEU preferences, priors must coincide. Thus,

π = π0.
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CHAPTER 2

Identification of Subjective Partition from

Choices

Chapter 1 introduces a model of subjective partition under ambiguity and demon-

strates that if the agent is allowed to have a set of multiple priors instead of single

probabilities of states, then various methods of state aggregation lead to differ-

ent preferences. Chapter 2 demonstrates the same phenomena for choices that

the agent makes: different partitions imply different choices. For this reason, the

subjective partition of each individual might be identified from observed data.

To explain the idea in more detail consider the example from Chapter 1: Sup-

pose that there is an agent who needs to choose car insurance. Possible states of

the world include an accident with the agent at fault, an accident with the other

party at fault, and no accident. An insurance policy consists of two deductibles:

one applies if the agent caused the accident, and the other applies if the agent was

not responsible. Probabilities of the states are unknown and described by a set

of multiple priors – i.e., all agents face ambiguity. Next, suppose that the agent

is a person that does not aggregate states. If she is ambiguity-averse then, gener-

ally, her choice is a bundle of deductibles such that her consumption is smoothed

between all states. Note that, in this case, there is no state aggregation, and

her subjective partition is the whole state space of the world. Next, imagine

a person who has difficulty analyzing all three states of the world together. In

order to simplify the decision process, she combines both states that involve a

collision into the event “accident,” while keeping the “no accident” state separate
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from them. In this case, the state space of the economy is partitioned by events

“accident” (with the agent or the other party at fault) and “no accident.” The

presence of state aggregation changes the way that the agent thinks about the

world. Instead of an accident with the agent at fault, an accident with the other

party at fault, and no accident, her subjective states now are “accident” and “no

accident.” Moreover, the individual generally wants to smooth her consumption

between her aggregated states. As a result, she will buy less insurance (greater

deductibles) for both types of accidents, compared with what would be optimal

for her. Thus, choices differ with the subjective partition, implying that under

certain conditions the subjective partition might be identified from choices.

Also, it is important to pay attention to the fact that if the individual’s behav-

ior were described by the SEU model, then the choice of the insurance would not

depend on state aggregation. The agent would always choose the same amount

of deductibles and, as a result, keep researchers from identifying the subjective

partition. This occurs because the probability of each state used for evaluating

an act is an actual subjective probability of this state and it does not depend

on the act itself. Thus, when the agent aggregates several states with subjective

probabilities, the final weight of the state in the act’s value is a product of the

state’s conditional probability given the aggregated event, and the probability of

the event. Thus, the weight is just the subjective probability of the state. As a

result, the ranking of acts is not affected by the aggregation of states. On the

other hand, in the presence of ambiguity, “probabilities” (weights) of states used

for act evaluation do depend on the actual act, and the ranking of acts changes

with the subjective partition.

In this Chapter, we (1) identify the subjective partition from choices; and, (2)

suggest testable restrictions of the model.

First, we show identification of the subjective partition from choices and prices

in a complete market. We make an additional assumption of polytope priors
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that allows for SEU behavior in different regions of the act space. This type of

behavior implies that the agent uses the same subjective probabilities in order to

evaluate an act in some region; however, these probabilities differ across regions.

The described property permits construction of a method of identification that

might be adapted to estimate the model in the future. The proposed method

consists of two steps: (1) to identify region-specific probabilities together with

utility function; and (2) to obtain the subjective partition from the way that

these probabilities change across the regions.

Second, we provide a finite system of revealed preferences inequalities that

allows for testing our model by a dataset. An example of the potential dataset is

data on choices of car insurance plans that consist of deductibles and income. This

paper is related to the literature, started by Afriat (1967), that suggested that a

dataset can be rationalized by an increasing concave continuous utility function

if and only if there exists a solution to a system of linear inequalities obtained

from the dataset. Similar tests for expected utility and its generalizations were

developed afterwards (Varian (1983), Diewert (2012), Kubler, Selden, and Wei

(2014), Echenique and Saito (2015), etc.). Polisson, Quah, and Renou (2015)

develop a testing procedure that can be used for many different models of choice

under uncertainty. They allow for non-concave utility, and, as a result, test for

an actual model without extra assumptions. However, the price of no additional

assumptions is that the system of inequalities becomes non-linear. The procedure

from Polisson et al. is applicable to the model developed in this paper after

additional inequalities on priors are derived. The final system of inequalities for

testing the model is finite and bilinear. The previous literature (e.g. Brown and

Matzkin (1996), etc.) suggests applying the Tarski-Seidenberg algorithm in this

case.
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2.1 Identification in the Market

In this section, we show how to identify the subjective partition from choices of

Arrow securities and their prices. Even if Arrow assets are not directly available

in the market, as long as the market is complete, Arrow prices can always be

uniquely recovered.

2.1.1 Deductibles as Arrow assets

Note that the problem of choosing an insurance plan that contains deductibles can

be represented as a choice among Arrow securities. In order to see this, consider

the following example.

Example 2.1. Suppose that an agent needs to choose an insurance plan

while considering three states of the world, as before: an accident with the agent

at fault with losses L1; an accident with the other party at fault with losses L2;

and no accident, which implies no loss. The price of insurance consists of the sum

of prices of chosen deductibles in both states of the accident. We assume that

price q(d) of each deductible d is linear in its amount d: q(d) = a − pdd, where

a is a constant state premium. Thus, we can define the price of a $1 deductible

decrease as pd = q(d)−q(d+1), which is constant for any amount d due to assumed

linearity. Notice that pd is the price of a corresponding Arrow security: decreasing

the deductible by $1 in some state is equivalent to increasing consumption by $1

in the same state.

We denote the deductible in the case of an accident with the agent at fault as

d1, the price of $1 of deductible in this state as pd1 , and a1 as the state premium.

Similarly, d2, pd2 , and a2 are the deductible, the $1 price in the case of an accident

with the other party at fault, and the state premium, respectively. Thus, the total

price of the insurance plan (d1, d2) is p = (L1 − d1)pd1 + a1 + (L2 − d2)pd2 + a2.

The agent has income I and optimizes consumption c = (c1, c2, c3) in all states of
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the world given some subjective partition π. All the money left (s) after paying

for insurance is used for consumption during the year. Thus, the agent’s problem

is

V (c|π) → max

s.t. (L1 − d1)pd1 + (L2 − d2)pd2 + a1 + a2 + s = I

c1 = s − d1; c2 = s − d2; c3 = s.

We now rewrite the problem in terms of Arrow securities. Notice that consumption

bundle c = (c1, c2, c3) is exactly the portfolio of Arrow assets that the agent

chooses. The only thing left to do is to find Arrow prices (p1, p2, p3) and rewrite

the budget constraint in an appropriate form. Denote Ĩ = I−L1p1−L2p2−a1−a2

the agent’s total endowment when taking potential losses and all state premiums

into account. Also, as mentioned above, p1 = pd1 and p2 = pd2 . Then, we can

rewrite the budget constraint as

−d1pd1 − d2pd2 + s = (c1 − s)p1 +(c2 − s)p2 + s = c1p1 + c2p2 + c3(1− p1 − p2) = Ĩ .

Thus, p3 = 1 − p1 − p2 and the agent’s problem is

V (c|π) → max

s.t. c1p1 + c2p2 + c3p3 = Ĩ .

As a consequence, if we observe the choices of deductibles with their prices and

the agent’s income, we can recover the amount of Arrow securities/consumption

in each state.
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2.1.2 Notation

Let us define some notation that is used below. Given event A and act x ∈ F ,

we denote the conditional priors that minimize and maximize “expected” utility
∑

s∈A u(x(s))P (s|A) at the conditional stage, where states are aggregated into

event A, as follows:

Pmin x(∙|A) = argmin
P (∙|A)∈P(A)

∑

s∈A

u(x(s))P (s|A)

Pmax x(∙|A) = argmax
P (∙|A)∈P(A)

∑

s∈A

u(x(s))P (s|A).

Similarly, given partition π, the ex-ante priors that minimize and maximize “ex-

pected” value at the ex-ante stage are:

Pmin x(∙|π) = argmin
P (∙|π)∈P(π)

∑

A∈π

V (x|A)P (A|π)

Pmax x(∙|π) = argmax
P (∙|π)∈P(π)

∑

A∈π

V (x|A)P (A|π).

To simplify the notation, we denote

Pα;x(A|π) = αPmin x(A|π) + (1 − α)Pmax x(A|π)

Pα;x(s|A) = αPmin x(s|A) + (1 − α)Pmax x(s|A)

Px(s|π) ≡ Pα;x(s|A)Pα;x(A|π).

where s ∈ A ∈ π. We abuse the notation by calling Pα;x(A|π) and Pα;x(s|A) the

probabilities of ex-ante and conditional stages, where no confusion should arise.

We also call Px(s|π) a probability.1

1Note that Px(s|π) behaves like a probability only for act x, but it is not a probability in a
regular sense and changes across acts.
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2.1.3 Non-parametric example

Suppose that Ω = {s1, s2, s3}, partition π = {A1, A2}, where A = {s1} and

A2 = {s2, s3}, and sets of priors are P(A2) = {(p2, p3) ∈ R2 : p3 ≥ φ, p2 +p3 = 1}

and P(π) = {(pA1 , pA2) ∈ R
2 : pA2 ≥ φ, pA1 +pA2 = 1}. Consider that a complete

set of Arrow securities is available on the market.2 The agent purchases a bundle

of Arrow securities that maximizes her value given a certain amount of income I

and the price pi of an Arrow security that pays 1 in state i:

V ((x1, x2, x3)|π) → max
x

s.t. p1x1 + p2x2 + p3x3 = I.

Choices x = (x1, x2, x3), prices p = (p1, p2, p3) and income I are observed. We

assume that all possible combinations of (p, I) are available. The purpose is to

identify the subjective partition π, utility function u(∙), sets of priors P(π) and

P(A2), and parameter α.

Note that the proposed set of priors is a full-dimensional polytope, so it implies

that the “probability” of each state at a given act is a linear combination of

solutions to some linear programming problems. Moreover, these probabilities are

constant in some region around the act due to the fact that linear programming

provides corner solutions. Thus, we can obtain these regions together with the

related probabilities that the agent uses to solve the problem.

Consider the conditional on the event A2 stage. This stage and its priors will

produce one boundary x2 = x3, such that the regional conditional probabilities

will be as follows:

1. If x2 > x3, then Pmin x(s3|A2) = φ; Pmax x(s3|A2) = 1; Px;α(s3|A2) = 1 −

α(1 − φ).

2An Arrow security pays one unit in a specified state and zero otherwise.
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2. If x2 < x3, then Pmin x(s3|A2) = 1; Pmax x(s3|A2) = φ; Px;α(s3|A2) = α+(1−

α)φ.

Now, consider the ex-ante stage. This stage boundary is

x1 = u−1 (Px(s2|A2)u(x2) + Px(s3|A2)u(x3)) .

We denote the above boundary as b(x2, x3). This stage has the following ex-ante

probabilities:

1. If x1 > b(x2, x3), then Pmin x(A2|π) = 1; Pmax x(A2|π) = φ; Pf ;α(A2|π) =

α + (1 − α)φ.

2. If x1 < b(x2, x3), then Pmin x(A2|π) = φ; Pmax x(A2|π) = 1; Pf ;α(A2|π) =

αφ + 1 − α.

Thus, in total, we have four different regions with the following probabilities:

1. If x3 > x2 and x1 > b(x2, x3), then Px(s1|π) = (1 − α)(1 − φ); Px(s2|π) =

(α + (1 − α)γ)α(1 − φ); Px(s3|π) = (α + (1 − α)φ)(1 − α(1 − φ)).

2. If x3 < x2 and x1 > b(x2, x3), then Px(s1|π) = (1 − α)(1 − φ); Px(s2|π) =

(α + (1 − α)φ)(1 − φ)(1 − α); Px(s3|π) = (α + (1 − α)φ)(φ + (1 − φ)α).

3. If x3 > x2 and x1 < b(x2, x3), then Px(s1|π) = α(1 − φ); Px(s2|π) = (1 −

α(1 − φ))α(1 − φ); Px(s3|π) = (1 − α(1 − φ))(1 − α(1 − φ)).

4. If x3 < x2 and x1 < b(x2, x3), then Px(s1|π) = α(1 − φ); Px(s2|π) = (1 −

α(1 − φ))(1 − φ)(1 − α); Px(s3|π) = (1 − α(1 − φ))(φ + (1 − φ)α).

The agents solves her maximization problem and chooses some bundle x:

Px(s1|π)u(x1) + Px(s2|π)u(x2) + Px(s3|π)u(x3) → max
x

s.t. p1x1 + p2x2 + p3x3 = I.
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For simplicity, assume that α > 0.5 – i.e., the agent is ambiguity-averse. In this

case, the indifference curves will have kinks at the bundles that connect different

regions. Moreover, they will be observed as choices made under the same income,

but under a range of prices. Thus, we will be able to separate the regions from

each other in our observations.

Inside each region and for each chosen bundle and any states i and j, the

optimality condition holds:

pi

pj

=
Px(si|π)

Px(sj|π)

u′(xi)

u′(xj)
. (2.1)

Now we analyze identification, for example, in region 1. For some fixed value of

x̄2, we observe bundles with x3 > x̄2 (and x1 > b1(x̄2, x3)). By taking two bundles

with different x3 but the same x̄2 from this region:

p1
3

p1
2

=
Px(s3|π)

Px(s2|π)

u′(x1
3)

u′(x̄2)
and

p2
3

p2
2

=
Px(s3|π)

Px(s2|π)

u′(x2
3)

u′(x̄2)

u′(x2
3)

u′(x1
3)

=
p2

3p
1
2

p2
2p

1
3

.

Thus, the ratio of derivatives of the utility function can be identified in the interval

[ x̄2; +∞ ). Now, we choose another bundle with x̃2, such that x̃2 > x̄2, and

x3 > x̃2, and some x1 that satisfies conditions of region 1. The ratio of derivatives

u′(x3)
u′(x̃2)

has already been identified, so the probability ratio is identified, as well:

Px(s3|π)

Px(s2|π)
=

p3

p2

u′(x̃2)

u′(x3)
.

