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Predictions from Uncertain Beliefs 
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1Dept. of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT 06520 USA 

2Dept. of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer St., Providence, RI 02912 USA 
 

Abstract 
According to probabilistic theories of higher cognition, 
beliefs come in degrees. Here, we test this idea by studying 
how people make predictions from uncertain beliefs. 
According to the degrees-of-belief theory, people should 
take account of both high- and low-probability beliefs 
when making predictions that depend on which of those 
beliefs are true. In contrast, according to the all-or-none 
theory, people only take account of the most likely belief, 
ignoring other potential beliefs. Experiments 1 and 2 tested 
these theories in explanatory reasoning, and found that 
people ignore all but the best explanation when making 
subsequent inferences. Experiment 3A extended these 
results to beliefs fixed only by prior probabilities, while 
Experiment 3B found that people can perform the 
probability calculations when the needed probabilities are 
explicitly given. Thus, people’s intuitive belief system 
appears to represent beliefs in a ‘digital’ (true or false) 
manner, rather than taking uncertainty into account. 

Keywords: Explanation; abduction; causal reasoning; 
belief; prediction; diagnosis; probability; uncertainty. 

Introduction 
Our beliefs often entail other beliefs. Knowing an object’s 
category helps us to make predictions about that object 
(Anderson, 1991; Murphy, 2002). If a furry object is a 
rabbit, it might hop; if it’s a skunk, it might smell. 
Likewise, causal beliefs facilitate predictions (Waldmann 
& Holyoak, 1992). If the house is smoky because Mark 
burned the cookies, then we have an unpleasant dessert to 
look forward to; if it’s smoky because Mark dropped a 
cigarette in the bed, then we may have bigger problems. 

However, beliefs are often accompanied by uncertainty. 
If we see a furry object from a distance, we may be only 
70% confident that it is a rabbit rather than a skunk; if we 
are awoken from a nap by smoke, we may think there is a 
20% chance that the house is burning down. In such cases 
of uncertain beliefs, accurate inference about those 
beliefs’ consequences requires these possibilities to be 
weighted and combined. This can be done using the tools 
of probability theory. Here, we test whether people use 
probabilities to represent beliefs as coming in degrees, or 
whether people might instead use shortcuts, representing 
beliefs as though they are either true or false. 

Imagine there is a 70% chance that the furry object is a 
rabbit (possibility A), and a 30% chance that it is a skunk 
(B). What is the probability that it will hop (Z)? Suppose 
80% of rabbits hop, while only 2% of skunks hop. That is: 

P(A) = .70, P(B) = .30, P(Z|A) = .80, P(Z|B) = .02. 
Then the probability of hopping (Z) can be calculated as: 

P(Z)= P(Z|A)P(A) + P(Z|B)P(B) = (.8)(.7) + (.02)(.3) =.6 

Anderson (1991) argued that people follow this principle 
in category-based prediction. That is, when estimating the 
likelihood that an object has a feature, people consider the 
various possible categorizations of that object, and then 
weight the conditional probability of the feature given 
those categories by the probability of each category. 

But people usually do not consider all possible 
categorizations of an object, but focus on the single most 
likely category (Murphy & Ross, 1994). In our example, 
people would ignore the possibility that the object is a 
skunk, and ‘round up’ the rabbit probability to 100%: 

P(Z)= P(Z|A)P(A) + P(Z|B)P(B) = (.8)(1) + (.02)(0) =.8 
That is, people only consider the conditional probability 
of a new feature given the most likely category, as though 
they believe that the object must belong to that category. 

This result has been found consistently across many 
studies. For example, Murphy and Ross (1994) presented 
participants with exemplars belonging to categories of 
drawings by different children, which varied in color and 
shape. Participants were then told about a new exemplar 
(e.g., a triangle), and asked to categorize it. Because the 
training exemplars included 5 triangles, of which 3 were 
drawn by the same child (Bob), virtually all participants 
responded that the new triangle was likely drawn by Bob 
(with about 60% confidence). Participants then predicted 
the color of the new exemplar. Participants based these 
predictions only on the distribution of colors within the 
most likely category (Bob), as though the 60% chance of 
the exemplar belonging to that category had been 
‘rounded up’ to 100%. That is, people relied only on the 
single best categorization, ignoring the 40% chance that 
the exemplar belonged to a different category. 

