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Abstract

Introduction: Most climate-health studies focus on temperature; however, less is known about 

health effects of exposure to atmospheric moisture. Humid air limits sweat evaporation from the 

body and can in turn exert strain on the cardiovascular system. We evaluated associations of 

long-term exposure to summer specific humidity with cardiovascular disease (CVD), coronary 

heart disease (CHD) and cerebrovascular disease (CBV) hospitalization.

Methods: We built an open cohort consisting of ~63 million fee-for-service Medicare 

beneficiaries, aged ≥65, living in the contiguous US (2000–2016). We assessed zip code level 

summer average specific humidity and specific humidity variability, based on daily estimates from 

the Gridded Surface Meteorological dataset (~4km spatial resolution). To estimate associations 

of summer specific humidity with first CVD, CHD, and CBV hospitalization, we used Cox-

equivalent Poisson models adjusted for individual and area-level socioeconomic status indicators, 

temperature, and winter specific humidity.

Results: Higher summer average specific humidity was associated with an increased risk of 

CVD, CHD, and CBV hospitalization. We found hazard ratios (HRs) of 1.07 (95%CI: 1.07, 

1.08) for CVD hospitalization, 1.08 (95%CI: 1.08, 1.09) for CHD hospitalization, and 1.07 

(95%CI: 1.07, 1.08) for CBV hospitalization per IQR increase (4.0 g of water vapor/kg of dry 

air) in summer average specific humidity. Associations of summer average specific humidity were 

strongest for beneficiaries eligible for Medicaid and for beneficiaries with an unknown or other 

race. Higher summer specific humidity variability was also associated with increased risk of CVD, 

CHD, and CBV hospitalization. Associations were not affected by adjustment for temperature and 

regions of the US, as well as exclusion of potentially prevalent cases.

Conclusion: Long-term exposure to higher summer average specific humidity and specific 

humidity variability were positively associated with CVD hospitalization. As global warming 

could increase humidity levels, our findings are important to assess potential health impacts of 

climate change.

Keywords

Climate; Humidity; Moisture; Cardiovascular disease

1. Introduction

Projections show that the global surface temperature will continue to increase for the next 

several decades (Masson-Delmotte et al., 2021). Most studies that evaluate associations 

of climate on human health focus on temperature, where short- and long-term exposure 

to high and low temperatures has been associated with several adverse health outcomes 

(Zanobetti and O’Neill, 2018; Yu et al., 2012; Ye et al., 2012; Zafeiratou et al., 2021). 

Besides temperature, atmospheric moisture is an important climate component that might 

affect human health. Studies show that the stress put on the humans by high temperatures 

is higher when atmospheric moisture levels are higher (Eg and Pw, 2015; McGregor and 

Vanos, 2018; Davis et al., 2016). As global warming will increase evaporation of water, 

higher atmospheric moisture levels across much of the globe are expected in the future 

(Baldwin et al., 2023; Held and Soden, 2006).
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There are several ways to assess atmospheric moisture. Relative humidity is the ratio of 

the amount of moisture in the air compared to the moisture content of moisture-saturated 

air at the same temperature. In other words, relative humidity levels can change if the air 

temperature changes but the actual moisture content remains constant (Davis et al., 2016; 

Baldwin et al., 2023). Mass-based atmospheric moisture variables, such as specific humidity 

(the mass of moisture per mass of air) and absolute humidity (the mass of moisture per 

total volume of air), are less sensitive to changing air temperatures. Therefore, mass-based 

atmospheric moisture variables seem to be more useful indicators to make inferences about 

health effects of the air’s actual amount of moisture (Davis et al., 2016; Baldwin et al., 

2023).

Atmospheric moisture is seldom the exposure of interest in environmental health studies 

(Davis et al., 2016). Most studies include an atmospheric moisture indicator as a confounder 

or effect modifier, so effect estimates of atmospheric moisture indicators are rarely reported. 

The few studies that evaluated health effects of atmospheric moisture reported mixed effects 

of short-term exposure to relative humidity with mortality (Armstrong et al., 2019; Zeng et 

al., mdpi.com 2017;; Rocklöv and Forsberg, 2010). Barreca observed a U-shaped relation of 

monthly mean specific humidity with all-cause mortality in the US in models adjusted for 

temperature (Barreca, 2012). Furthermore, a study in the US showed that absolute humidity 

was the most frequently selected top predictive weather indicator for daily all-cause and 

cause-specific mortality counts (Zhang et al., 2014). To the best of our knowledge, there are 

no studies that evaluated associations of long-term exposure to atmospheric moisture with 

health outcomes.

