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Abstract of the Dissertation

Particle Geometry and Its Effect on Optical
Trapping

by

Rachael Victoria Harper

Doctor of Philosophy in Chemistry

University of California, Los Angeles, 2013

Professor Alex J. Levine, Chair

The ability to manipulate small particles with light has opened new avenues

for synthesis and experimentation. Building upon expansive previous work in

the theoretical study of light scattering, the forces which make optical manip-

ulation of matter possible have been extensively studied both analytically and

computationally. In this dissertation we will examine the forces on complex

particle geometries, in the presence of a focused beam of light, using a two

dimensional geometric optics simulation. We begin with a brief overview on

the background of optical trapping as well as the theoretical approaches avail-

able to model optical trapping forces both analytically and numerically. The

results of our numerical geometric optics simulation are shown to be in exact

agreement with a previously published, closed form, analytic solution for the

optical forces on a solid homogeneous sphere in the geometric optics regime.1

The trapping behavior of two dimensional circles with an inner cavity of vary-

ing size is then investigated. Generalized Lorenz-Mie theory is employed to

calculate the force on the particle interacting with an unfocused beam. An

infinite cylinder with an inner cavity size on the order of the wavelength of

incident light and an unfocused beam, incident normal to the cylinder axis,

are used. This result is compared to that found with our geometric optics
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simulation. We find that, for an inner cavity diameter an order of magnitude

or smaller than the wavelength of the incident light, the geometric optics sim-

ulation underestimates this force. The same holds true for very large inner

cavities, where the dielectric wall thickness is less than half the wavelength.

For cavity sizes between these two extremes we find the geometric optics sim-

ulation overestimates the force in the direction of beam incidence, by as much

as a factor of two. Finally the effect of breaking axial symmetry on the trap-

ping behavior of a two dimensional planar shape is studied qualitatively using

an analytic approach and quantitatively using the geometric optics simulation.

Beginning with an axially symmetric rectangular shape, a small leg is added

and the trapping behavior as well as the torques examined. We find stable

trapping and balanced torques, with the long axis of the shape both parallel

and perpendicular to the direction of beam incidence, for an axially symmetric

rectangle. Once axial symmetry is broken all trapping is found to occur with

the long axis perpendicular to the direction of beam incidence and the lowest

plane of the shape above the focal point of the beam.
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CHAPTER 1

Introduction

Since the seminal work of Arthur Ashkin,2 that demonstrated the acceleration

and trapping of dielectric particles by a single focused laser beam, optical

trapping has been an invaluable and much utilized tool. Optical trapping

has been used to manipulate particles with length scales from the tens of

nanometers to the hundreds of microns; it has measured forces ranging from

femtonewtons to nanonewtons and has done so on time scales ranging upward

from the microsecond.3 An invaluable experimental tool, optical tweezers have

been used to probe the force generated by the portal complex as it packs

double stranded DNA into a viral capsid,4 the isometric forces generated by

single molecules of kinesin5 and the mechanical properties of red blood cells

in different osmotic conditions.6 The trapping ability of single beam optical

tweezers is not limited to single biological molecules; they have been used to

trap individual gold nanorods,7 to probe the deformation mechanics of lipid

bilayers,8 and to examine how particle symmetry effects the trapping behavior

of micron sized particles.9 Ashkin’s early work with single beam optical traps

has been extended to a variety of trap shapes; including holographic optical

trapping arrays,10–13 anisotropic traps generated by scanning the beam along

a single line,14–16 optical vortex traps,17–19 traps generated using zeroeth-order

Bessel beams,20,21 and optical traps which abandon the beam completely and

use the evanescent field of a waveguide.22

Optical trapping and scattering has also been extensively studied using
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theoretical methods. A short, and hardly exhaustive, list of methods includes

Generalized Lorenz-Mie Theory, The Discrete-Dipole Approximation, Geo-

metric Optics and Rayleigh Scattering.

Generalized Lorenz-Mie Theory (GLMT), which applies Maxwell’s equa-

tions to an electromagnetic wave illuminating a homogeneous sphere of known

size and refractive index,23 provides an exact analytical description of the scat-

tered fields and, as a result, the forces imparted to the dielectric particle. As

no approximations are made the GLMT provides accurate results for particles

on all length scales. The GLMT dependence on partial wave vectors, however,

limits its application to spherical or cylindrical particles. The GLMT has been

used to describe the forces on a spherical dielectric particle arbitrarily located

in relation to the focal point of a single beam gradient trap,24,25 scattering

from multilayer concentric spheres26 or infinite cylinders,27 and to calculate

the stresses on homogeneous spheroids in an optical stretcher.28

The Discrete Dipole Approximation (DDA), first developed by Purcell and

Pennypacker,29 treats any dielectric particle as a collection of discrete dipoles,

which interact with each other and the incident field. These interactions give

rise to a system of linear equations. This system of linear equations can be

solved for the dipole polarizations, from which all scattering quantities can

be obtained.30 The discrete nature of the DDA makes it possible to model all

geometries, however the approximation is only applicable on length scales on

the order of, or smaller than, the wavelength of the incident light. The DDA

has been used to calculate the forces on a spherical dielectric particle,31 to

calculate the radiation pressure cross section for fluffy aggregates,32 to calcu-

late the laser trapping particles on non-spherical particles33 and to explicitly

compute the gradient and non-gradient components of the optical force on

neutral, polarizable particles in a field.34

Geometric optics treats incident light as a collection of discrete rays; as a
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result the Geometric Optics approximation is only valid if the particle being

investigated is much larger than the wavelength of the incident light. Rayleigh

Scattering is applicable if the particle is much smaller than the wavelength of

incident light and can therefore be treated as a single discrete dipole. The

theory and history of both geometric optics and Rayleigh scattering will be

discussed in greater detail in the next section.

1.1 Optical trapping background

To understand the forces that drive optical trapping one can begin with elec-

trostatics, specifically the force on a dielectric slab inside a parallel place ca-

pacitor. The presence of an external, static, electric field serves to polarize the

dielectric. As the force on a single electric dipole within the dielectric is given

as Fdipole = (p · ∇)E the total force on the dielectric slab can be found by inte-

grating the force on each individual dipole over the volume of the dielectric

Fdielectric =
∫∫∫

(P · ∇)E dτ, (1.1)

where P is the polarizability of the material, E is the electric field of the

capacitor and dτ is the volume element. We note from equation 1.1 that any

forces on the dielectric require an electric field gradient, which cannot exist

within the parallel plate capacitor. Rather the fringe fields at the edges of

the capacitor, illustrated in figure 1.1, generate forces which serve to pull the

dielectric slab into the capacitor. These forces are driven by a lowering of the

overall potential energy of the system; moving the dielectric into the parallel

plate capacitor places material with greater polarizability into the high field

region, decreasing the energy between the plates. Returning to equation 1.1,

we see that increasing the electric field gradient serves to increase the force.

From Gauss’s law, these field gradients (which are necessary for a potential

minimum) are not possible in a static field in the absence of charge density,
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Figure 1.1: The fringe fields and forces resulting from individual dipoles for a dielec-

tric slab partially inserted into a parallel plate capacitor.

∇ · E = ρ. This is commonly expressed as Earnshaw’s theorem, it is not

possible to electrostatically generate a local minima or maxima of the field

potential only saddle points. A stable equilibrium position for the particle

within the electric field cannot exist.

Dynamically one can generate a large field gradient in the absence of

charge density. The electric and magnetic fields that make up light can be

highly focused, giving rise to exactly the electric field gradients necessary to

generate stable trapping. Using a highly focused beam of light does not simply

generate a trapping, or gradient force. As light carries momentum any changes

to the light’s momentum vector will result in a force. In optical trapping ap-

plications changes in the light’s momentum are due to reflection or refraction,

and will result in an equal and opposite change to the body which caused

the reflection or refraction. Termed the scattering force, in the physical optics

regime this force can be in any direction. In the geometric optics regime the

gradient force refers to any forces which act to restore the particle to the focal

point of the beam and the scattering force refers to any forces which push
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the particle away from it. For the remainder of this dissertation the geometric

optics definition of the terms scattering and gradient force will be used.

1.1.0.1 The Rayleigh Regime

Limiting ourselves, momentarily, to the Rayleigh regime, wherein the particle

diameter is much less than the wavelength of the incident light, we can treat a

spherical dielectric particle in this regime essentially as a collection of dipoles.

The polarization is therefore given as35

P = n2
b

(
n2 − 1
n2 + 2

)
r3E = αE, (1.2)

where nb is the refractive index of the media surrounding the dielectric, n =

na
nb

, na is the refractive index of the dielectric sphere, r is the sphere radius and

α is the polarizability of the sphere in the surrounding dielectric media. As we

can treat the sphere as a dipole the force due to the dipoles interaction with

the electric field gradient, or the gradient force, can be expressed as

Fgrad = (P · ∇)E =
α∇E2

◦
2

. (1.3)

Using light to generate the high electric field gradient necessary to trap the

particle does not come without an associated cost. From Maxwell’s equations,

∇× E = − δB
δt , the electric field comes with an associated magnetic field. Light

therefore carries momentum,

p =

√
ε◦
µ◦

(E× B) . (1.4)

This light is scattered from within the dielectric sphere and off its surface.

As momentum must be conserved each scattering event results in a force, the

scattering force,

Fscatt =
dp
dt

. (1.5)
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It is the balance of these two forces which results in stable trapping, with the

scattering force pushing the particle away from the region or high gradient, or

the focal point of the beam, and the gradient force pulling it back.

1.1.0.2 Geometric Optics Regime

One can understand trapping in the geometric optics approach as long as

one recognizes that light carries momentum. Reflection and refraction events,

analyzed within the geometric optics framework, then result in a momentum

transfer between the beam and the object. This allows computation of the force

exerted by the light field in its interaction with the object. Conservation of mo-

mentum accounts for both the gradient and scattering forces in the geometric

optics regime, where the particle diameter is much larger than the wavelength

of the incident light. In this regime the particle cannot be treated as a dipole

and instead acts as a lens, redirecting the incident light. From Fermat’s prin-

ciple light traveling through any homogeneous medium will always travel the

shortest possible optical path. In media with spatially homogeneous indices

of refraction this results in straight line paths. These straight line segments,

termed rays, can describe the path of a beam of light between intersections

with the dielectric interfaces. Following Ashkin’s first experiments with op-

tical levitation2 Roosen and Imbert36 used geometric optics to calculate the

forces parallel and perpendicular to the direction or propagation for two par-

allel laser beams.

F‖ = −
∫ π/2

0 dθ
∫ 2π

0 dφ
[

E2r2

µ◦c2 sin θi cos θi

]
×
[

R cos 2θi + 1− T2(cos 2(θi−θt)+R cos 2θi)
1+R2+2R cos 2θt

]
, (1.6)

F⊥ = −
∫ π/2

0 dθ
∫ 2π

0 dφ
[

E2r2

µ◦c2 sin2 θi sin φ
]

×
[

R sin θi − T2(sin 2(θi−θt)+R sin 2θi)
1+R2+2R cos 2θt

]
, (1.7)

6



where θi and θt are the angles of incidence and transmission, φ is the azimuthal

angle, measured from the vector normal to the perpendicular and parallel

directions. The terms R and T are the Fresnel coefficients which, averaged

over polarizations, can be expressed as

Ravg =
1
2

[(
nb cos θi − na cos θt

nb cos θi + na cos θt

)2

+

(
na cos θi − nb cos θt

nb cos θt + na cos θi

)2
]

, (1.8)

Tavg =
na cos θt

nb cos θi

[(
2nb cos θi

nb cos θi + na cos θt

)2

+

(
2nb cos θi

nb cos θt + na cos θi

)2
]

. (1.9)

Roosen and Imbert assumed that the light intensity within the beam had a

Gaussian profile, peaked at the beam’s center and having a 1
2 width of w. The

electric field intensity is then given by

E2 = E2
◦exp

[
−

2
(
r2 sin2 θi + ρ2

◦ − 2rρ◦ sin θi sin φ
)

w2

]
, (1.10)

where ρ◦ is the distance between the beam axis and the center of the sphere.

1.2 Ashkin’s closed form solution

Building upon Roosen and Imbert’s calculations, Ashkin was able to derive

a closed form solution for the scattering and gradient forces on a spherical

particle in the geometric optics regime. On the basis that a Gaussian beam

profile provided a poor description of the high convergence beams used in

good traps37 the beam waist was instead treated as a point. By using a discrete

point and the highly symmetric spherical dielectric shape, Ashkin was able

to define the angles of incidence, transmission and reflection for an infinite

number of intersections made by a single ray. As is illustrated in figure 1.2, for

a single ray of power P at the first point of intersection some fraction of the

incident power will be reflected, carrying power PR, where R is the Fresnel

coefficient in equation 1.8. The transmitted ray will carry a fraction of the

7



Figure 1.2: The angles and fractions of power carried for each intersection of single

ray with a homogeneous spherical particle in the geometric optics regime. Used with

permission c© Biophysical Society.

initial power, PT. At the first intersection of the transmitted ray, a fraction

of the power being carried, PT will be reflected and carry power PTR and a

fraction will be transmitted, carrying away power PT2. Following Ashkin’s

derivation,37 the force resulting from a single ray in directions both parallel

and perpendicular to the direction of beam propagation can be expressed as

F‖ = nbP
c −

[
nbPR

c cos (π + 2θi) +
∞

∑
n=0

nbP
c

T2Rn cos (α + nβ)

]
, (1.11)

F⊥ = 0−
[

nbPR
c sin (π + 2θi)−

∞

∑
n=0

nbP
c

T2Rn sin (α + β)

]
, (1.12)

where α = 2θi− 2θt and β = π− 2θt. As suggested by Ashkin,37 Roosen36 and

van de Hulst,38 one can sum the total rays scattered by a sphere by considering

the total force in the complex plane, Ftot = F‖ + iF⊥, which gives

Ftot =
nbP

c

(
1 + R cos 2θ + iR sin 2θ − T2

∞

∑
n=0

Rnei(α+nβ)

)
. (1.13)
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Substituting the value of the convergent geometric series, rationalizing the

complex denominator and taking the real and imaginary parts of equation 1.13

one can, with a good deal of algebraic manipulation, arrive at the following

expressions:

F‖ =
nbP

c

(
1 + R cos 2θi −

T2 [cos (2θi − 2θt) + R cos 2θi]

1 + R2 + 2R cos 2θt

)
, (1.14)

F⊥ =
nbP

c

(
R sin 2θi −

T2 [sin ((2θi − 2θt) + R sin 2θi]

1 + R2 + 2R cos 2θt

)
. (1.15)

Using equations 1.14 and 1.15 one can account for the momentum transferred

per second by a single ray to a spherical particle. By integrating over the area

of the beam aperture, the total scattering force, F‖ and gradient force, F⊥ can

be calculated. Additionally as the beam is simply described as a set of rays,

beams of complex intensity profile can be modeled.

