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Abstract 

Despite their importance in public discourse, numbers in the range 
of one million to one trillion are notoriously difficult to 
understand. We examine magnitude estimation by adult Americans 
when placing large numbers on a number line and when 
qualitatively evaluating descriptions of imaginary geopolitical 
scenarios. Common conceptions of the number line suggest a 
logarithmic compression of the numbers (Dehaene, 2003). 
Theories of abstract concept learning suggest that in situations 
where direct experience is unavailable, people will use the 
structure of notation systems as a proxy for the actual system. 
(Carey, 2009; Landy & Goldstone, 2007).  

Evaluations across two subject populations largely matched the 
predictions of the latter account. Approximately 40% of 
participants estimated one million approximately halfway between 
one thousand and one billion, but placed numbers linearly across 
each half, as though they believed that the number words 
“thousand, million, billion, trillion” constitute a uniformly spaced 
count list. Very brief training procedures proved partially 
successful both in correcting number line placement and in shifting 
participants’ judgments of geopolitical situations. These results 
reinforce notions of abstract concepts as grounded in external 
notation systems, as well as having direct implications for 
lawmakers and scientists hoping to communicate effectively with 
the public.   

 
Keywords: number cognition, mathematical cognition, 

formal reasoning, human subjects experimentation 

Introduction 
Large numbers1 are interesting for both practical and 
theoretical reasons.  Many arenas of public discourse rely on 
an understanding of large numbers, including debates about 
evolutionary biology, nanotechnology, and the reliability of 
DNA testing. The United States is currently involved in a 
heated conversation about the national budget and economy.  
The budget, the deficit and the debt are in the low trillions, 
while most proposed budget changes are in the millions and 
billions. Americans generally exhibit poor knowledge about 
spending on specific programs by the federal government 
(Gilens 2001), and it is likely that poor understanding of 
large numbers contributes to this ignorance. 

Number systems covering this range are also an excellent 
example of an abstract system: magnitudes such as one 
billion are beyond our immediate experience and yet are 
clearly understood in part through abstracting the concrete 

                                                             
1Here, roughly those between 105 and 1013. 

process of counting (Carey, 2009; Leslie, Gelman, & 
Gallistel, 2008). We experience large numbers primarily 
syntactically, and through associations with situations (e.g., 
claims that the U.S. deficit is $1.4 trillion; Facebook has 
700 million users; or the human body has 100 trillion cells).   

One way we understand abstractions is by studying the 
properties of their concrete representations (Clark, 2006; 
Landy & Goldstone, 2007; Kirsh, 2010).  For instance, 
Carey (2009) proposes that when learning to count, the 
memorized count list orients attention to appropriate 
features of the environment, so that the verbal label 
“eighteen” cues a learner that there is something that 
“eighteen” situations have in common.  In addition to the 
simple presence or absence of labels, however, count lists 
have other structural properties: for instance, counting 
numbers are typically stated in sequence, with accompanied 
rhythmic hand motions, and are constructed on a semi-
regular pattern. Here, we wonder how structural components 
of symbolic systems impact inferences made by reasoners. 

 
Structure in the numerals 

A student learning the English counting system must master 
several different lists.  In addition to the numbers from 1-9, 
one must learn the teen words, the tens words, and –most 
importantly for our purposes—is the short scale, used in the 
United States and Britain. In this system, one thousand 
million is “one billion”. This list “thousand, million, billion, 
trillion, quadrillion, …” constitutes an effective count list, 
which after the initial “thousand”, bears an apparent 
sequential structure, and clearly derives from Latin number 
words.  North American students typically learn the short 
scale up to “trillion” by around 7th grade (Skwarchuk and 
Anglin, 2002).  

There are several common notations for understanding 
large numbers. In this paper, we focus on perhaps the most 
common on, which we will call the hybrid notation, because 
it combines number words and numerals. Examples of 
numbers in this from include “324 million”, “426”, or “5 
thousand.”  

We model large number understanding by combining two 
conceptually separate steps: the first involves the 
interpretation of a number word into an abstract numerical 
quantity (“abstract” because we are agnostic with respect to 
how people would actually estimate perceived quantities in 
the range of millions and billions—here we mean merely the 
interpretation can be treated as a metric), and the mapping 
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of a quantity into a response. For brevity, we blur these 
distinctions here. 