By analogy, we can identify all probability ratios Px(si|π)
Px(sj |π)

in region 1. Then, the

probabilities can be recovered:

Px(s1|π)

Px(s2|π)
= c1; and

Px(s3|π)

Px(s2|π)
= c2 ⇒ Px(s2|π) =

1

1 + c1 + c2

.
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We can identify probabilities in other regions in a similar manner. Region 1 will

have regions 2 and 3 as its neighbors. As long as α 6= 0.5, we know that by crossing

a border between neighboring regions, either Pα(∙|A2) or Pα(∙|π) changes. If it is

Pα(∙|π), then all probabilities change; if it is Pα(∙|A2), then only probabilities of

states related to one of the events will change. By looking at regions 1 and 2,

we can see that P (s1|π) stays the same, while other probabilities change. This

implies that the subjective partition is π = {s1, A2}, where A2 = {s2, s3}.

From the fact that Px(s1|π) = Pα(s1|π) in region 1, we can recover Pα(A2|π) =

1 − Px(s1|π); then, Pα(si|A2) = Px(si|π)
Pα(A2|π)

. Thus, all Pα(∙|π) and Pα(∙|A2) in all

regions can be identified. Regions 1 and 2 are from different sides of the same

conditional stage boundary, meaning that Pmax(∙) and Pmin(∙) are the same but

exchange places in order to obtain Pα(∙|A2). Thus, we know that

αx + (1 − α)y = αφ + 1 − α = c1

αy + (1 − α)x = α + (1 − α)φ = c2.

where x and y are vertices of the set P(A2) that denote boundaries for P (s2|A2).

Note that it is a system of two equations and three unknowns. Even though

a similar system of equations can be obtained from Pα(A2|π), in total, there

will be four equations and five unknowns. Thus, unique identification of the

parameter α and sets of priors is not possible. However, we can achieve partial

identification of parameters. The above system of equations suggests that x+y =

c1 + c2 = 1 + φ > 1. Thus, by taking into account that 0 ≤ x < y ≤ 1,

the biggest possible set of priors that satisfies the above system of equations is

P (s2|A2) ∈ [c1 + c2 − 1; 1] = [φ; 1]. Moreover, other possible sets of priors belong

to [φ; 1].

We can use the system of equations in order to obtain partial identification

of the parameter α. Note that α = c2−x
y−x

is a monotone function of x. Because

c2 > c1 (due to α > 0.5), the function is strictly increasing in x. Thus, the smallest
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possible value of α is obtained when x = φ – i.e., αmin = c2−φ
1−φ

= α, which is the

true value of the parameter. Thus, the interval is A = [α; 1).

The same idea can be applied for partial identification of the ex-ante set of

priors P(π). In this example, intervals obtained from both problems for α coincide.

However, generally, one needs to take into account all available equations.

2.1.4 Identification

Thus, the agent wants to buy a portfolio of securities and aggregates states of the

world into some partition. The purpose of this section is to identify the agent’s

subjective partition and, when possible, priors from choices of Arrow assets and

their prices. In order to do so, we generalize the above non-parametric example;

however, the idea behind the method stays the same.

A central assumption for identification from choices in this paper is polytope

priors that allow for the agent’s choice behavior to be described by the SEU

in different regions of the act space with different probabilities across regions.

Moreover, this act space separation is subjective-partition-unique for the strict

α-MEU stage model.

Assumption 2.1. Sets of priors P(A) and P(π) for any A ∈ π are closed convex

non-empty polytopes.

Variation of probabilities across regions creates kinks in indifference curves, as

can be seen in Figure 2.1. However, we do not observe choices from indifference

curves completely. Our data are choices of bundles of Arrow securities together

with their prices. Thus, if indifference curves are not convex (as in Figure 2.1),

then we can recover only the intersection of an indifference curve with the convex

hull of its upper counter set, as shown in Figure 2.2.

In order to achieve convexity of indifference curves and have the optimality

condition hold in each region, we assume the following:
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Figure 2.1: Typical indifference curve

Assumption 2.2. Utility function u(∙) is concave and differentiable.

Only one connected set of indifferent bundles will be recovered in each observ-

able region because indifference curves are convex there. Unfortunately, there is

no guarantee that each region is represented by a set of choices. As Figure 2.2

shows, two middle regions are missing in the observations. When behavior in some

region is not observed, the identification becomes impossible, which prompts the

following assumption:

Assumption 2.3. There exist prices and incomes such that more than one bundle

is chosen in each region.

Assumptions 1.1, 2.1, 2.2 and 2.3 help us identify the utility function up to

affine transformation in each separate region. However, for the identification of

the probabilities and the subjective partition, we need to connect these recovered

functions with each other. In order to avoid this problem, we make another

assumption:
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Figure 2.2: Intersection of IC with its convex hull

Assumption 2.4. Observed choices include payoffs from the whole compact subset

XS of the support X of u(∙).

Proposition 2.1. If assumptions 1.1 and 2.1–2.4 hold, and 0 < α < 1, then the

following can be uniquely identified from choice behavior:

1. utility u(∙) up to affine transformation on the set XS;

2. state aggregation π;

3. Px(s|π), Pα,x(s|A) and Pα,x(A|π) in each region.

In addition, α and sets of priors, P(A) and P(π), can be partially identified:

4. there exists an interval A ⊂ (0, 1) such that α ∈ A:

(a) if α > 0.5, then A ⊂ (0.5, 1);

(b) if α < 0.5, then A ⊂ (0, 0.5);

5. there exist sets of priors
∼
P(A) and

∼
P(π) such that P(A) ⊆

∼
P(A) and P(π) ⊆

∼
P(π).
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The proof of the above proposition suggests an identification method to pro-

ceed. First, the researcher needs to determine regions of the act space in which the

agent evaluates acts according to SEU with probabilities that are different across

the regions. Then, utility, together with the region-specific probabilities, can be

identified. And, finally, the way that probabilities change between neighboring

regions suggests the subjective partition and ambiguity attitude. However, the

actual parameter of ambiguity aversion α and the sets of ex-ante and conditional

priors are not identified due to a non-unique representation of preferences (this

problem is generally present in the α-MEU model). However, as non-parametric

example shows, partial identification can be achieved. In order to obtain unique

identification, some normalization conditions are required.

Note that if we apply the identification method to the MEU model, then the

identified subjective partition might not be unique due to the reasons described

in Chapter 1. However, the set of priors is identified in this case because the value

of ambiguity aversion parameter is known – i.e., α = 1. If we obtain that the

subjective partition π is different from π0 = Ω, then it means that the subjective

partition is not unique. In this case, the agent with the subjective partition π0

and π-rectangular priors will demonstrate identical behavior. However, if the

identification method provides the subjective partition π0, then we know that it

is unique, and the agent does not aggregate states.

2.2 Testable Restrictions

This section provides a set of bilinear Afriat inequalities that allow us to test the

subjective partition model with a finite dataset. Since the system of inequalities

is bilinear, the Tarski-Seidenberg algorithm can be applied to determine whether

the solution exists.

An example of a dataset that could be used for testing the model is yearly
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individual data on car insurance deductible choices and income. The insurance

plan should have at least two deductibles that represent states of the world of

different occurrences. We also need to observe the whole choice set of insurance

plans with all prices, and the choice set should be constant over time. Another

requirement on the structure of the insurance plan must hold: the insurance price

must be linear in its deductible prices – a property that is easy to verify in the

data. The insurance plan with deductibles can be treated as a portfolio of Arrow

assets, as discussed in Section 2.1.1. However, in order to recover all Arrow prices

and the amount of Arrow securities, we also need to have data on individual

income and losses in each state.

A dataset is a finite collection of pairs (xi, pi)N
i=1 ∈ RΩ

+ × RΩ
++, where N is a

number of observations. We define a budget set as Bi = {x ∈ RΩ
+ : pix ≤ pixi}

and a boundary of the budget set as ∂Bi = {x ∈ RΩ
+ : pix = pixi}. Also,

X = {x ∈ R+ : x = xi
s for some t, s}∪ {0} is observed at some state consumption

set together with 0; and lattice L = XΩ is its product over states.

Definition 2.1. A dataset (xi, pi)N
i=1 is α-MEU π state aggregation rational (π-

rational) if there are sets of priors P(π) and P(A), A ∈ π, a parameter α, and a

continuous and increasing function u : R+ → R such that for all i

y ∈ Bi ⇒ V (y|π) ≤ V (xi|π).

Proposition 2.2. A dataset is π-rational if and only if for each element of lattice

x ∈ L, there exist non-negative numbers μs(x), μα;A(x), μα;s(x), qA
1;s(x), qA

2;s(x),

w1,A(x), w2;A(x), 0 ≤ a ≤ 1, and an increasing function ū : X → R such that

∑

s∈Ω

μs(x) =
∑

A∈π

μα;A(x) =
∑

s∈Ω

μα;s(x) = 1

∑

s∈A

qA
1;s(x) =

∑

s∈A

qA
2;s(x) =

∑

A∈π

w1,A(x) =
∑

A∈π

w2,A(x) = 1
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μ(xi)ū(xi) ≥ μ(x)ū(x) ∀x ∈ L ∩ Bi

μ(xi)ū(xi) > μ(x)ū(x) ∀x ∈ L ∩ (Bi \ ∂Bi)

μs(x) = μα;A(x)μα;s(x), s ∈ A, x ∈ L

μα;s(x) = aq1;s(x) + (1 − a)q2;s(x), x ∈ L

μα;A(x) = aw1;A(x) + (1 − a)w2;A(x), x ∈ L

∑

s∈A

qA
1;s(x)ū(xs) ≤

∑

s∈A

qA
t;s(x

′)ū(xs), ∀x, x′ ∈ L, t = 1, 2

∑

s∈A

q2;s(x)ū(xs) ≥
∑

s∈A

qA
t;s(x

′)ū(xs), ∀x, x′ ∈ L, t = 1, 2

∑

A∈π

w1;A(x)
∑

s∈A

μα;s(x)ū(xs) ≤
∑

A∈π

wt;A(x′)
∑

s∈A

μα;s(x)ū(xs), ∀x, x′ ∈ L, t = 1, 2

∑

A∈π

w2;A(x)
∑

s∈A

μα;s(x)ū(xs) ≥
∑

A∈π

wt;A(x′)
∑

s∈A

μα;s(x)ū(xs), ∀x, x′ ∈ L, t = 1, 2.

For the purposes of the proof of Proposition 2.2, we derive conditions for the

sets of priors on the lattice and apply a result from Polisson, Quah and Renou

(2015), which states that if there exists an increasing utility function on the lattice,

then it can be extended to a continuous increasing utility function on the whole

support.

Example 2.2. To simplify the example as much as possible, we assume that

the set of priors is the whole simplex and Ω = {s1, s2, s3}. Suppose that we are

interested in testing whether the agent does not aggregate states – i.e., π = Ω.

With the whole simplex priors, the value of each bundle x such that xi > xj >

xk will be attained by using probabilities μi = 1 − α, μj = 0, and μk = α.

Consider the agent who chooses an allocation (3, 1, 3) with prices (2, 1, 2). Note

that allocation (2, 2, 3) is also available and is strictly inside the budget set. Thus,

(3, 1, 3) � (2, 2, 3). However, V ((2, 2, 3)|Ω) ≥ V ((3, 1, 3)|Ω) if the utility function
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is increasing:

V ((3, 1, 3)|Ω) = (1 − α)u(3) + αu(1)

V ((2, 2, 3)|Ω) = (1 − α)u(3) + αu(2).

Thus, (3, 1, 3) cannot be chosen if the agent has the whole simplex priors and does

not aggregate states.

Next, consider a subjective partition π = {{s1, s2}, s3}. In this case, bundles’

values are

V ((3, 1, 3)|π) = (1 − α)u(3) + α ((1 − α)u(3) + αu(1))

V ((2, 2, 3)|π) = (1 − α)u(3) + αu(2).

Thus, (3, 1, 3) � (2, 2, 3) if and only if (1−α)u(3)+αu(1) > u(2), which is generally

possible with some increasing function u(∙). However, note that u(3) − u(2) >

α
1−α

(u(2)−u(1)). The last expression implies that if the agent is ambiguity-averse,

then her utility function is not concave. Thus, if we require both ambiguity and

risk aversion, then this data point rejects the subjective partition π with the whole

simplex priors.

2.3 Conclusions

We have explored how the subjective partition might be identified from the com-

plete market choices and prices. We have also shown that under some assumptions

on observable data, the results can be applied to deductible insurance plans. In

addition, we have offered testable restrictions of our model that might be used on

a dataset containing insurance deductible choices and income.
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2.4 Appendix to Chapter 2

Lemma 2.1. For any act x ∈ F and partition π, the value V (x|π) can be written

as follows:

V (x|π) =
∑

s

Px(s|π)u(x(s)).

Proof. From the representation theorem:

V (x|A) = α min
P (∙|A)∈P(A)

∑

s∈A

u(x(s))P (s|A) + (1 − α) max
P (∙|A)∈P(A)

∑

s∈A

u(x(s))P (s|A) =

=
∑

s∈A

(αPmin x(s|A) + (1 − α)Pmax x(s|A)) u(x(s)) =
∑

s∈A

Pα;x(s|A)u(x(s))

V (x|π) = α min
P∈P(π)

∑

A∈π

V (x|A)P (A|π) + (1 − α) max
P∈P(π)

∑

A∈π

V (x|A)P (A|π) =

=
∑

A∈π

(αPmin x(A|π) + (1 − α)Pmax x(A|π)) V (x|A) =
∑

A∈π

Pα;x(A|π)V (x|A) =

=
∑

A∈π

Pα;x(A|π)
∑

s∈A

Pα;x(s|A)u(x(s)) =
∑

s

Pα;x(A|π)Pα;x(s|A)u(x(s)),

where s ∈ A ∈ π.

Lemma 2.2. If assumptions 1.1 and 2.1 hold, then the act space F can be split

into a finite number of regions with Px(s|A) constant inside each of them.

Proof. Consider the conditional stage when event A is observed. If event A has

only one state s, then P(A) is a singleton, and P (s|A) = 1 for any act. Thus, the

act space is not being split by this event.

