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With the launching of the Precision Medicine Initiative in the United States, by the 

National Institute of Health, and the emergence of a large volume of electronic health records, 
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there are many opportunities to improve clinical decision support systems. A large number of 

samples are needed to build predictive models that have adequate discrimination and 

calibration. However, protecting patient privacy is also an important issue. Patient data are 

typically protected in localized silos, and consolidation of datasets from different healthcare 

systems is difficult.  

Federated learning allows the training of a global model by amassing intermediate 

calculations from localized medical systems. The knowledge learned from the data can be 

transferred and aggregated to achieve better performance than the one achieved by individual 

local models. Federated learning may help build better models, providing more accurate 

predictions. There are two types of measures to assess how well a model performs: 

discrimination and calibration. While most papers report discrimination measures, calibration 

has often been neglected but it is a critical metric for evaluation. In this dissertation, I show a 

novel way to build classifiers and calibration models in a federated manner. I also show how I can 

evaluate and improve model calibration in this manner. Federated modeling enables the 

accumulation of knowledge and information that are otherwise locked behind local medical 

systems.  



1 
  

1. Introduction 

Data-driven high-quality care is the ultimate goal for healthcare providers. However, just 

10 years ago, the lack of efficient medical record systems and archaic government policies 

seriously hampered the realization of such an ideal. To remedy the situation, as part of the 

American Reinvestment & Recovery Act in 2009, the federal agency Centers of Medicare & 

Medicaid Services (CMS) established the Medicare and Medicaid Electronic Health Record 

Incentive Programs, commonly known as “Meaningful Use”, to encourage healthcare 

professionals to adopt, implement, upgrade, and demonstrate meaningful use of certified 

Electronic Health Record (EHR) technology.1 By 2015, more than eight out of ten doctors across 

the country had adopted electronic healthcare records,2 establishing a more efficient recording 

system and laying down the foundation for the widespread development of clinical decision 

support systems (CDSS). Such prevalence of EHR systems also prompted a redefinition of 

“meaningful use”: from the mere adoption of technology to ensure that the widely adopted 

technology improved the quality and cost of healthcare. In accordance to the new direction, 

Meaningful Use became one of the subsidiaries of Medicare Access and CHIP Reauthorization Act 

(MACRA) passed by Congress in 2015.3 Under MACRA, effective 2019, physicians are no longer 

reimbursed for medical services rendered, but for the outcomes, incentivizing high quality of care 

over high service volume. As part of this more quality-oriented policy, Meaningful Use 

implemented new guidelines that no longer reward just the adoption of EHR, but are directly 

linked to the merit of the physicians and the standard of care provided.  

With the electronic infrastructure and policies structured to support a quality-focused 

healthcare experience, more and more CDSS are implemented in the EHR to elevate the quality 
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of care. As stated by the Office of the National Coordinator for Health IT, CDSS “provides 

clinicians, staff, patients or other individuals with knowledge and person-specific information, 

intelligently filtered or presented at appropriate times, to enhance health and health care.” One 

way for the information that is “person-specific” and “intelligently filtered” to manifest itself is 

through the use of predictive analytics. By learning historical records and how events occurred, 

predictive analytics provides physicians with the foresight and opportunity, for example, to take 

precautions in certain patients who may exhibit patterns that have led to complications in other 

patients.  

1.1 Challenges for Data-Driven Decision Support 

Predictive analytics works optimally with large and complete data sets. Studies such as 

those that try to find relevant biomarkers, distinguish patterns for rare diseases, discover the 

combined effects of multiple genetic variants or epistasis, or research unique phenotypes of 

diseases that only appear in certain demographics, have shown that patient characterization on 

a multidimensional level may lead to far more intricate diagnostic and prognostic groupings of 

populations than generally used today.4,5,6 They all illustrate an intuitive principle: predictive 

models, like the human brain, learn more the more samples they see. In order for predictive 

analytics to be meaningful to physicians (instead of being just another pop up on their EHR 

window, to be ignored immediately), predictive analytics needs to be accurate, and having large 

and complete data to train a generalizable model is the key. 

To gather a large number of patient samples, the best way is for medical systems to share 

data. However, some data cannot be transferred outside of their designated healthcare systems, 

there can be enormous logistical complexity and cost before data can be transferred. For 
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example, in order for an individual’s data to leave the European Union (EU), the person whose 

data it belongs to has to be informed and opt-in this data sharing activity.7 Procedures also need 

to be in place to ensure that the data are tracked, secured and protected. Some healthcare 

systems have very strict guidelines for transferring data outside their enclaves (e.g., the United 

States Department of Veterans Affairs (VA)). Research studies such as the AllofUs Research 

Program, the Strongheart Study, and many others also need to ensure data stays where 

participants have consented to. The data in these programs are not easily movable. The VA, which 

provides near-comprehensive healthcare services to eligible military veterans at VA medical 

centers and outpatient clinics, has to follow the Privacy Act of 1974 that provides a number of 

protections for veteran’s personal information.8 The policy includes how information is collected, 

used, disclosed, stored, and disposed of, some of which may prevent the transfer of data for 

model building. Similarly, the AllofUs Research Program and Strongheart study both have limits 

and regulations as to who can handle the data and how they can access the data,9,10 making 

aggregation of data difficult. 

Patient-level and institutional level data leakages cause concern. Transferring, creating 

copies, and storing data outside of a medical system expose data to situations of potential 

leakage. This is detrimental to both the patients and the medical systems. At the patient level, 

leakage of sensitive patient data could lead to discrimination or stigmatization. To curtail 

problems over leakage of sensitive information, there have been some efforts to share de-

identified data in compliance with the Health Insurance Portability and Accountability Act 

(HIPAA).11 However, such efforts are either costly, error-prone, or ineffective.12 For example, 

human-based de-identification efforts on the Medical Information Mart for Intensive Care III 
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(MIMIC-III) dataset costed over 5,000 hours and US$500,000,13 for about 50,000 patient visits 

and 100 million words, with error recall ranging from 0.63 to 0.94.14,15 Additionally, machine-

assisted de-identification shows varying results, from time savings of 13.85–21.5% to no 

improvement in either quality or time saved.16 Machine learning algorithm-based automated de-

identification can be useful, but state-of-the-art deep learning-based de-identification models for 

unstructured data are still incapable of reaching an adequate level of privacy protection.15,17 

Continued research is needed in this area. Furthermore, such de-identification efforts do not 

protect institutional privacy. At the institutional level, sharing sensitive information could put a 

medical system at a disadvantage with respect to its competitors. This sensitive information 

could include mortality rates, complication rates, healthcare-associated infection rates, 

unplanned readmissions, etc. While these data may be aggregated at the institution’s population 

level (and sharing them does not violate patient-level privacy), medical systems may be reluctant 

to share such data due to concerns over their reputation. Therefore, it is very attractive to have 

the ability to somehow create a good predictive model while keeping data private.  

1.2 Federated Learning 

With concerns over privacy and regulation that can prevent data sharing, I look toward 

federated learning as a potential solution. Federated learning involves training a global model by 

amassing pertinent knowledge from localized medical systems while protecting data privacy. The 

knowledge learned from the data can be transferred and aggregated to achieve better 

performance for global models than the performance of any local models. Federated learning 

can involve sharing intermediate calculations of a model that can be combined to form a final 
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solution.18 Federated learning should decrease the bias of models that are built from local data, 

providing more accurate predictions. 

1.3 Model Assessment 

As important as building a federated model is to be able to evaluate it in a federated 

manner. Assessing the performance of a federated predictive model is typically done by 

measuring discrimination and calibration. Given a model’s probability estimates of a medical 

outcome for a population of patients, discrimination measures whether patients who have 

developed the outcome receive higher probability estimates than patients who did not. With 

each patient receiving a probability estimate for having the outcome, various thresholds can be 

set to discriminate patients who have the outcome and those who do not. Given the actual 

outcomes of patients and their estimates, one can measure the true positive, false positive, true 

negative, and false-negative rates, which can be collectively summarized by the measure of the 

area under the receiver operating characteristic curve (AUROC). The higher the AUROC, the 

better the model can accurately discriminate whether a patient will or will not have an outcome. 

On the other hand, calibration measures whether there is an agreement between estimates and 

the actual probabilities of the outcome. Accurately calibrated models are important in prognostic 

settings because predicting the right probability of developing a medical outcome (e.g., a disease, 

a complication, readmission to the hospital) helps physicians weigh the risks and benefits of their 

actions. However, measuring calibration is not straightforward because a patient’s true 

probability of an outcome is not readily available. I can say that the true probability is 10% if 10 

out of 100 patients just like this patient have a certain outcome, but it is difficult to define who 

is “just like” who. Instead, some proxies are used to group patients according to their estimates. 
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This strategy is used in the Hosmer-Lemeshow test (HL-test). In the HL-test, patients who are 

“just like” each other are grouped by similar model estimates. For example, if a perfectly 

calibrated model predicted that there are 100 patients with an estimated probability = 0.1 of 

developing diabetes within the next 10 years, I should observe that 10 patients actually develop 

diabetes. A detailed analysis of calibration, how to measure it, and how to apply calibration 

models on predictive models are found in later Chapters. Ultimately, a predictive model that 

exhibits high performance in both discrimination and calibration can be of high value in a CDSS. 

1.4 Dissertation Organization 

I developed a new federated learning method and an approach to utilize a model trained 

in one population for another population, even when the respective data sets do not have the 

exact same variables. I will demonstrate that my new federated model can outperform local 

models. I also present a new method to evaluate and improve a federated model’s calibration in 

a privacy-preserving manner using a novel federated evaluation method. 

This dissertation is organized as follows: Chapter 2 describes a new approach to combine 

information from different local medical systems and create a classifier in a federated manner, 

even when not all variables are the same across the systems; Chapter 3 explains current 

calibration measurements, common calibration models, and their limitations; Chapter 4 extends 

methods from Chapter 3 to create calibration models and measure calibration in a federated 

manner; Chapter 5 concludes the dissertation.  
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2. Federated Model through Contextual Representation  

2.1 Overview 

I propose a methodology to combine different local contextual embedding models into a 

global model. Contextual embedding models, as the name suggests, embed context into a 

representation of the data. In our case, this representation consists of word vectors. In short, I use 

Word2Vec37  to generate contextual embeddings from each data source, which have different sets 

of words (or “variables”), and the Procrustes method to align different vector models into one 

common space. Previously unseen observations and then projected into this space, and their 

position allows us to determine the values for its nearest neighbors’ features of interest (e.g., 

diagnoses). Under different experimental scenarios, I confirmed that the global model built from 

combined local models achieves more accurate predictions than local models. Such an 

aggregation of local models using our unique harmonization technique serves as a proxy for a 

global model. 

2.2 Challenges in Contextual Embeddings 

As mentioned in the Introduction Chapter, creating global models that can outperform 

local models is attractive to medical systems that wish to maintain their patient and institutional 

level privacy. Sharing model parameters and contextual embeddings, instead of sharing 

individual observations, does not require a significant loss in data utility. Our vision to address 

this challenge is to create a federated clinical analysis framework through the aggregation of local 

representations. Related studies have been published focusing on not only simple analyses such 

as database queries with very specific inclusion/exclusion criteria, but also sophisticated 
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algorithms for prediction analysis including logistic regression,18–21 support vector machine 

(SVM),22,23 k-nearest neighborhood,24 Bayesian inference,25 Cox regression,26,27 and tensor 

factorization.28 Most studies involve restrictive assumptions originating from the requirement 

that data should be integrated in a matrix format. There is a requirement for common features 

in so-called “horizontally-partitioned” data, or for common patients in so-called “vertically-

partitioned data” (Figure 2.1). Most algorithms operate on either horizontally- or vertically-

partitioned data, but not both. 
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a) 

 

b) 

 

Figure 2.1 Horizontally-partitioned vs. Vertically-partitioned Data 
a) Federated models assume horizontally-partitioned data (e.g., patient data have common 
features in different medical institutions). b) Federated models assume vertically-partitioned 
data (e.g., patients have portions of their data in different medical institutions). 
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2.3 Limitations of Federated Models Built on Partitioned Data  

There have been ongoing efforts to develop model building methods assuming 

horizontally-partitioned data structures that do not transfer individual-level data to build models 

in a federated manner. There are methods that use summary scores that allow researchers to 

perform matched or stratified analysis without having to share highly sensitive patient-level 

data.29–31 On the other hand, federated models, which strive at being computationally equivalent 

to pooled data regression, are more useful.32 Continued research has shown that a federated 

model that combines summary scores may achieve analytical flexibility and privacy protection.20 

All the methods mentioned can be calculated sequentially or in batches. Training a model 

sequentially updates a model as new data is added without having the train the whole model,33 

while training a model in batches mean models are trained separately and the final result strives 

to achieve the exact same model as a ‘traditional’ regression model.18 For all the horizontally-

partitioned methods mentioned, having all common features an unreasonable assumption, as 

different medical systems may record different attributes due to different specialties. Also, 

different medical systems might have their own annotation systems for the same medical events.  

 Besides horizontally partitioned data regression, vertically partitioned data regression is 

also an area of interest. Expectation-Maximization (EM) algorithms assume the data can be 

reasonably described by either a multivariate normal or multinomial distribution.34 Under such 

an assumption, the EM algorithm requires sharing only relevant statistics, which for the 

multivariate normal are sums and inner-products of the observed data values. These quantities 

can then be shared without sharing data values. Other methods include secure matrix 

multiplications, which are used by pairs of owners to compute off-diagonal blocks of the full data 
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covariance matrix.35 Most recently, VERTIcal Grid lOgistic regression (VERTIGO) solves the 

vertically partitioned data regression problem by calculating the first and second derivatives of 

the log-likelihood function followed by an iterative maximization procedure.36 Nevertheless, for 

vertically-partitioned data, having a large number of common patient records in different 

institutions may be unrealistic.  

2.4 Word Embedding 

I wanted to create federated models that do not need to assume horizontally-partitioned 

or vertically-partitioned data format. This way, the features did not need to be exactly the same 

across institutions, since projecting them into a lower dimension places the same types of 

features near each other, as shown in Section 2.5. I utilized a popular word embedding technique 

to learn representations of medical events in each local medical system and combine the local 

embeddings. Unique information learned in each local medical system is represented in each 

embedding (or vector) and the accumulation of embeddings can increase the number of features 

utilized.  

Deriving accurate word representations with contextual information is an endeavor 

extensively explored in the field of natural language processing. A popular program developed 

by Google called Word2Vec has shown great promise in contextual word embedding.37 I used 

Word2Vec to contextually represent medical events. Training a text corpus and mapping each 

word into a vector space can represent words in such a way that the more related the words are, 

the closer their vectors are in terms of cosine distance. Unlike representations in previous 

models, where words had no connection to other words, this model trains each word using the 

context of its surrounding words with a two-layer neural network on a Skipgram architecture.37 
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A Skipgram architecture takes every word in large corpora and also takes, one by one, the words 

that surround it within a defined ‘window’, and feed them into a neural network that, after 

training, will predict the probability for each word to actually appear in the window around the 

word of interest. The neural network consists of essentially a three-layer network with input, 

projection, and output layers. Providing the input as a sequence of 1-of-M coding, where M is 

the vocabulary size, Word2Vec is capable of projecting words into a lower dimensional space 

while extracting their context. Under the assumption that words that appear in a similar context 

(e.g. synonyms or prepositions) would have similar meanings and functions to a sentence, 

Word2Vec provides a representation that is context-aware.  