These findings may be unique to categorization. 
Categories are discrete representations (Dietrich & 
Markman, 2002)—an object is a rabbit or a skunk, not 
both. This basic underlying logic of categorization may 
account for people’s reluctance to entertain multiple 
possible categorizations, in which case we would not 
expect similar results in other cognitive domains. 

However, beliefs might be represented in an all-or-none 
(‘digital’) manner not only in categorization, but across 
cognition. Such a result would be surprising from the 
standpoint of probabilistic theories of cognition (e.g., 
Oaksford & Chater,  2009). On a common philosophical 
interpretation of probability, the purpose of probabilities 
is to reflect  ‘degrees of belief’ (Jeffrey, 1965)—indeed, 
some philosophical theories hold that only logical 
tautologies should be assigned a probability of 1, and only 
logical contradictions a probability of 0 (Kemeny, 1955). 
If people do not represent beliefs in degrees (as ‘graded’), 
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this poses serious difficulties for claims that people 
perform Bayesian updating using normative principles. 

In the current experiments, we tested whether people 
make predictions from uncertain beliefs in an all-or-none 
or a graded manner. We followed the logic of the Murphy 
and Ross (1994) experiments, but rather than categorizing 
objects, participants either inferred causal explanations 
from observations (Experiments 1 and 2) or inferred the 
most likely possibility given base rates (Experiment 3). 

Participants learned about causal systems with the 
structure depicted in Figure 1. That is, two explanations 
(A and B) could account for some data (X), and these 
explanations had different implications for some novel 
prediction (Z). We structured the problems so that 
explanation A would be seen as more probable than 
explanation B. We tested whether people rely only on A 
or instead consider both A and B, by varying the 
conditional probability of Z given each explanation [i.e., 
P(Z|A) and P(Z|B)]. If people integrate across all possible 
explanations, both manipulations should have an effect on 
judgments of P(Z). In contrast, if people rely only on the 
most likely explanation, then manipulating P(Z|B) should 
have no effect at all on P(Z). 

Experiment 1 
In Experiment 1, we relied on people’s known preference 
for simple explanations (Lombrozo, 2007). Other things 
being equal, people prefer to explain data with one cause 
rather than two causes. Thus, we expected that when a 
simple and complex explanation can both account for a 
set of observations, people will make subsequent 
inferences as though only the simple explanation were 
possible. For example, participants learned about a simple 
ecosystem in a lake (letters in brackets not in original): 

Juga snails [A] cause lakes to lose sculpin fish [X] and 
lose crayfish [Y]. 

Scuta snails [B] cause lakes to lose sculpin fish [X]. 
Aspera snails [C] cause lakes to lose crayfish [Y]. 

Thus, if a lake had lost both sculpin fish and crayfish 

(effects X and Y), the juga snails explanation (A) would be 
more compelling than the conjunctive scuta plus aspera 
snails explanation (B and C combined), even though 
either explanation could account for the data. Thus, we 
would expect participants to infer the simple explanation 
(A), given that they are told that X and Y are observed. 

To see whether people would make subsequent 
inferences that ignored the possibility that the complex 
explanation was true, participants learned about another 
effect, bacteria proliferation (Z), which occurs with 
different probabilities, depending on the cause. In the 
low/low condition, this effect had a low probability 
regardless of the cause (underlining not in original): 

When a lake has juga snails [A], it occasionally has 
bacteria proliferation [Z]. 

When a lake has both scuta snails [B] and aspera snails 
[C], it occasionally has bacteria proliferation [Z]. 

The high/low condition was like the low/low condition, 
except that P(Z|A) remained high while P(Z|B,C) was low: 

When a lake has juga snails [A], it usually has bacteria 
proliferation [Z]. 

When a lake has both scuta snails [B] and aspera snails 
[C], it occasionally has bacteria proliferation [Z]. 

