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SUMMARY

In this paper, an overview of the construction of meshfree basis functions is presented, with particular

emphasis on moving least squares approximants, natural neighbor-based polygonal interpolants, and

entropy approximants. The use of information-theoretic variational principles to derive approximation

schemes is a recent development. In this setting, data approximation is viewed as an inductive inference

problem, with the basis functions being synonymous with a discrete probability distribution and the

polynomial reproducing conditions acting as the linear constraints. The maximization (minimization)

of the Shannon-Jaynes entropy functional (relative entropy functional) is used to unify the construction

of globally- and locally-supported convex approximation schemes. A JAVA applet is used to visualize

the meshfree basis functions, and comparisons and links between different meshfree approximation

schemes are presented. Copyright c© 2006 John Wiley & Sons, Ltd.
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2 N. SUKUMAR AND R. W. WRIGHT

1. INTRODUCTION

Data approximation from a scattered set of points (nodes) in IRd is required in many

applications: computer graphics and visualization, image processing, regression models,

supervised learning, and finite element and meshfree methods to name a few. In this paper, we

focus on the construction of approximation schemes within the convex hull of a set of nodes—

convex polygons (n-gons) and scattered set of nodes are considered. Barycentric coordinates

on irregular polygons are of interest in computer graphics and geometric modeling [1–3], and

they are also used in polygonal finite element methods [4]. The scattered data approximation

problem that we consider has been studied using moving least squares (MLS) approximants [5],

natural neighbor-based interpolants [6, 7], and radial basis functions (RBFs) [8–10]. A recent

advance in this direction has been the use of information-theoretic variational principles to

construct meshfree basis functions [11–13]. We elaborate on the rationale of this approach,

and provide a unifying framework to view entropy approximants. A JAVA applet is developed

to visualize meshfree basis functions, with an aim to readily discern the similarities and

distinctions between different meshfree approximants.

The outline of this paper follows. We first present some of the essential properties of data

approximations schemes, and then finite element and meshfree Galerkin methods are touched

upon. In Section 3, the main functionalities and capabilities of the JAVA applet are presented,

and basis function plots that are created using the applet appear in Sections 4 and 5. The

construction of MLS approximants and barycentric coordinates on irregular polygons are

described in Section 4. To motivate the adoption of entropy-based approximants, the key

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40

Prepared using nmeauth.cls



OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 3

ingredients of Bayesian theory of probability are outlined in Section 5. In Section 5.1, we present

the derivation of basis functions using Jaynes’s principle of maximum entropy (MAXENT) [14,15]

as well as through its generalization, the principle of minimum relative entropy (Shannon-

Jaynes entropy functional) [16–18]. Entropy-based higher-order approximation schemes are

proposed in Section 5.2, and we close with a few concluding remarks in Section 6.

2. PRELIMINARIES
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Figure 1. (a) Triangle; (b) Square; (c) Hexagon; and (d) Scattered nodes.
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4 N. SUKUMAR AND R. W. WRIGHT

Consider a set of distinct nodes {xi}n
i=1 in IR

d. The convex hull, C ⊂ IRd, is the smallest

convex set that contains all the nodes. Let us introduce a point p with coordinate x within

C ⊂ IR2 (Figure 1). An approximation scheme for a scalar-valued function u(x) : C → IR can

be written as

uh(x) =

n∑

i=1

φi(x)ui, (1)

where ui are coefficients (nodal values if u
h is an interpolant) and φi(x) is the basis function

of node i. If xi are the vertices of a polyhedron, then {φi}n
i=1 are the barycentric coordinates

of p. On convex polygons, the MAXENT basis functions are a barycentric coordinate, but

they are non-interpolatory on a set of scattered nodes (Figure 1d). Maximum-entropy basis

functions were introduced by Sukumar [11] and Arroyo and Ortiz [12]. In Reference [12], its

link to convex analysis [19] were noted, and these approximants were referred to as convex

approximation schemes. For Equation (1) to be a linearly precise barycentric coordinate or

convex approximation scheme [12], the basis functions must satisfy the following properties:

1. Ability to reproduce constant and linear functions exactly:

∀x,
n∑

i=1

φi(x) = 1 and

n∑

i=1

φi(x)xi = x. (2)

For second-order partial differential equations (PDEs), approximants that possess

constant and linear precision are sufficient for convergence in a Galerkin method [20].

2. The {φi(x)}n
i=1 are sufficiently smooth (typically C

∞) in the interior of C .

3. Convex combination:

φi(x) ≥ 0 ∀i, x, (3)

which in conjunction with Equation (2) indicates that the φi(x) are bounded between

zero and unity and satisfy the convex hull property. The non-negative condition leads to

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 5

the variation diminishing property and to positive-definite mass matrices [12]. Convex

approximation schemes are not prone to the Runge phenomena [21], which occurs when

using higher-order one-dimensional Lagrange interpolation on uniform grids. In addition,

optimal conditioning can be established for non-negative basis functions [22–24]. The

adoption of NURBS-based convex basis functions to ensure geometric exactness in finite

element analysis has been recently introduced by Hughes and co-workers [25]. Moving

least squares approximants [5], which are widely used in meshfree Galerkin methods, are

not convex approximants since MLS basis functions can be negative.

Consider the Poisson equation with homogeneous Dirichlet (essential) boundary conditions:

−∇2u = f in Ω, u = 0 on ∂Ω, (4)

where Ω ⊂ IR2 is the problem domain and ∂Ω is its boundary. In the finite element method,

the domain is partitioned intoM non-overlapping subdomains (elements), Ω = ∪M
k=1Tk, where

Tk is either a triangle or a quadrilateral (isoparametric transformation of the elements shown

in Figures 1(a) and 1(b)). In finite elements, basis functions are associated with each vertex

(node) of Tk, and within an element, the local restriction of a basis function is known as a

shape function.

In a Galerkin method, a weak or variational statement of the strong form, Equation (4), is

used: find u ∈ H1
0 (Ω) such that

∫

Ω

∇(δu) ·∇u dΩ =

∫

Ω

fδu dΩ ∀δu ∈ H1
0 (Ω), (5)

where H1
0 (Ω) is the Sobolev space of functions in L

2(Ω) whose derivatives are also square-

integrable, and with vanishing function values on ∂Ω, and δu denotes the first variation of u.

In finite element and meshfree Galerkin methods, u(x) is approximated by uh(x)
(
belongs

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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6 N. SUKUMAR AND R. W. WRIGHT

to a finite-dimensional subspace of H1
0 (Ω)

)
of the form given in Equation (1). A similar

approximation is used for the test function δu. Since the nodal coefficients that appear in

δuh are arbitrary, a linear system of equations is obtained:

Ku = f , Kij =

∫

Ω

∇φi ·∇φj dΩ, fi =

∫

Ω

φif dΩ. (6)

In the finite element method, the shape functions φi(x) are defined on reference elements

(
Figures 1(a) and 1(b)

)
, and through an isoparametric transformation, they are obtained on

any triangle or convex quadrilateral. Finite element basis functions satisfy three key properties,

which facilitates the exact imposition of linear Dirichlet boundary conditions:

1. Basis functions satisfy linear reproducing conditions (linearly complete) on meshes with

either triangular or quadrilateral elements.