Unlike one-hot representation, which may not be able to make distinctions between 

related concepts such as ‘congestive heart failure’ and ‘myocardial infarction’, contextual 

embeddings produce a closer distance for these two concepts than other unrelated concepts (i.e. 

kidney failure). Furthermore, in terms of prescriptions, previous one-hot representation models 

would perceive prescriptions for Warfarin labeled as “WARF10” and “WARF75” as two different 

medications, but human experts could tell they are just different dosages. Therefore, if one 

patient was taking “WARF10” while the other “WARF75”, previous models unnecessarily 

represented the patients more dissimilarly than in reality. Consider another example. If there are 

three patients where one has diabetes and kidney failure, the second one has diabetes and 

neuropathy, and the third has kidney failure and neuropathy, previous systems might find all 

three patients to be similar since they each share an event with the other two. However, a 

context-aware model should find the first and second patients to be more similar since they have 

diabetes and each has a complication related to diabetes. 
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Models that utilize word embeddings have shown higher prediction performance than 

previous models.38,39 Furthermore, research into named entity recognition,40 abbreviation 

expansion,41 unplanned medical system readmission prediction,42 and disease risk estimation 

that incorporates long/short term dependencies in the EHR43 are examples of areas with 

improved results given the application of word embedding.44 As more and more deep learning 

models dive into the realm of clinical text (instead of just using structured data to make 

predictions), word embeddings are becoming more used. My strategy was to create word 

embeddings separately at each institution, then “fuse” these embeddings (i.e., aligning the 

embeddings by translating and/or rotating the resulting vectors based on the common features 

across the institutions). 

2.5 Medical Events Embedding 

To train the model, I extracted data from a publicly available medical database called 

MIMIC (Medical Information Mart for Intensive Care),13 which contains data from ~45,000 

patients who were admitted to the Intensive Care Unit (ICU) at a large tertiary care hospital 

between 2001 and 2012. The data include demographics, admissions, lab results, prescriptions, 

procedures, and ICD-9 discharge diagnoses. For each patient, I ordered medical events in 

chronological order, from oldest to newest, as shown in Figure 2.2. To prevent conflicting 

identifiers between events, I added prefixes for each category: ‘p_’, ‘l_’, ‘s_’, ‘c_’, and ‘d_’ for 

prescriptions, lab tests, symptoms, conditions, and diagnoses, respectively. ICD-9 codes were 

preprocessed to level 3, which is moderately specific (diagnoses in Table 2.1 are level 3 

descriptions). Ninety percent of the data were used as the training set, and 10% were withheld 

as the test set. Each sequence of patient events acted as a sentence that Word2Vec could learn 
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from. The result was the embedding of all medical events onto a hyperdimensional space with 

350 dimensions. 

 

 

Figure 2.2 Patient History  
A patient’s chronological history of events from the test set, with prefix corresponding to the 
event’s category. The model predicts diagnoses in the prediction window. 
  

The learned medical event vectors were mapped onto the hyperdimensional space, and 

are represented in this two-dimensional plot in Figure 2.3. While a two-dimensional 

representation is very limited, I can still see that a large number of diagnoses (shown in black) 

were clustered together. Symptoms and conditions (green and yellow), which were also 

represented with ICD-9 codes and used in a similar context, are also clustered together. Looking 

for more evidence on contextual relationships, I calculated the cosine similarity between 

‘diabetes’ and all the other medical events in the corpus. The most similar vector in terms of 

cosine similarity was c_V5867, or ‘long term use of insulin’ and ‘Acute infective polyneuritis’ (a 

complication of long-term diabetes), and the most similar prescriptions were ‘Insulin pump’ and 

‘Insulin’.   
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Figure 2.3 Embedding Representation 
A two-dimensional representation of medical events projections. Black dots are diagnoses. Blue 
dots are medications. Red dots are lab tests. Yellow dots are conditions. Green dots are 
symptoms. I can see that all the diagnoses are clustered together. Conditions and symptoms are 
clustered together because they both use ICD9 codes. 
 

2.6 Procrustes Harmonization 

Existing contextual embedding models are often built from EHR data from a single 

institution. Each of these separate sites may contain information that other sites lack (i.e., 

different patients and different features. It would be ideal if a model could be built on raw data 

aggregated from different medical systems in order to compensate for the missing/sparse 

information each site may have. However, due to privacy and/or policy concerns or the inability 
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to move some datasets, such aggregation is often infeasible. To address these problems, I 

propose that each medical system builds its own contextual embedding model, after which no 

explicit patient-level information would remain in the acquired representations (i.e., in the 

embeddings). Then, medical systems can share their own embeddings or representations 

without violating patient privacy. I propose a methodology that harmonizes different contextual 

embeddings into a global embedding or representation model.   

Given a cohort of patients and their history like the example given in Figure 2.2, I use 

Word2Vec to create continuous vectors for each medical event. An example is shown for 

structured data in Figure 2.4 (The detailed information about the Figure will be described in the 

next section). For this dissertation, I choose the skip-gram model. The model requires two 

parameters, size and window, defining the dimensionality of the final vector representation and 

maximum distance for contextual consideration, respectively.38,45  

There is one limitation to contextual embedding techniques such as Word2Vec and 

GloVe.46 Due to random sampling in the training process, the same dataset can result in 

embeddings of different orientations. This means that, even if embeddings trained from the same 

dataset are pooled together, the medical events or concepts in one embedding could have 

unreasonable relationships with events or concepts in the other embedding. Therefore, it is 

critical to find a way to ‘align’ these embeddings.  
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Figure 2.4 Contextual Embedding Vectors 
Example of two contextual embeddings created from two medical systems.  

 

In this section, I will go into more detail as to how the Procrustes method,47  a method to 

align the embeddings, works. Using the Procrustes method to fuse different vector models into 

one common space requires a list of corresponding pairs. These are pairs of words, which are the 

same events but may or may not be labeled differently in different institutions. With most 

medical systems using standardized terminology system such as the International Classification 

of Diseases, Ninth Revision (ICD-9) and ICD-10 for billing purposes, I can reasonably identify a list 

of codes referring to the same events in different medical system sites to serve as our “anchor 

pairs” for alignment. Using these common events, I can derive a matrix that transforms one 

contextual embedding into the space of another. 
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Taking the two contextual embeddings in Figure 2.4 as examples, the embeddings are 𝐴 ∈

𝑅$%×'	and 𝐵 ∈ 𝑅$*×', where 𝑛- and 𝑛. are the numbers of contextual embeddings from two 

medical systems respectively, and 𝑚	is the dimensionality of the embeddings. With the 

corresponding anchor pairs X and Y, where 𝑋 ∈ 𝐴 and 𝑌 ∈ 𝐵, I can solve for the orthogonal matrix 

Q and scalar k from the corresponding anchor pairs in the following Equation (2.1), 

 

 (2.1)  

                        

where 𝜇34	and 𝜇54represent column-wise mean vectors of X and Y; 𝑛 is the number of 

corresponding anchor pairs. Q is solved as follows using singular value decomposition as shown 

in Equation (2.2), 

 

(2.2)  

                            

where U and V are the unitary matrices of the singular value decomposition, 1$ is an n-

dimensional column vector whose elements are all 1’s, k is a scalar, and 𝛴 is the rectangular 

diagonal matrix with non-negative real numbers on the diagonal.  Applying Q and the scalar k, I 

can solve for 𝐴8 and 𝐵8, which are the harmonized vector representations of A and B, as shown 

in Equation (2.3):  
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(2.3)  
 

An example is illustrated in Figure 2.5. I can see that ‘Hepatitis_c’, ‘Cirrhosis’, ‘Lungs’, 

‘Myocardial’, and ‘Renal_failure’ in (a) and (b) are common in both local models. Using them as 

anchor pairs to derive the orthogonal matrix, I can harmonize the two local representation 

models into a common one as shown in  Figure 2.5 (c).  
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a)       b)     

 

c)

 

Figure 2.5 Procrustes Alignment Example 
Example of Procrustes harmonization. (a) Local embeddings of Site 1. (b) Local embeddings of 
Site 2. (c) Combined embeddings of two sites after Procrustes harmonization.  
 

2.7 Patient Diagnosis Projection Similarity 

To predict the next likely diagnosis of a new patient for structured data experiments, I use 

the patient-diagnosis projection similarity (PDPS) method.38 To calculate PDPS, I first create a 
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patient vector. In short, I normalize the summation of each vector representation of events in 

the clinical pathway of a patient, with each event vector multiplied by a time decay function (i.e., 

𝑒:;<	with a time decay factor 𝜆) (Figure 2.6). To calculate the probability of each diagnosis, I 

calculate the cosine similarity between the patient vector and a diagnosis vector in Equation 

(3.4). 

(3.4) 𝑦?(𝑆, 𝑑) = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑉J⃗ L, ∑ 𝑉J⃗N𝑒:;<O	
N∈P )   

where 𝜆 is the time factor, 𝑡N  is the number of events before the last event of the clinical pathway, 

𝑉J⃗L  is the contextual vector representation of diagnosis 𝑑 in the vector space, 𝑉J⃗N  is the vector 

contextual representation of a medical event in the clinical pathway of a patient, 𝑆, and thus 

∑	N∈P 	𝑉J⃗N𝑒:;<O  is the patient vector.  
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Figure 2.6 Diagnosis Prediction 
Example of creating a patient vector from event-level vector representations. The patient vector 
is a linear combination of the event vectors, weighted by a time decay function (𝑒:;<	with a time 
decay factor 𝜆). 
 
 

The data set I used is MIMIC-III.13 I had two sets of experiments. One was conducted on 

structured data, such as codes for diagnoses, prescriptions, lab tests, symptoms, and conditions. 

ICD-9 code was used for symptoms, diagnoses, and conditions. Custom local codes were used for 

lab tests and prescriptions. The other experiment was conducted on unstructured data (i.e., 

clinical notes), which will be discussed in later sections. For structured data, ICD-9 codes for 

diagnoses in MIMIC-III were generalized to level-3. For example, a patient with ‘Diabetes with 

ketoacidosis, type I [juvenile type] uncontrolled’ (250.13) was generalized to ‘Diabetes mellitus’ 

(250) by reducing all ICD-9 codes to 3 digits. Because our evaluation is based on the prediction 

accuracy given patients’ prior history, I excluded patients who only had one admission. I also 
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excluded rare medical events that had fewer occurrences than 50. In the end, I kept 5,639 patient 

records for this experiment. From these records, I constructed the temporal clinical pathway for 

both structured and unstructured data. Ten-fold cross-validation was implemented for all 

experiments, which randomly split the dataset into ten folds with equal sizes, using nine folds for 

training and one fold for testing.  

In each replicate, to simulate two different medical system sites, I randomly divided the 

training patient records into two groups of patients; I call these ‘local’ sites. Experiments done 

on all training patients were used as a benchmark for comparison; I call that model ‘benchmark.’ 

From the training set, I created the ‘benchmark’ contextual embedding model using all patient 

records and the two ‘local’ contextual embedding models each using half of all patient records. 

The size of vector and window parameters used to learn word embeddings for structured data 

were 350 and 30, respectively. For the unstructured data, the parameters were 350 and 100, 

respectively. These two ‘local’ embeddings were harmonized into a common model using the 

Procrustes method.  

2.8 Structured Data  

For structured data, the harmonization of the two ‘local’ embeddings required common 

terms to serve as corresponding anchor pairs. There were a total of 2,713 total unique terms 

between the two sites, of which there were 2,538 common terms. To create more realistic 

simulations, I used different percentages of all possible common terms as corresponding pairs 

for different experimental scenarios. The rest of the pairs were artificially labeled differently, 

where the words not in a pair from one site were appended with the suffix ‘_m1’, and the words 

not in a pair from the other site were appended with ‘_m2’. This was done to simulate that 
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different medical systems have their own terminology, and maybe only a fraction of all of their 

medical events codes are in common.  

For all scenarios, I used PDPS to predict test patients’ diagnoses in the final admission, 

given all their records before the final admission. As an evaluation measure, I used AUROC, for 

which 1 represents a perfect model and 0.5 represents a random model. The average AUROCs of 

a variety of diagnoses of different models were compared. 

2.8.1 Incomplete Information 

To evaluate the performance of the Procrustes harmonization, I first looked at how well 

missing diagnoses in one site could be represented by the diagnosis vectors from another site. 

Oftentimes, small clinics or medical systems do not encounter some medical diagnoses. In terms 

of PDPS prediction, missing diagnoses with no embeddings cannot be incorporated into the 

patient vector, making the prediction model less accurate. Moreover, prediction simply cannot 

be made with PDPS for certain diagnoses if there are no embeddings for those diagnoses. 

I represented the missing information using diagnosis vectors from another medical 

system. In order to test whether diagnosis vectors from a medical system could be used 

accurately to predict diagnoses at another site, I first took the 40 most common diagnoses in 

MIMIC-III and randomly separated them into two sets of 20 diagnoses. The two ‘local’ sites both 

originally had all 40 diagnoses, but I took one ‘local’ site and deleted all instances of one set of 

20 diagnoses (Appendix 2.A colored blue), and took the other ‘local’ site and deleted the other 

set of 20 diagnoses  (Appendix 2.A colored red). I trained and contextually embedded these two 

raw datasets separately, making two embedding models, where each lacked a different set of 20 

diagnoses. I explored what vectors added to the ‘local’ embeddings could compensate for the 
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missing diagnoses vectors. When I simply added random vectors for the 20 missing diagnoses to 

the respective sites and predict those 20 diagnoses, the average AUROC for those missing 

diagnoses for both sites was close to 0.5 (Figure 2.7). If I represented vectors for the missing 

diagnoses using embeddings from the other site without the Procrustes harmonization, the 

average AUROC only improved to ~0.55. However, with the harmonization of one embedding to 

another, the AUROC improved to ~0.65. When compared to benchmark models, where the 20 

diagnoses of interest in each site were never deleted in the first place, I can see that vectors for 

the missing diagnoses with Procrustes harmonization perform just as well as the benchmark 

models. I also tested whether using different percentages of corresponding anchor pairs for the 

Procrustes harmonization would alter the AUROC. As expected, Figure 2.7 shows that increasing 

the percentage of corresponding pairs increases the AUROC, but the effect is small.  