Since participants would infer that A is the best 
explanation, we would expect a difference between the 
low/low and high/low conditions in judgments of P(Z), 
reflecting the higher value of P(Z|A). Finally, the low/high 
condition was the reverse of the high/low condition, with 
a low value of P(Z|A) and a high value of P(Z|B,C): 

When a lake has juga snails [A], it occasionally has 
bacteria proliferation [Z]. 

When a lake has both scuta snails [B] and aspera 
snails [C], it usually has bacteria proliferation [Z]. 

If participants ignore the possibility that the complex 
explanation is true (effectively placing 100% of their 
confidence in the simple explanation), then we would 
expect no difference between the low/low and the 
low/high conditions in ratings of the likelihood of Z, since 
the conditional probability given the conjunctive 
explanation would be irrelevant. Conversely, if they 
weight all possible explanations in a normative manner 
(Anderson, 1991), then they should differentiate between 
the low/low and low/high conditions. 

Method 
We recruited 120 participants from Amazon Mechanical 
Turk for Experiment 1; 8 were excluded from analysis 
because they incorrectly answered more than one-third of 
a set of true/false check questions. 

Each participant completed three items—one each in 
the low/low, high/low, and low/high conditions. For the 
snail item, participants first read about the effects of A, B, 
and C on X and Y, using the above wording. They then 
read about the effects of these causes on Z, with either the 
above low/low, high/low, or low/high wording. Next, 
participants indicated their favored explanation: 

Figure 1: Causal structure used in all experiments. 
White indicates a variable that was observed, and 

grey indicates a variable that is unknown. 
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Crescent Lake has a loss of sculpin fish [X] and 
crayfish [Y]. Which do you think is the most 
satisfying explanation for this? 

Participants answered this question as a forced-choice 
between “Crescent Lake has juga snails” [A] and 
“Crescent Lake has scuta snails and aspera snails” [B and 
C]. Finally, participants were asked to rate the probability 
of Z (“What do you think is the probability that Crescent 
Lake has bacteria proliferation”) on a scale from 0 to 100. 

Three vignettes were used (snails, bacteria, and fungus), 
and condition (low/low, high/low, or low/high) was 
balanced with vignette using a Latin square. Items were 
completed in a random order, and all questions for each 
item appeared on the same page. 

Results and Discussion 
Most participants (78 out of 112) preferred the simpler 

explanation for all three items. Because our hypotheses 
are predicated on the assumption that participants inferred 
the simple explanation, we focus on these participants’ 
responses in analyzing the results of all experiments. 
However, the results of all experiments are similar if all 
participants are included who passed the check questions. 

Figure 2 shows the mean estimates of P(Z), across the 
three conditions. When both the simple explanation and 
the complex explanation corresponded to a low 
probability of Z (it “occasionally” leads to Z) in the 
low/low condition, mean judgments were 50.74 (SD = 
23.63). But when the simple explanation instead 
corresponded to a high probability of Z (it “usually” leads 
to Z) in the high/low condition, mean judgments were 
much higher [M = 71.69, SD = 18.27; t(77) = 7.27, p < 
.001, d = 0.82, BF10 > 1000]1. Thus, manipulating the 
P(Z|A) had a dramatic effect on judgments of P(Z). This 
result is consistent with either graded or digital beliefs, 
since A was the single best explanation for the data. 

Much more surprisingly, however, manipulating 
P(Z|B,C) had no effect on the perceived probability of Z: 
There was no difference between the low/low condition 
and the low/high condition [M = 48.53, SD = 21.06; t(77) 
= -0.80, p = .43, d = -0.09, BF01 = 8.18]. That is, those 
participants who (reasonably) believed that the simple 
explanation was more likely than the complex explanation 
reasoned as though the simple explanation were certain 
and the complex explanation were impossible: 
Participants ignored the possibility that the complex 

                                                
1 Because null effects were predicted for some comparisons, all 
t-tests in this paper are accompanied by Bayes Factor (BF) 
analyses (Rouder, Speckman, Sun, Morey, & Iverson, 2009), 
with a scale factor of 1. BFs can quantify evidence either against 
or in favor of a null hypothesis. When the evidence favors the 
alternative hypothesis, we denote this ‘BF10’, and when the 
evidence favors the null hypothesis, we denote this ‘BF01’. For 
example, “BF10 = 7.0” means that the data would be 7 times 
likelier under the alternative than under the null, while “BF01” = 
4.0” means that the data would be 4 times likelier under the null 
than under the alternative. 

