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Optimization of the SWATPlus Model to Adequately Predict Different 

Segments of a Managed Streamflow Hydrograph

ABSTRACT: Complete representation of rainfall-runoff responses in complex, 

large watersheds using a single-objective parameterization approach in watershed

models is often unachievable. In this study we present a calibration approach for 

the SWAT+ model that independently fits model parameters for different flow 

segments of the hydrograph. The approach is demonstrated for the Feather River, 

California, USA using daily streamflow from the Lake Oroville reservoir outlet 

gage. Results show that when model parameters were independently fitted for 

different flow segments the KGE, NSE, PBIAS, and RSR values improved to 

0.96, 0.99, -3.3, and 0.10, respectively, compared to 0.72, 0.66, -9.30, and 0.53, 

respectively, achieved under a multi-objective and full hydrograph (average 

hydrograph) calibration. The results highlight when considering the average 

hydrograph and flow duration curves, a more balanced representation of both 

poorly and well-performing segments is achieved, emphasizing the importance of

segment-specific parameterization and multi-objective evaluation for accurately 

representing different flow conditions.

Keywords: Feather; managed streamflow, optimization; flow segment, multi-

objective functions, SWAT+
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1. Introduction

Climate change will impact water resources globally, especially in high elevation 

regions that serve as the water towers of the world (Immerzeel et al., 2010; 2020). 

Predicting the impact of climate change on the timing and magnitude of streamflow in a 

warmer, low-to-no-snow future (Barnett et al., 2005; Siirila-Woodburn et al., 2021) is 

critical to adapt water resources infrastructure (Hedden-Nicely, 2022) and secure safe 

and reliable sources of water for human consumption, agriculture, ecosystem health, and

industry. Advancements in large-scale integrated hydrologic models are required to 

quantify the current and future water supply and water quality conditions (Bailey et al. 

2023). Prediction of current and future streamflow is one of the most important tasks in 

water resources management. Hydrologists have been using data-driven and physically 

based hydrologic models to simulate streamflow and other hydrologic processes in 

catchments. There are several such models that are being used globally. Among others, 

the Soil and Water Assessment Tools (SWAT) developed by Arnold et al. (1998), the 

MIKE SHE, which is the European Hydrological System Model (Refsgaard, and Storm 

1995), and the Agricultural Policy/Environmental Extender abbreviated as APEX 

(Gassman 2009) are a few examples of watershed-scale models used worldwide 

(Golmohammadi et al. 2014).

The SWAT model has been extensively used to predict the terrestrial hydrologic 

cycle of watersheds, to evaluate best management practices, to simulate environmental 

flow, and to investigate the impacts of climate and land use changes on hydrologic 

processes (e.g., Bailey et al. 2023, Wagner et al. 2022, Liu et al. 2021, Mahmoodi et al. 

2021, Tigabu et al. 2020, Kannan et al. 2019, Aliye et al. 2020). Due to the growing 

interest of users and the availability of a strong user group for the SWAT model, SWAT
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model developers have been advancing the model structure over time. Most recently, 

Bieger et al. (2017) completely restructured and advanced the SWAT model into the 

SWAT+ version, which is the most prominent revision in its history (Wagner et al. 

2022). SWAT+ incorporates new features, including landscape unit and stream 

connectivity, to better represent various scales of watersheds and a consolidated file 

structure (White et al. 2022). SWAT+ is also capable of simulating managed flows, 

impacted by dams and reservoir operations, via a set of reservoir operation rules (Wu et 

al. 2020). Despite the extensive progress on advancing the SWAT model structure and a

growing number of studies on calibration and uncertainty analysis, a holistic calibration 

approach is still missing due to the heterogeneity and complexity of watershed 

hydrologic processes encountered throughout the world. Moreover, calibration of 

hydrologic models, including SWAT, is always challenging due to uncertainties that 

arise from model inputs, model structure, parameters, and outputs (Wu et al. 2021). The 

challenge is far higher in regions with extensive water management infrastructure for 

flood protection and water delivery, such as dams, surface water reservoirs, and 

hydropower operations, and water diversion as can be found in the State of California, 

USA.

California is known for having the most complex water delivery systems in the 

world (Avanzi 2018). According to Avanzi (2018), the water delivery systems in 

California are implemented through a network of reservoirs, aqueducts, and 

groundwater pumps that deliver water from the headwaters in the northern and eastern 

portions of the state to population centers and agricultural land in the western and 

southern parts of the state. These numerous water infrastructures, including a collection 

of canals, pipelines, reservoirs, and hydroelectric power facilities, deliver clean water to 
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38 million Californians, 3.2 million hectares of farmland, and businesses throughout the

state (DWR 2023). Moreover, the high seasonal and interannual hydrologic availability 

and extreme weather events in the state are other factors that make the water delivery 

system most intricate and complex (Hanak and Lund 2012). The Feather River 

watershed is one of the most important watersheds in California that provides a third of 

all water distributed by the Metropolitan Water District of Southern California through 

Oroville reservoir and canals (Avanzi et al. 2018). The complex hydrology, intensive 

water use system, Mediterranean climate, and large elevation range (including the rain-

snow transition) of the Feather River make water management very challenging. To 

accommodate these challenges, the California Department of Water Resources uses 

various models to track streamflow and water deliveries to the State Water project, the 

nation’s largest state-owned water and power generator and user-financed water system 

(DWR 2023). Application of a physically based hydrologic model like SWAT+ is 

needed to sustain water supply services under such multifold problems. 

For the purpose of water management, it is also essential to calibrate and 

validate the model to accurately represent the spatial and temporal heterogeneities of 

hydrologic processes (Mengistu et al. 2019). To achieve an adequate calibration and to 

reduce uncertainty in model simulations (Guse et al. 2020; Kannan et al. 2019), both 

calibration and validation periods should include wet, average, and dry years (Arnold et 

al. 2012). 

Various calibration approaches have been applied to predict hydrologic 

processes in watersheds. The traditional approach involves calibrating the model based 

on streamflow data at a catchment outlet point (Daggupati et al. 2015). However, new 

approaches have been developed, such as seasonal clustering of daily streamflow for 
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calibration (Lakshmi and Sudheer 2021; Tigabu et al. 2023), multi-metric calibration for

different parts of hydrographs (Pfannerstill et al. 2014), and incorporating streamflow 

signatures, flow duration curves, and spatially distributed remote sensing data in the 

model calibration (Alemayehu et al. 2022; Westerberg et al. 2011). More recently, the 

multicriteria sequential calibration and uncertainty analysis (MS-CUA) method was 

developed to better optimize SWAT simulations and to provide balanced uncertainty 

analyses compared to other calibration approaches (Wu et al. 2021). Multi-variable 

calibration approaches have also been shown to improve the performance of SWAT, 

particularly in predicting snow-affected streamflow (Chen et al. 2023, Liu et al. 2021). 

Similarly, the utilization of streamflow signatures (flow duration curve) and remote 

sensing information in hydrologic model evaluations has have emerged as crucial 

calibration options. Notably, Dal Molin et al. (2023), Alemayehu et al. (2022), 

Pfannerstill et al. (2017), Donnelly et al. (2016), Shafii and Tolson (2015), and 

Pfannerstill et al. (2014) have all have considered flow duration curves (FDCs) as 

calibration objectives for model performance evaluation.

Donnelly et al. (2016) incorporated flow signatures in the evaluation of of the 

performance of a multi-basin model performance across various sites within the domain,

utilizing several model performance metrics to better understand dominant catchment 

processes. Their study indicated that simulated flows based on the semi-distributed and 

process-based HYPE model (Lindström et al. 2010) successfully captured observations, 

with dominant temporal variability also represented when considering all flow 

signatures simultaneously. Dal Molin et al. (2023) investigated the efficacy of a 

streamflow signature-based model calibration in predicting streamflow for six 

catchments in the Thur basin, in northeastern Switzerland. Their findings demonstrated 
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that signature-based calibration of precipitation-streamflow models adequately predicts 

streamflow for ungagged catchments. Similarly, Alemayehu et al. (2022) found that 

utilizing flow duration curves (FDCs) from historical records and recent remote sensing-

based evapotranspiration data in model calibration enhances the efficiency of hydrologic

models in simulating catchment hydrologic processes. This underscores the superior 

efficiency of FDC-based calibration approaches for the SWAT model when integrating 

streamflow signatures and remote sensing information. Consequently, the authors 

suggest employing historical FDC records and recent remote sensing-based 

evapotranspiration data in model calibration to optimize the efficiency of hydrologic 

models in simulating catchment hydrologic processes. Overall, hydrologic model 

calibration frameworks that prioritize FDCs and remote sensing information as 

calibration objectives are essential for overcoming limitations associated with 

conventional calibration approaches. 