Of the many plausible ways that people might extract 
quantities from number representations, the simplest is that 
people might roughly correctly estimate the relative values 
of large numbers. We will refer to this as the linear or 
normative model of large number understanding.  

Second, if learners use the structure of the number 
notations—especially the short scale—as a guide to 
numerical size, then a different pattern is expected. Since 
the number words—millions, billions, trillions, are similar 
and uniformly spaced in their count list, people might 
evenly distribute the referred quantities.  Since adults 
generally linearly estimate numbers from 1-1000 (Seigler & 
Opfer, 2003), this suggests a piecewise-linear pattern, in 
which (roughly) values like 1 thousand, 1 million, and 1 
billion are separate units, which are spaced evenly on the 
line, and other values (such as 500 million) are linearly 
interpolated between these points.  We will call this the 
uniform spacing or piecewise linear model. 

Another plausible approach is based on developmental 
studies of line estimation with small number ranges (Siegler 
& Opfer, 2003). These studies have repeatedly demonstrated 
that number estimation errors tend to be highly compressed 
at the large end of the line. Traditionally, this compression 
has been modeled using a logarithmic function, and a fitted 
linear mapping from quantities to line positions (Booth & 
Siegler, 2008; Siegler & Opfer, 2003). We will call this 
combination the log-linear model. 

Finally, it is naturally plausible that some people would 
either have no interpretation of the large numbers, or highly 
variable or non-monotonic interpretations.   

Empirical Methodology 
We used two tasks to explore the number word 
interpretation: Number line estimation, and situation 
evaluation.  

In typical number line estimation tasks, a participant is 
presented a line with labeled endpoints, and a stimulus 
numeral. The participant makes a mark indicating their 
estimate of the proportion of the line that corresponds to the 
proportion relating the stimulus number to the specified 
range. In the experiments reported here, the left end was 
always 1 thousand, and the right end was 1 billion. Prior to 
performing estimations, participants were shown a marked 
number line ranging from 1 to10, and were instructed to 
likewise place their numbers in a linear manner. 

In situation evaluations, participants made qualitative 
judgments about attempted government actions involving 
short-scale quantities. In each story, one number was 
selected as a goal, and a number to be evaluated was 
selected from the preceding element of the short scale. For 
instance, in one question a fictional country’s government 
had a goal to eliminate their 1.1 trillion “taler” deficit, and 
proposed the solution cut 100 billion talers. Participants 
rated the quality of the attempted solutions on a 9-point 
scale from “very unsatisfactory” to “very satisfactory”.  

Experiment 1 

Method 
Participants & Procedure Partial course credit or 
monetary compensation was given to 67 participants 
recruited from the University of Richmond community. 
Three participants gave responses that were generally non-
increasing across the number range, and were extremely 
variable; these participants’ data were removed and replaced 
to yield our goal of 64 participants. 

Participants made 108 number line estimates, on a line 
ranging from 1 thousand to 1 billion.  Each stimulus number 
was the product of an integer strictly between one and one 
thousand, and either 103 or 106.  

Two between-groups differences were used to rule out 
possible confounds in our approach.  First, in Experiment 1 
half of all participants viewed numbers in the hybrid 
notation; for half all stimuli and endpoints were presented in 
the pure numeral format. Second, the range of the stimulus 
numbers was manipulated between participants, so that we 
could evaluate whether people shifted their placement to fit 
the distribution of observed numbers.  Half of the 
participants saw numbers only in the millions; half 
estimated numbers which were evenly divided between 
those above and below 1 million. Neither manipulation 
affected results qualitatively or altered significance of 
contrasts; similar patterns were observed across all four 
groups; the slight differences will not be discussed here. 

After completing the experiment, regardless of condition, 
participants filled out a paper form prompting them to 
generate the numerical form for each of one billion, one 
million, and one thousand.  All but two participants did so 
correctly; one participant left the “one billion” mark blank, 
while the other made significant errors.   
 