Now, suppose that event A consists of two or more states. Remember that
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Pα;x(s|A) = αPmin x(s|A) + (1 − α)Pmax x(s|A), where

Pmin x(∙|A) = argmin
P (∙|A)∈P(A)

∑

s∈A

P (s|A)u(x(s))

Pmax x(∙|A) = argmax
P (∙|A)∈P(A)

∑

s∈A

P (s|A)u(x(s)).

Since P(A) is a closed convex bounded polytope, Pmin x(s|A) and Pmax x(s|A) are

solutions to the linear-programming problem. As a result, they lie on the boundary

of the set P(A) and depend on the direction of the vector (u(x(s1)), ..., u(x(sk))),

where A = {s1, ..., sk}. Moreover, when the solution is at the corner of P(A), it

will be the same for all vectors (u(x(s1)), ..., u(x(sk))) in between two hyperplanes

that created the corner in the conditional set of priors. Because the number of

corners in a closed convex polytope is finite, there is a finite number of regions in

the act space where Pmin x(∙|A) is constant. The same is also true for Pmax x(∙|A),

implying it for Pα;x(∙|A).

The same argument can be applied to the ex-ante stage and Pα;x(∙|A).

Lemma 2.3. If assumptions 1.1 and 2.1 hold, 0 < α < 1, and two choice sets are

generated by preferences represented by partitions π1 6= π2, then the obtained sets

of regions in the act space differ.

Proof. At the conditional stage given event A = {s1, ..., sn}, the agent’s problem

of finding probabilities can be reformulated as follows:

n−1∑

i=1

(u(x(si)) − u(x(sn)))pi → max / min

s.t. p ∈ P(A).

The direction of utility growth is defined by the vector

u = (u(x(s1)) − u(x(sn)), ..., u(x(sn−1)) − u(x(sn)))′.
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P(A) is a polytope, so it is constructed by the intersection of several hyper-

planes. Each hyperplane has two (opposite) normal unit vectors. Thus, P(A)

creates a set of unit vectors W (P(A)) perpendicular to the hyperplanes of P(A).

W (P(A)) splits the vector space it belongs to into different regions. When u lies

in between n − 1 neighbor vectors from W (P(A)), the solution from P(A) is the

same for all acts with vector u in this region. Thus, the act space gets separated by

boundaries where u has the same direction as some v = (v1, ...vn−1)
′ ∈ W (P(A)).

Then, the boundary can be described by the following system of equations:

u(x(s1)) − u(x(sn)) = λv1

...

u(x(sn−1)) − u(x(sn)) = λvn−1

λ =

√√
√
√

n−1∑

i=1

(u(x(si)) − u(x(sn)))2.

Due to the symmetry of W (P(A)), for each v ∈ W (P(A)), all conditional stage

boundaries will be defined by the following condition:

u(x(si)) =
vi

vj

u(x(sj)) +

(

1 −
vi

vj

)

u(x(sn)) for any i = 1, n − 2,

where sj is a state for which vj 6= 0 for the given vector (such state always exists).

Thus, notice that the conditional stage boundaries depend on payoffs in the states

in event A only.

One potential problem might arise here. Suppose that there is another parti-

tion that includes two events B and C such that A = B ∪ C. Is it possible that

the conditional boundaries produced by A are the same as those produced by B

and C? In order for this to happen, each boundary must split states into two

groups. It is possible only if u(x(si)) − u(x(sn)) = λv for all i such that si ∈ B,

and u(x(sj)) − u(x(sn)) = 0 for all j such that sj ∈ C. This must hold for all

45



conditional boundaries of event A. However, it implies that either P(A) is not a

polytope or it is not full-dimensional. Thus, under assumptions 1.1 and 2.1, the

problem does not arise.

By applying the same procedure to the ex-ante stage, the ex-ante boundary

can be obtained, too:

V (x|Ai) =
wi

wj

V (x|Aj) +

(

1 −
wi

wj

)

V (x|Ak) for any i = 1, k − 1,

where w ∈ W (P(π)), π = {A1, ..., Ak} and Aj is an event for which wj 6= 0. Note

that

V (x|A) =
∑

s∈A

Pα;x(s|A)u(x(s)),

and it implies that the ex-ante boundary depends on all states in Ω.

Thus, if all boundaries are the same for two different people, it means that the

conditional stage boundaries must coincide. This occurs because the conditional

stage boundary depends only on payoffs in the states of the specific event, while

the ex-ante stage boundary includes all states. They can coincide only between

π0 and π∗. Now, note that the conditional stage boundaries imply the partition.

Thus, both agents have the same subjective partition.

Proof of Proposition 2.1. Assumption 2.3 guarantees that we observe each re-

gion. Regions are separated from each other either by corner points or by holes.

Corner points are those bundles that are chosen under the range of price ratios.

Holes are bundles that are never chosen under any combination of price ratios

and income. Inside some region R, the value functional is SEU with probabilities

Px(s|π) of each state s. Then, inside the region the optimality condition holds:

pj

pi

=
Px(sj|π)

Px(si|π)

u′(x(sj))

u′(x(si))
.

We fix some value of x(si) = x̄ and take a look at the values of x(sj) such that the
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bundle is still in region R. Then, observed x(sj) will belong to some closed interval

[a(x̄), b(x̄)] (b(x̄) might be +∞). Now, note that for any x1, x2 ∈ [a(x̄), b(x̄)], there

exist prices p1
i , p

2
i , p

1
j and p2

j such that:

p1
j

p1
i

=
Pf (sj|π)

Pf (si|π)

u′(x1)

u′(x̄)

p2
j

p2
i

=
Pf (sj|π)

Pf (si|π)

u′(x2)

u′(x̄)

⇒
u′(x1)

u′(x2)
=

p1
j

p1
i

p2
i

p2
j

.

Thus, the ratio u′(x1)
u′(x2)

is identified in the interval [a(x̄), b(x̄)]. By analogy, such a

ratio is identified in all intervals that are observed in different states.

If u′(x1)
u′(x2)

is identified in two different intervals [a1, b1] and [a2, b2] and a1 ≤ a2 ≤

b1 ≤ b2, then it is also identified in [a1, b2]: for any x1 ∈ [a1, b1], x2 ∈ [a2, b2] and

z ∈ [a2, b1], the following holds

u′(x1)

u′(x2)
=

u′(x1)/u
′(z)

u′(x2)/u′(z)
.

The only potential problem with identification of u′(x1)
u′(x2)

might arise if intervals do

not intersect. However, Assumption 4.4 rules this problem out. Thus, for any

observable payoffs x1, x2 ∈ XS, the ratio u′(x1)
u′(x2)

is identified. This implies that the

utility function u(∙) is identified up to affine transformation on XS.

From the results of Lemma 2.3, all boundaries are classified by stages. If two

regions are separated by the conditional stage boundary related to event A, then

Pα,x(A|π) for all A ∈ π and Pα,x(s|B) for all B ∈ π\A stay the same, while only

Pα,x(s|A) change. If regions are separated by the ex-ante stage boundary, then all

probabilities change. By looking at which probabilities change from one region to

another, we can identify the partition.
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By denoting different neighboring regions through xi and xj, one can obtain:

Pα;xi
(s|A)

Pα;xj
(s|A)

=
Pxi

(s|π)

Pxj
(s|π)

.

If k is a number of different conditional stage regions for event A, and n is a

number of states in event A, then due to full-dimensionality, k ≥ n. Because all

ratios
Pα;xi (s|A)

Pα;xj (s|A)
for conditional stage regions are known and

∑
s∈A Pα;xi

(s|A) = 1,

we have kn unknowns and n(k− 1) + k equations. Because n(k− 1) + k ≥ kn, all

Pα;xi
(s|A) are identified for all i.

Identification of Pα;x(A|π) is trivial now:

Pα;x(A|π) =
Px(s|π)

Pα;x(s|A)
.

Pmin x(∙) and Pmax x(∙) are solutions to the linear programming problem at each

stage. However, in symmetric regions, Pmin x(∙) and Pmax x(∙) will exchange places

due to the direction of utility growth, which will be the opposite. Thus, if we

denote each pair of these probabilities as (xs, ys) for conditional priors, we will

obtain two equations:

αxs + (1 − α)ys = Pα;x1(s|A)

αys + (1 − α)xs = Pα;x2(s|A),

where x1 and x2 are acts from symmetric regions. We can write down such systems

for all states and all symmetric regions for conditional probabilities. In addition,

we can do the same for the ex-ante probabilities:

αxA + (1 − α)yA = Pα;x1(A|π)

αyA + (1 − α)xA = Pα;x2(A|π).

In the final system of equations, there is always one unknown variable more than
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the number of equations; thus, the system does not have a unique solution.

First, note that α = 0.5 if and only if Pα;x1(s|A) = Pα;x2(s|A) and Pα;x1(A|π) =

Pα;x2(A|π) for all symmetric regions, states, and events. Thus, we can always

identify whether α = 0.5 or α 6= 0.5. In addition, it is possible to identify whether

the agent is ambiguity-averse/-loving. If we fix bundle payoffs at all states except

si, sj ∈ A ∈ π and move along one IC from high xi and low xj to low xi and high

xj inside one ex-ante region, then, if α > 0.5,
Pα;x(sj |A)

Pα;x(si|A)
will decrease, while for

α < 0.5 the probability ratio will increase.

Consider the case of ambiguity aversion. Note that α = 1 is always possible. In

addition, there always exists the lowest possible value, α > 0.5, for α that satisfies

the system of equations. Then, due to the bilinearity of the system, A = [α, 1).

In addition, the greater the value of α, the smaller are the sets of priors P(A) and

P(π). Thus, the sets of priors
∼
P(A) and

∼
P(π) will correspond to α in the above

system of equations.

By analogy, if α < 0.5, then there exists an upper bound ᾱ such that A =

(0, ᾱ], and
∼
P(A) and

∼
P(π) are sets of priors that correspond to ᾱ.

Proof of Proposition 2.2. The proof is similar to the proof of Proposition 1 in

Polisson, Quah, and Renou (2015).

For sufficiency, we first denote the following sets: for each A ∈ π, QA is a

convex hull of {qA
t (x)}t=1,2; W is a convex hull of {wt(x)}t=1,2 for all x ∈ L.

Now we show that qA
1 (x)ū(x) = minq∈QA

qū(x). Suppose that it’s not true – i.e.,

there exists x̃ ∈ L and q ∈ QA such that qū(x̃) < qA
1 (x̃)ū(x̃). QA is a convex

hull of {qA
t (x)}t=1,2; thus, q is a convex combination of {qA

t (x)}t=1,2. This means

that there exists x′ ∈ L such that qA
t (x′)ū(x̃) < qA

1 (x̃)ū(x̃) – i.e., a contradiction.

By analogy, one can show that qA
2 (x)ū(x) = maxq∈QA

qū(x). Thus, μα(x)ū(x) =

a minq∈QA
qū(x) + (1 − a) maxq∈QA

qū(x).
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Note, also, that

∑

A∈π

w1;A(x)
∑

s∈A

μα;s(x)ū(xs) = min
w∈W

∑

A∈π

w
∑

s∈A

μα;s(x)ū(xs)

∑

A∈π

w2;A(x)
∑

s∈A

μα;s(x)ū(xs) = max
w∈W

∑

A∈π

w
∑

s∈A

μα;s(x)ū(xs).

Thus,

μ(x)ū(x) = a min
w∈W

∑

A∈π

w
∑

s∈A

μα;s(x)ū(xs) + (1 − a) max
w∈W

∑

A∈π

w
∑

s∈A

μα;s(x)ū(xs).

Now, we define φ : RΩ
+ → R as

φ(ū) = a min
w∈W

w ◦

(

a min
q∈QA

qū + (1 − a) max
q∈QA

qū

)

+(1 − a) max
w∈W

w ◦

(

a min
q∈QA

qū + (1 − a) max
q∈QA

qū

)

.

We can apply Theorem 1 from Polisson, Quah and Renou (2015) to guarantee the

existence of u that rationalizes the dataset.

Note that necessity follows straightforward from the model.

50



CHAPTER 3

Electoral Model and Its Non-Parametric

Estimation

Some people vote and others do not. Absent voters make it difficult to evaluate

political preferences in the entire population. Thus, any small change in policy or

characteristics related to voters’ choice might bring unexpected consequences. An

example is an unusual spike in African-American turnout in the 2008 U.S. presi-

dential elections due to the Obama candidacy.1 In order to be able to study and

predict changes in voting behavior of the entire population, we offer a structural

model that allows for derivation of joint distribution of turnout and voter share.

We show how to identify an unobservable joint distribution of costs of voting and

preferences from observable joint distribution of turnout and voter share. In addi-

tion, we provide non-parametric estimators of identified functions. All estimators

are consistent and asymptotically normal.

This paper supposes that a voter needs to decide between two candidates.

Similarly to the probabilistic voting model (Lindbeck and Weibull (1987), Persson

and Tabellini (2000)), we assume that political preferences over candidates of an

individual can be separated into several components: personal, local and regional.

In addition, the person might find it too costly to participate in elections (for

example, to wait in line in a polling station) if it makes little difference who

wins. Thus, people with preferences close to indifference between candidates will

abstain from elections. In order to identify the preferences in the whole population,

12008 Surge in Black Voters Nearly Erased Racial Gap, NY Times, July 20, 2009.
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we impose a structure that includes (1) additivity of preference components, (2)

independence of personal and regional components on other characteristics, and,

(3) linearity of the regional component in regional characteristics.

Political preferences have been studied by economists before. Several papers

estimate preferences of the voters relying on the spatial model (Downs (1957),

Riker and Ordeshook (1968), Hinich and Munger (1994)) when building the struc-

ture. This model assumes that each voter has a preferred policy and evaluates

candidates based on the distances between proposed and preferred policies. De-

gan (2007) develops and estimates a dynamic spatial model of voting that allows

for separation between preferences for ideology and candidates’ attractiveness.

Kernell (2009) obtains ideological distribution within districts by using data from

multiple elections and applying a least squared error model and a Bayesian model.

Merlo and de Paula (2015) provide non-parametric estimation of ideological pref-

erences. However, these papers do not analyze turnout in the estimation and,

thus, the results are valid only for the portion of voters that participated in the

elections.

