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(and some related problems)
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Doctor of Philosophy in Mathematics
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Professor Daqing Wan, Chair

We prove a combinatorial identity that relates the size of the value set of a map with

the sizes of various iterated fiber products by this map. This identity is then used as the

basis for several algorithms that calculate the size of the value set of a polynomial for a

broad class of algebraic spaces, most generally an algorithm to calculate the size of the

value set of a suitably well-behaved morphism between “nice” affine varieties defined

over a finite field. In particular, these algorithms specialize to the case of calculating

the size of the value set of a polynomial, viewed as a map between finite fields. These

algorithms operate in deterministic polynomial time for fixed input polynomials (thus

a fixed number of variables and polynomial degree), so long as the characteristic of the

field grows suitably slowly as compared to the other parameters.
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Each of these algorithms also produces a fiber signature for the map, which for each

positive integer j, specifies how many points in the image have fibers of cardinality

exactly j.

We adapt and analyze the zeta function calculation algorithms due to Lauder-Wan

and Harvey, both as point counting algorithms and as algorithms for computation of

one or many zeta functions.

These value set cardinality calculation algorithms extend to amortized cost algo-

rithms that offer dramatic computational complexity advantages, when the compu-

tational cost is amortized over all the results produced. The last of these amortized

algorithms partially answers a conjecture of Wan, as it operates in time that is polyno-

mial in log q per value set cardinality calculated.

For the value set counting algorithms, these are the first such results, and offer a

dramatic improvement over any previously known approach.
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Chapter 

Introduction

“ ‘When I use a word,’ Humpty Dumpty said, in

rather a scornful tone, ‘it means just what I

choose it to mean – neither more nor less.’ ”

Lewis Carroll, Through the Looking Glass

. Setting

Study of algebraic maps oen occurs via investigations of where those maps become

zero (for suitably abstract notions of “zero”), and then some structural information

about the map is drawn as a consequence. This approach has had a profound impact

on the whole of mathematics, and has provided an invaluable and productive pattern

of thought in all of algebra and its related disciplines.

Here we examine an apparently unrelated question: if we have a map f from the

space X to the space Y, what can we say about the number of points in f .X/? More

formally, denote ˇ̌
Vf
ˇ̌
D jf f .x/ W x 2 Xgj .





We restrict ourselves to settings where
ˇ̌
Vf
ˇ̌
<1; sometimes this naturally occurs, and

sometimes it requires restriction of the domain.

More generally, we examine the fiber signature, which for any positive integer, j,

specifies the number of points in the image that have exactly j elements in their respec-

tive fibers.¹ This more general information provides a large amount of information

about the structure of a map between finite sets.

The primary example that we explore is that of affine varieties. It is instructive to

note that in this setting, if we are given a suitably general algorithm for calculating

the number of points in the value set of a morphism, we can also use this algorithm

to count the number of points in the space by calculating the cardinality of the value

set of the identity morphism IdX W X! X. As such, the problem of counting the value

set is in some sense a generalized version of the point counting problem.

Indeed, if you view these two problems from the setting of the polynomial hier-

archy,² the point counting problem (where one counts the number of points in a set

containing the domain that satisfy a set of constraints) is “lower” in the polynomial

hierarchy than the problem of value set counting (where one counts points in the

co-domain such that there exists a point in the domain satisfying a set of constraints).³

One result of this research has been to provide a connection in the other direction;

we provide a way to use a point counting algorithm to solve the value set counting

problem in the context of affine varieties. We thus see that in some situations, these

problems are algorithmically closely related.

The size of the value set has been studied in various settings, but the most is known

about the single variable polynomial case. In that setting, we examine a finite field with

¹The cardinality of the value set is then simply the sum of the elements in the fiber signature.
²Arora and Barak provide a nice introduction to the polynomial hierarchy.[, Chp. ]
³Notably, the value set counting problem involves an additional “there exists” quantifier!
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q elements, denoted Fq (with q D pa, p prime), and take a positive degree polynomial

f 2 Fq Œx� of degree d, and then examine
ˇ̌
Vf
ˇ̌
D
ˇ̌
f .Fq/

ˇ̌
.

. Computational Complexity

To compare approaches, we’ll use the “big-oh” and “so-oh” notations. Let A and

B be two eventually positive real valued functions A;B W Nk ! R under the norm

jxjmin D mini xi. The function A is said to be “big-oh” of B (written A.x/ D O.B.x//) if

and only if there exists a positive real constant C and an integer N so that if jxjmin > N

then A.x/ � CB.x/.

Similarly, A is said to be “so-oh” of B (written A.x/ D QO.B.x//) if and only if there

exists a positive real constant C0 so that A.x/ D O.B.x/ logC0

.B.x/ C 3//. “So-oh”

notation is used to dispense with log terms that might otherwise obscure the main

thrust of “big-oh” notation.

. Notation

The notation used within this paper is summarized in Table ., and naming conven-

tions surrounding polynomial and morphism degree are summarized in Table ..

The general setting that we use in our principal findings (Section .) is as follows:

Let p be a prime, and a be a positive integer, with q D pa. Let X and Y be algebraic

varieties defined over Fq.

More precisely, Let X be an affine variety over NF q defined by the vanishing set of (a

non-negative integer) ` polynomials in affine r-space⁴

˛1.x1; � � � ; xr/ D � � � D ˛`.x1; � � � ; xr/ D 0,

⁴As each of these polynomials provides a constraint, we operate under the convention that if ` D 0,
then X D Ar

NFq
, and similarly for the variety Y.
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Table .: Notation

Notation Description Page
Vf Value set of the function f. 
Fq The finite field with q elements. 
O.�/ Big-Oh notation. 
QO.�/ So-Oh notation. 
jXj Cardinality of the set X. 
NF q Some fixed algebraic closure of Fq 
X.Fqk/ The Fqk -rational points on the variety X. 
X�Yk The k-iterated fiber product of X. 
f jqk The function f jX.Fqk /

viewed as the function 
f jqk W X.Fqk/! Y.Fqk/.

Vf
�
Fqk
�

The value set of f, as viewed as 
a function of Fqk -rational points.

d�e Ceiling function.
b�c Floor function.
k f k The maximum of the absolute values

of the coefficients of the polynomial f.
�k.X1; � � � ;Xm/ The kth elementary symmetric polynomial

on m variables.
O .X/ The ring of regular functions of the variety X.

Table .: Naming Conventions

Notation Description
di Total degree of the ith polynomial (of some specified list).
d One variable case: Total degree of the polynomial.
d General affine case: Degree of a finite dominant morphism.
dC Sum of polynomial total degrees.
Nd Maximum of the polynomial total degrees.
D An upper bound on the number of Fqk -rational

points in the fiber above any Fqk -rational point.
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where each ˛i 2 FqŒx1; � � � ; xr�.

Similarly, let Y be an affine variety over NF q defined by the vanishing set of (a non-

negative integer) m polynomials in affine s-space

ˇ1. y1; � � � ; ys/ D � � � D ˇm. y1; � � � ; ys/ D 0.

Denote the Fqw -rational points onX asX.Fqw/, and additionally denote x D .x1; � � � ; xr/,

and the analogous notions for y.

Let f be a morphism from X to Y which is an s-tuple of polynomials f .x/ D�
f1.x/; � � � ; fs.x/

�
, where each fi 2 FqŒx1; � � � ; xr�.

For notational convenience, denote

di D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

deg˛i i � `

deg fi�` ` < i � `C s

di .mod `Cs/C1 otherwise

,

and denote the restriction f jX.Fqk /
as f jqk , which is evidently a function f jqk W X.Fqk/!

Y.Fqk/.

. Principal Findings

Much of this paper turns on a pair of combinatorial findings⁵ that apply to any map

where the size of the map’s fibers can be bounded (or through restriction can be made

bounded). This first theorem relates the number of points in the k-iterated (set-wise)

fiber products of the domain (for positive integer k less than or equal to the size of the

fiber bound) to the number of points in the value set.
⁵One of these combinatorial findings was initially presented in a conference paper by Cheng-Hill-

Wan.[]
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Theorem  (Hill–Wan). If X and Y are finite sets, and f W X ! Y is a map such that

any given fiber has at most d elements, then the cardinality of the image set of f is

ˇ̌
Vf
ˇ̌
D

dX
iD1

.�1/i�1Ni�i

�
1;

1
2
; � � � ;

1
d

�
,

where Nk D
ˇ̌
X�Yk

ˇ̌
and �i denotes the ith elementary symmetric function on d elements.

By a small revision to the proof of the above theorem, we arrive at the following

finding, which can be repeated to calculate the full fiber signature.

Theorem . If X and Y are finite sets, and f W X! Y is a map such that any given fiber

has at most d elements, then for any positive integer j � d, the number of points in the

co-domain whose fiber has exactly j elements is

mj D

 
d
j

!
1
j

dX
iD1

.�1/iCjNi�i�1

�
1;

1
2
; � � � ;

1
j � 1

;
1

jC 1
; � � � ;

1
d

�
,

where Nk D
ˇ̌
X�Yk

ˇ̌
and �i denotes the ith elementary symmetric function on d � 1 ele-

ments.

From this result (and suitable application of a point counting algorithm), we can

calculate the image set of a morphism between two affine spaces, so long as the number

of points in any fiber of the restricted morphism can be bounded.

Theorem . If there is a positive integerD so that
ˇ̌̌
. f jq/

�1 � y�ˇ̌̌ � D for all y 2 Vf, then

there is a deterministic algorithm to calculate the cardinality of the value set of f jq, and

more generally the fiber signature of f jq, with computational complexity

QO
�
2D.`CsCr/�sD.DrC 2dC�C 2�/4Dr�3a2p1=2

�
bit operations,

where � D max .a; d.DrC 1/=2e/ and dC D
PD`C.D�1/s

iD1 di.
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This specializes to a number of important cases; first we discuss the polynomial

case that has received the most attention.

Corollary . Let a be a positive integer, p be a prime, q D pa, and f .x/ 2 FqŒx� be a

polynomial with positive degree d. There is a deterministic algorithm that calculates the

cardinality of the value set,
ˇ̌
Vf
ˇ̌
in Fq, and more generally the fiber signature of f, with

computational complexity

QO
�
26d�1�4dC3d8dC1a2p1=2

�
bit operations,

where � D max .a; d.dC 1/=2e/.

We then proceed to deal with two more general situations that apply to the cardi-

nality of the value set of finite morphisms on affine varieties. We first deal with the

case where X is irreducible.

Corollary . If X is irreducible and f is a finite dominant morphism from X to Y of fixed

degree d, then there is a deterministic algorithm to calculate the cardinality of the value

set of f jq, and more generally the fiber signature of f jq, with computational complexity

described in Theorem , with D D d.

We then address the situation where we have some underlying information regard-

ing the relation between the rings of regular functions associated with X and Y.

Corollary . If f is a finite dominant morphism, and O .X/ is generated by a set of

t elements from O .Y/ (via the induced NF q-algebra homomorphism f ?), then there is a

deterministic algorithm to calculate the cardinality of the value set of f jq, and more gen-

erally the fiber signature of f jq, with computational complexity described in Theorem ,

with D D t.

One important special case of the above is
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Corollary . If f is a finite dominant morphism from Ar
NFq
to Ar

NFq
of fixed degree d, then

there is a deterministic algorithm to calculate the cardinality of the value set of f jq, and

more generally the fiber signature of f jq, with computational complexity

QO
�
22dr�rd.drC 2dC�C 2�/4dr�3a2p1=2

�
bit operations,

where � D max .a; d.drC 1/=2e/ and dC D
P.d�1/r

iD1 di.

We then move on to deal with the case where we perform larger calculations in

hopes of getting better results aer amortizing the cost per result. We refer to these as

“amortized cost” algorithms.

We start with a method of calculating the cardinality of the value set of a morphism

in many extensions of the base field. We do this by calculating the zeta functions

for the iterated fiber products (up to some bound), and then extracting the necessary

information needed to calculate the size of the value set.

Theorem. LetR be a positive integer. If there is a positive integerD so that
ˇ̌̌
. f jqR/

�1. y/
ˇ̌̌
�

D for all y 2 Vf
�
FqR
�
, then there is a deterministic algorithm to calculate the cardinality

of the value set of f jqw , and more generally the fiber signature of f jqw , for all w � R with

computational complexity

QO
�
2D.8Dr2C17rC`Cs/�sD4DrC5r4DrC4 .dC C 2/Dr.4DrC7/ a4DrC4p1=2

C

R2aD2r2D`C.D�1/s .4dC C 5/Dr log p
�
bit operations,

where dC D
PD`C.D�1/s

iD1 di.

This finding can be specialized in the same way as our prior algorithm; we first

discuss the results in the traditional single variable case.

Corollary . Let a and R be positive integers, p be a prime, q D pa, and f be a polyno-

mial f .x/ 2 FqŒx�, of positive degree d. There is a deterministic algorithm to calculate the
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cardinality of the value set of f jqw , and more generally the fiber signature of f jqw , for all

w � R with computational complexity

QO
�
28d2C18d�1d8d2C18dC5a4dC4p1=2

C R223d�1d2dC2a log p
�
bit operations.

We then consider the problem in the case of a finite dominant morphism of fixed

degree from an irreducible variety.

Corollary . If X is irreducible and f is a finite dominant morphism from X to Y of fixed

degree d, then there is a deterministic algorithm to calculate the cardinality of the value set

of f jqw , and more generally the fiber signature of f jqw , for all w � R with computational

complexity described in Theorem , with D D d.

A similar argument applies to the case where we have some underlying information

regarding the relation between the ring of regular functions associated with X and Y.

Corollary . If f is a finite dominant morphism, and O .X/ is generated by a set of t

elements from O .Y/ (via the induced NF q-algebra homomorphism f ?), then there is a de-

terministic algorithm to calculate the cardinality of the value set of f jqw , and more gen-

erally the fiber signature of f jqw , for all w � R with computational complexity described

in Theorem , with D D t.

One important special case of the above (as in Corollary ) can be found by letting

l D m D 0, s D r, and D D d we arrive at

Corollary . If f is a finite dominant morphism from Ar
NFq
to Ar

NFq
of fixed degree d, then

there is a deterministic algorithm to calculate the cardinality of the value set of f jqw , and

more generally the fiber signature of f jqw , for all w � R with computational complexity

QO
�
2d.8dr2C18r/�rd4drC5r4drC4 .dC C 2/dr.4drC7/ a4drC4p1=2

C

R2ad2r2.d�1/r .4dC C 5/dr log p
�
bit operations,
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where dC D
P.d�1/r

iD1 di.

We conclude by looking at the case where we perform this calculation for many

primes at once in a somewhat less general setting, amortizing the cost of production

of the zeta functions, as well as performing the value set counting calculation across

many extensions at once.

Theorem . Let r; s;N and R be positive integers. Let f be an s-tuple of polynomials

f .x/ D
�
f1.x/; � � � ; fs.x/

�
, where fi.x/ D ZŒx1; � � � ; xr�, where the total degree of fi is di.

If there is a positive integer D so that
ˇ̌̌̌�

f jpR
��1

. y/
ˇ̌̌̌
� D for all y 2 F s

pR and for all

primes p < N, then there is a deterministic algorithm to calculate the cardinality of the

value set of f jpw , and more generally the fiber signature of f jpw , for all w � R and all

primes p < N, with computational complexity

QO
�
2D.8Dr2C17rCs/�sC1D4DrC8r4DrC6..D � 1/dC C 2/Dr.4DrC7/N log.k f k/C

ND2R2r2.D�1/s .4.D � 1/dC C 5/Dr
�
bit operations,

where dC D
Ps

iD1 di and k f k D
Qs

jD1 k fjk.

This again can be applied to the single-variable case, where we get a dramatically

better time complexity amortized per value-set result (as compared to calculating the

sizes of each of the value sets on a one-off basis.)