Specific humidity might be a good indicator of physiologically stressful heat exposure. High 

specific humidity limits sweat evaporation from the body. Insufficient cooling processes 

can lead to an increase in the body core temperature which in turn can exert strain on 

the cardiovascular system (Davis et al., 2016). We hypothesized that long-term exposure to 

high specific humidity levels might contribute to pathophysiological mechanisms and affect 

the development of cardiovascular diseases (CVDs). As individuals can to a certain extent 

acclimatize to their local climate, we hypothesized that higher specific humidity variability 

may make it harder to acclimatize and that repeated short-term exposures might lead to 

higher CVD risks.

The aim of our analysis was to evaluate associations of long-term exposure to summer 

specific humidity with CVD hospitalizations in an American elderly population (~63 million 

fee-for-service Medicare beneficiaries aged ≥65 years). We focused on summer average 

specific humidity and summer specific humidity variability. Furthermore, we evaluated 

whether associations of exposure to summer specific humidity with CVD hospitalization 

were modified by individual demographics, temperature, air pollutants, greenness and blue 

space. We hypothesized that associations of summer specific humidity would be stronger 

in areas with higher temperatures and air pollutants, or lower levels of greenness and blue 

space, as these exposures may adversely affect the cardiovascular system, and therefore 

individuals may become more vulnerable to summer specific humidity exposure.

Klompmaker et al. Page 3

Environ Int. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Methods

2.1. Study population

Medicare is the US federal health insurance program for individuals aged 65+ and for 

younger people with disability status. We built an open cohort by combining data from 

the Medicare Provider Analysis and Review (MEDPAR) and Medicare denominator files. 

All fee-for-service Medicare beneficiaries, aged 65+, living in the contiguous US from 

January 1, 2000 through December 31, 2016 were included in this open cohort. We 

started follow-up for each beneficiary on January 1, 2000 or January 1 of the year 

following entry into the cohort. Participants in the cohort were followed until the first CVD 

hospital admission, or until they reached the end of the follow-up (December 2016), died, 

or were censored (because they emigrated or switched to Medicare-Health Maintenance 

Organisations (HMO), private plans).

This study was exempt from informed consent requirements and was approved by the 

institutional review board at the Harvard T H Chan School of Public Health.

2.2. Outcome definition

We obtained information about CVD hospital admissions from the MEDPAR file. To 

classify hospital admissions as CVD related, International Classification of Disease, Ninth 
Edition (ICD-9) codes were used from 2000 through the third quarter of 2015, and ICD-10 

(from the Tenth Edition) codes were used from the fourth quarter of 2015. We looked at 

first hospital admissions with a primary discharge diagnosis of CVD (ICD-9 codes: 390–

459, ICD-10 codes: I00-I99), coronary heart disease (ICD-9 code: 410–414, ICD-10 codes: 

I20-I25), and cerebrovascular disease (ICD-9 codes: 430–438, ICD-10 codes: I60-I69), 

hereafter referred to as CVD, CHD, and CBV, respectively. We created separate cohorts for 

each outcome.

2.3. Exposure assessment

To assess summer (Jun 1–Aug 31) specific humidity, data from the Gridded Surface 

Meteorological dataset was used (Abatzoglou, 2013). This dataset provides daily average 

specific humidity estimates at ~4 km spatial resolution covering the contiguous US from 

1979 onwards. It is based on a combination of data from the North American Land Data 

Assimilation System Phase 2 (NLDAS-2) (Mitchell et al., 2004), and of the Parameter-

elevation Regressions on Independent Slopes Model (PRISM) (Daly et al., 2008). Detailed 

information about the development and validation of the dataset can be found elsewhere 

(Abatzoglou, 2013). As we only had information about the residential zip code of each 

beneficiary, we calculated spatially weighted daily specific humidity for each zip code, using 

Google Earth Engine. Next, we calculated summer average daily specific humidity and daily 

specific humidity variability (standard deviation of within-summer daily specific humidity) 

for each zip code for each year (2000–2016). In addition, we assessed winter (Dec 1–Feb 

28/29) average specific humidity and specific humidity variability to be able to adjust for 

winter specific humidity. These estimates were linked to participants based on zip code of 

residence and calendar year.
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2.4. Covariates

Information about age at year of Medicare entry, year of entry, sex, race, Medicaid eligibility 

(an indicator of low socioeconomic status, SES), and zip code of residence was available 

for all beneficiaries from the Medicare beneficiary file. In addition, we linked several 

zip code-level variables derived from the US Census and American Community Survey 

(2000, 2009–2016): population density, percent Hispanic, percent of the population with 

less than a high school degree, percent Black, median home value, median household 

income, percent below the poverty level, and percent of owner-occupied housing units. 