Another direction of the research focuses on estimation of voter turnout. Coate

and Conlin (2004) structurally estimate a group rule-utilitarian model of voter

turnout in Texas liquor referenda, and show that ethical-voter models2 fit the

data. McMurray (2012) proposes a model of equilibrium turnout where citizens

vote if they have a reasonable level of expertise and finds support of the model in

the data.

The above papers study the questions of turnout and voter preferences sep-

arately. Degan and Merlo (2011) combine both the spatial model of voting and

uncertain-voter model3 for turnout to study multiple elections. The main problem

2Models where a voter understands that she is not pivotal, but morality makes her participate
in elections.

3A uninformed voter leaves the decision to the informed part of population.
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with the estimation of any version of the spatial model is that it assumes that

voters only care about ideology and it requires construction of the ideology met-

ric. The idea of the ideology index is good in theory, however, in practice, is very

subjective. Moreover, differently constructed indices might drive any estimation

results. Additionally, voter preferences are often driven by personal characteristics

of the candidate, not just political ideology. For example, it is difficult to explain

the popularity of Donald Trump by his political agenda.

This paper offers a different perspective on the preference estimation. We do

not discuss the way the preferences were formed and variables they depend on.

The preferences in our model are exogenous. We are interested in understanding

various components (personal, local and regional) of the preferences and voting

costs. In addition, we study a single election.

Notice that exogeneity of preferences accounts for different ways of preference

formation. For example, if voters are ideological as in the spatial model, then the

preference distribution is the distribution of relative distance from the candidates.

If one adds additional assumptions about the relative distance metric and uses

the data from multiple elections, then it will be possible to identify the ideological

distribution of the population. Our model also includes the uncertain-voter model

– a more confident voter derives higher utility from making the right choice, i.e.,

voting for a specific candidate. The personal preferences account for an asymmetry

of information in this case. Thus, the preferences we identify can be treated as a

“reduced form” obtained from different models.

First, we offer a model of voting that assumes that (1) preferences over can-

didates can be separated into personal, local and regional components, and, (2) a

voter participates in election if the difference in utility from candidates is higher

than the costs of voting. We suppose that the local component and costs of voting

are the same for all people in one polling station and regional characteristics affect

all population in the region in the same way. From these assumptions, we derive
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values of turnout and voter share in the population.

Second, we assume that (1) personal component of preferences is independent

on other components and costs of voting, (2) the joint distribution of costs of vot-

ing and the local component is independent on the regional characteristics, and

(3) the regional component is a linear function of observable regional characteris-

tics. Under this set of assumptions, we show identification of the distribution of

all components and costs of voting in the whole population.

Finally, we construct non-parametric kernel estimators based on the proposed

identification strategy and show their consistency and asymptotic normality. The

electoral data is often large enough and is well-suited for the non-parametric

approach that might help to avoid unnecessary overparametrization and mistakes

in the model specification.

3.1 Electoral model

There are two candidates, A and B, running for office. Each voter has preferences

over candidates, defined in a way similar to the probabilistic voting model. Voter

i in a polling station j in region K chooses candidate A over B if

σijK
A + δjK

A + μK
A > σijK

B + δjK
B + μK

B

where σijK is a parameter of individual “pure” preferences towards the candidates,

δjK is popularity of a candidate in the area of the polling station and is the same

for one polling station j, μK is a regional effect in popularity of each candidate and

it is a function of some observable characteristics of the region XK , such as average

income, level of education, share of old population, etc. Thus, μK = h̃(XK).

In order to obtain the reduced form of the model, we define parameters of

difference in preferences between candidates σijK = σijK
B − σijK

A , δjK = δjK
B − δjK

A
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and μK = μK
B −μK

A = h̃B(XK)− h̃A(XK) ≡ h(XK). Therefore, voter i in a polling

station j in region K chooses candidate A over B if

σijK + δjK + h(XK) < 0

where σijK is personal “pure” preference for the candidate B, δjK and μK are

polling station j and regional effects on preferences, correspondingly. Moreover,

μK = h(XK), where h(∙) is continuous and monotone in all arguments function.

In order to include turnout in the model, we make voting costly. A voter

chooses to participate in elections if the difference in her preferences from different

candidates is higher than costs of participation:

|σijK + δjK + h(XK)| ≥ cjK

Participation costs cjK are random and they are the same for all voters in the

same polling station, but different across different polling stations. Costs might

represent the length of line to vote, the weather, etc. Such representation of

participation implies that if the preferences of a voter are close to indifference

between the candidates, then she does not attend elections. And, in contrast, if a

person has very strong preferences towards one or the other candidate, then she

comes to the polling station even when costs are high.

Individual “pure” preferences σijK are independent identically distributed vari-

ables with density g(∙) and cumulative distribution G(∙). Costs of voting cjK and

local preferences δjK are independent identically distributed variables with joint

density fδ,c(∙, ∙).

Next we introduce “swing voters”, σjK
A and σjK

B , in every polling station j

of region K, who are indifferent between participating and not participating in
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elections:

σjK
A = −δjK − μK − cjK

σjK
B = σjK

A + 2cjK

Notice that people with “pure” preferences σijK < σjK
A will vote for the candidate

A, people with σijK > σjK
B will choose the candidate B, and everybody in between

the swing voters will abstain from elections. As a result, the number of people

who vote for A in a polling station j in region K is njK
A =

∫ σjK
A

−∞ dG(x) = G(σjK
A ).

The same number for candidate B is njK
B =

∫ +∞
σjK

B
dG(x) = 1 − G(σjK

B ). Thus,

turnout in the polling station is τ jK = 1 − G(σjK
B ) + G(σjK

A ). A’s share of votes

is πjK
A =

njK
A

njK
A +njK

B

=
G(σjK

A )

1−G(σjK
B )+G(σjK

A )
.

The only data available in any elections is voter share, πjK
A , and turnout, τ jK ,

across all polling stations j and all regions K. However, the following electoral

variables can be easily recovered from the data:

G(σjK
A ) = πjK

A τ jK

G(σjK
B ) = 1 − τ jK + G(σjK

A ) = 1 − τ jK + πjK
A τ jK

In everything that follows, we denote the observable electoral variables Y =

G(σjK
A ) and Z = G(σjK

B ). Vector X ∈ RL is a vector of L regional character-

istics.

3.2 Identification of the model

This section discusses how to identify unobservable g(∙), h(∙) and fδ,c(∙, ∙) from

observable joint distribution of Y and Z conditional on X.

Assumption 3.1. Personal preferences σ is independent on X, δ and c, its sup-
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port in R is compact, and it has continuously differentiable density g(∙), strictly

increasing on the support cumulative distribution function G(∙), and Eσ = 0.

Assumption 3.2. Local preferences δ and costs of voting c have continuously

differentiable joint density fδ,c(∙, ∙), cumulative distribution function Fδ,c(∙, ∙), and

they are independent on regional characteristics X.

The joint distribution of swing voters across polling stations in region K with

characteristics X is:

FσA,σB |X(y, z) = P (σA < y, σB < z|X) = P (−δ − c − h(X) < y,−δ + c − h(X) < z) =

= F−δ−c,−δ+c (h(X) + y, h(X) + z)

Now we obtain the joint distribution of Y and Z conditional on X, FY,Z|X(∙, ∙),

as follows:

FY,Z|X(y, z) = P (G(σA) < y,G(σB) < z|X) = P (σA < G−1(y), σB < G−1(z)) =

= F−δ−c,−δ+c

(
h(X) + G−1(y), h(X) + G−1(z)

)
(3.1)

Cumulative distribution function FY,Z|X(∙, ∙) of electoral variables conditional

on the regional characteristics is observed. The right-hand side of the above

equation is completely unknown and is to be identified. It is important to notice

that the proposed model is not identified without additional assumptions. In

order to see this, consider that there are true functions Fδ,c(∙), G−1(∙) and h(∙).

Suppose that F−δ−c,−δ+c (t1, t2) = t1
t2

. Then some other functions h̃(X) = 2h(X)

and G̃−1(y) = 2G−1(y) will generate the same data.

In order to avoid the problem with identification, we assume linearity of

h(X) = β ′X and normalize coefficients ‖β‖ = 1. Potentially, a weaker assump-

tion could deliver the identification in this model. However, another reason for

linearity of h(X) in this paper is data availability. Notice that there are many
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polling stations in one region. As a result, there are many data points for es-

timation of joint distribution of Y and Z given X and kernel approach can be

used for this. Unfortunately, the number of regions in a country is not big enough

for completely non-parametric estimation. For example, in Russia there are 83

federal subjects4, the United States include 50 voting states, Mexico only consists

of 31 states. Thus, it is not possible to non-parametrically estimate function h(X)

from insufficient number of observations.

Theorem 3.1. If Assumptions 3.1 and 3.2 hold, h(X) = β ′X and ‖β‖ = 1, then

fδ,c(∙, ∙), g(∙) and coefficients β are identified.

Proof. Notice that g(∙) is a derivative of G(∙), thus, ∂G−1(x)
∂x

= 1
g(G−1(x))

and by

taking partial derivatives of the equation (3.1), we obtain the following:

∂FY,Z|X(y, z)

∂y
=

F 1
−δ−c,−δ+c (h(X) + G−1(y), h(X) + G−1(z))

g(G−1(y))

∂FY,Z|X(y, z)

∂z
=

F 2
−δ−c,−δ+c (h(X) + G−1(y), h(X) + G−1(z))

g(G−1(z))

∂FY,Z|X(y, z)

∂X i
= F 1

−δ−c,−δ+c

(
h(X) + G−1(y), h(X) + G−1(z)

)
hi(X)+

+F 2
−δ−c,−δ+c

(
h(X) + G−1(y), h(X) + G−1(z))hi(X

)
=

=

[

g(G−1(y))
∂FY,Z|X(y, z)

∂y
+ g(G−1(z))

∂FY,Z|X(y, z)

∂z

]

hi(X)

where F i(∙, ∙) and hi(∙) denote partial derivatives with respect to i-th element.

The last equality is available for different values of y and z, so we integrate all the

4Since March 18, 2014, Crimea and Sevastopol became federal subjects of Russia, making
the total number to 85 federal subjects, although they are internationally recognized as part of
Ukraine.
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points over some measure μ(y, z):

∫ 1

0

∫ 1

0

∂FY,Z|X(y, z)

∂X i
μ(y, z)dydz =

= hi(X)

∫ 1

0

∫ 1

0

[

g(G−1(y))
∂FY,Z|X(y, z)

∂y
+ g(G−1(z))

∂FY,Z|X(y, z)

∂z

]

μ(y, z)dydz

Substituting hi(X) = βi for different i in the last equation and considering ‖β‖ =

1, provides us with identification of h(∙). After that by taking equality at points

y = z, we obtain that

∂FY,Z|X(y,z)

∂Xi

∣
∣
∣
y=z

= βig(G−1(z))

[
∂FY,Z|X(y,z)

∂y

∣
∣
∣
y=z

+
∂FY,Z|X(y,z)

∂z

∣
∣
∣
y=z

]

. (3.2)

However, notice that Y ≤ Z implies that

∂FY,Z|X(y, z)

∂y

∣
∣
∣
∣
y=z

= 0,
∂FY,Z|X(y, z)

∂X i

∣
∣
∣
∣
y=z

=
∂FZ|X(z)

∂X i

∂FY,Z|X(y, z)

∂z

∣
∣
∣
∣
y=z

=
∂FZ|X(z)

∂z
.

Thus, we identify the function φ(x) = g(G−1(x)), and, as a result, G(∙): Notice

that g(G−1(x)) is density at the point where cumulative distribution function G(∙)

takes value x. It implies that we know the structure of the density but we are

missing the axis. However, expectation of personal preferences is assumed to be

0 (Assumption 3.1), which is sufficient for identification of G(∙):

∫ z

0

1

φ(x)
dx =

∫ z

0

1

g(G−1(x))
dx = G−1(z) + const.

Using the condition for expectation:

∫ 1

0

G−1(z)g(G−1(z))dG−1(z) =

∫ 1

0

G−1(z)dz = 0
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∫ 1

0

[∫ z

0

1

φ(x)
dx − const

]

dz = 0.

Thus, unknown constant is

const =

∫ 1

0

∫ z

0

1

φ(x)
dxdz =

∫ 1

0

∫ 1

x

1

φ(x)
dzdx =

∫ 1

0

1 − x

φ(x)
dx.

G−1(z) =

∫ z

0

1

φ(x)
dx −

∫ 1

0

1 − x

φ(x)
dx.

It follows that G(∙) is identified from its inverse function. After obtaining functions

G−1(∙) and h(∙), it is possible to identify the joint density of swing voters:

f−δ−c,−δ+c

(
h(X) + G−1(y), h(X) + G−1(z)

)
= fY,Z|X(y, z)g(G−1(y))g(G−1(z)).

Finally, by applying the transformation theorem, we derive the joint density

of local preferences and costs of voting, δ and c:

fδ,c(x, y) = 2f−δ−c,−δ+c(−x − y,−x + y).

3.3 Estimation

In this section, first, we review the standard kernel estimators used in the paper.

Then, we construct the estimators of partial derivatives of fY,Z|X(∙, ∙). Finally, we

provide the estimators of the model and their asymptotic distributions.

3.3.1 Standard kernel estimators

In order to simplify calculations, suppose that all variables are normalized, and

the same bandwidth h is chosen for all of them. Standard kernel estimators of
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densities and derivatives can be obtained as follows (see, for example, Li and

Racine (2007)).

f̂(X, y, z) =
1

NhL+2

N∑

i=1

k̃

(
Xi − X

h

)

k

(
Yi − y

h

)

k

(
Zi − z

h

)

f̂(X, z) =
1

NhL+1

N∑

i=1

k̃

(
Xi − X

h

)

k

(
Zi − z

h

)

f̂(X) =
1

NhL

N∑

i=1

k̃

(
Xi − X

h

)

̂∂f(X, y, z)

∂Xj
=

−1

NhL+3

N∑

i=1

k̃j

(
Xi − X

h

)

k

(
Yi − y

h

)

k

(
Zi − z

h

)

̂∂f(X, z)

∂Xj
=

−1

NhL+2

N∑

i=1

k̃j

(
Xi − X

h

)

k

(
Zi − z

h

)

∂̂f(X)

∂Xj
=

−1

NhL+1

N∑

i=1

k̃j

(
Xi − X

h

)

where k̃(Xi−X
h

) =
∏L

j=1 k(
Xj

i −Xj

h
) is a multiplicative kernel of L regional charac-

teristics and k̃j(
Xi−X

h
) = k′(

Xj
i −Xj

h
)
∏L

t=1,t 6=j k(
Xt

i−Xt

h
).