Corollary . Let N and R be positive integers and f be a polynomial f .x/ 2 ZŒx� of

positive degree d. There is a deterministic algorithm to calculate the cardinality of the

value set of the p-reduction f over Fpw , and more generally its fiber signature, for all

positive integers w � R and for all primes p � N with computational complexity

QO
�
2d.8dC18/d8d2C18dC8N log.k f k/C NR223d�1d2dC2

�
bit operations.
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. Prior Work Regarding the Value Set in One Variable

In the one variable case, there are a few trivial bounds that can be immediately es-

tablished; there are only q elements in the field, so
ˇ̌
Vf
ˇ̌
� q (where j�j denotes the

cardinality). Additionally, any polynomial of degree d can have at most d roots, thus

for all a 2 Vf , f .x/ D a is satisfied at most d times. This is true for every element in Vf ,

so
ˇ̌
Vf
ˇ̌
d � q, whence lq

d

m
�
ˇ̌
Vf
ˇ̌
� q

(where d�e is the ceiling function).⁶

Both of these bounds can be achieved: if
ˇ̌
Vf
ˇ̌
D q, then f is called a “permutation

polynomial” and if
ˇ̌
Vf
ˇ̌
D dq=d e, then f is said to have a “minimal value set”.

One way of exploring the behavior of
ˇ̌
Vf
ˇ̌
is to look at asymptotic results that apply

for many or most polynomials. Initial results by Uchiyama showed that if

f �.u; v/ D
f .u/ � f .v/

u � v
()

is absolutely irreducible, then
ˇ̌
Vf
ˇ̌
>

q
2 for sufficiently large characteristic p.[] He

then showed that the requirement that Equation () be absolutely irreducible could

not be dropped.[] In later work,[] he established the average value for
ˇ̌
Vf
ˇ̌
in terms

of a value

μd D 1 �
1
2Š
C

1
3Š
� � � � C

.�1/d�1

dŠ
:

This is just a power series expansion of
�
1 � e�1�, so as d ! 1, μd quickly converges

to this value. The average value across all polynomials was then seen to be

ˇ̌
Vf
ˇ̌
� μd qC O.1/:

⁶This lower bound is commonly written b.q � 1/=dc C 1, possibly in order to remain consistent
with the notation used by Carlitz (et al.), who used this formulation in a setting where it was natural.[]
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Birch and Swinnerton-Dyer made this estimate more concrete for a class of polyno-

mials that they somewhat optimistically called “general polynomials”[] (that is those

polynomials such that the Galois group of f .x/ � t over NF q.t/ is the symmetric group

on d elements). So long as f is a general polynomial, we have μ D μd, and

ˇ̌
Vf
ˇ̌
D μqC Od

�
q1=2

�
: ()

They also proved that μ depends only on d and two Galois groups:

G
�
f
�
D Gal

�
f .x/ � t=Fq .t/

�
GC

�
f
�
D Gal

�
f .x/ � t= NF q .t/

�
Cohen refined this and provided an explicit statement for μ in terms of Galois

groups.[] Let K be the splitting field for f .x/� t over Fq.t/ and k0 D K\ NF q. Finally,

define:

G�
�
f
�
D
˚
� 2 G

�
f
�
W K� \ k0

D Fq
	

G1
�
f
�
D
˚
� 2 G

�
f
�
W � fixes at least one point

	
G�

1
�
f
�
D G1

�
f
�
\ G�

�
f
�

Cohen found⁷ that we then have μ D jG�
1 j = jG�j.

Voloch showed [] that for general q, the Galois group condition described by

Birch and Swinnerton-Dyer [] implies that the surface f �.x; y/ D 0 meets the smooth-

ness requirement @2y=@x2 ¤ 0, which he demonstrated was sufficient to provide a

lower bound on
ˇ̌
Vf
ˇ̌
:

ˇ̌
Vf
ˇ̌
�

2q2

.dC 1/qC .d � 1/.d � 2/
:

⁷This provides a wonderful combinatorial explanation of Uchiyama’s μd, as the proportion of non-
derangements in Sd.
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The problem of establishing
ˇ̌
Vf
ˇ̌
has been studied in various forms for at least the

last  years, but exact closed form expressions for
ˇ̌
Vf
ˇ̌
are known only for polynomials

in very specific forms. The behavior of
ˇ̌
Vf
ˇ̌

when f is constant or degree 1 is clear

(
ˇ̌
Vf
ˇ̌
D 1 and

ˇ̌
Vf
ˇ̌
D q, respectively). Kantor partially solved the cubic case (mod

)[], and then Uchiyama completely characterized
ˇ̌
Vf
ˇ̌
for f of degree 2 (p ¤ 2) or 3

(p ¤ 2; 3).[]

For higher degree polynomials, exact formulae for
ˇ̌
Vf
ˇ̌

are only known for poly-

nomials in a few special forms. The special case of the p-linear polynomial is fairly

straight forward: for linear operators, the size of the image is just the ratio of the total

size of the space divided by the kernel of the map.

Dickson Polynomials of the first kind have been well studied, and their image set

is completely understood (this class includes the cyclic polynomial Xd.[]). Cusick de-

termines the exact value for
ˇ̌
Vf
ˇ̌
for f .X/ D Xk.1CX/2m�1 in F22m , for k D ˙1;˙2; or 4

[] and for f .X/ D .XC 1/d C Xd C 1 for particular values of d over F2m .[]

More is known about polynomials that fall into the special cases that we have al-

ready introduced: permutation polynomials (including exceptional polynomials) and

polynomials with minimal value sets. There are few permutation polynomials known

(indeed, permutation polynomials are asymptotically fairly sparse. A randomly se-

lected polynomial is a permutation polynomial with probability e�q for large q. [])

Dickson classified all permutation polynomials of degree less than or equal to six

in his thesis.[] Additional classes of permutation polynomials include certain param-

eter sections of Dickson Polynomials of the first and second kind, reversed Dickson

Polynomials, Linearized Polynomials, and polynomials of the form x.qC1/=2 C ax.⁸

Hayes moved the question of characterizing permutation polynomials into the

realm of algebraic geometry by noting that f is a permutation polynomial if and only

⁸Lidl and Niederreiter provide a wonderful introduction on this topic.[, chp. ]
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if the variety defined over NF 2
q by f �.X;Y/ only has Fq-rational points on the diagonal

X D Y.[] This approach became the study of exceptional polynomials, those polyno-

mials such that the factorization of f �.X;Y/ into irreducibles in FqŒX;Y� contains no

absolutely irreducible terms (that is, each irreducible term in the factorization must

not be irreducible in NF qŒX;Y�). The characteristic of being an exceptional polynomial

was recognized quite early as being very closely related to that of being a permutation

polynomial. Cohen proved that almost all exceptional polynomials were also permu-

tation polynomials,[] and Wan removed the last special cases.[] A consequence of

the Lang-Weil bound is that if p − d, d > 1 and q > d4, then any permutation polyno-

mial of degree d is also an exceptional polynomial. Thus, for sufficiently large fields,

the notions of permutation polynomial and exceptional polynomial are largely the

same.

There have been a few notable algorithms to test to see if a polynomial is a permu-

tation polynomial; this is relevant, because detecting if a polynomial is a permutation

polynomial or a polynomial with a minimal value set is a specialization of the value

set counting problem, so these algorithms can be seen as closely related algorithms

to algorithms that count the size of the value set. This characteristic of polynomi-

als was used by Ma and von zur Gathen to provide a  (Zero-error Probabilistic

Polynomial time) algorithm for testing a polynomial to determine if it is a permuta-

tion polynomial.[] Shparlinski provided a fully deterministic test that determines

if a given polynomial is a permutation polynomial by extending prior work due to

von zur Gathen [] to an algorithm that has time complexity QO..dq/6=7/ for all d and

q.[] More recently, in , Kayal made a deterministic polynomial time algorithm

that tests to see if a polynomial is a permutation polynomial.[]
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There are numerous results that provide bounding inequalities for
ˇ̌
Vf
ˇ̌
, average val-

ues for
ˇ̌
Vf
ˇ̌
(summed across all polynomials up to degree q�1) and asymptotic results

for
ˇ̌
Vf
ˇ̌
, but these largely do not lead to exact values for

ˇ̌
Vf
ˇ̌
. One notable exception is

Wan’s proof of Mullen’s conjectured bound for non-permutation polynomials:[][]ˇ̌
Vf
ˇ̌
�

�
q �

q � 1
d

�
:

This bound was found to be sharp by Cusick and Müller (f .X/ D .XC 1/Xq�1

achieves this bound).[] Thus, if any polynomial is found to have more distinct points

in the image than allowed by this bound, then it must be a permutation polynomial.

A similar finding by Gomez-Calderon showed that if a low degree polynomial has

a sufficiently small value set, then it must have a minimal value set.[] In particular,

if f is a polynomial of degree 3 � d < p andˇ̌
Vf
ˇ̌
�

�
q � 1
d

�
C 2

�
q � 1
d2

�
� 1

then f has a minimal value set.

These two findings act to form “exclusion zones”: certain disallowed values for
ˇ̌
Vf
ˇ̌

for polynomials of particular degrees.⁹

Several families of polynomials with minimal value sets have been discovered. All

polynomials with minimal value sets with degree d < 2p C 2 were classified by Car-

litz, Lewis, Mills, and Straus, [] and then Mills continued by further classifying all

polynomials of degree d � pq.[]

Significant additional work in this area was performed by Javier Gomez-Calderon

in his doctoral thesis and then later in collaboration with Madden. In these papers, he

characterizes all polynomials of degree d < 4
pq for which

ˇ̌
Vf
ˇ̌
< 2q=d; many of these

polynomials result in forms based on Dickson polynomials.[][]
⁹Given these “exclusion zone” restrictions, one might get the false impression that polynomials

must take only certain types of images; this is incorrect! To dispel this notion, note that one can con-
struct a polynomial that takes any arbitrary value set by using Lagrange Interpolation.
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As we have seen, the exact value for
ˇ̌
Vf
ˇ̌
is known in only very limited cases.

. Prior Work on the Multi-Dimensional Case

Clearly, any result in the multi-dimensional case must be weaker than the correspond-

ing single dimensional case, so there isn’t a great deal to add.

Sun explored a restricted value set of a multi-variable polynomial over a finite field,

where each variable is chosen from a subset of the finite field; this proved particu-

larly nice when the size of the subset of the full space being considered had the right

form.[]

There has been some recent progress at showing results similar to the “exclusion

zone” style findings of the single-variable case. Mullen, Wan and Wang found that if

a polynomial in n variables isn’t a permutation polynomial, then the cardinality of its

value set is ˇ̌
Vf
ˇ̌
� qn

�min
�
n.q � 1/

d
; q
�

.[]

One interesting approach to the multi-variable case is reducing it to the single vari-

able case. The polynomial f 2
�
FqŒx1; � � � ; xn�

�n can be regarded as a single map on Fqn ,

by simply noting that as a vector space, if e1; � � � ; en are an Fq-basis for Fqn , then

Fqn Š

nM
iD1

Fq ei,

so we can naturally consider the points as being written under this coordinate system,

so x D .x1; � � � ; xn/ 7! x1e1 C � � � C xnen. This bijective map  W Fn
q ! Fqn induces a

map Qf W Fqn ! Fqn via the commutative diagram in Figure ..

As any map over a finite field (in this case Fqn) is the same (as a function on this

domain) as a single variable polynomial map¹⁰, we can thus pass our multi-variable f

¹⁰The explicit polynomial can be calculated by using Lagrange interpolation.
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F r
q F r

q

Fqr Fqr

f

  

Qf

Figure .: Commutative Diagram for Induced Function

to a single variable Qf W Fqn ! Fqn with the same size value set. Doing this amusing

shuffle reduces the multi-variable case to a single variable, but this approach yields a

somewhat Pyrrhic victory from the perspective of trying to understand the algebraic

complexity of the map f. The resulting degree is expected to be quite large (on the

order of qn), so we lose the information provided by the degree.

Kosters provided an approach relying on the “q-degree” of f, a quantity derived from

the sum of the digits of the base-q expansion of each of the degrees. This approach

yields an “exclusion zone” analogous to that seen in the single variable case, namely

that if f is not a permutation polynomial, then

ˇ̌
Vf
ˇ̌
� qn

�
n.q � 1/

d
,

where d D maxi deg fi.[]
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Chapter 

Algorithms for Point Counting and

Calculation of Weil Zeta Functions

“You look at where you’re going and where you

are and it never makes sense, but then you look

back at where you’ve been and a pattern seems to

emerge. And if you project forward from that

pattern, then sometimes you can come up with

something.”

Robert M. Pirsig, Zen and the Art of Motorcycle

Maintenance

Examine the affine variety described by the simultaneous zeros of polynomials,

f1; � � � ; fm 2 FqŒx1; � � � ; xn� over some fixed algebraic closure of Fq, denoted NF q; call

this variety X.¹¹

¹¹Some authors use the term “affine variety” to mean “irreducible algebraic set”, but we do not adopt
this convention. The affine varieties here are merely algebraic sets unless they are explicitly described
as being irreducible.
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Each finite extension of Fq is isomorphic to a field of the form Fqk for some k;

denote the set of Fqk -rational points on the variety X (the set of simultaneous zeros

within the extension Fqk) as X.Fqk/, that is

X.Fqk/ D
n
x 2 Fn

qk W f1.x/ D � � � D fm.x/ D 0
o

.

We can now define the zeta function for the variety X defined by the simultaneous

zeros of our set of polynomials:

ZX D ZX.T/ D exp
 

1X
kD1

ˇ̌
X.Fqk/

ˇ̌
k

Tk

!
. (.)

The zeta function clearly contains a profound amount of information about the

polynomial set. Our immediate task is that of counting the number of Fq-rational

points onX, that is we are looking for the number of simultaneous zeros of our polyno-

mial set, where each coordinate lies in Fq. Thus, if we can calculate the zeta function,

we should be able to extract the number of Fq-rational points of the variety X.¹²

From the definitions this seems like a less-than-useful statement, but surprises

abound in mathematics! Weil conjectured that the zeta function is a rational func-

tion; this was first proven by Dwork using p-adic methods, and then later proven by

`-adic cohomological methods by Grothendieck. [][] The common zeros of our

polynomial set are not expected to form any particularly nice variety (non-singular

projective, a curve, an abelian variety, etc.) so there are very few options for efficiently

performing point counting or calculating ZX.T/ explicitly.

In this paper, we make use of a few related algorithms that were originally specified

in order to explicitly calculate ZX.T/. These algorithms calculate ZX.T/ through use of

a trace function which is used to extract
ˇ̌
X.Fqk/

ˇ̌
for some necessary number of terms.

¹²See Section . for an algorithm that accomplishes this on a grand scale.





In the instance where we require the zeta function, the corresponding papers provide

complexity results that we can adapt to our setting. We also use these algorithms in

order to directly calculate
ˇ̌
X.Fq/

ˇ̌
, which requires some additional development.

We first describe how we efficiently adapt these more general algorithms to this

task; for each algorithm we provide an analysis of the time required to calculate
ˇ̌
X.Fq/

ˇ̌
for an affine variety defined by a single polynomial, and then describe how to adapt

these results to more general settings.¹³

We then move on to the general case of full zeta functions, where we present the

full algorithms, adapt them to our setting, and then describe how to extend them to

the general affine case.

. Point Counting

.. Lauder and Wan’s Point Counting Algorithm

For a polynomial of total degree d in n variables, Lauder and Wan described an algo-

rithm that explicitly calculates the zeta function of any variety defined by the zeros

of one polynomial which runs in polynomial time so long as the characteristic grows

suitably slowly compared to the other terms (on the order of p D O..d log q/C/ for

some positive constant C).[][] This algorithm is based on a toric point counting

algorithm, which can be adapted to count points on more general spaces.

Proposition  (Lauder and Wan). Let a and n be positive integers, p be a prime, q D pa,

and f 2 FqŒx1; � � � ; xn� be a polynomial of positive degree d. There is a deterministic

algorithm that calculates the number of solutions of f .x1; � � � ; xn/ D 0 residing in F n
q in

QO
�
2na3nC7n3nC5d3np2nC4� bit operations.

