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conducted a workshop in January 2022 to discuss 
emerging concepts in the field and identify opportuni-
ties to move the science forward. This paper presents 
workshop proceedings and summarizes the identified 
research needs, priorities, and recommendations for 
measuring biologic age. The highest priorities identi-
fied were the need for more robust measures, longi-
tudinal studies, multidisciplinary collaborations, and 
translational approaches.

Keywords  Biologic age · Aging · Epigenetics · 
Clinical trials · Multidisciplinary studies

Abstract  Biologic aging reflects the genetic, 
molecular, and cellular changes underlying the devel-
opment of morbidity and mortality with advancing 
chronological age. As several potential mechanisms 
have been identified, there is a growing interest in 
developing robust measures of biologic age that can 
better reflect the underlying biology of aging and pre-
dict age-related outcomes. To support this endeavor, 
the Research Centers Collaborative Network (RCCN) 
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Introduction

Aging is characterized by molecular and cellular 
changes that generally lead to the accumulation of 
cellular and tissue damage and physiological dys-
regulation [1]. When damage surpasses reserve 
and resilience capabilities, the onset of disease 
can occur, along with loss of function, subsequent 
frailty, and ultimately death. Although lifespan has 
increased over the last 15  years due to decreas-
ing mortality rates, there has not been a matching 
increase in health span. In fact, chronic complex 
morbidity is on the rise, and years of life lived with 
disease have increased. However, there is significant 
heterogeneity in phenotypic aging consistent with 
the varying rates of biologic aging and gene expres-
sion profiles across cells, tissues, and organs, both 
within and across individuals [2, 3]. Moreover, late-
life diversity in the aging rate likely arises through 
stochastic effects of genetics, epigenetics, and envi-
ronmental factors, suggesting that the aging pro-
cess is not immutable. As such, there is an urgent 
need to better understand the molecular and cellular 
changes that contribute to functional decline with 
advancing age, as interfering with the basic funda-
mental mechanisms may reduce the global suscepti-
bility to age-related chronic diseases [4].

Conventionally aging has been quantified using a 
simple measure of chronological age, which is the 
number of years, months, days, or hours since birth. 
However, chronological age fails to account for the 
heterogeneity with which individuals age over time. 
Thus, biologic age has been proposed to be a more 
accurate measure of aging that reflects the impact of 
various exposures (e.g., genetic, lifestyle, environ-
mental) across the life course that may slow or accel-
erate physiological mechanisms of aging. Measures 
of biologic age also provide the foundation for evalu-
ating treatments designed to affect the aging process, 
which is the fundamental risk factor for age-related 
diseases. Elucidating the determinants of biologic 
aging and its rate and figuring out how to measure 
it accurately are critical issues in the emerging field 
of geroscience and are key to identifying robust and 
valid measures of biologic age [4, 5].

In January 2022, the Research Centers Collabo-
rative Network (RCCN) sponsored a 1.5-day virtual 
workshop on Measuring Biologic Age. The scope 
of this workshop included sessions on defining 

biologic age, identifying relevant markers of physi-
ological aging, evaluating the utility of aging bio-
markers, and understanding potential applica-
tions and implications. The agenda, recordings, 
and slides are archived at www.​RCCN-​aging.​org. 
This paper describes the proceedings, discussion, 
insights, and recommendations that came out of this 
important workshop, including a list of research 
needs, priorities, and opportunities on the issue of 
measuring biologic age.