2. Interior nodal basis functions do not contribute at a point p that lies on the boundary

of the domain.

3. The basis functions possess the Kronecker-delta property (cardinal basis): φi(xj) = δij .

On meshes with convex n-gons, MAXENT basis functions are a barycentric coordinate and

they satisfy all the above properties [11]. Maximum-entropy basis functions meet the first and

second property on convex domains, but for three or more nodes that are collinear on the

boundary of the domain, a weaker Kronecker-delta property is satisfied. Extensive research in

meshfree methods has focused on modifications to MLS (e.g., use of singular weight functions or

transformations) and to other meshfree approximants with the objective of constructing basis

functions with the Kronecker-delta property. The lack of the Kronecker-delta property on the

boundary by itself does not pose any limitation; the first two properties that are indicated

above are the critical ones and they suffice to enable the imposition of essential boundary

conditions in MAXENT meshfree methods as in finite elements [12].

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 7

3. JAVA APPLET FOR VISUALIZATION OF MESHFREE BASIS FUNCTIONS

Figure 2. JAVA applet menu.

There have been significant advances in the use of

meshfree approximants for the solution of partial

differential equations [26–34]. However, in spite of the

maturity of meshfree methods, there are currently no

tools in the public-domain to visualize meshfree basis

functions. We have developed JAVA applets to visualize

basis functions in one-, two-, and three-dimensions; the

two-dimensional JAVA applet menu is shown in Figure 2.

The applets serve as a suitable aid to readily discern

the similarities and distinctions between the different

meshfree approximation schemes.

The creation of a web-accessible JAVA program allows

users to create an arbitrary nodal set (convex or non-

convex) in one-, two- or three-dimensions by inputting

the coordinates of its nodes, with the aid of a direct data

entry form or a point-and-click interface. Options such as

P (polygon), Q (quadtree grid), and R (random nodes in

a unit square) are indicated in Figure 2. This program

displays a visualization of the basis function associated

with a node and specific formulation, both picked by the

user. Available formulations in two-dimensions include

Delaunay and polygonal interpolation schemes, MLS, and

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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8 N. SUKUMAR AND R. W. WRIGHT

maximum entropy approximations using a uniform prior distribution (lead to global basis

functions) and a compactly-supported prior distribution (lead to compactly-supported basis

functions). In one dimension, individual basis functions or all the basis functions on a grid can

be displayed. Two-dimensional basis functions may be dislayed as contour plots or surface plots.

The plots are generated by dividing the polygonal element into triangles and then dividing the

triangles recursively. The user can calculate the value of the basis functions at an arbitrary

point within the convex hull. In 3D, basis function values on planes that cut the convex hull

are computed.

The visualization package is coded as a Java 1.4 applet and embedded in an HTML page that

detects screen resolution and adjusts the applet’s behavior accordingly. The code is object-

oriented and hence modular, making it fairly easily extended. Visualizations resemble as closely

as possible the desirable styles of texts and journals, and software such as MathematicaTM and

MatlabTM. The generated visualizations are suitable for publication (EPS option in Figure 2).

The capabilities of the applet are demonstrated through basis function plots that appear in

the ensuing sections.

4. MESHFREE APPROXIMANTS AND POLYGONAL INTERPOLANTS

Currently, most meshfree Galerkin methods are based on approximants that can be classified

into three distinct types: radial basis functions [8, 9], moving least squares approximants [5],

and natural neighbor interpolation schemes [6, 7]. In meshfree methods, the approximation

scheme is of the form Equation (1), but the construction of the nodal basis functions {φi}n
i=1

is not tied to a background element structure. A brief description of MLS, RBFs, and polygonal

interpolants follows.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 9

4.1. Moving least squares approximants

In the moving least squares approximation, each node is associated with a compactly-supported

weight function, w : [0,∞)→ IR:

wi(x) ≡ w(qi), qi =
‖x− xi‖
rmaxi

, (7)

where ‖ · ‖ is the L2 norm of its argument, rmaxi is the radius of support for the nodal weight

function, and w(q) is a smooth, non-increasing weight function that is maximal at q = 0 and

vanishes for q ≥ 1. The global MLS approximation is [5]:

uh(x) =
m∑

j=1

pj(x)aj(x) ≡
n∑

i=1

φi(x)ui, (8)

where p is a basis vector (for example, p = {1 x y}T is a linear basis in 2D) and aj(x) are

unknown parameters that are found by solving a quadratic weighted least squares minimization

problem [5]:

min
a

1

2

n∑

i=1

wi(x)

[

pT (xi)a(x)− ui

]2

or min
a

1

2
(Pa− u)

T
W (Pa− u) . (9)

On carrying out the minimization, the solution for the MLS basis functions is given by [28]

φi(x) = pT (x)A(x)−1Bi(x), (10a)

where the matrices A(x) and B(x) are

A(x) =

n∑

i=1

wi(x)p(xi)p
T (xi), (10b)

B(x) = [w1(x)p(x1), w2(x)p(x2), . . . , wn(x)p(xn)]. (10c)

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40

Prepared using nmeauth.cls



10 N. SUKUMAR AND R. W. WRIGHT

In the numerical implementation, a cubic spline weight function, w(q) ∈ C2(R+), is used [35]:

w(q) =







2

3
− 4q2 + 4q3 if 0 ≤ q ≤ 1

2
,

4

3
− 4q + 4q2 − 4q

3

3
if
1

2
≤ q ≤ 1,

0 otherwise

. (11)

The nodal weight function support radius rmaxi = αhi, where hi is chosen for each node by a

procedure very similar to Algorithm 2 in Reference [36]:

For the set of nodes {xi}n
i=1 and their convex hull C ,

1. Choose positive integers m1 and m2 and a constant α ≥ α0 > 1 and set hi = 0 for

i = 1, 2, . . . , n.

2. Assemble a set of points P in three steps:

(a) Create a [m1]
d uniform grid of points over C and discard those falling outside.

(b) Add m2 random, uniformly distributed points in C .

(c) Add the nodes {xi}n
i=1.

3. For each p ∈P,

(a) Find the d+1 nodes {xi∗}d+1
i∗=1 in {xi}n

i=1 that are closest to p, and compute their

Euclidean distance di∗ = ‖p− xi∗‖.

(b) If hi∗ < di∗ , set hi∗ = di∗ .

4. Set rmaxi = αhi for i = 1, 2, . . . , n.

For the 2D applet, m1 = 100, m2 = 10000, α0 = 1.01, and the constant α is chosen by the

user via a slider. This procedure is necessary to ensure that every point in C is covered by at

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 11

least d+1 nodal weight function supports, so that the matrix A(x), defined in Equation (10b),

has full rank.