¹³For an introduction to this area, the expository papers of Wan and Lauder nicely outline an ap-
proach which is fundamentally enabled by Dwork.[][][]
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Proof. Lauder and Wan accomplish this by iterated use of a toric point counting algo-

rithm [, Algorithm ] that can be used to piece together the total number of points

in
ˇ̌
X.Fqk/

ˇ̌
. More explicitly, if we start with a polynomial f .x1; � � � ; xn/ 2 FqŒx1; � � � ; xn�

of total degree d, then this algorithm calculates

N�
D

ˇ̌̌n
.x1; � � � ; xn/ 2

�
F�
q

�n
W f .x1; � � � ; xn/ D 0

oˇ̌̌
in QO

�
a3nC7n3nC5d3np2nC4� bit operations¹⁴.[, Proposition ] This is not exactly what

we want (this is the number of points in the affine torus!), but we can find the corre-

sponding X.Fq/ by examining the affine torus decomposition of Fn
q , and then sum-

ming.¹⁵

We classify all the points in our space by the location of zeros in their affine coor-

dinates. Denote the set of coordinate indices that are identically 0 as S � f1; 2; � � � ; ng,

and denote the corresponding torus as

Tn
S D

n
.x1; � � � ; xn/ 2 F n

q W xi D 0 if and only if i 2 S
o

.

We then count the number of zeros in the related spaceˇ̌̌
X
�
Fq
�S ˇ̌̌
D
ˇ̌˚
x 2 T n

S W f .x/ D 0
	ˇ̌

.

The zeros counted for each of the 2n distinct selections of S are clearly disjoint, and

any given zero is in one of the resulting sets, so we can simply sum and calculate

ˇ̌
X.Fq/

ˇ̌
D

X
S�f1;��� ;ng

ˇ̌̌
X
�
Fq
�S ˇ̌̌ .

¹⁴In fact, if we know the shape of the polytope corresponding to f, then Lauder and Wan’s algorithm
can do still better than this!

¹⁵This is a restricted version of the approach described in Lauder-Wan, where they assemble the full
zeta function in this way.[]
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Each
ˇ̌̌
X
�
Fq
�S ˇ̌̌
� qn�jSj, so their sum is less than

B D
X

S�f1;��� ;ng

qn�jSj

D

nX
iD1

 
n
i

!
qn�i

< .q � 1/n.

The additions can thus take place in O.2nna log p/ bit operations, which is dominated

by the cost of the point counting.

This yields a total computational complexity of QO
�
2na3nC7n3nC5d3np2nC4� bit oper-

ations to calculate
ˇ̌
X.Fq/

ˇ̌
.

.. Harvey’s Point Counting Algorithm

Proposition  (Harvey). Let a and n be positive integers, p be a prime, q D pa, � D

max .a; d.nC 1/=2e/, and f 2 FqŒx1; � � � ; xn� be a polynomial of positive degree d. There

is a deterministic algorithm that calculates the number of solutions of f .x1; � � � ; xn/ D 0

residing in F n
q in

QO
�
2n.nC 2d�C 2�/4n�3a2p1=2

�
bit operations.

Proof. In Harvey’s algorithm, we examine the space P n
NFq

, projective n-space over Fq,

with homogeneous coordinates x0; � � � ; xn. If we then have a homogeneous polyno-

mial fh 2 FqŒx0; � � � ; xn� of total degree d such that p − d, Harvey’s algorithm [,

Theorems .-.] allows us to explicitly calculate the zeta function of the projective

variety cut out of the affine torus by fh .
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In this projective n-space, we count the number of (projective) points within the

affine torus satisfying the equation, that is

N�
proj D

ˇ̌̌̌
ˇ
(
Œx0 W � � � W xn� 2 P n

NFq
W fh .x0; � � � ; xn/ D 0 and

nY
iD0

xi ¤ 0
)ˇ̌̌̌
ˇ

D
1

q � 1

ˇ̌̌̌�
.x0; � � � ; xn/ 2

�
F�
q

�nC1
W fh .x0; :::; xn/ D 0

�ˇ̌̌̌
.

The computational complexity of calculating this value requires some abuse of

the framework developed in Harvey’s paper; we start with Harvey’s simplified trace

formula [, Theorem .]

N�
proj � .q � 1/n

�X
sD0

.�1/s
 
�

s

!
tr
�
Aa

Fs
�
.mod p�/,

and set � large enough so that the resulting value is equality and simultaneously so

that � � .nC 1/=2. To accomplish this, we set � D max .a; d.nC 1/=2e/.

By a lemma on computing the trace function,[, Lemma .] given a set of com-

panion matrices, Ms, we can evaluate the tr
�
Aa

Fs
�

in

.nC 2d�/3n� log1C�
.2�/a2C� log2C� p bit operations.

We can use the deformation-based technique developed by Harvey,[, Proposition

.] which gives us the ability to calculate each Ms in

.nC 2d�/4n�2 log1C�
.2�/a1C�p1=2 log2C� p bit operations.

Putting these together, in order to calculate N�
proj, we see that we must calculate

.�C 1/ distinct Ms values and traces, which occurs in

O
�
.nC 2d�/4n�3 log1C�

.2�/a2C�p1=2 log2C� p
�

bit operations.

Denote the set of indices that are identically 0 as S � f0; 1; 2; � � � ; ng, and denote

the corresponding affine torus within P n
NFq

as

OT n
S D

n
Œx0 W � � � W xn� 2 P n

NFq
W and xi D 0 if and only if i 2 S

o
.
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We then count the number of zeros in the related spaceˇ̌̌
Xproj �Fq

�S ˇ̌̌
D

ˇ̌̌n
x 2 OT n

S W fh .x/ D 0
oˇ̌̌

.

Summing over every permissable choice of S would give us the full
ˇ̌
Xproj.Fq/

ˇ̌
, but

we are interested in the points in a related space.

We want the number of affine points of a (possibly) non-homogeneous polynomial.

If we start with an arbitrary polynomial f .x1; � � � ; xn/ 2 FqŒx1; � � � ; xn� of degree d > 0,

with p − d, then we can apply homogenization and arrive at

fh .x0; � � � ; xn/ D xd0 f
�
x1

x0
; � � � ;

xn
x0

�
,

a homogeneous polynomial of total degree d. If p j d, then we can modify this by

instead letting

fh .x0; � � � ; xn/ D xdC1
0 f

�
x1

x0
; � � � ;

xn
x0

�
,

which is a homogeneous polynomial of total degree dC 1, but now p does not divide

the degree of fh .

In either case, the affine roots of f correspond to the projective roots where x0 ¤ 0,

as these are equivalent to projective zeros of fh .1; x1; � � � ; xn/. We further see that each

such distinct projective zero corresponds to exactly one affine zero of f .x1; � � � ; xn/, so

the value we seek is actually calculated asˇ̌
X.Fq/

ˇ̌
D

X
S�f1;��� ;ng

ˇ̌̌
Xproj �Fq

�S ˇ̌̌ .
Each

ˇ̌̌
Xproj �Fq

�S ˇ̌̌
� qn�jSj so, just as with the prior bound, their sum

B < .q � 1/n.

The additions can thus take place in O.2nna log p/ bit operations, which is dominated

by the cost of the point counting.
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This yields a total computational complexity of at worst

QO
�
2n.nC 2.dC 1/�/4n�3a2p1=2

�
bit operations

to calculate
ˇ̌
X.Fq/

ˇ̌
.

.. Point Counting on Affine Varieties

There are several techniques that can be used to extend the algorithms discussed in

sections .. and .. to the multi-polynomial setting that we started with. The second

approach we outline is asymptotically faster; we include the first approach for ease of

comparison with the results of Cheng-Hill-Wan.[]

As before, we examine the variety described by the simultaneous zeros of poly-

nomials, f1; � � � ; fm 2 FqŒx1; � � � ; xn� over the field NF q; call this variety X. We fix the

notation x D .x1; � � � ; xn/ and di D deg fi.x/.

... Reduction to a Single Hypersurface

This approach reduces the case of many polynomials to that of a single polynomial,

along with a counting-based technique to move between these two situations. This

approach is similar to a tool used in calculation of zeta functions due to Gao.[, §]

Corollary . Let a, n, and m be positive integers, p be a prime, q D pa, f1; � � � ; fm 2

FqŒx1; � � � ; xn� be polynomials of positive degree, where each fi has total degree di, and Nd D

maxi di. There is a deterministic algorithm that calculates the number of simultaneous

solutions of f1.x1; � � � ; xn/ D � � � D fm.x1; � � � ; xn/ D 0 residing in F n
q in

QO
�
2nCma3.nCm/C7.nCm/3.nCm/C5.NdC 1/3.nCm/p2.nCm/C4

�
bit operations.
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Corollary . Let a, n, and m be positive integers, p be a prime, q D pa, f1; � � � ; fm 2

FqŒx1; � � � ; xn� be polynomials of positive degree, where each fi has total degree di, and Nd D

maxi di. There is a deterministic algorithm that calculates the number of simultaneous

solutions of f1.x1; � � � ; xn/ D � � � D fm.x1; � � � ; xn/ D 0 residing in F n
q in

QO
�
2nCm.nCmC 2Nd�C 4�/4.nCm/�3a2p1=2

�
bit operations,

where � D max .a; d.nCmC 1/=2e/.

Proof. Examine the set fx 2 F n
q W f1.x/ D � � � D fm.x/ D 0g. We can represent these m

distinct polynomial constraints within as a single polynomial over Fq by introducing

additional variables z1; � � � ; zm. Denote z D .z1; � � � ; zm/, and examine the function

F .x; z/ D
mX
iD1

zi fi.x/. (.)

Let X denote the affine variety defined by the simultaneous zeros of f1; � � � ; fm over

NF q. If 
 2 X.Fq/, then F .
; z/ is the zero function. We note that we have added a total

of m extra variables, so for each such choice of 
 2 X.Fq/ there are qm distinct zeros of

F. On the other hand, if 
 2 F n
q n X.Fq/, then the solutions of F .
; z/ D 0 specify a

.m � 1/-dimensional linear subspace of Fm
q , so for any such 
 there are qm�1 zeros of

F.

These two cases are clearly disjoint, so if we denote the cardinality of the solution

set to F.x; z/ D 0 as jFj, then we see that

jFj D qm
ˇ̌
X.Fq/

ˇ̌
C qm�1 �qn

�
ˇ̌
X.Fq/

ˇ̌�
D
ˇ̌
X.Fq/

ˇ̌
qm�1 .q � 1/C qnCm�1:

Solving for
ˇ̌
X.Fq/

ˇ̌
, we find that

ˇ̌
X.Fq/

ˇ̌
D
jFj � qnCm�1

qm�1 .q � 1/
(.)
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thus we have an easy way of solving for
ˇ̌
X.Fq/

ˇ̌
given jFj.

The total degree of F.x; z/ is 1 C max di, and the polynomial is now in n C m

variables. Plugging these values into propositions  and  yield the desired result.

... Application of the Principle of Inclusion / Exclusion

Here, a combinatorial approach is used to count points in the intersection of zeros

of each function; this approach is related to an approach to calculating the full zeta

functions described by Wan.¹⁶

Corollary . Let a, n, and m be positive integers, p be a prime, q D pa, f1; � � � ; fm 2

FqŒx1; � � � ; xn� be polynomials of positive degree, where each fi has total degree di, and

dC D
P

i di. There is a deterministic algorithm that calculates the number of simultane-

ous solutions of f1.x1; � � � ; xn/ D � � � D fm.x1; � � � ; xn/ D 0 residing in F n
q in

QO
�
2nCma3nC7n3nC5dC

3np2nC4� bit operations.

Corollary . Let a, n, and m be positive integers, p be a prime, q D pa, f1; � � � ; fm 2

FqŒx1; � � � ; xn� be polynomials of positive degree, where each fi has total degree di, and

dC D
P

i di. There is a deterministic algorithm that calculates the number of simultane-

ous solutions of f1.x1; � � � ; xn/ D � � � D fm.x1; � � � ; xn/ D 0 residing in F n
q in

QO
�
2nCm.nC 2dC�C 2�/4n�3a2p1=2

�
bit operations,

where � D max .a; d.nC 1/=2e/.

Proof. The principle of inclusion / exclusion [, p.] allows us to find the number of

points in some universal set that are not present in any of a finite list of subsets. We’ll
¹⁶This approach is outlined in Section ...
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dwell on this statement somewhat in order to make later calculations more natural; if

we have m sets A1; � � � ;Am in some universal set A, and we denote Ac
j D A n Aj, then

one standard formulation of the principle of inclusion / exclusion isˇ̌̌̌
ˇ m\
iD1

Ac
i

ˇ̌̌̌
ˇ D X

I�f1;��� ;mg

.�1/jIj
ˇ̌̌̌
ˇ\
i2I

Ai

ˇ̌̌̌
ˇ .

If we let Bi D Ac
i , then this gives usˇ̌̌̌
ˇ m\
iD1

Bi

ˇ̌̌̌
ˇ D X

I�f1;��� ;mg

.�1/jIj
ˇ̌̌̌
ˇ\
i2I

Bc
i

ˇ̌̌̌
ˇ

D
X

I�f1;��� ;mg

.�1/jIj
 
jAj �

ˇ̌̌̌
ˇ[
i2I

Bi

ˇ̌̌̌
ˇ
!

D
X

I�f1;��� ;mg

.�1/jIj jAj„ ƒ‚ …
0

�
X

I�f1;��� ;mg

.�1/jIj
ˇ̌̌̌
ˇ[
i2I

Bi

ˇ̌̌̌
ˇ

D
X

I�f1;��� ;mg

.�1/jIj�1

ˇ̌̌̌
ˇ[
i2I

Bi

ˇ̌̌̌
ˇ

We lastly note that the empty union is the empty set, so this gives us the formulationˇ̌̌̌
ˇ m\
iD1

Bi

ˇ̌̌̌
ˇ D X

;¤I�f1;��� ;mg

.�1/jIj�1

ˇ̌̌̌
ˇ[
i2I

Bi

ˇ̌̌̌
ˇ , (.)

which is the version we want to use.

We’ll use X to denote the variety over NF q defined by the simultaneous zeros of all

the fi polynomials, and for any I � f1; � � � ;mg write

fI.x/ D
Y
i2I

fi.x/,

and finally use XI to denote the corresponding variety over NF q defined by the zeros of

fI.
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We can evidently calculate
ˇ̌
XI.Fq/

ˇ̌
using one of our point counting algorithms,

where fI is a polynomial in n variables of degree dI D
P

i2I di. We then have the fol-

lowing statement in terms of q-rational points on the varieties we’ve described:

ˇ̌
X
�
Fq
�ˇ̌
D

X
;¤I�f1;��� ;mg

.�1/jIj�1 ˇ̌XI
�
Fq
�ˇ̌

. (.)

This requires a total of 2m�1 invocations of one of the point counting algorithms.

The largest computation necessary is associated with I D f1; � � � ;mg; in this case com-

puting
ˇ̌
XI.Fq/

ˇ̌
requires counting the number of zeros of fI, a polynomial in n variables

of degree

dC D

mX
iD1

di.

We can bound the cost of this approach by counting 2m � 1 invocations of a point

counting algorithm, each acting on a polynomial in n variables of degree dC.

Note that we have a trivial bound for the size of our terms, namely 0 �
ˇ̌
XI.Fq/

ˇ̌
�

qn and for that matter, 0 �
ˇ̌
X.Fq/

ˇ̌
� qn. Even if we ignore the alternating nature

of this sum, we get the trivial bound for our sum of qn2m and such numbers can be

added in O.nam log p/ bit operations. This occurs .2m � 1/ times, so the addition

occurs in time complexity QO.2mna log p/ bit operations, which is dominated by the

point counting operation.