Understanding biologic mechanisms of aging

To develop suitable measures of biologic age, it is 
essential that we understand the mechanisms con-
tributing to the aging process. The seminal paper by 
Lopez-Otin et al. in 2013 characterizing nine candi-
date cellular and molecular hallmarks of aging has 
helped organize efforts in understanding, quantifying, 
and utilizing measures of biologic age in research 
[6]. These hallmarks describe primary causes, resil-
ience mechanisms, and secondary consequences that 
are generally considered to contribute to the biologic 
aging process and collectively determine the aging 
phenotype. For example, cellular senescence is trig-
gered by molecular damage and metabolic stressors 
that lead to aberrant cell cycle activity. The resulting 
stable cell cycle arrest and senescent phenotype is 
highly metabolically active and includes altered mor-
phology, gene expression, and a pro-fibrotic and pro-
inflammatory secretome (i.e., senescence-associated 
secretory phenotype (SASP)) [7, 8]. Genomic insta-
bility leads to the accumulation of genetic damage 
that alters the integrity and stability of DNA (both 
nuclear and mitochondrial), partly due to increases 
in somatic mutations and insufficient DNA repair 
mechanisms. Epigenetic changes involving altera-
tions in DNA methylation patterns, post-translational 
modification of histones, and chromatin modeling 
can impact gene expression. Finally, altered intercel-
lular communication driven by inflammaging and 
immunosenescence [9, 10], among other pathways, 
promotes interorgan coordination of the aging phe-
notype as age-related changes in one tissue can lead 
to deterioration in other tissues. In the following sec-
tion, we describe various measures of biologic age 
that have been developed to reflect these mechanistic 
hallmarks of aging.
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Measuring biologic age

A variety of approaches have been developed to quan-
tify the biologic aging process, some of which esti-
mate biologic age using mathematical algorithms 
applied to specific indices such as DNA methylation 
patterns (epigenetic clocks) or alterations in the pro-
teome (proteomic clocks). Other methods yield sig-
natures of biologic aging that reflect characteristic 
markers of key cellular and molecular processes (e.g., 
senescence, somatic mutations). In addition, compos-
ite measures that incorporate multiple indices across 
multiple levels have also been developed to reflect the 
combined contribution of biologic mechanisms lead-
ing to the aging phenotype.

Epigenetic clocks estimate the age of tissues and 
cells using multivariate weighted sums of CpG sites 
in the genome (i.e., epigenetic age). To date, more 
than a dozen epigenetic clocks have been developed 
including the Horvath 1 and Horvath 2 [11], the Han-
num [12], and the Lin [13] clocks. Although one of 
the biggest strengths of these first-generation clocks 
is their ability to predict chronological age systemati-
cally across all human cell types and tissues, they are 
based solely on information from CpG methylation. 
To better capture the underlying biologic features 
of accelerated epigenetic aging, second-generation 
clocks, including DNAm PhenoAge [14] and DNAm 
Grimage [15], incorporate more complex phenotypes 
based on mortality risk. More recently, the Dun-
edinPoAm clock was developed to capture within 
individual variation in rate of aging over time [16]. 
However, all epigenetic clocks have a signal (bio-
logic variation) vs. noise (technical variation) prob-
lem, in part because data from individual CpGs are 
often noisy and unreliable [17, 18]. To reduce tech-
nical variability, Higgins-Chen el al. proposed using 
principal component analysis (PCA) rather than indi-
vidual CpGs to train the clocks [17]. The main ben-
efit of this method is that PCA can extract the shared 
aging signal across intercorrelated CpGs while ignor-
ing the noise. This method not only generates better 
reliability and a steadier age change gradient, but 
also reduces the sample size needed for clinical tri-
als. PCA-based clocks are now used for clinical trials, 
longitudinal tracking and cell culture [17], single cell 
epigenetic clocks [19], Pan-mammalian clocks [20], 
ultra-low-cost epigenetic clocks [21], and DNA meth-
ylation editing with CRISPR [22]. While PCA-based 

clocks work well in characterizing groups, it is less 
clear how well these clocks perform in individuals 
followed through time or in response to interventions.