Despite numerous calibration and validation studies of the SWAT model, 

achieving satisfactory calibration for large, complex watersheds remains challenging, as

a single parameter set often fails to capture the diverse signatures of the streamflow 

hydrograph. As highlighted by Westerberg et al. (2011), conventional calibration 

performance measures suffer from four main limitations: uncertainty in observed 

streamflow, variable sensitivity of model performance across different flow segments, 

the influence of input/output errors, and the inability to evaluate model performance 

when observed and simulated flow magnitudes do not overlap in time. Therefore, the 

current study aims to demonstrate a novel calibration approach that can better represent 

the distinct flow signatures of managed streamflow using the SWAT+ model. Here, we 

independently parameterized the high-flow, middle-flow, and low-flow segments of a 
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managed streamflow hydrograph. We believe that testing this calibration exercise is 

crucial, given the limited calibration exercises tested for the SWAT+ model. This study 

does not utilize remote sensing evapotranspiration and soil moisture data in the 

calibration and validation process because the scope of the study is to introduce a new 

method of model calibration to reproduce observed streamflow.

The study is conducted using the Feather River watershed in California, USA as 

an example. SWAT+ has a wider flexibility to include manmade structures such as 

reservoirs, weirs and ponds which can help to simulate regulated flows in a watershed 

(Wu et al. 2020). Multiple parameter sets will be proposed to improve the efficiency of 

the SWAT+ model in reproducing each flow segment independently, aiming to identify 

the segment of the FDC that most significantly influences the overall predictive 

performance of the model for managed streamflow. 

This study assesses the feasibility of these methods using long-term managed 

streamflow data from the Feather River at the Oroville gauging station, juxtaposed with 

SWAT+ simulated streamflow at the same location. Oroville, the second-largest 

reservoir in California, serves crucial roles in water supply storage, hydropower 

generation, and flood control along the Feather River (Nelson et al., 2016). Given its 

well-documented reservoir operation rules in the SWAT+ model and extensive 

historical streamflow records at the outlet point, our calibration approach focuses on 

regulated flow at the outlet of the reservoir. Moreover, although calibration and 

validation weren't practical due to insufficient records at the outlet points of upstream 

water bodies, we have integrated these water bodies into our modeling framework. 

Hence, the specific objectives of the study are as follows:
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1) To identify  the  most  influential  parameters  for  simulating  high  flow,  middle

flow, and low flow segments of the managed streamflow hydrograph using the

SWAT+ model

2) To  propose  multiple  parameters  sets  that  can  improve  the  efficiency  of  the

SWAT+ model in reproducing each flow segment independently.

3) To evaluate the practicability of the proposed calibration and parameterization

methods using long-term managed streamflow data from the Feather River at the

Oroville gauging station and SWAT+ simulated streamflow at the same location.

2. Materials and methods

2.1. Study area 

The Feather River is a large tributary to the Sacramento River (71,432 km2), the largest 

river in northern California. It serves as the primary source of surface water for the 

state, flowing into Oroville Reservoir (Huang et al., 2012; Koczot et al., 2004). The 

Upper Feather River Watershed, above Oroville Dam, is situated in the Sierra Nevada 

Mountains of California. Using a digital elevation model with a resolution of 30 m by 

30 m, we delineated the watershed to Oroville Dam and found that it covers an area of 

9,427 km2, with altitudes ranging from 256 m to 2826 m above sea level.

There are three reservoirs and five powerhouses upstream of the North Fork 

Feather River, as depicted in Figure 1. The most prominent natural reservoir, Lake 

Almanor, is a spring-fed lake that has been expanded by the construction of Canyon 

Dam (Avanzi et al., 2018). The other two reservoirs are Butt Valley, located on Butt 

Creek with a capacity of 49,891 acre-feet (0.062 km3), and Lake Almanor with a 

capacity of 1.308 million acre-feet (1.613 km3). The Feather River watershed is 
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characterized by a Mediterranean climate with warm, dry summers and cool, wet 

winters (Koczot et al., 2012). The mean long-term total annual precipitation is 1078 

mm, while the mean monthly maximum and minimum temperatures are 21 °C and 4.8 

°C, respectively.

Most of the watershed area is at elevations where winter temperatures can 

fluctuate from below to above freezing, and slight temperature changes can affect snow 

formation and melting. This feature of the watershed leads to complex streamflow 

variability, making changes in streamflow dependent on both temperature and 

precipitation lapse rates since temperature affects snowmelt and precipitation form. The 

land cover of the watershed primarily consists of coniferous trees, with some areas of 

shrubs and grassland mainly located in the agricultural valleys (Koczot et al., 2004).

Insert Figure 1 here.

2.2. Data

For this study, daily gridded precipitation and maximum and minimum temperature data

were obtained from the California Department of Water Resources (CDWR 2022) based

on the 4 km resolution PRISM product (PRISM, 2022). Spatial data, including land use/

cover (NLCD 2001 Land Cover), soil (SSURGO), and digital elevation models, were 

obtained from publicly available resources listed in Table 1.

Long-term streamflow records from 1953 to the present at the Oroville dam 

gauging station's outlet point were obtained from the United States Geological Survey 

(USGS) National Water Information System (NWIS, https://waterdata.usgs.gov/nwis/) 

to calibrate and validate the SWAT+ model. The spatial (Figure 2), climate, and 

hydrologic data were used to establish and calibrate the SWAT+ model. All data used to
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establish and calibrate the SWAT+ model and their basic characteristics are presented in

Table 1.

Insert Table 1 here.

Insert Figure 2 here.  

2.3. Hydrologic model setup

This study was conducted with the SWAT+ model (Bieger et al. 2017), which is a 

completely revised version of SWAT (Arnold et al. 1998; Arnold and Fohrer 2005). 

SWAT+ is capable of simulating spatially distributed water balance and nutrient cycles 

based on hydrological response units (HRUs). The SWAT+ model for the Upper 

Feather watershed was constructed based on the pre-existing files of the SWAT2009 

obtained from the California State Department of Water Resources (DWR, 2022). We 

used the long-term release of QGIS (version 3.22.10) to delineate watersheds and the 

burn function was applied to enforce the existing stream networks in the delineation of 

the DEM-based stream network. Moreover, we used the DEM Inversion function to 

classify the watershed into either landscape or flood plain zones and the Add Lake 

function to append the existing reservoir system. 

SWAT+ incorporates a set of rules governing reservoir operations for surface 

water reservoirs in the United States. These rules are utilized without modification to 

simulate release scenarios. The default release rules, outlined in a decision table specific

to the Oroville reservoir (Table 2), encompass five conditions, seven alternatives, and 

five action options. To facilitate the model's utilization of the decision table, key 

parameters such as the conditional variable, condition limits (limit variable), limit 

operator, and limit constant must be clearly defined (Arnold et al., 2018). In Table 2, the
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release rate is determined as a function of both reservoir volume and storage volume (e-

pv). The conditional variable, representing reservoir volume, and the limit variable, 

denoting storage volume in hectares-meters (ha-m), jointly dictate the selection of 

alternatives and corresponding action entries. For instance, the implementation of the 

first alternative is contingent upon the satisfaction of the following conditional 

statement: if reservoir volume (conditional variable) > e-pv (storage volume in ha-m) = 

-6.761(limit constant) and reservoir volume < e-pv = 0.356 and month < 6.892, then the 

action entry involves releasing the base volume for drawdown days (dyrt) for multiple-

use flood (multiple_use_fl). Similarly, the determination of action types for the 

remaining alternatives follows suit, relying on conditional statements derived from the 

interplay of the conditional variable, limiting variable, limit operation, and limit 

constants as outlined in Table 2. Here, it worths to note that calibration of parameters 

connected to reservoir storage and release are not the scope of this paper. As we used 

the default parameterization for the reservoir, there might be uncertainty associated with

releases from reservoir. 

Insert Table 2 here.

The watershed delineation step resulted in 59 subbasins and 583 channels. 

Following the watershed delineation step, the hydrologic response units (HRUs) were 

created by combining the land use, soil, and slope classes. To capture topographic 

effects on watershed processes, we classified the DEM into five slope classes as 0–2% 

(flat to very gently sloping), 2–5% (gently sloping), 5–8% (sloping), 8–15% (strongly 

sloping), and >15% (moderately steep to very steep) based on the Food and Agricultural

Organization (FAO) slope guidelines (Jahn et al. 2006). Next, the model input files were

compiled using the SWAT+ editor version 2.0.4. This resulted in 59 subbasins, 583 
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channels, 1131 routing units, 95,241 HRUs, and 117 aquifers objects for the first 

groundwater layer. To minimize the computing time, only the dominant HRUs were 

considered for calibration. The Hargreaves equation was used for calculating 

evapotranspiration (Hargreaves and Samani 1985), the variable storage method was 

used for channel routing, and the soil moisture function was used to calculate the 

average daily runoff curve number (CN).

2.4. Calibration and parametrization

2.4.1. SWAT+ Parameters, Calibration Data, and Objective Functions

The SWAT+ model of the Upper Feather River watershed is described by 19 parameters

in total. For all parameters, an initial value based on prior studies is available in 

SWAT+. To limit the number of parameters under study here, we focus on the 19 

parameters listed in Table 3.

Insert Table 3 here.