The geometric optics approach was first expanded to account for the in-

tensity profile of the beam being used by Gauthier,39 in an approach called

”the photon stream method”. Using rays to define the path of a stream of

photons, Gauthier developed analytic expressions for the force components

perpendicular and parallel to the direction of beam incidence acting upon

a solid dielectric sphere in the presence of a Gaussian beam profile. This

work was later applied to systems with both transparent and perfectly reflect-

ing spheres in the presence of a Gaussian beam,40 for spheres suspended in

inhomogeneous media41 and used as a means to design optimized optical

trapping systems.42 Using Ashkin’s definitions for the scattering and gradient

force, Zhou and coworkers43 used a vector ray tracing approach to numer-

ically model the forces on a solid dielectric sphere in the presence of both

Gaussian and circularly polarized beam profiles.

Homogeneous spheres and the forces upon them in the presence of a beam

are well understood. Inhomogeneous spherical particles have also been stud-

ied extensively. Initial work focused on the trapping behavior of composite
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microspheres composed of layers of differing dielectric indices.19,44–47 With the

advent of lab on a chip systems, interest was peaked in the trapping and sort-

ing of double emulsion spheres48,49 and lipid vesicles.50 Later work pushed

the lower limits of vesicle diameter down to 50 nm; experimentally trapping

unilamellar lipid vesicles with a high refractive index sucrose core.51

Interest in the trapping behavior of symmetric particles is not limited to

spheres. The trapping of cylindrical and rod shaped particles has been studied

both in light of the torques inherent to a rod shaped particle52–54 and for

biological molecules, for example E. Coli.13,55 The vector ray tracing approach

was recently applied by Zhou and coworkers56 in computational simulations

to model the forces and torques on an ellipsoidal particle in the presence of a

Gaussian beam. Sraj and coworkers57 used a similar approach to simulate the

transient deformation of spherical, ellipsoidal and biconcave capsules due to

optical forces resulting from particle interaction with a single diode bar optical

trap.

1.3 Thesis overview

Ashkin’s research allowed a close approximation of the scattering and gradi-

ent forces for any incident beam interacting with a spherical dielectric parti-

cle with radii much larger than the wavelength of incident light. For more

complex shapes, for example shapes with multiple cavities or non-symmetric

geometries, Ashkin’s approach becomes intractable. An example of the depen-

dence of trapping behavior on particle geometry is beautifully illustrated in

Wilking and Mason’s9 experiments in which they examined the effect of par-

ticle shape on the trapping force for a series of polymeric colloidal particles

constructed using photolithographic techniques. They studied the trapping

forces on the letters of the Latin alphabet and found that, even for an essen-
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Figure 1.3: Trapping behavior of the colloidal dielectric alphabet, with particle dimen-

sions 4 µm × 7 µm × 1 µm. The particles were trapped using an expanded TEM00

Gaussian beam at a maximum laser power of 17 mW and wavelength λ = 633nm.

Blue arrows denote the direction of beam propagation and blue circles the focal point

of the beam when stable trapping occurred. Red squares mark shapes that do not trap.

Green lines and circles denote mirror planes and twofold rotation axes, respectively.

Used with permission c© Europhysics Letters Association.

tially fixed amount of the same dielectric material for each letter, some letters

were not able to be trapped, some could be trapped in only one position and

orientation, while some had multiple trapping positions and orientations, as

illustrated in figure 1.3. This trapping behavior of complex shapes and the vi-

ability of modeling the trapping behavior of any shape, using computational

geometric ray optics simulations, is the focus of this dissertation. Utilizing

Ashkin’s beam decomposition approach we focus on the momentum transfer

at each intersection of each ray of the beam at the interface of two dielectric

media; as any particle geometry can be decomposed into a set of interfaces.

Summing the momentum transfer at each intersection generates the net mo-

mentum transfer to the particle.
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1.3.1 Ray optics simulations

While the generation of a transmitted and reflected ray at each intersection

would appear to generate an unbounded and steady increase in the number

of rays to account for, there are two mitigating factors. First as the momentum

transfer is being calculated for a single dielectric body, any rays which are

directed away from the particle are accounted for and then no longer tracked.

Second, at each intersection of the ray with the interface from higher dielectric

to lower the bulk of the momentum is refracted, and we find convergence

within O(10−4), accounting for six or less intersections of each ray. As will

be discussed and demonstrated in the next chapter, we find close agreement

with Ashkin’s closed form solution for a solid dielectric sphere using this

approach. Additionally an overview of the functions and parameters used in

our simulations for any shape will be given.

1.3.2 Increased scattering interfaces

The natural first step in increasing shape complexity is to add to the number

of scattering interfaces. In chapter three the force field, or a map of the forces

acting upon a particle held statically at some position relative to the focal point

of the beam, are presented. Force field plots for a two dimensional system

consisting of a high numerical aperture beam and a circular dielectric with a

cavity, the size of which is steadily increased, are shown. This is an ideal test

system as the effect of cavity size on the forces imparted to the particle by

the beam can be predicted on the basis of electrodynamics and experimental

results for similar shapes from the previous work of Wilking.9

One would expect the addition of a cavity to increase the force in the direc-

tion of beam incidence as there are now more interfaces off which the incident

light can scatter. The gradient force should also decrease as there is less dielec-
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Figure 1.4: Trapping behavior of the colloidal dielectric square plate-like particle,

outer edge length L◦ = 4.5µm and inner cavity dimensions Li. Used with permission

c© Europhysics Letters Association.

tric material to be drawn in the direction of highest field gradient. As a result

the point at which the gradient force balances the scattering force should shift

away from the focal point of the beam, in the direction of beam propagation.

By symmetry the circular shape will trap with its center aligned with the cen-

ter of the beam; any shift perpendicular to the direction of beam propagation

will result in a restoring gradient force towards the center of the beam.

From our numerical simulations we find the results agree with expecta-

tions. Increasing the size of the inner cavity shifts the stable trapping point

for the shape away from the beam waist, in the direction of beam incidence.

For cavity sizes small relative to the radius of the circle the simulated stable

trapping point is close to that found experimentally by Wilking for a similar

shape, illustrated in figure 1.4. As the cavity size is increased, however, we

find that stable trapping is lost. This in contradiction to the experimental find-

ings of Wilking. Defining Li as the inner cavity diameter or length and L◦ as

the outer edge length, Wilking’s experiments show the expected loss of trap-

ping for Li
L◦ = 0.35, stable trapping for Li

L◦ = 0.53 and a loss of trapping once

again for Li
L◦ = 0.71 . We posit the cause of this disagreement is twofold. Firstly

ray optics does not account for diffraction and should therefore overestimate

the scattering force, which will be discussed in detail in following sections.

Secondly there are gradient forces resulting from the third plane of the dielec-
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tric, coming into and out of the plane in figure 1.4, which are unaccounted for

in the two dimensional simulations performed. These forces will be discussed

in the next section, which examines the trapping behavior of a planar shape.

1.3.3 Breaking rotational symmetry

A reasonable approach to increasing the complexity of shape trapping behav-

ior, beyond adding cavities, is to break the rotational symmetry of the particle.

Within the set of shapes experimentally studied by Wilking, the simplest ex-

ample of a non-rotationally symmetric shape is that of the L. Experimentally

an L shape traps with the bulk of the scattering surfaces shifted out of the

beam and the shorter leg oriented parallel to direction of beam incidence, as

is illustrated in figure 1.3. Trapping a non-rotationally symmetric shape opens

the possibility that while the scattering and gradient forces are in balance there

can simultaneously be an unbalanced set of torques acting upon the shape, due

to its interaction with the beam. In chapter five we investigate the role lack

of rotational symmetry plays in the trapping behavior of a planar shape with

two and then one plane of symmetry. Starting with a two dimensional rectan-

gular shape, length l◦ and unit width, we add a small perpendicular segment,

length li, and slowly increase its length, examining the resulting effect on both

the trapping behavior and torques.

Each shape was allowed to sample the full field at all angles θ, with theta

measured counterclockwise from the positive axis of beam incidence and ∆θ =

π
50 . For a rectangle length l◦ = 7 µm we find stable trapping for 0 ≤ li ≤ 0.3

µm. Trapping is lost for values of 0.4 µm ≤ li ≤ 2.2 µm and reemerges for

values 2.3 µm li ≤ 3.0 µm, where ∆li = 0.1. In the case of li = 0 stable trapping

was found with the long axis of the rectangle oriented both parallel, θ = 0, and

perpendicular, θ = ±π
2 to the direction of beam incidence. All other values of

li, for which stable trapping occurred, the long axis of the shape was oriented
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perpendicular to the direction of beam incidence. In the single parallel case,

li = 0, θ = 0 the base of the shape was located slightly below the focal point

of the beam. All perpendicular trapping occurred with the lowest boundary

of the shape located above the beam’s focal point.

While this trapping behavior diverges from that found experimentally by

Wilking, it is the expected result from analytic ray optics calculations; outlined

in chapter 5. Briefly, for two planar interfaces any internal ray intersecting an

interface perpendicular to the interface from which it originated will experi-

ence a switch in the magnitude of its x and y components upon refraction to

the lower index media. Any internal ray intersecting an interface parallel to

the interface from which it originated will refract at an angle equal to its angle

of incidence at its first low index to high index intersection. Parallel inter-

face intersections can therefore only contribute a scattering force, pushing the

particle away from the focal point of the beam, due to internal reflections. In-

tersections between perpendicular interfaces can contribute either a scattering

or gradient force. Additionally these perpendicular intersections lead to total

internal reflection for any ray which made its first intersection with the shape

at angles smaller than θc = sin−1
(√

nb
na

)
.

Returning to the possible causes of the simulation’s departure from Wilk-

ing’s experimental results, discussed in section 1.3.2, and consulting figure

1.4, a possible cause for this disagreement is illustrated. If one imagines a line

passing vertically through the beam axis shown in fig 1.4, Li = 2.4µm, the

incident rays are separated into those with positive and negative kx compo-

nents. For the rays on the left side of the beam axis all initial intersections are

with the base of the shape. Even accounting for the transmitted ray bending

inward towards the unit normal, the bulk of the rays will go on to intersect the

right-most vertical boundary of the dielectric. At the second intersection the

ray transmits with a larger ky component than it had at the first intersection.
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The net result for these two intersections is a gradient force.

For rays entering with kx < 0 there are two possible interfaces with which

the ray can make its first intersection, the vertical dielectric boundary, or the

base. In the case of initial intersection with the wall the ray can go on to in-

tersect the parallel inner dielectric boundary, with the resulting internal trans-

mitted ray going on to pass through the two parallel interfaces making up the

top of the shape. This parallel interface to parallel interface passage generates

no change in ky. A second possible path for the rays first intersecting the wall

is to internally intersect the lower inner boundary of the dielectric. Each of

these intersections will result in a transmitted ray with ky less than that of the

initial ray. In these interactions there is a net positive ŷ momentum transfer

to the particle. Incident rays with kx > 0 will either totally internally reflect,

due to their small angles of incidence with the perpendicular right-most di-

electric boundary, or will transmit. Each of these transmitted rays will carry

ky momentum in a greater fraction than they left the laser aperture with. As

a result, each of these rays will contribute an overall negative net ŷ force on

the particle. For rays that experience total internal reflection upon reaching

the top boundary of the dielectric they will transmit at an angle equal to their

angle of incidence. These rays will therefore make no net contribution to the

ky component of the particle’s momentum.

While this qualitatively explains the torque balance for the shape at its

stable trapping position it does not go very far in explaining the total gradient

force being high enough to generate stable trapping. If one, however, were

to rotate the particle which displays reentrant trapping about the beam axis

by π
2 the overall trapping behavior of the shape remains unchanged as the

beam is symmetric about its central axis. The shape we are able to examine

however, following this rotation, is now a plank. In the stable trapping position

some of the incident rays will intersect the base of the plank and go on to
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internally intersect a perpendicular wall, contributing to the gradient force.

Some of the incident rays will intersect the side of the shape and go on to

internally intersect a parallel wall, making no contribution to the scattering

force. As the simulations were done in two dimensions they fail to account for

the particle’s second characteristic geometry. Additionally as a circular rather

than planar structure was used in the initial simulations the effect of parallel

and perpendicular interfaces would not be seen.

Regardless of the particle shape the possibility remains that stable trapping

points will be missed by the simulation if any of the particles dimensions are

on the order of, or smaller than, the wavelength of the incident light. The

ray optics approach, which allows one to account for the dielectric boundaries

simply using Euclidean geometries, comes at the cost of neglecting the effects

of diffraction.

1.3.4 Effects that cannot be accounted for with Geometric Optics

1.3.4.1 Diffraction

For large spheres with diameters much larger than λ the diffraction contribu-

tion to the total forces on the particle are small enough that they can be safely

neglected38,58,59 . From the standpoint of the numerical simulations discussed

in this dissertation it is fairly straightforward to add cavities within the parti-

cle much smaller than the wavelength of incident light or to design particles

consisting of an array of diffractive knife edges. Doing so, however, introduces

new forces that are attributed to either the wave or electromagnetic nature of

light with diffraction resulting in the first regime and dipole scattering in the

later. The classic geometric optics approach was originally modified to ac-

count for diffraction by Keller.60 From the pure geometric optics standpoint,

the interaction of the ray with the dielectric media is binary. The ray either
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(a) Diffracted ray contributing

to the scattering force.

(b) Diffracted ray contributing

to the gradient force.