Analysis 
Our primary analysis compared linear and uniform spacing 
model fits with the log-linear, using a hierarchical Bayesian 
model fitting approach. 

Since both models are linear above and below one 
million, the primary variable distinguishing the linear and 
uniform spacing models is the estimated position of one 
million on the line (M). M was fitted at the individual 
subject level; since M ranges from 0 (extreme left) to 1 
(right), the population was fitted as a uninformative beta 
distribution.  Within this framework, the linear model is the 
special case when M = 0.001, pure uniform spacing is 
produced when M=0.5. The prior on M was uniform 
between 0 and 1, and 0 elsewhere. 

This segmented linear model was compared to a log-
linear model, ; this model also has one parameter, 
fixing the shape of the linear component. The left intercept 
of both models was fixed at 0. To capture variability in 
responses, both models assume truncated (at 0 and 1) 
normal distributed deviations from the model prediction. 

A hierarchical mixture model mixing both components at 
the group level was fit to the data using JAGS through the 

y = a ln(x)
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rJAGS package. In this model, each subject has some 
probability π of producing split linear responses and some 
probability 1 – π of producing a log-linear responses.  The 
model thus categorizes individuals as part of the fitting 
procedure. The model was simulated using MCMC, with 4 
chains with 100 samples per chain, a burn-in of 30,000 
iterations, and a thinning of 250 iterations per sample.  

Results 
Figure 1 shows the fitted values of M. Qualitatively, nearly 
all participants were captured very well by the segmented 
linear model. The logarithmic model was selected as better 
fitting by the model for only one participant.  Three other 
participants produced non-monotonic fits with wide 
variability, and were poorly fit by both models. The 
remaining 61 participants matched well the predictions of 
the segmented linear models. Figure 2 illustrates two typical 
patterns of response: one group of participants (n = 36) were 
fit very well by the linear model, and thus had low M 
values; the other group had high values of π with typical M 
values centered around 0.4 (n=19).  The few participants 
with intermediate M values (n=6) between 0.1 and 0.3 
seemed to switch strategies, producing responses which 
were sometimes close to linear, and at other times very close 
to the uniform spacing model.  

Discussion 
Experiment 1 demonstrates that there is not a general 
misunderstanding of large numbers, nor a logarithmic 
scaling of these numbers.  Instead, a single, specific 
misconception of large numbers predominates errors: at 
least 85% of substantial deviations from linear responding 
involved a piecewise linear behavior, in which each of the 
ranges of “millions” and “billions” are linearly constructed, 
but are each of approximately identical size. Despite the 
prevalence of smooth, log-like functions in theories of 
economic and psychological utility functions and 
psychological magnitudes, evaluations of large numbers 
appear to no more than rarely approach logarithmic scaling. 
 

 
Figure 1: Histogram of individual fitted values of the 
position of 1 million (M).  The normative value is 0.001. 

 
Figure 2: Number line estimates for a linear (top, M=.0004) 
and piecewise linear (bottom, M=.44) sample subject, along 
with predictions of the segmented linear model.  The log-
linear model predicts straight line responses on a log-scaled 
x-axis. 

 
 
It is possible that participants in our study misconstrued 

the nature of the task, believing, for instance, that a 
segmented linear graph was requested.  We believe this is 
unlikely for two reasons.  First, although both linear and 
logarithmic number lines are fairly commonplace (for 
instance, as graph axes), segmented linear number lines—
lines in which one linear number range lies adjacent to a 
linear range with a different unit—are vanishingly rare.  
Second, while piloting these materials we interviewed many 
individuals completing this task.  While many made the 
error, none gave evidence having misunderstood the task.  
On the contrary, these individuals seemed very surprised 
when they realized or were told the normative location of 
one million. 

Experiment 2 
The number line is an idiosyncratic task, involving visual 

and spatial components as well as number processing per se. 
It might be that the results of Experiment 1 result from 
idiosyncratic reasoning, and would not generalize well to 
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other kinds of number judgments. One purpose of 
Experiment 2, then, was to explore whether piecewise linear 
number line estimation would generalize to other tasks. 