The model was calibrated and validated against daily observations of managed 

streamflow below Oroville dam. Five years of data (2005 – 2009) were used as model 

warm-up period to define appropriate initial conditions and to attain equilibrium 

conditions for the model. The 2010 to 2020 period was used for calibration and the five 

years for validation using the first (1995-1999) as warm-up period.

In accordance with Pfannerstill et al. (2014), the FDC of daily streamflow 

volume data was categorized into very high flow (0-5%), high flow (5-20%), middle 

flow (20-80%), low flow (80-95%), and very low flow (95-100%) segments based on 

the exceedance probability of average daily streamflowsdaily streamflow volume 

magnitude. This segmentation approach, as advocated by Pfannerstill et al. (2014), 
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allows for a process-based calibration, capturing dominant watershed processes 

manifested in various parts of the hydrograph. The threshold for high flows was 2,000 

m3/s, coinciding with the 80th flow percentile and the threshold of low flows was 37 m3/

s, coinciding with the 10th flow percentile.

Four different objective functions were used for the automatic calibration to 

daily streamflow data: NSE, Kling–Gupta efficiency (KGE), PBIAS and RSR. The 

Nash-Sutcliff Efficiency (NSE) is a single metric that captures timing and magnitude 

errors between the simulated and observed mean daily streamflow (Eq. 1) (Nash-

Sutcliffe 1970). The KGE (Eq. 2) is a modified version of NSE (Gupta et al. 2009), 

which targets maximizing its value to one based on the decomposition of the mean 

squared error into the three factors including mean (β), variability (α), and dynamics 

(correlation coefficient r) (Eq. 3) (Gupta et al. 2009).

NSE=1−
∑
i=1

n

(Qo−Q s )
2

∑
i=1

n

(Q o−Q́o )
2

(Eq.1)

where, ‘n’ refers to the number of observations, ‘Q’ stands for streamflow, and 

subscripts ‘s’ and ‘o’ refer to simulated and observed, respectively.

KGE=1−ED (Eq.2)

ED=√(r−1)
2
+¿¿ (Eq.3)

where ED is the Euclidian distance from the ideal point and  α=
δs

σ o
 , β=

μs

μo
 ,  and 

r = correlation coefficient.  

The PBIAS (Eq. 4) (Gupta et al. 1999) is one of the objective functions related 

to error measure of simulations with reference to observation points.  It is a popular 
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method frequently used in determining whether a model simulation is overestimated or 

underestimated. PBIAS values can vary between -∞ and +∞, whereas its optimal value

is zero.

PBIAS=100∗¿ (Eq. 4)

where, ‘n’, ‘Q’, ‘s’, and ‘m’ stand for the number of sampling points, streamflow, 

simulated, and observed, respectively.

The standardized root mean square error (RSR) is another error evaluation 

criterion that represents the ratio between the root mean square error (RMSE) to the 

standard deviation of the observations (Eq. 5). It is useful to understand the variation 

between the observed data and simulated data.

RSR=
√∑ (Qm−Qs )

2

√∑ (Qm−Q́m )
2 (Eq. 5)

where, ‘Q’, Q́m   ‘s’, and ‘m’, streamflow, observed mean, simulated, and observed, 

respectively.

Both the NSE and KGE are measures of goodness-of-fit and need to be 

maximized. PBIAS and RSR are error coefficients and need to be minimized towards 

zero.

2.4.2. Sensitivity analyses

To identify the most sensitive model parameters, we adjusted the default value of each 

parameter (one-by-one) following appropriate change methods (Abbaspour et al. 2015) 

and compared the effect of these parameter changes on streamflow and water yield 

prediction with the default parameter set. One parameter at a time was considered and 

changes were applied within the SWAT+ editor interface. Several parameter value 
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changes were applied for each parameter to quantify sensitivity and determine the 

maximum and minimum values for the automatic calibration. Finally, we identified the 

model parameters which showed the largest effect on streamflow and basin water 

balance components (Table 3) and further optimized their values via automatic 

calibration.

2.4.3. Manual and automatic calibration

We performed the model calibration using the SWATplusR package (Schürz 2019) and 

a multiple flow segment and multi-objective calibration approaches using performance 

metrics and signature metrics (Pfannerstill et al. 2014a; Pfannerstill et al. 2014b; Haas et

al. 2016). The SWATplusR can automatically initiate multiple SWAT+ simulations 

with varying calibration parameter values. Moreover, it enables us to manage changes in

model parameters, simulation periods and time steps and to store the simulated output 

variables.

The sensitive parameters shown in Table 3 control different aspects of the 

hydrological functioning of the Upper Feather River watershed. The sensitive 

parameters identified during the manual calibration were classified based on their 

relation to the model’s spatial entities, such as HRUs, aquifers, soils, snow areas, and 

basin. These parameters were calibrated in four stages. In the first stage, we conducted 

500 iterations (first iteration) using wide ranges of parameter values generated through 

Latin Hypercube sampling (LHS) method in R with the FME package (Soetaert and 

Petzoldt, 2010) for 19 parameters. The results helped determine new ranges for the 

subsequent phase (Appendix 1). In the second stage, we conducted 1000 iterations 

(second iteration) focusing solely on calibrating snowmelt, snowfall, precipitation lapse 
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rate, and temperature lapse rate parameters independently. This was done for two 

reasons. First, these parameters influence water contribution to the system, introducing a

level of uncertainty that may arise from the model’s input data and introduce 

uncertainty from model (Abbaspour et al., 2017). Therefore, pre-parameter fitting was 

conducted to address this concern. Second, the decision to calibrate these parameters 

separately was influenced by the recognition that employing many model parameters 

during automatic calibration could lead to equifinality or difficulty in determining the 

optimal model parameterization from the available set (Casado-Rodríguez and del 

Jesus, 2022). Optimal parameter values were identified by comparing the performance 

of the snowfall, snowmelt, lapse rate parameters to the annual basin average 

precipitation. At this stage, our reference to calibrate the snowmelt parameters was the 

annual basin average precipitation. 

In the third stage, keeping calibrated snow, temperature, and precipitation 

parameters constant, we performed 1000 iterations for the remaining 12 parameters 

using parameter sets generated through LHS method in the R FME package (Soetaert 

and Petzoldt, 2010). We chose not to employ the SUFI-2 calibration algorithm due to its

tendency to produce only a single local solution. 

The automated calibration was performed following a methodology outlined by 

Guse et al. (2020). This approach allowed exploration of potential model performances 

within the specified parameter space. Simulated streamflow by SWAT+ with these 

parameter sets was compared against observed managed streamflow, leading to the 

selection of new parameter value ranges for the fourth iteration, comprising 500 

parameter sets (Appendix 1). Finally, in the fourth iteration, parameters were optimized 

for high, middle, and low flow segments using the last 500 parameter sets and multiple 
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model evaluation statistics such as NSE, KGE, RSR, and PBIAS for managed 

streamflow prediction (Table 4). 

To identify the optimal set of model parameters suitable for the high, middle, 

and low flow segments, ensuring acceptable statistical indices for all objective 

functions, the hydroGOF package in R (Zambrano-Bigiarini 2020) was employed. 

Throughout this process, the historically observed streamflow hydrograph and flow 

duration curves were used to select suitable set of parameters for the different flow 

segments. These parameter sets are calibrated to best fit the flows of the hydrograph 

within those segments, while other parts of the hydrograph might be less accurately 

simulated. 

Insert Table 4 here.

Statistical indices for the specified objective functions were computed, and 

iterations with NSE values greater than 0.5 from the last 500 iterations were 

systematically selected. Subsequently, we scrutinized parameter sets that met the criteria

of a KGE value greater than 0.5, PBIAS within the range of -25% to 25%, and RSR 

averageless than 1.

Ultimately, we derived a parameter sets that reasonably satisfied all objective 

functions for the average hydrograph and across the different segments of the 

hydrograph, including high flow, middle flow, and low flow (Appendix 2). Figure 3 

below summarizes the sequential modeling approach adopted in this study. Here we 

want to emphasize that the simulated hydrograph is not stitched together from different 

flow segments. Each parameter set is used to simulate an entire hydrograph but with 

portions of the hydrograph either simulated very well or less accurate. The user can then
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choose which parameter set to run the model with, depending on the desired application 

(e.g. if model is used to simulate low flows or high flows or all flows).

Insert Figure 3 here. 

3. Results

3.1. Model parameterization

Figure 4 illustrates the impact on water yield responses as a default model parameter 

value is adjusted to a new value. For instance, reducing the default the CN2 value by a 

value of 15 and increasing the awc value by 50% significantly decreases and increases 

the monthly basin water yield, respectively. Likewise, modifying other default 

parameter values results in either an increase or decrease in basin water yield (Figure 4, 

Appendix 3). By systematically adjusting one parameter at a time and analysing the 

simulated water balance components, it was possible to refine the maximum and 

minimum boundaries for each parameter (refer to Appendix 3). Among the 19 

sensitivity model parameters that we identified during the preliminary sensitivity 

analyses, CN2, latq_co, snomeltmax, plaps, and temperature lapse rate tlaps were 

identified to be the most influential ones on streamflow (Figure 4).