 

 

Figure 2.7 Harmonization of Embeddings 
The average AUROC of several different scenarios. Site1 had no vectors for a set of 20 diagnoses, while 
Site 2 had no vectors for another set of 20 diagnoses. The Benchmark models did not have any missing 
vectors. Using the benchmark model, I predicted the 20 diagnoses missing from site 1 (Benchmark 1) and 
the 20 diagnoses missing from site 2 (Benchmark 2). In different scenarios, the missing vectors were 
compensated with either random vectors (random), untransformed vectors from the other site (W/o 
Procrustes), or Procrustes harmonized vectors from the other site that were harmonized using different 
percentage of corresponding pairs (proT 10%, 40%, 70%). 
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2.8.2 Split Patient History 

In another scenario, it is conceivable that patients may go to different medical systems, 

leaving parts of their patient history in one medical system while other parts in other medical 

systems. One can simply predict future events for these patients using part of their clinical 

pathway at each site, but a more accurate prediction can be made from their entire clinical 

pathway. However, obtaining the entire clinical pathway is not easy. First, it might be time-

consuming or even infeasible to release patient history across medical system sites for model 

building. Second, even if the entire patient history is in one site, the events in a patient’s clinical 

pathway may be coded differently from site to site, leading to some events being unrecognizable 

by a model built solely on one site, and thus unusable for prediction. To solve these two 

problems, medical systems can first share their own contextual embeddings and combine them 

into a common space using Procrustes. Then, for all the patients who have histories in multiple 

medical systems, each local clinical pathway in each medical system can be made into a local 

patient vector. Finally, every local patient vector can be summed and normalized to obtain an 

approximation of the ‘global’ patient vector. Then prediction can be conducted using the 

approximated patient vectors and diagnoses vectors in each ‘local’ medical system. The following 

experiment shows that the initial harmonization step is required to obtain a high AUROC.  

For this task, I divided the raw MIMIC-III training set into three ‘local’ sites then trained 

three ‘local’ embedding models. For medical events in each ‘local’ site 1, 2, and 3, suffixes ‘_m1’, 

‘_m2’, and ‘_m3’ were added to the end, respectively, simulating that each ‘local’ site used their 

own coding system. To simulate test patients who have records in three ‘local’ sites, I divided the 
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clinical pathway of each test patient into three sections, where each section was appended with 

suffix ‘_m1’, ‘_m2’, or ‘_m3’ to designate which section belonged to which site. The average 

AUROCs of the 80 most common diagnoses from MIMIC-III (Appendix 2.A blue, red, and black) 

were evaluated based on PDPS for different models and are shown in Figure 2.8. A Benchmark 

model is trained with no splitting of training data or test data. The average AUROCs obtained 

with ‘local’ embedding models for sites 1, 2, and 3, using only the local patient vector, dropped 

significantly when compared to the global model (Figure 2.8). This was because each ‘local’ 

model could only use one-third of the information of each test patient for prediction. If I summed 

and normalized the three local test patient vectors without harmonizing the embeddings first, 

the AUROC did not improve (Figure 2.8 Combined 1, 2, and 3, Original). However, when the three 

contextual embeddings were harmonized with the Procrustes method (ProT) first, using the 

normalized summation of the local test patient vectors improved the AUROC, making it closer to 

the AUROC of predictions made by the benchmark model. Figure 2.8 shows three ‘Combined’ 

results because each local site had its own diagnosis vectors that PDPS used; AUROCs were based 

on these vectors. I tested different percentages of corresponding pairs of 10%, 40% and 70% for 

the Procrustes harmonization. Similar to the previous experiment, Figure 2.8 shows that 

increasing the percentage of corresponding pairs had a positive but small effect. 
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Figure 2.8 Split Patient Record Results 
Average AUROC for the 80 most common diagnoses. Local 1, 2, and 3 show results using local 
embedding models either unharmonized (Original) or harmonized (ProT) and using only the part 
of the clinical pathway of test patients in the respective medical system. Combined 1, 2, and 3 
show all three local test patient vectors combined where each local vector is made with locally 
learned event vectors either unharmonized (Original) or harmonized (ProT). Benchmark did not 
split the training set or test set into 3 parts. There are three Combined results because each local 
embedding model has its own diagnosis vector used by PDPS. Harmonization experiments were 
done with different percentages of corresponding pairs (10%, 40%, and 70%). 
 

2.9 Unstructured Data 

The harmonization method can be extended to unstructured clinical notes. Using the 

same method as I used for structured data, I built clinical pathways for unstructured data. 

However, I used medical concepts extracted from Metamap.48 I built a global embedding model 

to serve as a benchmark and two ‘local’ embedding models. Then, I harmonized the two ‘local’ 

models with Procrustes. There were 150,034 unique medical concepts extracted with Metamap, 

of which 72,195 were common to both sites and could be used as anchor pairs. For anchor pairs, 
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I used the top 10% most commonly occurring corresponding pairs. The most commonly occurring 

anchor pairs were chosen because they were the most likely to have similar neighborhood and 

structure relative to other concepts in each ‘local’ hyper-dimensional space, giving us the most 

reliable transformation matrix Q in the Procrustes transformation. The following experiment was 

conducted to demonstrate the benefit of the harmonized local embedding models.  

2.9.1 Patient Similarity Prediction Model 

For the following experiment, which included unstructured data and limited structured 

data (only diagnosis labels), I explored patient similarity and whether the most similar patients 

from another medical system could be used to predict diagnoses. In order to predict for future 

diagnosis in this experiment, PDPS was not used because it required diagnoses vectors, which, 

for the structured data, were ICD-9 diagnosis codes learned during contextual embedding. 

However, contextual embedding for unstructured data was done on clinical notes, which did not 

contain any ICD-9 codes. Instead, I used the most similar training patients to each test patient to 

predict a test patient’s future diagnosis (i.e., a nearest neighbor approach). To find the most 

similar patients for each test patient, I calculated the cosine similarity between a test patient and 

all training set patients. I calculated the average cosine similarity between that test patient and 

all the training set patients. Then, I used the training set patients whose cosine similarities were 

one standard deviation above the average to define the most similar patients, i.e., the 

neighborhood. Finally, prediction and subsequent AUROCs were calculated by weighted voting, 

where the weight was the cosine similarity of the two patients. Using the most similar training 

patients and their true ICD-9 diagnosis from the structured data as labels, the probability of a 

patient having a diagnosis was the total number of patients in the neighborhood with a diagnosis 
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divided by the total number of patients in the neighborhood. 

After learning contextual embeddings for the two ‘local’ sites, I again created training 

patient vectors for the two sites. In Site 2, I deleted all patients with a certain diagnosis of interest 

but retained patients with this diagnosis in Site 1. This experiment was done for the 80 most 

common diagnoses in MIMIC-III, with each diagnosis taking a turn in acting as the diagnosis of 

interest. The results are shown in Figure 2.9. Given a set of test patients, their patient vectors 

were created using either embedding from Site 1 or embeddings from Site 2, depending on which 

medical system they were admitted to. Figure 2.9 (a) shows the results where new test patients 

were admitted to Site 1, and their patient vectors were created with Site 1 embeddings. I 

predicted whether these new patients had the diagnosis of interest based on the most similar 

training patients in Site 1 and obtained a benchmark. However, when new test patients were 

admitted to Site 2 and I used the most similar training patients in Site 2 to predict the probability 

of the diagnosis of interest, the AUROC was 0.5, as shown in Figure 2.9 (b). This is because Site 2 

did not contain patients with the diagnosis of interest. Similarly, when new test patients were 

admitted to Site 2, and I used the most similar patients found from Site 1 to predict the diagnoses, 

the result was no better than guessing, as shown in Figure 2.9 (c). This is because the embedding 

space was not harmonized and thus not enough similar patients were found. Finally, I harmonized 

the ‘local’ embeddings between Site 1 and Site 2 first and created training patient vectors from 

them. When new test patients were admitted to Site 2 and their patient vectors were created 

with the harmonized ‘local’ embedding of Site 2, I could use Site 1 to find the most similar patients 

and obtain an AUROC at the level of the benchmark, as shown in Figure 2.9 (d).  This shows that, 

if new patients were admitted to a medical system and the site lacked truly similar patients to 
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make accurate predictions for a diagnosis of interest, the patient records from another medical 

system could compensate and provide similar patients. However, such compensation could only 

be achieved if the contextual embeddings were harmonized. 

 

 

Figure 2.9 Split Patient – Unstructured Data 
Average AUROC over 80 most common diagnoses, with each diagnosis taking a turn in acting as 
the diagnosis of interest. Site 1 contained patients with the diagnosis of interest, while Site 2 did 
not. (a) Patient vectors of new test patients were created with embeddings learned from Site 1, 
and training vectors from Site 1 were used to find the most similar patients for new test patients 
and to predict the diagnosis of interest. This is a benchmark. (b) Patient vectors of new test 
patients were created with embeddings learned from Site 2, and training vectors of Site 2 were 
used. Since Site 2 did not contain any patients with the diagnosis of interest, the AUROC was no 
better than guessing. (c) Patient vectors of new test patients were created with embeddings 
learned from Site 2, and training vectors of Site 1 were used to find the most similar patients. 
Since there was no Procrustes harmonization, the most similar patients from Site 1 to the test 
patients did not provide accurate predictions. The AUROC result was still no better than guessing. 
(d) Embeddings of Site 1 and Site 2 were harmonized prior to creating patient vectors. Then, 
patient vectors of new test patients were created with embeddings learned from 2, and training 
vectors of Site 1 were used to find the most similar patients. With Procrustes harmonization, the 
most similar patients in Site 1  to the test patients admitted to Site 2 were able to provide truly 
similar patients, allowing for the AUROC to reach the benchmark level. 
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2.10 Limitations and Future Directions 

This Chapter described a proof-of-concept that contextual embedding models, which are 

becoming bedrocks to deep learning analysis in replacement of one-hot representations, can be 

harmonized, and subsequently synchronize information from different medical systems for 

better prediction capability, without sacrificing privacy. However, one limitation of our work is 

that all experiments were conducted on a single MIMIC-III database. The underlying structure of 

the simulated local models may be similar, making it easy to approximate the global model from 

combining Procrustes harmonized local models. However, it is possible that every medical system 

may have similar structures and relationships for medical events or concepts related to diagnoses 

that are common and widespread. Using events related to these common diagnoses, it should 

nevertheless be possible to derive a reasonable transformation matrix to apply to the rest of the 

data when the method is extended beyond the MIMIC-III database.  

Ultimately, harmonization can bring knowledge contained in each medical system into 

the same space. This is a major benefit because, once embeddings are created for each medical 

event or concept, it becomes difficult to add new events or concepts in relation to the existing 

embeddings without training the model again. With harmonization, I can leverage embeddings 

learned from other sources and add new vectors. What this process fails to address at the 

moment is that, after harmonization, there are two vectors for the same event in some cases. 

Researchers have to make their own decision as to which of the vectors to use. It is an easy 

decision if the vectors have the same closest neighbors, but in situations where two medical 



33 
  

systems with conflicting embeddings regarding an event or concept, the current method does 

not alleviate the issue. A workaround would be to weigh the probabilities derived from using the 

two vectors and produce a consolidated estimate for a patient. However, to create a truly global 

model where two embeddings fully harmonize into one, further work is required. The current 

method shows the feasibility of incorporating new information that medical systems may be 

missing. 

There are also situations in which harmonization of embeddings from different sites may 

be inappropriate. The knowledge that is specialized in one medical system may not benefit from 

the incorporation of embeddings from another. For example, an embedding learned from a 

medical system specialized in pediatrics may have unique knowledge, and the embeddings may 

have cosine distances that are different from embeddings learned from medical systems that 

specialize in adult care. The harmonization of these two medical systems may create conflicting 

embeddings, where two vectors for the same event learned from the two medical systems have 

different nearest neighbors. Care must be taken when applying downstream analysis. For 

example, if one was to make patient vectors of pediatric patients, one should not use embeddings 

from the medical system specialized in adult care without validation. Even if a medical event 

embedding is missing in the medical system specialized in pediatrics but exists in the medical 

system specialized in adult care, incorporation of embedding from the medical system specialized 

in adult care could add erroneous information and noise to the pediatric patient vectors.  

Finally, while I showed in a limited way that the extension of the harmonization method 

onto three sites works, I also see that, even with harmonization, the prediction performance does 
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not reach the global level. This is expected given that the alignment of embeddings is typically 

imperfect.  

2.11 Conclusion 

The portability of medical events and patient vectors is the major strength of the method. 

With the medical events and patient vectors rendered to vectors of numbers, privacy is preserved 

yet information is still conveyed to medical systems involved in the harmonization. Instead of 

preserving privacy through de-identification and encryption, I take a machine-learning approach 

that relies on sharing the embeddings but not the data, hence I tackle privacy protection and the 

sharing of ‘agreggate data’ simultaneously. With patient privacy being a paramount concern, it is 

non-trivial to directly share medical records in both structured and unstructured form. The 

emergence of contextual embedding in healthcare allows for a new way to share models without 

sharing patient-level data. I proposed an innovative framework to combine locally trained 

embeddings into embeddings in a global sense. Utilizing this unique harmonization, more 

accurate analysis can be made with the accumulated knowledge acquired from local sources than 

would be possible using only local embeddings. Such a technique can allow for information 

unique to a certain medical system to become available to other sites, increasing the fluidity of 

information flow in health care. Our demonstration used Word2Vec but the approach is widely 

applicable to other contextual embedding models, including the most recent Med2Vec39 and 

Graph2Vec.49 

Chapter 2, in part, is a reprint of the material as it appears in Privacy-Preserving Predictive 

Modeling: Harmonization of Contextual Embeddings From Different Sources. Huang, Yingxiang; 
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Lee Junghye; Wang, Shuang; Sun, Jimeng; Liu, Hongfang; Jiang, Xiaoqian. JMIR Medical 

Informatics, 2018. The dissertation author was the primary investigator and author of this paper. 

 

Appendix 2.A Eighty Diagnoses used for Experiments 
List of 80 most common diagnoses used for prediction.  
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3. Calibration Measurements and Calibration Models 

3.1 Overview 

So far, my model performance assessment has been based on discrimination. This is the 

general trend of current predictive model assessment: the main focus is on discrimination, while 

calibration is often not measured or delegated to a supplementary role. Calibration is the 

measure of how close the model’s estimates are to the true probability. A calibrated predictive 

model would produce estimates that match the underlying true probability. I will introduce 

measurements of calibration and calibration models to improve improperly calibrated models.  

3.2 Introduction 

Most clinicians can recall seeing that inpatient who was listed as 50 years old but 

appeared decades older due to the effects of chronic illness, a physical exam finding commonly 

described as “Appearing older than stated age.” And yet, the patient’s stated age is used to 

dictate much of their care, including the calculation of glomerular filtration rate for medication 

dosing, risk of developing illnesses, and risk of death. Experienced clinicians can “calibrate” their 

mental models to account for the patients’ appearance, but predictive models cannot do this 

without further instructions. When predictive models are built based on a population that differs 

from the population in which they will be used, blind application of these models could result in 

large “residuals” (i.e., a large difference between a model’s estimate and the true outcome) 

because of factors that are difficult to account for. This deficiency could lead to catastrophic 

decisions for a single patient, even when the average residual for the overall population is very 

low. The analysis of such residuals can serve as a proxy for measuring the “calibration” of the 
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model. While calibration-in-the-large is concerned about gross measurements of calibration, 

such as whether the model’s overall expected number of cases exceeds the observed number, 

or whether the proportion of expected over observed cases departs significantly from “1,” other 

measurements of calibration are based on population stratifications, which can include anything 

from analyzing residuals on a few large subgroups all the way to analyzing residuals for each 

individual. Calibration is an essential component of the evaluation of computational models for 

medical decision making, diagnosis, and prognosis.50,51 In contrast to discrimination, which refers 

to the ability of a model to rank patients according to risk, calibration refers to the agreement 

between the estimated and the “true” risk of an outcome.52 A well-calibrated model is one that 

minimizes residuals, which is equivalent to saying that the model fits the test data well. Note that 

observing small residuals on the training set does not necessarily mean that it is a good model, 

since “overfit” models are known not to generalize well to previously unseen data (i.e., the 

residuals could be large in new test cases).  

