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Abstract

The origin of cases is a central issue in cogni-
tive models of case-based reasoning. Some recent
work proposes the use of weak methods for gener-
ating solutions when a relevant case is not avail-
able, and chunking the solutions into cases for
potential reuse. Qur theory of case-based spa-
tial planning and navigation suggests a different
approach in which mental models of the world
provide a way for solving new problems and ac-
quiring cases. These mental models also pro-
vide a scheme for organizing the case mmeory,
adapting old cases, and verifying new plans. The
use of multiple methods, such as the case-based
and model-based methods, raises another impor-
tant issue in reasoning, namely, how to oppor-
tunistically select and dynamically integrate the
methods. Our theory suggests the use of simple
meta-reasoning to recursively select an appropri-
ate method as the problem is decomposed into
subproblems. This leads to the dynamic integra-

*This work has been partially supported by a re-
search grant from the Office of Naval Research (con-
tract N00014-92-J-1234), a CER grant from NSF
(grant CCR-86-19886), and equipment grants and do-
nations from IBM, NCR, and Symbolics.
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tion of different methods where one method is
used for one subproblem and a different method
for another subproblem.

Goal and Motivations

Humans are often good at spatial planning and
navigation. For example, most people navigate
complex landscapes, cities, buildings etc., appar-
ently with little difficulty. Further, their abil-
ity to navigate a given space appears to improve
with experience, i.e., they can form better navi-
gation plans more efficiently. One computational
theory for spatial planning and navigation comes
from research on robotics. According to this the-
ory, the robot’s planner uses a mental model of
the world to navigate through it, e.g., (Fikes,
Hart, & Nilsson, 1972), (Kuipers & Levitt, 1988),
and (McDermott & Davis, 1984). This model-
based method represents the navigation space in
the form of a spatial model, and plans paths by
a goal-directed heuristic search of the problem
space defined by the model. While this combina-
tion of spatial models and goal-directed heuristic
search has led to the development of some power-
ful robot planning and navigation systems, these
techniques fail to explain how navigation ability
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can improve with experience.

In the Router project, we have been devel-.
oping an alternative case-based theory of spatial
planning and navigation. An important issue in
developing a case-based account of planning, or
reasoning in general, is the origin of the cases:
where do the cases come from? One answer to
this question is that new cases are formed by
adapting, perhaps combining, old cases. In fact,
most case-based planning systems, such as Plexus
(Alterman, 1988) and éhef (Hammond, 1989),
give precisely this answer. An alternative an-
swer 1s that cases result from solving problems
by a different method. Both Prodigy (Veloso
& Carbonell, 1991) and Priar (Kambﬁampati &
Hendler, 1989), for example, use this strategy in
generating cases. In both Prodigy and Priar, a
nonlinear planner, based on means-ends analy-
sis, generates solutions to a given problem and
chunks the solution, along with its derivational
trace, into a case. The cases are indexed by the
goals they can help to achieve. Given a new prob-
lem, the agent searches its case memory to find
whether a useful case is available, and if so adapts
it to solve the problem, without appealing to the
nonlinear planner. If a useful case is not available
in memory, then the nonlinear planner takes over
and solves the problem by itself.

Our work on the Router project suggests a dif-
ferent answer to the question of the origin of
cases. Like Prodigy and Priar, it too hypothe-
sizes that cases can often originate from solutions
obtained by other methods in addition to arising
from adaptations of old cases. However, it uses a
model-based planner, like those used in robotics,
for generating the solution. Router thus makes
stronger assumptions about the available knowl-
edge. Unlike Prodigy or Priar, the content of a
case in Router includes the problem, the solu-
tion, and the outcome, but not the derivational
trace. The case memory is organized around the
world model. Like Prodigy and Priar, given a
planning problem Router searches its case mem-
ory to find whether a useful case is available, and
if so it adapts the case to solve the problem. Un-
like Prodigy and Priar, however, Router uses sim-
ple meta-reasoning to integrate its model-based
and case-based planners by opportunistically us-
ing the model-based planner for the task of case
adaptation, and the case-based planner for simi-
larly solving subgoals set up by the model-based
planner.