3.3.2 Estimation of partial derivatives of FY,Z|X(y, z)

The identification strategy suggests using partial derivatives of FY,Z|X(y, z) for

model estimation. Denote joint density of X, Y and Z as f(X, y, z), and density

of regional characteristics X as f(X). By definition of the conditional cumulative

distribution function:

FY,Z|X(y, z) =

∫ y

−∞

∫ z

−∞

f(X,w, t)

f(X)
dtdw.
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Then, the partial derivatives with respect to y and z are

fZ|X(z) =
∂FZ|X(z)

∂z
=

f(X, z)

f(X)

fY,Z|X(y, z) =
∂2FY,Z|X(y, z)

∂y∂z
=

f(X, y, z)

f(X)
.

The analog non-parametric estimators of fY,Z|X(y, z) and fZ|X(z) can be ob-

tained by substituting the standard kernel estimators in the above equations for

derivatives.

In order to obtain estimators of partial derivatives of FY,Z|X(y, z) and FZ|X(z)

with respect to j-th regional characteristic, notice that:

∂FY,Z|X(y, z)

∂Xj
=

1

f(X)

∫ y

−∞

∫ z

−∞

∂f(X,w, t)

∂Xj
dtdw−

−
∂f(X)
∂Xj

(f(X))2

∫ y

−∞

∫ z

−∞
f(X,w, t)dtdw

(3.3)

∂FZ|X(z)

∂Xj
=

1

f(X)

∫ z

−∞

∂f(X, t)

∂Xj
dt −

∂f(X)
∂Xj

(f(X))2

∫ z

−∞
f(X, t)dt. (3.4)

The estimators of the integral of the derivatives can be obtained as follows:

∫ y

−∞

∫ z

−∞

̂∂f(X,w, t)

∂Xj
dtdw =

−1

NhL+3

N∑

i=1

k̃j

(
Xi − X

h

)∫ y

−∞
k

(
Yi − w

h

)

dw

∫ z

−∞
k

(
Zi − t

h

)

dt

=
−1

NhL+1

N∑

i=1

k̃j

(
Xi − X

h

)

K

(
y − Yi

h

)

K

(
z − Zi

h

)

and

∫ z

−∞

̂∂f(X, t)

∂Xj
dt =

−1

NhL+1

N∑

i=1

k̃j

(
Xi − X

h

)

K

(
z − Zi

h

)

,
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where K(∙) is a kernel cdf. In addition, the estimators for the integral of densities

are

∫ y

−∞

∫ z

−∞

̂f(X,w, t)dtdw =
1

NhL+2

N∑

i=1

k̃j

(
Xi − X

h

)∫ y

−∞
k

(
Yi − w

h

)

dw

∫ z

−∞
k

(
Zi − t

h

)

dt =

=
1

NhL

N∑

i=1

k̃j

(
Xi − X

h

)

K

(
y − Yi

h

)

K

(
z − Zi

h

)

∫ z

−∞
f̂(X, t)dt =

1

NhL

N∑

i=1

k̃j

(
Xi − X

h

)

K

(
z − Zi

h

)

.

Finally, the analog estimators for
̂∂FY,Z|X(y,z)

∂Xj and
̂∂FZ|X(z)

∂Xj can be obtained by

plugging estimators of the parts into the formulas (3.3) and (3.4).

3.3.3 Estimation of the model

The following assumptions guarantee asymptotics and the uniform convergence

results in the paper.

Assumption 3.3. The sequence {Xi, Yi, Zi} is i.i.d.

Assumption 3.4. f(X, y, z) has compact support in RL+2 and is continuously

differentiable up to the order s′, for some s′ > 2.

Assumption 3.5. The kernel function k(∙) is differentiable of order s̃, the deriva-

tives of k of order s̃ are Lipscitz, k(∙) vanishes outside a compact set, integrates

to 1, and is of order s′′, where s̃ + s′′ ≤ s′.

Assumption 3.6. As N → ∞, h → 0, ln N
NhL+4 → 0, NhL+2 → ∞, NhL+2+2s′′ →

0, and
√

N
(√

ln N
NhL+4 + hs′′

)2

→ 0.

Assumption 3.7. 0 < f(X, y, z) < ∞.
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Define Vayz by

Vayz =
RL+2(k)f(X, y, z)

f 2(X)
.

Theorem 3.2. Let the estimator of fY,Z|X(y, z) be f̂Y,Z|X(y, z) = f̂(X,y,z)

f̂(X)
. If As-

sumptions 3.3–3.7 are satisfied, then,

sup
(y,z)∈R2

∣
∣
∣
∣
∣
f̂(X, y, z)

f̂(X)
−

f(X, y, z)

f(X)

∣
∣
∣
∣
∣

p
→ 0

√
NhL+2

(
f̂Y,Z|X(y, z) − fY,Z|X(y, z)

)
d
→ N (0, Vayz) .

Let μ(X, y, z) be a weighting function such that
∫∫∫

μ(X, y, z)dydzdX = 1.

Then the estimator of βi can be defined by

β̂i =

∫∫∫ ̂∂FY,Z|X(y,z)

∂Xi μ(X, y, z)dydzdX
√
∑L

j=1

(
∫∫∫ ̂∂FY,Z|X(y,z)

∂Xj μ(X, y, z)dydzdX

)2
.

In order to simplify the notation, denote

F̄Y,Z|X(X) =

∫∫
FY,Z|X(y, z)μ(X, y, z)dydz

F̄Y,Z|XX(X) =
F̄Y,Z|X(X)

f(X)

Fi =

∫∫∫
∂FY,Z|X(y, z)

∂X i
μ(X, y, z)dydzdX

F̈Z|X(z) =

∫
∂FZ|X(z)

∂X i
μ(X)dX

F̃ =
L∑

j=1

(∫∫∫
∂FY,Z|X(y, z)

∂Xj
μ(X, y, z)dydzdX

)2

=
L∑

j=1

F 2
j
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Mj(X, y, z) =
1

f(X)

(∫ +∞

y

∫ +∞

z

∂μ(X,w, t)

∂Xj
dtdw−

−
∂f(X)

∂Xj

1

f(X)

∫ +∞

y

∫ +∞

z

μ(X,w, t)dtdw

)

and F = (F1, ..., FL)′.

In addition, define Vβi
by

Vβi
= F̃−3





(
∑

j 6=i

F 2
j

)2

VFi
+ F 2

i

∑

j 6=i

F 2
j VFj

− 2(F̃ − F 2
i )Fi

∑

j 6=i

FjCij + F 2
i

∑

j 6=i,k 6=j,i

FjFkCjk



 ,

where

Cij = cov(Mi(X, y, z),Mj(X, y, z)) − cov

(

Mi(X, y, z),
∂F̄Y,Z|XX(X)

∂Xj

)

−cov

(

Mj(X, y, z),
∂F̄Y,Z|XX(X)

∂X i

)

+ cov

(
F̄Y,Z|XX(X)

∂X i
,
F̄Y,Z|XX(X)

∂Xj

)

and

VFj
= V (Mj(X, y, z)) + V

(
∂F̄Y,Z|XX(X)

∂Xj

)

− 2cov

(

Mj(X, y, z),
∂F̄Y,Z|XX(X)

∂Xj

)

.

Theorem 3.3. Let the estimator of βi be as defined above. If Assumptions 3.3–3.7

are satisfied, then,
√

N
(
β̂i − βi

)
d
→ N(0, Vβi

).

Now using equation (3.2), we derive estimators for φ(z) = g(G−1(z)) and

G−1(z):

φ̂(z) = ĝ(G−1(z)) =

∫ ̂∂FZ|X(z)

∂Xi μ(X)dX

β̂i

∫ ̂∂FZ|X(z)

∂z
μ(X)dX

Ĝ−1(u) =

∫ u

0

1

φ̂(x)
dx −

∫ 1

0

1 − x

φ̂(x)
dx.

In order to simplify the expression for the variance of Ĝ−1(∙), we introduce the
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following notation:

Vu = V

(

fZ|X(z)
F̈Z|X(z)μ(X)

βiφ2(z)
1(z < u)

)

Vc = V

(

fZ|X(z)
(1 − z)F̈Z|X(z)μ(X)

βiφ2(z)

)

Σuc = cov

(

fZ|X(z)
F̈Z|X(z)μ(X)

βiφ2(z)
1(z < u), fZ|X(z)

(1 − z)F̈Z|X(z)μ(X)

βiφ2(z)

)

.

Finally, define VG−1(u) by

VG−1(u) = Vu + Vc − 2Σuc.

Theorem 3.4. Let the estimator of G−1(z) be as defined above. If Assumptions

3.3–3.7 are satisfied, then,

sup
z∈R

∣
∣
∣Ĝ−1(u) − G−1(u)

∣
∣
∣

p
→ 0

√
N
(
Ĝ−1(u) − G−1(u)

)
d
→ N(0, VG−1(u))).

Additionally, the asymptotic distributions of φ̂(z) and ĝ(Ĝ−1(z)) are provided

in Lemma 3.8 and 3.12 in Appendix.

Joint density of local preference and costs of voting conditional on the regional

characteristics at the point

θ =

(

−
1

2
(2

L∑

i=1

βiX
i + G−1(y) + G−1(z)),

1

2
(G−1(z) − G−1(y))

)

can be estimated as follows:

f̂δ,c(θ) = 2f̂Y,Z|X(y, z)φ̂(y)φ̂(z).

66



The estimators for the components of the vector θ are defined by

θ̂1 = −0.5

(

2
L∑

i=1

β̂iX
i + Ĝ−1(y) + Ĝ−1(z)

)

θ̂2 = 0.5
(
Ĝ−1(z) − Ĝ−1(y)

)
.

Theorem 3.5. Let the estimators of θ and fδ,c(θ) be as defined above. If Assump-

tions 3.3–3.7 are satisfied, then,

sup
θ∈R2

∣
∣
∣f̂δ,c(θ̂) − fδ,c(θ)

∣
∣
∣

p
→ 0

√
NhL+2

(
f̂δ,c(θ̂) − fδ,c(θ)

)
d
→ N

(
0, 4φ2(y)φ2(z)Vayz

)
.

3.4 Conclusions

This Chapter has introduced a new electoral model that allows derivation of the

joint distribution of turnout and voter share from preferences and costs of vot-

ing. Because joint distribution of turnout and voter share can be easily obtained

from the data, the unobserved distributions of preferences and costs of voting can

be identified and estimated from it. The estimators are naturally derived from

the identification strategy that is introduced in the paper. All estimators are

consistent and asymptotically normal.

The results of this paper can be useful in research on development of electoral

preferences over time in democratic fraud-free countries or in predictions of the

effect of the electoral policy changes. Such investigations could help provide im-

plications about electoral patterns in developing democracies. Another potential

application of this paper is non-parametric estimation of electoral fraud.
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3.5 Appendix to Chapter 3

Let ||g|| denote the maximum of the supremum of the values and derivatives up

to the second order of g and g(X) =
∫∫

g(X, y, z)dydz.

3.5.1 Standard Asymptotics

Asymptotic distributions of kernel estimators of density and derivatives are stan-

dard:

√
NhL+2

(
f̂(X, y, z) − f(X, y, z)

)
d
→ N

(
0, f(X, y, z)RL+2(k)

)

√
NhL

(
f̂(X) − f(X)

)
d
→ N

(
0, f(X)RL(k)

)

√
NhL+4

(
̂∂f(X, y, z)

∂Xj
−

∂f(X, y, z)

∂Xj

)
d
→ N

(
0, f(X, y, z)RL+1(k)R(k′)

)

√
NhL+2

(
∂̂f(X)

∂Xj
−

∂f(X)

∂Xj

)
d
→ N

(
0, f(X)RL−1(k)R(k′)

)
,

where R(f) =
∫

[f(u)]2du, k(∙) is kernel density and K(∙) is kernel cdf.

3.5.2 Proof of Theorem 3.2

Denote

Vaz = R(k)

∫
f(X, z)μ2(X)

f 2(X)
dX.

Lemma 3.1. Let
∫

f̂Z|X(z)μ(X)dX be the estimator of
∫

fZ|X(z)μ(X)dX. Sup-
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pose that Assumptions 3.3–3.7 hold, then,

sup
z∈R

∣
∣
∣
∣

∫ (
f̂Z|X(z) − fZ|X(z)

)
μ(X)dX

∣
∣
∣
∣

p
→ 0

√
Nh

(∫ (
f̂Z|X(z) − fZ|X(z)

)
μ(X)dX

)
d
→ N(0, Vaz).

Proof. Define the functional Φ(g) =
∫

gZ|X(z)μ(X)dX . Then,

Φ(f̂) =

∫
f̂Z|X(z)μ(X)dX and Φ(f) =

∫
fZ|X(z)μ(X)dX.

For any h such that ||h|| is sufficiently small: |h(X)| ≤ a||h||,
∫ h(X,z)μ(X)

f(X)
dX ≤

a||h||, and |f(X) + h(X)| ≥ b|f(X)| for some 0 < a, b < ∞. Also,

Φ(f + h) − Φ(f) = DΦ(f, h) + RΦ(f, h),

where

DΦ(f, h) =

∫
h(X, z)μ(X)

f(X)
dX −

∫
h(X)fZ|X(z)μ(X)

f(X)
dX

RΦ(f, h) =

[∫
h(X, t)μ(X)

f(X)

−h(X)

f(X) + h(X)
dX −

∫
h(X)fZ|X(z)μ(X)

f(X)

−h(X)

f(X) + h(X)
dX

]

.

Thus, for some c < ∞:

|DΦ(f, h)| ≤ c||h|| and |RΦ(f, h)| ≤ c||h||2.

Lemma B3 in Newey (1994) guarantees that ||h||
p
→ 0. As a result, sup |Φ(f̂) −

Φ(f)| ≤ c||h|| + c||h||2
p
→ 0.