        There are a number of cases that illustrate the omnipresence and importance of 

calibration and its critical role in model evaluation. If individualized predictions are used for 

clinical decision making, well-calibrated estimated are paramount. Take the case of dementia, a 

neurodegenerative disorder that affects at least 14% of Americans and recently costed the US 

healthcare system over $150 billion/yr.53 One recent study evaluated the calibration-in-the-large 

of several models that predict the risk of developing dementia in the general community and 

found that models drastically overestimated the expected incidence of dementia.54 At a 

predicted risk of 40%, the observed incidence was still only 10%, so the test overestimated 

incidence by 30%. For an individual patient, and for the healthcare provider, an overestimation 
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of this magnitude could lead to different decisions. For example, it is recommended by the 

American College of Cardiology and the American Heart Association that patients with a 

cardiovascular risk over 7.5% be prescribed statins, and those between 5 and 7.5% be considered 

for this type of treatment.55 Even risk calculators that are not based on percentages may benefit 

from calibration. An example is MELD,56 which provides a risk score that is used to prioritize cases 

for liver transplantation. When score thresholds are used (for example, to determine which 

patients are eligible for transplants), calibration becomes critical.  Accurate, well-calibrated 

estimates are necessary to allocate resources appropriately. Additionally, even when the models 

are well calibrated-in-the-large (e.g., the average predicted risk was 40% and the observed 

incidence was also 40%), there could be severe discrepancies to particular groups of individuals. 

It is thus critical to understand how a model will be employed in order to emphasize certain 

performance measures.  

This Chapter covers some techniques to assess and correct model calibration in the 

context of employing clinical predictive models to estimate individualized risk. I present issues 

with measures of calibration that go beyond calibration-in-the-large, and I include examples of 

some calibration models that have been recently used in the biomedical literature. This Chapter 

does not include all available measurement methods and calibration models and is 

complementary to book chapters and articles that serve as references to this topic and will be of 

interest to those who want to deepen their understanding of model calibration.52,57–59 I provide 

here some simple and interpretable calibration measures and calibration models that can 

illustrate the concepts and have appeared in the recent biomedical predictive modeling literature 

so that clinical researchers and informaticians may familiarize themselves with this topic. Despite 
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its importance to understanding the utility of a model, calibration is vastly underreported: one 

systematic review noted that, while 63% of published models included a measure of 

discrimination, only 36% of models provided a measure of calibration.60 Precision medicine 

involves individualized prevention, diagnosis, and treatment. It thus needs to rely on predictive 

models that are well-calibrated. I describe, in a didactic manner, key steps for measuring 

calibration and applying calibration models to a predictive model.  

3.3 Ranking Patients vs. Estimating Individual Risk  

Initial comparison and selection of appropriate models are often done through the 

evaluation of discrimination, which is measured with the Area Under the Receiver Operating 

Characteristic Curve (AUROC), but the AUROC says nothing about the calibration of the model. 

Figure 1 shows how relying on AUROC overlooks calibration. Figure 1 a, b, and c contain three 

models’ predicted estimates, sorted in ascending order, for two groups (Alive = “0” and Deceased 

= “1”). The three models’ estimates are 

a) original estimates, 

b) original estimates divided by 10, and 

c) original estimates after applying a calibration model to have the estimates be closer to 

the actual outcomes. 

The AUROC, which is equivalent to the concordance index,61,62 can be easily calculated by 

counting the arrows in Figure 3.1. The blue arrows, showing discordant pairs, indicate pairs of 

estimates where the estimates for the Alive patients (coded as 0) are greater than the estimates 

for the Deceased patients (coded as 1), while the orange arrows indicate pairs of estimates where 

estimates for Alive and Deceased patients are equal (ties).  
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Figure 3.1. Illustration of discordant pairs, ties, and ROC Curve  
a) Original estimates. b) Original estimates divided by 10. c) Original estimates after the 
application of a calibration model to have the estimates be closer to the actual outcomes. The 
blue arrows, showing discordant pairs, indicate pairs of estimates where the estimates for the 
Alive patients (coded as 0) are greater than the estimates for the Deceased patients (coded as 1), 
while the orange arrows indicate pairs of estimates where estimates for Alive and Deceased 
patients are equal (ties). The Area Under the ROC Curve (AUROC) is equivalent to the 
concordance index, which can be calculated here by the number of concordant pairs (i.e., total 
number of pairs minus the discordant and half of the tied pairs) over the total number of pairs, 
shown in the text as equation (3.1). d) Identical ROC curve and AUROC (0.785) for the three 
models.     
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d) 

 

Figure 3.1. Illustration of discordant pairs, ties, and ROC Curve, continued 
 

The non-parametric AUROC can be calculated by the concordance index as follows: 

 

(3.1)  

 

where the ‘total # pairs’ is the number of pairs of Alive and Deceased estimates, '# discordant 

pairs’ is the number of pairs composed of one Alive and one Deceased patient in which the 

estimate for the Deceased (coded as “1”) is lower than the estimate for the Alive (coded as “0”) 

patient, and the ‘# ties’ is the number of pairs in which the estimates are equal. Intuitively, the 

blue arrows are called “discordant pairs” because, in a model that has perfect discrimination, no 

estimates for observations in the Alive group should be greater than estimates for observations 

in the Deceased group. As illustrated in Figure 3.1, there is no need for the actual values of the 

estimates: Only the ranks (i.e., the order of the estimates) are necessary to calculate the 

concordance index or the AUROC. Therefore, when equation (3.1) is applied to estimates in a, b, 
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and c, the resulting ROC curves for all three models are the same, and their corresponding 

AUROCs are also identical, as shown in Figure 3.1d. However, the three models’ estimates are 

vastly different. Such differences are reflected in the absolute errors between the estimates and 

actual outcomes, as well as the average estimates for Alive and Deceased (Table 3.1). These 

values help give an idea of the models’ calibration, but still do not reveal whether there is gross 

under- or overestimation of the probability of Deceased for particular groups or individuals. 

Without a means for measuring calibration and for choosing appropriate models accordingly, 

erroneous decisions could be made in processes that rely on the values of the estimates. For 

example, if a clinical practice guideline recommends that all individuals at greater than 20% risk 

receive a certain intervention, a non-calibrated model such as the one in Figure 3.1b could result 

in no one receiving the intervention. In this Chapter, I illustrate methods that measure calibration 

in different ways. For models that have improper calibration, I show how calibration models can 

mitigate the problem of poorly calibrated models. 
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Table 3.1 Average Estimates and Observed Outcomes 
AUROC: Area Under the Receiver Operating Characteristic Curve. 

 Figure 3.1 a) Figure 3.1 b) Figure 3.1 c) 

AUROC: 0.785 0.785 0.785 

Average 
Outcome 

0.500 0.500 0.500 

Average 
Absolute 
Error: 

0.439 0.499  0.367 
 

Average 
Estimate: 

0.180  0.002  0.500 
 

Average 
Estimate 
(Alive): 

0.115 0.001 
  

0.349 
 

Average 
Estimate 
(Deceased): 

0.241 0.002 
  

0.633 
 

 

 

3.4 Simulated Data 

I used simulated data to demonstrate the forthcoming calibration measures and 

calibration models. The code can be found in https://github.com/easonfg/cali_tutorial. To create 

artificial data, I utilized the method from Zimmerman et. al.63 Twenty-three artificial features 

were constructed with 20 binary and 3 continuous independent variables. A uniform distribution 

was then used to determine the dependent variable, mortality, where 0 indicates Alive and 1 

indicates Deceased. The observed mortality was 15%. To compare models, a logistic regression 
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(LR) model and a Support Vector Machine (SVM) model with a linear kernel were built. SVM uses 

the Hinge Loss function as its objective function, so it often produces improperly calibrated 

estimates.64 I present different measures of calibration and the results of calibration models. 

Five thousand samples were created. The entire simulated data were separated into three 

parts: (1) Training set part 1 (2500 samples), (2) Training set part 2 (1250 samples), and (3) Test 

set (1250 samples). I used hold-out validation: I trained the classifier on Training set part 1, I 

trained the calibration models on Training set part 2, and I used the Test set to “validate”, i.e., to 

assess performance when the model is used in previously unseen cases.  

For this Chapter, two classification models (LR and SVM) were trained on the Training set 

part 1 and calibration models were built based on the resulting model applied to Training set part 

2. Then the classifier and calibration models were applied to the Test set and evaluation of 

calibration and discrimination were calculated on the Test set’s predicted estimates. I compared 

discrimination and calibration on the original Test set estimates (i.e., pre-application of the 

calibration model) and on the calibrated estimates. By separating the entire data into three parts 

and training the classification model and calibration model on different datasets, the aim is to 

avoid overfitting.  

3.5 Measuring Calibration  

There is no best method to measure the calibration of predictive models. While some 

methods are frequently used and have specific strengths, all have limitations. Here I present 

these calibration assessment methods and the scenarios in which each can be used 

appropriately. Additionally, some methods combine implicit measures of calibration with other 

components such as discrimination, which may be difficult to separate.  
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3.5.1 Brier Score and Spiegelhalter’s Z-Test 

The Brier score is the mean square error between the actual outcome and the estimated 

probabilities, as shown in equation (3.2):  

 

(3.2)     

 

where N is the number of patients, 𝐸Sis the predicted estimate for patient i, and 𝑂S  is the actual 

outcome for patient i. The Brier score should be interpreted carefully. Without understanding 

whether the error is caused by a relatively small number of estimates with high errors or a large 

number of estimates with smaller errors, it is difficult to say whether this model could be used in 

practice. Note that, by squaring errors that are in the [0,1] range, large errors “count less” to the 

overall score, when compared numerically to smaller errors. The Brier score includes 

components of discrimination and calibration, so a lower Brier score does not necessarily imply 

higher calibration.65 However, it can be shown that, from the decomposition of the Brier score, 

a formal measurement that can serve as a proxy for calibration can be calculated: the 

Spiegelhalter’s Z-test.66 The z statistic can be calculated with equation (3.3). 

 

(3.3)  

 

If |𝑍(𝐸, 𝑂)| > 𝑞	Y:Z/\, where 𝑞Zis the -quantile of the standard normal distribution (0.05), 

the result is significant, suggesting an improperly calibrated model.  
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The discrimination (AUROC), Brier scores, and Spiegelhalter’s Z-test results for the LR and 

SVM models are shown as AUROC in Table 3.2, as are other measures described in subsequent 

sections of this Chapter. The AUROCs of the two models are the same, but there is a difference 

in Brier scores. Also, p-values for the Spiegelhalter’s Z-test indicate that the SVM classifier is not 

well calibrated.  

Table 3.2. Areas Under the ROC Curve (AUROC), Brier scores, and Spiegelhalter’s Z-test 
statistics for Logistic Regression (LR) and Support Vector Machine (SVM) models.  

  LR SVM 

AUROC 0.870 0.870 

Brier 0.087 0.111 

Spiegelhalter 
Z Score 

0.762 2.214 

Spiegelhalter 
p-value 

0.223 0.013 

 

The calculation of the Brier score is relatively simple. A line of code is sufficient or use of 

packages that calculate the Brier score in R, such as the “rms” package with the function 

“val.prob” and the “DescTools” package with the function “BrierScore” (packages that implement 

the Brier Scores and all subsequent calibration methods conducted with the simulated data are 

listed in Table 3.9). The Spiegelhalter’s z-statistic can also be calculated with the function 

“val.prob” from the “rms” package. 
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3.5.2 Average Absolute Error 

Another easily implemented measure is the average absolute error, which is calculated in 

Equation (3.4). 

 

(3.4)    

 

The average absolute error is very similar to the Brier score, but small and large errors 

contribute in the same way to the sum. The results for LR and SVM are shown in Table 3.3.  

 
Table 3.3. Average Absolute Error for Logistic Regression (LR) and Support Vector Machine 
(SVM) models.  

  LR SVM 

Average Absolute Error 0.177 0.236 

 

 

3.5.3 The Hosmer-Lemeshow Test 

The Hosmer-Lemeshow (H-L) test has been a popular measure of goodness-of-fit for 

predictive models of binary outcomes and is sometimes used as a proxy for calibration67 despite 

its shortcomings, which I describe in the Discussion section. A PubMed search returns hundreds 

of articles per year mentioning the Hosmer-Lemeshow goodness-of-fit test. Despite its age and 

known shortcomings, this test has been frequently used in health sciences research. Because the 

way in which it groups observations is also used in Reliability diagrams and Calibration curves, I 

explain some details here.   
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There is no ideal method to assess the calibration of models. A calibration measure could 

ideally compare the predicted estimate with the “true” probability for each patient, but the 

measurement of actual probability for a single individual is challenging. While the Brier score 

provides an aggregate score obtained from a single group (the whole population), the H-L test 

first assembles the individuals using the predicted estimates to form groups, for which the 

proportion of events can be calculated, serving as the “gold standard” for the group. That is, in 

the data, I can only ascertain the binary outcome but not actual or “true” probabilities, therefore 

a proxy for this probability is used. Forming groups of individuals and calculating the proportion 

of positive outcomes is a way to achieve such a proxy. For example, I can say that the actual 

probability of death is 10% for a patient if 10 out of 100 patients “just like” this patient died. A 

critical step is to determine who is “just like” this patient. For the H-L test and some other 

calibration methods, patients who are “just like” each other are patients whose predictive 

model’s estimates belong to the same group (i.e., patients who received similar estimates once 

a model is applied), and the ratio of event and non-event within each group is the proxy for the 

“true” probability for the patients in that group. There are two ways by which the H-L test assigns 

individuals to the same group, resulting in H-L C or H-L H statistics. For H-L C statistics, patients 

are divided into g groups where each group contains approximately the same number of patients, 

typically grouped deciles of risk. For H statistics, groups are divided based on equal increment 

thresholds for the estimates (e.g. if there are 10 groups, estimates in the interval [0, 0.1] belong 

to one group, estimates in the interval (0.1, 0.2] belong to the second group, and so on). This is 

shown in Figure 3.2. 
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a)  b) c)  d) e) f) 

 

Figure 3.2 Grouping Methods for H-L C and H-L H Statistics 
The small number of observations would not warrant a test but serves to illustrate the contrast 
between two different ways of forming groups for the HL test. 

● For H-L C statistics, patients are divided into g groups where each group contains 
approximately the same number of patients, typically grouped by deciles of risk (g=10).  

● For H-L H statistics, groups are divided based on equal increment thresholds for the 
estimates (e.g. if there are 10 groups, estimates in the interval [0, 0.1] belong to one 
group, estimates in the interval (0.1, 0.2] belong to the second group, and so on).  