Insert Figure 4 here. 

Although all 19 parameters were identified as being sensitive during the 

preliminary (manual) calibration, some of them did not show clear patterns (Figure 5) in

the automatic calibration because the relative sensitivity of each parameter is affected by

the values of other parameters and the number of runs (Abbaspour et al. 2017).

Insert Figure 5 here.
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3.2. Model Performance

The calibrated SWAT+ model performance was evaluated using multi-metric evaluation

techniques that included multi-objective functions and focused model calibration on 

different segments of the streamflow hydrograph. Calibrating the model in simulating 

the average hydrograph within the calibration period (2010-2020) resulted in acceptable

model performances. Based on Moriasi et al. (2007), we found several parameters sets 

that achieved adequate model performance (0.5 ≤ NSE ≤ 0.65) when the NSE was 

considered as the main objective function in simulating the daily streamflow. Building 

on Moriasi et al. (2007), our assessment of model performances also incorporated the 

criteria outlined in Towner et al. (2019), with the KGE serving as the chosen objective 

function. As per Towner et al. (2019), hydrologic simulations concluding with a KGE 

value falling within the range of 0.75 to 0.5 (0.75 ≥ KGE ≥ 0.5) are classified as 

intermediate, while simulations yielding a KGE value of 0.75 or higher are deemed as 

good. About 10% of simulations from a total of 500 model runs resulted in satisfactory 

or above satisfactory model performances when we considered the average hydrograph. 

However, both high and low flow segments of the hydrographs were consistently 

underestimated when using a single parameter set to capture the average hydrograph. 

Middle flows were relatively well captured by the model and achieved the best NSE 

(Figures 6 & 7). Similarly, optimization of the KGE to the average hydrograph resulted 

in satisfactory or more than satisfactory model performance with approximately 13% of 

the parameter sets in the range of adequate model performance. Optimizing for PBIAS 

resulted in nearly 12 % of the model simulations with an above satisfactory model 

performance. About 4% of the runs achieved a PBIAS value between -10% and 10% 

which can be interpreted as having achieved a very good model performance according 
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to Moriasi et al. (2007). About 6% of the model runs resulted in a satisfactory model 

performance in all four metrics (NSE, KGE, PBIAS, and RSR) for the average 

hydrograph.

Insert Figure 6 here. 

Insert Figure 7 here.

We further examined the best calibrated models for the average hydrograph 

based on NSE and KGE metrics (Table 4, left side). The parameter set with best overall 

NSE (0.64) shows the lowest NSE for the lowest flows (-2.73) and highest flows (0.45), 

but a very high NSE for the middle flows (0.98). Similarly, the parameter set with the 

best overall KGE (0.74) shows the lowest KGE for the lowest flows (0.23), low flows 

(0.51) and highest flows (0.54), but a very high KGE for the middle flows (0.91). This 

suggests that overall model calibration and model performance were largely influenced 

by the middle flow segment and that the very low flow and very high flow segments 

were largely omitted during the calibration when the model was calibrated using the 

average hydrograph (Table 4). Conversely, the best model performance metrics under 

PBIAS optimization (-0.1) were influenced by high flow segment (-2.9) whereas the low

and lowest flow segments had higher absolute PBIAS values (35.8 and 52.6, 

respectively).

Insert Table 4 here.

According to Knoben et al. (2019), -0.41 is a benchmark value for KGE to 

decide whether a simulation is acceptable or not, whereas its equivalent value for NSE 

is zero based on Moriasi et al. (2007). Because the NSE and KGE include different 

metrics in the objective function, parameter sets that achieve high NSE values do not 
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also automatically achieve high KGE values. For example, in our simulation a KGE 

value of 0.62 corresponded to the best NSE value (0.64) indicating that having lower 

KGE values does not mean poor model performance. Based on Moriasi et al. (2007) and

Knoben et al. (2019) recommendations, the optimization of KGE objective has shown to

yield more acceptable model runs compared to the optimization of the NSE objective. 

About 40% of the parameter sets resulted in good model performances, whereas only 

10% of the parameter sets led to satisfactory model performance in the case of the NSE 

optimizations. Because the KGE is the modified version of the NSE that includes 

correlation, variability bias, and mean bias factors (Knoben et al. 2019), the KGE 

optimization results found in this study are more robust to different segments of the 

hydrograph. In contrast, the mean streamflow value and coefficient of variation are 

controlling factors in the NSE optimization that may result in disparity between 

observed and simulated hydrologic variables in a highly complex watershed with 

seasonal streamflow dynamics. Because a single objective function cannot 

comprehensively address these issues of model calibrations, using multi-objective 

functions and multi-segment calibration in this study yielded a deeper understanding of 

the model performance. We found that the use of multiple objective functions in 

evaluating the performance of the SWAT+ model increases the reliability of the 

calibration and finally resulted in calibrated model that was able to capture the seasonal 

and inter-annual variations in streamflow that are characteristic for the Feather River 

watershed.

Calibration and parametrization of the model for different segments of the 

streamflow hydrograph resulted in significantly improved model performances (Table 4,

right side). For example, the NSE value increased from 0.72 to 0.99 for the high flow 
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segment when we calibrated the model parameter sets for the high flow segment 

independently. Similarly, all other model performance metrics were improved when 

applying separate parameterization for each of the flow segment. 

Figure 8 illustrates the impact of various parameter sets on the predictive 

efficiency of the SWAT+ model in replicating the high, middle, and low flow segments 

of the observed streamflow. Calibration of model parameters specifically for high and 

low flow segments led to enhanced curve fitting in the hydrograph for both high flow 

and low flow segments, compared to the calibration based on the average hydrograph. 

However, the middle flow segment showed no significant changes, as it was optimally 

represented during the calibration based on the average hydrograph (average).

Insert Figure 8 here.

The calibrated model, we achieved by joining the parametrization of multi-

objective functions and flow segments, was more than satisfactory for the validation 

period (Figure 9) than the model that was calibrated to the average hydrograph as per 

the calibration guideline proposed by Moriasi et al. (2007). The performance metrics 

improved to 0.62, 0.67, -3.6, and 0.61, for NSE, KGE, PBIAS, and RSR, respectively. 

However, we found that the overall performance of the model during the calibration 

period (2010-2020) was higher than during the validation period (1995-2009), This 

lower model performance for the validation period (Table 5) might be due to changes in

precipitation and temperature that occurred during that period since California entered a 

much drier climate regime in early 2000 (Pierce et al. 2016).

Insert Figure 9 here.

Insert Table 5 here.
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3.3. Correlations between parameters and objective functions

Different objective functions were used to evaluate the goodness-of fit of a calibrated 

model in simulating streamflow. In this study, we evaluated the connection of the multi-

objective functions to the model parameters. The results show that optimal parameter 

values resulted depending on which objective function was chosen. For instance, values 

of parameters which resulted in the best NSE did not necessarily result in a satisfactory 

KGE, PBIAS, and RSR at the same time. On one hand, the best NSE solution (0.64) 

was achieved when the default CN2 value was increased by an absolute value of 6.29. 

On the other hand, the best KGE solution (0.74) was achieved by increasing the default 

CN2 by an absolute value of 2.57. Similarly, parameter values which lead to optimal 

solutions for PBIAS differed from parameter values that resulted in optimal solutions 

for RSR. A 20% increase on the default value of available water content was required to

get the best optimal solution for PBIAS, which is two times greater than the increase 

required to achieve an optimum solution for RSR. Although there were differences in 

parameter selections to obtain optimal solutions for NSE, KGE, and PBIAS, the 

parameter sets that led to best NSE solution also resulted in a good RSR. This means 

direct optimization of parameter sets for NSE resulted also in an optimum solution for 

RSR. Figure 10 below demonstrates the relationship between the NSE, RSR, KGE, and 

PBIAS values that were computed under different model runs and parameter sets. In 

maximizing the NSE values, the RSR values are minimized on the 1:1 line and the 

optimum NSE value is achieved at the smallest RSR value. Likewise, higher KGE 

values are associated with lower RSR values although there is more scatter at lower 

RSR and higher KGE values and the smallest RSR value does not result in the optimal 

KGE value. Thus, considering one objective function alone may result in statistically 
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acceptable calibration and validation results, which can affect other objective functions 

or some part of hydrologic processes. In this study, we found parameter sets that 

optimized PBIAS to its best solution (value = -0.1) in calibrating the SWAT+. 

However, further inspection of the observed and simulated streamflow hydrographs as 

well as the statistical solutions for the different hydrograph components showed 

significantly high deviation for the peak and low flows (Figure 7 & 8). The parameter 

set resulting in the highest NSE had an acceptable (absolute) PBIAS value. Because the 

bias is included in the KGE objective function, the optimal KGE parameter set has an 

even smaller PBIAS. Overall, we found that the parameter set with highest KGE value 

also showed good results for all other objective functions. (Tables 4 & 5).

Insert Figure 10 here.