explanation was true when estimating P(Z). 
These results suggest that, just as in category-based 

prediction (Murphy & Ross, 1994), people base 
predictions from uncertain explanations off of only their 
preferred explanation, ignoring the possibility that other 
explanations could be correct. This is a flagrant violation 
of probability theory, as all possible explanations must be 
weighted in making subsequent inferences (Anderson, 
1991). Indeed, such behavior seems to defeat the very 
point of probabilistic inference, which is to allow for 
degrees of belief rather than all-or-none acceptance of 
propositions (Jeffrey, 1965). 

However, two aspects of this experiment might be 
cause for concern. First, we obtained participants’ 
explanatory ratings as a forced-choice, perhaps creating 
some experimenter demand to focus on the explanation 
the participant selected. Although Murphy and Ross 
(1994) found similar results regardless of whether 
participants were asked to categorize the exemplar, this is 
nonetheless a reasonable concern about this experiment. 

Second, participants may have thought that the simple 
explanation was so much more probable than the complex 
explanation that they were right to ignore the complex 
explanation in estimating the probability of Z. That is, 
suppose participants thought there were a 99% chance of 
A, and a 1% chance of B and C (this is not so 
unreasonable, since Lombrozo, 2007 found a very strong 
simplicity bias, exceeding what is normatively 
appropriate). In that case, the contribution of P(Z|A) 
should be 99 times greater than that of P(Z|B,C), and our 
experimental set-up may not be sufficiently sensitive to 
detect such a small effect of P(Z|B,C). 

Experiment 2 
In Experiment 2, we avoided these concerns by asking 
participants to estimate the probability of A [P(A|data)] 
and of B and C [P(B,C|data)] rather than making a forced 
choice between the two explanations. First, this avoided 
experimenter demand to focus only on one explanation, 
and, if anything, would seem to encourage participants to 
weight both explanations. Second, this measurement 
allowed us to determine how much larger the effect of 
P(Z|A) should be, relative to the size of P(Z|B,C), and to 
compare performance to this normative benchmark.  
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Figure 2: Results of Experiments 1 and 2. 
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Method 
We recruited 120 participants from Amazon Mechanical 
Turk for Experiment 2; 6 were excluded because they 
incorrectly answered more than one-third of the check 
questions, and 12 because their total probability ratings 
for at least one item were not between 80% and 120%. 

The procedure for Experiment 2 was the same as 
Experiment 1, with two changes. First, rather than asking 
which explanation participants favored as a forced-choice, 
they were asked to rate the probability of each 
explanation given the evidence [i.e., P(A) and P(B,C)], 
and were instructed to ensure the probabilities added up to 
100%. Second, the question about the probabilities of the 
explanations was asked on one page, then the question 
about the probability of Z was asked on a separate page. 
This change was made to avoid demand for consistency 
across the two sets of questions. The probability 
information was repeated at the top of both pages. 

Results and Discussion 
Most participants (72 out of 102) rated P(A) at least as 
high as P(B,C) for all items. Among those participants, 
the mean estimate of P(A) was 65.88 (SD = 16.33) and the 
mean estimate of P(B,C) was 34.06 (SD = 16.30). Thus, 
despite their belief that the simpler explanation was more 
probable, participants allocated substantial probability to 
the complex explanation. 

Nonetheless, the results of Experiment 2 were similar to 
those of Experiment 1 (Figure 1). Participants gave higher 
estimates of P(Z) in the high/low than in the low/low 
condition [M = 70.60, SD = 18.62 vs. M = 60.24, SD = 
22.66; t(71) = 3.41, p = .001, d = 0.40, BF10 = 18.85], 
though this effect is about half as large, compared to 
Experiment 1. This difference appears to be due to task 
demands, although it is not clear whether it is a demand in 
Experiment 1 to focus more on P(Z|A), or a demand in 
Experiment 2 to focus less on P(Z|A), relative to a 
condition in which participants did not make any explicit 
judgments about the explanations. In any case, however, 
this result is robust across both tasks, and the true effect 
size likely lies somewhere in the middle. 