4.2. Radial basis functions

Consider the approximation of a function u(x) : IRd → IR using the set of scattered nodes

{xi}n
i=1. In the radial basis function approximation, a fixed radial function Φ : IR

d → IR is

chosen, i.e., Φ(x) ≡ ϕ(‖x‖) with ϕ : [0,∞) → IR. On using translates of this radial function

with centers at xi, the following ansatz is made [10]:

uh(x) =
n∑

i=1

ϕ(‖x− xi‖)ai, (12)

where ai are unknown coefficients. Often, a polynomial term is also included in the above

approximation if global polynomial reproducibility is desired. For certain choices of ϕ(·), for

example, Gaussian, multiquadrics, or thin-plate splines, the matrix Kij = ϕ(‖xj − xi‖) is

positive-definite and invertible, and hence the data interpolation problem, uh(xj) = u(xj)

(j = 1, 2, . . . , n), results in a unique solution for a. The use of RBFs in collocation-based

meshfree methods was initiated by Kansa [37,38], and new developments and advances continue

to emerge in this topical research area. In this paper, radial basis functions are adopted as

prior distributions (weights) within the Shannon-Jaynes maximum-entropy formalism.

4.3. Polygonal interpolants

Using elements of projective geometry, Wachspress [39] proposed rational polynomial

interpolants for convex polygons. Recently, there have been additional contributions on the

construction of barycentric coordinates on irregular polygons [1, 2, 4, 11]. A review on the

construction of polygonal interpolants is presented by Sukumar and Malsch [40].

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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12 N. SUKUMAR AND R. W. WRIGHT

In Reference [1], a simple expression is obtained for Wachspress’s basis functions:

φi(x) =
wi(x)

n∑

j=1

wj(x)
, wi(x) =

A(pi−1, pi, pi+1)

A(pi−1, pi, p)A(pi, pi+1, p)
=
cot γi + cot δi

‖x− xi‖2
, (13)

where the last expression is used in our numerical implementation. In the above equation,

A(a, b, c) is the signed area of triangle [a, b, c], and γi and δi are shown in Figure 3a.

Floater [2] used the mean value theorem for harmonic functions to develop barycentric

coordinates on polygons. The linearly precise mean value coordinate is [2]:

φi(x) =
wi(x)

n∑

j=1

wj(x)
, wi(x) =

tan (αi−1/2) + tan (αi/2)

‖x− xi‖
, (14)

where the angle αi is shown in Figure 3b. In the JAVA applet, the algorithm for mean value

coordinates proposed by Hormann (Figure 6 in Reference [41]) is used. The implementation is

valid for convex and non-convex polygons.

i
γ
δ i

p

p

p

i−1

i+1

p
i

(a)

p
i−1

p
i

p
i+1

β i

i−1
γ

γ
i

βi−1

p
α

α i−1

i

(b)

Figure 3. Barycentric coordinates. (a) Wachspress [1]; and (b) Mean value coordinates [2].

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 13

Natural neighbor interpolation methods are Voronoi-based convex approximation schemes

that interpolate nodal data and share many common properties with the finite element

interpolant. Cueto and co-workers [42] provide an overview of the construction of natural

neighbor-based interpolants. In Reference [4], Laplace basis functions [7] are constructed on

regular polygons, and through an isoparametric mapping, the basis functions are defined on

irregular polygons. The Wachspress basis functions and mean value coordinates are directly

computed on irregular polygons, which is also the case in a recently proposed non-conforming

finite element method on polyhedral meshes [43]. The interested reader can refer to Reference

[40] and the references therein for further details on the construction and implementation of

polygonal interpolants.

In Figure 4, Wachspress, mean value and Laplace basis functions for the hexagon in

Figure 1(c) are plotted. These basis functions share the properties of polygonal barycentric

coordinates. In Figure 5, the capabilities of the applet are further illustrated by presenting

Laplace basis function contour plots on a regular pentagon for varying resolutions; a 3D

perspective is shown in Figure 5(e). Mean value coordinates are also linearly precise on concave

(non-convex) polygons. In Figure 6, contour plots of mean value coordinates are shown for a

concave hexagon and a concave octagon.

5. BAYESIAN THEORY OF PROBABILITY AND ENTROPIC MEASURES

A recent development in the construction of meshfree approximants has been the use of

information-theoretic variational principles [11–13]. To provide greater details and insights on

the rationale for this approach, we present some of the essential ingredients of Bayesian theory

of probability and its ties to inductive inference. In References [11,12], data approximation is

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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14 N. SUKUMAR AND R. W. WRIGHT

(a) (b) (c)

Figure 4. Hexagonal basis functions (node 1). (a) Wachspress; (b) Mean value coordinates; and (c)

Laplace.

viewed as a problem in inductive inference. Pure mathematics follows the principle of deductive

logic—given a cause, many logical consequences can be readily inferred (Figure 7a). However,

in scientific problems, the reverse is more common: Given certain effects or observations, the

most likely underlying causes are desired. This requires inductive logic (Figure 7b), as in ill-

posed inverse problems (e.g., heat conduction, scattering, image reconstruction) that arise in

science and engineering [45].

Probability theory as a rational inductive inference procedure was initiated by Bayes and

Laplace, and subsequently formalized by Jeffreys [46] and Cox [47]. In information theory [48],

the notion of entropy as a measure of uncertainty or incomplete knowledge was introduced by

Shannon [14]. Building on these previous contributions, Jaynes [15,49] proposed the principle of

maximum entropy (MAXENT), in which it was shown that maximizing entropy provides the least-

biased statistical inference when insufficient information is available. In References [11, 12],

the basis functions {φi}n
i=1 are viewed as a discrete probability distribution {pi}n

i=1, and the

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 15

(a) (b) (c)

(d) (e)

Figure 5. Laplace basis functions (node 1) for a regular pentagon at varying resolutions (a)–(d); and

(e) 3D plot.

polynomial reproducing conditions are the under-determined constraints. To regularize the

ill-posed problem, the maximum entropy principle was used. In this paper, as a generalization,

the Shannon-Jaynes entropy functional and the MAXENT or minimum relative entropy principle

[16–18] is invoked to obtain the basis functions. Sivia [44] presents an excellent introduction

to Bayesian inference and maximum entropy methods, whereas Jaynes [50] provides a more

rigorous and in-depth look at probability theory from the Bayesian perspective.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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16 N. SUKUMAR AND R. W. WRIGHT

(a) (b)

Figure 6. Mean value coordinates on concave polygons (node 1). (a) Hexagon; and (b) Octagon.

Cause Effects or
Outcomes

(a)

Possible Effects or
ObservationsCauses

(b)

Figure 7. (a) Deductive logic; and (b) Inductive logic [44].