Now for h = f̂ − f :

DΦ(f, f̂ − f) =

∫
(
f̂(X, z) − f(X, z)

)
μ(X)

f(X)
dX −

∫
(
f̂(X) − f(X)

)
fZ|X(z)μ(X)

f(X)
dX.
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Notice that the second term converges faster than the first term. Also,

E

(∫
k̃

(
Xi − X

h

)

k

(
Zi − z

h

)
μ(X)

f(X)
dX

)2

=

∫∫ (∫
k̃

(
Xi − X

h

)
μ(X)

f(X)
dX

)2

k2

(
Zi − z

h

)

f(Xi, Zi)dXidZi

= h2L+1R(k)

∫
μ2(X)f(X, z)

f 2(X)
dX

and

E

(∫
k̃

(
Xi − X

h

)

k

(
Zi − z

h

)
μ(X)

f(X)
dX

)

= hL+1

∫
μ(X)f(X, z)

f(X)
dX.

Thus,
√

Nh

∫
h(X, z)μ(X)

f(X)
dX

d
→ N (0, Vaz) .

Hence,
√

NhDΦ(f, f̂ − f)
d
→ N(0, Vaz). Now by Lemma B.3 in Newey (1994) and

Assumption 3.6,
√

NhRΦ(f, h)
p
→ 0 and it follows that

√
Nh

∫
hZ|X(z)μ(X)dX =

√
NhDΦ(f, f̂ − f)

d
→ N(0, Vaz).

Recall that

Vayz =
RL+2(k)f(X, y, z)

f 2(X)
.

Lemma 3.2. Let f̂Y,Z|X(y, z) be the estimator of fY,Z|X(y, z). Suppose that As-

sumptions 3.3–3.7 hold, then,

sup
(y,z)∈R2

∣
∣
∣f̂Y,Z|X(y, z) − fY,Z|X(y, z)

∣
∣
∣

p
→ 0

√
NhL+2

(
f̂Y,Z|X(y, z) − fY,Z|X(y, z)

)
d
→ N (0, Vayz) .
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Proof. By definition f̂Y,Z|X(y, z) = f̂(X,y,z)

f̂(X)
, thus, define the functional Φ(g) =

gY,Z|X(y, z). Then, Φ(f̂) = f̂Y,Z|X(y, z) and Φ(f) = fY,Z|X(y, z). For any H such

that ||H|| is sufficiently small: |h(X)| ≤ a||H||and |f(X) + h(X)| ≥ b|f(X)| for

some 0 < a, b < ∞. Also,

Φ(f + h) − Φ(f) = DΦ(f, h) + RΦ(f, h),

where

DΦ(f, h) =
h(X, y, z) − h(X)fY,Z|X(y, z)

f(X)

RΦ(f, h) =

[
h(X, y, z) − h(X)fY,Z|X(y, z)

f(X)

] [
−h(X)

f(X) + h(X)

]

.

Thus, for some c < ∞:

|DΦ(f, h)| ≤
c||H||
f(X)

and |RΦ(f, h)| ≤
c||H||2

f 2(X)
.

The last implies uniform convergence as before. Now for h = f̂ − f :

DΦ(f, f̂ − f) =
1

f(X)

[
f̂(X, y, z) − f(X, y, z) − fY,Z|X(y, z)(f̂(X) − f(X))

]
.

However, notice that f̂(X, y, z) has
√

NhL+2 rate of convergence, while f̂(X)

converges faster, as
√

NhL. Thus,

√
NhL+2DΦ(f, f̂ − f) =

=
√

NhL+2

[
1

f(X)

(
f̂(X, y, z) − f(X, y, z)

)]

+ op(1)
d
→ N (0, Vayz) .

By Lemma B.3 in Newey (1994) and under Assumption 3.6,
√

NhL+2RΦ(f, h)
p
→ 0
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and it follows that

√
NhL+2

(
f̂Y,Z|X(y, z) − fY,Z|X(y, z)

)
=

√
NhL+2DΦ(f, f̂ − f)

d
→ N(0, Vayz).

Denote Vyzxj by

Vyzxj =
RL−1(k)R(k′)

f(X)
FY,Z|X(y, z)

[
1 − FY,Z|X(y, z)

]
.

Lemma 3.3. Let
̂∂FY,Z|X(y,z)

∂Xj be the estimator of
∂FY,Z|X(y,z)

∂Xj . Suppose that Assump-

tions 3.3–3.7 hold. Then,

sup
(y,z)∈R2

∣
∣
∣
∣
∣

̂∂FY,Z|X(y, z)

∂Xj
−

∂FY,Z|X(y, z)

∂Xj

∣
∣
∣
∣
∣

p
→ 0

√
NhL+2

(
̂∂FY,Z|X(y, z)

∂Xj
−

∂FY,Z|X(y, z)

∂Xj

)
d
→ N(0, Vyzxj).

Proof. Define the functional Φ(g) =
∂GY,Z|X(y,z)

∂Xj . Then, Φ(f̂) =
̂∂FY,Z|X(y,z)

∂Xj and

Φ(f) =
∂FY,Z|X(y,z)

∂Xj . For any h such that ||h|| is sufficiently small: ∂h(X)
∂Xj ≤ a||h||,

|
∫ z

−∞

∫ y

−∞
∂h(X,w,t)

∂Xj dwdt| ≤ a||h||, |
∫ z

−∞

∫ y

−∞ h(X,w, t)dwdt| ≤ a||h||, h(X) ≤

a||h|| and |f(X) + h(X)| ≥ b|f(X)| for some 0 < a, b < ∞. Also,

Φ(f + h) − Φ(f) = DΦ(f, h) + RΦ(f, h),

where

DΦ(f, h) =
1

f 2(X)

[

f(X)

∫ z

−∞

∫ y

−∞

∂h(X,w, t)

∂Xj
dwdt −

∂f(X)

∂Xj

∫ z

−∞

∫ y

−∞
h(X,w, t)dwdt−

−
∂h(X)

∂Xj

∫ z

−∞

∫ y

−∞
f(X,w, t)dwdt − h(X)

∫ z

−∞

∫ y

−∞

(
∂f(X,w, t)

∂Xj
− 2

∂f(X)

∂Xj
fY,Z|X(w, t)dwdt

)]

.
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Thus, for some c < ∞:

|DΦ(f, h)| ≤
c||h||
f 2(X)

and |RΦ(f, h)| ≤
c||h||2

f 3(X)
,

and the uniform convergence result follows. Now for h = f̂ − f :

DΦ(f, f̂ − f) =
1

f(X)

[∫ z

−∞

∫ y

−∞

∂f̂(X,w, t)

∂Xj
dwdt −

∫ z

−∞

∫ y

−∞

∂f(X,w, t)

∂Xj
dwdt

]

+
∂f(X)
∂Xj

f 2(X)

[∫ z

−∞

∫ y

−∞
f̂(X,w, t)dwdt −

∫ z

−∞

∫ y

−∞
f(X,w, t)dwdt

]

−
1

f 2(X)

∫ z

−∞

∫ y

−∞
f(X,w, t)dwdt

[
∂f̂(X)

∂Xj
−

∂f(X)

∂Xj

]

−
∫ z

−∞

∫ y

−∞

(
∂f(X,w, t)

∂Xj
− 2

∂f(X)

∂Xj
fY,Z|X(w, t)dwdt

)[
f̂(X) − f(X)

]
.

However, notice that f̂(X) and
∫ y

−∞

∫ z

−∞ f̂(X,w, t)dtdw converge with rate
√

NhL

and ∂f̂(X)
∂Xj with

√
NhL+2. Moreover,

√
NhL+2

(∫ y

−∞

∫ z

−∞

̂∂f(X,w, t)

∂Xj
dtdw −

∫ y

−∞

∫ z

−∞

∂f(X,w, t)

∂Xj
dtdw

)
d
→

d
→ N

(

0, RL−1(k)R(k′)

∫ z

−∞

∫ y

−∞
f(X,w, t)dwdt

)

.

Additionally,

cov

(∫ y

−∞

∫ z

−∞

̂∂f(X,w, t)

∂Xj
dtdw,

∂f̂(X)

∂Xj

)

=

=
1

Nh2L+2
cov

(

k̃j

(
Xi − X

h

)

K

(
y − Yi

h

)

K

(
z − Zi

h

)

, k̃j

(
Xi − X

h

))

≈
1

NhL+2
RL−1(k)R(k′)

∫ z

−∞

∫ y

−∞
f(X,w, t)dwdt.
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Thus, DΦ(f, h) will converge as follows:

√
NhL+2DΦ(f, f̂ − f) =

√
NhL+2

1

f(X)

∫ z

−∞

∫ y

−∞
fY,Z|X(w, t)dwdt

[
∂f̂(X)

∂Xj
−

∂f(X)

∂Xj

]

+
√

NhL+2
1

f(X)

[∫ z

−∞

∫ y

−∞

∂f̂(X,w, t)

∂Xj
dwdt −

∫ z

−∞

∫ y

−∞

∂f(X,w, t)

∂Xj
dwdt

]

+ op(1)
d
→

d
→ N (0, Vyzxj) .

Now by Lemma B.3 in Newey (1994),
√

NhL+2RΦ(f, h)
p
→ 0 and it follows that

√
NhL+2

(
̂∂FY,Z|X(y, z)

∂Xj
−

∂FY,Z|X(y, z)

∂Xj

)

=
√

NhL+2DΦ(f, f̂−f)
d
→ N(0, Vyzxj).

Denote

Vzxj =
RL−1(k)R(k′)

f(X)
FZ|X(z)

[
1 − FZ|X(z)

]
.

Corollary 3.6. Let
̂∂FZ|X(z)

∂Xj be the estimator of
∂FZ|X(z)

∂Xj . Suppose that Assump-

tions 3.3–3.7 hold. Then,

sup
z∈R

∣
∣
∣
∣
∣

̂∂FZ|X(z)

∂Xj
−

∂FZ|X(z)

∂Xj

∣
∣
∣
∣
∣

p
→ 0

√
NhL+2

(
̂∂FZ|X(z)

∂Xj
−

∂FZ|X(z)

∂Xj

)
d
→ N(0, Vzxj).

3.5.3 Proof of Theorem 3.3

Lemma 3.4. If Assumptions 3.3–3.7 hold, then,

Ncov

(∫
r(X)

∂f̂(X)

∂Xi

dX,

∫
r̃(X)

∂f̂(X)

∂Xj

dX

)

→ cov

(
∂r(X)

∂Xi

,
∂r̃(X)

∂Xj

)
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and

√
N

(∫
r(X)

∂h(X)

∂Xi

dX

)
d
→ N

(

0, V

(
∂r(X)

∂Xi

))

.

Proof. Note that

cov

(∫
r(X)

∂f̂(X)

∂Xi

dX,

∫
r̃(X)

∂f̂(X)

∂Xj

dX

)

=

=
1

Nh2L+2
cov

(∫
r(X)k̃i

(
Xi − X

h

)

dX,

∫
r̃(X)k̃j

(
Xi − X

h

)

dX

)

=
1

N
cov

(∫
∂r(Xi − hσx)

∂(Xi − hσx)
k̃(σx)dσx,

∫
∂r̃(Xi − hσx)

∂(Xi − hσx)
k̃(σx)dσx

)

and

cov

(∫
∂r(Xi − hσx)

∂(Xi − hσx)
k̃(σx)dσx,

∫
∂r̃(Xi − hσx)

∂(Xi − hσx)
k̃(σx)dσx

)

→ cov

(
∂r(X)

∂Xi

,
∂r̃(X)

∂Xj

)

.

Thus, NV
(∫

r(X)∂f̂(X)
∂Xi

dX
)
→ V

(
∂r(X)
∂Xi

)
.

Recall that

Mj(X, y, z) =
1

f(X)

(∫ +∞

y

∫ +∞

z

∂μ(X,w, t)

∂Xj
dtdw −

∂f(X)

∂Xj

1

f(X)

∫ +∞

y

∫ +∞

z

μ(X,w, t)dtdw

)

.

Lemma 3.5. If Assumptions 3.3–3.7 hold, then,

√
N

∫∫∫
μ(X, y, z)

f(X)

∫ y

−∞

∫ z

−∞

∂h(X,w, t)

∂Xj
dtdwdXdydz

d
→ N (0, V (Mj(X, y, z))) .

In addition,

Ncov

(∫
r(X)

∂h(X)

∂X i
dX,

∫∫∫
μ(X, y, z)

f(X)

∫ y

−∞

∫ z

−∞

∂h(X,w, t)

∂Xj
dtdwdXdydz

)

→

→ cov

(
∂r(X)

∂X i
,Mj(X, y, z)

)
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and

Ncov

(∫∫∫
μ(X, y, z)

f(X)

∫ y

−∞

∫ z

−∞

∂h(X,w, t)

∂X i
dtdwdXdydz,

∫∫∫
μ(X, y, z)

f(X)

∫ y

−∞

∫ z

−∞

∂h(X,w, t)

∂Xj
dtdwdXdydz

)

→ cov (Mi(X, y, z),Mj(X, y, z)) .

Proof. First, note that

∫
μ(X, y, z)K

(
y − Yi

h

)

dy = μ(X, z) −
∫ ∫ y

−∞
μ(X,w, z)dwdK

(
y − Yi

h

)

=

= μ(X, z) −
∫ Yi

−∞
μ(X,w, z)dw.

Thus,

∫ ∫
μ(X, y, z)K

(
y − Yi

h

)

K

(
z − Zi

h

)

dydz = μ(X) −
∫ Zi

−∞

∫ Yi

−∞
μ(X,w, t)dwdt.

Then,

V

(∫∫∫
μ(X, y, z)

f(X)

∫ y

−∞

∫ z

−∞

∂h(X,w, t)

∂Xj
dtdwdXdydz

)

=

=
1

Nh2L+2
V

(∫∫∫
μ(X, y, z)

f(X)
k̃j

(
Xi − X

h

)

K

(
y − Yi

h

)

K

(
z − Zi

h

)

dXdydz

)

,

where

E

(∫∫∫
μ(X, y, z)

f(X)
k̃j

(
Xi − X

h

)

K

(
y − Yi

h

)

K

(
z − Zi

h

)

dXdydz

)2

=

= h2L+2

∫∫∫
[Mj(X, y, z)]2 f(X, y, z)dXdydz
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and

E

(∫∫∫
μ(X, y, z)

f(X)
k̃j(X)K

(
y − Yi

h

)

K

(
z − Zi

h

)

dXdydz

)

=

= hL+1

∫∫∫
Mj(X, y, z)f(X, y, z)dXdydz.