Most critically, there is once again no difference 
between the low/low condition and the low/high condition 
[M = 59.31, SD = 23.23; t(71) = -0.33, p = .74, d = -0.04, 
BF01 = 10.22]. Thus, once again, while participants were 
happy to use P(Z|A) in estimating the probability of Z, 
they completely ignored P(Z|B,C). This occurred even 
though participants indicated that there was about a one-
third chance that explanation A was true. 

Could these results be driven by the assumption that the 
causes are not mutually exclusive? That is, perhaps 
participants are assuming that A could have occurred 
along with combinations of B and C, in which case the 
evidence is a much better signal for A than for B and C. 
However, this explanation is untenable in light of 
participants’ explicit ratings of the explanations, which 
indicated considerable credence in the B,C explanation.    

 
To further rule out this possibility, we can also compare 

each participant’s estimate of P(Z) to a normative 
standard, calculated from that participant’s own 
probability ratings of P(A), P(B,C), and P(Z). We included 
all 102 participants who passed the check questions in this 
analysis. Normatively, P(Z) can be calculated as: 

 P(Z) = P(Z|A)P(A) + P(Z|B,C)P(B,C) 
Since we used verbal labels (“occasionally” and 
“usually”) rather than precise probabilities, we must use 
an indirect method to calculate predicted values of P(Z). 
From the high/low and low/low conditions, we estimated 
each participant’s implicit probability difference between 
“usually” and “occasionally” (M = 9.33, SD = 38.04). 
This allowed us to calculate how large the difference 
between the low/high and low/low conditions should be. 
Participants’ difference scores between the low/low and 
low/high conditions were substantially smaller than these 
normative values, derived from their other ratings [M = 
5.80, SD = 23.85 for the difference between actual and 
normative judgments; t(101) = 2.46, p = .016, d = 0.24, 
BF10 = 1.43]. This analysis of individual participants thus 
corroborates the overall pattern of means, indicating that 
participants underweighted (in fact, did not weight at all) 
the complex explanation in estimating P(Z). 

Experiments 3A and 3B 
In our final experiment, we aimed to test whether people 
would underweight the probability of any unlikely belief 
in making subsequent inferences, or whether this effect 
was confined to explanatory inferences (such as causal 
and category-based reasoning). Thus, instead of 
manipulating the probability of two competing beliefs (A 
and B) by varying their plausibility as explanations (e.g., 
by making A a simple explanation and B a complex 
explanation), we instead manipulated the base rates of A 
and B, by asserting that A had a 65% chance of being true 
while B had a 35% chance (the same base rates for A and 
B that people gave for the simple and complex 
explanations in Experiment 2). If participants’ beliefs are 
‘digital’ only when they must infer a category or cause, 
then they would rely on both P(Z|A) and P(Z|B) when 
making subsequent inferences about Z. But if any two 
incompatible beliefs are resolved in a digital fashion (so 
that either A or B is believed all-or-none), then 
participants would continue to ignore P(Z|B) in estimating 
P(Z). We tested this in Experiment 3A. 

A second goal was to ensure that participants were not 
making normative errors simply because they are 
incapable of performing the mathematics. Thus, 
Experiment 3B gave participants all four numbers needed 
to calculate P(Z) [i.e., P(Z|A), P(Z|B,C), P(A), and P(B,C)]. 
If participants make more normative inferences here, it 
would suggest that participants know that the likelihood 
of Z given low-probability beliefs is relevant, but do not 
use it spontaneously when forced to perform a task 
without the benefit of complete probability information. 
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Method 
We recruited 120 participants from Amazon Mechanical 
Turk for Experiment 3A, and a different group of 119 
participants for Experiment 3B; 5 were excluded because 
they incorrectly answered more than one-third of the 
check questions (2 and 3 from Experiments 3A and 3B, 
respectively), and 9 because their total probability ratings 
for at least one item were not between 80% and 120% (6 
and 3 from Experiments 3A and 3B, respectively). 