Proteomic clocks are also mathematically derived 
estimators of biologic age based on the characteriza-
tion and quantification of proteins. Recent techno-
logical advancements, including mass spectroscopy-
based proteomics and multiplexed proteomic assays 
using modified aptamers (SOMAscan) and proximity 
extension assay (PEA, O-Link), permit assessment 
of thousands of proteins in plasma or other specimen 
types to yield new clinical biomarkers. These prot-
eomic clocks (such as the one based on SOMAscan) 
reflect chronological age and have been used in large 
cohort studies, including the Baltimore Longitudinal 
Study on Aging (BLSA), Genetic and Epigenetic Sig-
natures of Translational Aging Laboratory Testing 
(GESTALT), and “Invecchiare in Chianti” (InCHI-
ANTI), with > 80% replication across cohorts [23, 
24]. Moreover, proteomic clocks are used to identify 
persons who are predicted to be “older” than their 
chronological age based on their proteomic signature. 
These “age-accelerated” people have a higher risk 
of mortality and faster accumulation of disease [25]. 
A strength of proteomics versus other data-intensive 
omic platforms is that select proteins—alone or in 
combination—can be identified and inform mechanis-
tic understanding of biologic aging. In contrast, many 
earlier-generation epigenetic clocks are powerful 
predictors of chronological age, yet the relevance to 
phenotypic age may be difficult to discern. Indeed, as 
proteomic platforms become more accessible, meta-
analyses across diverse human cohorts will be neces-
sary to provide convergent evidence for key protein 
nodes that change with chronological and biologic 
age [26, 27]. Collectively, these advancements in 
proteomic biomarkers of aging underscore their util-
ity and promise, though technical and analytic refine-
ments remain.

Cellular signatures of senescence help advance 
our understanding of what and how to measure 
cellular senescence in  vivo. Many cell types can 
acquire a senescent phenotype, and there are many 
cellular stressors, oncogenic signals, and sources of 
molecular damage that can initiate cell senescence 
and present an in vivo signature of senescence [28, 
29, 30]. There is also considerable cell-type hetero-
geneity using single marker genes as surrogates for 
“senescence” [31, 32]. This heterogeneity is one of 
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the defining challenges for senescence-derived bio-
markers as there is no “universal” marker for iden-
tification of senescent cells in  vivo. The emergent 
view is that a panel of biomarkers and tissue-spe-
cific maps may be necessary to identify heteroge-
neous senescent cells [33, 34]. For example, novel 
bioinformatic approaches are being used to develop 
tissue-specific maps of senescent cells in the brain. 
Recent investigations constructed unbiased com-
posites of multiple genes—called senescence 
eigengenes—that each represents distinct aspects 
of senescence, including stress response, cell cycle 
arrest, and inflammatory response [35]. This allows 
high-resolution mapping of cells and cell environ-
ments and uses hypothesis-informed validated bio-
markers of senescence. This innovation represents 
a new and powerful approach to understanding the 
mechanisms governing cellular senescence which 
can guide potential treatments for diseases such as 
Alzheimer’s disease (AD).

Blood signatures of senescence are being devel-
oped using a similar multianalyte approach, which 
is a critical area of development as accessible bio-
specimens are essential for clinical translation [36]. 
Recently, a “SASP Atlas” was constructed based on 
a comprehensive proteomic analysis of soluble and 
exosome SASP factors [28]. The SASP profile was 
derived from multiple senescence inducers and cell 
types yielding hundreds of proteins. Interestingly, 
the secretome of senescent cells demonstrated con-
siderable overlap with plasma biomarkers of bio-
logic aging [24]. New methods in profiling using 
advanced proteomic approaches based on unbiased 
data-independent acquisitions (DIA) mass spectrom-
etry (MS) have expanded identified SASP factors by 
about tenfold and can be applied to comprehensively 
and quantitatively profile exosomes released from 
senescent cells [37]. Though research on exosomes 
is challenged by their isolation and analysis in cir-
culation, these can be overcome using DIA-MS 
proteomics and multiomic workflows. Collectively, 
multiomics of soluble and exosome SASP are novel 
tools to explore the role of cell senescence in human 
aging and as therapeutic targets. However, a key 
challenge to identifying and interpreting SASP fac-
tors in the blood is the lack of specificity. Many 
SASP factors are important signaling factors that 
represent (patho)physiological processes that are not 
related to cellular senescence per se.