In studies involving smaller number ranges, learning of 
linear behavior can be strikingly sudden—with participants 
often becoming linear across an entire range from the 
presentation of just a single point (Opfer & Siegler, 2007). 
A second purpose of Experiment 2 was to explore whether 
similar approaches could lead to sudden reductions in 
misconceptions about large numbers, and such shifts in line 
estimation would generalize to evaluative judgments.  

Participants and Procedure 
300 participants were recruited from Amazon’s Mechanical 
Turk in exchange for small monetary remuneration. 
Mechanical Turk is a scalable workforce solution frequently 
used by psychologists to recruit subjects for online 
experiments (Mason & Suri, 2012).  All tasks were 
completed remotely through a web interface. 

Each participant first performed eight number line 
estimations (the pretest), followed by an intervention.  Half 
of all participants saw an encouragement intervention, 
which simply thanked them for their hard work, and asked 
them to do their best on the rest of the experiment.  The 
other half of participants saw a training screen, which 
reminded them that 1 billion was equal to 1,000 millions, 
and showed them the normative placement of 10 million on 
the number line from 1 thousand to 1 billion.  Participants 
then completed eight more number line estimates (the 
posttest), followed by three situation evaluation questions. 

In the situation evaluation task, participants read, in fixed 
order, three short narratives about how the governments of 
two fictional countries were dealing with various social 
challenges. The participants rated the quality of the 
attempted solutions on a 9-point scale from “very 
unsatisfactory” to “very satisfactory”. In each story, one 
number was selected as a goal, and a number to be 
evaluated was selected from the preceding element of the 
short scale.  For instance, in question 3 (designed to match 
the U.S. budget for 2011) the goal was to eliminate the 1.1 
trillion “taler” deficit, and the solution cut 100 billion 
“talers”. After both tasks were completed, participants 
reported their age, sex, and political affiliation, and briefly 
describing their problem-solving strategy.  The strategy 
explanations provided an extra check that participants were 
in fact attempting the problems. 

Analysis and Results 
Number Line Estimation. Estimates were modeled using a 

version of the model described in Experiment 1. Because 
the unimodal beta model at the family level did not capture 
the pattern of observed behaviors, in Experiment 2 data was 
fit only at the level of the individual. Further, the 
logarithmic model was not tested.  Thus, the single model 
parameter was the estimated location of one million, M. 
Separate models were fit to the data before and after the 
intervention.  

Figure 3 illustrates the shift in number line behavior before 
and after the intervention.  An ANOVA evaluating M values 
as a dependent measure over time of estimation (pre vs. post 
intervention) and condition, indicated a significant 
interaction between the two (F(1, 298)=15.8, p<.01). There 
was also a main effect of condition (F(1, 298)=4.4, p<.05); 
considering only the pretest data, the difference was not 
significant (F(1,298)=.21, p>0.5). 

As in Experiment 1, the empirical values of the M 
parameter were contrary to the predictions of the uniform 
spacing model.  While the model predicts a mean value 
around 0.5 among the piecewise linear group, the actual 
mean fitted value was around 0.40. 

 
Situation Evaluations. Evaluations were averaged across 
the three situations for analysis. These average responses 
were moderately normally distributed. An ANOVA of mean 
evaluation against pretest M and condition revealed 
significant effects of both (F(1, 298)=11.3, p<0.01, and F(1, 
298)=4.3, p<0.05, respectively). Once behavior at posttest 
was included, however, it was the only significant predictor 
of situation evaluations (F(1, 298)=15.8, p<0.001; see 
Figure 4); condition was no longer significant (F(1, 
298)=2.4, p~.12), suggesting that some of the effect of 
training on situation evaluation resulted from shifts in 
processes involved in number line estimation. 

 
Figure 3: Best-estimated location of 1 million (M) at pretest 
and posttest.  The normative location is 0.001.  The large 
preponderance of blue circles in the bottom right represents 
the efficacy of the training. 
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Figure 4: Situation evaluation against post-intervention 
placement of 1 million (M), binned into quantiles based on 
pre-intervention number line estimates. Errors reflect 
standard errors in the estimate of post-intervention values. 