In Bayesian theory, probability is a subjective measure that represents a degree-of-belief and

is always ‘conditional,’ which is contrary to the (objective) frequentist definition. The Bayesian

view consists of three stages that are essential to the process of inductive inference [50–52]:

1. Bayes’s theorem: If h stands for a hypothesis, d for a set of data, and I for background

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 17

(testable) information, then Bayes’s theorem states that:

p(h | d, I)
︸ ︷︷ ︸

posterior pdf

= p(h | I)
︸ ︷︷ ︸

prior

× p(d |h, I)
︸ ︷︷ ︸

likelihood

/ p(d | I)
︸ ︷︷ ︸

evidence

, (15)

where p(·) is used to denote either the probability (discrete) or the probability density

function, pdf (continuous), and in a parameter-estimation problem, the denominator is

just a normalizing factor since the posterior pdf must integrate to unity. In essence,

Bayes’s theorem is a rule for manipulating probabilities and not for their assignment—

the prior probability of h gets updated to the posterior probability as a result of acquiring

the data.

2. Maximum entropy principle: In information theory, Shannon introduced the notion

of entropy as a measure of uncertainty [14]. The Shannon entropy of a discrete probability

distribution is:

H(p) = E [− log p] = −
n∑

i=1

pi ln pi, (16)

where pi ≡ p(xi) is the probability of the occurrence of the event xi, p ln p
.
= 0 if p = 0,

E [·] is the expectation operator, and the above form of the entropy H(·) satisfies the

axiomatic requirements of an uncertainty measure, with (1) H(p) ≥ 0; (2) H(p) attains

its maximum value when p1 = p2 = . . . = pn = 1/n and it’s a monotonic function; and

(3) H(p1, p2, . . . , pn) = H(p1, p2, . . . , pn, 0) being the most important properties [53].

Entropy maximization was proposed by Jaynes [15] as a means for least-biased

statistical inference when insufficient information is available, and was shown

to reproduce equilibrium (Gibbs-Boltzmann) and non-equilibrium distributions in

statistical mechanics [16, 50, 54]. It’s the only consistent variational principle for the

assignment of probabilities under a set of constraints (testable information) [16,18]. Let

the available data pertaining to a random variable X consist of the expected value of

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40
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18 N. SUKUMAR AND R. W. WRIGHT

functions gr(x) (r = 0, 1, . . . ,m), with g0(x) = 1 being the normalizing condition. Then,

the discrete probabilities are found by solving [15]

max
p∈IRn

+

(

H(p) = −
n∑

i=1

pi ln pi

)

(17a)

n∑

i=1

pi = 1,

n∑

i=1

pigr(xi) = E [gr(x)] (r = 1, 2, . . . ,m), (17b)

where IRn
+ is the non-negative orthant. Often, the first m+1 moments of the random

variable are available, which leads to the classical maximum entropy problem of

moments [55]. For instance, if the mean µ of a random variable X is known, then the

discrete problem is posed as [44, p.121]

max
p∈IRn

+

(

H(p) = −
n∑

i=1

pi ln pi

)

(18a)

n∑

i=1

pi = 1,

n∑

i=1

pixi = µ, (18b)

which is solved using the method of Lagrange multipliers, and in the continuous case

with limits 0 to ∞, we obtain the exponential distribution [44, p.121]

p(x |µ) = 1
µ
exp

(

−x
µ

)

, x ≥ 0. (19)

If the first moment µ and variance σ2 of X are known, then in the continuous case with

limits ±∞, we obtain the solution [44, p.122]

p(x |µ, σ) = 1

σ
√
2π
exp

(

− (x− µ)
2

2σ2

)

, (20)

which is the Gaussian distribution—a consequence that follows if only the mean (first

moment) and variance of data are known. It was recognized that for H(·) to be invariant

under the transformation y = f(x) in the continuous case, the general form of the entropy

should be [16–18]

H(p,m) = −
n∑

i=1

pi ln

(
pi

mi

)

or H(p,m) = −
∫

p(x) ln

(
p(x)

m(x)

)

dx, (21)
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 19

where m(x) (mi) is a prior distribution that estimates p(x) (pi). In the literature, the

quantity D(p‖m) = −H(p,m) is also referred to as the Kullback-Leibler distance

(directed divergence) [56], and the variational principle is known as the principle of

minimum relative (cross) entropy [18]. The relative entropy, D(p‖m) ≥ 0, which is

proven below.

Proof. If f is a concave function and X a random variable, then by Jensen’s inequality

(see Reference [48, p.25])

E [f(X)] ≤ f(E [X]). (22)

The Shannon-Jaynes entropy (negative of the relative entropy) functional is

−D(p‖m) = −
n∑

i=1

pi ln

(
pi

mi

)

=

n∑

i=1

pi ln

(
mi

pi

)

. (23)

On considering the concave function f(x) = lnx and invoking Jensen’s inequality, we

can write

−D(p‖m) =
n∑

i=1

pi ln

(
mi

pi

)

≤ ln
(

n∑

i=1

pi
mi

pi

)

= ln

n∑

i=1

mi = ln 1 = 0, (24)

which completes the proof.

Since ln is a strictly concave function, D(p‖m) attains its minimum value of zero if and

only if p = m. If a uniform prior, mi = 1/n, is used, the principle of minimum relative

entropy is identical to the MAXENT principle using Shannon entropy.

3. Hypothesis space: The choice of the hypothesis space is the key in any inductive

inference problem—this refers to the measure space to define m(x) or mi when using

the maximum entropy principle or the prior probability p(h | I) in Bayes’s theorem. The

selection of the prior distribution, m(x), is a key element in the construction of MAXENT

approximation schemes, which is discussed in the next section.
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20 N. SUKUMAR AND R. W. WRIGHT

5.1. Maximum-entropy approximation schemes

In References [11] and [12], the maximum entropy principle using Shannon entropy and a

modified entropy functional, respectively, were used. In this paper, as a unifying framework

and generalization, we adopt the Shannon-Jaynes entropy measure, Equation (21), and for

consistency, the variational problem is posed as the maximization of the entropy functional,

and therefore the dual (unconstrained) problem becomes a convex minimization problem. The

parallels between the conditions on φi in Equations (2) and (3) and those on pi in a MAXENT

formulation are evident. Referring to the nodal sets shown in Figure 1, the basis function

value φi(x) is viewed as the ‘probability of influence of a node i at x.’ The maximum entropy

formulation is: find φ(x) ∈ IRn
+ as the solution of the constrained optimization problem:

max
φ∈IRn

+

(

H(φ,m) = −
n∑

i=1

φi(x) ln

(
φi(x)

mi(x)

))

, (25a)

subject to the linear reproducing conditions given in Equation (2):

n∑

i=1

φi(x) = 1,

n∑

i=1

φi(x)xi = x, (25b)

where mi(x) is a prior estimate, and the constraints form an under-determined linear system.