Numbers shown in a blue background correspond to Figure 3.1a estimates, green corresponds 
to Figure 3.1b, and red corresponds to Figure 3.1c estimates. a), b), and c) show groups of 
estimates using deciles of samples utilized for the H-L C Statistics. d), e), and f) show groups of 
estimates using equal interval groups utilized for the H-L H Statistics. Since the degree of freedom 
is equal to (g – 2), the degrees of freedom for groups in a), b), c), d), e), and f) are 8, 8, 8, 3, N/A, 
and 6, respectively.  
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H-L test statistic and p-value. The total estimates for ‘similar’ patients in a group are 

compared to total observed outcomes within each group. The H-L C or HL H statistics can be 

calculated using equation (3.5),  

 

(3.5)     

 

where 𝑂],S  is the number of patients with the outcome “1” within each group i and 𝐸],S  is the sum 

of the estimates of patients with the outcome “1” within each group i. 𝑂8,S  is the number of 

patients with the outcome “0” within each group i, and 𝐸8,S  is the sum of the estimates of patients 

with the outcome “0”  within each group i. Finally, g is the number of groups. The distribution of 

the test statistics follows a chi-square distribution with (g – 2) degrees of freedom. The p-value 

can be subsequently calculated. A p-value of 0.1 or higher is considered appropriate, a p-value < 

0.1 and > 0.05 indicates that the model is neither well-calibrated nor grossly miscalibrated, and 

a p-value < 0.05 indicates miscalibrated estimates.68  

The ideal number of groups and the method to determine membership in a group are 

often points of contention when performing an H-L test. With H-L C statistics, where an 

approximately equal number of samples are in each group, the range of the estimates could differ 

wildly, as shown in Figure 3.2. Take our small toy example, partitioning of groups in Figure 3.1a, 

3.1b, and 3.1c for the C statistics is shown in Figure 3.2a, 3.2b, and 3.2c, respectively. Patients in 

the same group can have very close or very distant estimates depending on how groups are 

formed. With the H-L H statistics, on the other hand, where estimates are partitioned into groups 
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according to equal intervals, there could be groups with no patients, or others with a large 

number of them, as seen in Figure 3.2e. The H-L C statistic is used much more frequently than 

the H-L H statistic in practice, but the groups formed in the latter are frequently used to plot 

calibration plots or reliability diagrams, which I will explore later in the Chapter.  

H-L statistics and p-values are calculated and shown in Table 3.4.  The p-values for the 

SVM model (p=0) are significant, indicating improper calibration, while LR is properly calibrated 

(p>0.1). The packages and functions that implement the H-L test are listed in Table 3.9. The 

package ‘ResourceSelection’ from R with function ‘hoslem.test’ and the package 

“generalhoslem” with function “logitgof” both provide the same calculation of the H-L test.69 

However, these packages are only capable of calculating the H-L C statistics. A modified method 

is presented in the Github file that allows calculations for both H-L C and H statistics.45 H-L 

statistics and p-values results are calculated and shown in Table 3.4.  for using these methods on 

the test set estimates that were produced by the LR and SVM models for our simulated data. The 

p-values for the SVM model (p=0) are significant, indicating improper calibration, while LR is 

properly calibrated.  

 

 

 

 

 

 

 



52 
  

Table 3.4. Calibration results measured with the Hosmer-Lemeshow (H-L) test statistics and p-
values for Logistic Regression (LR) and Support Vector Machine (SVM) models. 

  LR SVM 

H-L C Statistics 5.886 176.482 

H-L C p-value 0.661 <1e-22 

H-L H Statistics 9.185 160.274 

H-L H p-value 0.327 <1e-22 

 

3.5.4 Reliability Diagram 

The reliability diagram is a visualization technique that uses observation groupings such 

as the ones formed for the H-L test.64 However, instead of the sum, the mean of actual outcomes 

of each group is plotted against the mean of estimates of each group. While the points are 

typically connected to help with visualization, it is obviously not a true curve. No information can 

be derived between the points on the diagram. A perfectly calibrated model would result in a 45-

degree line. Figure 3.3 shows the reliability diagrams for the LR and SVM models using H-L C and 

the HL H statistics in a) and b), respectively. The actual data are also plotted for reference. While 

the reliability diagram of LR follows the diagonal line, I can see that the reliability diagram for the 

SVM model deviates from the diagonal, trending upward. This indicates improper calibration and 

underestimation of the actual number of Deceased (outcome = 1) in some groups.  
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a)       b) 

  

Figure 3.3 Reliability Diagrams of Test Set Estimates Produced by Logistic Regression (LR) and 
Support Vector Machine (SVM) Models 
Data points of estimates produced by the models and their actual binary outcomes are plotted. 
The Alive outcome is indicated as 0 and the Deceased as 1. Corresponding H-L statistics and p-
values are shown in the graphs. a) LR and SVM estimates grouped for the calculation of the H-L 
C statistic. The number of patients within each bin is the same (125). b) estimates grouped for 
the calculation of the H-L H statistic. The number of patients in each group is shown in the graph. 
Both graphs show that SVM underestimates the actual number of deaths, as shown by the red 
line deviating from the diagonal line. LR is relatively well-calibrated (blue line).  

 

Table 3.9 shows R packages and commands for the calibration measures discussed in this 

chapter. Neither grouping method is perfect when drawing the reliability diagram. As I can see in 

Figure 3.3a, by using the grouping method of H-L C statistics, there are no data points for 

estimates above 0.7 because of the small number of patients in that region. With the H-L H 

statistics, since I am using equal increment intervals, the reliability diagram extends beyond 0.7, 

allowing a glimpse of the calibration at those points. However, there are few patients in those 

intervals.  
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A package from “PresenceAbsence” in R is able to draw a reliability diagram with the 

function “calibration.plot”.70 This method groups the estimates according to the H-L H statistics 

and plots the average of the actual number of positive outcomes against the midpoint of each 

group’s interval. R packages for the H-L test use the H-L C statistics grouping method, while the 

reliability diagram typically uses the H-L H statistics grouping method.  

3.5.5 Expected Calibration Error and Maximum Calibration Error 

 Aside from the H-L test and the Reliability diagram, grouping was also used in recent 

papers to calculate the Expected Calibration Error (ECE) and the Maximum Calibration Error 

(MCE).71–73 To compute the ECE and the MCE, predictions or estimates are sorted and divided 

into K groups with an approximately equal number of patients in each group. The ECE calculates 

the average calibration error over the bins, while the MCE calculates the maximum calibration 

error for the bins in equation (3.6), 

 

   

(3.6)       

 

where 𝑃(S) is the fraction of all patients who fall into group . The number of groups I used is 10. 

Results for simulated data are shown in Table 3.5: LR has smaller ECE and MCE than SVM does, 

confirming what I already knew via the H-L C and H-L H tests.  
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Table 3.5. Calibration results measured with the Expected Calibration Error and Maximum 
Calibration Error for Logistic Regression (LR) and Support Vector Machine (SVM) models. 

  LR SVM 

ECE 0.038 0.403 

MCE 0.014 0.109 

 

3.5.6 Cox Intercept and Slope 

 Unlike the above methods, Cox’s intercept and slope do not group estimates into bins. 

The Cox method assesses calibration by regressing the observed binary outcome to the log odds 

of the estimates with a general linear model, as shown in Equation (3.7),24 

 

(3.7)    

 

Here  is the regression slope and  is the intercept. The estimated regression slope dictates the 

direction of miscalibration, where 1 denotes perfect calibration, >1 denotes underestimation of 

high risk and overestimation of low risk, and <1 denotes underestimation of low risk and 

overestimation of high risk. The estimated regression intercept represents the overall 

miscalibration, where 0 indicates good calibration, >0 denotes an average underestimation, and 

<0 denotes an average overestimation. The results of Cox’s slope and intercept are shown in 

Table 3.6. The slope and intercept for LR are close to 1 and 0, respectively, indicating a proper 

calibration. SVM, on the other hand, exhibits an underestimation of high risk and overestimation 

of low risk given its slope >1 and exhibits overall underestimation given its intercept >0.  
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Table 3.6. Calibration results measured with the Cox’s Slope and Cox’s Intercept for Logistic 
Regression (LR) and Support Vector Machine (SVM) models. 

  LR SVM 

Cox’s Slope  1.070 5.014 

Cox’s 
Intercept 

0.080 6.193 

 

3.5.7 Integrated Calibration Index 

 Similar to Cox’s method, the Integrated Calibration Index (ICI) assesses calibration by first 

regressing the binary response to the estimates. However, ICI uses a locally weighted least 

squares regression smoother (i.e., the loess algorithm).74 Cox’s slope and intercept can equal 1 

and 0, respectively, while deviations from perfect calibration can still occur (e.g., when these 

deviations “cancel” each other in terms of the linear regression). However, these deviations can 

be captured by the loess smoother, and a subsequent numerical summary is the ICI. ICI takes the 

average of the absolute difference between the estimates and the predicted estimates based on 

the loess calibration curve. The results for LR and SVM are shown in Table 3.7. The ICI of SVM is 

higher than the ICI of LR, and particularly for estimates before application of calibration models, 

as expected.  

Table 3.7. Calibration results measured with the Integrated Calibration Index for Logistic 
Regression (LR) and Support Vector Machine (SVM) models. 

  LR SVM 

ICI 0.010 0.104 
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3.6 Calibration Models 

Calibration models can be applied to improve calibration performance, and there are two 

ways to attempt to obtain calibrated estimates. The first approach is to include measures and 

terms in the objective function that specifically cater to calibration during model development.75 

When re-training a model to emphasize calibration is not feasible, it is sensible to improve 

calibration by applying calibration models to the estimates produced by the classifiers. The 

advantage of applying calibration models to estimates is that the method can be used in addition 

to any existing classification method and adjusted to the local patient population. 

In a relatively recent article from the biomedical informatics literature, Walsh et al.76,77 

re-emphasize the calls from Van Calster et al.78 and Riley et al.79 on the importance of calibration 

in addition to discrimination when evaluating predictive models. Walsh et al. select the following 

calibration models for their experiments: logistic calibration, Platt scaling, and prevalence 

adjustment. I utilize Platt scaling,80 isotonic regression,81 and the Bayesian Binning Quantiles 

(BBQ)73 calibration models to illustrate differences in calibration.  

3.6.1 Platt Scaling 

Platt scaling transforms model estimates by passing the estimates through a trained 

sigmoid function.80 The sigmoid function is shown in (3.8) exactly as it appears in the original 

paper: 

 

(3.8)     
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where f is the predicted estimate and parameters  and  are derived using gradient descent. 

Figure 3.4a shows the fitted sigmoid function derived using Training set part 2. Platt scaling trains 

this sigmoid function with the codomain constrained to the interval [0,1], using the built-in 

function ‘glm’ in R, with link function ‘logit’. It is a univariate logistic regression model that uses 

the model estimates as independent variables and the binary outcomes as dependent variables.  

3.6.2 Isotonic Regression 

Isotonic regression uses a step function with monotonically increasing values on the 

estimates.81 There are two algorithms to find the stepwise function. One is the pair-adjacent 

violator algorithm and the second is the active set algorithm.81 Both minimize residuals (i.e., the 

difference between the true outcome and the estimate) under the assumption that there is no 

change in the ranking of estimates (3.9): 

 

(3.9)    

 

where 𝑶𝒊 is the actual outcome and 𝑦?S  is the fitted value. Figure 4b shows an example of a fitted 

isotonic curve derived using Training set part 2. R has a built-in function, ‘isoreg’, that fits the 

best monotonically increasing step function using model estimates as the independent variable 

and the binary outcomes as the dependent variable.  
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a)       b) 

 

Figure 3.4 Calibration Models Functions 
 a) Example of fitted sigmoid function on SVM Training set part 2 estimates (Platt scaling). b) 
Example of a fitted isotonic regression on the Training set part 2 estimates.  
 

3.6.3 Bayesian Binning Quantiles 

 In addition to Platt scaling and isotonic regression, an ensemble method called Bayesian 

Binning Quantiles (BBQ) has been recently proposed to improve calibration.73 BBQ is based on 

quantile binning developed by Zadrozny and Elkan.82 In quantile binning, estimates are 

partitioned into K bins of equal number of patients. For every estimate within each bin, an 

estimate is calibrated to be equal to the fraction of positive samples in that bin. One drawback 

of quantile binning is the arbitrariness of K. BBQ takes an ensemble approach, calculating multiple 

binning size models and combining them. Individual calibration functions calculated with 

different size bins are combined with a weighted sum.83 The Matlab implementation of Bayesian 

Binning Quantiles can be accessed as indicated in the original paper. Note that this approach, 
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unlike monotonic (i.e., order-preserving) transformations such as Platt scaling and isotonic 

regression, does not require or guarantee that the order of estimates to remain the same after 

the application of the calibration model, so a decrease or increase in discrimination after the 

application of such calibration models can occur.  

By applying Platt scaling, isotonic regression, and BBQ to test set estimates produced by 

the SVM model, the estimates became better calibrated, as shown by the Spiegelhalter’s Z-test 

and H-L test results in Table 3.8 Application of the calibration models also lowered ECE, MCE, and 

ICI, which indicates estimates exhibit better calibration than those from the original SVM. Finally, 

Cox’s slope and intercept became closer to 1 and 0, respectively. That is, there was consistency 

among most calibration measures in that estimates obtained by calibration models resulted in 

smaller errors than the ones calculated for the original SVM estimates.  
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a)       b) 

 

 

 

 

 

 

 

c)       d)

  

Figure 3.5 Reliability Diagrams of Test Set Estimates Produced by Support Vector Machine 
(SVM) Models After application with Platt scaling, Isotonic Regression, or Bayesian Binning 
Quantiles for Simulated Data 
Estimates produced by the models and their actual binary outcomes are plotted to show the 
distribution of the actual data. The Alive outcome is indicated as 0 and Deceased as 1. 
Corresponding H-L statistics and p-values are shown in the graphs. a) Platt scaling and b) isotonic 
regression and BBQ are grouped for the calculation of the H-L C statistic. The number of patients 
within each bin is the same (125). c) and d) are grouped for the calculation of the H-L H statistic. 
After applying calibration models, the SVM estimates show proper calibration.  
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An unintended consequence of applying calibration models can be the worsening of 

calibration for models that are already well-calibrated. Table 3.8 also shows results after the use 

of calibration models to the Test set estimates produced by the LR model, which were already 

well-calibrated, as shown previously in Figures 3.3a and 3.3b. After using Platt scaling, H-L C or 

H-L H statistics returned significant p-values, while the Spiegelhalter Z-test did not. Looking at the 

corresponding reliability diagrams in Figure 3.6, the lines with applications of Platt scaling show 

more deviation from the diagonal line than the original LR line. Such a phenomenon sometimes 

happens with Platt scaling, since its underlying assumption is that the estimates’ distribution of 

‘true’ probabilities is sigmoidal in shape.84 When the logistic parametric assumptions are not met, 

properly calibrated estimates could become improperly calibrated. Application of isotonic 

regression and BBQ on the LR model also raised the H-L C and H statistics, indicating worsened 

calibration. This result is consistent with the increase in ECE, MCE, and ICI for LR calibrated with 

BBQ, and consistent with the increase in ICI for LR calibrated with isotonic regression.  
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a)       b) 

  

c) d) 

  

Figure 3.6 Reliability Diagrams of Test Set Estimates Produced by Logistic Regression (LR) 
Models After Application of Platt Scaling, Isotonic Regression, or Bayesian Binning Quantiles 
for Simulated Data 
Data points of estimates produced by the models and their actual binary outcomes are plotted 
to show the distribution of the actual data. The Alive outcome is indicated as 0 and Deceased as 
1. Corresponding H-L statistics and p-values are shown in the graphs. a) and b) are grouped for 
the calculation of the H-L C statistic. The number of patients within each bin is the same (125). c) 
and d) are grouped for the calculation of the H-L H statistic.  
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Table 3.8 Discrimination and Calibration Results of the Logistic Regression (LR) and Support 
Vector Machine (SVM) Models Applied to the Test Set.  
Discrimination is measured by the Area Under the Operating Characteristic Curve (AUROC). The 
Brier score is a combined measure of discrimination and calibration. Calibration is measured by 
the Spiegelhalter’s Z-test, Average Absolute Error, H-L test, the maximum calibration error (MCE), 
the expected calibration error (ECE), Cox’s slope and intercept, and the Integrated Calibration 
Index (ICI). SVM estimates for the Test set produced were improperly calibrated. Application of 
Platt scaling, isotonic regression, or BBQ was performed. Bolded values show significant results.  