Mutational signatures are characteristic combina-
tions of mutation types arising from specific muta-
genic processes such as DNA replication infidelity, 
defective DNA repair pathways, and DNA enzymatic 
editing. Although these signatures have been used 
predominately in the oncology field to characterize 
the accumulation of somatic mutations in various 
cancers, somatic mutations likely contribute to the 
aging phenotype as well. However, solid evidence 
for this is lacking. Multiple studies demonstrate that 
somatic mutation frequency is negatively correlated 
with lifespan across multiple species, irrespective 
of maximum lifespan, and report a positive correla-
tion between mutation frequency and age [38, 39, 
40]. Using single-cell approaches, researchers can 
now characterize the landscape of somatic muta-
tions with aging in humans [41]. The creation of the 
“SomaMutDB” database that documents the 2.5 mil-
lion mutations discovered in normal somatic human 
tissues will further advance the field [42]. Studying 
extreme phenotypes, such as centenarians and prog-
eroid syndromes, can also help understand the role of 
genomic instability and DNA damage. On one hand, 
progeroid syndromes are caused by specific genetic 
mutations that lead to premature aging in one or more 
organs. On the other hand, centenarians are a model 
of successful aging or delayed biologic aging who not 
only live longer lives, but also experience comorbidi-
ties for a shorter amount of time (unlike most older 
adults who spend 10–20 years of life with age-related 
diseases and disability) [43]. Studying the role of 
affected genes (e.g., lamin A, WRN) in the case of 
progeria or genetic signatures of longevity in cente-
narians and their offspring can provide useful infor-
mation on molecular mechanisms of aging, including 
biomarkers that may be predictive of mortality and/or 
resilience [44, 45, 46, 47, 48].

Composite measures are based on various com-
binations of biologic clocks or clinical indices and 
reflect the complex effect of aging on different physio-
logical systems (e.g., renal, cardiovascular, endocrine, 
immune, pulmonary) [5, 49, 50, 51]. Such composites 
are often used in studies that incorporate age-normal-
ized physiology, an approach that defines biologic 
age as the age at which a person’s biology would be 
“normal” in a reference population and defines “pace 
of aging” as the rate of decline in integrity across 
multiple organ systems [52]. While this approach is 
useful for identifying individuals with a greater than 
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expected biologic age or rate of phenotypic aging and 
an increased risk of age-related diseases, disability, 
and mortality [5, 53], defining biologic age in this 
way requires several additional considerations. Nota-
bly, the reference sample used to define “normal” bio-
logic age should reflect the distribution of causes and 
features of aging for the target population in which 
the measurement is used. The level of analysis used 
to compare the aging biology (e.g., cellular, organ/
organ systems, physical function, disease counts) and 
the unit of time for defining biologic age (e.g., time 
since birth, time until death, coordination across bio-
logic systems) are also critical factors, yet the optimal 
measures remain unknown. In addition, the minimum 
timescale over which natural aging and intervention-
modified aging can be observed in human longitudi-
nal studies is also unclear. Despite these challenges, 
recently published data from the Baltimore Longitu-
dinal Study of Aging show that annualized change in 
a global longitudinal phenotypic metric of aging is 
associated with multiple aging outcomes, including 
physical and cognitive decline, multimorbidity, and 
mortality [54]. These findings demonstrate the poten-
tial utility of a composite measure to reflect the aging 
process, although it remains untested whether this 
measure is indeed modifiable.

Incorporating measures of biologic age in clinical 
studies

Geroscience reflects the intersection of basic aging 
biology and chronic disease and health, linking cel-
lular and molecular changes to global declines in 
organ function and the development of physical and 
cognitive impairments [55]. In this regard, validated 
measures of biologic age are indispensable for track-
ing age-related changes in function or measuring the 
efficacy of planned interventions. The aging pheno-
type depends on multiple factors such as genetics, 
nutrition, exercise, sex, and lifelong exposure to dif-
ferent pathogens. This evidence lays the groundwork 
for identifying modifiable factors via epidemiologi-
cal studies with long-term follow-up and randomized 
clinical trials with nutritional, lifestyle, or pharma-
cological interventions that precisely target the rel-
evant pathophysiological process [56, 57]. With this 
approach, we can say that we have slowed phenotypic 
aging if a change in the underlying biology affects 

the clinical phenotype and functional measures of 
aging. Unfortunately, there are only a few ongoing 
studies currently employing translational geroscience 
approaches in multisite clinical trials, including the 
Molecular Transducers of Physical Activity Consor-
tium (MoTrPAC) and the Metformin for Prevention 
of Frailty in Older Adults study [58, 59]. Therefore, 
establishing a causal relationship between biologic 
and phenotypic aging in humans is a critical next step 
for future studies.