. Point Counting From the Zeta Function

Thus far, we’ve analyzed counting points and ignored the possibility of using a zeta

function to extract the number of Fqr -rational points. Here we instead consider the

case where we take as input the full zeta function ZX.T/ for some variety over Fq, and

then extract the number of points
ˇ̌
X.Fqr/

ˇ̌
for all r up to some positive integer bound,

R.
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All of the algorithms for calculating the zeta function in section . start by calcu-

lating
ˇ̌
X.Fqr/

ˇ̌
for all positive r up to some bound greater than the degree of either the

numerator or denominator, so we can consider as having started with these values,

and in particular we can assume that R is greater than the degree of the numerator or

denominator of the zeta function.

We start by recalling that the zeta function is of the form

ZX.T/ D exp
 X

r�1

ˇ̌
X
�
Fqr
�ˇ̌

r
T r

!
D

g.T/
h.T/

,

where g; h 2 1C TZŒT�. Taking the logarithmic derivative of this expression yieldsX
r�1

ˇ̌
X
�
Fqr
�ˇ̌
T r�1
D

g0.T/
g.T/

�
h0.T/
h.T/

. (.)

As such, if we are given the zeta function as a rational function, Equation (.) reduces

the problem of counting the number of points in X.Fqr/ to the problem of finding the

.r � 1/th term of the formal power series of these two rational expressions, for which

we use the following lemma.

Proposition . If g 2 1 C TZŒT�, then the first R terms of the formal power series

g0.T/=g.T/ can be deterministically calculated in QO.R2 log kgk/ bit operations, where kgk

denotes the maximum of the absolute values of the coefficients of g.

Proof. The algorithms presented here perform optimally when R is a power of 2, but

there are more complicated versions that do not require this and which have essentially

the same computational complexity, so we can without loss of generality assume that

R D 2t for some positive integer t.

This task can be accomplished by computing some truncation of the formal power

series for these rational functions. We’ll continue with the notation g.T/ D 1 C
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Pdg
iD1 giT i (a unit of the ring of formal power series), then to find the first 2t terms

of the multiplicative inverse of this series.

For the purpose of a bit-operation-oriented analysis, we use Kronecker substitution

for multiplication.[, §.] We seek to multiply the polynomials h1; h2 2 1C TZŒT�.

We can without loss of generality assume the coefficients of these polynomials are

uniformly positive; if not we can break each of the polynomials into a difference of

two polynomials with uniformly positive coefficients, and then combine by using at

most four iterations of the same algorithm. This results in no change in the time

complexity (in big-oh or so-oh notation).

Denote di D deg hi, the maximum coefficient of hi.T/ in absolute value as khi.T/k,

and `i D
�
log2 khi.T/k

˘
C1. We let d D max.d1; d2/, and ` D max.`1; `2/, the number

of bits required to store any coefficient in either polynomial. We then “evaluate” our

polynomials at 2` (“evaluation” here is just a matter of shiing parameters into the

appropriate place in the binary representation of an integer, so the evaluation occurs

in O.d`/ bit operations). We can assume that d < 2t, as we know all the coefficients

up to the degree, so we can thus multiply the polynomials h1 and h2 by multiplying

the resulting integers, and read out the results in QO.2t`/ bit operations.

For finding the inverse, we use Sieveking-Kung¹⁷ to calculate the power series in-

verse. For ease of reference, the variant of Sieveking-Kung that we analyze is specified

in Algorithm .

To analyze the computational complexity of this algorithm, we first specify a re-

currence relation in terms of `g D
�
log kgk

˘
C 1 to calculate the maximal bit length

of any coefficient in gi, which we’ll denote as li. For ease of representation as a gener-

ating function¹⁸, we adopt the convention that lk D 0 for k < 0, and note that l0 D 1,

¹⁷A nice treatment of this approach is discussed by von zur Gathen.[, §.]
¹⁸Graham, Knuth and Patashnik provide a lovely introduction to these matters.[, Chapter ]
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Algorithm : Truncated Polynomial Inverse
input : g 2 1C TZŒT� and t 2 N
output: h 2 1C TZŒT� such that gh � 1 .mod x2t/

g0  1 i 1 while i � t do
gi  2gi�1 � fg2

i�1 .mod x2t/ i iC 1
end while
return gt

l1 D `g, l2 D 3`g, and generically

lk D 2lk�1 C `g � 2ı.k � 1/ � .`g � 1/ı.k/ for k � 0,

where ı.�/ denotes the Dirac delta function.

The generating function associated with these li values is then

L.z/ D
X
i �0

lizi;

substituting this into the recurrence relation gives us

L.z/ D 2zL.z/C
`g

1 � z
� 2z � .`g � 1/,

which, when converted into series notation and simplified, gives us

L.z/ D
X
i �1

`g
�
2i
� 1

�
zi C 1.

This gives us a closed form, namely

li D `g
�
2i
� 1

�
for j � 1.

Each gi polynomial has degree less than¹⁹ 2t. Together, we find that the entire in-

version operation occurs in QO.22t`g/ bit operations and yields a polynomial of degree

2t � 1 whose maximal coefficient is length no larger than `g.2t � 1/.
¹⁹Indeed, by using a similar approach to the above, we could find that the degree of gi is equal to

min.2t � 1; .2i � 1/dg/, but we won’t need this.
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We then multiply by g0.T/, which has no term larger than `g C
�
lg dg

˘
C 1 and is

degree dg�1, resulting in a total computational complexity of QO.22t`g/ bit operations.

From this, along with some bounds on the coefficients and degree of g.T/ and

h.T/, we can extract X.Fqr/ from the zeta function.

. Algorithms for Calculating the Zeta Function

We will find cause to calculate the full zeta function for spaces, so for completeness,

we state two results that we will use, and then extend these to a slightly more general

setting.

.. Calculating Single Zeta Functions

The following theorem is directly due to Lauder and Wan.[, Theorem ]

Theorem  (Lauder and Wan). Let a and n be positive integers, p be a prime, q D pa,

and X be a variety defined over NF q defined by the vanishing set of f 2 FqŒx1; � � � ; xn�,

where f is of total degree d. There is a deterministic algorithm that calculates the zeta

function of X in

QO
�
213n2

a3nC7d3n2C9np2nC4
�
bit operations.

The corresponding theorem in Harvey must again be adapted for our use.

Theorem  (Harvey). Let a and n be positive integers, p be a prime, q D pa, and X be

a variety defined over NF q defined by the vanishing set of f 2 FqŒx1; � � � ; xn�, where f is of
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total degree d. There is a deterministic algorithm that calculates the zeta function of X in

QO
�
28n2C17nn4nC4.dC 2/4n2C7na4nC4p1=2

�
bit operations.

Proof. This is a consequence of a theorem by Harvey.[, Theorem .] As previously

mentioned, we examine the space P n
NFq

, projective n-space over Fq, with homogeneous

coordinates x0; � � � ; xn. If we then have a homogeneous polynomial fh 2 FqŒx0; � � � ; xn�

of total degree d such that p − d, Harvey’s algorithm [, Theorems .-.] allows us

to explicitly calculate the zeta function of the projective variety cut out by fh from the

affine torus. In the event that p j d, then we simply replace fh with x0 fh , which is now

degree dC 1 (which p does not divide) and which has the same zeta function on the

affine torus.²⁰ In this (worst) case, we then can calculate this zeta function in

28n2C16nn4nC4C�.dC 2/4n2C7nC�a4nC4C�p1=2 log2C� p bit operations.

Our specification of the Weil zeta function is fundamentally described in terms of

point counting; multiplying zeta functions corresponds directly to adding the number

of points in each finite extension of Fq (and similarly dividing corresponds to subtract-

ing points). As such, if we can represent any space as a union of disjoint subvarieties,

we can then calculate the zeta function of the full variety by just taking the product of

the zeta functions of the subvarieties. We can thus directly apply the same techniques

(and notation) that we used in the proof of Proposition  to adapt Harvey’s algorithm

to our use.

We again denote fh as the homogenization of the polynomial f, and denote ZS
Xproj.T/

as the zeta function associated with the vanishing set of fh on OT n
S . We now can find

²⁰In the affine torus, x0 ¤ 0 so x0 fh .x/ D 0 if and only if fh .x/ D 0. This is true in all extensions, so
the zeta function must be the same.
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ZX.T/, through multiplying

ZX.T/ D
Y

S�f1;��� ;ng

ZS
Xproj.T/.

The resulting zeta function is a rational function, say g.T/=h.T/, where g; h 2 1C

TZŒT�. Bombieri proved, for a variety defined by one polynomial in n variables of

degree d (in reduced form) that deg.g.T/Ch.T// < .4dC5/n.[, Theorem ] We’ll call

this bound D, and we’ll use this as a bound for the bound of the degree of either g or

h.

We now seek a bound on the coefficients of the zeta function. First, recall that the

zeta function is of the form

ZX.T/ D exp
 

1X
kD1

ˇ̌
X.Fqk/

ˇ̌
k

Tk

!
.

In the complex plane, the exponential function is entire and has no zeros, so any value

of T that causes the exponent to converge to a finite complex value could not corre-

spond to a zero or a pole. As such, the zeros and poles evident in the factorization of

the zeta function’s numerator and denominator must cause the series in the exponent

to diverge. Examining the power series in the exponent of the zeta function

X
k�1

ˇ̌
X.Fqk/

ˇ̌
k

Tk,

we see if jTj < q�n, then the series will certainly converge. Writing the zeta function

as a ratio of products of linear terms gives us

g.T/ D
Y
i

.1 � ˇiT/ h.T/ D
Y
j

�
1 � 
jT

�
,

where the ˇi are the reciprocal zeros of g.T/ and the 
j are the reciprocal zeros of h.T/.

As se see from the above, this series diverges for both the zeros and poles of the zeta
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function, so this gives us

1
ˇi
� q�n 1


j
� q�n

ˇi � qn 
i � qn.

We thus find that any coefficient of either g or h (which is a product of some number

of these reciprocal zeros) is thus bounded by qDn.

Using this coefficient bound, we then see that in reduced form

B D log max fkg.T/k; kh.T/kg � log
�
qDn� ,

so we can bound the computational complexity of the multiplication as QO.DB/ bit op-

erations. Putting the resulting zeta function back into reduced form requires a poly-

nomial multiplication and polynomial  calculation, at cost QO.DB/ bit operations,

and then two polynomial divisions, also at cost QO.DB/ bit operations. Thus, we see

that the total computational complexity associated with multiplication and reduction

of the zeta function is

QO.2nDB/ D QO.2nD2na log p/

D QO.2n.4dC 5/2na log p/ bit operations,

which is dominated by the cost of computing the zeta functions.

Together, this yields a total computational complexity of

QO
�
28n2C17nn4nC4.dC 2/4n2C7na4nC4p1=2

�
bit operations.

to calculate ZX.T/.

.. Calculation of a Family of Zeta Functions

If we are given a polynomial f .x1; � � � ; xn/ 2 ZŒx1; � � � ; xn� of total degree d, and a

prime p, we can reduce the coefficients of this polynomial mod p (resulting in the p-
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reduction of f), and then examine the variety formed by the zero set of the p-reduction

of f .x1; � � � ; xn/ over NF p. Harvey noticed that we can apply a memoization-style tech-

nique to this calculation when we calculate all the zeta functions for such varieties

associated with all primes less than some bound N.

Theorem  (Harvey). Let n andN be positive integers, f 2 ZŒx1; � � � ; xn� be a polynomial

of total degree d, and denote the maximum coefficient of f in absolute value as k f k. For

a prime p let Xp denote the affine variety defined over NF p defined by the vanishing set of

the p-reduction of f. There is a deterministic algorithm to calculate the zeta function of

Xp for all p < N in

QO
�
28n2C17nC1n4nC6.dC 2/4n2C7nN log k f k

�
bit operations.

Proof. This is a consequence of another theorem of Harvey.[, Theorem .] Harvey’s

algorithm calculates a family of zeta functions, one for each prime p − d less than N.

Each variety is the space the (p-reduced) homogeneous polynomial, say fh , cuts out of

the affine torus in projective n-space in

28n2C16nn4nC6C�.dC 1/4n2C7nC�N log2
.N/ log1C�

.Nk f k/ bit operations.

We would like to have the complete list, not just these, so we also examine the zeta

functions associated with x0 fh , which as we’ve seen before has the same zeta function

(as we are within the affine torus, so x0 ¤ 0). Between these two, we have the complete

set of zeta functions for Xp for all p < N. This complete calculation thus occurs in

28n2C16nC1n4nC6C�.dC 2/4n2C7nC�N log2
.N/ log1C�

.Nk f k/ bit operations.

As in Theorem , we must perform this calculation a total of 2n times and then

multiply together the corresponding results. There are less than N zeta functions total.
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We note that the degree bound from the proof of Theorem  is the same as here,

that is D < .4dC 5/n. For a coefficient bound, note that any prime in our list is less

than N, so our coefficient bound gives us B < log
�
NDn

�
, so we can again bound the

computational complexity of the multiplication and re-reduction operations as QO.DB/

bit operations. Thus, we see that the total computational complexity associated with

all the multiplications and reductions of the zeta functions is

QO.N2nDB/ D QO.N2nD2n logN/

D QO.N2n.4dC 5/2n logN/ bit operations,

which is dominated by the cost of computing the zeta functions.

This yields a total computational complexity of

QO
�
28n2C17nC1n4nC6.dC 2/4n2C7nN log k f k

�
bit operations

to calculate ZXp.T/ for all p < N.

Consider the case where the polynomial being examined is fixed. The above algo-

rithm then has computational complexity

O
�
N log3C�

.N/
�

bit operations,

that is to say that we have a quasilinear time algorithm in N.

If N is large, then the number of primes less than or equal to N is asymptotically

π.N/ �
N

logN
.

Dividing by the total number of primes, the amortized cost per prime of the above

algorithm thus has time complexity O
�
log4C�

.N/
�

bit operations, that is to say the

cost per produced zeta function is polylogarithmic time for such a fixed polynomial.
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.. Extension to Affine Varieties

Adopting the notation and approach from corollaries  and , we now examine the

variety described by the simultaneous zeros of polynomials, f1; � � � ; fm 2 FqŒx1; � � � ; xn�;

call this variety X. We fix the notation x D .x1; � � � ; xn/ and di D deg fi.x/.

By combining the above observation that multiplication of zeta functions trans-

lates to adding the number of points in each finite extension of Fq (and division to

subtracting points) with the principle of inclusion/exclusion described in Section ..

we can extract full zeta function.²¹ This approach directly yields the following corol-

laries.

Corollary . Let a, n, and m be positive integers, p be a prime, q D pa, X be a vari-

ety over NF q defined by the simultaneous vanishing set of the polynomials f1; � � � ; fm 2

FqŒx1; � � � ; xn� with positive total degrees di, and dC D
P

i di. There is a deterministic

algorithm that calculates the zeta function of X in

QO
�
213n2Cma3nC7dC

3n2C9np2nC4
�
bit operations.

Corollary . Let a, n, and m be positive integers, p be a prime, q D pa, X be a vari-

ety over NF q defined by the simultaneous vanishing set of the polynomials f1; � � � ; fm 2

FqŒx1; � � � ; xn� with positive total degrees di. Denote dC D
P

i di. There is a deterministic

algorithm that calculates the zeta function of X in

QO
�
28n2C17nCmn4nC4.dC C 2/4n2C7na4nC4p1=2

�
bit operations,

where � D max .a; d.nC 1/=2e/.

²¹This approach is essentially one of those described by Wan.[, §]
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Proof. We continue where we le off in Section .... Note that our Equation (.)

applies not just to the base field, but every finite extension of that field, that is:

ˇ̌
X
�
Fqr
�ˇ̌
D

X
;¤I�f1;��� ;mg

.�1/jIj�1 ˇ̌XI
�
Fqr
�ˇ̌

. (.)

Recalling that products of zeta functions correspond to adding the count of points

within the corresponding extensions, and division of zeta functions correspond to

subtracting the count of points within the corresponding extensions, we find that we

can in some sense calculate Equation (.) for all values of r by multiplying and dividing

by the corresponding zeta functions. This yields the pleasant result

ZX.T/ D
Y

;¤I�f1;��� ;mg

ZXI.T/
.�1/jIj�1 .