Rather than manipulating participants’ inferences using 
simplicity, participants in Experiment 3A were simply 
told the prior probability of each cause. They first read 
about the probability of Z given either cause A or cause B. 
For example, in the low/low condition, participants read: 

When a lake has Juga snails [A], it occasionally has 
bacteria proliferation. 

When a lake has Scuta snails [B], it occasionally has 
bacteria proliferation. 

The high/low and low/high conditions differed as in 
Experiments 1 and 2 (changing “occasionally” to 
“usually” either for A or B, respectively). Next, 
participants were told the prior probabilities of the causes: 

Crescent Lake has a 65% chance of having Juga 
snails and a 35% chance of having Scuta snails. 

These probabilities were adjusted across the three 
vignettes to match the probabilities of the simple and 
complex explanations obtained empirically in Experiment 
2. Then participants were asked to rate the probability that 
the lake had each kind of snail, just as in Experiment 2. 
Finally, participants rated the probability of Z, using the 
same scale as Experiments 1 and 2. Counterbalancing and 
randomization were the same as in Experiments 1 and 2. 

Experiment 3B was identical to Experiment 3A, except 
that the conditional probabilities were also numerically 
specified. Specifically, the word “occasionally” was 
always followed by the parenthetical “(about 20% of the 
time)” and the word “usually” was always followed by 
the parenthetical “(about 80% of the time).” 

Results and Discussion 
Figure 3 plots the results for both Experiments 3A and 
3B. As in the other experiments, most participants rated 
the probability of A higher than the probability of B for all 
three items (91 out of 112 for Experiment 3A and 72 out 
of 113 for Experiment 3B). Ratings of P(A) and P(B) were 
tightly clustered around the values given in the problem 
(for P(A), M = 65.40, SD = 2.08 and M = 65.38, SD = 2.54 
for Experiments 3A and 3B; for P(B), M = 34.72, SD = 
2.46 and M = 34.61, SD = 2.63). Thus, judgments of P(A) 
and P(B) were very similar here to judgments of P(A) and 
P(B,C) in Experiment 2.  

For Experiment 3A, inferences about P(Z) were similar 
to Experiment 2. Participants gave somewhat higher 
estimates of P(Z) in the high/low than in the low/low 
condition [M = 71.49, SD = 19.01 vs. M = 66.04, SD = 
25.68; t(90) = 2.03, p = .045, d = 0.21, BF01 = 1.65], 
although this effect was surprisingly small. Most 

importantly, however, estimates of P(Z) in the low/high 
condition were no higher than in the low/low condition 
and were, if anything, somewhat lower [M = 60.71, SD = 
21.02; t(90) = -1.78, p = .078, d = -0.19, BF01 = 2.58]. 
That is, once again, people did not take into account the 
possibility of the low-probability alternative (B) when 
estimating P(Z). This result suggests that people adopt 
beliefs in an all-or-none manner not only when the belief 
is the result of a categorization or a causal inference, but 
even if the belief is determined by prior probability alone. 

These results stand in contrast to those of Experiment 
3B. This experiment differed from Experiment 3A only in 
giving precise values of P(Z|A) and P(Z|B), so that 
participants could in principle calculate P(Z) exactly. 
Here, participants differentiated not only between the 
high/low and the low/low conditions in their ratings of 
P(Z) [M = 64.75, SD = 17.63 vs. M = 34.33, SD = 27.90; 
t(71) = 11.81, p < .001, d = 1.39, BF10 > 1000], but also 
gave higher estimates of P(Z) in the low/high condition 
[M = 47.99, SD = 23.36; t(71) = 4.88, p < .001, d = 0.58, 
BF10 > 1000]. Thus, people are aware that the 
probabilities of lower-probability beliefs are relevant. 
They simply do not spontaneously use those probabilities 
if they are not given explicitly in the problem. 