Let λs (s = 0, 1, . . . , d) be the Lagrange multipliers associated with the d+1 constraints. The

solution of the variational problem can be written as

φi(x) =
Zi(x)

Z(x)
, Zi(x) = mi(x) exp

(
−xT

i λ(x)
)
, (26)

where the maximum-entropy basis functions naturally assume an exponential form, and

Z(x) =
∑

j Zj(x) is known as the partition function in statistical mechanics. In addition,

xT
i = [xi yi zi] and λ(x) =

[
λ1(x) λ2(x) λ3(x)

]T
in three dimensions. We mention in passing

that such exponential (Darmois-Koopman-Pitman) family of distributions are well known and

widely studied in statistical theory [57] and information geometry [58].
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 21

The φi(x) in Equation (26) must satisfy the d linear constraints given in Equation (25b.2),

which yields d nonlinear equations. On considering the dual formulation, a simple

unconstrained convex minimization problem is obtained. To this end, we let x̃i = xi − x,

ỹi = yi−y, and z̃i = zi−z (shifted nodal coordinates in IR3), and then redefine Z appropriately.

Now, the dual problem is: find λ such that [59,60]

λ = argmin lnZ(λt). (27)

On using convex duality [19, 60], a detailed mathematical treatment of the primal and

dual optimization problems is presented in Reference [12]. Numerical algorithms such as

steepest descent, Newton’s method, quasi-Newton (variable metric) methods, and interior-

point methods are used to solve such unconstrained optimizations problems [60]. Interior-

point methods are attractive for large systems with equality and inequality constraints [61];

for entropy maximization, a MatlabTM code, which is based on primal-dual interior method is

available in the public-domain [62]. For the JAVA applet, the convex minimization problem is

solved using a variable step size gradient descent algorithm [63], with a convergence tolerance

ε = 10−3.

In Reference [11], a uniform prior was used, whereas in Reference [12], a variational principle

using a modified entropy functional (pareto optima of two objectives) was proposed:

min
φ∈IRn

+

M(φ,x) or max
φ∈IRn

+

−M(φ,x), M(φ,x) = βU(φ,x)−H(φ), (28a)

where β ≡ β(x) is non-negative, H(φ) is the Shannon entropy, and U(φ,x) is the objective

function introduced by Rajan [64]:

U(φ,x) =
n∑

i=1

φi(x)‖xi − x‖2. (28b)
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22 N. SUKUMAR AND R. W. WRIGHT

The above functional form draws the connection to statistical mechanics, with the free energy

G = U−TH, where U is the internal energy,H is the entropy, and T is the temperature [12,61].

Rajan’s linear programming problem is [64]:

min
φ
U(φ,x), φi(x) ≥ 0,

n∑

i=1

φi(x) = 1,
n∑

i=1

φi(x)xi = x, (29)

whose solution is the finite element (Delaunay) interpolant. At x = xj , nodal interpolation

is realized since the minimum value U = 0 is attained if φi(xj) = δij . When β → ∞ in

Equation (28a), Rajan’s problem is obtained, and β = 0 recovers Equation (25a) with a

uniform prior. In Sukumar [13], the minimum relative entropy principle was used to unify the

above developments. The entropy functional considered by Arroyo and Ortiz [12] is obtained if

a Gaussian (radial basis function) prior,mi(x) = exp(−β‖xi − x‖2), is used in Equation (25a):

H(φ,m) = −
n∑

i=1

φi(x) ln

(
φi(x)

exp(−β‖xi − x‖2)

)

= −
n∑

i=1

φi(x) lnφi(x)− β
n∑

i=1

φi(x)‖xi − x‖2

= −βU(φ,x) +H(φ),

(30)

which is identical to Equation (28a). The parameter β in the Gaussian distribution is inversely

proportional to the variance; it determines the support-width of the basis function [12].

The choice of the prior, mi(x), gives us greater flexibility in the construction of new

approximants, and provides a simple and appealing means to construct globally- or compactly-

supported convex approximation schemes. In the spirit of previous research on meshfree

methods [26,27,65] and partition of unity methods [66], given a prior mi(x) and a set of linear

constraints (reproducing conditions), entropy maximization can be viewed as a ‘correction’

to obtain an approximation with polynomial and/or non-polynomial reproducibility. The use

of the Shannon or relative entropy functional provides a means to obtain the least-biased
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 23

statistical inference solution. With Shannon entropy, the flattest possible distribution that

is consistent with the constraints is realized. The maximum-entropy formulation leads to a

convex optimization problem, with the approximant possessing many desirable properties for

the Galerkin solution of PDEs [12]. The continuity of maximum-entropy basis functions with

a Gaussian prior is established in Arroyo and Ortiz [12], and in Sukumar and Wets [67],

variational analysis and the theory of epi-convergence [68] is used to prove the same for

any prior distribution. The above properties are lost if other functionals are adopted—for

example, in Sukumar [11] it is shown that if the minimum-norm objective functional (leads

to the generalized- or pseudo-inverse [69]) is used, then φi(x) < 0 is also admissible and

interpolation on the boundary is not realized. If the minimum-norm objective is adopted with

the non-negative condition, φi(x) ≥ 0, as additional constraints, then a convex approximant

is obtained; however, numerical tests reveal that the basis functions are continuous but not

continuously differentiable in the interior of C .

1. Uniform prior: For a uniform prior,mi(x) = 1/n, and as indicated earlier, the Shannon-

Jaynes entropy functional is the same as the Shannon entropy (modulo a constant). For

this case, the maximum-entropy basis functions are identical to bilinear finite element

basis functions on a square, and are smooth and bounded in C [11]. To illustrate a

simple closed-form computation, consider one-dimensional approximation in C = [0, 1]

with three nodes located at x1 = 0, x2 = 1/2, and x3 = 1. On using Equation (25), the

solution for φi(x) is readily derived [40]:

φ1(x) =
1

Z
, φ2(x) =

η

Z
, φ3(x) =

η2

Z
, η ≡ η(x) =

2x− 1 +
√

12x(1− x) + 1
4(1− x) , (31)

where Z = 1 + η + η2.

2. Non-uniform prior: Instead of a uniform prior, a non-uniform prior for node i gives
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24 N. SUKUMAR AND R. W. WRIGHT

more weight to xi than to other nodal locations. Now, different choices of the prior mi(x)

can be used in the Shannon-Jaynes entropy functional:

• The prior can be selected to be global radial basis functions such as the Gaussian,

mi(x) = exp(−‖xi−x‖2/c2), inverse multiquadrics, mi(x) = (‖xi−x‖2+ c2)−1/2,

etc.