3.4. Objective functions and their connection to the streamflow hydrograph

NSE is one of the most used objective functions in calibrating hydrologic models. The

NSE is  calculated  based on the observed mean and standard deviation  and the best

calibration solution found in this study was 0.64 with values of 0.62 and -9.3, for KGE

and  PBIAS,  respectively.  If  model  parameters  were  optimized  using  KGE  as  the

objective  function,  the  best  calibration  solution  resulted  in  a  KGE  of  0.74  with

corresponding values  of  0.57 and -2.5 for  NSE and PBIAS, respectively.  Statistical

solutions differed when the model was calibrated based on different objective functions

and  hydrograph  segments  which  indicates  that  the  improvement  of  one  calibration

criteria  was achieved at the expenses of other calibration criteria and flow segments

(Table 4).  The optimum parameter  set based on KGE and PBIAS reduced the NSE

values, highlighting the potential differences in the model parameter selections and the
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part of hydrographs represented by each of the objective functions. Moreover, NSE and

KGE metrics did not correlate linearly and the NSE metric did not relate well to the

PBIAS and KGE metrics. However, for a perfect model simulation both KGE and NSE

should have a value of 1. When using NSE as the main objective function the model

performance is evaluated based on a benchmark value which is the mean value of the

observation, while the Euclidean distance from the point of ideal model performance is

considered in the case of KGE performance (Eq. 2). 

3.5. Comparison of simulated percentiles under different objective functions

For each objective function and calibrated model parameter set the simulated 

streamflow was compared to the observed streamflow for both the calibration and 

validation periods using threshold values based on observed flow percentiles (Figure 11 

& Figure 12). Variations in the fitted model parameters and objective functions led to 

significant differences in flow percentiles. For instance, the simulated flow volume value

for the 5th percentile flow that corresponding to the flow exceedance probability of 95% 

ranged from 0 to 26 m3/s, while the observed value was 18 m3/s. When considering NSE

as the primary objective function, the simulation output based on parameter sets fitted 

for the low flow segment provided the best representation of the observed value for the 

5th percentile. In this case, the simulated value was overestimated by only 2%. Likewise,

the parameter sets fitted to the average hydrograph underestimated flows by 7%. 

Conversely, the simulated flow rates using parameter sets fitted for the middle flow 

(streamflow volume corresponding to the flow exceedance probability between 20% – 

80%), and high flows (flow exceedance probability between 5% - 20) segments resulted 

in underestimations of the flows by 18%, 34%, respectively.
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Insert Figure 11 here.

Insert Figure 12 here.

Regarding the flow volume at the 80% flow exceedance probability, the model 

overestimated this value by 39%, 13%, and 1% when using parameter sets fitted to the 

high, middle, and low flow segments, respectively. The parameter values fitted for the 

extremely high and low flow segments led to an underestimation and overestimation of 

the volume corresponding to the 80% flow exceedance probability by 93% and 35%, 

respectively. Simulations using fitted parameters for the average hydrograph and middle

flows segment resulted in a better representation of the median flow. The observed 

median flow was underestimated by about 2% and 0.3% when using models calibrated 

to the average hydrograph and middle flow segment, respectively. Similarly, the third 

quantile (a flow volume corresponding to the 25% flow exceedance probability) was 

better estimated by the model calibrated to the average hydrograph, whereas the flow 

volume at the 5% exceedance probability was best estimated by the high flow model 

with only a 0.7% underestimation. The middle flow and average flow models 

overestimated the flow volume at the 5% exceedance probability by 5% and 4%, 

respectively. These results are consistent with the corresponding model performance 

values (see Table 4 & Table 5).

Furthermore, the model parameters that led to optimal values of NSE, KGE, and 

PBIAS for the average hydrograph estimated different flow volumes with various 

uncertainty levels. A model fitted to the optimal value of NSE resulted in 

overestimations of the low, high, and very high flow volumes, and underestimation at 

the 50%, 25%, and 5% exceedance probabilities. In contrast, a model calibrated to the 
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optimal solution of KGE resulted in an underestimation of the low flow (80 to 100% 

exceedance probabilities) and overestimation of the median flow. A model calibrated to 

the optimal value of PBIAS led to an overestimation for all flow volumes corresponding

to the exceedance probabilities 5 to 100% and underestimation of flow volumes at 0 and

5% exceedance probabilities.

Overall, there were clear differences among the calibrated models for the 

optimal solutions of different objective functions and flow segments in mimicking the 

observed flow volumes. Thus, a single objective function and parameter sets might not 

appropriately represent the hydrologic processes of various flow stages. This could be 

due to the complex water abstractions, heterogeneity of land use/cover, high seasonal 

differences, and high variability of model parameters to adequately capture the dynamic 

hydrologic processes over different seasons. Consequently, it is worth calibrating the 

SWAT+ model separately for different flow segments using multi-objective functions to

achieve a more accurate representation of streamflow and flow volumes.

4. Discussion

Although the new SWAT+ was used to simulate managed streamflow in a complex 

hydrologic system, characterized by high seasonal differences and frequent extreme 

flows, calibrating a comprehensive SWAT+ model for Feather River watershed posed 

challenges.

In our study, we independently parameterized the SWAT+ model for low flow, 

middle flow, and high flow segments of the hydrograph, leading to significant 

improvements in model performance. These improvements were achieved by 

appropriately representing sensitive model parameters. Among the 19 sensitive 
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parameters, CN2 stood out as one of the most influential, causing overestimation or 

underestimation of flow segments. Its value was adjusted differently for each part of the 

flow segments.

Initially, when simulating the entire streamflow hydrograph using a calibrated 

SWAT+ model, underestimation occurred for high and middle flows, while 

overestimation was observed for low flow segments compared to observed streamflow. 

To mitigate this, we increased the CN2 value by 13.5, reducing the underestimation 

from 10.2% to 1.4% for the high flow segment. Similarly, increasing the CN2 value by 

9.8 improved the simulation of middle flows and enhanced the goodness of fit for the 

hydrograph, which was previously underestimated. In contrast, for the low flow 

segment, which was overestimated during the average simulation, we decreased the 

CN2 value by 4.6 to achieve an adequate curve fitting and improved model 

performance. Likewise, the values of other parameters tailored to fit the average 

hydrographs were adjusted to new values that led to a satisfactory simulation of various 

flow segments when employing multi-objective functions and parameterization. 

Various studies worldwide have demonstrated that updating model parameter 

values and employing multi-objective functions for different flow segments can enhance

the predictive capabilities of hydrologic models. Tegegne et al. (2019) calibrated a 

SWAT model for two hydro-geographically distinct catchments, one well managed and 

the other one poorly managed and found that using different CN2 values for different 

flow components improved the model's ability to predict various streamflow stages. 

Pfannerstill et al. (2014) reported that calibrating the WAT model based on multiple 

flow segments improves its performance across different parts of the streamflow 

hydrograph, including the overall flow hydrograph and very low flows.
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While combining flow segments for model calibration can yield a plausible model, the

hydrograph and flow duration curves can incorporate both poorly and well-performing

segments. Consequently, the overall performance of the model may be more influenced

by either the good or poor performing segments. In our study, we obtained credible

model  performance  for  the  entire  streamflow  calibration,  at  least  considering  the

employed objective function. Based on Moriasi et al. (2007) and Towner et al. (2019),

the  statistical  values  for  the  objective  functions  fell  within  an  acceptable  range.

However,  significant  deviations  were  observed  for  extreme  high  and  low  flows

compared to the observed streamflow (Fig. 6 and Fig. 7). The observed discrepancy in

the high flow segment may be ascribed to a limitation of the curve number method. The

SCS-curve  number  method  used in  the  SWAT model,  as  emphasized  by Nie  et  al.

(2011), does not consider the duration and intensity of rainfall. Moreover, the intricate

water  delivery  cascading  reservoirs  system  and  the  complex  climate  of  California

further contribute to the discrepancy in the high flow segment. Therefore, independent

parameterization  for different  flow segments  can contribute  to constructing plausible

models, increasing confidence in the use of calibrated models for various purposes. The

improvements  in  the  predictive  power  of  the  SWAT+  model  achieved  through

calibration  for  different  flow  segments  were  also  evident  in  the  percentile  flow

estimates. 

Furthermore, the independently calibrated SWAT+ model can predict future 

streamflow for high, low, and middle flows by incorporating projected precipitation and 

temperature data based on various emission scenarios. The differences observed in 

parameter selection and model performance across different hydrograph segments 

indicate that employing multiple parameter sets can significantly enhance the accuracy 
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and reliability of predictions for high and low flows in the future. Consequently, the 

integration of a multi-parameter and multi-segment calibration in SWAT+ model will 

provide valuable insights into the most probable future conditions within the study 

catchment. Specially, the calibrated SWAT+ model will be utilized to explore the 

potential incidences of peak flows and low-flow events. This investigation will involve 

applying parameter sets tailored for high and low flow segments, considering future 

climate conditions as outlined by SSP and RCP scenarios. Implementation of multi-

segment parameterization and calibration approaches becomes crucial in regions 

characterized by extreme climate conditions, such as California. These approaches are 

instrumental in simulating extremes, including droughts and floods, under diverse 

climate change scenarios, such as the Shared Socioeconomic Pathway (SSP) and the 

Representative Concentration Pathway (RCPs). 