  LR LR Platt 
scaling 

LR Isotonic 
Regression 

LR BBQ SVM SVM 
Platt 
scaling 

SVM 
Isotonic 
Regression 

SVM BBQ 

AUROC 0.870 0.870 0.870 0.867 0.870 0.870 0.870 0.862 

Brier 0.087 0.088 0.088 0.089 0.111 0.086 0.088 0.090 

Spiegelh
alter Z 
Score 
(p-value) 

0.762 
(0.223) 

0.417 
(0.338) 

0.087 
(0.465) 

0.748 
(0.227) 

2.214 
(0.013) 

0.826 
(0.204) 

0.693 
(0.244) 

0.731 
(0.232) 

Average 
Absolute 
Error 

0.177 0.177 0.177 0.182 0.236 0.177 0.177 0.185 

H-L C 
Statistics 
(p-value) 

5.886 
(0.661) 

24.6 
(0.002) 

11.7 
(0.167) 

16.194 
(0.042) 

176.48
2 

(<1e-
22) 

4.751 
(0.784) 

12.736 
(0.122) 

28.034 
(4.71e-

4) 

H-L H 
Statistics 
(p-value) 

9.185 
(0.327) 

16.632 
(0.03) 

10.126 
(0.259) 

11.532 
(0.174) 

160.27
4 

(<1e-
22) 

11.264 
(0.188) 

8.154 
(0.419) 

1.868 
(0.984) 

MCE 0.038 0.072 0.033 0.042 0.403 0.028 0.034 0.052 

ECE 0.014 0.035 0.012 0.022 0.109 0.011 0.018 0.027 

Cox’s 
Slope 

 1.070 1.074 0.953 1.020 5.014 1.087 1.023 1.008 

Cox’s 
Intercept 

0.080 0.072 -0.092 -0.007 6.193 0.081 -0.001 -0.02 

ICI 0.010 0.034 0.012 0.012 0.104 0.008 0.013 0.020 
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Table 3.9 Summary of Packages in R Used to Evaluate Calibration and to apply calibration 
models on Estimates. 

Calibration Measure R package R commands 

H-L Test ResourceSelection 69 hoslem.test 

Reliability Diagram PresenceAbsence 70 calibration.plot 

Spiegelhalter’s Z-test stats val.prob 

Brier Score Rms  
 mDescTools 

val.prob 
BrierScore 

Recalibration Method R package R commands 

Platt scaling stats glm* 

Isotonic Regression stats isoreg 

*link function ‘logit’ has to be used for glm  
 

3.7 Real Clinical Data  

The simulated experiments were repeated with real data set from the National Inpatient 

Sample (NIS). I picked 10,000 random patients from the NIS 2014 dataset and predicted whether 

patients would need a major therapeutic procedure during their stay, (20% did). The predictors 

were pre-admission features (age, sex, race, admission month, elective or non-elective 

admission, expected primary payer, median household income quartile range, and presence or 

absence of 30 chronic conditions). Experiments were done with LR and SVM with a radial kernel.  

The results are shown in Table 3.10. H-L C and H-L H statistics, and Spiegelhalter’s Z-test 

showed significance (i.e., inadequate calibration) for both LR and SVM. For LR, Platt scaling was 

not able to produce calibrated estimates, as shown by the H-L test, ECE, MCE, and ICI. However, 
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Cox’s slope and intercept suggest that calibration improved. For SVM, Platt scaling produced 

statistically significant H-L C statistics and H-L H statistics, and elevated ECE, MCE, and ICI. Cox’s 

slope and intercept also suggest worse calibration than that of LR. Isotonic Regression and BBQ  

were able to improve calibration in both LR and SVM, resulting in non-significant p-values for the 

Spiegelhalter’s Z and H-L tests. They also lowered MCE, ECE, and ICI. Cox’s slope and intercept 

became closer to 1 and 0, respectively, for both LR and SVM. All related reliability diagrams are 

shown in Figures 3.7-3.9. 
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Table 3.10 Discrimination and Calibration Results of the Logistic Regression (LR) and Support 
Vector Machine (SVM) Models Applied to the NIS Test Dataset.  
Discrimination is measured by the Area under the Operating Characteristic Curve (AUROC), while 
calibration is measured by the Spiegelhalter’s Z-test, H-L test, maximum calibration error (MCE), 
expected calibration error (ECE), Cox’s slope and intercept, and the Integrated Calibration Index 
(ICI). Estimates for the Test set produced by both LR and SVM were improperly calibrated. 
Application of Platt scaling, isotonic regression or BBQ was performed. Bolded values show 
significant results.  
 

  LR LR Platt 
scaling 

LR Isotonic 
Regression 

LR BBQ SVM SVM 
Platt 
scaling 

SVM 
Isotonic 
Regression 

SVM BBQ 

AUROC 0.785 0.785 0.785 0.787 0.817 0.817 0.817 0.817 

Brier 0.119 0.121 0.118 0.120 0.109 0.110 0.104 0.105 

Spiegelh
alter Z 
Score 
(p-value) 

1.895 
(0.029) 

-0.081 
(0.468) 

0.316 
(0.376) 

-0.246 
(0.402) 

-1.698 
(0.044) 

-0.064 
(0.542) 

0.175 
(0.351) 

-0.383 
(0.313) 

Average 
Absolute 
Error 

0.230 0.241 0.234 0.240 0.221 0.227 0.213 0.217 

H-L C 
Statistics 
(p-value) 

39.473 
(4.01E-

06) 

43.439 
(7.26E-07) 

13.7447 
(0.111) 

12.351 
(0.136) 

50.540 
(3.21E-

08) 

67.228 
(1.746e-

11) 

10.760 
(0.215) 

10.865 
(0.209) 

H-L H 
Statistics 
(p-value) 

38.084 
(7.263

e-06) 

61.353 
(2.527e-

10) 

10.456 
(0.234) 

6.683 
(0.571) 

146.12
9 

(1<e-
22) 

69.947 
(5.036e-

12) 

9.556 
(0.297) 

8.804 
(0.359) 

MCE 0.119 0.124 0.061 0.069 0.096 0.133 0.061 0.060 

ECE 0.031 0.043 0.025 0.022 0.044 0.050 0.016 0.017 

Cox’s 
Slope 

0.560 0.946 0.889 0.923 0.863 1.001 0.902 1.019 

Cox’s 
Intercept 

-0.601 -0.177 -0.230 -0.203 -0.374 -0.149 -0.257 -0.123 

ICI 0.027 0.038 0.018 0.025 0.052 0.061 0.015 0.015 
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a)       b) 

 
Figure 3.7. Reliability diagrams of test set estimates produced by Logistic Regression (LR) and 
Support Vector Machine (SVM) models for NIS dataset 
Data points of estimates produced by the models and their actual binary outcomes are plotted 
to show the distribution of the actual data. Note that there were no groups with average 
estimates above 0.25. No major therapeutic procedure during stay is indicated as 0 and major 
therapeutic procedure during stay as 1. Corresponding Hosmer-Lemeshow statistics and p-values 
are shown in the graphs. a) Grouped for the calculation of the H-L C statistic. The number of 
patients within each bin is the same (250). b) Grouped for the calculation of the H-L H statistic. 
The numbers of patients are labeled in the graph for b).  
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a)                                                                 b) 

  

c)                                                                 d) 

 

Figure 3.8 Reliability diagrams of test set estimates produced by Logistic Regression (LR) 
models recalibrated with Platt scaling, Isotonic regression, or BBQ for NIS dataset 
Data points of estimates produced by the models and their actual binary outcomes are plotted 
to show the distribution of the actual data. No major therapeutic procedure during a stay is 
indicated as 0 and a major therapeutic procedure during a stay as 1. Corresponding Hosmer-
Lemeshow statistics and p-values are shown in the graphs. a) and b) are grouped for the 
calculation of the H-L C statistic. The number of patients within each bin is the same (250). c) and 
d) are grouped for the calculation of the H-L H statistics. After recalibration with isotonic 
regression or BBQ, the LR estimates show proper calibration. 
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a)                                                                b) 

 

c)                                                                d) 

 

 

Figure 3.9. Reliability diagrams of test set estimates produced by Support Vector Machine 
(SVM) model recalibrated with Platt scaling, Isotonic regression, or BBQ, grouped for the H-L 
C statistics and the H-L H statistics for NIS dataset 
Data points of estimates produced by the models and their actual binary outcomes are plotted 
to show the distribution of the actual data. No major therapeutic procedure during a stay is 
indicated as 0 and a major therapeutic procedure during a stay as 1. Corresponding Hosmer-
Lemeshow statistics and p-values are shown in the graphs. a) and b) are grouped for the 
calculation of the H-L C statistic. The number of patients within each bin is the same (250). c) and 
d) are grouped for the calculation of the H-L H statistics. After recalibration with isotonic 
regression or BBQ, the SVM estimates show proper calibration. 
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3.8 Discussion 

  The H-L test continues to be a very well-known proxy for a calibration measure. From 

2014 to 2019, there have been over 874 mentions on Pubmed. The H-L test is a starting point to 

measuring calibration and needs to be considered. It has shortcomings, however, including the 

susceptibility to increase in statistical power as sample size increases and the arbitrariness of the 

number of groups. The H-L test’s probability of rejecting a poorly fitted model increases as the 

sample size increases. To remedy the problem, Paul et al. created a function to calculate the 

number of groups according to sample size.85 The formula was able to keep the power consistent 

as the sample size increased, but it could only handle sample sizes <25,000. For larger sample 

sizes, more complex techniques have been proposed.86,87 As for the arbitrariness of the number 

of groups, it is a problem shared by other measures. MCE, ECE, and reliability diagrams all require 

grouping. The Loess function in ICI also requires an adjustable window parameter in order to 

calculate calibration. In model comparison, this is not a huge problem, as one can use the same 

test set and the same number of groups when comparing the calibration of different models. It 

is a problem when asserting whether model estimates are well-calibrated, as changing the 

number of groups can alter the p-values.  

 Calibration measurements can be categorized into two groups. The H-L test, ECE, and MCE 

take an approach that requires grouping based on estimates. Cox intercept and slope, and ICI 

regress the estimates to the true outcomes. In terms of interpretability, the grouping methods 

are more readily understandable by the medical community. More recent methods to measure 

calibration are increasingly being used, and new guidelines on how to assess whether they are 
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adequate for a particular use case will develop over time. I summarized the pros and cons of the 

methods I have presented in this Chapter in Table 3.11. 
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Table 3.11 Summary of Advantages and Disadvantages of Calibration Measurement Methods 
Presented in this Chapter 

Calibration measure (examples 
of studies in which the 
measure was used) 

Pros Cons 

Brier Score (88–90) Easy calculation.  
Measures a combination of 
discrimination and calibration. 

The contribution of each 
component (discrimination, 
calibration) is not easy to 
calculate or interpret. 

Spiegelhalter’s Z-Test (91,92) 
 

Extension of Brier score that 
measures calibration only. P-
value can serve as a guide for 
how calibrated a model is.  

Not intuitive. 

Average Absolute Error Easy calculation. Intuitive. Same problems as Brier Score. 
Rarely used. 

Hosmer-Lemeshow Test (93,94) Widely used in the biomedical 
literature. P-value can serve as 
a guide for how calibrated a 
model is. 

Not designed to handle sample 
sizes >25,000. 
Use of HL-C and HL-H can 
result in different significance. 

Reliability Diagram (72,73,95,96) Allows for visualization of 
regions of miscalibration and 
the “direction” of 
miscalibration (i.e., 
underestimation, 
overestimation) 

Not a continuous graph. Hard 
to see when estimates are 
clustered in certain regions 
(zoom into a portion of the 
graph may be needed). 

Expected Calibration Error and 
Maximum Calibration Error 
(72,97,98) 

Intuitive.  No statistical test to help 
determine whether a model is 
adequately calibrated or not. 

Cox’s Slope and Intercept (99–
101) 

Summarizes the direction of 
miscalibration (i.e., overall 
underestimation or 
overestimation).  

Can still result in perfect 
calibration even if regions are 
miscalibrated. 

Integrated Calibration Index Can capture regions of 
miscalibration that Cox’s slope 
and intercept cannot. 

Requires Loess to build the 
calibration model. Not 
intuitive. 
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 In our simple example, application of Platt scaling and isotonic regression on the SVM-

derived estimates had good results. While there are other methods that were built upon such 

techniques, and more are being created for modern deep learning,71–73,84,102–104 Platt scaling and 

isotonic regression are relatively easy to understand and implement. They can act as the 

benchmark for subsequent calibration models to be compared to. While ease of interpretation is 

the main advantage of these two techniques, they are not without faults. As illustrated in our 

example, Platt scaling may fail when models are already well-calibrated. It performs best under 

the assumption that the estimates are close to the midpoint and away from the extremes.84 

Therefore, Platt scaling may not be suitable for estimates produced by Naive Bayes or Adaboost 

models, which tend to produce extreme estimates close to 0 and 1.105 In terms of isotonic 

regression, the criticism is that it lacks continuousness. Since the fitted regression function is a 

piecewise function, a slight change in the uncalibrated estimates can result in dramatic 

differences in the recalibrated estimates (i.e., a change in step). Also, due to the stepwise nature 

of the function, uncalibrated estimates that fall on the same ‘step’ end up having the same 

calibrated value, eliminating any distinction between those patient estimates (similarly to 

quantile binning). However, there are smoothing techniques to make the isotonic regression 

recalibrated estimates continuous.106  

Finally, the available packages currently used to measure calibration are sparse and 

missing some key documentation. There is a need for better descriptions of how such techniques 

were implemented.  

3.9 Conclusion 

While discrimination is the most commonly used measure of how well a predictive model 
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performs, calibration of estimates is also important, particularly when predictions are used for 

individual patients (e.g., precision medicine). With the help of R packages, it is not difficult to 

measure calibration alongside discrimination when reporting on a model’s predictive 

performance. Also, there are simple techniques that can improve calibration without the need 

to retrain a model. To improve discrimination, parameters need to be tuned or a completely 

different model may be required, whereas to improve calibration there are techniques that do 

not require retraining. In this Chapter, I raised awareness of calibration measures and calibration 

models in clinical predictive modeling, providing simple and readily reproducible examples. In 

the next Chapter, I will show how calibration can be measured and improved in a distributed 

setting using novel methods.  