County-level percent of the population that were ever smokers and mean BMI, were derived 

from the nationwide Behavioural Risk Factor Surveillance System (BRFSS, 2000–2011). 

We temporally interpolated data for missing years using a moving average algorithm within 

each zip code, as described previously (Di et al., 2017).

For each zip code for each year (2000–2016), daily maximum air temperature, and daily 

total precipitation were estimated using data from the Gridded Surface Meteorological 

dataset (Abatzoglou, 2013). To temporally match the specific humidity exposure estimates, 

we calculated the spatially weighted summer and winter average maximum temperature and 

precipitation for each zip code for each year.

We also linked zip code level air pollution, greenness and blue space to each beneficiary 

based on zip code of residence and calendar year. The spatial variation of these 

environmental factors is shown in Fig. S1. Annual fine particulate matter (PM2.5), nitrogen 

dioxide (NO2) and ozone concentrations across the contiguous US for 2000–2016 were 

estimated based on predictions from spatio-temporal ensemble models (1 km2 spatial 

resolution) (Requia et al., 2020; Di et al., 2019a, 2019b). For each zip code, the annual 

average concentrations were estimated by averaging the estimations at grid cells whose 

centroids fall within the boundary of that ZIP code.

To estimate greenness, we used the Normalized Difference Vegetation Index (NDVI) 

(NASA, xxxx). To calculate the NDVI, we used Landsat 7 and 8 images for the entire 

US from June 1, up to August 31 (summer), for each year (2000–2016). Using Google Earth 

Engine, cloud-free Landsat composites were created for the US. Negative NDVI values were 

set to zero. We calculated the spatially weighted mean summer NDVI for each zip code for 

each year.

To estimate blue space we used data from the Joint Research Centre’s Global Surface Water 

Dataset (Pekel et al., 2016). This dataset is based on Landsat 5, 7, and 8 images and contains 

maps of the location of surface water from 1984 to 2018. We used the “Occurrence” band 

(the frequency with which water was present) with a 50% threshold to classify each pixel 

into water or non-water. As zip codes are used for postal services, adjacent water bodies 

are not always included. Therefore, we calculated spatially weighted mean blue space of zip 

codes with a 300 m buffer to be able to capture water bodies close to each zip code.

2.5. Statistical analysis

To examine associations between specific humidity and CVD hospitalizations, we used a 

Cox-equivalent re-parameterized Poisson approach (Shi et al., 2020). In brief, we aggregated 
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all beneficiaries in our cohort that live within the same zip code in a specific year, with 

the same sex, race, Medicaid eligibility, 2-year categories of age at study entry and year of 

follow-up, because they belonged to the same stratum and were treated as a single grid cell 

in the analysis. Details about this approach can be found elsewhere (Shi et al., 2020).

We used a stratified quasi-Poisson model to estimate associations of time-varying summer 

average specific humidity and specific humidity variability. The dependent variable was 

the count of CVD, CHD, or CBV first hospitalizations in each stratum, we used the 

corresponding total person-time as the offset. Mathematically, this approach is similar 

to a time-varying Cox proportional hazard model under an Anderson-Gill representation. 

We applied a bootstrap method using zip code units to calculate statistically robust 95% 

confidence intervals (CIs).

We included summer average specific humidity and summer specific humidity in the same 

model. The main models were adjusted for calendar year, US census covariates, BRFSS 

covariates, winter average specific humidity, winter specific humidity variability, summer 

and winter average temperature, summer and winter temperature variability, and an offset 

for total person-time, and strata for all possible combinations of sex, race, Medicaid 

Eligibility, age at study entry (2-year categories), and follow-up year. The Poisson regression 

model is specified as log(Е[hospitalization counts]) ~ summer average specific humidity 

+ summer specific humidity variability + US census covariates + BRFSS covariates + 

calendar year + winter average specific humidity + winter specific humidity variability + 

summer average temperature + summer temperature variability + winter average temperature 

+ winter temperature variability + strata(age, race, gender, Medicaid eligibility, follow-up 

year) + offset(log[person year]). Summer and winter temperature indicators and winter 

specific humidity indicators were included in our main model to evaluate the independent 

associations of long-term summer specific humidity exposure with CVD hospitalization. 