Figure 1.5: A ray path for which diffraction can contribute to the scattering force, fig-

ure 1.5a; where in the ray loses a portion of the ky component of its incident momen-

tum and transfers the same amount to the particle. A ray path for which diffraction

can contribute to the gradient force on the particle, figure 1.5b. The second mirrored

ray is included to define the point of highest beam focus and illustrate a position for

the particle, relative to the beam, where gradient forces due to diffraction are likely to

happen.

intersects, transferring some of its momentum in the process, or it misses the

dielectric completely; making no impact on the particle’s net momentum. We

know this is not true that rays, in fact, diffract around small objects, and in

doing so diverge slightly from their previous path, imparting a change in the

particle’s momentum. This change can contribute to either the scattering or

gradient force, as is illustrated in figures 1.5.
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1.3.4.2 Dipole Scattering

The Dipole scattering approximation can be applied if the characteristic di-

mensions of the particle are much smaller than the wavelength of the incident

light. In this regime the particle is too small for the wave to diffract around and

instead the electromagnetic fields which make up the Poynting vector interact

with the particle as though it were a dipole, inducing electric and magnetic

multipoles which can oscillate in definite phase relationship with the incident

waves. These oscillations radiate energy in directions other than that of inci-

dence.61 The radiated fields can add constructively or destructively with the

incident field and cause an overall change in the momentum flux through

some closed surface surrounding the particle. In the presence of the highly

focused beam of a laser our understanding of the particle’s trapping behav-

ior essentially returns to the electrodynamics discussion presented earlier in

section 1.1.0.1.

1.3.4.3 Mie Scattering - The Full and Exact Solution

In both the case of geometric diffraction theory and dipole scattering the forces

imparted to the particle will only hold if one remains in the length regime

they were designed for. The impetus behind the development of any scatter-

ing approximation is to avoid doing the full Mie scattering calculation. The

Mie scattering solutions to Maxwell’s Equations for spherical and cylindrical

particles are exact for all regimes, account for the boundary conditions at the

dielectric interface and allow for interference between the incident and scat-

tered fields. To correctly allow interference between the incident and scattered

fields the incident wave is re-expressed in the vector wave harmonics basis set

appropriate to the scattering body being studied, cylindrical or spherical.

With the advent of modern computers the Mie scattering calculation be-
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came less intractable, but the intuitive ease with which one can envision the

interaction of light with matter in geometric ray optics is lost in pursuit of

exactness. It seems natural, therefore, to question how far outside of its pre-

scribed regime our ray optics approach can safely take us. In chapter four

of this dissertation we use the cylindrical vector harmonics to express both

the electromagnetic fields incident upon and scattered from a dielectric par-

ticle with boundaries described by a pair of infinite concentric cylinders. We

calculate the momentum flux through some surface for the interaction of a

collimated incident plane wave with the dielectric boundaries described. The

plane wave is described by time averaged total fields, incident plus scattered,

and the double dot product of the Maxwell stress tensor with the direction of

beam incidence used to calculate the total momentum flux.

As a first pass the momentum transfer to a homogenous two dimensional

dielectric sphere cross section was calculated using the Mie fields and our nu-

merical ray optics simulation. The ratio of these values was calculated for a

sphere of size parameter ka ranging for 0.1 ≤ ka ≤ 100, where ka = 2πana
λ . We

find the geometric optics approach consistently overestimates the scattering

force until ka approaches O(1). In this regime geometric optics underesti-

mates the scattering force, supporting our earlier qualitative description of the

diffraction effects in this regime. We note there is no gradient force in the

model used here as the beam is collimated, but gradient forces due to diffrac-

tion should still be possible. For length scales ka ≥∼ 50 we find the numerical

geometric optics result equal to those calculated using the Mie formulation.

With the scattering force understood for a homogeneous particle in the dif-

ferent size regimes we go on to explore the scattering force on non-homogeneous

particles. Holding the outer bounds of the particle constant and slowly chang-

ing the radius of the inner dielectric boundary we are able to step seamlessly

through multiple scattering regimes, calculating the total scattering force from
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the Mie calculation at each step. The same approach was used in calculat-

ing the Mie and geometric optics scattering force, however both were then

normalized by the incident momentum and directly compared.

Particles were modeled with ka consistently held at ka ∼ 100 (which for the

parameters used represents a particle approximately 16 microns in diameter)

and an inner cavity of size parameter kb = 2πnbb
λ , where in this case the inner

index of refraction was equal to that of the media surrounding the dielectric

particle. The size parameter of the inner cavity was allowed to range from

0 ≤ kb < 100, with values of kb < 48 showing an underestimation of the scat-

tering force on the part of the geometric optics simulation. As kb is increased

from 48 ≤ kb < 82 the geometric optics calculation overestimates the total

scattering force. For values of kb > 82, the geometric optics result once again

underestimates the scattering force. In the small kb regime one finds some of

the rays contained internally by the higher dielectric medium, which would

either give rise to dipole scattering or diffract around the particle at grazing

incidence in the full Mie calculation, instead are excluded from interaction in

the geometric optics picture, the ray simply does not see the boundary. As

the inner cavity size is increased more of the rays which bend inward towards

the cavity, following their initial transmission into the high dielectric region,

can now intersect the cavity. These rays could intersect the base at grazing

incidence, imparting a gradient force from the geometric diffraction argument

illustrated in figure 1.5b. In the numerical simulations these grazing rays are

not allowed to interact with the inner cavity. Once kb reaches values above 82

the dielectric can essentially be described as a thin ring, failure to account for

diffraction in this regime results in an underestimation of the scattering force.
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CHAPTER 2

Simulation Methods

2.1 Introduction

As mentioned in chapter one, a closed form geometric ray optics solution for a

solid spherical particle was derived by Ashkin in 1992. While there is a slight

overestimation of the scattering force, geometric optics offers rapid and fairly

accurate approximation of the forces acting on a symmetric particle in the

presence of a focused beam, if the particle’s smallest dimensions are within

the ray optics regime. For more complex shapes, for example inhomogeneous

shapes with cavities of a different dielectric constant or irregular geometries,

a closed form solution is either impossible or intractable. We address these

challenges with a numerical ray optics simulation which only requires the

equations defining the boundaries of the shape, the indices of refraction and

the numerical aperture of the beam allowing one to forgo most symmetry con-

siderations and to calculate the momentum transfer to essentially any shape.

In the following sections the equations used to calculate the momentum

transfer at each point of intersection are outlined and their methods of im-

plementation are explained. The number of rays used for the beam decom-

position and number of intersections allowed for each ray required to reach

convergence are discussed, as well as the simulation parameters. Finally the

simulation results for a two dimensional circle are compared to those found

using Ashkin’s closed form solution.
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2.2 Methods

A single focused beam, averaged over polarizations and distributed across a

two dimensional aperture, was used. A flat light distribution and a discrete

point of focus were chosen as this allowed both direct comparison with results

found using Ashkin’s closed form solution and more rapid computation in

running of the simulations. The focal point of the beam was selected to give

a maximum angle of incidence, φi ≈ 64◦, mimicking the maximum angle of

a 1.4 numerical aperture objective lens. The beam was decomposed into dis-

crete rays, propagating through a homogeneous medium. The particle being

modeled was described by a set of boundaries surrounding a region of higher

dielectric constant.

In all simulations the beam was held stationary and the particle translated

across an array of positions in discrete steps. The area sampled was selected

such that positions were available which placed all of the particle bounds, in

any orientation, at least one internal length unit away from the focal point of

the beam. Fifty steps were used per internal length unit. For any shape the

boundaries were defined from the point in the array at which the shape had

been positioned. The specific equations used to describe the boundaries of the

shape will be discussed in subsequent chapters. At each step the total force

on the particle was calculated and these values were used to generate a force

vector field. A static potential surface was calculated using the vector field and

the curl of the field determined with a line integral about each point, using

the average of two adjacent force vectors.

2.2.1 Calculating the momentum transfer to any shape

The beam is initially discretized into unit ray vectors, directed from the aper-

ture to the focal point of the beam. All possible points of intersection for the
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Figure 2.1: The incident (k̂), reflected (k̂′), transmitted (k̂”), unit normal (n̂), and unit

tangential (B̂) vectors; as well as the angles of incidence and transmission and the

indices of refraction.

ray with the boundaries of the shape are found and the closest point of in-

tersection selected. At each intersection the unit normal, n̂ =
~∇r
|~∇r|

for circular

shapes and n̂ =
~lseg×ẑ
|~lseg×ẑ|

for line segments, was calculated. The tangential vec-

tor, B̂ = n̂ × ẑ is used with the unit normal to calculate the direction of the

reflected,

k̂′ = n̂
(

k̂ · n̂
)
+ B̂

(
k̂ · B̂

)
, (2.1)

and transmitted,

k̂” =
−n̂ + tan (θt) B̂√

1 + tan (θt)
, (2.2)

rays. For ease of visualization all of these variables as are illustrated in fig-

ure 2.1.

tan (θt) =
−nr

nt

√
1−

(
k̂ · n̂

)2

k̂ · n̂
. (2.3)

The fraction of the incident momentum carried by the transmitted and

reflected rays was calculated using Fresnel’s equations. Each ray is injected
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with unit initial momentum. Averaging over polarities the net momentum

transfer to the particle, at each intersection, is calculated using conservation of

momentum,

~pparticle = −
[
k̂−

(
T k̂” + R k̂′

)]
(2.4)

2.2.2 The total momentum transfer

With the previously described mechanism for determining the points of inter-

section, as well as the directions and magnitude for the incident, reflected and

transmitted momentum vectors in place, the code is implemented as follows:

• A single ray is injected, labeled j00, and the closest point of intersection is

determined.

• The direction and magnitude of the reflected and transmitted momen-

tum vectors are found.

– If total internal reflection occurs no transmitted vector is calculated

and the reflected ray is assigned all of the incident momentum.

• These values are utilized to calculate the momentum transfer to the par-

ticle.

• Using the indexing process illustrated in Figure 2.2

– The reflected ray is assigned index j10, with the direction, magnitude

and origin resulting from the intersection of j00 updated appropri-

ately.

– The transmitted ray is assigned index j01, and the ray’s direction and

magnitude stored.
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Figure 2.2: The indexing process for a single ray.

The ray, index jl, is allowed to intersect each subsequent point in its path,

with the above process repeated, until it either fails to intersect or a cutoff

number of intersections are reached. The index of the ray is then incremented

and the next ray, index jl+1, followed.

2.3 Convergence

From the description of the code implementation above it would appear the

numerical simulation would run for infinitely long time scales, as at each inter-

section two new rays are generated, leading to an exponential increase in the

number of rays. Discretizing the beam into a reasonable number of incident

rays would only serve to exacerbate the problem. Adding scattering interfaces

to the particle geometry serves to further increase the number of rays the sim-

ulation must keep track of. A pair of concentric circles therefore serves as an
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excellent test case to determine the minimum number of rays with which to

decompose the beam and the minimum number of intersections to allow each

constituent ray for convergence to be reached.

A concentric circle geometry was used, with the outer radius held constant

and the inner radius varied. The particle was consistently placed at the same

position and all of the rays making up the beam injected. Each ray over the

entire index was allowed to intersect the particle ten times and the net mo-

mentum transferred to the particle as a function of the number of rays initially

injected was calculated. The difference in efficiency ∆Q = Qn+1−Qn, defined

as transferred momentum normalized by the total incident momentum, was

calculated for 10n rays. As is shown in figure 2.3a, ∆Q reaches O(10−5) follow-

ing the injection of 105 rays. For the rinner
router

= 0.1 case approximately 16% of the

rays experienced total internal reflection off the inner boundary of the shape,

leading to more slowly converging values of Q. To determine the minimum

number of intersections each ray segment must be allowed, the process was

repeated; this time holding the number of rays injected at a constant value of

104 and increasing the number of allowed intersections. Figure 2.3b illustrates

differences ∆Q < 10−3, which for a 10 mW beam is ±0.04 pN of force, within

6 intersections for all geometries tested.
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(a)

(b)

Figure 2.3: (a) The change in efficiency (Q =
pmag

pincident
) as a function of the number of

incident rays and (b) as a function of the number of allowed intersections for each

ray. For rinner
router

= 0.1, approximately 16% of the incident rays undergo total internal

reflection with the inner wall of the shape, accounting for the slower convergence.
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2.4 Comparison with the closed form solution

The numerical ray optics simulation gives an approximation of the exact forces

imparted to the particle by a focused beam. Future chapters will compare

the scattering forces calculated using the numerical simulation to those found

analytically using Maxwell’s equations. As a first pass in testing the accuracy,

one can reasonably demand that the numeric method be in close agreement

with the analytic closed form solution for a solid homogeneous particle. To

verify that this was the case, we directly compared the efficiency for a single

ray, as a function of angle of incidence, and for the complete beam; calculated

using both methods. As is shown in figure 2.4 we find exact agreement with

Ashkin’s solution for a single ray.

Figure 2.4: Scattering, gradient and total efficiency (Qs, Qg and Qt) for a single ray as

a function of angle of incidence. Subscript a denotes efficiency from the closed form

analytic solution, subscript c denotes efficiency found using the numerical simulation.

This process was repeated, this time integrating along the beam aperture,

29



using both methods. The particle was translated along the beam axis and the

total efficiency analytic efficiencies calculated using the code generated angle

of incidence. The numeric efficiency is simply the normalized force in the

direction of beam incidence. All of these values were calculated as a function

of displacement from the focal point of the beam, S, with S < 0 corresponding

to the circles center placed below the focal point of the beam and S > 0 for

positions above the focal point, as is illustrated in figure 2.5.

Figure 2.5: S, or displacement from the focal point of the beam. S < 0 corresponds to

positions below the focal point of the beam, S > 0 corresponds to positions above the

focal point of the beam. The beam propagates in the positive S direction.

The values for Qs, Qg and Qtot calculated analytically, as well as the value

of Qtot found using the numerical geometric optics simulation, are shown in

figure 2.6.
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Figure 2.6: Scattering (Qs), gradient (Qg) and total efficiency (Qtot = Qs + Qg), as a

function of displacement from the beam focus, S, for the Ashkin solution (analytic)

and the ray optics code (numeric).

We find almost exact agreement between the analytic and numerical solu-

tions, with the relative error

Qtot,numerical −Qtot,analytic

Qtot,analytic
, (2.5)

never reaching values above 0.1%, as is illustrated in figure 2.7.
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Figure 2.7: The relative error in the total efficiency calculated using the numerical

simulation.
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CHAPTER 3

Trapping Behavior of Symmetric Shapes

3.1 Introduction

The symmetric spherical dielectric particle remains an archetypical geome-

try in optical trapping applications. Spherical dielectric particles have been

used as probes for the application of forces to DNA4,62,63 or the deformation

of red blood cells,6 in measurement of the forces applied by single kinesin

molecules,5 to examine the forces imparted by novel beams; including holo-

graphic optical tweezer arrays,10,11 multi-ringed beams64 and in the simulta-

neous trapping of high and low index particles using optical vortices.17

Recently Ramsay and co-workers reported on the trapping of a hollow,

cylindrical microsyringe.65 Using a three beam trap they were able to both

hold a borosilicate microcapillary (1 to 10 µm in diameter and 5 to 150 µm

in length) stationary, long axis perpendicular to the direction of beam inci-

dence, while translating a microsphere through the microcapillary. Modeling

this system using physical optics, accounting for the boundary conditions and

solving Maxwell’s equations for both trapping particles, would be intractable.