Chapter 3, in part, has been accepted for publication of the material as it may appear in 

A Tutorial on Calibration Measurements and Calibration Models for Clinical Prediction Models. by 

Huang, Yingxiang; Li, Wentao; Macheret, Fima; Gabriel, Rodney; Ohno-Machado, Lucila. Journal 

of the American Medical Informatics Association, 2020. The dissertation author was the primary 

investigator and author of this paper. 
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4. Calibration Measurement and Calibration Model in a Federated 

Manner 

4.1 Overview 

Existing calibration models, i.e., models that improve the calibration of estimates derived 

from predictive models,  have been shown to improve calibration.64,68,73,82,95,105 Such models are 

often post-processing models where estimates produced by a predictive model and the true 

outcomes are used to build calibration models. However, the constraint of building calibration 

models locally may limit the degree of improvement. The process of building and evaluating a 

predictive model typically involves iterations in which different variables are considered, as well 

as tuning of parameters. While a plethora of articles have been written about building robust 

predictive models in a distributed setting (see for example some methods in references [xxx] and 

our innovative embedding-based method in Chapter 2), none have been proposed to build 

calibration models in a distributed setting. In Chapter 3 I explained why calibration is a critical 

component of clinical predictive model evaluation. Here I propose a Secure Multiparty 

Computation (SMC) method to build a global isotonic regression calibration model using data 

from a few medical systems, without sharing patient-level data. To show that the global model 

outperforms local calibration models and keep the principle of not sharing the individual-level 

data, I also propose measuring calibration in a distributed manner.  
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4.2 Calibration Models 

As explained in the Introduction Chapter, gathering large samples is difficult. Recently, 

there have been efforts to build high-quality centralized models with training data distributed 

over a large number of sites. Some existing examples and our new method were described in 

Chapter 2 of this dissertation. Although logistic regression are generally well-calibrated, but this 

is not necessarily true and other models, like SVM and Naive Bayes, are often not well 

calibrated.64 Random Forests and Neural Networks are also prone to improper calibration.64,72 

Calibration models are therefore needed. Furthermore, it is unclear whether calibration models 

that operate in a federated, distributed manner result in higher-quality models than local 

calibration models.  

Building calibration models in a way that protects privacy requires hiding sensitive data 

such as estimates and true outcomes. Sharing estimates and true outcomes can be detrimental 

to both institutional privacy and patient privacy. In terms of institutional privacy, sharing actual 

outcomes of sensitive information could put institutions at a disadvantage with respect to their 

competitors.107,108 Such sensitive information could include specific mortality rates, healthcare-

associated infections rates, unplanned readmissions, etc. While sharing these data does not 

violate patient privacy, medical systems may be reluctant to share such data due to concerns 

over leakage of sensitive information about the institution. In terms of patient privacy, sharing 

the outcomes of a predictive model could even help identify the patient, for example, when the 

outcome is unique to a patient in a certain medical system. Due to these reasons, it is attractive 

for medical systems to have the ability to create the best calibration model while keeping data 

private.  
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4.3 Methodology 

I chose to extend the Smooth Isotonic Regression (SIR) model in a federated manner. SIR 

is done by first training an isotonic regression model by optimizing the isotonic regression 

function as shown in Equation (3.9). Isotonic regression is used as a calibration model, but due 

to the stepwise nature of the function, there is room for improvement. Therefore, a smoothing 

technique can be implemented in the SIR model and the isotonic regression function can be 

solved with either the Pool-Adjacent-Violators Algorithm (PAVA) or the active set method,109 

resulting in a monotonically increasing step function. For SIR, a point is randomly chosen from 

each ‘step’ (flat region of the isotonic regression function) and a Piecewise Cubic Hermite 

Interpolating Polynomial (PCHIP)110 function is used to obtain a smooth monotonically increasing 

function as the final calibration model. A PCHIP function is a third-degree polynomial spline 

function that interpolates a function based on the existing datasets. In the case of an isotonic 

function, each flat region and the randomly chosen point act as the existing datasets for the 

interpolation.  

An example of the resulting functions is given in Figure 4.1. The ‘Data’ points (circles) are 

plotted as the estimates vs. outcomes. An isotonic and a smooth isotonic function are fitted 

according to the ‘Data.’ Recalibration is done with the application of isotonic function or SIR on 

uncalibrated estimates.  
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Figure 4.1 Example of Isotonic and Smooth Isotonic Functions 
‘Data’ points are the predicted estimates vs. true outcomes. Isotonic and smooth isotonic 
functions are derived according to the ‘Data.’ 
 

 To obtain the smooth isotonic function, I first need to derive the isotonic function. The 

isotonic function is a least square problem with constraints. The numerical data for Figure 4.1 

and the overall process of deriving the isotonic function are shown in Figure 4.2. There are 4 

phases to the algorithm:  

1) sort instances by estimates;  

2) find an isotonic solution;  
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3) find the breakpoint of isotonic steps and derive a new isotonic function; and 

4) recursively derive optimal solution given the constraints at each isotonic step until the final 

optimal solution is found.  
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Figure 4.2 Process for Deriving the Isotonic Function 
The estimates are first sorted. Then breakpoints of the steps in the isotonic functions are located, 
and the isotonic function is calculated with the average of positive cases within each step.  
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Figure 4.2 shows an overview of how to derive the isotonic function. More formally, 

isotonic regression for our small example with 10 constraints is defined in Equation (4.2), 

 
 

 
 
 
 

  
(4.2)  

 

where 𝑦S  are the binary outcomes and 𝑧S  are the final values. In our example, there are 10 

inequality constraints ( ), forcing the final solution to be monotonically increasing. After Phase 1 

where the instances are sorted by estimates, this optimization problem can be solved by the 

active set method.  

The active set method begins by setting all constraints to equality constraints as follows 

in Equation (4.3), 

 
  

 
 
 
 

  
(4.3)  

 
Under such constraints, the optimal solutions for  are the fraction of the total number of cases 

with the outcome ‘1’  as shown in Figure 4.2 Mtx 3 row .  
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To calculate whether the optimal solutions can be improved, the active set method then 

utilizes Lagrange multipliers. Lagrange multipliers are used to find the local minima of the isotonic 

function, according to Equation (4.4). 

(4.4)   

 

The value of the Lagrange multiplier or  at the solution of the problem is equal to the rate of 

change in the minimum value of Equation (4.3), as the constraint is ‘relaxed’ from equality to 

inequality constraints. The most negative  indicates the breakpoint of the isotonic step in Phase 

3 of Figure 4.2. I am looking for negative  because I am minimizing the isotonic function. 

Therefore, I want to ‘relax’ the constraint that would lower the minimum value of the equation 

(4.3). For our example,  was the smallest , so the breakpoint of the isotonic step in Phase 3 of 

Figure 4.2 is set at the seventh instance. The optimal solution is calculated for each step where  

are equal to the fraction of cases with outcome ‘1’  at each step, as shown in row  of Mtx 4 in 

Figure 4.2. The process is repeated for each step of the isotonic function, recursively, until there 

are no more negative ’s.  

The optimal solution, given the constraints for isotonic regression, is equal to the average 

positive cases in Equation (4.5),  

 

(4.5)  



84 
  

where  are the observed outcomes and n is the number of instances. At the start of the 

algorithm, there are no breakpoints, therefore the solution, or , is a vector of length n, and the 

value is the proportion of positive cases. Phase 3 in Figure 4.2 computes the Lagrange multipliers, 

, and finds the minimum , which is generally difficult when data involves continuous values for 

the observed outcomes, but it becomes easier when applied to calibration where the observed 

outcomes are either 0 or 1. The Lagrange multipliers are calculated as in Equation (4.6). 

 

(4.6)   

Where  

 

 

And  

. 

 is the QR decomposition (orthogonal matrix and upper triangular matrix) derived according to 

the constraints. A visual example is given in Figure 4.3.  
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a)   

b)  

c)  

Figure 4.3 Lagrange Multipliers Derivation 
Lagrange Multipliers are calculated with a matrix of QR Decomposition  and vector . The  
vector is calculated in a), where the optimal solution, , is added to . b) The QR decomposition 
is multiplied to vector . c) The final solution is , the smallest . Hence the breakpoint is at the 
7th data point.  
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To evaluate the calibration of model estimates before and after transforming the 

estimates using a calibration model, the measurement of calibration can also be done 

distributedly. I describe the distributed calculation of the Hosmer-Lemeshow (H-L) test, the 

Expected Calibration Error (ECE), and the Maximum Calibration Error (MCE) that were previously 

described in Chapter 3.  

4.4 Secure Multiparty Computation (SMC) Sorting 

For both SIR and calibration evaluations, I first need to sort estimates and then I compare 

them to the true outcomes. This is trivial, except that I need to sort estimates that are local to 

each site, without sharing the estimates or the true outcomes across sites. That is, the estimates 

and true outcomes stay local, as did the patient data in Chapter 2, and only sums or other 

aggregate statistics are shared. I therefore need a sorting and counting methods for a distributed 

data setting. While there are data-oblivious sorting algorithms,111–113 they require setting up 

cryptographic primitives and a secret-sharing scheme where secured addition, multiplication, 

compare-and-swap, and etc. are assumed. While efficient, such operations are hard to 

implement and interpret, often treated as black-boxes in the cited algorithms. Here I propose a 

peer-to-peer privacy-preserving SMC radix sort algorithm that assumes no such complex 

operations, allowing for easy reproduction.  

Our federated radix sort algorithm is based on the most significant digit (MSD) radix sort. 

Sorting starts at the first MSD. Using Algorithm 1 from Wu et al.,108 I first collect the sum of each 

digit 0-9 at the first MSD from all the sites. In our cases, since estimates range from (0, 1), this is 

the first digit after the decimal point (e.g., ‘9’ in 0.923, ‘7’ in 0.737, etc). Algorithm 1 from Wu et 

al. begins from a central server that does not contribute data, but sends a vector of random 
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values that is passed from one local site to the next. An example is given in Figure 4.4. Each local 

site adds its count of each number (0-9) at the MSD digit to the random vector (Figure 4.4 a). The 

purpose of the random vector is to mask values contributed by the first site so that information 

is not disclosed to the second site receiving the vector, and so on. Once the random vector has 

accumulated total counts of each number at the current digit from all the sites (Figure 4.4 b-d) 

and returns this sum to the central server, the original random numbers are then subtracted 

(Figure 4.4 e). This allows the central server to rank all estimates without knowing which site 

contributed which values by calculating a counting sort matrix (Figure 4.4 f). This counting sort 

matrix has the temporary rank of each estimate. By distributing the ‘Rank’ row of the counting 

sort matrix to each site, each site can update the temporary rank of its observations in terms of 

the digit under study. Figure 4.4 shows the result of a toy example with three sites. 
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Figure 4.4 The First Iteration of Federated Radix Sorting 
Temporary ranks are calculated after one iteration of secure multiparty computation radix 
Sorting using Algorithm 1 from Wu et al. (a) First, a random vector of numbers is created in the 
central server. The random vector is passed to Site 1, (b) which adds counts of each number at 
the MSD. Site 1 then passes the sums to Site2, (c) which does the same and passes to Site 3, (d) 
which does the same. Finally, (e) the random vector is returned to the central server and the 
original random vector is subtracted. To derive the Counting Sort Matrix, the row Rank can be 
derived by first cumulatively adding the counts of the digits to derive the Cumulative row, then 
by shifting the Cumulative row one digit over and appending 0 to the beginning. The columns 
highlighted in yellow in the counting sort matrix are the digits that have more than 0 counts. 
The count Sort Matrix is passed from site to site in a sequential manner as shown in (f). Each 
site updates its ranks according to the ‘Rank’ row of the Counting Sort Matrix. 
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e)  

Figure 4.4 The First Iteration of Federated Radix Sorting, continued 
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f)  

Figure 4.4 The First Iteration of Federated Radix Sorting, continued 

 

I then move on to the second MSD. A counting sort matrix is constructed again with the 

same secure technique used in the first MSD, but this time instead of a counting sort matrix for 

digits 0-9, a counting sort matrix for 0-99 is derived. The example in Figure 4.4 continues for the 

second MSD as shown in Figure 4.5. To lower the communication complexity, a counting sort 

matrix was not created for any number that could not exist based on the counting sort matrix of 

the first MSD. For example, in our example in Figure 4.4, the counting sort matrix did not count 

any 4, 5, or 6 at the first MSD. Therefore, no counting matrix was made for numbers 40-69. The 

new counting sort matrix is distributed to each site again. However, unlike the first MSD, the 

second MSD and subsequent digits update the rank by adding to the rank derived from the 

previous digit. The algorithm continues on to the next most significant digits until the least 
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significant digit, typically resulting in few to no ‘ties’ in ranks. In our case, the last digit is the third 

digit, as shown in Figure 4.6.  

 

 

Figure 4.5 The Second Iteration of Federated Radix Sorting 
Temporary ranks after two iterations of secure multiparty computation radix Sorting. Counting 
sort matrix is calculated for the 2nd MSD, using the same method. 
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Figure 4.6 The Third Iteration of Federated Radix Sorting 
Final rank after three iterations of secure multiparty computation radix Sorting. There are no 
‘ties.’ Sites know what ranks belong to their estimates, but don’t know the ranks of the other 
sites. 

 

4.5 Secure Multiparty Computation Isotonic Regression 

 With estimates sorted, the next step to fit a monotonically increasing regression step 

function using the active set method is to find an optimal isotonic function given the current 

constraints, as previously shown in Figure 4.2 Phase 2. The optimal solution given the constraints 

for isotonic regression is equal to the proportion of positive cases, as previously shown in 
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Equation (4.5). At the start of the algorithm, there are no breakpoints, therefore the solution, or 

, is a vector of a constant.  

 At Phase 1, where the potential fitted regression  is calculated, the total number of 

positive cases are counted. The total again can be counted in a private manner using Algorithm 

1 from Wu et. al.  

At Phase 3 of Figure 4.2, to find the smallest Lagrange multiplier in a privacy-preserving 

manner, partial results 𝜆b]from each local site can be calculated and added to find 𝜆 in Equation 

(4.7) 

 

    

   (4.7)  

 

where  is the corresponding rank or column, 𝑀∗,erepresents the columns corresponding to the 

ranks that each local site has, and 𝐶e	represents the 𝐶S  values at each local site with the 

corresponding rank. 𝐶e	can be derived in each local site as shown in Figure 4.7.  𝑀∗,e  is sent to 

each local site and 𝜆b] results are added from site to site to obtain the final 𝜆		vector, which is 

shown in Figure 4.8. With a breakpoint found, the next recursive step can begin. 
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Figure 4.7 Initial Step of Federated Isotonic Regression 
z is derived by using Algorithm 1 from Wu et. al. to obtain the number of positive cases and the 
total number of instances. By subtracting y from z, c is derived at each site and can be used to 
find the least Lagrange multiplier. 
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Figure 4.8 Finding the least Lagrange Multipliers 
Multiplying c from each local site by the corresponding columns in M, each site can derive a 
vector of partial Lagrange multipliers, the summation of which results in the overall Lagrange 
multiplier. The sum is done by SMC so no site exposes its 𝜆 . The least Lagrange multiplier is 
the breakpoint where two steps of the isotonic regression are formed.  
 