• On choosing a weight function, w(x), with compact support, we set mi(x) = wi(x)

as the prior for node i, where wi(x) is a translation and scaling of w(x). If the

only constraint is:
∑

i φi(x) = 1, then the maximum-entropy basis functions are:

φi(x) = wi(x)/
∑

j wj(x), which is the well-known Shepard function [70]. If wi(x)

is constructed using the C2 cubic spline weight function given in Equation (11),

then unlike the MLS approximant, a convex approximant with desirable properties

on the boundary is obtained. Other choices for mi(x) include compactly-supported

radial basis functions, for example the C2 function m(r) = (1 − r)4+(4r + 1) [10],

where (·)+ = (·) if the argument is non-negative and zero otherwise.

• As alternative compactly-supported priors, R-functions [71, 72] or implicit (level

set) functions that are defined on a graph are also suitable.

Maximum-entropy basis functions with a uniform prior in C = [0, 1] are depicted in Figure 8.

For the plots in Figure 8(a), the closed-form expressions for φi(x) are given in Equation (31).

Nodal interpolation is met on bdryC but not at the interior nodes. In Figure 9, the maximum-

entropy basis functions for nodes 1 and 6 in Figure 1(d) are illustrated. We note that φ1(x) is

unity at x1 and is piece-wise linear on the boundary, whereas φ6(x6) 6= 1 and φ6(x) vanishes on

the boundary of the square. Laplace and MAXENT basis functions on a weakly convex polygon

are shown in Figure 10. Along the edge 1–2, Laplace basis functions satisfy the Kronecker-delta
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(a) (b) (c)

Figure 8. One-dimensional maximum-entropy basis functions with a uniform prior. (a) Regular grid

(n = 3); (b) Regular grid (n = 5); and (c) Random grid (n = 5).

(a) (b)

Figure 9. Two-dimensional maximum-entropy basis functions with a uniform prior. (a) φ1(x); and (b)

φ6(x).

property but the maximum-entropy basis functions do not; however, φi(x) = 0 (i = 3–5) along

edge 1–2 for both Laplace and MAXENT basis functions.
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26 N. SUKUMAR AND R. W. WRIGHT

(a) (b)

(c) (d)

Figure 10. Basis functions on a weakly convex pentagon. (a) Laplace (node 6); (b) Maximum entropy

(node 6); (c) Laplace (node 4); and (d) Maximum entropy (node 4).

To demonstrate the properties of convex approximants with a non-uniform prior, we first

consider a one-dimensional grid. In Figure 11, basis function plots using MLS, and MAXENT

with a compactly-supported prior are presented. The cubic spline weight function given in

Equation (11) is used as the compactly-supported prior. We observe that interior MLS basis

functions have a non-zero contribution on the boundary
(
Figures 11(a) and 11(c)

)
, whereas

boundary MAXENT basis functions with a cubic spline prior
(
Figures 11(b) and 11(d)

)
satisfy the

Kronecker-delta property. Next, we consider the two-dimensional grid shown in Figure 1(d),
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 27

and study the MAXENT plots using a Gaussian prior, when β is varied; see Reference [12]

for its applications in nonlinear solid mechanics. For β = 0, 1, 10, 100, the MAXENT basis

function plots for node 8 are presented in Figure 12. The value β = 0 corresponds to a uniform

prior. It’s observed that as β is increased the nodal basis function support shrinks, and when

β = 100 (theoretically when β →∞) the basis function support is proximal to the triangular

(Delaunay) basis function
(
Figure 12(d)

)
. In Figure 13, comparisons between the MLS basis

function and the MAXENT basis function using the compactly-supported cubic spline prior are

presented. The interior MLS basis function is non-zero on bdryC
(
Figure 13(c)

)
, whereas the

interior MAXENT basis function vanishes on the boundary of the square (Figure 13(d)).

As of this writing, the three-dimensional applet is somewhat less developed than the other

two and is restricted to maximum-entropy basis function plots with a uniform prior. For

Figure 14, a regular tetrahedron is created, along with one or two interior nodes. Basis functions

are plotted along planes that cut the convex hull.

5.2. Higher-order approximation schemes

In References [11,12], linearly complete approximations were constructed using the maximum

entropy principle. Furthermore, in Reference [12], it was shown that the additional constraint

∑

i φi(x)x
2
i = x2 + c in one-dimension with c = 0 does not yield a feasible solution if φi ≥ 0.

On choosing c 6= 0, non-negative φi(x) can be obtained, which bear resemblance to univariate

B-splines [12]. Alternatively, the non-negative condition, φi(x) ≥ 0, can be relaxed to obtain

an appropriate ‘entropy functional’ that can be maximized. To this end, we start with the

generalization of the Shannon-Jaynes entropy that was proposed by Skilling [73]:

H(φ,m) =

n∑

i=1

[

φi −mi − φi ln

(
φi

mi

)]

, (32)
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(a) (b)

(c) (d)

Figure 11. One-dimensional basis functions. (a),(b) Uniform grid with MLS (α = 2.5) and maximum

entropy with a cubic spline prior (α = 2.5); and (c),(d) Random grid with MLS (α = 2.5) and

maximum entropy with a cubic spline prior (α = 2.5).

where φi ≡ φi(x) and the prior estimate mi ≡ mi(x) need not be normalized so that

applicability is extended to physical distributions other than probabilities. In the absence of any

constraints,H(·, ·) is maximized when φi = mi (i = 1, 2, . . . , n). On using the above expression,

distributions with positive and negative values (signed basis functions) are obtained.
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(a) (b) (c)

(d)

Figure 12. Maximum-entropy basis function, φ8(x), with a Gaussian prior. (a) β = 0; (b) β = 1; (c)

β = 10; and (d) β = 100.

Let φi = vi − wi, where vi ∈ IR+ and wi ∈ IR+, so that φi ∈ IR. Also, let mv
i and m

w
i be

the prior estimate for vi and wi, respectively. The total entropy is:

H(v,w,mv,mw) =
n∑

i=1

[

vi −mv
i − vi ln

(
vi

mv
i

)]

+
n∑

i=1

[

wi −mw
i − wi ln

(
wi

mw
i

)]

. (33)

An expression for H in which only φ and m appears is desired. Since φi = vi − wi, we have

∂H

∂vi
=
∂H

∂φi

∂φi

∂vi
=
∂H

∂φi
,

∂H

∂wi
=
∂H

∂φi

∂φi

∂wi
= −∂H

∂φi
, (34)
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(a) (b)

(c) (d)

Figure 13. Basis functions: φ3(x) with (a) MLS and (b) Maximum entropy with the cubic spline prior;

and φ8(x) with (c) MLS and (d) Maximum entropy with the cubic spline prior.
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(a) (b)

(c)

Figure 14. Three-dimensional maximum-entropy basis functions plots. (a) φ1(x) along a plane near

nodes 1 and 5; (b) φ5(x) along a plane containing node 5; and (c) φ3(x) along a plane near nodes 1,

3, 5, and 6.

and therefore

∂H

∂vi
+
∂H

∂wi
= 0. (35)

On using Equation (33) and the above relation, we obtain

viwi = mv
im

w
i . (36)

If vi = (ψi + φi)/2 and wi = (ψi − φi)/2, then ψi =
√

φ2i + 4m
v
im

w
i . Finally, the entropy
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expression for the positive/negative distribution φ is [74, 75]:

H(φ,mv,mw) =

n∑

i=1

[

ψi −mv
i −mw

i − φi ln

(
ψi + φi

2mv
i

)]

. (37)

Now, when no constraints are imposed, H is maximized when φi = mv
i −mw

i . For the data

approximation problem, we choose mv
i = 2mi and m

w
i = mi, where mi ≡ mi(x) is a non-

negative weight function. The expression for the entropy becomes

H(φ,m) =

n∑

i=1

[

ψi − 3mi − φi ln

(
ψi + φi

4mi

)]

, (38)

where ψi =
√

φ2i + 8m
2
i . On using the above form of H within the maximum entropy

variational principle, signed basis functions with higher-order completeness are constructed.