The shape of the exposure–response curves was evaluated by adding natural splines (2 or 

3 degrees of freedom) to the specific humidity terms. We performed stratified analyses to 

assess potential effect modification by sex, age, race, Medicaid eligibility, and blue space 

(≤75th vs. >75th percentile), and by quartiles of temperature, PM2.5, NO2, ozone, and 

greenness.

For sensitivity analyses, we excluded potential prevalent cases by removing individuals who 

had their first hospital admission within the first year of their follow-up and all records in 

the year 2000. We ran models with only average summer specific humidity (not adjusted for 

summer specific humidity variability) or summer specific humidity variability (not adjusted 

for summer average specific humidity). Further, we additionally included regions of the US 

(West, East) and summer and winter average daily total precipitation to adjust for regional 

and meteorological differences. We also ran models without adjusting for average summer 

and winter temperature and temperature variability or with adjustment for average summer 

and winter temperature only. All hazard ratios (HRs) were expressed per IQR increase 

(based on the CVD cohort).

Klompmaker et al. Page 6

Environ Int. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For our analyses, we used R software (R Project for Statistical Computing) version 3.6.1. 

We conducted the analyses on the Harvard Research Computing Environment, which is 

supported by the Institute for Quantitative Social Science at Harvard University.

3. Results

About 63 million Medicare beneficiaries living in the contiguous US in 2000–2016 were 

included in our cohort. We observed 18,610,833 million first CVD hospital admissions 

(total person years: 401,315,016), 6,607,687 million CHD hospital admissions (total person 

years: 448,888,035) and 5,551,735 million CBV hospital admissions (total person years: 

460,574,345). Of all Medicare beneficiaries, 55.1% were female, 76.6% were between 65 

and 74 year of age at study entry, 84.5% were white, and 87.6% were not eligible for 

Medicaid at study entry (Table 1). For the CVD cohort the median follow-up period was 5 

years, for the CHD and CBV cohorts it was 6 years. We found the highest summer average 

specific humidity levels in the southeastern US and the highest summer specific humidity 

variability in the Southwestern and Northeastern US (Fig. 1). This is likely due to the high 

temperatures, warm ocean water (Gulf of Mexico), and moisture advection. Summer average 

specific humidity and specific humidity variability were higher compared to winter average 

specific humidity and specific humidity variability (Table 1, Table S1). Summer specific 

humidity variability was weakly negatively correlated with summer specific humidity 

variability (Pearson r = −0.14, Fig. S2). Correlations between summer average specific 

humidity and summer average temperature (Pearson r = 0.36) and between summer specific 

humidity variability and summer temperature variability were weakly positive (Pearson r = 

0.36).

The exposure–response curves showed no or small deviations from linearity for summer 

average specific humidity and specific humidity variability (Fig. S3) and therefore we 

show linear associations below. Higher summer average specific humidity and summer 

specific humidity variability were associated with an increased risk of CVD, CHD and CBV 

hospitalization (Table 2). For summer average specific humidity, the HR (95% CI) was 

1.07 (1.07, 1.08) for CVD hospitalization, 1.08 (1.08, 1.09) for CHD hospitalization and 

1.07 (1.07, 1.08) for CBV hospitalization per IQR increase (4.0 g of water vapor/kg of dry 

air). For summer specific humidity variability, the HRs were weaker, especially for CBV 

hospitalization.

Effect modification by demographics was most pronounced for Medicaid eligibility and 

race (Fig. 2). For summer average specific humidity, associations with CVD hospitalization 

were stronger for beneficiaries eligible for Medicaid (HR = 1.13, 95%CI: 1.12, 1.14 per 

IQR increase) compared to beneficiaries not eligible (HR = 1.06, 95%CI: 1.06, 1.07 per 

IQR increase). Analyses stratified by race/ethnicity showed that associations were strongest 

for beneficiaries with an unknown or other race and weakest for Black beneficiaries. For 

summer specific humidity variability, associations barely differed between demographic 

groups. Patterns of effect modification by temperature, air pollution, or blue space were 

not very clear for summer average specific humidity (Fig. 3). The associations of summer 

average specific humidity were stronger in areas with lower greenness levels and negative 

in areas with higher greenness levels. Associations of summer specific humidity variability 
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were strongest in areas with lower summer average temperatures, ozone concentrations, and 

higher greenness and blue space levels.