The concept of geroscience is not disease-specific, 
but rather implies shared mechanisms and common 
pathophysiological processes underlying age-related 
diseases and conditions. Accordingly, investiga-
tions that move beyond disease-centered models are 
necessary to clarify the role of biologic aging in the 
development of age-related functional decline. As 
an example, frailty and physical function are person-
centered outcomes that integrate multiple patholo-
gies that could be affected by biologic mechanisms 
of aging, reflect reserve capacity, and strongly predict 
key clinical outcomes [60, 61, 62]. Notably, there is 
considerable overlap between the cellular hallmarks 
of aging and the proposed biologic mechanisms of 
frailty and physical function. In animal models, the 
hallmarks of aging appear to contribute directly to 
frailty [63]. Although data are much more limited 
in humans, there is a growing body of observational 
data linking frailty and physical function to biologic 
mechanisms. Frailty and physical function are also 
increasingly being used as primary outcomes in ran-
domized clinical trials of interventions targeting bio-
logic mechanisms of aging. While some studies have 
demonstrated efficacy in improving or preventing 
declines in physical function [64, 65] or decreasing 
the rate of aging [66, 67], no interventions targeting 
frailty itself have demonstrated efficacy. The findings 
of future trials will be critical to demonstrating that 
frailty is modifiable and that biologic mechanisms 
of aging cause frailty in humans [60]. For a more in-
depth discussion of how to validate surrogate end-
points in clinical trials, see the accompanying com-
mentary by Cummings et al. [68].

Moving the field forward

Measuring biologic age allows researchers to char-
acterize the physiology of aging, evaluate how 
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exposures through life affect the aging process, vali-
date potential surrogate endpoints in trials to dis-
cover new treatments and intervention targets, and 
potentially improve healthcare decisions. However, 
we need to better understand what makes people age 
differently considering genetic inheritance, individual 
health-related behaviors, healthcare access, and envi-
ronmental exposures over the life course. Moreover, 
several key questions remain, including the following: 
Are current measures of biologic age sufficient? What 
information would it take to demonstrate this? Do we 
need different measures of biologic age depending on 
the research or clinical setting? How well do meas-
ures of biologic age correlate with clinical measures? 
Below, we address major gaps in the field, highlight-
ing the research needs, priorities, and opportunities to 
move the field forward.

•	 Clarify mechanisms and effects of biologic aging: 
Although some measures of biologic age can pro-
vide a comprehensive assessment of aging fea-
tures and predict various age-related outcomes, 
it is sometimes unclear what exactly is being 
measured (e.g., inflammation, metabolic function, 
DNA damage) [69]. To this end, we need to bet-
ter understand the biologic processes and mecha-
nisms that occur alongside changes in measures 
of biologic age and establish causal impacts rather 
than associations. Since each “level” or type of 
biomarker conveys different information about 
biologic aging, the best type of biomarker(s) to 
use in a measure of biologic age also needs to be 
elucidated. These unresolved issues highlight the 
need for measures of biologic age that are stand-
ardized, easy to measure, sensitive to change (even 
in younger and healthier groups), clinically mean-
ingful, and easily implemented in either clinical or 
research settings.

•	 Clarify the utility of biologic aging clocks: Many 
different clocks have emerged that reflect different 
biologic mechanisms or hallmarks of aging. Some 
were meant to estimate biologic age using one 
marker at a single time point, whereas others use a 
composite index of multiple tissue-/organ-specific 
clocks across time. Some were developed to pre-
dict chronological age, whereas others were devel-
oped to predict aging phenotypes (e.g., frailty). 
This heterogeneity, coupled with the poor correla-
tion between clocks, suggests that each clock rep-

resents a different profile of biologic determinants 
[49]. It is also possible that clocks are simply 
stochastic measures of aging (reflecting random 
accumulation of molecular changes over time) 
rather than true measures of biologic processes of 
aging. Moreover, the best way to operationalize 
biologic aging clocks is also uncertain, and basic 
information like the within-person reproducibility 
and analytic variation of these measures is only 
now being worked out. This has important impli-
cations for designing and evaluating trials that 
target specific pathways reflected by the different 
clocks.