Calculating ZX.T/ then requires a total of .2m� 1/ invocations of Theorems  or ,

the most costly of which is associated with the variety Xf1;��� ;mg.

In order to bound the difficulty of performing this calculation, we first try to bound

the degree of the resulting zeta function. The resulting zeta function is a rational

function, say g.T/=h.T/. The m-polynomial version of the Bombieri bound yields a

degree bound

D �
X

;¤I�f1;��� ;mg

.4dI C 5/n

�

mX
iD1

 
m
i

!
.4dC C 5/n

< 2m .4dC C 5/n .

We again apply our coefficient bound and find that B D Dan log p.

Each multiplication, and the following reduction, can be done in QO.DB/ bit oper-

ations. There are a total of 2m of these, so that means all the multiplication required
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for the principle of inclusion/exclusion can be accomplished in

QO
�
2mD2an log p

�
D

QO
�
23m .4dC C 5/2n an log p

�
D

QO
�
23m .4dC C 5/2n a log p

�
bit operations. (.)

This is dominated by the zeta function calculations.

We again examine the situation discussed in Section .., that is we now consider

our polynomials as having integer coefficients. Once the coefficients of these polyno-

mials are reduced, we have the same situation as above.

Corollary . Let n, m, and N be positive integers, f1; � � � ; fm 2 ZŒx1; � � � ; xn� be polyno-

mials with positive total degrees di and maximal coefficients k fik, with k f k D
Q

i k fik.

For a prime p let Xp denote the affine variety defined over NF p defined by the simultaneous

vanishing set of all the p-reductions of the fi. Denote dC D
P

i di. There is a deterministic

algorithm to calculate the zeta function for Xp for all p < N in

QO
�
28n2C17nCmC1n4nC6.dC C 2/4n2C7nN log k f k

�
bit operations.

Proof. This proceeds in much the same way as in Corollaries  and . The only extra

item to keep track of is that there are at most N zeta functions produced²², so the above

must be repeated an additional factor of at mostN times. We note that any prime being

worked with is less than N, and a D 1, reducing Equation (.) to

QO
�
N23m .4dC C 5/2n logN

�
bit operations.

This is dominated by the cost of producing the zeta functions.

²²This is a coarse bound. We’ll do better later.
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Chapter 

Some Vital Combinatorial Identities

“It is by will alone I set my mind in motion. It is

by the juice of sapho that thoughts acquire speed,

the lips acquire stains, the stains become a

warning. It is by will alone I set my mind in

motion.”

David Lynch, Dune (screenplay)

The basis of many of these results is a combinatorial identity that is independent of

any sort of algebraic structure. This identity applies to any situation where a function

maps between finite sets, and relates the size of the value set to a scaled sum of the

sizes of various (set-wise) fiber product of the spaces involved.

Recall, the fiber product X�YX is defined as “the” set making the diagram in figure

. commute (where “the” is used here because the construction is universal, that is if

there were any other such sets and projection maps, the sets would be isomorphic in

the category of sets), and the resulting diagram would commute.
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X �Y X X

X Y

π2

π1 f

f

Figure .: Fiber Product (Universal Property not Depicted)

For our purpose, we can generally just think of what it means for this diagram to

commute in the category of sets, where we have

X �Y X D f.x1; x2/ 2 X � X W f .x1/ D f .x2/g .

We similarly notate the k-iterated fiber product as

X�Yk D X �Y � � � �Y X„ ƒ‚ …
k terms

D
˚
.x1; � � � ; xk/ 2 Xk

W f .x1/ D � � � D f .xk/
	

.

. The Iterated Fiber Product and the Cardinality of the Value Set

We count the number of points in these k-iterated fiber products (for any positive

integer, k) up to some bound, namely the maximal number of points present in any

fiber above any point in the image under the map f. More accessibly, the bound is a

positive integer d so that
ˇ̌
f �1. y/

ˇ̌
� d for all y 2 Y.²³

Theorem  (Hill–Wan). If X and Y are finite sets, and f W X ! Y is a map such that

any given fiber has at most d elements, then the cardinality of the image set of f is

ˇ̌
Vf
ˇ̌
D

dX
iD1

.�1/i�1Ni�i

�
1;

1
2
; � � � ;

1
d

�
, (.)

where Nk D
ˇ̌
X�Yk

ˇ̌
and �i denotes the ith elementary symmetric polynomial on d ele-

ments.
²³This combinatorial finding was initially presented in a conference paper by Cheng-Hill-Wan.[]
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Proof. Beginning in a similar way as Uchiyama [] and Birch / Swinnerton-Dyer [],

we examine a family of subsets of Vf , namely

Vf;i D
˚
y 2 Vf W

ˇ̌
f �1. y/

ˇ̌
D i

	
; 1 � i � d:

Each element ˇ 2 Vf must have at least one pre-image (as if ˇ had no points in

its pre-image, it would not be in the image!) and can have at most d points in its

pre-image, so

Vf D
a

1�i�d

Vf;i

(where
`

denotes the disjoint union).

Continuing as in both Uchiyama [] and Das [], denote the cardinality of each

of these sets as mi D
ˇ̌
Vf;i
ˇ̌
. Any element in the image must have between 1 and d

pre-images; we count elements in the image, grouped by the number of elements in

the pre-image, yielding the equation

m1 C � � � Cmd D
ˇ̌
Vf
ˇ̌
: (.)

Now, let

QNk D X�Yk:

We are generally going to be more interested in the number of elements in such sets;

we have already denoted this as Nk D
ˇ̌
QNk
ˇ̌
. We’ll categorize the points in QNk by their

(shared) image.

We continue by counting the number of ways of forming each Nk in terms of the

various mi’s. In particular, as each value in the image must be in exactly one of the Vf;i

sets, if .x1; � � � ; xk/ 2 Nk, then all of the xi’s in this k-tuple are pre-images of a value in

the same Vf;i.

To illustrate the counting argument, we start with counting N1: if .˛1/ 2 QN1 with

f .˛1/ D ˇ, then ˇ is in exactly one Vf;i (as these sets partition Vf ). There are m1 distinct
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images in Vf;1, each of which has a distinct pre-image, so there are m1 choices for .˛1/

such that ˇ 2 Vf;1. If instead ˇ 2 Vf;2, then ˇ could be one of m2 distinct images, each

of which has exactly 2 distinct pre-images, so there would be 2m2 choices for such

an .˛1/. Similarly, if ˇ 2 Vf;`, then there are m` distinct images, each of which have

exactly ` distinct pre-images, so there would be exactly `m` choices for .˛1/. There can

be no overlap between each of these cases (as the Vf;i partition Vf ), so we can then sum

and find N1 D m1 C 2m2 C � � � C dmd.

For Nk, if .˛1; � � � ; ˛k/ 2 QNk with f .˛1/ D ˇ and ˇ 2 Vf;`, then there are m` distinct

images, each of which have exactly ` distinct pre-images, so there would be exactly `m`

choices for ˛1, and ` choices for each of ˛2; � � � ; ˛k, yielding a total of `km` choices for

.˛1; � � � ; ˛k/. Thus we see that in general

Nk D m1 C 2km2 C � � � C dkmd: (.)

Now, let us introduce a new variable, say � D �
ˇ̌
Vf
ˇ̌
. We can then rewrite (.)

to be m1 C � � � C md C � D 0, and (.) to m1 C 2km2 C � � � C dkmd C 0� D Nk with

1 � k � d; this system of equations yields
�

1 1 � � � 1 1

1 2 � � � d 0

1 22 � � � d2 0
:::

:::
:::

:::
:::

1 2d � � � dd 0

˘�
m1

m2

m3

:::

�

˘

D

�
0

N1

N2

:::

Nd

˘

: (.)

We then solve for � using Cramer’s rule.

For Cramer’s rule, we need two different determinants. First, we need the deter-

minant of the .dC 1/ � .dC 1/ square matrix above, which we’ll call A
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Lemma .

detA D det

�
1 1 � � � 1 1

1 2 � � � d 0

1 22 � � � d2 0
:::

:::
:::

:::
:::

1 2d � � � dd 0

˘

D .�1/ddŠ.d � 1/Š.d � 2/Š � � � 2Š1Š

Proof. For the determinant of A, we can expand along the last column and then factor

out the common terms from each column:

detA D det

�
1 1 � � � 1 1

1 2 � � � d 0

1 22 � � � d2 0
:::

:::
:::

:::
:::

1 2d � � � dd 0

˘

D .�1/dC2 det

�
1 2 � � � d

1 22 � � � d2

:::
:::

:::
:::

1 2d � � � dd

�

D .�1/ddŠ det

�
1 1 � � � 1

1 2 � � � d
:::

:::
:::

:::

1 2d�1 � � � dd�1

�

:
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This sub-matrix is (the transpose of) a Vandermonde matrix, so the determinant

of the original matrix is:

detA D .�1/ddŠ
Y

1�i< j�d

. j � i/

D .�1/ddŠ.d � 1/Š.d � 2/Š � � � 2Š1Š

We’ll need the determinant of a new matrix for Cramer’s rule. This new matrix,

B, will be based on A, but with the last column replaced by the column vector on the

right hand side of Equation (.). Calculating this determinant will require a modest

effort.

Lemma .

detB D det

�
1 1 � � � 1 0

1 2 � � � d N1

1 22 � � � d2 N2

:::
::: � � �

:::
:::

1 2d � � � dd Nd

˘

D .d � 1/Š.d � 2/Š � � � 2Š1Š
dX

iD1

.�1/dCiNi�d�i .1; 2; � � � ; d /

Proof. For the determinant of B, we have a somewhat similar looking determinant;

again expanding along the last column:

detB D
dX

iD1

.�1/dCiNiMiC1;dC1,

where MiC1;dC1 is the corresponding minor of B.
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Each of these MiC1;dC1 are “simple alternants”.[, Chapter XI][, Chapter VI] We

generalize B by replacing the elements .1; � � � ; d / with a corresponding unique vari-

able .X1; � � � ;Xd/, producing OB, whose determinant can then be calculated in terms

of the new minors of OMiC1;dC1. We then write the (non-eliminated) powers as ˛ D

.˛1; � � � ; ˛d/, allowing us to denote:

a˛ D OMiC1;dC1

D det
�
X˛m
n
�d
m;nD1 where ˛m D

8̂̂<̂
:̂
m � 1 1 � m < iC 1

m iC 1 � m � d

We define ı D .0; 1; � � � ; d � 1/, then

a˛ D a�Cı D det
�
X�mC.m�1/
n

�d
n;mD1

which forces � D .0; � � � ; 0„ ƒ‚ …
i terms

; 1; � � � ; 1„ ƒ‚ …
d�i terms

/.²⁴

It is evident that if Xm D Xn for any m < n then a˛ is 0. This implies that .Xn � Xm/

divides a˛ for all 1 � m < n � d, thus a˛ is divisible by aı (the Vandermonde deter-

minant). The quotient a�Cı=aı (called a “bialternant”) is the historical definition of

the Schur polynomial of shape �:

s� .X1; � � � ;Xd/ D
a�Cı .X1; � � � ;Xd/

aı .X1; � � � ;Xd/
:

Comparing this to the more standard combinatorial definition of the Schur poly-

nomials:

s� D
X
ˇ

K�ˇxˇ

where ˇ runs over all weak compositions (i.e., start with an integer partition of ` DP
m �m padded with 0s to bring the partition length to the same length as �. The set

²⁴Stanley provides a wonderful introduction to these topics.[, p. ]
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of weak compositions are every possible ordering of every such partition). Here, K�ˇ

is the Kostka number, the number of semi-standard Young tableaux () of shape �

and type ˇ.

In this case, the form of � causes all such tableaux to be a single column of length

d�i; a tableau forms a valid  only if the integers that fill the tableau strictly increase

down the column. Each weak composition, ˇ, establishes values that must be used to

fill the tableau; there must be ˇm total m’s present in the tableau. As we are required

to strictly increase down the column, this tells us that K�ˇ D 0 for any ˇ that contains

any values other than 0 and 1, and there is exactly one way to arrange these numbers

into our tableau: in increasing order. Thus

K�ˇ D

8̂̂<̂
:̂

0 ˇm > 1 for any i

1 otherwise

which suggests that each term in the sum s� has exactly d�i distinct terms, and includes

all possible arrangements. For this �, we see that:

s� D
X
ˇ

K�ˇXˇ

D
X

1� j1< j2<���< jd�i�d

Xj1Xj2 � � �Xjd�i

D �d�i .X1; � � � ;Xd/ :

That is, for this type of �, s� is just the .d � i/th elementary symmetric polynomial

on d variables, and thus

a�Cı .X1; � � � ;Xd/ D �d�i .X1; � � � ;Xd/ aı .X1; � � � ;Xd/ :
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We thus have:

MiC1;dC1 D �d�i .1; � � � ; d / aı .1; � � � ; d /

D �d�i .1; � � � ; d /
Y

1�m<n�d

.n �m/

D �d�i .1; � � � ; d / .d � 1/Š.d � 2/Š � � � 2Š1Š

Finally combining these results,

detB D .d � 1/Š.d � 2/Š � � � 2Š1Š
dX

iD1

.�1/dCiNi�d�i .1; 2; � � � ; d / :

Combining our results and applying Cramer’s rule:

� D
detB
detA

D
..d � 1/Š.d � 2/Š � � � 2Š1Š/

Pd
iD1.�1/dCiNi�d�i .1; 2; � � � ; d /

.�1/ddŠ.d � 1/Š.d � 2/Š � � � 2Š1Š

D
1
dŠ

dX
iD1

.�1/iNi�d�i .1; 2; � � � ; d /

D

dX
iD1

.�1/iNi�i

�
1;

1
2
; � � � ;

1
d

�
:

Consequently, we have the desired result.

As a small example, examine the map f in Figure ..

A (tight) bound on the cardinality of any fiber for this map is 3. The most straight

forward way of calculating Nk here is via Equation (.). The relevant quantities nec-

essary for the calculation of Equation (.) are in Table ..

Putting these together, we see thatˇ̌
Vf
ˇ̌
D 5 �

11
6
� 13 � 1C 35 �

1
6
D 2,

which is true by inspection of Figure ..
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Figure .: An Example Map, f

Table .: Example Value Set Cardinality Calculation

j mj Nj �j
�
1; 1

2 ;
1
3

�
1 0 5 11=6
2 1 13 1
3 1 35 1=6

. A Note on the Calculation of Symmetric Polynomials

In the above sections, we see that we need �i.X1; � � � ;Xn/, in particular for the case

where 0 � i � n, where Xi D 1=i. The definition of the elementary symmetric

polynomials is
nY

iD1

.TC Xi/ D e0.X1; � � � ;Xn/Tn
C � � � C en.X1; � � � ;Xn/. (.)

Enumerating all the choices is trivial, but there are clearly 2n choices, so if we pro-

ceeded naïvely, we expect any such approach to have computational complexity Ω.2n/

bit operations. We can do substantially better.

Lemma . The values �i.1; 1=2; � � � ; 1=d/ for 0 � i � d can be computed in QO.d5/ bit

operations

Proof. We proceed by using Newton’s identities,[]
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ek.X1; � � � ;Xn/ D
1
k

kX
iD1

.�1/i�1ek�i.X1; � � � ;Xn/pi.X1; � � � ;Xn/, (.)

where pk is the kth power sum, that is

pk.X1; � � � ;Xn/ D

nX
jD1

Xk
j .

In order to calculate �i.1; � � � ; 1=d/ in this way, we need to first calculate the values

for pi.1; � � � ; 1=d/ (that is, the generalized harmonic number of order d of k). Note

that if we denote pk.1; � � � ; 1=d/ as pk, and ti D dŠ=i then

pk D
1
1k C

1
2k C � � � C

1
dk

D
.dŠ/k C .dŠ/k=2k C � � � C .dŠ/k=dk

.dŠ/k

D
tk1 C tk2 C � � � C tkd

tk1
.