Associations were generally robust to additional adjustment for precipitation, and regions of 

the US, as well as exclusion of potentially prevalent cases (Table S2). In models including 

summer average specific humidity but not summer specific humidity variability, associations 

of summer average specific humidity were slightly stronger compared to associations of 

our main model. Associations of models without adjustment for temperature variability or 

average temperature and temperature variability were generally similar to our main models.

4. Discussion

This study showed that long-term exposure to higher summer average specific humidity 

and specific humidity variability were associated with increased risk of CVD, CHD, and 

CBV hospitalization. Associations of summer average specific humidity were stronger 

for Medicaid eligible individuals and for individuals with an unknown or other race. 

Associations of summer average specific humidity and specific humidity variability were 

generally similar in single- and two-exposure models and not affected by adjustment for 

temperature exposures, precipitation or regions of the US.

4.1. Interpretation of findings

There is some evidence that long-term average temperature exposures are associated with a 

range of adverse health outcomes (Zanobetti and O’Neill, 2018; Zafeiratou et al., 2021). 

However, the overall heat load experienced by humans depends on various factors in 

addition to temperature (McGregor and Vanos, 2018). The heat balance of the human 

body is regulated by increased blood flow to the skin and by sweating (Donaldson et 

al., 2003). During warm days, high humidity levels limit sweat evaporation from the 

body and, in turn, the ability to cool down by sweating. This could lead to a rise in 

body core temperature and can exert strain on the cardiovascular system (Davis et al., 

2016; Donaldson et al., 2003; Baker, 2019). Hence, specific humidity might be a good 

indicator of physiologically stressful heat exposure. We acknowledge that not much is 

known about biological mechanisms linking long-term exposure to specific humidity (or 

heat) and cardiovascular diseases.

To the best of our knowledge, there are no studies that have evaluated associations of 

long-term specific humidity with CVD hospitalization. Barreca reported that low and high 

monthly mean specific humidity levels were associated with increased all-cause and CVD 

mortality rates in US counties (Barreca, 2012). In line with our study, Barreca observed that 

adjusting for temperature barely affected effect estimates (Barreca, 2012). Another study by 

Zhang et al. evaluated what weather variables were important in predicting daily heat-related 

mortality counts (Zhang et al., 2014). They reported that absolute humidity, a measure 

very similar to specific humidity, was most frequently selected as top predictive weather 

variable for all-cause and cause-specific (e.g., CVD, stroke) mortality (Zhang et al., 2014). 

We previously reported associations of summer average temperature with CVD in the same 

population, but observed that associations of summer average temperature substantially 
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attenuated after adjustment for summer average specific humidity (Klompmaker et al., 

2023).

We observed the strongest associations of summer average specific humidity for 

beneficiaries eligible for Medicaid and for beneficiaries with an unknown or other race. 

Individuals of low SES may lack air conditioning and may have more underlying health 

conditions which make them more vulnerable to specific humidity. Further, we note that 

the percentage of Hispanics (which make up a large part of the unknown or other race 

individuals) is higher in the Southwest of the US. Hence, differences in associations 

between white, Black, and individuals with an unknown or other race might be partially 

due to differences in regional specific humidity effects. For summer average specific 

humidity, patterns of effect modification by temperature and air pollution were not very 

clear, indicating that the strength of the associations is not affected by temperature and 

air pollution levels. Associations of summer specific humidity variability were strongest in 

areas with lower summer average temperatures. This might be because individuals in these 

regions might be less acclimatized to heat, and have limited adaptation measures compared 

to individuals in areas with higher summer average temperatures. Associations of summer 

specific humidity variability were also stronger in areas with lower ozone concentrations, 

and higher greenness. We have no clear explanation for this finding.

4.2. Strengths and limitations

A major strength of this analyses is the inclusion of many types of different climates. We 

assessed specific humidity levels for each zip code in the contiguous US, for each year 

from 2000 until 2016. Specific humidity data were available at a relatively fine spatial scale. 