Our theory, embodied in Router, explains how
model-based planning can lead to the genera-
tion of cases, how it can be dynamically inter-
leaved with case-based planning, and how an in-
tegrated planner’s ability can improve with ex-
perience. This is one part of a larger theory in
which case-based planning in turn can lead to the
acquisition of mental models of the world. Our
theory predicts that, whenever possible, people
use case-based reasoning for spatial planning and
navigation instead of reasoning from world mod-
els because the former method is generally more
efficient than the latter. Our theory helps to ex-
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plain some recent psychological data (Anderson,
Kushmerick, & Lebiere, 1993), which indicates
that people generally rely on their previous ex-
periences in gnding new path-plans. The theory
also predicts that when a similar case is not avail-
able in memory, people reason from their world
models, and chunk their solutions into cases for
potential reuse. In addition, it predicts that peo-
ple dynamically interleave model-based and case-
based methods.

Task and Domain

Router plans paths on representations of two do-
mains: the Georgia Tech campus and the College
of Computing building. It takes as input an ini-
tial location and a destination location. These
locations can be intersections between pathways,
or the end-points of pathways. Pathways may be
uni- or bi-directional, and more than two path-
ways may intersect at a given point. The output
provided by Router is a path-plan from the 1ni-
tial location to the destination location, includ-
ing directions of travel. The only constraint on
the output is that the path-plan must be legal
relative to the system’s knowledge of the geo-
graphical space. If its knowledge is incomplete or
incorrect, then the path-plan may well fail dur-
ing execution. Router has access both to a spa-
tial model of the navigation space and to previ-
ous path planning cases in the space. The spa-
tial model represents qualitative knowledge about
streets (or paths in general), their directions
and their intersections. Streets are grouped into
neighborhoods, and the neighborhoods are orga-
nized in a neighborhood-subneighborhood hierar-
chy. Higher-level neighborboogs contain knowl-
edge of major streets while lower-level neighbor-
hoods contain knowledge of minor and major
streets within the neighborhood. Figure 1 illus-
trates a part of Router’s spatial model of the
Georgia Tech campus.

When Router solves a new path-planning prob-
lem, it chunks the specification of the problem,
its solution, and the outcome (whether or not the
plan succeeded upon execution in the world), and
stores the case in memory. The cases are indexed
by the specifications of the problems they solve,
and are organized around the hierarchical spatial
model. Once in memory, the newly acquired case
is available to help the system solve future path-
planning problems.

Reasoning Architecture

Router’s architecture is comprised of five core
processes: )

Dynamic Memory: Router’s memory is orga-
nized around the neighborhood-subneighborhood
hierarchy of its spatial model. Each neighbor-
hood in this hierarchy acts as an index to knowl-
edge of the subneighborhoods and the streets in
the neighborhood. It also acts as an index to
path-planning cases whose initial and/or goal lo-
cations fall within the neighborhood. Router’s



Figure 1: A Part of Router’s Spatial Model of the GT Campus

memory i1s dynamic in that the system acquires
new cases and learns indices to them.
Model-Based Planner: The model-based plan-
ner plans paths by searching the hierarchically-
organized spatial model of the navigation space.
The search is goal-directed, hierarchical and
heuristic (Goel et al., 1991). Each neighborhood
in the spatial model defines a problem space, and
the hierarchical organization of the model helps
localize the search to specific problem spaces.
The directions of pathways are used as a heuristic
to help reduce the search space within neighbor-
hoods.

Case-Based Planner: The “pure” case-based
planner solves new problems by retrieving and
potentially adapting previously planned paths.
A path-plan, in the “pure” case-based mode, is
adapted by combining with other path-plans re-
trieved from memory (Goel & Callantine, 1992).
In the integrated planner, the model-based plan-
ner can also be used to adapt a case.
Model-Based Plan Verifier: The model-based
plan verifier evaluates the correctness of a path-
plan. The verifier uses the spatial model to
simulate the proposed path-plan. If the path-
plan fails, the method selector chooses either the
model-based or the case-based method for repair-
ing the failed path-plan by finding an alternative
for the failed segment. Failure can occur, for in-
stance, in situations in which the characteristics
of the world have changed since a case was stored.
Feedback from the user on the success of a path-
plan is also verified before it is stored in memory.
Method Selector: Since Router has access to
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both cases and models, it must choose which rea-
soning method, case-based or model-based, to ap-
ply to each task at hand. It uses a simple meta-
reasoner in the form of the method selector for
this task as described below.