As it happens, we need t1
i to tdi , so square-and-multiply exponentiation techniques

aren’t helpful. For the following, denote the number of bit operations required to

multiply two n bit integers as M.n/.

Lemma . (Borwein) k integers, each of which can be stored in `-bits, can be multiplied

together in time complexity O
�
log kM.k`/

�
bit operations.

Proof. This is the result of the standard recursive “split the input into two subproblems

then combine” method.[, Proposition ]

We assume that we operate using one of the many “fast” integer multiplication

schemes, so M.n/ D QO.n/ bit operations.

We first calculate t1 D dŠ using Lemma  in QO.d / bit operations, and the resulting

value is stored in O.d log d / bits²⁵. For each later i, we then divide by i, which again
²⁵Borwein’s factorization-based method would do even better, but has the same so-oh time com-

plexity, so we don’t bother.[, Proposition ]
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takes QO.d / bit operations, so the total time required to calculate all the necessary ti

values is QO.d2/ bit operations, and the size of ti is O.d log d / bits.

Exponentiation occurs in the naïve way (as we need all the intermediate results),

so for fixed i, we require d multiplications of integers no larger than O.d2 log d / bits,

so for fixed i this takes QO.d3/ bit operations. There are d choices for i, so we have a

rough bound of QO.d4/ bit operations to calculate all of the .tki /i; jD1:::d. Each resulting

pk is a rational number which has both numerator and denominator of bit length

O.dk log d / bits. Putting all d of the needed power sums into lowest terms then can

occur in time QO.d5/ bit operations.

Now note that if we specialize Equation (.) to the case we are looking at and

denote ek D ek.1; � � � ; 1=d/, then we see that

nY
iD1

�
TC

1
i

�
D e0Tn

C e1Tn�1
C � � � C en.

Examining ek, we find that a common denominator for the sum making up ek is

dŠ, and the numerator of each term is a product of d � k values, the largest of which

(associated with the choice of 1=1; 1=2; � � � ; 1=k) is dŠ=kŠ. A bound for the numerator

is thus  
d
k

!
dŠ
kŠ
D

 
d
k

!2

� .d � k/Š.

We thus find that a bound for the bit length of the numerator is

log

0@ d
k

!2

� .d � k/Š

1A D O
�
k log dC .d � k/ log.d � k/

�
D O

�
.kC d / log d

�
D O

�
d log d

�
bits.

The denominator is similarly of length log.dŠ/ D O.d log d/ bits.
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Calculating ek using Newton’s identity occurs in time complexityO
�
kM

�
dk log d

��
bit operations, which in so-oh (with fast multiplication) is QO

�
dk2� bit operations.

This must be done d times, and k � d, so the entire sum for all k � d is thus performed

in time complexity QO.d4/ bit operations. Reducing them to lowest terms takes time

complexity QO.d5/ bit operations, so the time complexity for calculating the full set of

elementary symmetric polynomials is QO.d5/ bit operations.

. The Iterated Fiber Product and the Fiber Signature

There’s nothing about Cramer’s rule that applies only to solving for
ˇ̌
Vf
ˇ̌
; we can just as

reasonably use the same system to solve for any particular mj in a very similar fashion.

These mj provide a fairly complete view of how the map works with respect to its

fibers. If (as above) mj denotes the number of points in the image of a function f that

have fibers of cardinality exactly j, and d denotes the maximal fiber cardinality, then

we’ll refer to M D .m1; � � � ;md/ as the fiber signature of f.

With these mj, one can of course calculate
ˇ̌
Vf
ˇ̌
, but this is only a small portion of

the combinatorial structure revealed. Note that for any particular
ˇ̌
Vf
ˇ̌
, any ordering

of an integer partition of
ˇ̌
Vf
ˇ̌
into d or fewer parts gives a possible fiber signature (and

all of these are associated with functions!)

Given the above development, it is clear that one example structure revealed is the

size of the k-iterated fiber product.

To calculate each mj requires much the same process as in calculating
ˇ̌
Vf
ˇ̌
above.

Theorem . If X and Y are finite sets, and f W X! Y is a map such that any given fiber

has at most d elements, then for any positive integer j � d, the number of points in the
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co-domain whose fiber has exactly j elements is

mj D

 
d
j

!
1
j

dX
iD1

.�1/iCjNi�i�1

�
1;

1
2
; � � � ;

1
j � 1

;
1

jC 1
; � � � ;

1
d

�
,

where Nk D
ˇ̌
X�Yk

ˇ̌
and �i denotes the ith elementary symmetric polynomial on d � 1

elements.

Proof. We start with Equation (.) and then apply Cramer’s Rule.

Lemma . If we let

Bj D det

�
10 20 � � � . j � 1/0 0 . jC 1/0 � � � d0 1

11 21 � � � . j � 1/1 N1 . jC 1/1 � � � d1 0
:::

::: � � �
:::

:::
::: � � �

:::
:::

1d 2d � � � . j � 1/d Nd . jC 1/d � � � dd 0

�

then detBj is of the form

.d � 1/Š � � � 1Š
 
d
j

!
dX

iD1

.�1/iCjCdNi�d�i
�
1; � � � ; j � 1; jC 1; � � � ; d

�
:

Proof. We start by expanding the determinant along the .dC 1/th column, arriving at

the moderately nicer

detBj

D .�1/dC2 det

ˇ
11 � � � . j � 1/1 N1 . jC 1/1 � � � d1

:::
:::

:::
:::

:::

1d � � � . j � 1/d Nd . jC 1/d � � � dd




D .�1/d
dŠ
j

det

ˇ
10 � � � N1 � � � d0

:::
:::

:::

1d�1 � � � Nd � � � dd�1




:
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Expanding this new matrix along the jth column results in minors of the form

Ci; j D

ˇ
10 20 � � � . j � 1/0 . jC 1/0 � � � d0

:::
:::

:::
:::

:::

1i�2 2i�2 � � � . j � 1/i�2 . jC 1/i�2 � � � d i�2

1i 2i � � � . j � 1/i . jC 1/i � � � d i

:::
:::

:::
:::

:::

1d�1 2d�1 � � � . j � 1/d�1 . jC 1/d�1 � � � dd�1




whence we find detBj is

detBj D .�1/d
dŠ
j

dX
iD1

.�1/iCjNi detCi; j:

It simplifies our notation if we take � D .1; � � � ; j � 1; j C 1; � � � ; d /. As before,

we have a bialternant of a very similar form. Here we have ı D .0; 1; � � � ; d � 2/ and

� D .0; � � � ; 0„ ƒ‚ …
i�1 terms

; 1; � � � ; 1„ ƒ‚ …
d�i terms

/, yielding

detCi; j D �d�i .�/ aı .�/ :

This is slightly more complex, as the Vandermonde determinant is no longer a

simple product of factorials. Using the notation of Lemma , we see that in particular,

aı .�/ D
Y

1�u<v�d
u;v¤j

.v � u/

D
.d � 1/Š
.d � j/

.d � 2/Š
.d � j � 1/

� � �
jŠ
1
. j � 1/Š
. j � 1/Š

. j � 2/Š � � � 2Š1Š

D
.d � 1/Š � � � 1Š
.d � j/Š. j � 1/Š

:

Putting this together, we get the desired result.

Thus, we can solve for mj D
detBj
detA (where detA was calculated in Lemma ), and

get:

mj D

 
d
j

!
1
dŠ

dX
iD1

.�1/iCjNi�d�i .�/ :
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Distributing in the 1
dŠ term into the symmetric polynomial, we get products of i

terms, each of the form 1
k (1 � k � d), each with a 1

j term. Removing this common

term, we are le with the desired result.

We can then use this to calculate the complete fiber signature, which (at least in the

category of sets) provides a large amount of information about a map between finite

sets.

Proposition . If X and Y are finite sets, and f W X ! Y is a map such that any given

fiber has at most d elements, and if N1 to Nd are provided as input (where Nk D
ˇ̌
X�Yk

ˇ̌
),

then the necessary elementary symmetric polynomials can be computed in complexity

QO
�
d6� bit operations,

and the fiber signature of f can be computed in an additional

QO
�
d3 logN1

�
bit operations.

Proof. In Lemma , we found that we could calculate all �i.1; � � � ; 1=d/ for all 0 �

i � d in QO.d5/ bit operations; note that this is also a computational upper bound

for the case where we exclude one of the values and instead examine the elementary

symmetric polynomials on d � 1 variables (as is the case in Theorem ). We can

simply replace the excluded value with 0, and apply the same argument. We can thus

calculate all the elementary symmetric polynomials required to calculate .m1; � � � ;md/

in computational complexity QO.d6/ bit operations. As before, a bound on the length

of the numerator and denominator of these rational numbers is O.d log d / bits.

Calculating all the necessary binomial coefficients can be done directly (using the

falling factorial representation of the binomial coefficient) using Lemma  in compu-

tational complexity QO.d/ bit operations; the resulting values are of length O.d log d /

bits.
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We are provided N1 to Nd by hypothesis. Note that N1 is the number of points in

the full space (here called X), and a trivial bound for the size of later spaces is Nk
1, so

each of these have a length bound of O.d logN1/ bits.

Each of the d multiplications (for fixed selection of j) occurs in time complexity

QO.d logN1/ bit operations, and there are d choices for j, so calculating all the series has

time complexity QO.d3 logN1/ bit operations.

The entire operation thus has time complexity QO.d6Cd3 logN1/ bit operations.

Returning to our example map from Figure ., we again tabulate the necessary

information into Table ..

Table .: Example Fiber Signature Calculation

j Nj �j�1
�1

2 ;
1
3

�
�j�1

�
1; 1

3

�
�j�1

�
1; 1

2

�
1 5 1 1 1
2 13 5=6 4=3 3=2
3 35 1=6 1=3 1=2

We can then find that

m1 D

 
3
1

!
�
1
1
�

�
5 � 1 � 13 �

5
6
C 35 �

1
6

�
D 0

m2 D

 
3
2

!
�
1
2
�

�
�5 � 1C 13 �

4
3
� 35 �

1
3

�
D 1

m3 D

 
3
3

!
�
1
3
�

�
5 � 1 � 13 �

3
2
C 35 �

1
2

�
D 1.

Which is the same fiber signature as seen in Table ..
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Chapter 

Morphisms Between Affine Varieties

over a Finite Field

“Going beyond this point may result in death

and/or loss of skiing privileges.”

Snow park boundary sign at Sierra Summit

With this underlying combinatorial and point counting framework in place, we

can now proceed to describe algorithms for finding the value set cardinality and fiber

signature of certain types of algebraic maps.

. Notation

All of the results in this section use the following conventions and notation (or some

specialization of it).

Let p be a prime, and a be a positive integer, with q D pa. Let X and Y be algebraic

varieties defined over Fq.
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More precisely, Let X be an affine variety over NF q defined by the vanishing set of (a

non-negative integer) ` polynomials in affine r-space²⁶

˛1.x1; � � � ; xr/ D � � � D ˛`.x1; � � � ; xr/ D 0,

where each ˛i 2 FqŒx1; � � � ; xr�.

Similarly, let Y be an affine variety over NF q defined by the vanishing set of (a non-

negative integer) m polynomials in affine s-space

ˇ1. y1; � � � ; ys/ D � � � D ˇm. y1; � � � ; ys/ D 0.

Denote the Fqw -rational points on X as X.Fqw/, further denote x D .x1; � � � ; xr/, and

the analogous notions for y.

Let f be a morphism from X to Y which is an s-tuple of polynomials f .x/ D�
f1.x/; � � � ; fs.x/

�
, where each fi 2 FqŒx1; � � � ; xr�.

For notational convenience, denote

di D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

deg˛i i � `

deg fi�` ` < i � `C s

di .mod `Cs/C1 otherwise

,

and denote the restriction f jX.Fqk /
as f jqk , which is evidently a function f jqk W X.Fqk/!

Y.Fqk/.

We are interested in counting the value set of this morphism over Fq, that is, we

ask the question “if we view the domain of this map as the Fq-rational points on X,

what is the number of points in this map’s value set?”

²⁶As each of these polynomials provide constraints on the points in the variety, we operate under
the convention that if ` D 0, then X D Ar

NFq
, and similarly for the variety Y.
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We’ll start abstractly, and just assert that for some reason we may be able to bound

the size of a fiber in some meaningful way, and see where that takes us.²⁷

In order to motivate the (notationally unsightly) situation we find ourselves in, let’s

first examine an important restriction of this setting, namely the standard one-variable

value set counting problem.

. The Single Variable Case

We examine the case where we are counting the value set of a one-variable polyno-

mial over Fq, which is the setting where this problem has been most widely studied.

We start by showing two naïve approaches to calculating this result, and then demon-

strate the approach that we’ll generalize to more general affine varieties. In the above

notation, this is the situation where ` D m D 0, and r D s D 1.

.. Naïve Algorithms

There are several naïve methods of calculating
ˇ̌
Vf
ˇ̌
. Perhaps the most obvious method

is to evaluate the polynomial at each point in Fq and count how many unique im-

ages result. This approach uses q evaluations, each of which can be evaluated us-

ing the Horner scheme [] in 2d � 1 field multiplications, each in time complexity

O.a1Clg 3 lg2 p/ bit operations (here lg is the logarithm base 2), and d field additions,

each in O.a lg p/ bit operations.²⁸ The final counting can occur in time complexity

O.q/ bit operations, which is negligible in comparison to the other operations.

²⁷In fact, we don’t need the number of points in the fiber to be bounded, just the number of Fqr -
rational points in the fiber above any Fqr -rational point, for suitable choice of r. This trivially always
occurs (so these algorithms always work) but if the bound is too high, these algorithms perform worse
than the naïve approach to counting the value set.

²⁸Estimates of bit operations for arithmetic operations in Fq assume an iterated extension
approach.[, p. ]
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Thus, our first naïve algorithm has time complexityO.qdalg 3�1 lg2 q/ bit operations,

or in “So-Oh” notation, QO.qd/ bit operations. This algorithm is thus not polynomial

in the input length, which in the dense polynomial model is assumed to be length

O.d lg q/ bits.

One can also approach this problem by operating on points in the co-domain. One

has f .x/ D a for some x 2 Fq if and only if fa.X/ D f .X/�a has at least one linear factor.

We can test for such factors by examining deg gcd
�
fa;Xq � X

�
. This is computationally

expensive for large q, so we instead examine deg gcd
�
fa;Xq � X .mod fa/

�
, which is

of the same degree.²⁹

Multiplication of polynomials of degree no greater than d can occur in O.M.d //

field operations, where M.d / D d log d log log d. Modular reduction then requires

O.lg qM.d // field operations, and the  calculation requires O.log dM.d // field

operations. Repeating this process at most q times identifies the entire image set,

requiring O.q lg qM.d // field multiplications. Combining, we get a computational

complexity of

O.padalg 3�1 lg3 q log d log log d / bit operations,

or in “So-Oh” notation, QO.qd / bit operations.³⁰

.. Value Set Cardinality via Point Counting in the Single Vari-

able Setting

Theorem  gives us a way to express
ˇ̌
Vf
ˇ̌
in terms of the number of points on a family

of spaces on F k
q . If we had a way of getting Nk for 1 � k � d, then we could calculateˇ̌

Vf
ˇ̌
.

²⁹This is also the first step of Rabin’s irreducibility test.[]
³⁰If one was interested in estimating

ˇ̌
Vf
ˇ̌
, one could turn this algorithm into a probabilistic

algorithm.[]
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We provide an independent proof of this corollary here for the purpose of exposi-

tion, but we will see that this corollary is a direct consequence of Theorem  in the

next section.

We now proceed by counting points in the described spaces.