All our models were adjusted for summer and winter average temperature and temperature 

variability. Further, our results were robust to additional adjustment for precipitation and 

region, indicating that the observed associations were independent of regional differences. 

All Medicare fee-for-service beneficiaries aged 65+ years living in the contiguous US 

were included in our analyses. However, our Medicare fee-for-service population did not 

include Medicare-HMO (Health Maintenance Organisations, private plans) beneficiaries. 

A limitation of this study is that we did not have data about individual-level SES (other 

than Medicaid eligibility), lifestyle factors and air conditioning. Our models were adjusted 

for several zip code-level SES and lifestyle indicators, but the potential for residual 

confounding remains. An important limitation of most studies that evaluated associations 

of climate-related exposures with health is the use of outdoor measurements. In contrast with 

temperature, outdoor specific humidity is linear and consistently related to indoor specific 

humidity (Nguyen and Dockery, 2016). Hence, outdoor specific humidity estimates can be 

more reliably used to represent indoor conditions compared to temperature. Further, we 

used current year summer specific humidity exposure and some hospitalizations may have 

preceded the exposure. However, we observed very strong correlations between the specific 

humidity exposures in consecutive years (Table S3), suggesting that the impact of potential 

temporal misalignment of exposures would be small. We note that we could not disentangle 

if associations of long-term summer specific humidity exposures are due to physiological 

responses of long-term exposures or cumulative effects of short-term exposures.
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5. Conclusions

Higher summer average specific humidity and specific humidity variability were positively 

associated with CVD hospitalizations among this cohort of US Medicare beneficiaries. Our 

findings are especially important with respect to climate change, as climate change could 

lead to higher specific humidity levels.
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Fig. 1. 
The spatial variation of summer average specific humidity and specific humidity variability 

per zip code in the contiguous US (year = 2010).
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Fig. 2. 
Associations of summer average specific humidity and specific humidity variability with 

CVD, CHD and CBV hospitalization in stratified analyses by age (65–74, 75–84, 85 + 

years), Medicaid eligibility (not eligible, eligible), race (White, Black, unknown/other), and 

sex (male, female) a. a Associations are expressed per IQR increase (IQR summer average 

specific humidity = 4.0 g of water vapor / kg of dry air, IQR summer specific humidity 

variability = 0.9 g of water vapor / kg of dry air) of the cardiovascular disease hospitalization 

cohort. Models included summer specific humidity exposures, calendar year, US census 
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covariates, BRFSS covariates, winter average specific humidity, winter specific humidity 

variability, summer and winter average temperature, summer and winter temperature 

variability, an offset for total person-time and strata for all possible combinations of sex, 

race, Medicaid Eligibility, age at study entry (2-year categories), and follow- up year.
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Fig. 3. 
Associations of summer average specific humidity and specific humidity variability with 

CVD, CHD and CBV hospitalization in stratified analyses by summer average temperature 

(Temp), PM2.5, NO2, ozone (O3), NDVI and blue space (B) a, b. a Associations are 

expressed per IQR increase (IQR summer average specific humidity = 4.0 g of water 

vapor / kg of dry air, IQR summer specific humidity variability = 0.9 g of water vapor / 

kg of dry air) of the cardiovascular disease hospitalization cohort. Models included summer 

specific humidity exposures, calendar year, US census covariates, BRFSS covariates, winter 
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average specific humidity, winter specific humidity variability, summer and winter average 

temperature, summer and winter temperature variability, an offset for total person-time and 

strata for all possible combinations of sex, race, Medicaid Eligibility, age at study entry 

(2-year categories), and follow-up year. b To define strata, we used the following quantiles 

(q25, q50, q75) for the CVD cohort: Summer average temperature (°C): 27.3, 29.9, 32.5; 

PM2.5 (μg/m3): 7.8, 9.7, 11.8; NO2 (ppb): 10.7, 16.3, 24.6; Ozone (ppb): 36.7, 38.9, 41.1; 

NDVI: 0.35, 0.52, 0.63; Blue space (%, q75): 2.9. For the CHD cohort: Summer average 

temperature (°C): 27.3, 29.9, 32.5; PM2.5 (μg/m3): 7.8, 9.6, 11.7; NO2 (ppb): 10.6, 16.1, 