This difference between Experiments 3A and 3B was 
also evident when we compared participants’ responses to 
normative benchmarks. We used the same strategy as in 
Experiment 2 to calculate, based on each participant’s 
other probability ratings, how large that participant’s 
difference in P(Z) ratings should be between the low/high 
and low/low conditions. Whereas participants in 
Experiment 3A underutilized P(Z|B) by a substantial 
margin [M = 8.95, SD = 21.00; t(111) = 4.51, p < .001, d 
= 0.43, BF10 = 786.09], participants in Experiment 3B 
were better calibrated and underutilized P(Z|B) to a 
smaller degree [M = 5.09, SD = 19.87; t(112) = 2.72, p = 
.008, d = 0.26, BF10 = 2.61]. 

General Discussion 
Do beliefs come in degrees? The current studies suggest 
that they may not—that when making predictions from 
uncertain beliefs, those beliefs are treated as either true or 
false, without reflecting the uncertainty that people 
profess when asked explicitly. In Experiments 1 and 2, 
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Figure 3: Results of Experiments 3A and  3B. 
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people acknowledged that a simple explanation had a 
65% chance of accounting for some observations, while a 
complex explanation had a 35% chance. In making 
subsequent predictions dependent on the correct 
explanation, however, people ignored the lower-
probability complex explanation, treating the simple 
explanation instead as though it were certainly true. In 
Experiment 3A, participants even ignored low-probability 
beliefs when the prior probabilities were given explicitly. 

However, when participants in Experiment 3B were 
given all relevant probability information, they were able 
to take low-probability possibilities into account. 
Although further work will be necessary to pinpoint the 
reason for this effect of task context, one possibility is 
that when all relevant probability information is given, 
participants are able to treat the inference as a math 
problem rather than relying on their intuitive belief 
systems. Even if participants are unable to produce the 
precise Bayesian solution, they may recognize that all 
four pieces of information are relevant and scale their 
responses in qualitatively appropriate ways. Future 
research might also examine other conditions that may 
lead participants to combine multiple potential beliefs, 
such as priming participants with problems with two 
equally likely possibilities, where neither can be ignored. 

If people represent beliefs implicitly as all-or-none, 
then why do they nonetheless profess uncertainty when 
asked explicitly? That is, why do participants not claim 
that there is a 100% chance that the simple explanation is 
true, when asked explicitly? One possibility is that beliefs 
such as ‘there is a 65% chance of possibility X’ can be 
represented explicitly but that when we must rely on such 
beliefs for subsequent inferences, they must be converted 
to the ‘digital’ format. For example, when people are 
planning what to wear during the day, they are clearly 
able to represent explicitly the possibility that there is a 
65% chance of rain. But when they must use that belief 
implicitly in subsequent reasoning (e.g., to determine 
whether the road will be slippery), people appear unable 
to use probabilities in a graded manner. 

This possibility is consistent with the singularity 
principle (Evans, 2007), according to which people focus 
on one possibility at a time in hypothetical thinking. For 
example, when told about a cause that can lead to an 
effect, people ignore other possible causes that  could be 
in operation, focusing on the focal cause when estimating 
the probability of the effect (Fernbach, Darlow, & 
Sloman, 2011). The current results show that people even 
neglect alternative causes in predictive reasoning when 
one cause is merely more likely, rather than certain. 

These results are challenging for probabilistic theories 
of cognition (Anderson, 1991; Oaksford & Chater, 2009), 
in that the very purpose of probability is to reflect degrees 
of uncertainty (Jeffrey, 1965). Graded beliefs are critical 
for Bayesian updating, or modifying one’s beliefs in light 
of new evidence. The current results point to differences 
between implicit and explicit representations of beliefs, 

since people can simultaneously profess 65% confidence 
in an explanation, but treat it in subsequent inference as 
though they are 100% confident. Thus, people may look 
more or less like Bayesians depending on the nature of the 
task and the associated cognitive architecture. 

Abductive (data-to-explanation) and predictive 
(explanation-to-predicted-data) reasoning are critical to 
diverse cognitive processes, including not just causal 
reasoning and categorization, but also decision-making, 
perception, and social cognition. Therefore, an important 
goal for future research will be to test whether a digital 
belief architecture is confined to high-level cognitive 
tasks (such as causal reasoning and categorization), or 
whether it might instead be a common architectural 
constraint across many cognitive domains. 
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