When considering the connections between objective functions and flow 

segments, optimizing the NSE and RSR resulted in similar improvements of different 

parts of the flow segments. Maximizing NSE for the entire streamflow led to 

underestimation of high and very low flow segments, while overestimating middle 

flows. Similarly, maximizing KGE significantly underestimated the low flow segment. 

In contrast, optimizing PBIAS resulted in an overestimation of the low flow segment. 

By calibrating the model using a combination of all objective functions, the middle flow

segment was better simulated, with the lowest standardized root mean square error and 

highest NSE value. Moreover, all statistical values for the other flow segments were 

acceptable, indicating that combining multiple objective functions improves the overall 

model performance. However, each individual objective function exhibited slight 

deterioration compared to the optimal values obtained through individual calibration. 
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This finding aligns with Guta et al. (2009), and Garcia et al. (2017) who also reported 

improved simulation of seasonal and annual mean streamflow in TOPMODEL when 

using combined objective functions.

Comparing the parameter values fitted to the optimal solutions of NSE, KGE, 

and PBIAS (Table 4) with those fitted to the high, middle, and low segments, slight 

differences in the Pearson Correlation Coefficient (r) were observed. In both the NSE 

and KGE cases, parameter values fitted to the middle segment exhibited the highest 

correlation coefficient (r=0.97), while the low flow parameter values showed the highest

correlation coefficient when the PBIAS (r=0.91) was used as objective function. When 

comparing the parameter correlation between NSE and KGE, NSE and PBIAS, and 

KGE and PBIAS, NSE and KGE demonstrated the highest correlation (r=0.96), 

followed by NSE and PBIAS (r=0.95), indicating that NSE and KGE have a similar 

effect on different parts of the flow segments

5. Conclusion

This study aimed to enhance the simulation of managed streamflow in the Feather River

Watershed, Sierra Nevada, California, United States, by exploring multi-objective 

functions and multi-segment calibration approaches for the SWAT+ model. The study 

investigated how model parameters varied concerning different objective functions and 

distinct streamflow segments of the hydrograph (e.g. high, middle, and low flow 

segments). Model evaluation criteria, including NSE, KGE, PBIAS, and RSR, were 

employed to assess the simulated managed streamflow. The study's findings lead to the 

following conclusions:
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1) Parameterizing hydrologic models based on different flow segments (e.g. high 

flow, middle flow, and low flow) of the hydrograph improved the prediction of 

streamflow compared to using a model calibrated to the average hydrograph. 

2) When a single model calibration against the entire streamflow hydrograph was 

used the middle flow segment of the hydrograph was simulated best while low 

flow and high flow segments were underestimated in the simulation. 

Independently fitting parameters for different flow segments significantly 

enhanced the model's performance for each segment. This suggests that 

proposing multiple sets of model parameters can increase confidence in 

constructing a reliable model for managed streamflow predictions.

3) Optimizing model parameters for a single objective function to its optimal value 

may lead to a deterioration in another objective function. However, considering 

the hydrograph and flow duration curves can encompass both poorly and well-

performing segments. Consequently, the overall performance of the model may 

be more influenced by either the good or poor-performing segment. Therefore, it

is valuable to account for multi-objective functions simultaneously to obtain a 

credible model that can balance the trade-off between different objective 

functions.

In general, this study emphasizes the significance of independent flow segment 

calibration using multi-objective functions to accurately represent flow conditions 

during wet, average flow, and dry periods. Consequently, parameterizing hydrologic 

models based on different flow conditions is crucial for constructing reliable hydrologic 

models. As a result, this study provides valuable insights for water managers and 

researchers in effectively managing water resources during high and low flow seasons.
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Tables

Table 1: Spatial and hydrometeorological data sources and availability used this study.

Data 
type

Variable Temporal/spatial
resolution

Availability Data source

Spatial data Land use 
and land 
cover

2001/
30 m x 30 m

Accessed 
July 2022

NLCD 2001 (Homer et al. 
2004)
https://www.mrlc.gov/
data/nlcd-2001-land-
cover-conus

Soil 1:50000 Accessed 
July 2022

https://
gdg.sc.egov.usda.gov

Digital 
elevation 
model 
(DEM)

30 m x 30 m Accessed 
July 2022

http://
earthexplorer.usgs.gov/

Climate data Precipitation
and 
temperature 
(max/min)

 Daily, 4 km x4 
km

1915-2022 PRISM
Obtained from California 
Department of Water 
Resources (DWR 2022)

Hydrology Streamflow At the outlet point
of Oroville Lake

1953-2022 https://waterdata.usgs.gov/
nwis/ (USGS 2022)
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Table 
2: 
Default
decisio
n rule 
for 
Orovill
e 
reservo
ir 
release 
as 
availab
le in 
SWAT
+ 
model 
(Beiger
et al. 
2017) 
on 
multipu
rpose 
use.
Xname

cond
s alts acts                      

Orovill
e 5 7 5

var obj
obj_nu
m lim_var

lim_o
p

lim_cons
t alt1 alt2 alt3

alt
4

alt
5

alt
6

alt
7
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vol res 0 e-pv = -6.761 > > > - - - -
vol res 0 e-pv = 0.356 < < < > > > -
vol res 0 e-pv = 1.02 - - - < < < >
month null 0 null - 6.892 < - > < - > -
month null 0 null - 8.043 - > < - > < -

act_typ obj
  
obj_num name  option const const2 fp 

 
outcom
e

release res 0
multiple_use_

fl dyrt
233.1617
0

0.1399
8

con
1 y y n n n n n

release res 0
multiple_use_
nf dyrt 402.9186

0.3184
4

con
1 n n y n n n n

release res 0 sfl_cont+mu_fl dyrt 53.09800
0.3184

4
con
2 n n n y y n n

release res 0
sfl_cont+mu_n
f dyrt 153.4471

2.3441
5

con
2 n n n n n y n

release res 0 efc_cont dyrt 0.69298
5.1166

7
con
3 n n n n n n y

*Conditions (conds); alternatives (alts); actions (acts): variable (var); limit variable (lim_var); limit operator 

(lim_op); limit constant (lim_const); action type (act_typ), constant (const); file pointer (fp); storage volume in

ha-m(e-pv); day rate (dyrt). Multiple use flood (multiple_use_fl); multiple use non-flood (multiple_use_nf); 

seasonal flood control multiple use flood (sfl_cont+mu_fl); seasonal flood control + multiple usenon-flood 

(sfl_cont+mu_nf); emergency flood control (efc_cont).
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Table 3: List of sensitive model parameters identified during the manual calibration step that were subsequently calibrated during the automatic calibration steps for the high 

flow, middle flow, and low flow segments based on multi criteria evaluation statistics. Parameters highlighted in bold were calibrated separately.

        Calibrated parameter values for different segments of streamflow hydrographs and objective functions
  Value ranges   NSE KGE PBIAS

Parameter Min Max

Chang
e 
metho
d

Averag
e High

Middl
e Low

Averag
e High

Middl
e Low

Averag
e High

Middl
e Low

snomelt_tm
p -5 5 replace 2.90 0.42 0.11 2.32 1.25 3.80 0.11 2.32 0.11 3.16 3.80 0.12
snofall_tmp -5 5 replace 1.07 2.38 -2.20 -2.93 0.10 1.35 -2.20 -2.93 -2.65 -1.94 1.35 -2.54
snomelt_ma
x 0 10 replace 3.15 2.19 6.83 4.57 5.99 4.01 6.83 4.57 3.10 3.77 4.01 6.64
snomelt_mi
n 0 10 replace 1.99 0.85 4.73 3.38 3.98 1.82 4.73 3.38 1.82 3.48 1.82 4.24
snomelt_lag 0 1 replace 0.47 0.79 0.72 0.42 0.48 0.43 0.72 0.42 0.64 0.62 0.43 0.44

plaps 0 200 replace 19.65
26.4

2 22.92
26.0

7 17.10
24.6

0 22.92
26.0

7 31.33 30.56 24.60
29.0

3
tlaps -10 10 replace 4.00 -2.42 7.93 -9.69 6.01 -0.30 7.93 -9.69 7.88 -0.23 -0.30 -6.06

cn2 -20 20

relativ
e 
change 6.29

13.5
3 9.76 -4.64 2.58 4.84 9.76 -4.64 14.91 0.58 4.84 1.40

esco 0 1 replace 0.28 0.15 0.01 0.56 0.42 0.25 0.01 0.56 0.45 0.54 0.25 0.52
epco 0 1 replace 0.79 0.71 0.36 0.44 0.49 0.72 0.36 0.44 0.68 0.34 0.72 0.43

lat_ttime 0 180 replace 48.97
44.7

6 69.37
70.3

6 40.54
31.1

7 69.37
70.3

6 46.14 8.93 31.17
43.3

9
perco 0 1 replace 0.18 0.14 0.21 0.20 0.17 0.14 0.21 0.20 0.20 0.16 0.14 0.17

awc 0 1

relativ
e 
change 0.08 0.09 0.44 0.20 0.32 0.33 0.44 0.20 0.20 0.46 0.33 0.34

alpha 0 1 replace 0.30 0.39 0.11 0.08 0.16 0.54 0.11 0.08 0.48 0.65 0.54 0.38
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flo_min 0 50 replace 15.24
14.6