A basis set which allowed the description of cylindrical, spherical and planar

wave vectors would have to be employed, allowing interference between the

incident and scattered fields. With a cylinder wall thickness of 2 to 4 µm and

a trapping wavelength of 1.06 µm, the primary dimension of the microsyringe

involved in trapping is not even twice the incident wavelength and therefore
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well outside the accepted length scales for geometric optics. The overall ge-

ometry of the system, however, makes our rather straightforward numerical

approach very attractive. The natural question is how inappropriate is it to

use a geometric optics approximation for particles on length scales near the

wavelength of the incident light?

In previous chapters we discussed our numerical approach to calculating

the total forces on a dielectric particle in the geometric optics regime. Hav-

ing established near exact agreement between the results of the numerical

approach and the analytic solution for a solid homogeneous particle we now

investigate the trapping behavior for a rotationally symmetric shape with in-

creased scattering interfaces, in other words the cross section of a hollow cylin-

der. In the following sections we will examine the force vector fields for a 1 µm

outer diameter cylinder cross section, with a hollow cavity of steadily increas-

ing inner diameter. The scalar potential surface as well as the ratio of the curl

to the potential shall be given for each case. In chapter 4 we will determine

the level of agreement in the scattering force found using the exact physical

optics solution and that found using our numerical optics simulation.

3.2 Background

The physical phenomena of optical trapping results from a balance of the

scattering and gradient forces. The gradient force, as discussed in chapter 1,

is driven by the reduction of the system’s potential energy as the dielectric

material moves to the region of highest field gradient. The scattering force is

the consequence of radiation pressure, resulting from reflection of the light off

of the dielectric interface. If these forces can be balanced in the beam stable

trapping results.
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3.2.1 Choosing points of intersection for symmetric shapes

The symmetric shape studied consisted of two concentric cylinders with radii

R1 and R2 where R1 > R2. As discussed in chapter two, the beam is decom-

posed into discrete rays. The closest point of intersection, if any, for each ray is

determined as follows; for a ray originating at point (x◦, y◦) to intersect either

circle, centered at (a, b), with x = x◦ − a and y = y◦ − b,

(R1,2)
2 =

(
x + q1,2k̂x

)2
+
(

y + q1,2k̂y

)2
. (3.1)

Solving for q,

± q1,2 = −γ±
√

γ2 − R2
1,2 −

(
x2 + y2), (3.2)

with γ = yk̂y + xk̂x, the smallest positive root, ±q1 or ±q2 is chosen.

3.2.2 Stable trapping, the scalar potential

The stable trapping point is found by scanning through the complete force

vector array and selecting any or all of the points within the array at which all

of the surrounding force vectors are directed inward, towards that point. Of

the points found which meet this condition the point with the lowest total force

magnitude is assigned as the stable trapping point. Once the stable trapping

point is found the effective potential of the trapping force is calculated using

the work required to move outward from the stable trapping point.

Using Green’s theorem,∮
F · ds =

∫ ∫
(∇× F) · da, (3.3)

to verify the force field is conservative, the net work for a closed path sur-

rounding each point in the vector array was calculated. It is only in the case

that this value is small that the calculated potential energy surface is meaning-

ful. Generally we find that near stable trapping points there is a well defined
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potential energy well but significant values for the net work,
∮

F · ds > 0,

further away. The presence of nonconservative forces away from the stable

trapping point is not surprising given the nonconservative nature of the scat-

tering force.

The optical forces scale linearly with the power of the incident beam and

are thus of no consequence for the analysis of the effect of particle geometry

on trapping. Nevertheless is is of some interest to compare the depths of

local trapping potential wells to thermal energy
(

kBT ≈ 1
40 eV

)
in order to

assess whether the calculated wells could, in fact, trap micron-scale particles

at room temperature. Consequently, hereafter we assume the trapping beam

has a power of 10 mW (typical for laser trapping experiments). Similarly we

take the maximum angle of incidence to be 70◦, modeling a high numerical

aperture lens (for example a N.A. 1.25 water immersion microscope objective),

as is typically used in optical trapping experiments.

The shape is modeled as two concentric circles marking the bounds of a

homogeneous dielectric with index of refraction nb = 1.6. This particular

value was chosen as it approximates that of polystyrene (n = 1.617 - 1.572 for

λ = 400 - 1010 nm at 20◦C)66 which is commonly used in optical trapping

experiments. The surrounding media was assigned a refractive index of na =

1.33, to approximate the values found for water (n = 1.343-1.33 for λ = 400 to

1010 nm at 20◦C).67 These parameters can easily be changed and a different

maximum angle of incidence or dielectric mismatch will change the trapping

behavior of the shape being modeled. An outer radius of 1 µm was chosen

an the inner radius varied from 0 µm ≤ Rinner ≤ 0.9 µm. A unit outer radius

was selected as, for geometric optics, particle size does not enter into the force

calculations. Additionally selecting this size allowed a shorter focal length and

therefore a smaller beam aperture, leading to a larger number of rays per unit

length of the aperture.
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3.3 Results

If we consider a homogeneous sphere interacting with a focused beam and

position the center of the particle along the central beam axis, all forces per-

pendicular to the direction of beam incidence will cancel. With this simplified

system we need only consider the forces parallel to the direction of beam prop-

agation. For this example the scattering force will be in the direction of beam

propagation and the gradient force can either be in the direction of beam prop-

agation or against it, pushing the particle towards the focal point of the beam.

At the point along the central beam axis at which the gradient force balances

the scattering force stable trapping will occur. As, for particle positions below

the focal point of the beam, the scattering and gradient forces have the same

sign, in this particular example force balance is only possible if the center of

the particle is positioned at or above the focal point.

With this understanding one would expect that if we were to remove di-

electric material from the center of the sphere it would serve to reduce the

gradient force, as there is less dielectric to interact with the high electric field

gradient of the beam focus; and increase the scattering force, as the number

of scattering interfaces has doubled. The stable trapping point should then be

shifted away from the focal point of the beam. This is in fact the case for all

inner cavity sizes. A single stable trapping point can be followed along the

direction of beam incidence, moving away from the beams focal point as the

inner cavity diameter is increased. Additionally the introduction of a cavity

introduces new trapping points, off-axis from the beam, as will be shown.

For all shape geometries the force field, units pN, the scalar potential and

the net work for a closed path surrounding each point in the force array, units

kBT at 25◦C, were calculated. Each plot of the scalar potential and the net

work includes a white circle, denoting the stable trapping point, determined
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as mentioned previously. The potential at the stable trapping point was set as

the zero of the potential surface.

3.3.1 Solid dielectric circle, Rinner = 0

For Rinner = 0, the trapping behavior matches that of Ashkin’s analytic calcu-

lations. Examination of the force field, figure 3.1a, shows stable trapping along

the beam axis and slightly above the focal point of the beam, at S = 0.12; where

S = b− f oc and b corresponds to the y-coordinate of the particle’s center. The

scalar potential, figure 3.1b, reinforces the stable trapping point found in the

force field, with an overall well depth of ≈ 700 kBT. Examining a close-up

of the same potential surface, figure 3.1c shows a well, ≈ 1.2 µm in diameter,

with a depth of 560 kBT. As is illustrated in figure 3.1d, the net work, normal-

ized by the potential at each point, displays values below 0.05 kBT within the

region of the potential well.
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(a)
(b)

(c) (d)

Figure 3.1: (a) The force field for a solid circle, Rinner = 0. A stable trapping point is

illustrated along the beam axis, at S = 0.12. (b) The scalar potential calculated from

the full force field, and (c) a close-up of the potential. (d) The absolute value of the

net work normalized by the potential,
∣∣∣Wnet(x,y)

U(x,y)

∣∣∣.

3.3.2 Dielectric circle with a cavity

The addition of a small cavity shifts the axial trapping position, found for the

Rinner = 0 case, away from the focal point and along the direction of beam in-

cidence. Additionally off-axis trapping points appear. For all trapping points

near the focal point of the beam the net work shows a marked increase in the

non-conservative scattering force for shifts in the particle position perpendic-
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ular to the beam axis.

3.3.2.1 Rinner = 0.1

The addition of even a small cavity shifts the axial trapping point in the di-

rection of beam incidence, by 0.2 µm from S = 0.12 µm in the Rinner = 0 case

to S = 0.32 µm, figure 3.2a. In the region surrounding the focal point of the

beam, coordinates (0 µm, 0 µm), we see the particle is actually pushed away

from the focal point with the addition of a small cavity. As will be shown in

the force field plots to follow, the size of this region of repulsion, surrounding

the focal point, scales directly with the size of the cavity radius. The depth

of the potential well is also greatly decreased. Where a well depth of 560 kBT

was found for the case of the solid circle, Rinner = 0 we find a local potential,

well depth 31 kBT, with the addition of a cavity with a 0.1 µm radius.

Off-axis two new trapping points appear, below the focal point of the

beam at (±0.7 µm, −0.8µm) and a metastable trapping point parallel to the

focal point, with local minima at (±0.3 µm, 0µm) and (± 0.5 µm , 0.2 µm), fig-

ure 3.2a. The potential minimum below the focal point of the beam has a well

depth of ≈ 250 kBT. In the region of metastable trapping the upper potential

minimum has a well depth of approximately 35 kBT, while the lower has a

depth of approximately 90 kBT. Near the focal point of the beam the net work,

figure 3.2d, is highly affected by the scattering force. We see much higher val-

ues for the net work, compared to the potential at each point, as the particle

is moved perpendicular to the beam axis. The local minimum below the focal

point of the beam displays very small values for the net work, compared to

the potential in this region, with values below 1%.

40



(a)
(b)

(c) (d)

Figure 3.2: (a) The force field for a particle with an inner cavity Rinner = 0.1. A stable

trapping point is illustrated along the beam axis, at S = 0.32. (b) The scalar potential

calculated from the full force field, and (c) a close-up of the potential, local minima are

displayed at positions (±0.7 µm, −0.8µm), (±0.3 µm, 0µm), (± 0.5 µm , 0.2 µm) and

(0 µm, 0.32 µm), with potential well depths of ≈ 250 kBT, ≈ 90 kBT, ≈ 35 kBT and

≈ 31 kBT respectively. (d) The absolute value of the net work normalized by the

potential,
∣∣∣Wnet(x,y)

U(x,y)

∣∣∣.

3.3.2.2 Rinner = 0.2

Increasing the cavity size serves to further shift the axial stable trapping point

away from the focal point of the beam, S = 0.46 µm, and create more clearly
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defined off-axis trapping points, figure 3.3a. The well depth at the on-axis

trapping point increases by 27 kBT to 58 kBT. Off-axis all of the local potential

minima increase in well depth. The trapping point at (±0.7 µm, −0.8 µm)

has a well depth of approximately 485 kBT. The upper and lower metastable

points display well depths of 125 kBT and 420 kBT respectively, figure 3.3c. The

normalized net work reaches values as high as 100% within the metastable

trapping region, but does not rise above 10% within the region defining the

base of the potential well. For the trapping point below the focal point of the

beam the normalized net work is less than 0.1% near the base of the potential

well.
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(a)
(b)

(c) (d)

Figure 3.3: (a) The force field for a 1 µm radius circle with a small cavity, Rinner = 0.2.

A stable trapping point is illustrated along the beam axis, at S = 0.46. (b) The

scalar potential calculated from the full force field, and (c) a close-up of the po-

tential, local minima are displayed at positions (±0.7 µm, −0.8µm), (±0.3 µm, 0µm),

(± 0.5 µm , 0.2 µm) and (0 µm, 0.32 µm), with potential well depths of ≈ 485 kBT, ≈

420 kBT, ≈ 125 kBT and ≈ 27 kBT respectively. (d) The absolute value of the net work

normalized by the potential,
∣∣∣Wnet(x,y)

U(x,y)

∣∣∣.

3.3.2.3 Rinner = 0.3

Taking the increase in the cavity size one step further, Rinner = 0.3 we see a loss

of definition in the off-axial trapping points, figure 3.4a, and a more clearly
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defined on-axis trapping point at S = 0.58 µm. The on-axis potential well

deepens as a result, reaching a depth of 90 kBT. Off-axis we see well depths of

180 kBT, 625 kBT and 725 kBT for the trapping points at (±0.6 µm, 0.38 µm) , (±0.65 µm, −0.1 µm)

and (±0.65 µm, −0.88 µm) respectively. We once again see high sensitivity to

the scattering force for the axial trapping point, in examination of the net

work, figure 3.4d. The off-axis local potential minimums all exist in regions

with relatively low net work, ≤ 0.1%.

(a)
(b)

(c) (d)

Figure 3.4: (a) The force field for a solid circle, Rinner = 0.3. A stable trapping point is

illustrated along the beam axis, at S = 0.58. (b) The scalar potential calculated from

the full force field, and (c) a close-up of the potential. (d) The absolute value of the

net work normalized by the potential,
∣∣∣Wnet(x,y)

U(x,y)

∣∣∣.
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This trend in the on-axis trapping point shifting up the beam axis in the

direction of propagation continues, until finally for Rinner > 0.5 µm all on-axis

trapping is lost. As was mentioned previously the region surrounding the

focal point shows forces pushing the particle away from the focal point of the

beam. The size of this region grows with each incremental step in the radius

of the inner particle cavity. Figure 3.5 illustrates the force fields for all inner

cavity sizes greater than 0.3 µm which were examined.
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(a) Rinner = 0.4 (b) Rinner = 0.5

(c) Rinner = 0.6 (d) Rinner = 0.7

(e) Rinner = 0.8 (f) Rinner = 0.9

Figure 3.5: The force fields for 0.4 µm ≤ Rinner ≤ 0.9 µm
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CHAPTER 4

Geometric Optics vs Mie Scattering

4.1 Introduction

As was discussed in previous chapters, geometric optics is an efficient and in-

tuitive means to calculate the momentum transfer from a beam to an arbitrary

particle. Our previous discussion examined the geometric optics result for the

forces acting upon a two dimensional hollow dielectric particle as a function of

inner cavity radius. This investigation was performed with full understanding

that overestimation of the scattering force is inherent in the geometric optics

picture if the particle size is on the order of, or less than, the wavelength of

the incident light.