•	 Enhance methodological rigor: To develop vali-
dated measures of biologic age, we must first 
improve the breadth and depth of our measure-
ments. For example, methodological hurdles still 
make it challenging to examine cellular compo-
nents of immunity and other biomarkers that are 
technically difficult to measure [70]. An incom-
plete evaluation, and therefore understanding, of 
biologic mechanisms can also confound our inter-
pretation of disease vs. resilience pathways, as has 
been suggested in brain aging [71, 72, 73, 74]. 
To overcome these limitations, we should seek to 
capitalize on recent technological advancements 
in multiomic approaches and move beyond blood 
to incorporate a diverse array of relevant cells, tis-
sues, and other biospecimens. This will be neces-
sary to provide robust measures that accurately 
characterize biologic aging.

•	 Increase the number of longitudinal studies: The 
first generation of studies trying to calculate bio-
logic age was cross-sectional. There are well-cat-
aloged biases in inferring longitudinal relation-
ships from cross-sectional data. Moreover, with 
respect to biologic age, the fact that someone 
has aged more quickly in the past—the informa-
tion that cross-sectional data provides—does not 
necessarily mean that person will continue to age 
more quickly in the future. Longitudinal studies 
are ideal for characterizing biologic aging pro-
cesses (e.g., mechanisms of accelerated aging) 
because they can account for changes and differ-
ences in lifetime exposures across different groups 
and life course stages. This is critical for assess-
ing relationships over time to determine critical 
time points for intervention (e.g., early childhood, 
midlife). Longitudinal studies can also overcome 
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challenges in modeling mortality or loss to follow-
up, especially as this varies across diverse groups 
of people (e.g., race/ethnicity, sex/gender). This 
study design can be used to address important 
unresolved questions like: When in the human life 
course does aging begin? Does the rate of aging 
vary across the lifespan, and if so, how? Are dif-
ferent methods to study aging needed at different 
life course stages? Currently, there are too few 
longitudinal studies in humans to look at rates of 
changes in biologic age, and those that do exist 
generally begin at age 20 or older. Thus, there is a 
need for longitudinal studies across the life course 
to study multiple measures of biologic age from 
various organs and cells, how they are connected 
to each other, and how they are related to develop-
ment, environmental exposures, and responses to 
stressors.

•	 Identify outcomes for geroscience-focused clinical 
trials: Part of the promise of measuring biologic 
age is in developing and validating surrogate end-
points for trials testing interventions that attempt 
to affect the aging process to slow or prevent the 
emergence of age-related health conditions. In the 
context of clinical studies, measures of biologic 
age can also be potentially valuable tools for pop-
ulation stratification, inclusion into intervention/
clinical trials, and patient selection (e.g., identify-
ing those who may benefit most from an effective 
geroscience intervention). To do so, we must first 
identify surrogate markers that fit in the pathway 
of the treatment’s biologic mechanism of action 
and predict both clinical outcomes and the effects 
of the treatment on these outcomes. This issue is 
discussed at length in the accompanying commen-
tary by Cummings et al. [68].

•	 Encourage multidisciplinary collaborations: 
Existing NIA networks and center programs such 
as the Translational Geroscience Network and the 
Predictive Biomarker Network should be engaged 
to develop standardized measures and methods 
across research teams, allowing the pooling of 
study populations and results. The integration of 
insights from the aging biology into other fields 
like economics, sociology, and psychology should 
also be promoted. For example, quasi-experimen-
tal techniques (e.g., instrumental variables, differ-
ences-in-differences, and regression discontinuity) 
can be used to simulate randomized controlled 

trial designs to examine causality and capitalize 
on the usefulness and availability of biomarker/
molecular data in large population-based cohorts 
focused on aging. To enable cross-disciplinary 
and multidisciplinary collaborations and studies, 
more advanced statistical modeling approaches 
such as latent variables, multiple moderation, and 
mediation modeling could be employed. In addi-
tion, systematic interactions between researchers 
working at different stages of the life course will 
be important for harmonizing relevant data collec-
tion and specimen collection.