Thus,

V

(∫∫∫
μ(X, y, z)

f(X)

∫ y

−∞

∫ z

−∞

∂h(X,w, t)

∂Xj
dtdwdXdydz

)

=

=
1

N

[∫∫∫
f(X, y, z)M2

j (X, y, z)dXdydz −

(∫∫∫
f(X, y, z)Mj(X, y, z)dXdydz

)2
]

.

The result for the first covariance follows from

E

(∫
r(X)

∂h(X)

∂X i
dX

∫∫∫
μ(X, y, z)

f(X)

∫ y

−∞

∫ z

−∞

∂h(X,w, t)

∂Xj
dtdwdXdydz

)

=

= h2L+2

∫∫∫
∂r(X)

∂X i
Mj(X, y, z)f(X, y, z)dXdydz.

The second covariance is obtained by analogy with variance.

Recall the notation:

Gi =

∫∫∫
∂GY,Z|X(y, z)

∂X i
μ(X, y, z)dydzdX

G̃ =
L∑

j=1

(∫∫∫
∂GY,Z|X(y, z)

∂Xj
μ(X, y, z)dydzdX

)2

F̄Y,Z|X(X) =

∫∫
FY,Z|X(y, z)μ(X, y, z)dydz

∫
F̄Y,Z|X(X)dX = FY,Z|X

F̄Y,Z|XX(X) =
F̄Y,Z|X(X)

f(X)
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and F = (F1, ..., FL)′. Also denote

VFj
= V (Mj(X, y, z)) + V

(
∂F̄Y,Z|XX(X)

∂Xj

)

− 2cov

(

Mj(X, y, z),
∂F̄Y,Z|XX(X)

∂Xj

)

and

Cij = cov(Mi(X, y, z),Mj(X, y, z)) − cov

(

Mi(X, y, z),
∂F̄Y,Z|XX(X)

∂Xj

)

−cov

(

Mj(X, y, z),
∂F̄Y,Z|XX(X)

∂X i

)

+ cov

(
F̄Y,Z|XX(X)

∂X i
,
F̄Y,Z|XX(X)

∂Xj

)

.

Lemma 3.6. Let F̂j be the estimator of Fj. If Assumptions 3.3–3.7 hold, then,

||F̂j − Fj||
p
→ 0 and

√
N
(
F̂j − Fj

)
d
→ N

(
0, VFj

)
.

In addition, Ncov(F̂i, F̂j) → Cij.

Proof. From above,

̂∂FY,Z|X(y, z)

∂Xj
−

∂FY,Z|X(y, z)

∂Xj
=

1

f(X)

∫ y

−∞

∫ z

−∞

∂h(X,w, t)

∂Xj
dtdw −

FY,Z|X(y, z)

f(X)

∂h(X)

∂Xj
+ Res.

Thus, if we denote r(X) = F̄Y,Z|XX(X) and use Lemmas 3.4 and 3.5, we obtain

the desired result. The covariance follows by analogy.

Now define Φ(G) =
∫∫∫ ∂GY,Z|X (y,z)

∂Xi μ(X,y,z)dydzdX
√
∑L

j=1

(
∫∫∫ ∂GY,Z|X (y,z)

∂Xj μ(X,y,z)dydzdX

)2
. Then, Φ(F̂ ) = β̂i and

Φ(F ) = βi.

For any h such that ||h|| is sufficiently small: |Hi| ≤ a||h|| for all i, and

|F̃ + H̃| ≥ b|F̃ | for some 0 < a, b < ∞. Also,

Φ(F + H) − Φ(F ) = DΦ(F,H) + RΦ(F,H),
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where

DΦ(F,H) = HiF̃
−1.5(F̃ − F 2

i ) −
∑

j 6=i

HjF̃
−1.5FiFj .

And for some c < ∞:

|DΦ(F,H)| ≤
c||h||

F̃ 1.5
and |RΦ(F,H)| ≤

c||h||2

F̃ 2.5
.

Thus, by Lemma B3 in Newey (1994), sup |Φ(F + H) − Φ(F )|
p
→ 0. Now for

H = F̂ − F :

DΦ(F, F̂ − F ) = (F̂i − Fi)F̃
−1.5(F̃ − F 2

i ) −
∑

j 6=i

(F̂j − Fj)F̃
−1.5FiFj .

By taking into account the results of Lemma 3.6,

√
NDΦ(F, F̂ − F )

d
→ N(0, Vβi

),

where

Vβi
= F̃−3





(
∑

j 6=i

F 2
j

)2

VFi
+ F 2

i

∑

j 6=i

F 2
j VFj

− 2(F̃ − F 2
i )Fi

∑

j 6=i

FjCij + F 2
i

∑

j 6=i,k 6=j,i

FjFkCjk



 .

Now by Lemma B.3 in Newey (1994),
√

NRΦ(F,H)
p
→ 0 and it follows that

√
N
(
β̂i − βi

)
=

√
NDΦ(F, F̂ − F )

d
→ N(0, Vβi

).
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3.5.4 Proof of Theorem 3.4

Denote

VdXj = VX

(
∂FY,Z|X(y, z)

∂Xj

μ(X)

f(X)

)

− VX(FY,Z|X(y, z)Mj(X))+

+EX(Mj(X)FY,Z|X(y, z)(1 − FY,Z|X(y, z))).

Lemma 3.7. If Assumptions 3.3–3.7 hold, then,

√
N

∫ ( ̂∂FY,Z|X(y, z)

∂X i
−

∂FY,Z|X(y, z)

∂X i

)

μ(X)dX
d
→ N (0, VdXi) .

Proof. From before,

̂∂FY,Z|X(y, z)

∂Xj
−

∂FY,Z|X(y, z)

∂Xj
=

1

f(X)

∫ y

−∞

∫ z

−∞

∂h(X,w, t)

∂Xj
dtdw −

FY,Z|X(y, z)

f(X)

∂h(X)

∂Xj
+ Res.

Thus, if we denote r(X) =
FY,Z|X(y,z)μ(X)

f(X)
and use Lemma 3.4:

√
N

∫
FY,Z|X(y, z)μ(X)

f(X)

∂h(X)

∂Xj
dX

d
→

d
→ N

(

0, VX

(
∂FY,Z|X(y, z)

∂Xj

μ(X)

f(X)
+ FY,Z|X(y, z)Mj(X)

))

.

By analogy with Lemma 3.5, one can obtain

√
N

∫
μ(X)

f(X)

∫ y

−∞

∫ z

−∞

∂h(X,w, t)

∂Xj
dtdwdX

d
→

d
→ N

(
0,
[
EX(M2

j (X)FY,Z|X(y, z)) −
(
EX(Mj(X)FY,Z|X(y, z))

)2])
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and

Ncov

(∫
μ(X)

f(X)

∫ y

−∞

∫ z

−∞

∂h(X,w, t)

∂Xj
dtdwdX,

∫
FY,Z|X(y, z)μ(X)

f(X)

∂h(X)

∂Xj
dX

)

=

Ncov

(

Mj(Xi)K

(
y − Yi

h

)

K

(
z − Zi

h

)

,
∂FY,Z|X(y, z)

∂Xj

μ(Xi)

f(Xi)
+ FY,Z|Xi

(y, z)Mj(Xi)

)

→

→ covX

(

Mj(X)FY,Z|X(y, z),
∂FY,Z|X(y, z)

∂Xj

μ(Xi)

f(Xi)
+ FY,Z|Xi

(y, z)Mj(Xi)

)

=

= covX

(

Mj(X)FY,Z|X(y, z),
∂FY,Z|X(y, z)

∂Xj

μ(Xi)

f(Xi)

)

+ VX(Mj(X)FY,Z|X(y, z)).

And the result will follow.

Recall the notation φ(z) = g(G−1(z)) and define

Vφ(z) =
F̈ 2

Z|X(z)

β2
i

Vaz.

Lemma 3.8. Let ˆφ(z) be the estimator of φ(z). Then, under Assumptions 3.3–

3.7,

sup
z

∣
∣
∣φ̂(z) − φ(z)

∣
∣
∣

p
→ 0

√
Nh

(
ˆφ(z) − φ(z)

)
d
→ N(0, Vφ(z)).

Proof. Define the functional

Φ(G) =

∫ ∂GZ|X(z)

∂Xi μ(X)dX

β̂i(G)
∫ ∂GZ|X(z)

∂z
μ(X)dX

.

Then, Φ(F̂ ) = φ̂(z) and Φ(F ) = φ(z). In order to simplify the notation, denote

F̈Z|X(z) =

∫
∂FZ|X(z)

∂X i
μ(X)dX
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HX =

∫
∂HZ|X(z)

∂X i
μ(X)dX

Hβ = β̂i − βi

Hz =

∫
hZ|X(z)μ(X)dX.

For any h such that ||h|| is sufficiently small: |HX | ≤ a||h||, |Hβ| ≤ a||h||, |Hz| ≤

a||h|| for some 0 < a < ∞. Also,

Φ(F + H) − Φ(F ) = DΦ(F,H) + RΦ(F,H),

where

DΦ(F,H) =
φ(z)HX

F̈Z|X(z)
−

φ(z)

βi

Hβ −
F̈Z|X(z)

βi

Hz.

Thus, for some c < ∞:

|DΦ(F,H)| ≤ c||h|| and |RΦ(f, h)| ≤ c||h||2.

It implies that sup |Φ(F̂ ) − Φ(F )|
p
→ 0. By Lemma 3.1, Hz converges with the

speed
√

Nh; by Lemma 3.7, HX converges as
√

N ; and by Theorem 3.3, Hβ has

rate
√

N . Thus, only Hz defines the limiting distribution of DΦ(F,H), hence,

√
NhDΦ(F, F̂ − F )

d
→ N(0, Vφ(z)),

where Vφ(z) =
F̈ 2

Z|X(z)

β2
i

Vaz.

Now by Lemma B.3 in Newey (1994),
√

NhRΦ(F,H)
p
→ 0 and it follows that

√
Nh

(
ˆφ(z) − φ(z)

)
d
→ N(0, Vφ(z)).
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Lemma 3.9. If Assumptions 3.3–3.7 hold, then,

Ncov

(∫ u1

0

∫
hZ|X(z)r(X, z)dXdz,

∫ u2

0

∫
hZ|X(z)r̃(X, z)dXdz

)

→

→ cov
(
r(X, z)fZ|X(z)1(z < u1), r̃(X, z)fZ|X(z)1(z < u2)

)
.

Proof. Note the following:

N

∫ u1

0

∫
hZ|X(z)r(X, z)dXdz =

1

hL+1

∑∫ u1

0

∫
r(X, z)k̃

(
Xi − X

h

)

k

(
Zi − z

h

)

dXdz

=
hL+1

hL+1

∑∫ u1

0

∫
r(Xi − σxh, Zi − σzh)k̃(σx)k(σz)dσxdσz,

where

∫ u1

0

∫
r(Xi − σxh, Zi − σzh)k̃(σx)k(σz)dσxdσz → r(Xi, Zi)1(Zi < u1).

And the result will follow.

Recall the following notation:

Vu = V

(

fZ|X(z)
F̈Z|X(z)μ(X)

βiφ2(z)
1(z < u)

)

Vc = V

(

fZ|X(z)
(1 − z)F̈Z|X(z)μ(X)

βiφ2(z)

)

and

Σuc = cov

(

fZ|X(z)
F̈Z|X(z)μ(X)

βiφ2(z)
1(z < u), fZ|X(z)

(1 − z)F̈Z|X(z)μ(X)

βiφ2(z)

)

.

Lemma 3.10. If Assumptions 3.3–3.7 hold, then,

√
N

∫ u

0

φ̂(z) − φ(z)

φ2(z)
dz

d
→ N (0, Vu)
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√
N

∫ 1

0

(1 − z)(φ̂(z) − φ(z))

φ2(z)
dz

d
→ N (0, Vc)

Ncov

(∫ u

0

φ̂(z)

φ2(z)
dz,

∫ 1

0

(1 − z)φ̂(z)

φ2(z)
dz

)

→ Σuc

Ncov

(∫ u

0

φ̂(z)

φ2(z)
dz, φ̂(z)

)

→ 0 and Ncov

(∫ 1

0

(1 − z)φ̂(z)

φ2(z)
dz, φ̂(z)

)

→ 0.

Proof. Recall from Lemma 3.8 that

√
Nh(φ̂(z) − φ(z)) =

√
Nh

(

−
F̈Z|X(z)

βi

Hz

)

+ op(1).

To obtain Vu use the previous lemma with r(X, z) =
F̈Z|X(z)μ(X)

βiφ2(z)
, for Vc take

r(X, z) = (1 − z)
F̈Z|X(z)μ(X)

βiφ2(z)
and for Σuc substitute both functions accordingly.

To obtain zero covariances, notice that φ̂(z) converges slower than the integrals.

Proof of Theorem 3.4. Define the functional Φ(g) =
∫ u

0
1

g(z)
dz −

∫ 1

0
1−z
g(z)

dz.

Then, Φ(φ̂) = φ̂(z) and Φ(φ) = φ(z). For any h such that ||h|| is sufficiently

small: |
∫ u

0
hφ(z)dz| ≤ a||h||, |φ(z)| > φ and |φ(z) + hφ(z)| ≥ b|φ(z)| for some

0 < a, b < ∞. Also,

Φ(φ + hφ) − Φ(φ) = DΦ(φ, hφ) + RΦ(φ, hφ),

where

DΦ(φ, hφ) = −
∫ u

0

hφ(z)

φ2(z)
dz +

∫ 1

0

(1 − z)hφ(z)

φ2(z)
dz

RΦ(φ, hφ) =

∫ u

0

h2
φ(z)

φ2(z)(φ(z) + hφ(z))
dz −

∫ 1

0

(1 − z)h2
φ(z)

φ2(z)(φ(z) + hφ(z))
dz.
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Thus, for some c < ∞:

|DΦ(φ, hφ)| ≤
c||h||
φ2

and |RΦ(φ, hφ)| ≤
c||h||2

φ3
.