Discussion 
Experiment 2 demonstrated that the same strategies found in 
Experiment 1 are employed in a substantively different 
population: 45% of judgments were compatible with the 
piecewise linear account.  However, participants were 
readily educable: just a single example of a normatively 
placed term sufficed to correct number line estimations in 
nearly half of error-prone estimators. Training seemed to be 
largely all-or-none: participants who shifted strategies 
halfway through the task gave responses nearly 
indistinguishable from those who had been following the 
final strategy from the beginning, judging both by number 
line estimations and situation evaluations. 

Furthermore, Experiment 2 demonstrated that number line 
strategies are closely related to political judgments 
involving numbers in this range. People who estimate the 
number lines normatively are less optimistic about political 
situations involving numbers in this range. Furthermore, 
participants trained on the number line shifted their 
evaluations of political situations. Hence, the uniform 
spacing misconception does not result from reasoning 
specific to the number line task.  

General Discussion 
Numbers picked out by the short scale—despite appearing 
frequently in educational contexts and public discourse—do 
not seem to be robustly understood by much of the 
population. While roughly half of our participants treated 
large numbers linearly, two experiments indicate that a large 
portion of the population—around 40 percent in the studies 
reported here—seems to evaluate large numbers based on 
the assumption that the number labels are roughly equally 
spaced as the numbers increase. Furthermore, people who 

rely on an equal spacing heuristic when placing numbers on 
a line are more satisfied with poor resolutions to political 
problems involving comparable scales. 

Currently, the people of the United States, along with 
many other countries, are deciding how best to handle 
economic debt and deficit crises. These conversations 
crucially involve the accurate assessment of numbers across 
the range of 106-1013. The current results suggest that a 
substantial fraction of Americans are ill equipped to engage 
in these conversations. This conversation is of direct 
relevance to the practice of scientific research, which is 
often funded by grants in the low millions of dollars.  
Detractors of the government spending on science research 
and other programs often present funding information by 
contextualizing these amounts within the overall budget 
using short-scale labels.  

Logarithmic number line behavior was rare or non-
existent on this task, despite substantial prior research that 
has supported the hypothesis that unfamiliar number ranges 
are initially represented logarithmically (Siegler & Opfer, 
2003; Dehaene, 2003). One possibility is that large numbers 
fall beyond the upper range of the approximate magnitude 
system (Izard & Dehaene, 2008). Another possibility is that 
the reasoning processes we find adults employing when 
estimating large numbers account for apparently logarithmic 
behavior in young children (Nuerk et al, 2001).  

Although the hypothesis that people infer spacing on the 
number line from the structure of the short scale labels 
predicted the basic pattern or responses, it does not predict 
the observed structure perfectly.  In particular, most people 
who erred in their estimate of the relative values of 1 
thousand, 1 million, and 1 billion did not put 1 million 
halfway between the other two, but substantially close to 1 
thousand.  Anecdotally, people we have observed often 
placed 1 million more or less exactly in the middle, then 
‘correct’ to approximately the 40% mark.  One possibility is 
that this positioning reflects a compromise between uniform 
spacing and normative number knowledge, but the nature of 
such a compromise remains speculative.  

These results are striking in that the actual numerical 
system of short scale words and place value notation is 
formally extremely simple, and the referent system—the 
natural numbers—is acquired fairly early in mathematical 
development. A simple induction suffices to suggest the 
referents of the large number words studied here, rather than 
a conceptual restructuring, as has been implicated in 
rational-number learning. These results emphasize that even 
when dealing with basic abstract material, accessible 
concrete structures play a key role in guiding the 
development of concepts and strategies (Carey, 2009; 
Goldstone & Landy, 2010). When dealing with large 
numbers, people rely heavily on number naming structures 
to fix the meaningful properties of particular number words. 
Instead of using the number labels as placeholders to an 
independently existing world, accessed via number 
principles, many people attend to the surface properties of 
number nomenclature to determine numerical properties. As 
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the four-year old daughter of the first author (who was at the 
time learning to read two digit numbers) put it “100 is just 
one more than 10. It’s three: one, two, three!” Magnitudes in 
this range are constructed by borrowing structure from the 
symbol systems used to represent them. 
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