Corollary . Let a be a positive integer, p be a prime, q D pa, and f .x/ 2 FqŒx� be a

polynomial with positive degree d. There is a deterministic algorithm that calculates the

cardinality of the value set,
ˇ̌
Vf
ˇ̌
in Fq, and more generally the fiber signature of f, with

computational complexity

QO
�
26d�1�4dC3d8dC1a2p1=2

�
bit operations,

where � D max .a; d.dC 1/=2e/.

Proof. In order to apply Theorem , we need to count the number of Fq-rational

points on Nk D
ˇ̌
QNk
ˇ̌
with

QNk D

n
.x1; � � � ; xk/ 2 F k

q W f .x1/ D � � � D f .xk/
o

D

�

.x1; � � � ; xk/ 2 F k
q

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

f .x1/ � f .x2/ D 0

f .x1/ � f .x3/ D 0
:::

f .x1/ � f .xk/ D 0

�

The above shows that QNk is the simultaneous zero set for the .k � 1/ polynomials

gi.x1; � � � ; xk/ D f .x1/ � f .xiC1/, each of which is of degree d.

Each value of this one-variable polynomial can have at most d pre-images (as oth-

erwise the polynomial shied by this image would have more than d roots!), so we can

use Theorem  to calculate
ˇ̌
Vf
ˇ̌
using Equation (.). We can calculate all the needed

Nk values by applying Corollary , , , or  a total of d � 1 times (N1 D q, and need

not be calculated).
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These values are then scaled by evaluated elementary symmetric polynomials. All

of the necessary elementary symmetric polynomials can be evaluated using Newton’s

identity in less than QO.d5/ bit operations (as shown in Lemma ), which is dominated

by the point counting operation. The bit lengths of the resulting denominators are

bounded by O.d log d / bits. Each Nk � qk, so the length of Nk is O.ka log p/ bits, so

the d multiplications and additions required to combine everything are dominated by

the cost of the point counting calculation.

To summarize, .d � 1/ invocations of any of the point counting algorithms for

affine varieties would work in this case (the bound stated is associated with Corollary

), by using the parameters in Table ..

Table .: Point Counting Parameters for Corollary 

Parameter Value
n d
m d � 1
Nd dC 1
dC d.d � 1/

Note that the cost of calculating N1 to Nd also dominates the cost to calculate the

fiber signature as described in Proposition .

As noted, the initial approach for Theorem  included an approach similar to

Birch and Swinnerton-Dyer.[] The difference is that they required that xi ¤ xj for

i ¤ j. The standard approach to representing such inequalities is the “Rabinowitsch

trick”. Using this trick, we introduce an additional variable, say y, and the additional

equation

y
Y
i< j

.xj � xi / D 1:
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This is a degree
�k

2

�
C 1 polynomial, which would increase the work factor of the algo-

rithm dramatically.

. The General Setting

We now examine the case where we are counting the value set of a morphism between

affine varieties defined over Fq. We again start by examining the naïve approaches, and

then the approach involving point counting.

.. Naïve Algorithms

To evaluate elements in the domain, we first select a point 
 2 Ar
NFq

, and verify that it

is on the variety (by verifying that ˛.
/ D 0); if so, we then apply the morphism. We

keep track of all such values hit, and then total them at the end. This approach uses at

most .`C s/qr polynomial evaluations.

Each polynomial of degree d is made up of monomial terms of the form

acxc D ac
rY

jD1

xcjj ,

where c D .c1; � � � ; cr/. A result of standard combinatorics³¹ tells us that there are a

possible of
�dCr�1

d

�
different degree d monomial terms, and thus a general polynomial

of total degree d has at most

dX
jD0

 
jC r � 1

j

!
D

 
dC r
d

!
terms.

We can calculate all possible powers of the xi’s in O
�
.d � 1/ra1Clg 3 lg2 p

�
bit opera-

tions, and then calculate at most r multiplications per monomial, so one polynomial
³¹This is one of the “Twelvefold way”, in particular the number of ways of mapping a d-set into an

n-set, up to a permutation of d. See also the “stars and bars” representations for an intuitive way of
solving this style of counting problem.
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evaluation requires at most

O

 
r

 
dC r
d

!
a1Clg 3 lg2 p

!
bit operations.

Together, this tells us that the naïve approach to the value set problem in the general

setting has computational complexity

QO
�
.`C s/22.NdCr/qr

�
bit operations.

.. Value SetCardinality via PointCounting in theGeneralAffine

Setting

Fundamentally, we will do the same proof as in Corollary  , but more.

Theorem . Using the notation and conventions from Section ., if there is a positive

integer D so that
ˇ̌̌
. f jq/

�1. y/
ˇ̌̌
� D for all y 2 Vf , then there is a deterministic algorithm

to calculate the cardinality of the value set of f jq, and more generally the fiber signature

of f, with computational complexity

QO
�
2D.`CsCr/�sD.DrC 2dC�C 2�/4Dr�3a2p1=2

�
bit operations,

where � D max .a; d.DrC 1/=2e/ and dC D
PD`C.D�1/s

iD1 di.

Proof. We have (by hypothesis) bounded the size of any fiber, so we can directly apply

Theorem  in this setting (just as in the case of a single polynomial.)

In particular, in this setting we have

QNk D X�Yk.

This observation, along with Theorem ., gives us the ability to connect the num-

ber of points in a twisted “diagonal” of the variety with the number of points in its

value set.
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Recall that Nk D
ˇ̌
QNk.Fq/

ˇ̌
, and denote ˛.x/ D .˛1.x/; � � � ; ˛`.x//. We then con-

struct the space (lightly abusing notation by requiring that “0” denote whatever sized

zero vector is required to be sensible):

QNk.Fq/ D
n�

x.1/; � � � ; x.k/
�
2 X.Fq/

k
W f
�
x.1/
�
D � � � D f

�
x.k/
�o

D

†

�
x.1/; � � � ; x.k/

�
2

�
F r
q

�k

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

˛.x.1// D 0
:::

˛.x.k// D 0

f
�
x.1/
�
� f

�
x.2/
�
D 0

:::

f
�
x.1/
�
� f

�
x.k/
�
D 0

‡

This polynomial system is evidently in kr variables. Each ˛ term represents ` dis-

tinct polynomials. Each f term represents s distinct polynomials. There are thus a total

of k`C .k � 1/s total polynomials, each in kr variables.

By Theorem , we can calculate
ˇ̌
Vf
ˇ̌

using Equation (.). We can calculate all

the needed Nk values by applying Corollary , , , or  a total of D times in order

to calculate Nk for 1 � k � D. These values are then scaled by evaluated elementary

symmetric polynomials. All of the necessary elementary symmetric polynomials can

be evaluated using Newton’s identity in less than QO.D 5/ bit operations (as shown in

Section .), which is dominated by the point counting operation. The bit lengths of

the resulting denominators are bounded by O.D logD / bits. Each Nk � qk, so the

bit length of Nk is O.ka log p/ bits, so the D multiplications and additions required to

combine everything are dominated by the cost of the point counting calculation.

To summarize, D invocations of any of the point counting algorithms for affine

varieties would work in this case (the bound stated is associated with Corollary ), by

using the parameters in Table ..





Table .: Point Counting Parameters for Theorem 

Parameter Value
n Dr
m D.`C s/ � s
Nd max1�i�sC` di
dC

PD`C.D�1/s
iD1 di

For the calculation of the fiber signature, note that in this case N1 � qr, so the cost

of calculating the fiber signature of f given by Proposition  is bounded by QO.D 6ra log p/

bit operations, which is dominated by the cost of calculating N1; � � � ;ND.

It is instructive to note that if we examine the polynomial case (that is, fix ` D m D

0, D D d, r D s D 1), we get Corollary , so Corollary  is actually a corollary of

Theorem .

.. Applications

We will principally be interested in the case where certain algebraic structure is main-

tained by our morphism, namely we need f to be a dominant finite morphism. Recall

that a dominant morphism f W X ! Y, where X and Y are affine varieties, is finite

if and only if O .X/ is a finitely generated O .Y/-module via the induced NF q-algebra

homomorphism

f ? W O .Y/! O .X/ .

We extract a bound from a standard result from algebraic geometry.³²

Lemma . If f W X ! Y is a finite dominant morphism and O .X/ is generated by t

elements or fewer as an O .Y/-module (via the induced NF q-algebra homomorphism f ?),
³²This lemma is included for reference. Reasonable proof of this lemma is available in most variety-

oriented algebraic geometry texts, e.g., the course notes by S. Paul Smith.[, §.]
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then
ˇ̌
f �1. y/

ˇ̌
� t for all y 2 Y. If X is irreducible, then the fibers of f have cardinality

at most the degree of f.

This gives us the bounds necessary to establish the following two corollaries:

Corollary . Using the notation and conventions from Section ., ifX is irreducible and

f is a finite dominant morphism from X to Y of fixed degree d, then there is a deterministic

algorithm to calculate the cardinality of the value set of f jq, and more generally the fiber

signature of f jq, with computational complexity described in Theorem , with D D d.

If instead, we start with affine varieties that are not irreducible we may still be able

to say something so long as f is finite. Let t be a bound on the number of elements in

such a generating set. We then have that
ˇ̌
f �1. y/

ˇ̌
� t, so we can apply the same proof

as in Corollary  (but using the bound t instead of d), which leads to the following

result.

Corollary . Using the notation and conventions from Section ., if f is a finite domi-

nant morphism, and O .X/ is generated by a set of t elements from O .Y/ (via the induced

NF q-algebra homomorphism f ?), then there is a deterministic algorithm to calculate the

cardinality of the value set of f jq, and more generally the fiber signature of f jq, with

computational complexity described in Theorem , with D D t.

One important special case of the above is

Corollary . Using the notation and conventions from Section ., if f is a finite domi-

nant morphism from Ar
NFq
to Ar

NFq
of fixed degree d, then there is a deterministic algorithm

to calculate the cardinality of the value set of f jq, and more generally the fiber signature

of f jq, with computational complexity

QO
�
22dr�rd.drC 2dC�C 2�/4dr�3a2p1=2

�
bit operations,
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where � D max .a; d.drC 1/=2e/ and dC D
P.d�1/r

iD1 di.

Proof. The ring of regular functions for Ar
NFq

, NF qŒx1; � � � ; xr�, is an integral domain, so

Ar
NFq

is irreducible. Lemma  and Theorem  (with l D m D 0, s D r, and D D d)

then give us the desired result.
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Chapter 

The Amortized Cost of Counting the

Value Set

“PhD thesis protip: your committee will only

read the first eight and last three pages. Just fill

the middle part with Duran Duran lyrics.”

Professor Matthew D. Green, Johns Hopkins

University

“Searching for the undeniable truth that a man is

just a fool.”

Duran Duran, New Religion

Exploring these questions on a singleton basis isn’t the only way to proceed, of course.

By analogy, the question of counting Fq-rational points on a variety has been expanded

to examining the behavior of this count as we vary the characteristic of the field or the

degree of the extension.[]
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In this way, we may be interested in the behavior of the cardinality of the value set

of a particular polynomial as we vary the degree of the extension of the field, or as we

change the characteristic of the field.

In this section, we’ll denote the value set of the f jqr as Vf .Fqr/.

The insight that enables this approach is that the polynomials that define the spaces

QNk (when viewed correctly) don’t change as we vary these parameters. As such, we can

start in just the same way as in Section ...

. Amortized Cost in Fixed Characteristic

Theorem . Using the notation and conventions from Section ., and additionally

letting R be a positive integer, if there is a positive integer D so that
ˇ̌̌
. f jqR/

�1. y/
ˇ̌̌
� D

for all y 2 Vf
�
FqR
�
, then there is a deterministic algorithm to calculate the cardinality of

the value set of f jqw , and more generally the fiber signature of f jqw , for all w � R with

computational complexity

QO
�
2D.8Dr2C17rC`Cs/�sD4DrC5r4DrC4 .dC C 2/Dr.4DrC7/ a4DrC4p1=2

C

R2aD2r2D`C.D�1/s .4dC C 5/Dr log p
�
bit operations,

where dC D
PD`C.D�1/s

iD1 di.

Proof. The first part of this proof proceeds exactly as in Theorem .

We have (by hypothesis) bounded the size of any fiber, so we can again apply The-

orem  and calculate
ˇ̌
Vf
ˇ̌
using Equation (.).

QNk D X�Yk

D

n
.x.1/; � � � ; x.k// 2 Xk

W f
�
x.1/
�
D � � � D f

�
x.k/
�o

.
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Denote Nk;w D
ˇ̌
QNk.Fqw/

ˇ̌
, ˛.x/ D .˛1.x/; � � � ; ˛`.x// and the space

QNk.Fqw/ D
n�

x.1/; � � � ; x.k/
�
2 X.Fqw/

k
W f
�
x.1/
�
D � � � D f

�
x.k/
�o

D

†

�
x.1/; � � � ; x.k/

�
2

�
F r
qw

�k

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

˛.x.1// D 0
:::

˛.x.k// D 0

f
�
x.1/
�
� f

�
x.2/
�
D 0

:::

f
�
x.1/
�
� f

�
x.k/
�
D 0

‡

.

This polynomial system is evidently in kr variables. Each ˛ term represents ` dis-

tinct polynomials. Each f term represents s distinct polynomials. There are thus a total

of k`C .k � 1/s total polynomials, each in kr variables.

We now specialize to dealing with the zeta functions, rather than a distinct point

counting algorithm.

Note that Nk;w changes as we vary w, but the underlying polynomials that define

the space do not, thus the variety QNk does not change. As such, for fixed k, the values

Nk;w can be extracted from the logarithmic derivative of the zeta function. We calculate

one zeta function per QNk using corollaries  or , and then calculate all the needed

Nk;w values by applying Proposition .

The computational complexity of this algorithm is presented using Corollary ,

but if Corollary  were used instead, each of the D zeta function calculations would

occur using the parameters in Table ..

All of the resulting zeta functions are rational. Denote the zeta function associated

with QNk as g.T/=h.T/. Again using the degree bound that we found in the proof of

Corollaries  and , for an affine space in n variables and defined by m polynomials,

the degree of both the numerator and denominator of the zeta function is bounded
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Table .: Zeta Function Calculation Parameters for Theorem 

Parameter Value
n Dr
m D.`C s/ � s
dC

PD`C.D�1/s
iD1 di

by

D � 2m .4dC C 5/n .

Thus, in our case, we have a degree bound of

D � 2k`C.k�1/s .4dC C 5/kr .

Again using our coefficient bound, for the n-variable case, we find that the coeffi-

cients of both g and h are bounded by qDn, so

B D O
�
Dkra log p

�
D O

�
akr2k`C.k�1/s .4dC C 5/kr log p

�
bits.

In order to extract the Nk;w, we now apply Proposition , and find that we can

recover the first R values for Nk;w in

QO
�
R2akr2k`C.k�1/s .4dC C 5/kr log p

�
bit operations.

By hypothesis, f can have at most D pre-images, so by Theorem , we can calculateˇ̌
Vf
ˇ̌
using Equation (.), which requires D iterations of the above, the most costly of

which is k D D. As before, calculation of the elementary symmetric polynomial is not

an impediment (in this case particularly so, as the value of the symmetric polynomials

need only be calculated once!)
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For ease of book keeping, we can arrange the resulting values into a matrix opera-

tion: 0BBBBBBB@
N1;1 N2;1 � � � ND;1

N1;2 N2;2 � � � ND;2

:::
:::

: : :
:::

N1;R N2;R � � � ND;R

1CCCCCCCA
R�D

0BBBBBBB@
�1
�
1; 1

2 ; � � � ;
1
D

�
��2

�
1; 1

2 ; � � � ;
1
D

�
:::

.�1/D�1�D
�
1; 1

2 ; � � � ;
1
D

�

1CCCCCCCA D
0BBBBBBB@

ˇ̌
Vf.Fq1/

ˇ̌ˇ̌
Vf.Fq2/

ˇ̌
:::ˇ̌

Vf.FqR/
ˇ̌

1CCCCCCCA .

As seen in Lemma , the cost to calculate the elementary symmetric polynomi-

als is dominated by the rest of the calculation, and the matrix operation occurs in

QO.DRra log p/ bit operations, also dominated by the cost of the rest of the operation.