5 17.58
31.7

9 19.65
28.0

6 17.58
31.7

9 14.53 22.85 28.06
21.6

7
revap 0 1 replace 0.07 0.05 0.06 0.04 0.03 0.05 0.06 0.04 0.09 0.03 0.05 0.03
rchg_dp 0 1 replace 0.29 0.25 0.42 0.60 0.21 0.25 0.42 0.60 0.42 0.74 0.25 0.47

revap_min 0 500 replace 18.97
14.8

0 10.15
17.8

7 7.36
15.3

7 10.15
17.8

7 14.07 24.34 15.37
22.8

7
latq_co 0 1 replace 0.10 0.16 0.16 0.39 0.06 0.14 0.16 0.39 0.43 0.18 0.14 0.51

*Long name for model parameters:: cn2~ Condition II curve number, lat_ttime ~exponential of the lateral flow travel time, esco~soil evaporation compensation factor, epco~ plant water uptake compensation factor,  snomelt_tmp ~ snowmelt temperature, snofall_tmp~ snow fall temperature, 

snomelt_max~maximum snowmelt temperature, snomelt_min~ minimum snowmelt temperature, snomelt_lag~ perco~ percolation coefficient; awc ~ available water capacity of soil layeralpha~ Condition II curve number, revap~threshold depth of water in shallow aquifer required 

to allow revap to occur, rchg_dp~recharge to deep aquifer (the fraction of root zone percolation that reaches the deep aquifer, revap_min~water table depth for revap to occur water table depth for revap to occur, flo_min~ plaps~ precipitation lapse rate: mm per km of elevation 

difference, tlaps~temperature lapse rate: deg C per km of elevation difference, latq_co~Plant ET curve number coefficient, replace ~ absolute value, relative change ~ add/subtract  the value to the default one.. The change methods relative indicate add/subtract the value on the default and 

replace indicates replace the default value by the absolute value of the new number. 
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Table 4: Optimized objective function values as calibrated based on the average hydrograph, very high, 

high, middle, low, very low flow segments of the hydrographs. Values of interest are highlighted in bold.

Parameters adjusted based on the average hydrograph Parameters adjusted based on flow segments
Model parametrization based on best NSE

Hydrograph 
segment NSE PBIAS KGE RSR NSE PBIAS KGE RSR

Average 0.64 -9.30 0.62 0.59
Very high flow 0.45 -28.80 0.35 0.83 0.88 0.74 0.70 0.35
High flow 0.72 -10.20 0.79 0.63 0.99 0.20 0.97 0.10
Middle flow 0.98 7.00 0.91 0.14 0.99 -0.50 0.98 0.06
Low flow 0.56 0.60 0.36 0.83 0.99 -0.10 0.98 0.05
Very low flow -2.73 -21.10 0.50 0.76 0.96 -1.50 0.91 0.19

Model parametrization based on best KGE
Average 0.57 -2.5 0.74 0.65
Very high flow 0.77 -7.9 0.54 0.48 0.88 -3.8 0.88 0.35
High flow 0.76 9.0 0.79 0.48 0.97 -3.3 0.96 0.18
Middle flow 0.98 -4.8 0.91 0.14 0.99 -0.5 0.98 0.06
Low flow -3.63 -39.7 0.51 2.15 0.99 -0.1 0.98 0.05
Very low flow -29.22 -61.7 0.23 5.48 0.84 -3.2 0.96 0.34

Parametrization based on best PBIAS
Average 0.57 -0.10 0.65 0.66
Very high flow 0.56 -18.40 0.39 0.66 0.82 0.20 0.60 0.41
High flow 0.97 -2.90 0.95 0.18 0.79 -0.20 0.56 0.46
Middle flow 0.93 13.60 0.86 0.25 0.96 0.20 0.94 0.08
Low flow -2.79 35.80 0.51 1.94 0.95 0.83 0.00 0.22
Very low flow -20.89 52.60 0.38 4.67 0.94 -1.00 0.81 0.25
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Table 5: Optimized objective function values as validated based on the average, high, 

middle, low flow segments of the hydrographs. Values of interest are highlighted in 

bold.

Model parametrization based on best NSE Model  parametrization  based  on  best

KGE

NSE PBIAS KGE RSR NSE PBIAS KGE RSR

Average 0.62 -3.60 0.67 0.61 0.52 2.50 0.74 0.69

High 

flo

w

0.92 -3.20 0.77 0.28 0.25 17.50 0.76 0.86

Middle 0.97 7.50 0.90 0.18 0.95 -0.20 0.78 0.22

Low -2.63 -23.10 -0.01 1.90 -26.03 -67.40 0.22 5.20

Model parametrization based on best PBIAS Parameters optimized to the best of NSE

for high flow segment

Average 0.50 -18.60 0.52 0.70 0.54 3.10 0.67 0.68

High 0.19 -17.90 0.71 0.90 0.92 5.20 0.87 0.29

Mid 0.92 -11.70 0.80 0.28 0.95 11.30 0.89 0.22

Low -8.41 -38.70 0.16 3.07 -0.29 -2.80 -0.11 1.14

Parameters  optimized  to  the  best  of  NSE  for

middle flow

Parameters optimized to the best of NSE

for low flow

Average 0.51 2.90 0.68 0.70 0.41 -23.30 0.34 0.77

high 0.84 8.00 0.78 0.40 -1.85 -33.20 0.60 1.69

mid 0.93 8.30 0.68 0.26 0.82 -6.90 -0.77 0.42

low -1.96 -21.30 0.38 1.72 0.41 23.25 0.34 0.77
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Figures

Figure 1: Location map of the Upper Feather River Watershed within Sierra Nevada Mountains,

California, USA; reservoirs, river networks, and boundary of modeling Watershed. 
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Figure 2: Spatial SWAT+ model input data including Digital Elevation Model (DEM) showing 

topography (A), land use/land cover, and the soil hydrologic groups within the Upper Feather 

River watershed, in the Sierra Nevada Mountains, California, USA.
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Prepare daily precipitation and 
temperature dataset to SWAT+ format. 

Spatial data: DEM-SRTM, Soil, and Land 
use/cover

                                             

SWAT+ Model (Bieger et. al. 2017)

Watershed Configuration and SWAT+ Model Setup

Delineate watershed 
including reservoirs 
and create stream 
network using QGIS

Create HRUs based on 
land use and land cover, 
soil type, and slope 
classes.

Import geolocated 
precipitation and 
temperature 
dataset.

Write all input 
files using 
SWAT+ editor.

Parameterization and multi-segment and 
multi-objective calibrationManual Calibration

Autocalibration

Identify sensitive 
parameters by applying 
one parameter at a time.

Generate 500 parameter sets based 
on recommended parameter value 
ranges for preliminary evaluation.

Apply LHS method in R using the 
FME to generate parameter values.

Apply iteration of SWAT+ in R and define range of 
parameter values based on the relation between 
parameter and objective function.

Generate 1000 parameter sets using LHS and 
apply iteration to fit snow, precipitation lapse 
rate, and temperature lapse rate parameters. 

Fit values for snow parameters and precipitation 
as well as temperature lapse rates based on annual 
basin average precipitation and snow water 
equivalent values, then generate another 1000 
parameter sets using new parameter value ranges 
except the fitted ones.
Parameter values are fitted to the very high flow, 
high flow, middle flow, and very low flow 
segments that correspond to the values at 0-5%,5-
20%, 20-80%, 80-95%, and 95-100% exceedance 
probability, respectively flow duration curve that 
were classified based on daily observed 
streamflow data.

Apply 1000 iteration of SWAT+ and compute 
NSE, KGE, PBIAS, and RSR hydroGOF package 
in R for the different part of hydrographs using 
daily simulated streamflow against observed 
managed streamflow. Filter iterations that based on 
NSE ≥ 0.5, then filter iterations with KGE ≥ 0.5, 
-25% ≤ PBIAS ≤ 25%, and RSR ≤ 0.7. Repeat 
the process (if necessary).

Repeat the process for another 500 iterations to 
finalize the process. Scrutinize the model 
performance at different parts of the flow 
segments with reference to observed streamflow.

Data preparation and processing
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Figure 3: This flowchart outlines the steps involved in the modeling process, including data 

preparation, watershed configuration, manual calibration, and multi-segment multi-objective 

function parameterization and calibration. It emphasizes the iterative nature of the calibration 

process to enhance model performance and confidence.

Figure 4: Example graph showing the effects of different SWAT+ parameters on the simulated 

commutative monthly water yield values as compared to the default simulation. Each graph was

generated from a monthly simulation output based on one parameter change at a time.
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Figure 5: Scatter plots showing the association between NSE (as computed using simulated 

streamflow against observed managed streamflow records) and values of different parameters.
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Figure 6: Hydrographs showing the comparison of daily observed streamflow data versus 

simulated streamflow under different calibration options that optimized model parameters based 

on the average hydrograph, or individual high flow, middle flow, and low flow segments that 

were independently optimized.