Opportunistic Method Selection

What are the criteria for selecting a
method? Since Router can employ either the
model-based or the case-based reasoning method
to perform a path-planning task (or subtask), it
needs some mechanism for choosing one method
in any given situation. In general, the decision
criterion may depend on several features, in ad-
dition to the nature of the task and the domain
(Goel & Chandrasekaran, 1992): (1) properties
that are desired of the solution to the task (e.g.,
some measure of optimality); (2) properties that
are desired of the method (e.g., rapid execution);
and (3) the availability of knowledge required by
the various methods (e.g., whether or not a useful
case can be accessed from memory).

How does the method selector work? While
all three factors may be important in general, the
availability of knowledge (or lack thereof) is crit-
ical in guiding the decision process. Router uses
a simple meta-reasoner for run-time method se-
lection. It accesses a meta-memory of available
methods each time a planning (sub)task has to
be performed, and determines the usefulness of
the applicable methods to the task. Then the
meta-reasoner selects and invokes the most useful
method according to the above criteria. For ex-
ample, if a case similar to the current (sub)task is



available in the case memory, then the method se-
lector may select the case-based method for solv-
ing the task. This is because Router’s meta-
reasoner believes that in general (i) the case-
based method is computationally more efficient
than the model-based method, and (ii) the qual-
ity of the solutions produced by the case-based
method is the same as that of so{ut.ions produced
by the model-based planner. If a case is not avail-
able in memory, Router selects the model-based
method because 1t believes that its world model is
complete and correct. Whether or not the model-
based method can find a correct solution depends
on many issues such as whether the world has
changed since the model was last updated (see
below).

How does the method selector integrate
different methods? Actually, the method-
selection process in Router is a little more elabo-
rate than we have described so far. Router selects
a method each time it sets up a new subtask. For
example, if Router selects the case-based method
at the top level, and the case-based method sets
up the subtask of plan adaptation, then Router
again uses meta-reasoning to select a method for
adapting the plan. Depending on the selection
criteria described above, this can result in the
invocation of the case-based or the model-based
planner. In this way, Router opportunistically in-
tegrates the two planning methods at its disposal.

Case Acquisition

Where do the initial cases come from?
Router’s case memory initially can be empty. If
so, when the first few path-planning problems
are presented to Router, the method selector has
to choose the model-based method for solving
them. The system chunks and stores the solu-
tions generated by the model-based planner in the
case memory. As it solves additional problems,
its case memory grows and the method selector
starts choosing the case-based planner for plan-
ning new paths. Router’s reasoning thus grad-
ually shifts from purely model-based to increas-
ingly case-based. Alternatively, the user can di-
rectly supply an initial set of cases.

What cases are stored in memory? In ad-
dition to complete path-plans, Router also stores
partial path-plans in its case memory. For exam-
ple, if Router has found a path to go from inter-
section a to intersection z, say a,b,¢,d, ..., z, then
it stores the entire path as a case for potential
reuse, since a future problem may require it to
plan a path from a to z again. In addition, since
the problem of going from any one intermediate
location on the path to another (e.g., from a to ¢,
a tod, bto d and so on), may be required at some
future time, the system also stores these “partial”
path-plans as reusable cases.

How are the cases indexed? Cases are in-
dexed both by their initial and goal locations
and by the neighborhoods in the spatial model
to which these locations belong. Since the neigh-
borhoods in Router’s spatial model can overlap,
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a case may be indexed multiply. Since a path-
plan would be labeled only with its initia{J and
goal locations to begin with, this multiple index-
ing scheme requires learning the other appropri-
ate indices.

How does plan failure lead to learning? The
user may supply Router with feedback on the ex-
ecution of a path-plan. If the path-plan fails, the
user may supply information about the causes for
the failure. Router then simply updates its spa-
tial model to reflect the causes for the failure.
Since the model-based plan verifier uses the spa-
tial model to evaluate a path-plan before report-
ing it to the user, this updating of the model helps
the system avoid making the same mistake in fu-
ture planning tasks.

Performance Evaluation

Router is a fully operational system written in
Common Lisp. Router performs path-planning
in two types of geographical spaces: urban areas
and building interiors. It contains spatial mod-
els of the Georgia Tech campus and (the first
floor of) the College of Computing building on the
campus. The following data pertains to Router’s
planning performance on the representation of
the Georgia Tech campus.