When the size of particle, the internal cavity or any other length character-

istic of the particle structure is reduced to the scale of the incident radiation

wavelength one must expect the results of geometric optics to become inac-

curate. For example the magnitude of the radiation pressure on a scatterer

smaller than the wavelength of incident radiation should be less than that pre-

dicted by geometric optics, due to diffraction of the radiation back into the

forward scattering direction.

From Babinet’s principle these effects must apply to a hole in a dielectric

medium as well and are thus applicable to the experiments of Wilking and

collaborators.9 Their data in particular exhibits the initially surprising phe-

nomenon of reentrant trapping. In a series of experiments on the trapping of
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rings, in which the outer radius was held constant while the inner radius was

steadily increased, they find that as the inner cavity is initially increased the

scattering force was increased and the trapping force reduced. At a critical

void size, the particle became impossible to trap. However, as the size of the

cavity was further increased trapping once again became possible. We were

not able to directly reproduce this reentrant trapping in our geometric optics

simulation. We believe the reasons for this are two-fold. First the seemingly

small differences in the shape geometry, for example using a circle rather than

a square with rounded edges, appear to play a large role in the trapping be-

havior of the shape. This will be discussed in detail in the next chapter, where

we examine the trapping behavior of a planar L shape. Secondly the geometric

optics calculation fails to account for diffraction. In Wilking and collaborators’

experiment a 633 nm wavelength was used and reentrant trapping was found

for a ring with a thickness of approximately 1050 nm, or 1.66 times the wave-

length of incident light.

More generally we expect that accounting for diffraction effects in laser

trapping becomes increasingly important as the structure of a several micron

scale particle become more complex, with features in the sub-micron range.

In this regime multiple approximations are available, including the dis-

crete dipole approximation,68 which has no dependence on particle geometry

or size, or when the scattering center is sufficiently small compared to the

wavelength of the incident light it is permissible to treat the scatterer as a

point dipole, resulting in the Rayleigh scattering approximation. This yields

an analytically tractable solution for the scattered radiation field and thus the

momentum transfer per unit time from the incident beam to the object.

Alternatively, if the scatterer is too large to be treated as a point dipole,

there are numerous approaches based on the original calculation by Mie,

wherein the system is solved exactly; using the scattered, incident and com-
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bined electromagnetic fields. As the actual description of the fields depends

upon both the particle and beam geometry numerous theories and methods

have been developed. These theories include Lorenz-Mie Theory, and Gen-

eralized Lorenz-Mie Theory. Lorenz-Mie Theory describes the fields for a

spherical particle in the presence of a plane wave. Generalized Lorenz-Mie

Theory describes the electromagnetic scattering of an arbitrary light beam by a

spherical particle69 and has been extended to describe the scattering of infinite

cylinders.27 Many of these calculations were initially performed to study the

distribution of scattered radiation intensity as a function of angle and therefore

did not consider the momentum transfer to the object. Such considerations are

fairly straightforward as the Maxwell stress tensor can be directly calculated

from the known radiation fields.

The Lorenz-Mie theory and all of its derivative theories require the com-

putationally demanding calculation of scattering coefficients and in the case

of the Generalized Lorentz-Mie theory the beam shape coefficients. Our nu-

merical geometric optics implementation is, in contrast, straightforward to

implement and not very computationally demanding. As was stated previ-

ously, geometric optics overestimates the scattering force imparted by each

ray, the question is how large is this overestimation? Specifically how large is

the overestimation of the scattering force in the geometric optics approxima-

tion for particles with feature sizes on the order of the wavelength of incident

light? In the following sections we derive the scattering coefficients for a pair

of concentric infinite cylinders. The coefficients are then used to describe the

total field, incident plus scattered, which is used with the Maxwell Stress ten-

sor to calculate the net momentum flux. The total momentum transfer using

the exact solution for the cross section of a pair of infinite concentric cylinders

is compared to that found using the numerical geometric optics simulation for

a variety of inner cavity radii.
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4.2 Background

4.2.1 Mie scattering - the exact solution

We begin, as always, with Maxwell’s equations. For Maxwell’s equations (SI

units) in an infinite medium, absent of sources

∇ · B = 0, ∇× E +
∂B
∂t

= 0

(4.1)

∇ ·D = 0, ∇×H− ∂D
∂t

= 0.

For a plane wave with harmonic time dependence, e−iωt the ∂B/∂t and ∂D/∂t

terms simply become −iωB and −iωD, respectively. For uniform isotropic

dielectric medium, where ε is the permittivity of the medium, D = εE these

equations reduce to

∇× E = iωµH, ∇×H = −iωεE (4.2)

Combining the equations in 4.1 and 4.2 we find that both the electric and

magnetic fields satisfy the Helmholtz wave equation

∇2E + ω2εµE = 0 ∇2H + ω2εµH = 0 (4.3)

In order to test our contention that the geometric optics based calculations

over estimate the scattering force, we will complete the full scattering problem

for a plane wave impinging on a dielectric cylinder with a concentric cylinder

cavity. From this solution we will determine the momentum transfer to the

cylinder from the appropriate integrals of the Maxwell stress tensor.

As is well known from scattering from a spherically symmetric potential in

non-relativistic quantum mechanics, it is useful to exploit the symmetry of the

scatterer by decomposing the incident plane waves into spherical ones, see e.g.

Sakurai.70 Here a cylindrical wave expansion is called for. We note however
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that the incident radiation fields satisfying the wave equations in equation 4.3

are vector fields, unlike the scalar quantum wave functions. A more compli-

cated expansion of the incoming plane waves into vector cylindrical harmonics

is therefore required. This vector cylindrical harmonic description of both the

incident and scattered fields necessitates a new basis set which must satisfy all

of Maxwell’s equations. As this is not commonly considered we briefly review

this expansion here.

To begin we define a vector function M using a scalar function, ψ and a

pilot vector c

M = ∇× (cψ) (4.4)

To completely describe the system a second vector is necessary, perpendicular

to both M and the pilot vector, while simultaneously satisfying Maxwell’s

equations,

∇×M
k

= N (4.5)

The pilot vector, c, and the scalar wave equation can be chosen on the basis of

the scattering geometry of the particle of interest. The complete derivation of

solutions to the wave equation, in either spherical or cylindrical coordinates,

as well as the resulting vector wave equations are available from multiple

sources; including Bohren and Huffman,58 J. D. Jackson61 and H.C. Van de

Hulst.38
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4.2.1.1 Cylindrical Vector Expansion

Figure 4.1: Cross-sectional view of the cylinder.

To calculate the momentum transfer from a plane wave to a cylindrical object

one must first expand the incident field into cylindrical wave vectors. The

cylinder is defined in Figure 4.1. As shown there, the outer radius is de-

fined as router = b and the inner radius rinner = a. The cylinder is composed

of a uniform dielectric of refractive index m1, which differs from that of the

surrounding medium, m0 = 1. The inner cylindrical area (r < a) may be con-

sidered to have a third refractive index m2. For the case of a cylindrical void,

m0 = m2, but the calculation allows for the determination of momentum trans-

fer to a more complex, ”core-shell” structure, or filled cylinder with m2 6= m0

and m2 6= m1. Following the derivation outlined in Bohren and Huffman58 for

perpendicular incidence, with the cylinder axis along ẑ, the electric field can
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be expanded in orthogonal cylindrical vector harmonics

M(1,2)
n = km

(
in
ρ

Z(1,2)
n (ρ) r̂− Z′n(1,2) (ρ) φ̂

)
einφ, (4.6)

N(1,2)
n = kmZ(1,2)

n (ρ) einφẑ, (4.7)

where n is an integer, Z(1)
n (ρ) = Jn(ρ) and Z(2)

n = H(1)
n (ρ), Z′n(ρ) = ∂Zn(ρ)

∂ρ ,

ρ = kmr, and m is the refractive index, where m =
√

µε
µ◦ε◦

.

The incident field, Einc = E◦e−i(k·x̂+ωt), parallel or perpendicular to the x-z

plane, can be expressed as

E‖inc =
∞

∑
n=−∞

EnN(1)
n , (4.8)

E⊥inc = −i
∞

∑
n=−∞

EnM(1)
n . (4.9)

where the time dependence has been suppressed and En = E◦(−i)n

km . Using

Maxwell’s equation, 5× E = −µ◦
∂H
∂t , the incident magnetic fields are then

H‖inc = −
ikm
ωµ◦

∞

∑
n=−∞

EnMn (4.10)

H⊥inc = −
km

ωµ◦

∞

∑
n=−∞

EnNn. (4.11)

The internal and scattered external fields can be expanded as follows

For parallel incidence
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r > b E‖ = −
∞

∑
n=−∞

EnanN(2)
n

H‖ = ikm0
ωµ◦

∞

∑
n=−∞

EnanM(2)
n

b > r > a E‖ =
∞

∑
n=−∞

En

[
bnN(1)

n − cnN(2)
n

]
H‖ = − ikm1

ωµ◦

∞

∑
n=−∞

En

[
bnM(1)

n − cnM(2)
n

]

a > r E‖ =
∞

∑
n=−∞

EndnN(1)
n

H‖ = − ikm2
ωµ◦

∞

∑
n=−∞

EndnM(1)
n

For perpendicular incidence

r > b E⊥ = i
∞

∑
n=−∞

En fnM(2)
n

H⊥ = km0
ωµ◦

∞

∑
n=−∞

En fnN(2)
n

b > r > a E⊥ = −i
∞

∑
n=−∞

En

[
gnM(1)

n − hnM(2)
n

]
H⊥ = − km1

ωµ◦

∞

∑
n=−∞

En

[
gnN(1)

n − hnN(2)
n

]

a > r E⊥ = −i
∞

∑
n=−∞

En jnM(1)
n

H⊥ = − km2
ωµ◦

∞

∑
n=−∞

En jnN(1)
n

Using these expressions the total fields, incident plus scattered, surrounding
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the particle can be expressed as

E‖ =
∞

∑
n=−∞

En

(
N(1)

n − anN(2)
n

)
, (4.12)

H‖ = − ikm0

ωµ◦

∞

∑
n=−∞

En

(
M(1)

n − anM(2)
n

)
, (4.13)

E⊥ = −i
∞

∑
n=−∞

En

(
M(1)

n − fnM(2)
n

)
, (4.14)

H⊥ = − km0

ωµ◦

∞

∑
n=−∞

En

(
N(1)

n − fnN(2)
n

)
. (4.15)

The scattering coefficients for two concentric cylinders were derived as this

particular geometry was chosen for study. These coefficients, an and fn result

from the boundary conditions at each cylinder interface

(Einc + Escat − Eint)× r̂ = (Hinc + Escat −Hint)× r̂ = 0, (4.16)

and have the values

an =

∣∣∣∣∣∣∣∣∣∣∣∣

m0 J′n(m0β) m1 J′n(m1β) −m1H′n(m1β) 0

Jn(m0β) Jn(m1β) −Hn(m1β) 0

0 m1 J′n(m1α) −m1H′n(m1α) −m2 J′n(m2α)

0 Jn(m1α) −Hn(m1α) −Jn(m2α)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m0H′n(m0β) m1 J′n(m1β) −m1H′n(m1β) 0

Hn(m0β) Jn(m1β) −Hn(m1β) 0

0 m1 J′n(m1α) −m1H′n(m1α) −m2 J′n(m2α)

0 Jn(m1α) −Hn(m1α) −Jn(m2α)

∣∣∣∣∣∣∣∣∣∣∣∣

, (4.17)
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fn =

∣∣∣∣∣∣∣∣∣∣∣∣

J′n(m0β) J′n(m1β) −H′n(m1β) 0

m0 Jn(m0β) m1 Jn(m1β) −m1Hn(m1β) 0

0 J′n(m1α) −H′n(m1α) −J′n(m2α)

0 m1 Jn(m1α) −m1Hn(m1α) −m2 Jn(m2α)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H′n(m0β) J′n(m1β) −H′n(m1β) 0

m0Hn(m0β) m1 Jn(m1β) −m1Hn(m1β) 0

0 J′n(m1α) −H′n(m1α) −J′n(m2α)

0 m1 Jn(m1α) −m1Hn(m1α) −m2 Jn(m2α)

∣∣∣∣∣∣∣∣∣∣∣∣

. (4.18)

where α = kra , β = krb, the radii illustrated in figure 4.1. We note that a

similar derivation was first completed by Kerker and Matijevic in 1961.71

The net momentum flux can be found using the total fields in the time

averaged Maxwell stress tensor

〈
Tαβ

〉
=

1
2

Re
[

ε0EnαE∗lβ + µ0HnαH∗lβ −
1
2

(
ε0 |Enl|2 + µ0 |Hnl|2

)
δαβ

]
. (4.19)

The total momentum transferred to the cylinder is then

∆px =
∫ 2π

0

(
x̂ ·
〈

Ttot
α,β

〉
· r̂
)

rdφ. (4.20)

Referring back to equations 4.21 and 4.22, the Maxwell stress tensor will have

φ dependence that goes as ei(n−l)φ. This combined with the cos(φ) and sin(φ)

terms introduced by x̂ will limit the allowed values of l to l = (n± 1). Taking

the limit as r → ∞ and averaging over a period, the total momentum transfer

is found to be

∆p‖x =
|E◦|2

8km0µ◦ω2

[(
k2m2

0π2 + 4ε◦µ◦ω
2
) (

a∗n−1 + a∗n+1 − 2an
(
a∗n−1 + a∗n+1 − 1

))]
,

(4.21)

∆p⊥x =
|E◦|2

8km0µ◦ω2

[(
4k2m2

0 + π2ε◦µ◦ω
2
) (

2 fn
(

f ∗n−1 + f ∗n+1 − 1
)
− f ∗n−1 − f ∗n+1

)]
.

(4.22)
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These values are then averaged over polarizations and normalized by the in-

cident momentum per unit length,

pinc =
∫ b

−b
x̂ · Tinc

α,β · x̂ dx. (4.23)

4.3 Numerical evaluation of the momentum transfer

The total force transferred to a two dimensional cross section of a pair of in-

finite concentric cylinders was calculated numerically by decomposing a non-

focused beam, of width equal to that of the particles outer diameter, into 106

rays, each with unit momentum. Each ray was injected with a direction of

incidence normal to the cylinder axis and allowed four intersections. The scat-

tering force for each intersection was found using the algorithm outlined in

chapter 2. The beam aperture was set equal to the diameter of the circle and

the shape held centered over the aperture. In this configuration the scattering

force is the only force possible, as all gradient forces will cancel by symmetry.