Figure 7: Flow duration curves of daily observed streamflow data versus simulated streamflow 

under different calibration options such as all flows (Average), high flow, middle flow, and low 

flow segments considered independently, and multi-objective functions are optimized.
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Figure 8: Hydrographs showing the comparison of daily observed streamflow data in water year

2014 versus streamflow simulated with parameter sets that are optimized to best capture either 

all flows (Average), or the high flow, middle flow, and low flow segments. The dashed lines 

indicate the streamflow thresholds that were used to optimize the high flow (> 240 m3/s), middle

flow (40 to 240 m3/s), and low flow (<40 m3/s) segments.
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Figure 9: Hydrographs showing the comparison of daily observed streamflow data versus 

simulated streamflow for the validation period (2000-2009) which resulted from combining 

multi-objective functions (NSE, KGE, and PBIAS) with the calibration of different flow 

segments based on for the average hydrograph or individual high flow, middle flow, and low 

flow segments that were independently optimized.
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Figure 10: Scatterplot showing the correlation of different objective functions. The red points 

represent the best optimized values for each pair of objective functions with the target objective 

function shown on the vertical axis and the blue points represented the best values achieved 

based on the target objective function shown on the horizontal axis.
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Figure 11: Scatterplot in the log10 scale showing the observed managed streamflow at Oroville 

gauging station against SWAT+ simulated streamflow at the same gauging station parameter 

sets optimized to the best of NSE, KGE, PBIAS, High flow, Middle flow, and Low flow for the 

water year period between 2010-2020 (calibration period). The red broken lines indicate 

threshold values of low and high flows. 
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Figure 12: Scatterplot in the log10 scale showing the observed managed streamflow at Oroville 

gauging station against SWAT+ simulated streamflow at the same gauging station parameter 

sets optimized to the best of NSE, KGE, PBIAS, High flow, Middle flow, and Low flow for the 

water year period between 2000-2009 (validation period).
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Appendices

Appendix 1: Parameter value ranges that were used for LHS resulted in 500,1000, 1000, and 500 parameter sets during the four phases of automatic calibration. The first 

phase of the 500 iterations were carried out to determine the minimum and maximum value ranges for 19 sensitive parameters, the next phase of 1000 iterations were carried 

out to calibrate snowmelt, snowfall, temperature, and precipitation lapse rate parameters, whereas the next 1000 and 500 iterations were used to calibrate other parameters. 

    Allowable range

First 500 runs (preliminary
phase)
  Second 1000 runs Third 1000 runs

Fourth 500 runs 
(Final phase)  

Parameter Default

 
Absolute
min

Absolute
max Min Max Min Max Min Max Min Max

change 
method

snomelt_tmp 1 -5 5 -5.00 5.00 -5.00 5.00

Calibrated independently in previous step

replace
snofall_tmp 0.5 -5 5 -5.00 5.00 -5.00 3.75 replace
snomelt_max 4.5 0 10 0.00 10.00 -5.00 9.00 replace
snomelt_min 4.5 0 10 0.00 10.00 0.00 9.00 replace
snomelt_lag 1 1 1 0.00 1.00 0.00 1.00 replace
plaps 0 0 200 0.00 200.00 0.00 75.00 replace
tlaps -10 -10 10 -10.00 10.00 -10.00 10.00 replace
cn2 variable [35,98] 35.00 95.00 -20.00 20.00 default default -15.00 15.00 -5.00 15.00 relative 
esco 0.95 0.00 1.00 0.00 1.00 0.95 0.95 0.00 0.60 0.00 0.60 replace
epco 1.00 0.00 1.00 0.01 1.00 1.00 1.00 0.30 0.80 0.30 0.80 replace
lat_ttime 0.00 0.50 180.00 0.00 180.00 0.00 0.00 1.00 75.00 1.00 75.00 replace

awc variable [0,1] 0.01 1.00 0.01 0.50 default default 0.06 0.48 0.06 0.48
relative 
change

perco 0.90 0.00 1.00 0.00 1.00 0.90 0.90 0.13 0.21 0.13 0.21 replace
alpha 0.05 0.00 1.00 0.00 1.00 0.05 0.05 0.04 0.86 0.04 0.86 replace
flo_min 3.00 0.00 50.00 0.00 50.00 3.00 3.00 13.50 40.00 13.50 38.00 replace
revap 0.02 0.02 0.20 0.02 0.20 0.02 0.02 0.02 0.12 0.02 0.12 replace
rchg_dp 0.05 0.00 1.00 0.00 1.00 0.05 0.0.5 0.13 0.80 0.13 0.80 replace
revap_min 5.00 0.00 500.00 0.00 500.00 5.00 5.00 0.00 32.00 0.00 32.00 replace
latq_co 0.01 0.00 1.00 0.00 1.00 0.01 0.01 0.00 0.90 0.00 0.90 relative 
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Appendix 3: Displays an optimization matrix designed to facilitate the integration of multi-parameters and multi-segment calibration, resulting in final parameter sets for 

running the model for the intended purpose. Each run encompasses multiple sets of parameter values and statistical indices for both the average and different flow segments. 

For brevity, this table excludes RSR and PBIAS computations for the average and other flow segments, considering space constraints.

  Flow segments separated based on historical streamflow threshold values
    Average hydrograph NSE for the different segments KGE for the different segments

run
Objective
function NSE PBIAS KGE RSR Very high High Mid Low Very low Very high High Mid Low Very low

121 NSE 0.64 -9.30 0.62 0.60 0.45 0.72 0.98 0.56 -2.73 0.35 0.79 0.91 0.36 0.50
56 PBIAS 0.57 -0.10 0.65 0.66 0.56 0.97 0.94 -2.79 -20.89 0.39 0.95 0.86 0.51 0.38
454 KGE 0.57 -2.50 0.74 0.65 0.77 0.76 0.98 -3.63 -29.22 0.54 0.79 0.91 0.51 0.23
121 RSR 0.64 -9.30 0.62 0.60 0.45 0.72 0.98 0.56 -2.73 0.35 0.79 0.91 0.36 0.50
408 Very_high_NSE 0.31 -44.70 0.43 0.83 0.88 -2.64 -1.44 -24.53 -78.71 0.70 0.46 -0.04 -0.18 NA
340 High_NSE 0.60 -2.60 0.66 0.63 0.58 0.99 0.97 -4.18 -9.30 0.41 0.96 0.89 0.09 0.45
136 Mid_NSE 0.57 -4.00 0.68 0.66 0.66 0.98 0.99 0.42 -1.32 0.45 0.94 0.98 0.74 0.54
194 Low_NSE 0.31 -49.60 0.17 0.83 -0.29 -6.44 -0.05 0.99 0.82 0.10 0.26 0.21 0.98 0.94
303 Very_low_NSE 0.42 -29.50 0.39 0.76 0.25 -1.73 0.66 0.73 0.96 0.28 0.58 0.51 0.53 0.91

408
Very_high_KG
E 0.31 -44.70 0.43 0.83 0.88 -2.64 -1.44 -24.53 -78.71 0.70 0.46 -0.04 -0.18 NA

102 High_KGE 0.60 -7.50 0.65 0.63 0.57 0.97 0.99 0.32 -5.86 0.40 0.97 0.94 0.29 0.70
136 Mid_KGE 0.57 -4.00 0.68 0.66 0.66 0.98 1.00 0.42 -1.32 0.45 0.94 0.98 0.74 0.54
194 Low_KGE 0.31 -49.60 0.17 0.83 -0.29 -6.44 -0.05 1.00 0.82 0.10 0.26 0.21 0.98 0.94
281 Very_low_KGE 0.46 -32.7. 0.37 0.73 0.10 -2.16 0.62 0.84 0.89 0.22 0.51 0.50 0.66 0.96
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Appendix 3: Displays how changing the default value of a parameter affects water yield. The comparisons is between the simulation using the default parameters and 

simulations done by changing the value of a single parameter at a time.

Parameter Default 

value

Minimu

m

Maximu

m

Change 

method

Changed 

value

% change on the 

default para value

% change in 

water yield
CN2 variable 35 98 relative -15.00 variable -14.29
tlaps 6.5 0 10 replace 10.00 53.85 1.22
latq_co 0.01 0 1 replace 0.50 98.00 102.86
awc variable 0 1 relative 0.50 variable 11.43

snomelt_max 4.5 0 10 replace 10.00 122.22 0.12
perco 1 0 1 replace 0.90 10.00 27.96
plaps 0 -25 25 replace 10.00 infinity 77.55
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Appendix 4: Daily volume of released and stored water from/in the Oroville Reservoir as simulated using 
calibrated SWAT+ models for high, middle, and low flows simulation. The release and storage patterns 
reflect the historical wet and dry years. As the calibration work did not focus on release and storage 
volumes specifically, the uncertainty levels could be higher than expected.
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