The streets in Router’s model form 175
intersections and are organized in a 5-level
neighborhood-subneighborhood hierarchy. This
makes for a total of 15, 282 distinct problems that
the system can solve. We have tested Router on
more than 50 sequences of 32 path-planning prob-
lems each. In each sequence, the system started
with no cases in its memory but acquired them
as it solved new problems. The system’s perfor-
mance can be characterized as follows:

(1) For sequences in which path-planning prob-
lems are presented in random order, Router’s
modality of reasoning shifts quite smoothly from
model-based to case-based. That is, for the first
few problems it uses the model-based method for
path planning and chunks the solutions into cases.
As the number of cases in its memory increases,
it gradually starts using the case-based method
for planning new paths.
(2) The types of problems (for instance, problems
involving two subneighborhoods versus problems
involving only a single neighborhood), the length
of the paths planned, and the sequence in which
the paths are planned and stored, all affect
Router’s subsequent performance. Problem se-
quences which begin with intra-neighborhood
path-planning problems and then abruptly switch
to inter-neighborhood problems do not provide a
useful set of cases for solving later problems. For
such problem sequences, Router does not display
the smooth shift from model-based to case-based
planning discussed above.

3) On average, case retrieval and adaptation in

outer is computationally less costly than model-
based path-planning. Thus the system’s aver-
age performance improves as the number of cases
in its memory increases. Also, the quality of



solutions generated by the case-based planner
appears comparable to that of solutions gener-
ated by the model-based planner. This verifies
Router’s beliefs regarding the usefulness of the
two methods.

(4) Router is able to update its spatial model in
response to user feedback on the failure of a path-
plan. In addition, it uses the updated model for
solving new problems, verifying proposed solu-
tions, and thus avoiding past mistakes.

Discussion

The issue of the origin of cases is central to case-
based models of human problem solving. One
method for acquiring cases is to chunk the solu-
tions generated by a weak nonlinear planner, as
is done in Prodigy. Our work on Router shows
that a model-based planner can also provide so-
lutions that can be chunked into cases. It shows
that the choice of alternative planning methods
is not restricted to weak methods like those used
by Prodigy but may involve stronger (knowl-
edge rich) methods such as model-based planning.
Further, the content of a case in Prodigy consists
of a goal, a plan and the derivational trace. In
contrast, the content of a case in Router consists
of a goal, a plan for achieving it, and feedback on
the outcome of the plan in the world.

Of course, we are not claiming that humans
begin with complete or correct models and then
acquire cases through model-based planning. In
our general theory, models and cases coexist and
complement one another. Given a partial model,
model-based planning can help to acquire new
cases. On the other hand, given a set of cases,
the agent may generalize to form a mental model
of the navigation space. In a sister project called
Autognostic we are studying how models evolve
from generalization over cases (Stroulia & Goel,
1992).

Our idea of combining case-based and model-
based reasoning originates from earlier work on
the Kritik system, which models design problem
solving (Goel, 1991). Kritik’s cases are designs of
devices such as electric circuits and heat exchang-
ers. Each case contains a model of the way the
device’s structural components produce its out-
put behaviors. Given a new problem, Kritik looks
for a similar case in memory and redesigns it by
adapting it to the new problem’s specification.
The case-specific models help the system in di-
agnosing and adapting old designs to satisfy new
specifications.

In cognitive models of problem solving, such
as Prodigy, that combine case-based methods
with other methods such as means-ends analysis,
only one method is used to solve a given prob-
lem. That is, while these models use means-ends
analysis to generate solutions and acquire cases,
means-ends analysis plays no other functional role
in case-based problem solving. In contrast, our
work on Router shows how mental models can
(and do) play several roles in addition to gener-
ating cases. For example, Router’s spatial model

479

also provides a scheme for indexing the case mem-
ory, for adapting retrieved cases to solve new
problems, and for verifying planned paths. Per-
haps more importantly, Router shows how sim-
ple meta-reasoning can be used to opportunisti-
cally select a method during reasoning so that
one method is used to solve one part of a prob-
lem and another method is used to solve another
part. This results in the dynamic interleaving of
multiple methods.
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