Once the total force on the shape had been found this value was divided by

the number of rays injected, resulting in a normalized scattering force.

The scattering force, per unit length, was examined as a function of inner

cylinder radius. Holding the outer radius constant at 5 µm the inner radius

was steadily increased and the scattering force calculated using both Gener-

alized Lorenz-Mie theory and the numeric geometric optics simulation. This

process allowed examination of both cavity sizes and wall thicknesses on the

order of the wavelength of incident light, λ = 400 nm.

4.3.1 Very small cavities or very thin rings

As is illustrated in Figure 4.2, for small cavity sizes, Router−Rinner
λ > 8 we find that

the numerical optics simulation actually underestimates the scattering force.
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Figure 4.2: Geometric ray optics and Mie result for the normalized scattering force

for a pair of concentric dielectric cylinders, router
λ = 12.5, and indices of refraction

m0 = 1.33, m1 = 1.66, m2 = 1.33 as a function of rinner, where λ = 400 nm
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This underestimation increases with decreasing cavity size. However, we note

that the error made in the computation of the scattering force from very small

cavities is not significant in computing the overall trapping force. While the

corrections due to physical optics are large relative to the geometric optics

calculation, they are still small forces when compared to the larger gradient

forces. These gradient forces are neglected here since we used an unfocused

incident beam, but in the typical laser trapping geometry scattering from small

cavities is a sub-dominant correction to the geometric optics result. We make

similar statements with regard to the case of very large cavities, i.e. very thin

rings.

Examining the interaction of the incident field with the inner cavity from

both the Mie and numerical standpoints offers some insight into underestima-

tion of the scattering force on the part of geometric optics. In the numerical

simulations the interaction of the ray and any interface is binary, the ray either

intersects and transfers momentum or it does not. As we are using an unfo-

cused beam increasing the inner cavity radius serves to directly increase the

likelihood of intersection. For very small cavities, the geometric optics cross

section is simply the geometric cross section of the cavity which goes to zero

in the limit of a point scatterer. We expect, however, the full physical optics

result to reduce to the Rayleigh limit for such a small cavity. For that case

we know there is a residual, finite momentum transfer. Thus the geometric

solution must underestimate the momentum transfer, as is seen. Indeed, we

see a decrease in the underestimation of the scattering force as the inner cavity

size is increased.

In the other extreme, cavity sizes large enough to leave a ring of dielectric of

thickness less than the wavelength of incident light, we again see underestima-

tion of the total scattering force on the part of the numerical geometric optics

simulation. From the geometric optics standpoint any ray moving through
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the higher dielectric media is going to experience the two interfaces which are

nearly parallel. As will be discussed in the next chapter passage through a di-

electric slab, passing through two parallel interfaces, simply translates the ray

along the slab; there is no change in direction of the ray vector. Using the full

physical optics solution accounts for diffraction about both the edges of the

outer ring and the inner ring, redirecting the direction of light propagation.

As all of the light is propagating in the positive y direction any diffraction

about the shape would result in a scattering force.

4.3.2 Ring thickness of order λ

In this regime the cavity size is such that the remaining ring thickness is on

the order of the wavelength of incoming radiation. It is in this size regime

that we expect to observe the actual momentum transfer, (i.e. as calculated

from the full physical optics based analysis) to be less than that obtained in

the geometric optics approximation. We find this indeed to be the case. In

this intermediate regime, we find that the geometric ray optics simulations

overestimate the scattering force by as much as a factor of two.

Returning briefly to the experiments conducted by Wilking and collabo-

rators we see this overestimation on the part of geometric optics simulation

illustrated in direct comparison to the experimental results. As both the parti-

cle geometry and size differ between the experimental and simulation results,

the correct particle shape from those used in the simulations was chosen based

upon scaled total dielectric area. The equations used in geometric ray optics

have no dependence on the particle size and an outer radius of 1 µm was

therefore used. The scaling factor, β, can be determined as follows

π (βRouter)
2 = L2

◦, (4.24)

where L◦ is the edge length of the particle used experimentally. As Rinner =
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1.0 µm simple algebraic manipulation gives us β = L◦√
π

. Using the total area

of dielectric contained in a cross section of the particle displayed in 4.3a,

Aexp = L2
◦ − πR2

in,exp. With this value it is possible to determine the correct

inner radius, of those used in the simulations, for direct comparison to the

experimental results

Aexp = πβ2
(

R2
outer − R2

inner

)
, (4.25)

Rinner =

√
R2

outer −
A

πβ2 . (4.26)

Using Wilking’s reported values, L◦ = 4.5 µm and Rin,exp = 0.4 µm, we find

that β = 2.538 and the unscaled inner radius which results in an equal cross

sectional area of dielectric is Rinner = 0.157 µm or ≈ 0.2 µm. With the correct

inner radius chosen we applied the scaling factor β to both the inner and outer

radii, resulting in values of Router = 2.538 µm and Rinner = 0.507 µm. The ring

thickness for our scaled particle, normalized by the wavelength used in Wilk-

ing’s experiment, 633 nm, is therefore Router,scaled−Rinner,scaled
λ = 3.208. Referring

back to figure 4.2 this value falls exactly in the region where overestimation of

the scattering force by the geometric optics simulation is at its highest.

For trapping of a two dimensional symmetric particle, with its axis of sym-

metry located along the beam axis, any scattering forces will be in the direction

of beam incidence. All others will cancel by symmetry. This is, therefore, a

perfect test case to examine the effect the geometric optics simulation overes-

timation of the scattering force has on the trapping behavior of the particle.
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(a) (b)

Figure 4.3: On axis trapping for (a) Wilking and collaborator’s9 colloidal dielectric

diamond, edge lengths 4.5 µm and cavity diameter 0.8 µm, (b) A circular shape with

approximately the same area of dielectric material (following direct scaling), Router =

1.0 µm, Rinner = 0.2 µm. The blue circles represent the position of the focal point of

the beam in both cases; with solid circles denoting stable trapping and open circles

representing short-lived metastable trapping.

Figure 4.3 beautifully illustrates this overestimation. Our geometric optics

simulation find the same on axis trapping points, but due to overestimation of

the scattering forces both are shifted up the beam axis. The blue arrow in both

images denotes the direction of beam incidence. The solid blue circle repre-

sents the focal point of the beam for a long lived stable trapping position of the

particle. We can see that in this stable trapping position, where the gradient

force dominates, the stable trapping position found through our simulations

is very near to that found experimentally. The open circle in fig 4.3a represents

the position of the focal point of the beam for an experimentally found short

lived metastable trapping state.

Examination of fig 4.3b drives home the overestimation of the scattering
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force on the part of geometric ray optics. At the metastable trapping point

the potential well depth will, by definition, be smaller than that for a long

lived stable trapping point. The scattering forces are therefore making a larger

contribution and are no longer sub-dominant. As the open circle in fig 4.3b

is lower than that found in fig 4.3a the metastable trapping position found in

our simulation occurs with the center of the particle shifted up along the beam

axis.

As the stable trapping position calculated using geometric optics was ex-

amined in detail in section 3.3.2.2 of chapter 3 we shall refrain from discussing

them again. For the metastable trapping position we do find a potential mini-

mum, fig 4.4.
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(a)

(b) (c)

Figure 4.4: (a) The force field calculated for the particle illustrated in figure 4.3b, the

black circle encompasses the region of metastable trapping. (b) The potential surface

in this region, well depth ≈ 29 kBT. (c) The magnitude of the net work, calculated

using a closed integral about each point in the force field array, normalized by the

potential at that point.
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Figure 4.5: The particle for which reentrant trapping occurred in Wilking and collabo-

rator’s experiments. The blue circle represents the focal point of the beam and the blue

arrow the direction of beam propagation. The particle dimensions are L◦ = 4.5 µm for

the outer edges and Li = 2.5 for the inner cavity edges.9

Returning to the reentrant trapping results of Wilking and collaborator’s

experiments it is tempting to attribute the geometric optics failure to find

reentrant trapping completely to diffraction effects. Wilking’s reentrant trap-

ping particle, fig 4.5, had a ring thickness of approximately a micron, where

L◦ = 4.5 µm and the length of the inner square cavity Li = 2.4 µm. If shape ge-

ometry were not a contributing factor we would be able to switch between

L◦ and Router seamlessly. If we assume this is the case we have a 1 mi-

cron ring thickness, for the square particle which exhibited reentrant trap-

ping, and incident radiation wavelength of 633 nm in Wilking’s experiment

and Router−Rinner
λ = 1.66. Referring back to figure 4.2 we see the overestimation

of the scattering force by the geometric optics calculation is at a minimum in

this range of values. Diffraction effects cannot, then, be the sole cause of the

reentrant trapping being missed by the geometric optics simulation for this

particular particle geometry. As will be shown in the next chapter both the

particle geometry and diffraction play a role in the trapping behavior, and we
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do in fact find stable trapping for a rectangular shape whose geometry mimics

the third dimension of Wilking’s particle.

From these results we find that the overall effect of geometric optic’s ne-

glect of diffraction is most pronounced in cases where the gradient and scat-

tering force are in delicate balance. For symmetric particles on-axis metastable

trapping points could quite possibly be missed by the geometric optics if any

of the characteristic particle lengths are on the order of the wavelength of the

incident radiation. Off-axis, where the scattering forces cannot directly cancel,

the non-zero net scattering force coupled with geometric optics overestima-

tion will likely lead to stable trapping points being missed by the geometric

optics calculation. These points highlight the importance of going beyond the

Ashkin approximation and its generalization presented here when consider-

ing the trapping force of laser tweezers on a particle with internal dimensions

comparable to the wavelength of the trapping radiation.
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CHAPTER 5

Trapping Behavior of Non-Symmetric Shapes

5.1 Introduction

An L shape was chosen as the model for investigation of the trapping behav-

ior of non-symmetric shapes. Beyond the introduction of torques, the planar

nature of the L shape gives rise to several interesting phenomena from the ray

optics standpoint. As will be discussed in the following sections, a ray of light,

averaged over polarizations and passing through two parallel interfaces, can

only result in a scattering force. In order to exert a force against the direction

of beam propagation the ray must travel a path through two perpendicular

interfaces. Additionally, incident rays with θi < θc will experience solely total

internal reflection for each intersection with a perpendicular interface, until a

parallel interface is reached, allowing only for scattering forces.

An L shape can therefore only trap with any portion of the higher index

media positioned below the focal point if its shorter axis is sufficiently thin

that the internal rays intersect a perpendicular interface and are still carrying

enough momentum that the resulting gradient force can offset the scattering

force. If the longer axis of the planar shape is perpendicular to the direction

of beam incidence trapping is only possible with all of the higher dielectric

media positioned above the focal point of the beam. In the next section both

cases, the longer axis of the shape parallel or perpendicular to the beam axis,

will be examined analytically.
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Figure 5.1: Possible angles of incidence and transmission for a ray intersecting an

infinite slab.

5.2 Modes of ray propagation for planar shapes

5.2.1 Long axis perpendicular to the direction of beam incidence

In the interest of simplicity we first consider an infinitely long shape with

parallel boundaries oriented perpendicular to the direction of beam incidence

and positioned below the focal point of the beam. As is illustrated in figure

5.1 the angle of incidence for the ray entering the higher dielectric media is

exactly equal to the angle of transmission for the ray leaving the higher dielec-

tric media. Any change in the ray momentum is accounted for by the fraction

of light reflected at each interface, which by conservation of momentum re-

sults in a force on the higher dielectric in the direction of ray propagation.

Adding edges, and therefore perpendicular interfaces, to the boundaries of

higher dielectric allows for a net change in the component of the ray paral-

lel to the direction of beam incidence, figure 5.2. Using θt = sin−1
(

sin θi
m

)
,

θb = π
2 − θt, and θ∗t = sin−1

(√
m2 − sin2 θi

)
, we can define ρ1 = cos θt

cos θi
for

the first intersection with the ray incident from the lower dielectric medium,

n1 and ρ2 =
cos θ∗t
cos θb

for the ray incident from the higher dielectric medium, n2;
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Figure 5.2: Possible angles of incidence and transmission for a ray intersecting a

slab with edges. The slab is positioned above the focal point, F, as there is greater

likelihood of intersecting the edges in this position.

where m = n2
n1

. From the definitions of θ∗t , θb and θt there will be some an-

gle of incidence, θi for which the second intersection always results in total

internal reflection. Starting at the second intersection, and using the relation-

ship between θb = π
2 − θt, for total internal reflection at the second interface

θt = cos−1
(

1
m

)
. The critical angle of incidence at the first intersection is there-

fore θc = sin−1
(√

m2 − 1
)

. Reexamination of ρ2,

ρ2 =
cos θ∗t
cos θb

=
cos
(

sin−1
(√

m2−sin2θi

))
cos θb

=

√
1−
(√

m2−sin2 θi

)2

cos θb
(5.1)

=

√
1+sin2 θi−m2

cos θb

shows that ρ2 becomes imaginary for values of θi < θc. In other words, at the

second intersection the ray will experience total internal reflection rather than

transmission from the high index medium to the low index medium.