And the uniform convergence follows. Now by Lemma 3.10:

√
N

∫ u

0

hφ(z)

φ2(z)
dz

d
→ N (0, Vu)

√
N

∫ 1

0

(1 − z)hφ(z)

φ2(z)
dz

d
→ N (0, Vc)

Ncov

(∫ u

0

hφ(z)

φ2(z)
dz,

∫ 1

0

(1 − z)hφ(z)

φ2(z)
dz

)

→ Σuc.

Thus,
√

NDΦ(φ, hφ)
d
→ N(0, VG−1(u)), where VG−1(u) = Vu +Vc−2Σuc. By Lemma

B.3 in Newey (1994),
√

NR(φ, hφ)
p
→ 0 and it follows that

√
N
(
Ĝ−1(u) − G−1(u)

)
d
→ N(0, VG−1(u)).

3.5.5 Proof of Theorem 3.5.

Lemma 3.11. If Assumptions 3.3–3.7 hold, then

Nhcov

(∫ u

0

1

φ̂(z)
dz, φ̂(z)

)

→ 0 and Nhcov

(∫ 1

0

1 − z

φ̂(z)
dz, φ̂(z)

)

→ 0.

Proof. Notice that

√
N

∫ u

0

1

φ̂(z) − φ(z)
dz =

√
N

∫ u

0

−φ̂(z) + φ(z)

φ2(z)
dz + op(1).

Then, by Lemma 3.10, the results follow.

Lemma 3.12. Let ĝ(G−1(z)) and Ĝ−1(u) be the estimators of g(G−1(z)) and
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G−1(u). Then, under Assumptions 3.3–3.7,

sup
z

∣
∣
∣ĝ(Ĝ−1(z)) − g(G−1(z))

∣
∣
∣

p
→ 0

√
Nh

(
ĝ(Ĝ−1(z)) − g(G−1(z))

)
d
→ N(0, Vg(G−1(z))).

Proof. First, notice the following:

ĝ(Ĝ−1(z)) − g(G−1(z)) = ĝ(Ĝ−1(z)) − ĝ(G−1(z)) + ĝ(G−1(z)) − g(G−1(z))

=
∂ĝ(t)

∂t

∣
∣
∣
∣
t=G−1(z)

(
Ĝ−1(z) − G−1(z)

)
+ φ̂(z) − φ(z) + Res,

where |Res| ≤ a||Ĝ−1(z) − G−1(z)||2 for some 0 < a < ∞. In addition,

∂ĝ(t)

∂t

∣
∣
∣
∣
t=G−1(z)

= φ̂′(z)φ̂(z),

and, as a result,

φ̂′(z)φ̂(z)
(
Ĝ−1(z) − G−1(z)

)
= φ′(z)φ(z)

(
Ĝ−1(z) − G−1(z)

)
+ φ(z)hφ′(z)

(
Ĝ−1(z) − G−1(z)

)

+φ′(z)hφ

(
Ĝ−1(z) − G−1(z)

)
+ hφhφ′

(
Ĝ−1(z) − G−1(z)

)
.

By Lemma 3.8, sup |hφ|
p
→ 0, and by Theorem 3.4, sup

(
Ĝ−1(z) − G−1(z)

)
p
→

0, thus, we need to show only that |hφ′ | is bounded for uniform convergence of

ĝ(Ĝ−1(z)) − g(G−1(z)).

Notice that

φ′(z) = φ(z)

(∫ ∂fZ|X(z)

∂Xi μ(X)dX
∫ ∂FZ|X(z)

∂Xi μ(X)dX
−

∫ ∂fZ|X(z)

∂z
μ(X)dX

∫
fZ|X(z)μ(X)dX

)

.
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By Taylor expansion, we obtain

hφ′ = φ̂′(z) − φ′(z) =
φ′(z)

φ(z)
hφ +

φ(z)
∫ ∂FZ|X(z)

∂Xi μ(X)dX
h1 − φ(z)

∫ ∂fZ|X(z)

∂Xi μ(X)dx
[∫ ∂FZ|X(z)

∂Xi μ(X)dX
]2 HX

−
φ(z)

∫
fZ|X(z)μ(X)dX

h2 + φ(z)

∫ ∂fZ|X(z)

∂z
μ(X)dX

[∫
fZ|X(z)μ(X)dX

]2 h3 + Res2.

Now we show that |h1| is bounded. Note that

∂fZ|X(z)

∂X i
=

1

f(X)

∂f(X, z)

∂X i
−

f(X, z)

f 2(X)

∂f(X)

∂X i
.

Then,

h1 =

∫
∂hZ|X(z)

∂X i
μ(X)dX =

∫
μ(X)

f(X)

∂h(X, z)

∂X i
dX −

∫
h(X)μ(X)

f 2(X)

∂f(X, z)

∂X i
dX

−
∫

μ(X)

f 2(X)

∂f(X)

∂X i
h(X, z)dX −

∫
μ(X)

f 2(X)

∂h(X)

∂X i
f(X, z)dX+

+2

∫
h(X)μ(X)

f 3(X)

∂f(X)

∂X i
f(X, z)dX + Res3.

For any sufficiently small ||h||: |
∫

r(X)∂h(X,z)
∂Xi dX| ≤ a||h||, |

∫
h(X)r̃(X)dX| ≤

a||h||, as well as |
∫

r̄(X)h(X, z)dX| ≤ a||h|| and |
∫

r̈(X)∂h(X)
∂Xi dX| ≤ a||h|| for

some 0 < a < ∞. Moreover, by Taylor Theorem, |Res3| ≤ b||h||2 for some

0 < b < ∞. Thus, for some 0 < c < ∞, |h1| ≤ c||h|| + b||h||2.

Note that by Lemma 3.1 and 3.7, |HX | ≤ d||h|| + d||h||2 and |h3| ≤ d||h|| +

d||h||2 for some 0 < d < ∞. For the uniform convergence of ĝ(Ĝ−1(z))−g(G−1(z)),

we are left to show boundedness of h2. Notice that

∂fZ|X(z)

∂z
=

1

f(X)

∂f(X, z)

∂z
.
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Hence,

h3 =

∫
∂hZ|X(z)

∂z
μ(X)dX + Res4 =

∫
μ(X)

f(X)

∂h(X, z)

∂z
dX −

∫
h(X)μ(X)

f 2(X)

∂f(X, z)

∂z
dX + Res4 + Res5.

For some 0 < f < ∞, by Taylor Theorem and previous results, |h3| ≤ e||h|| +

e||h||2, implying that for some 0 < f < ∞, by Taylor theorem, |Res2| ≤ f ||h||2,∣
∣
∣
∣

∂ĝ(t)
∂t

∣
∣
∣
t=G−1(z)

∣
∣
∣
∣ ≤ f ||h|| + f ||h||2 and

∣
∣
∣ĝ(Ĝ−1(z)) − g(G−1(z))

∣
∣
∣ ≤ f ||h|| + f ||h||2.

We know from Theorem 3.4 and Lemma 3.8 that ˆφ(z) converges slower than

Ĝ−1(z), and by Lemma 3.11, Nhcov
(
Ĝ−1(z), φ̂(z)

)
→ 0. Thus,

√
Nh

(
ĝ(Ĝ−1(z)) − g(G−1(z))

)
d
→ N

(
0, Vg(G−1(z))

)
,

where Vg(G−1(z)) = Vφ(z).

Denote θ =
(
−1

2
(2
∑L

i=1 βiX
i + G−1(y) + G−1(z)), 1

2
(G−1(z) − G−1(y))

)
.

Lemma 3.13. Let f̂δ,c(θ) be the estimator of fδ,c(θ). Then, under Assumptions

3.3–3.7,

sup
θ

∣
∣
∣f̂δ,c(θ) − fδ,c(θ)

∣
∣
∣

p
→ 0

√
NhL+2(f̂δ,c(θ) − fδ,c(θ))

d
→ N(0, 4φ2(y)φ2(z)Vayz).

Proof. Define the functional Φ(s,G) = 2s(y)s(z)gY,Z|X(y, z). Then, Φ(φ̂, F̂ ) =

f̂δ,c(θ) and Φ(φ, F ) = fδ,c(θ). For any h such that ||h|| is sufficiently small: |h(y)| ≤

a||h|| and |hY,Z|X(y, z)| ≤ a||h|| for some 0 < a < ∞. Also,

Φ(φ + h, F + H) − Φ(φ, F ) = DΦ(φ, F, h,H) + RΦ(φ, F, h,H),
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where

DΦ(φ, F, h,H) = 2φ(y)φ(z)hY,Z|X(y, z) + 2φ(y)fY,Z|X(y, z)hg(z) + 2φ(z)fY,Z|X(y, z)hg(y).

Thus, for some c < ∞:

|DΦ(φ, F, h,H)| ≤ c||h|| and |RΦ(φ, F, h,H)| ≤ c||h||2.

By Lemma 3.8, h(z) converges with rate
√

Nh, while by Theorem 3.2, hY,Z|X(y, z)

has speed
√

NhL+2. Thus,

√
NhL+2DΦ(φ, F, h,H)

d
→ N(0, 4φ2(y)φ2(z)Vayz).

Now by Lemma B.3 in Newey (1994),
√

NhL+2RΦ(φ, F, h,H)
p
→ 0 and it follows

that
√

NhL+2(f̂δ,c(θ) − fδ,c(θ))
d
→ N(0, 4φ2(y)φ2(z)Vayz).

Proof of Theorem 3.5. Note that by Taylor expansion,

f̂δ,c(θ̂) − fδ,c(θ) = f̂δ,c(θ̂) − f̂δ,c(θ) + f̂δ,c(θ) − fδ,c(θ)

=
∂f̂δ,c(θ)

∂θ1

(θ̂1 − θ1) +
∂f̂δ,c(θ)

∂θ2

(θ̂2 − θ2) + f̂δ,c(θ) − fδ,c(θ) + Res

=
∂fδ,c(θ)

∂θ1

(θ̂1 − θ1) +
∂fδ,c(θ)

∂θ2

(θ̂2 − θ2) + f̂δ,c(θ) − fδ,c(θ)

+
∂hδ,c(θ)

∂θ1

(θ̂1 − θ1) +
∂hδ,c(θ)

∂θ2

(θ̂2 − θ2) + Res,

where θ1 = −0.5
(
2
∑L

i=1 βiX
i + G−1(y) + G−1(z)

)
and θ2 = 0.5(G−1(z)−G−1(y)).

Denote R(fδ,c, hδ,c) =
∂hδ,c(θ)

∂θ1
(θ̂1 − θ1) +

∂hδ,c(θ)

∂θ2
(θ̂2 − θ2) + Res.

Now if we show that
∣
∣
∣
∂hδ,c(θ)

∂θ1

∣
∣
∣ and

∣
∣
∣
∂hδ,c(θ)

∂θ2

∣
∣
∣ are bounded by ||h||, then |Res|
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and
∣
∣
∣
∂hδ,c(θ)

∂θi
(θ̂i − θi)

∣
∣
∣ will be bounded by ||h||2 due to the Taylor Theorem. As a

result, we will obtain uniform convergence of f̂δ,c(θ̂) − fδ,c(θ).

First, notice that

∂θ1

∂y
=

∂θ2

∂y
= −

1

2φ(y)
;

∂θ1

∂z
= −

1

2φ(z)
;

∂θ2

∂z
=

1

2φ(z)
.

Moreover,

∂hδ,c(θ)

∂y
=

∂hδ,c(θ)

∂θ1

∂θ1

∂y
+

∂hδ,c(θ)

∂θ2

∂θ2

∂y
= −

1

2φ(y)

[
∂hδ,c(θ)

∂θ1

+
∂hδ,c(θ)

∂θ2

]

and

∂hδ,c(θ)

∂z
=

∂hδ,c(θ)

∂θ1

∂θ1

∂z
+

∂hδ,c(θ)

∂θ2

∂θ2

∂z
= −

1

2φ(z)

[
∂hδ,c(θ)

∂θ1

−
∂hδ,c(θ)

∂θ2

]

.

Hence,

∂hδ,c(θ)

∂θ1

= −φ(y)
∂hδ,c(θ)

∂y
− φ(z)

∂hδ,c(θ)

∂z

and

∂hδ,c(θ)

∂θ2

= −φ(y)
∂hδ,c(θ)

∂y
+ φ(z)

∂hδ,c(θ)

∂z
.

In addition, fδ,c(θ) = 2φ(y)φ(z)fY,Z|X(y, z), implying that

∂hδ,c(θ)

∂y
= 2fY,Z|X(y, z)φ′(y)hφ + 2fY,Z|X(y, z)φ(z)hφ′ + 2φ′(y)φ(z)hY,Z|X(y, z)

+2φ(y)φ(z)
∂hY,Z|X(y, z)

∂y
+ 2φ(y)

∂fY,Z|X(y, z)

∂y
hφ + 2φ(z)

∂fY,Z|X(y, z)

∂y
hφ + Res2.

Notice that for sufficiently small ||h|| and some 0 < a < ∞:
∣
∣
∣
∂hδ,c(θ)

∂y

∣
∣
∣ ≤ a||h|| +

a||h||2 by previous results and Taylor Theorem. The same result holds for
∣
∣
∣
∂hδ,c(θ)

∂y

∣
∣
∣
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by analogy, and as a result, for
∂hδ,c(θ)

∂θi
. Thus, sup

∣
∣
∣f̂δ,c(θ̂) − fδ,c(θ)

∣
∣
∣

p
→ 0.

Now recall that by Theorems 3.3 and 3.4, (θ̂1− θ1) and (θ̂2− θ2) converge with

speed
√

N , while by Lemma 3.13, f̂δ,c(θ)−fδ,c(θ) has rate
√

NhL+2. Additionally,
√

NhL+2R(fδ,c, hδ,c)
p
→ 0 as before by Lemma B3 in Newey (1994). Thus, the

result follows:

√
NhL+2

(
f̂δ,c(θ̂) − fδ,c(θ)

)
d
→ N(0, 4φ2(y)φ2(z)Vayz).
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