24.4; Ozone (ppb): 36.8, 38.9, 41.1; NDVI: 0.36, 0.52, 0.63; Blue space (%, q75): 2.9. For 

the CBV cohort: Summer average temperature (°C): 27.3, 29.9, 32.5; PM2.5 (μg/m3): 7.8, 

9.6, 11.7; NO2 (ppb): 10.6, 16.1, 24.4; Ozone (ppb): 36.8, 38.9, 41.1; NDVI: 0.36, 0.52, 

0.63; Blue space (%, q75): 2.9.
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Table 1

Descriptive statistics of all US Medicare fee-for-service beneficiaries (n = 63,009,173) during follow-up 

(2000–2016).

Individual level data Characteristics at study entry N (%)

Sex - Female 34,725,534 (55.1)

Age at study entry - 65–74 years 48,240,802 (76.6)

- 75–84 years 10,819,118 (17.2)

- 85+ years 3,949,253 (6.3)

Race - White 53,262,938 (84.5)

- Black 5,511,612 (8.7)

- Other/unknown 4,234,623 (6.7)

Medicaid eligibility - Not eligible 55,164,043 (87.5)

- Eligible 7,845,130 (12.5)

Aggregated data (2000–2016)

Zip code level characteristics a Median (IQR)

Summer specific - Summer average specific humidity 12.0 (4.0)

 humidity (g of water vapor / kg of dry air) - Summer specific humidity variability 2.1 (0.9)

US census covariates - Population density (persons/mile2) 517.4 (2919.0)

- Median home value ($1,000) 139.4 (145.3)

- Median household income ($1,000) 46.0 (24.9)

- % with less than a high school degree 24.7 (21.6)

- % below the poverty level 8.6 (8.2)

- % owner-occupied housing units 71.8 (21.4)

- % Black 3.7 (13.5)

- % Hispanic 5.0 (14.0)

BRFSS covariates - % ever smoked 46.2 (9.1)

- Average BMI 27.4 (1.3)

Other environmental exposures - Winter average specific humidity (g of water vapor / kg of dry air) 3.2 (2.2)

- Winter specific humidity variability (g of water vapor / kg of dry air) 1.3 (0.9)

- PM2.5 (μg/m3) 9.7 (4.0)

- NO2 (ppb) 16.3 (13.9)

- Ozone (ppb) 38.9 (4.4)

- NDVI (summer) 0.52 (0.27)

- Blue space (%) 0.4 (2.8)

- Summer average temperature (°C) 29.9 (5.2)

- Summer temperature variability (°C) 3.1 (1.2)

- Winter average temperature (°C) 8.4 (11.7)

- Winter temperature variability (° C) 5.2 (1.9)

- Summer average precipitation (mm, daily total) 3.1 (2.3)

- Winter average precipitation (mm, daily total) 2.4 (1.8)
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a
Zip code level characteristics are given for the strata (aggregated data based on zip code, year, sex, race, Medicaid eligibility, 2-year categories of 

age at study entry and year of follow-up) based on the CVD cohort.
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Table 2

HRs of summer average specific humidity and specific humidity variability with CVD (# hospitalizations: 

18,610,833, total person years: 401,315,016), CHD (# hospitalizations: 6,607,687, total person years: 

448,888,035), and CBV (# hospitalizations: 5,551,735, total person years: 460,574,345) hospitalization in all 

US Medicare fee-for-service beneficiaries a.

Exposure (IQR) CVD CHD CBV

HR (95% CI) HR (95% CI) HR (95% CI)

Summer average specific humidity (4.0 g of water vapor / kg of dry air) 1.07 (1.07, 1.08) 1.08 (1.08, 1.09) 1.07 (1.07, 1.08)

Summer specific humidity variability (0.9 g of water vapor / kg of dry air) 1.03 (1.02, 1.03) 1.03 (1.02, 1.03) 1.01 (1.01, 1.02)

a
Associations are expressed per IQR increase of the cardiovascular disease hospitalization cohort. Models included summer average specific 

humidity, summer specific humidity variability and were adjusted for calendar year, US census covariates, BRFSS covariates, winter average 
specific humidity, winter specific humidity variability, summer and winter average temperature, summer and winter temperature variability, an 
offset for total person-time and strata for all possible combinations of sex, race, Medicaid Eligibility, age at study entry (2- year categories), and 
follow-up year.
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