Additionally as the value of m for the second intersection, m′ = 1
m , the

Fresnel equations, averaged over polarizations, are only dependent upon the
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Figure 5.3: Fraction of momentum transmitted and reflected at each interface as a

function of angle of incidence, θi for a slab with two perpendicular interfaces and

m = 1.25, θc ≈ 4π
15 and represented by a purple dashed line.

value of ρ. We can therefore generally define

R (ρ) =
1
2

((
1−mρ

1 + mρ

)2

+

(
ρ−m
ρ + m

)2
)

T (ρ) =
mρ

2

((
2

1 + mρ

)2

+

(
2

ρ + m

)2
)

, (5.2)

and using these functions examine the transmission and reflection coefficients

for both the first and second points of intersection, T1 = T (ρ1), R1 = R (ρ1),

T2 = T (ρ2) and R2 = R (ρ2). These functions are plotted as a function of θi

for m = 1.25 in figure 5.3. Referring to figure 5.2 once again we see that the

components of the incident ray at the first intersection can be expressed as

(sin (θi) , cos (θi)) and those of the transmitted ray at the second intersection

as (cos (θ∗t ) , sin (θ∗t )). As transmission at the second intersection requires that

θi < θc, the component of the transmitted ray at the second intersection par-

allel to the direction of beam incidence will always be larger than the same

component of the incident ray. These transmitted rays can therefore only con-
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Figure 5.4: Comparison of the net force, following two intersections with either two

parallel interfaces (red) or two perpendicular interfaces (blue), for a slab oriented

with its long axis perpendicular to the direction of beam incidence; m = 1.25, θc ≈ 4π
15

(purple dashed line).

tribute to the trapping force. Figure 5.4 illustrates the net force, following two

intersections, for rays intersecting two parallel planes and rays intersecting

two perpendicular planes as a function of angle. Where the component of the

net force parallel to the direction of beam incidence which is transferred to the

slab can be calculated as,

∆p‖ = (1 + R1) cos θi − T1 cos θt + T1 ((1 + R1) cos θt − T2 cos θi)

=
(
1 + R1 − T2

1
)

cos θi + T1R1 cos θt (5.3)

∆p⊥ = (1 + R1) cos θi − T1 cos θt + T1 ((1− R2) cos θt − T2 sin θ∗t )

= (1 + R1) cos θi − T1R2 cos θt − T1T2 sin θ∗t (5.4)

5.2.2 Long axis parallel to the direction of beam incidence

The same arguments hold for case in which the long axis of the slab is oriented

parallel to the direction of beam incidence. The difference is the trapping
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Figure 5.5: Angles of incidence and transmission for a vertical slab

position. Any rays intersecting the sides of the slab will still result in purely

scattering forces. Rays incident upon the base of the slab will interact with two

perpendicular interfaces, leaving either the option of total internal reflection or

a contribution to the trapping force, as explained above. Referring to figure 5.5

we can define the component of the net force parallel to the direction of beam

incidence as

ρ3 =
cos θt1

cos θa

∆pwall =
(

1− R3 − T2
3

)
cos θi − T3R3 sin θt (5.5)

for rays intercepting the sides of the slab. For rays intersecting the base of the

slab, figure 5.6, the parallel force component can be expressed as

∆pbase = (1 + R1) cos θi − T1 cos θt + T1 [(1− R2) cos θt − T2 sin θ∗t ]

= (1 + R1) cos θi − T1R2 cos θt − T1T2 sin θ∗t . (5.6)

If the angle of incidence for rays intersecting the base of the plank is smaller

than the critical angle the ray will experience total internal reflection until an

interface parallel to the interface of the rays initial intersection, or the top of

72



Figure 5.6: Angles of incidence and transmission for a ray entering the floor of the

slab and exiting via a perpendicular wall

the shape, is reached. The total internal reflection parallel force component

can therefore be expressed as

∆pTIR
base =

(
1 + R1 − T2

1

)
cos θi + T1R1 cos θt. (5.7)

The Heaviside step function was used to correctly assign total internal re-

flection or transmission for rays intersecting the base of the shape as a function

of θi. The contribution to the total force on the slab (following two intersec-

tions of the ray) was examined for rays initially intersecting the side of the

slab, the base of the slab, or the total contribution for both the side and the

base. As is illustrated in figure 5.7 any incident rays intersecting the slab at

angles θi < θc can only contribute a scattering force. In the case of rays in-

tersecting the base, this scattering force contribution is due to total internal

reflection. Rays intersecting the base at angles greater than the critical angle

immediately begin to contribute a trapping force.
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Figure 5.7: Component of the force parallel to the direction of beam incidence for a

vertical slab, with its long axis parallel to the direction of incidence, as a function of

the angle of incidence; θi, m = 1.25.. The force is decomposed into contributions due

to intersection of the ray with the wall (red), which is parallel to the beam axis, and

the base (blue), which is perpendicular to the beam axis, and the total force (black).

5.3 Simulation methods

For the L shape, line segments, illustrated in fig 5.8, set the length of each leg.
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Figure 5.8: The vectors and point defining the L shape.

The leg lengths were used to define a set of six points

P1 =
(

a− C
2 , b− F

2

)
,

P2 =
(

a− C
2 + A, b− F

2

)
,

P3 =
(

a− C
2 , b− F

2 + F
)

,

P4 =
(

a− C
2 − E, b− F

2

)
, (5.8)

P5 =
(

a− C
2 − E, b− F

2 + D
)

,

P6 =
(

a− C
2 , b− F

2 + D
)

,

and the vectors between them used to describe the shape boundaries.

5.4 Field sampling

The choice of step size for translating the shape through the sampling field is

fairly straightforward for a shape with infinite axes of symmetry. In that case

there is no change in trapping behavior with shape rotation. The outer di-
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ameter of the symmetric shape was held constant and as interaction of highly

angled rays with the shape boundaries result in trapping, the bounds of the

sampling field can be reasonably be set to slightly larger than the diameter of

the shape.

For a shape with only one or no symmetry axis the sampling field must

be made large enough that all of the shape boundaries can interact with the

beam at all orientations. In the case of the L shape small changes in shape

position in relation to the focal point of the beam were found to have a large

impact on the direction of forces for the shape and the net torque following

rotation of the shape at that point. Additionally, as one would like to be able to

iteratively increase the length of the leg and rotate the shape through multiple

angles about the COM, the size of the sampling field cannot be kept constant.

For the L shape the initial boundaries of the sampling field were defined as

the length of leg B plus the length of leg C in both directions. This accounted

for the θ = 0 and ±π
2 orientations of the L shape. This area was discretized

into one thousand points and stable trapping checked for at each point. If a

stable trapping point was found a new region was defined surrounding that

point, using an area of eight steps in both the positive and negative x and y

directions. The step size was decreased and a lattice of forty points evenly

distributed throughout the sampling area was defined, the process repeated

and stable trapping points searched for once again. This process was iterated

up to four times or until the forces around the chosen stable trapping point

were so small that the region of stable trapping had functionally been defined.

Once the stable trapping point and/or region had been selected a square

area with lengths equal to two times the length of leg C was defined, centered

on the stable trapping point and the field sampled once again. Stable trapping

was checked for at each point and if a stable trapping point was found the

field was redefined, again with using a square with edge lengths equal to two
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times the length of leg C, around the new stable trapping point.

5.4.1 Torques for non-symmetric shapes

For a non-symmetric shape, such as a chevron, stable trapping is not only a

function of the gradient and scattering forces, but also the net torque imparted

to the particle by the beam. The simulation process is more involved for non-

symmetric shapes as particle orientation with respect to the beam has a direct

impact on the particle’s trapping behavior. To simulate the non-symmetric

shape and beam interactions statically the shape must be rotated and allowed

to sample the field over a range of angles, as it cannot reorient spontaneously

in response to imparted torques. As the shape position is determined using

coordinates (a,b), and the boundaries defined from this point; rotation of the

shape is a two step process. The shape is initially held at zero rotation and

the center of mass is calculated based upon the shape boundaries. Using the

example of a L shape illustrated in figure 5.8, centered at point (a,b) with

the longer leg parallel to the direction of beam incidence, the COM can be

calculated as

COM =
BC(2a− 2b + B) + F(2b(2C− E)− CB + E(2a + C− E))

2(BC + EF)
, (5.9)

using the substitutions A = C + E and D = B − F. Following this calcula-

tion each point defining the boundaries of the shape, equations 5.8, are then

rotated about the COM. The now redefined shape boundaries are allowed to

interact with the injected rays representing the beam, a net momentum value

calculated using the process described previously in chapter 2, the shape is

translated to the next point in the field sampling lattice and the process is

repeated.

77



5.5 Stable trapping

To verify the stability of each trapping point the L shape is held at the pre-

viously found possibly stable trapping point and rotated, stepwise, through

angles −π ≤ θ ≤ π, with ∆θ = π
100 . The positive y-axis represents θ = 0

with θ increasing in the counterclockwise direction. If rotation of the L shape

about its center of mass, in either the positive or negative θ direction, results

in a restoring torque; and if the restoring torques are equal and opposite for

opposite directions of rotation, the particle is still considered to be at possibly

stable trapping point. To verify stable trapping the scalar potential and net

work for the closed integral about each point in the force field is examined,

with the potential defining stable trapping points and the net work verifying

that a scalar potential can be used. The potential for each vector field is calcu-

lated stepwise using the dot product of the force with the change in position.

The net work is calculated by taking the line integral about each point, using

the average of two adjacent force vectors. For a particle to be stably trapped

the all of the following must be true

1. The force vector field demonstrates stable trapping, all vectors pointing

inward at that point.

2. Any rotation of the particle results in a restoring torque at that point and

the restoring torques are equal and opposite in both directions.

3. The scalar potential field shows a well depth of at least 4kBT, the approx-

imate thermal energy of a system equilibrated with its surroundings at

room temperature.

4. A scalar potential field can be used, which is verified by a value for the

net work of ≈0.
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5.6 Simulation results

Ray optics simulations were performed to investigate the interplay of the ray

being allowed to intersect perpendicular interfaces with the balance of torque

required for the shape to stably trap. A 10mW beam entering a lens with nu-

merical aperture of 1.4, traveling through bulk media with dielectric constant

n1 = 1.33 and interacting with dielectric material n2 = 1.66 was decomposed

into 1000 discrete rays. Each shape was first rotated about its center of mass

from angles θ = −π to π. Following rotation the shape was allowed to sample

a region large enough that in any direction no portion of the higher dielectric

intersected the focal point of the beam. For angles at which a stable trapping

point was found the shape was then rotated about its center of mass once

again through angles θtrap ± π
25 to verify restoring torques existed upon rota-

tion. Referring back to figure 5.8 the leg length E was initially set to zero and

incremented up to E = 3.0 µ m in steps of ∆E = 0.1. For each shape trap-

ping points were found for multiple angles of rotation. Each of these trapping

points were examined and the final stable trapping point selected based upon

the torque at that angle of rotation, the depth of the potential well and the

value of the net work at the point being examined.

Ideally the beam would be discretized into more than 1000 rays. Due to the

shear number of iterations necessary for sampling of 31 shapes, each rotated

through 200 angles and run through repeated iterations of field sampling, a

larger sample size for the beam would have led to prohibitively long run times

for the code. If one were investigating the trapping behavior of a smaller

sampling of shape sizes, or were to modify the code for parallel computing

(perhaps running one point in the sampling field, or one angle, on each thread)

a larger number of rays could easily be used.

For the 1000 ray simulation trapping was found to occur for shapes with
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leg lengths 0 ≤ L(E) ≤ 0.3 and 2.2 ≤ L(E) ≤ 3.0. Any values of L(E) in the

range 0.4 ≤ L(E) ≤ 2.1 did not stably trap. Figures 5.9 and 5.10 illustrate the

angles each shape trapped at, as a function of their leg length. For reference

the blue dot in each illustration represents the focal point and the red dot

represents the shapes center of mass, about which it was rotated.

Figure 5.9: Trapping angle, rotated about the COM, as a function of leg length for

shapes with 0 ≤ L(E) ≤ 0.3. L(E) is the length of segment E, the red dot is the center

of mass, and the blue dot is the focal point of the beam.
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Figure 5.10: Trapping angle, rotated about the COM, as a function of leg length for

shapes with 2.2 ≤ L(E) ≤ 3.0. L(E) is the length of segment E, the red dot is the center

of mass, and the blue dot is the focal point of the beam.

Referring to figure 5.11 we see somewhat stable trapping with the base

slightly below the focal point of the beam for a slab with its long axis parallel

to the direction of beam incidence, in agreement with the analytical derivation

above. Figure 5.11b displays a well depth of approximately 70 kBt. The ratio

of the net work, for a closed integral about each point, to the potential in fig-

ure 5.11c shows values of < 0.5% in the region of stable trapping. Figure 5.11d

displays a strong restoring torque following rotation of the shape about its cen-

ter of mass in the ±θ direction. In each of the following figures the white dot

in (b) , (c) and (e) represents the position of the particle’s center of mass and

the purple arrow in (e) represents the direction of beam propagation.
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(a) (b)

(c) (d)

(e)

Figure 5.11: The trapping parameters for L(B) =7.0 µm and L(A) = 1.0 µm, oriented

at θ = 0. (a) The force field, units pN, and stable trapping with the particle’s COM at

position (0.0 µm, 3.1 µm) (b) the scalar potential, well depth ≈ 70 kBT (c) the net work

normalized by the potential, with values of < 0.5% in the region of stable trapping (d)

the torque about the particle’s center of mass, with restoring torques reaching values

of ±20 pN · µm (e) An illustration of the shape in relation to the focal point of the

beam.
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Stable trapping is also found for the same shape, rotated about its center

of mass by θrot =
π
2 . The position of the shape, relative to the focal point once

again matches that predicted analytically. The restoring torques, figure 5.12d,

are understandably smaller than those found in the θrot = 0 case, discussed

previously. In the θrot = π
2 a slight rotation in either direction is much less

likely to change the path of an incident ray from intersecting parallel interfaces

to intersecting perpendicular interfaces. The potential shows a depth of ≈

80 kBT and the magnitude of the net work is < 0.5% of the potential.
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(a) (b)

(c) (d)

(e)

Figure 5.12: The trapping parameters for L(B)=7.0 µm and L(A)=1.0 µm, oriented at

θ = π
2 . (a) The force field, units pN, showing stable trapping with the particle’s COM

at (0.0 µm, 2.0 µm) (b) the scalar potential, with a well depth of ≈ 80 kBT, (c) the

net work normalized by the potential, which is less than 0.5% in the region of stable

trapping (d) the torque about the particles center of mass, with the restoring torque

reaching values of ±3 pN · µm, (e) an illustration of the shape in relation to the focal

point of the beam.
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The addition of a small leg, breaking the rotational and geometric sym-

metry of the shape, has a direct effect on the shapes trapping behavior. Fig-

ures 5.13a, 5.14a and 5.15a illustrate a steady reduction in the gradient force

along trapping axis of the particle; starting with a maximum value of 5.4 pN

for L(E) = 0.1 and leading to a maximum value of 5 pN for L(E) = 0.3. Ex-

amination of the upper right quadrant of all three force vector fields shows

a break in the symmetry of the force field directly correlated to the break in

the shape symmetry. We note that while there is a shift of the stable trapping

point off-axis with the addition of a small leg, this shift is due to the resulting

change in the particle’s COM; not a lateral shift of the particle. Rather than

shifting the entire shape off-axis, to compensate for the additional leg, the

particle’s long axis remains centered over the focal point of the beam and the

change in force is initially compensated for via rotation about the particle’s

center of mass. Each additional step in leg length results in an upward shift,

along the beam axis. A steady increase in the restoring torque for rotation

in the negative θ direction (counterclockwise) and corresponding decrease in

the restoring torque for rotation in the positive θ direction is also observed in

direct correlation to increasing leg length.