The implementation of the signed maximum-entropy approximant has been carried in

MatlabTM [62]. In Figure 15, the MAXENT basis functions using a Gaussian prior weight

function are shown. The domain is C = [0, 1], which is discretized by five equi-spaced nodes.

In Figure 15(a)–(c), quadratically complete basis functions are depicted for varying values

of β, whereas in Figure 15(d)–(f), basis functions with cubic complete basis functions are

plotted for different β. The plots in Figure 15(g)–(i) are for basis functions that can reproduce

{1, x, f(x)}, where f(x) = exp
(
−(x−0.5)2

)
. In all cases, as β is increased, the basis functions

are less negative and are also closer to being an interpolant on the boundary.

6. CONCLUDING REMARKS

In this paper, we presented an overview and recent advances in the construction of meshfree

approximation schemes. Meshfree basis functions such as moving least squares approximants,

natural neighbor-based polygonal interpolants, and maximum-entropy (MAXENT) approximants

were considered. The construction and applications of MAXENT approximants have recently
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Figure 15. Higher-order basis functions. (a)–(c) Quadratic completeness using a Gaussian prior

with β = 0, 2, 5; (d)–(f) Cubic completeness using a Gaussian prior with β = 0, 2, 5; and (g)–(i)

Reproducing the functions {1, x, exp
(
− (x− 0.5)2

)
} using a Gaussian prior with β = 0, 2, 5.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40

Prepared using nmeauth.cls



OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 35

come to the forefront [11–13], and hence greater emphasis was placed on the theoretical

underpinnings of Bayesian theory of probability, maximum entropy principle [14, 15], and its

numerical solution. We used the Shannon-Jaynes entropy functional or relative entropy [17,18]

within the variational formulation to generalize the construction of MAXENT approximants. The

merits of constructing basis functions using the maximum entropy variational principle were

examined, and the extension of Shannon-Jaynes entropy to physical distributions other than

probabilities [73] was used to construct higher-order maximum-entropy basis functions. The

use of maximum-entropy approximation schemes in higher-dimensional parameter spaces is

also promising [61]. A JAVA applet was developed,† and basis function plots were presented

to reveal the similarities and distinctions between different meshfree approximants. The

maximum-entropy formulation with a non-uniform prior provides a simple and elegant means

to directly impose linear essential boundary conditions in meshfree methods. With the

development of stable nodal integration schemes for meshfree Galerkin methods, background

cells would no longer be needed for numerical integration. This advance would pave the way

towards the conception of stable meshfree particle methods, which are particularly attractive

for the solution of problems that arise in nonlinear solid mechanics.

ACKNOWLEDGEMENTS

The authors are grateful for the research support of the National Science Foundation through

contract CMS-0626481 to the University of California, Davis. The financial support to

RWW through a NSF VIGRE graduate trainee award (NSF Grant DMS-0135345) is also

acknowledged. NS thanks Roger Wets and Michael Saunders for many helpful discussions.

†Access to the applet will be made available through the first author’s web page.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40

Prepared using nmeauth.cls



36 N. SUKUMAR AND R. W. WRIGHT

REFERENCES

1. M. Meyer, H. Lee, A. Barr, and M. Desbrun. Generalized barycentric coordinates on irregular polygons.

Journal of Graphics Tools, 7(1):13–22, 2002.

2. M. S. Floater. Mean value coordinates. Computer Aided Geometric Design, 20(1):19–27, 2003.

3. M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In N. A. Dodgson, M. S.

Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric Modelling, Mathematics

and Visualization, pages 157–186. Springer, Berlin, Heidelberg, 2005.

4. N. Sukumar and A. Tabarraei. Conforming polygonal finite elements. International Journal for Numerical

Methods in Engineering, 61(12):2045–2066, 2004.

5. P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares methods. Mathematics of

Computation, 37:141–158, 1981.

6. R. Sibson. A vector identity for the Dirichlet tesselation. Mathematical Proceedings of the Cambridge

Philosophical Society, 87:151–155, 1980.

7. N. H. Christ, R. Friedberg, and T. D. Lee. Weights of links and plaquettes in a random lattice. Nuclear

Physics B, 210(3):337–346, 1982.

8. R. L. Hardy. Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical

Research, 76:1905–1915, 1971.

9. M. D. Buhmann. Radial basis functions: theory and implementations. Cambridge University Press,

Cambridge, UK, 2003.

10. H. Wendland. Scattered Data Approximation. Cambridge University Press, Cambridge, UK, 2005.

11. N. Sukumar. Construction of polygonal interpolants: A maximum entropy approach. International

Journal for Numerical Methods in Engineering, 61(12):2159–2181, 2004.

12. M. Arroyo and M. Ortiz. Local maximum-entropy approximation schemes: a seamless bridge between

finite elements and meshfree methods. International Journal for Numerical Methods in Engineering,

65(13):2167–2202, 2006.

13. N. Sukumar. Maximum entropy approximation. AIP Conference Proceedings, 803(1):337–344, 2005.

14. C. E. Shannon. A mathematical theory of communication. The Bell Systems Technical Journal, 27:379–

423, 1948.

15. E. T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):620–630, 1957.

16. E. T. Jaynes. Information theory and statistical mechanics. In K. Ford, editor, Statistical Physics: The

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40

Prepared using nmeauth.cls



OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 37

1962 Brandeis Lectures, pages 181–218, New York, 1963. W. A. Benjamin.

17. S. Kullback. Information Theory and Statistics. Wiley, New York, NY, 1959.

18. J. E. Shore and R. W. Johnson. Axiomatic derivation of the principle of maximum entropy and the

principle of minimum cross-entropy. IEEE Transactions on Information Theory, 26(1):26–36, 1980.

19. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.

20. G. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, N.J.,

1973.

21. J. F. Epperson. On the Runge example. The American Mathematical Monthly, 94(4):329–341, 1987.

22. R. T. Farouki and T. N. T. Goodman. On the optimal stability of the Bernstein basis. Mathematics of

Computation, 65(216):1553–1566, 1996.