•	 Incorporate social determinants of health: There 
are few epidemiological studies linking socio-
economic measures with biologic aging markers 
across the life span. Thus, more studies are needed 
to better understand how social determinants of 
health (i.e., life course sociocultural and structural 
measures) “get under the skin” and impact bio-
logic aging. Measuring biologic age across and 
within populations will help to inform our under-
standing of shared biologic processes in diverse 
groups of people. When investigated alongside 
contextual factors, such studies may also shed 
light on biologic aging as a potential mechanism 
to explain health disparities. For example, expo-
sure to stress, social disadvantage, structural rac-
ism, and discrimination may cause a faster pace 
of aging, premature decline in health, and racial/
ethnic disparities in late-life diseases among older 
non-Hispanic Black and Hispanic individuals. 
Moreover, examining social determinants of bio-
logic aging could provide interdisciplinary evi-
dence to potentially inform public policies.

•	 Integrate measures of resilience: Much of the cur-
rent research has focused on documenting damage 
accumulation over time. Although resilience is 
also a key feature in the model of intrinsic aging, 
its role in delaying or preventing phenotypic mani-
festations of advanced biologic age, such as frailty 
or impaired physical function, remains unknown. 
Importantly, compensation and resilience affect the 
temporal relationship between various aging met-
rics. Thus, by integrating accurate and predictive 
measurements of resilience, we may elucidate how 
these measures can be adapted to benefit biologic 
age. In addition, stress or “resilience” tests may 
help identify individuals with accelerated aging, 
subclinical disease, or impaired physical function.
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•	 Utilize a translational approach: Investigations 
of biologic age need to be developed across the 
translational spectrum. For example, understand-
ing the biologic mechanisms of aging will require 
hypothesis-driven experimental manipulation in 
cell cultures. Longitudinal studies in clinically 
relevant animal models of human aging are war-
ranted to better understand the aging process and 
to assess the validity of aging biomarkers and the 
usefulness of candidate interventions. As discussed 
previously, epidemiologic studies, including rand-
omized clinical trials, are needed to translate pre-
clinical findings and validate relevance of biologic 
aging measures in humans, as there is currently a 
disconnect between advances made in animal mod-
els and human studies. Replicating measures and 
findings across species and tissues (e.g., blood, 
urine, cells) will be critical. Although clinical stud-
ies have informed aging phenotypes and predictors 
(e.g., biomarkers for disability, frailty, and demen-
tia), it remains unknown whether these biomarkers 
can similarly predict health span, thus warranting 
further investigations. Ultimately, it will be neces-
sary to establish the societal implications of these 
findings, where the proper and ethical use of bio-
logic age in public health must be determined.

Conclusions

In sum, there are numerous advantages to measur-
ing biologic age. These measures have the poten-
tial to provide an endpoint that reflects underlying 
aging biology, including subtle changes in seem-
ingly healthy people with accelerated aging prior to 
physical manifestations. By providing insight into 
exposures and life experiences, measures of biologic 
age can be used to track life course effects (i.e., posi-
tive and negative events throughout life) and better 
characterize heterogeneity in phenotypic aging. This 
information can ultimately help to identify risk and 
protective factors and determine how to mitigate the 
impact of adverse exposures. If properly validated, 
measures of biologic age can be used in clinical stud-
ies, e.g., to inform patient selection, risk stratification, 
and timing of interventions. Notably, some meas-
ures are sensitive enough to detect large effect sizes 
and reduce measurement error, negating the need to 

employ large samples to identify treatment effects, 
especially in older surviving samples. Although we 
are far from being able to use these measures in the 
healthcare setting, biologic age is a promising tool 
with potential applications that can ultimately revolu-
tionize the field of aging and significantly impact the 
care of our rapidly expanding older adult population.
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