Positive θ rotation, for the small range of values allowed, corresponds to a

greater number of rays that would have previously intersected the base and

went on to intersect the parallel wall opposite, now intersecting the base and

continuing on to intersect the perpendicular vertical wall on the right. This, as

discussed previously, would result in a gradient force for each ray intersecting

the perpendicular wall and lead to a negative restoring torque. At the opposite

end of the shape increased leg length increases the probability of rays going

through the two vertical parallel interfaces; increasing the scattering force in

this section of the shape.

Negative θ rotation (clockwise) would place more of the base of the short
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leg in the path of incident rays. Some of these rays will also go on to intersect a

perpendicular wall, with the likelihood of perpendicular wall intersection de-

creasing as the leg length is increased. Once again rays entering the opposite

side of the shape that, prior to rotation, would have intersected a perpendic-

ular interface are now more likely to intersect the parallel interface directly

opposite, leading to only a scattering force.

This qualitative description is bore out in figures 5.13d, 5.14d and 5.15d,

where we see an increase in the restoring torque for positive rotation and a

decrease in the restoring torque for negative rotation. The consistent increase

in the restoring torque for positive rotation can be attributed to the relative

areas of the regions interacting with the beam. The rightmost vertical wall is

anywhere from 10 to≈ 3 times the length of the leg. Changes in the orientation

of the right vertical wall would therefore have a greater effect on the restoring

torque. The relatively small scattering forces on the opposite end of the shape

add to the restoring torque. For negative rotation increasing the leg length

increases the number of rays that can experience two intersections with the

vertical, parallel, segments of the leg, offsetting the gradient force. As the

leg length is increased we see a steady decrease in the restoring torque for

negative rotation.
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(a) (b)

(c) (d)

(e)

Figure 5.13: The trapping parameters for L(B) =7.0 µm and L(A)=1.1 µm, oriented at

θ = − 13π
25 . (a) The force field, units pN, displays stable trapping with the particle’s

COM at (-0.2 µm, 2.0 µm) (b) the scalar potential, well depth of ≈ 50 kBT, (c) the

ratio of the net work and the potential, which is less than 0.5% in the region of stable

trapping (d) the torque about the particles center of mass, (e) an illustration of the

shape relative to the focal point of the beam.
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(a) (b)

(c) (d)

(e)

Figure 5.14: The trapping parameters for L(B)=7 µm and L(A)=1.2 µm, oriented at

θ = − 13π
25 . (a) The force field, units pN, displays stable trapping with the particle’s

COM at (-0.2 µm, 2.05 µm) (b) the scalar potential, well depth ≈ 60 kBT, (c) the ratio

of the net work and the potential, which is less than 0.5% in the region of stable

trapping, (d) the torque about the particle’s center of mass, (e) an illustration of the

shape relative to the focal point of the beam.
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(a) (b)

(c) (d)

(e)

Figure 5.15: The trapping parameters for a slab, dimensions 7 µm by 1.3 µm, oriented

at θ = − 13π
25 . (a) The force field, units pN, displays stable trapping with the particle’s

COM at (-0.2µm, 2.10µm) (b) the scalar potential, well depth ≈ 80 kBT, (c) the ratio

of the net work and the potential, which is less than 0.5% in the region of stable

trapping, (d) the torque about the particles center of mass, (e) an illustration of the

shape relative to the focal point of the beam.
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Shapes with L(A) greater than 1.3µm, but less than 3.2 µm showed no

points of stable trapping. We see the first hints of stable trapping for the

L(A)=3.2 µm case. While the potential well is rather shallow, ∆U = 13 kBT as is

illustrated in figure 5.16b, we nevertheless see very low values for the net work

normalized by the potential (< 0.5%) and restoring torques of approximately

±5 pN · µm. We note that the force field, potential surface and torque were

calculated for this geometry rotated about the center of mass by π
2 and no

stable trapping was observed.
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(a) (b)

(c) (d)

(e)

Figure 5.16: The trapping parameters L(B)=7.0 µm and L(A)=3.2 µm, oriented at θ =

12π
25 . (a) The force field, units pN, displays stable trapping with the particle’s COM at

(1.0 µm, 2.1 µm), (b) the scalar potential, well depth ≈ 13 kBT, (c) the ratio of the net

work and the potential, which is less than 0.5% in the region of stable trapping, (d)

the torque about the particles center of mass, with restoring torques of ≈ 0.5 pN · µm,

(e) an illustration of the shape relative to the focal point of the beam.
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For shapes with L(A) greater than 3.3 µm, essentially the same behav-

ior was observed across all leg lengths. This can be attributed to very small

changes in the length of the leg relative to the total leg length. The orienta-

tion of the shape in its stable trapping positions, θ = π
2 , offers some insight

into the increased restoring force for negative rotation and decreased restoring

force for positive rotation. Negative rotation would result in some of the rays

which previously would have passed through two parallel interfaces on the

right side of the shape, shifted slightly to the right and gone on to intersect

the vertical wall of the leg, now missing the leg entirely. This would lead

to a decrease in the gradient force on that side. On the opposite end of the

shape the vertical wall now becomes available for perpendicular intersections,

leading to an increase in the gradient force in this region. If we recall that the

shape is being rotated about its center of mass, represented by the red dot in

figure 5.10, we see that fewer highly angled rays will enter on the right side.

The critical angle must be less than the angle of incidence for perpendicular

intersections not to result in total internal reflection; more of the rays will now,

therefore, experience total internal reflection up the leg and exit via a parallel

interface. This leads to a reduced gradient force and an increased scattering

force. At the other end of the shape only scattering forces become possible,

for large enough rotations, which would serve as a restoring force. The to-

tal restoring force for positive rotations is therefore much smaller than those

found for negative rotation.
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(a) (b)

(c) (d)

(e)

Figure 5.17: The trapping parameters for L(B)=7 µm and L(A)=3.3 µm, oriented at

θ = π
2 . (a) The force field, units pN, with stable trapping displayed at position (1.2

µm, 2.4 µm) (b) the scalar potential, well depth ≈ 60 kBT, (c) the ratio of the net

work and the potential, which is less than 0.5% in the region of stable trapping, (d)

the torque about the particles center of mass, with restoring torques greater than

1.0 pN · µm in magnitude, (e) an illustration of the shape relative to the focal point of

the beam.
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5.7 Shape geometry and trapping behavior

In the previous chapter we established that neglecting diffraction plays a def-

inite role in the geometric optics calculation’s inability to reproduce the reen-

trant trapping found by Wilking and collaborators, due to overestimation of

the scattering force. From comparison of the scattering force calculated us-

ing the full physical optics solution and that found using geometric optics we

observed that diffraction could not be the only contributing factor; geometry

must play a role as well.

In this chapter we illustrated the role parallel or perpendicular interfaces

play in the trapping behavior of a shape. It is exactly these perpendicular in-

terfaces, which do not exist in a circular shape, which make reentrant trapping

possible for Wilking’s shape. This effect of perpendicular interfaces is first il-

lustrated in figure 5.11. Figure 5.18 reproduces both the image of the particle

which experiences reentrant trapping and the image of the vertical slab, de-

scribed previously, in its stable trapping position relative to the focal point of

the beam.

(a) (b)

Figure 5.18: (a) Wilking’s shape which displays reentrant trapping, the blue circle

denotes the focal point and the blue arrow the direction of beam incidence.(b) The

stable trapping position of a vertical slab relative to the focal point of the beam
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Rotating the reentrant trapping shape, figure 5.18a, about the beam axis by
π
2 , we essentially have a dielectric rod. We see from figure 5.18b stable trap-

ping does occur for this geometry, with the stable trapping point at approxi-

mately the same position found experimentally by Wilking and collaborators.

Considering the problem in three dimensions we see the reentrant trapping

particle is not simply a dielectric rod, there are non-symmetric features at the

top and bottom of the shape which were shown previously to cause rotation

of the two dimensional shape about its center of mass, so that the long axis

lies perpendicular to the direction of beam incidence. Why then would the

shape not trap with the focal point of the beam exactly in the center of the

particle cavity? We know from experimental results that this is not the case

and examination of two shapes with similar geometry offers some insight.

(a) (b)

Figure 5.19: (a) A colloidal dielectric O shape and (b) H shape stably trapped by

Wilking and collaborators. Blue circles denote the focal point of the beam, blue arrows

the direction of beam incidence, green circles twofold rotation axis and green dashed

lines mirror planes for each particle

As outlined in this chapter, the key to gradient forces for planar particles

is intersections of the incident ray with two perpendicular interfaces. From

the ray optics standpoint a plank like shape with its long axis oriented per-

pendicular to the direction of beam incidence stable trapping can only occur

95



in positions above the focal point of the beam. For positions below the focal

point of the beam scattering forces will dominate as the bulk of the incident

rays will pass through two parallel interfaces. If the slab is oriented vertically

a larger fraction of the incident rays will, after intersecting the relatively small

base of the shape, go on to intersect a perpendicular interface.

The O shape shown in figure 5.19a is an example of a particle with both

trapping options available. If the particle were shifted so that the focal point of

the beam was directly at the point of twofold rotation in the center of the par-

ticle, the bulk of the incident rays would only interact with the two long legs

of the shape. While the long leg located above the beam axis in this position

could contribute to the trapping forces, it can only do so via the intersection

of a ray leaving the lower leg with a perpendicular interface. Additionally any

trapping forces the upper leg could contribute would have to overcome the

scattering forces for the portion of the shape positioned below the focal point

of the beam.

In the experimentally observed trapping position the bulk of the scattering

interfaces are shifted out of path of the beam, with the shorter leg positioned

along the beam axis. In this position, from the ray optics standpoint, rays

on the left side of the beam axis would intersect the base of the shape, pass

through two parallel interfaces and go on to intersect a perpendicular inter-

face. As these rays are moving from lower to higher index the refracted ray

intersecting a perpendicular interface will bend inward towards the unit nor-

mal, resulting in a contribution to the scattering force. Rays entering the shape

on the opposite side will intersect two parallel interfaces and go on to inter-

sect a perpendicular interface at the top of the shape. The refracted ray at this

interface will once again bend inwards toward the unit normal. This inward

bend will result in a contribution to the gradient force. The particle traps with

one of its symmetry planes parallel to the focal point of the beam and at this
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position we see that an equal portion of rays can follow the opposite paths

described. This serves to not only balance the forces on the particle but to bal-

ance the torques as well. The long leg at the base of the shape experiences a net

force in the direction of beam incidence. The long leg at the top experiences a

net force in the opposite direction.

The H shape, figure 5.19b has a geometry which makes it possible to take

advantage of both the gradient forces resulting from positioning a long plank

oriented perpendicular to the direction of beam incidence above the focal point

of the beam and rays which intersect the base of the H and go on to internally

intersect the vertical wall of the shape. These combined gradient forces are

sufficient to overcome the scattering force resulting from the lower leg being

positioned below the focal point of the beam.

5.7.1 Reentrant trapping

As we have shown the trapping behavior of a variety of shapes can be under-

stood and correctly predicted from the geometric ray optics standpoint. In the

limit that any of the characteristic particle dimensions are on the order of the

wavelength of the incident radiation we find overestimation of the scattering

force on the part of ray optics by as much as a factor of two. This overestima-

tion of the scattering force is not however solely responsible for our geometric

ray optics inability to reproduce the reentrant trapping result using the shapes

discussed in chapter 3. We see that to fully understand the trapping behavior

of any shape one must investigate all of the characteristic geometries which

together make the three dimensional object being studied. Additionally, a

square with rounded edges cannot be approximated as a circle.

Circles, spheres or cylinders are often used to approximate similar geome-

tries as their symmetry leads to much greater simplicity in the development
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of analytic solutions to describe the scattering or trapping behavior of these

shapes. As experimentalists fabricate ever more complicated micron scale par-

ticles, closed form analytic solutions appropriate for these geometries either do

not exit or become intractable in their development. As our modified geomet-

ric optics numerical simulation only requires input of the bounds of the shape

being investigated and, within the limits of particle dimensions on the order

of the wavelength of incident light, returns accurate results our approach is

attractive both for its simplicity and its ability to calculate the forces on more

complicated shape geometries.
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CHAPTER 6

Conclusions

In this dissertation we have presented a modified geometric optics calculation

which can be used for any geometry. The trapping behavior for both the cross

section of a pair of infinite concentric cylinders and a two dimensional planar

shape was examined. These geometries allowed investigation of the effects

of particle geometry, characteristic particle dimensions and particle symmetry

on trapping behavior. We find that our modified numerical geometric optics

approach successfully reproduces the results of Ashkin’s closed form solution

when applied to solid circular dielectric particles.

For circular particles with outer dimensions on length scales in the geomet-

ric optics regime, but inner features on the length scale of the incident wave-

length of light we find that geometric optics overestimates the scattering force

by as much as a factor of two. In the comparison between an experimentally

trapped planar dielectric particle with a small cavity and a two dimensional

shape we find we are able to reproduce the on-axis trapping, including the

metastable trapping, experimentally observed. We find however, an overesti-

mation of the scattering force on the part of the geometric optics calculation,

which results in the trapping points located by our simulation being shifted

up, along the beam axis, from trapping points observed experimentally . We

are not able to reproduce reentrant trapping observed by Wilking and collab-

orators for a square ”ring” using a circular geometry.

We attribute this lack of agreement to both diffraction and particle geom-
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etry. As geometric optics does not account for diffraction the scattering force

experienced by the particle in geometric optics, especially in the case of the

particle dimensions being examined, serves to wash out possible metastable

trapping points. Geometry also plays a large role in this particular disagree-

ment between the results of the geometric optics simulation and Wilking’s

experimental observations. The particle which displayed reentrant trapping is

planar and therefore has perpendicular interfaces. As was shown both analyt-

ically and numerically these perpendicular interfaces contribute greatly to the

trapping of the particle. Simulations of the trapping of a two dimensional rect-

angular shape, which mimics the secondary geometry of the reentrant trap-

ping particle, shows that the modified geometric optics approach is able to

reproduce this trapping point and that the net torque at this position is zero.
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