23. R. T. Farouki. Private communication. 2006.

24. J. M. Peña. B-splines and optimal stability. Mathematics of Computation, 66(220):1555–1560, 1997.

25. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS,

exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 193(39–

41):4135–4195, 2005.

26. T. Belytschko, Y. Y. Lu, and L. Gu. Element-free Galerkin methods. International Journal for Numerical

Methods in Engineering, 37:229–256, 1994.

27. W. K. Liu, S. Jun, and Y. F. Zhang. Reproducing kernel particle methods. International Journal for

Numerical Methods in Engineering, 20:1081–1106, 1995.

28. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An overview and

recent developments. Computer Methods in Applied Mechanics and Engineering, 139:3–47, 1996.

29. S. Li and W. K. Liu. Meshfree and particle methods and their applications. Applied Mechanics Review,

55(1):1–34, 2002.

30. A. Huerta, T. Belytschko, S. Fernández-Méndez, and T. Rabczuk. Meshfree methods. In E. Stein, R. de

Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics, volume 1, chapter 10,

pages 279–309. Wiley, Chichester, 2004.

31. T. P. Fries and H. G. Matthies. Classification and overview of meshfree methods. Technical Report

Informatikbericht-Nr. 2003-03, Institute of Scientific Computing, Technical University Braunschweig,

Braunschweig, Germany, 2004.

32. S. N. Atluri and S. Shen. The Meshless Local Petrov-Galerkin (MLPG) Method. Tech Science Press,

Encino, CA, 2002.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40

Prepared using nmeauth.cls



38 N. SUKUMAR AND R. W. WRIGHT

33. G. R. Liu. Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton,

FL, 2003.

34. S. Li and W. K. Liu. Meshfree Particle Methods. Springer-Verlag, New York, NY, 2004.

35. J. Dolbow and T. Belytschko. An introduction to programming the meshless Element Free Galerkin

method. Archives of Computational Methods in Engineering, 5(3):207–241, 1998.

36. Q. Du, M. Gunzburger, and L. Ju. Meshfree, probabilistic determination of point sets and support regions

for meshless computing. Computer methods in applied mechanics and engineering, 191:1349–1366, 2002.

37. E. J. Kansa. Multiquadrics—A scattered data approximation scheme for applications to computational

fluid-dynamics. 1. Surface approximations and partial derivative estimates. Computers & Mathematics

with Applications, 19(8/9):127–145, 1990.

38. E. J. Kansa. Multiquadrics—A scattered data approximation scheme for applications to computational

fluid-dynamics. 2. Solutions to parabolic, hyperbolic and elliptic partial-differential equations. Computers

& Mathematics with Applications, 19(8/9):147–161, 1990.

39. E. L. Wachspress. A Rational Finite Element Basis. Academic Press, New York, N.Y., 1975.

40. N. Sukumar and E. A. Malsch. Recent advances in the construction of polygonal finite element

interpolants. Archives of Computational Methods in Engineering, 13(1):129–163, 2006.

41. K. Hormann. Barycentric coordinates for arbitrary polygons in the plane. Technical Report IfI-05-05,

Department of Informatics, Clausthal University of Technology, February 2005.

42. E. Cueto, N. Sukumar, B. Calvo, M. A. Mart́inez, J. Cegon̈ino, and M. Doblaré. Overview and recent

advances in natural neighbour Galerkin methods. Archives of Computational Methods in Engineering,

10(4):307–384, 2003.

43. M. M. Rashid and M. Selimotic. A three-dimensional finite element method with arbitrary polyhedral

elements. International Journal for Numerical Methods in Engineering, 67(2):226–252, 2006.

44. D. S. Sivia. Data Analysis: A Bayesian Tutorial. Oxford University Press, Oxford, 1996.

45. J. N. Kapur. Maximum-Entropy Models in Science and Engineering. John Wiley & Sons, Inc., New

Delhi, India, first (revised) edition, 1993.

46. H. Jeffreys. Theory of Probability. Clarendon Press, Oxford, 1939.

47. R. T. Cox. Probability, frequency and reasonable expectation. American Journal of Physics, 14:1–13,

1946.

48. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York, NY, 1991.

49. E. T. Jaynes. Information theory and statistical mechanics. II. Physical Review, 108(2):171–190, 1957.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40

Prepared using nmeauth.cls



OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 39

50. E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, Cambridge, UK,

2003.

51. E. T. Jaynes. The relation of Bayesian and maximum entropy methods. In G. J. Erickson and C. R. Smith,

editors, Maximum-Entropy and Bayesian Methods in Science and Engineering, volume 1: Foundations,

pages 25–29, Dordrecht, The Netherlands, 1988.

52. S. F. Gull. Bayesian inductive inference and maximum entropy. In G. J. Erickson and C. R. Smith,

editors, Maximum-Entropy and Bayesian Methods in Science and Engineering, volume 1: Foundations,

pages 53–74, Dordrecht, The Netherlands, 1988.

53. A. Khinchin. Mathematical Foundations of Information Theory. Dover, New York, N.Y., 1957.

54. R. D. Rosenkrantz, editor. E. T. Jaynes: Paper on Probability, Statistics and Statistical Physics. Kluwer

Academic Publishers, Dordrecht, The Netherlands, 1989.

55. L. R. Mead and N. Papanicolaou. Maximum-entropy in the problem of moments. Journal of Mathematical

Physics, 25(8):2404–2417, 1984.

56. S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical Statistics,

22(1):79–86, 1951.

57. O. Barndorff-Nielsen. Information and Exponential Families in Statistical Theory. Wiley, New York,

NY, 1978.

58. S. Amari and H. Nagaoka. Methods of Information Geometry. Oxford University Press, New York, NY,

2000.

59. N. Agmon, Y. Alhassid, and R. D. Levine. An algorithm for finding the distribution of maximal entropy.

Journal of Computational Physics, 30:250–258, 1979.

60. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004.

61. M. R. Gupta. An Information Theory Approach to Supervised Learning. Ph.D. thesis, Department of

Electrical Engineering, Stanford University, Palo Alto, CA, U.S.A., March 2003.

62. M. A. Saunders. PDCO: Primal-Dual Method for Convex Objectives. Available at http://www.stanford.

edu/group/SOL/software/pdco.html, Department of Management Science and Engineering, Stanford

University, Stanford, CA, 2002.

63. R. L. Burden and J. D. Faires. Numerical Analysis. Thomson/Brooks/Cole, Belmont, CA, tenth edition,

2005.

64. V. T. Rajan. Optimality by the Delaunay triangulation in R
d. Discrete and Computational Geometry,

12(2):189–202, 1994.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–40

Prepared using nmeauth.cls



40 N. SUKUMAR AND R. W. WRIGHT

65. Y. Krongauz and T. Belytschko. Consistent pseudo-derivatives in meshless methods. Computer Methods

in Applied Mechanics and Engineering, 146(3–4):371–396, 1997.
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