For calculation of the fiber signatures, referring to Proposition , we need only

compute the elementary symmetric polynomials once for the entire computation,

with complexity QO.D 6/ bit computations.

Using the trivial bound

logN1;w � Rra log p,

we see that the cost to calculate the R distinct fiber signatures is QO.D3R2ra log p/ bit

operations, which is dominated by the cost of extracting the Nk;w values from the zeta

function.

Specializing to the case of one variable polynomials, we can let s D r D 1, ` D 0,

D D d, which leaves us with the following corollary.

Corollary . Let a and R be positive integers, p be a prime, q D pa, and f be a polyno-

mial f .x/ 2 FqŒx�, of positive degree d. There is a deterministic algorithm to calculate the

cardinality of the value set of f jqw , and more generally the fiber signature of f jqw , for all

w � R with computational complexity

QO
�
28d 2C18d�1d8d2C18dC5a4dC4p1=2

C R223d�1d2dC2a log p
�
bit operations.
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It is useful to think about this aer fixing the polynomial that is being evaluated,

and then looking at the cost of calculating the cardinality of a single value set (amor-

tized across the total number of value sets counted), at which point the computational

complexity is

QO
�
a4dC4p1=2

C R2a log p
�

bit operations.

Note that if R grows suitably quickly as compared to q, then this gives an algorithm

whose amortized cost (per value set cardinality calculated) is (so-)polynomial with

respect to input, and (so-)linear with respect to output.

We can also apply Theorem  in the case of morphisms with the right structure,

as we have seen in Corollaries  and .

Corollary . Using the notation introduced in Theorem , if X is irreducible and f is

a finite dominant morphism from X to Y of fixed degree d, then there is a deterministic

algorithm to calculate the cardinality of the value set of f jqw , and more generally the fiber

signature of f jqw , for all w � R with computational complexity described in Theorem ,

with D D d.

Corollary . Using the notation introduced in Theorem , if f is a finite dominant

morphism, and O .X/ is generated by a set of t elements from O .Y/ (via the induced

NF q-algebra homomorphism f ?), then there is a deterministic algorithm to calculate the

cardinality of the value set of f jqw , and more generally the fiber signature of f jqw , for all

w � R with computational complexity described in Theorem , with D D t.

One important special case of the above (as in Corollary ) can be found by letting

l D m D 0, s D r, and D D d, whence we arrive at

Corollary . Using the notation introduced in Theorem , if f is a finite dominant

morphism from Ar
NFq

to Ar
NFq

of fixed degree d, then there is a deterministic algorithm to
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calculate the cardinality of the value set of f jqw , and more generally the fiber signature of

f jqw , for all w � R with computational complexity

QO
�
2d.8dr2C18r/�rd4drC5r4drC4 .dC C 2/dr.4drC7/ a4drC4p1=2

C

R2ad2r2.d�1/r .4dC C 5/dr log p
�
bit operations,

where dC D
P.d�1/r

iD1 di.

. Amortized Cost Across Many Characteristics

In much the same way as the above, we can examine
ˇ̌
Vf .Fpa/

ˇ̌
as we vary both p and

a. One important difference here (that will somewhat simplify the statement of our

results) is that in the affine case we can’t expect any particular polynomial (or s-tuple

of polynomials) to remain a morphism as we vary p if we restrict the regular functions

on the space. As such, we abandon some of the generality above, and concentrate on

the instance where we are dealing with a morphism from Ar to As.

We again revisit the notation that we are using.

Let f be an s-tuple of polynomials over the integers,

f .x/ D
�
f1.x/; � � � ; fs.x/

�
,

where fi 2 ZŒx1; � � � ; xr� is of total degree di. Denote the maximal coefficient (in abso-

lute value) of fi as k fik.

For each prime p we can consider the p-reduction of f, denoted fp, by reducing

the coefficients of the polynomials modulo p and considering the resulting map as a

morphism fp W Ar
NFp
! As

NFp
. We are interested in characterizing the cardinality of the

value set of such fp once we restrict the domain to some finite field of characteristic p.

We could use Theorem  to accomplish this task for fixed p, and calculate the

cardinality of the value set for all finite extensions of Fp less than or equal to degree
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R. The following results instead allow us to simultaneously perform this calculation

for all primes p less than some bound N and for all field extensions above Fq of degree

less than or equal to R.

For notational convenience, denote the restriction fp
ˇ̌
X.Fpw /

as f jpw , which is evi-

dently a function f jpw W F r
pw ! F s

pw .

Theorem . Let r; s;N and R be positive integers. Let f be an s-tuple of polynomials

f .x/ D
�
f1.x/; � � � ; fs.x/

�
, where fi.x/ D ZŒx1; � � � ; xr�, where the total degree of fi is di.

If there is a positive integer D so that
ˇ̌̌̌�

f jpR
��1

. y/
ˇ̌̌̌
� D for all y 2 F s

pR and for all

primes p < N, then there is a deterministic algorithm to calculate the cardinality of the

value set of f jpw , and more generally the fiber signature of f jpw , for all w � R and all

primes p < N, with computational complexity

QO
�
2D.8Dr2C17rCs/�sC1D4DrC8r4DrC6..D � 1/dC C 2/Dr.4DrC7/N log k f kC

ND2R2r2.D�1/s .4.D � 1/dC C 5/Dr
�
bit operations,

where dC D
Ps

iD1 di and k f k D
Qs

jD1 k fjk.

Proof. We have (by hypothesis) bounded the size of any fiber, so we can again apply

Theorem  and can calculate
ˇ̌
Vf
ˇ̌
using Equation (.).

For each choice of prime p, use Xp to denote affine r-space over NF p and Yp to denote

affine s-space over NF p. We again then have

QNk;p D X
�Ypk
p .

Denote Nk;p;w D
ˇ̌
QNk;p.Fpw/

ˇ̌
. We then use Corollary  to calculate the zeta functions

for QNk;p for all primes p � N for each value of k from 1 to D. We can then extract all the

Nk;p;w values for all w � R by invoking Proposition  on the zeta functions for Z QNk;p
.
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The variety QNk;p is described by the k� 1 total s-tuples of polynomials, of the form8̂̂̂̂
<̂
ˆ̂̂:

f
�
x.1/
�
� f

�
x.2/
�
D 0

:::

f
�
x.1/
�
� f

�
x.k/
�
D 0

As such, there are thus a total of .k�1/s polynomials, and the system is in kr variables.

We can now apply Corollary  a total ofD times (once for each k D 1 : : :D), which

has time complexity bounded by

QO
�
2D.8Dr2C17rCs/�sC1D4DrC8r4DrC6..D � 1/dC C 2/Dr.4DrC7/N log k f k

�
bit operations.

This results in D zeta functions for each of the π.N/ distinct primes less than or

equal to N. The resulting zeta functions are rational, and as in Theorem , the degree

of the numerator and denominator are bounded by

D � 2.D�1/s .4.D � 1/dC C 5/kr .

We then apply our coefficient bound, and find that the maximal coefficient is less than

NkrD, so our length bound is

B D kr2.D�1/s .4.D � 1/dC C 5/kr logN.

For fixed k and p, we can extract Nk;p;w from the zeta functions (for all positive

integers w less than or equal to R) by application of Proposition . We apply this

lemma Dπ.N/ times to extract all the necessary values of Nk;p;w, which requires

QO
�
π.N/D2R2r2.D�1/s .4.D � 1/dC C 5/Dr logN

�
bit operations.
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Indexing the primes less than N as p1; � � � ; pπ.N/ and letting � D .1; 1=2; � � � ; 1=D/,

we can form the final step of the calculation into a matrix operation:0BBBBBBBBBBBBBBBBB@

N1;p1;1 � � � ND;p1;1

N1;p1;2 � � � ND;p1;2

:::
: : :

:::

N1;p1;R � � � ND;p1;R

N1;p2;1 � � � ND;p2;1

:::
: : :

:::

N1;pπ.N/;R � � � ND;pπ.N/;R

1CCCCCCCCCCCCCCCCCA

0BBBBBBB@
�1 .�/

��2 .�/

:::

.�1/D�1�D .�/

1CCCCCCCA D

0BBBBBBBBBBBBBBBBB@

ˇ̌
Vf.Fp1/

ˇ̌ˇ̌
Vf.Fp2

1
/
ˇ̌

:::ˇ̌
Vf.FpR1 /

ˇ̌ˇ̌
Vf.Fp2/

ˇ̌
:::ˇ̌̌

Vf.FpRπ.N/
/
ˇ̌̌

1CCCCCCCCCCCCCCCCCA
.

As seen previously, the cost to calculate the elementary symmetric polynomials is

dominated by the rest of the calculation; the matrix operation occurs in QO.R2π.N/D logN/

bit operations, which is also dominated by the cost of the rest of the operation.

To calculate the fiber signatures, referring to Proposition , we need only com-

pute the elementary symmetric polynomials once for the entire computation, with

complexity QO.D 6/ bit operations.

There are a total of π.N/R sets of N values. Using the trivial bound

logN1;pπ.N/;R � Rr logN,

we see that the cost to calculate the π.N/R distinct fiber signatures is bounded by

QO.ND3R2r/ bit operations, which is dominated by the cost of extracting the Nk;pi;w

values from the zeta function.

Specializing to the case of one-variable polynomials, we can let s D r D 1, D D d,

which leaves us with the following corollary.

Corollary . Let N and R be positive integers and f be a polynomial f .x/ 2 ZŒx� of

positive degree d. There is a deterministic algorithm to calculate the cardinality of the
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value set of f jpw , and more generally the fiber signature for f jpw , for all positive integers

w � R and for all primes p � N with computational complexity

QO
�
2d.8dC18/d8d2C18dC8N log k f k C NR223d�1d2dC2

�
bit operations.

From this, we get a total of π.N/R value set (and fiber signature) results. For large

N, we have

π.N/ �
N

logN
.

We again fix the polynomial, and examine the cost per value set counted (amortiz-

ing the cost over these π.N/R values), resulting in an amortized computational com-

plexity of

QO
�
R logN

�
bit operations.

In this way, we have an algorithm that is (so-)polynomial in the size of the under-

lying field. In particular, this (partially) resolves Wan’s conjecture affirmatively: this

algorithm counts the value set in (amortized) cost (so-)polynomial in log q.

Compare this computational complexity with the computational complexity of

Corollaries  or  (again assuming we fix the polynomial f), summarized in Table

. (here letting p D N and a D R). This shows that this “doubly amortized” approach

is a marked improvement over either of the prior approaches.

Table .: Comparison of Amortized Complexities (fixed polynomial)

Cor. Complexity (bit operations)

 QO
�
R2N1=2�

 QO
�
R�1N1=2 C R logN

�
 QO

�
R logN

�
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Chapter 

Conclusion

“Beware of the man who works hard to learn

something, learns it, and finds himself no wiser

than before. He is full of murderous resentment

of people who are ignorant without having come

by their ignorance the hard way.”

Kurt Vonnegut, Cat’s Cradle

. Findings, Redux

We adapted and analyzed existing zeta function calculation algorithms so that we

could apply their results in our setting for both point counting and calculating zeta

functions in affine varieties over finite fields. We also developed an algorithm that ex-

tracts the number of Fqk -rational points on a variety from that variety’s zeta function,

for all positive k less than some bound R.

We found a pair of combinatorial results that provide a link between the number

of elements in the k-iterated fiber product via a map f and the value set of the map, or

more generally its fiber signature. In instances where we can provide a suitably low
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bound and suitably efficient point counting algorithms exist, these links can be used

to provide efficient algorithms for calculating the value set or the fiber signature.

In particular, we provide algorithms for calculating the value set of a morphism

for varieties over a finite field in two cases where we can bound the number of points

in the fiber. This specializes to the case of the long-standing problem of calculating

the cardinality of the value set (or more generally the fiber signature) of a polynomial

over a finite field.

These findings also lead to two sets of related “amortized cost” algorithms, where

the cost of a much larger calculation can be amortized over the number of results

calculated, with a better resulting cost per value set (or fiber signature) calculated. In

both cases, the zeta functions for the k-iterated fiber products of the spaces were used

to extract the number of Fqk -rational points for all finite extensions of Fq of degree

up to some bound. This data was then combined to solve for the cardinality of the

value set and fiber signature for these maps over many extensions of the base finite

field. In the first case, this is done for a single characteristic. In the second case, an

algorithm (due to Harvey) that computes zeta functions across many characteristics

is used as the basis of a similar approach, where this same process is used across both

many extensions and many characteristics.

This latter approach yields an amortized cost of counting the value set of a fixed

single-variable polynomial map in QO
�
log q

�
, partially resolving a conjecture of Wan.

More generally this work shows that there are circumstances where the (apparently

harder) value set counting problem can be reduced to the (apparently easier) point

counting problem.

So long as the size of the maximal fiber has a suitably low bound, these algorithms

all perform much better than the naïve approach which, for the general case, was

the best approach to this problem previously. These results are also both significantly
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generalized and the corresponding specialized results are significantly better than the

prior work published by Cheng-Hill-Wan, whose analogous results were essentially

the preliminary results to those presented here.[]

The results for the one variable case, and for the finite endomorphism on Ar
NFq

, are

summarized in Table . (here, the amortized results are presented as the amortized

cost per result).

Table .: Comparison of (Loosened) Complexities

Source Complexity (bit operations)
Single Variable

Naïve Counting QO .dpa/
Cheng-Hill-Wan QO

�
28dd12da7dp5d�

Cor.  QO
�
26d�5dd9da2p1=2�

� D max .a; d.dC 1/=2e/
Cor.  QO

�
29d 2d9d 2R�1a5dp1=2 C 23dd3dRa log p

�
Cor.  QO

�
29d2d9d2 log k f kR�1 logNC 23dd3dR logN

�
Affine Space

Naïve Counting QO
�
22.NdCr/par

�
Cor.  QO

�
210drd4drr4drdC

4dr�5dra2p1=2
�

� D max .a; d.drC 1/=2e/
Cor.  QO

�
214d2r2d5drr5drdC

5d2r2R�1a5drp1=2C

24drdC
drRa log p

�
Thm.  QO

�
214D2r2D5D2r2r5DrdC

5D2r2 log k f kR�1 logNC
24DrDDrdC

DrR logN
�

If we again fix the polynomial system and morphism degree (thus fix the dimen-

sions of the spaces involved and the polynomials, thus the polynomial degrees) we

arrive at the results summarized in Table ..
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Table .: Comparison of (Loosened) Complexities: Fixed Polynomial System

Source Complexity (bit operations)
Single Variable

Naïve Counting QO .pa/
Cheng-Hill-Wan QO

�
a7dp5d�

Cor.  QO
�
a6dp1=2�

Cor.  QO
�
a5dp1=2R�1 C Ra log p

�
Cor.  QO

�
R logN

�
Affine Space

Naïve Counting QO .par/
Cor.  QO

�
a5drp1=2�

Cor.  QO
�
a6drp1=2R�1 C Ra log p

�
Thm.  QO

�
R logN

�
. Future Work

There are several ways to extend these results. The underlying combinatorial relation-

ship applies to any case where the size of the fiber of a map can be bounded; there

are surely many different instances where this should be possible, particularly in the

case where we only care about Fq-rational points. As such, one approach to extending

these results would be to locate additional settings where such a bound is possible.

It may be possible to apply Harvey’s general methods to the case of function fields;

one approach here would be to use Lauder’s general approach with smooth, projective

hypersurfaces[], but replace Lauder’s cohomological tools with Harvey’s (p-adic and

Witt vector based) tools.

It seems likely that the fiber signature can be used to directly calculate many types

of important information regarding the map; many combinatorial results should be

extractable from this fiber signature.





The existence of these algorithms (and their computational complexity) provides

some information about some asymptotic results regarding the value set. In particu-

lar, it should be possible to gain further insight into the impact of the degree of the

polynomial on the asymptotic error term for the value set in Equation ().
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