 The rank of the smallest 𝜆 is where the breakpoint for the step is. After distributing the 

breakpoint to all sites and the central server, a new iteration can start. Each step created by the 

breakpoint can be seen as its own isotonic regression problem and solved with the above 

method, recursively.  



96 
  

4.6 Smooth Isotonic Regression 

 After the method above, each site should now have the “rank” and the new estimates . 

To obtain smooth isotonic regression in a federated network, I modified the method from Jiang 

et al.106 outlined in Algorithm 4.1. For SIR, the data point from each ‘step’ is used in a PCHIP to 

form a smooth monotonically increasing function. Using our toy example from Figure 4.2, where 

the breakpoints are the 3rd and 7th ranked instances, the y values for the ‘steps’ are the . In this 

case, they are 0, ¼, and 1. The x values for the ‘steps’ are the average of the original x values at 

each step. To obtain the average at each ‘step’, Algorithm 1 from Wu et al.108 is used. An outline 

of the steps is given in Figure 4.9. 

Algorithm 4.1 

1. The central server sends out a random vector of length , where  is the number of 
steps in the isotonic regression. Each step spans breakpoints. 
 

2. Each site, in sequence, adds the estimates to the random vector in the corresponding 
steps according to the rank of the steps and sends the vector to the next site. The final 
site sends the vector to the server. 
 

3. The central server subtracts the initial random values from the vector. 
 

4. The central server constructs a Piecewise Cubic Hermite Interpolating Polynomial 
function110 using the  at each step and the vector to obtain the final smooth isotonic 
regression function. 
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Figure 4.9 Smooth Isotonic Regression 
For Smooth Isotonic Regression, a data point from each ‘step’ is used in a PCHIP to form a 
smooth monotonically increasing function. The x values of the data points are collected using 
Algorithm 1 from Wu et al. The process evolves as follows: (a) First, a random vector of 
numbers is created in the central server, where the length of the vector is the number of 
‘steps.’ The central server also sends the ranks of each of the ‘step.’ The random vector is 
passed to Site 1, (b) which adds estimates to the random number in the corresponding rank. 
Then the vector is passed on to Site2, (c) which does the same and passes to Site 3, (d) which 
does the same and passes to Site 4, (e) which does the same. (f) The random vector is returned 
to the central server and the original random vector is subtracted. Finally, (g) the central server 
applies PCHIP to the x values and the y values to obtain a Smooth Isotonic Regression, shown 
here. 
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Figure 4.9 Smooth Isotonic Regression, continued 
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Figure 4.9 Smooth Isotonic Regression, continued 
 
 

Since the sorting and counting performed across the sites using secure multiparty computation 

algorithms produces the same results as those that would be produced were all data be 

centralized, it is clear that there is no cost in terms of accuracy. However, since the algorithm 

requires aggregate data to be sent around, it is important to understand the communication 

costs. 
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4.7 Communication complexity 

The communication complexity of the federated radix sort is at worst case 

, where  is the number of instances,  is the number of the 

maximum number of digits, and  is the number of local sites. For each iteration or digit, the 

random number matrix used to aggregate the count of digits to create the counting sort grows 

by a factor of 10. The communication complexity of the federated SIR is . For 

one iteration, a vector of length  is passed from site to site  times. In the worst case, there 

are 𝑙𝑜𝑔	𝑛 iterations, which happens in the extreme case of 0’s and 1’s alternating.  

So far it is clear that it is possible to build calibration models in a distributed manner, but 

knowing whether or not a model is well calibrated is pre-requisite. 

4.8 Measuring Calibration 

Measuring calibration in a distributed manner is important because institutions may want 

to keep estimates and outcomes private. In order to evaluate a predictive model and a calibration 

model, I should assess calibration across all institutions. I can measure each local site’s calibration 

separately, but to describe the model’s overall performance, the global calibration must be 

assessed. For this Chapter, I extend calibration measurements in a federated manner: the H-L (C 

and H) test, the ECE, and the MCE that were shown in Chapter 3.  

Algorithms 4.2 and 4.3 describe the distributed computation for the H-L test C version 

and the H version, respectively. To decide the number of bins, I used the method from Paul et 

al.85 as shown in equation (4.8), 
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(4.8)  

 

where m is the number of positive cases and n is the total number of observations. 

Algorithm 4.2: H-L C test 
1. Each site obtains ranks by applying Secure Multiparty Radix Sorting to estimates. In the 

process, the central server records the total number of instances. 
 

2. The central server calculates the number of instances for each bin by dividing the total 
number of instances by the number of bins, g. 
 

3. The central server sends the following items to the first site: 
a. Four random vectors of length g: [𝐸Yj, 𝐸\j, . . . , 𝐸lj], [𝐸Y:, 𝐸\:, . . . , 𝐸l:], 

[𝑂Yj, 𝑂\j, . . . , 𝑂lj], and [𝑂Y:, 𝑂\:, . . . , 𝑂l:]. These four vectors correspond to the 
sum of the estimates of instances that are positive events within each bin (E+), 
the sum of estimates of instances that are negative events within each bin (E-), 
the number of positive events within each bin (O+), and the number of negative 
events within each bin (O-), respectively.  

b. Range of ranks for each bin (i.e. if there are 10 bins and 200 instances, then the 
ranks for bin 1 would range from 1 to 20, ranks for bin 2 would range from 21 
to 40, and so on.) 

 
4. The first site adds the estimates of positive events to [𝐸Yj, 𝐸\j, . . . , 𝐸lj] into the bin with 

the corresponding range of ranks, adds estimates of negative events to 
[𝐸Y:, 𝐸\:, . . . , 𝐸l:], adds the number of positive cases into [𝑂Yj, 𝑂\j, . . . , 𝑂lj], and adds the 
number of negative cases into [𝑂Y:, 𝑂\:, . . . , 𝑂l:]. The first site sends the vectors to the 
next site. The next site adds the estimates, number of positive cases, and number of 
negative cases to the corresponding vectors, then sends the vector to the next site, and 
so on. The last site sends the vectors to the central server. 
 

5. The central server subtracts the initial random numbers from the four vectors. These 
aggregate values are used to calculate the H-L C test statistics.  

 

Algorithm 4.3 H-L H Test 

1. The central server calculates the number of instances in each bin by dividing the total 
number of instances by the number of bins, g. 
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2. The central server sends relevant items to the first site: 
a. Four random vectors of length g: [𝐸Yj, 𝐸\j, . . . , 𝐸lj], [𝐸Y:, 𝐸\:, . . . , 𝐸l:], 

[𝑂Yj, 𝑂\j, . . . , 𝑂lj],  and [𝑂Y:, 𝑂\:, . . . , 𝑂l:]. These four vectors correspond to the 
sum of the estimates of instances that are positive events within each bin (E+), 
the sum of estimates of instances that are negative events within each bin (E-), 
number of positive events within each bin (O+), and number of negative events 
within each bin (O-), respectively.  

 
b. Range of the estimates for each bin (i.e. if there are 10 bins, then bin 1 would 

have a range of 0.0 - 0.1, bin 2 would have a range of 0.1 - 0.2, and so on.) 
 

3. The first site adds the estimates of positive events to [𝐸Yj, 𝐸\j, . . . , 𝐸lj] into the bin with 
the corresponding range of ranks, adds estimates of negative events to 
[𝐸Y:, 𝐸\:, . . . , 𝐸l:], adds the number of positive cases into [𝑂Yj, 𝑂\j, . . . , 𝑂lj], and adds the 
number of negative cases into [𝑂Y:, 𝑂\:, . . . , 𝑂l:]. The first site sends the vectors to the 
next site. The next site adds estimates, number of positive cases, and number of 
negative cases to the corresponding vectors, then send to the next site, and so on. The 
last site sends the vector to the central server. 
 

4. The central server subtracts the random numbers from the four vectors. These 
aggregate values are used to calculate H-L H test statistics.  

 

 The other measures I extend in a federated manner are the Maximum Calibration Error 

(MCE) and Expected Calibration Error (ECE).71–73 Algorithm 4.4 shows the calculation of ECE and 

MCE in a federated manner. 

 

Algorithm 4.4 
1. Each site obtains ranks by applying Secure Multiparty Radix Sorting to estimates.  

 
2. The central server calculates the number of instances in each bin by dividing the total 

number of instances by the number of bins, g, calculated from equation (4.8). 
 

3. The central server sends the following two relevant items to the first site: 
a. Two random vectors of length g, [𝐸Yj, 𝐸\j, . . . , 𝐸lj] and [𝑂Yj, 𝑂\j, . . . , 𝑂lj]. These 

two vectors correspond to the sum of the estimates of instances that are 
positive events within each bin (E+) and the number of positive events within 
each bin(O+), respectively. 

b. Range of ranks in each bin (i.e. if there are 10 bins and 200 instances, then 



103 
  

ranks of bin 1 would range from 1 to 20, ranks of bin 2 would range from 21 to 
40, and so on). 
 

4. The first site adds the estimates of positive events to [𝐸Yj, 𝐸\j, . . . , 𝐸lj] into the bin 
with the corresponding range of ranks and adds the number of positive cases into 
[𝑂Yj, 𝑂\j, . . . , 𝑂lj]. The first site sends the vectors to the next site. The next site adds 
the estimates and number of positive cases to the corresponding vector, then sends 
the vector onto the next site, and so on. The last site sends the vectors to the central 
server. 

 
5. The central server subtracts the random numbers from the two vectors. These 

aggregate values are used to calculate the ECE and the MCE. 
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Figure 4.10 Distributed Calibration Measurements 
For calculation of distributed calibration measurements of ECE, MCE, H-L C Test, and the H-L H 
tests, (a) the central server sends random vectors to the first sites. The first site adds estimates, 
the number of positive cases, and the number of negative cases to the corresponding vectors. 
The first site then sends the vectors to the next site, and so on. After the last site has added its 
values, (b) is the resulting vectors, then the vectors are sent to the central server. The central 
server subtracts the random vectors from (a), resulting in (c), which the central server can use 
to calculate the ECE, MCE, H-L C Test, and H-L H Test.  
 

4.9 Federated Calibration Model Experiments 

 Simulated and clinical data were used to validate the federated smooth isotonic 

regression model. To construct artificial data, 23 artificial features were constructed with 20 

binary and 3 continuous independent variables, as in Chapter 3, Section 3.4. A uniform 

distribution was then used to determine the dependent variable. A total of 5,000 instances were 
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generated. To assess the usefulness and robustness of the federated calibration model, all data 

were separated into local sites. Artificial data were randomly divided into 6 sites. 

For clinical data, I used the National Inpatient Sample (NIS), where six medical systems 

contributed a total of 17,184 instances. Thirty-eight features were selected, including age, sex, 

race, admission month, elective or non-elective admission, expected primary payer, median 

household income quartile range, and presence or absence of 30 chronic conditions. I predicted 

all-cause mortality, which occurred for 1.64% of the observations.  

The second clinical data set was from the American College of Surgeons National Surgical 

Quality Improvement Program (ACS NSQIP), specifically focused on colectomy surgeries. I used 

35,362 instances and 140 features, including preoperative features and features related to the 

surgery. They included demographics, preoperative lab values, pre-existing conditions, 

concurrent procedures, etc.  The dependent variable was readmission within 30 days, which 

occurred for 5.18% of the observations. The instances from ACS NSQIP were divided according 

to the top 6 operative approaches: Open (planned), Laparoscopic, Laparoscopic with assistance, 

Laparoscopic with unplanned conversion to open, Robotic, and Robotic with assistance assist.  

Classifiers for each dataset were built using logistic regression. I applied a federated 

classifier, GLORE,18 to obtain estimates for each local site. Fifty percent of each site’s data was 

used to train a classifier (Training Set Part 1), 25% was used to train a calibration model (Training 

Set Part 2), and 25% was used to measure calibration (Test Set). Ten-fold cross-validation was 

performed. Four different calibration models were trained for comparison:  

1) No Calibration Model.  
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2) Benchmark: Build a calibration model assuming all the data from all the local sites are 

in a central server (global calibration model). This calibration model is applied to all test sets.  

3) Local Calibration Model: Each local site builds its own calibration model using only its 

own data and applies it to its own estimates.  

4) New Calibration Model: Build a calibration model in a federated manner (federated 

calibration model) then apply to all test sets.  

All of the calibrations were measured in a federated manner using the federated H-L test 

(C and H versions), ECE, and MCE shown in the previous Sections. 

The results for the simulated dataset, NIS mortality dataset, and ACS NSQIP colectomy 

dataset are shown in Tables 4.1, 4.2, and 4.3, respectively. These tables show one representative 

example for the H-L test, ECE, MCE. As expected, AUROCs did not change with the application of 

calibration models that used all data, since the monotonic transformations did not change the 

order of the estimates, as explained in Chapter 3. The AUROCs changed slightly with the use of 

local calibration models because the breakpoints for the local SIR were different from the global, 

federated one. Comparing Experiments 1, 2, and 4, global and federated calibration models 

lowered the H-L C statistics, H-L H statistics, MCE and ECE in the clinical datasets, while worsening 

(i.e., increasing) the H-L C statistics and H-L H statistics of the simulated data slightly, but not 

enough to reject the null hypothesis of the H-L test. The MCE and ECE did not change significantly 

in Experiments 1, 2, and 4 in the simulated data. Experiment 3 shows that, if each local site builds 

its own calibration model with local data and applies to its estimates, the results are not properly 

calibrated, increasing H-L C statistics, H-L H statistics, MCE and ECE. The federated calibration 

model helped improve calibration in this case.  
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Table 4.1 Results for the Simulated Dataset. 

  No 
Calibration 
Model 

Benchmark Local 
Calibration 
Model 

Federated 
Calibration Model 

AUROC 0.871 0.871 0.853 0.871 

H-L C Statistics 
(p-value) 

20.456 
(0.084) 

6.438 
(0.892) 

1046.948 
(<1e-22) 

6.438 
(0.892) 

H-L H Statistics 
(p-value) 

16.577 
(0.166) 

3.830 
(0.975) 

34.307 
(0.001) 

3.830 
(0.975) 

ECE 0.143 0.090 0.132 0.090 

MCE 0.268 0.264 0.269 0.264 

 
 
Table 4.2 Results for the NIS Mortality Dataset. 

  No 
Calibration 
Model 

Benchmark Local 
Calibration 
Model 

Federated 
Calibration 
Model 

AUROC 0.862 0.862 0.837 0.862 

H-L C Statistics 
(p-value) 

27.875 
(0.143) 

18.566 
(0.885) 

34.383 
(0.023) 

18.566 
(0.885) 

H-L H Statistics 
(p-value) 

36.108 
(0.014) 

18.347 
(0.191) 

92.697 
(5.505e-11) 

18.347 
(0.191) 

ECE 0.304 0.195 0.298 0.195 

MCE 0.838 0.576 0.973 0.576 
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Table 4.3 Results for the ACS NSQIP colectomy Readmission Data set. 

  No 
Calibration 
Model 

Centralized 
Calibration Model 

Local 
Calibration 
Model 

Federated 
Calibration Model 

AUROC 0.674 0.674 0.682 0.674 

H-L C Statistics 
(p-value) 

472.588 
(0.308) 

445.848 
(0.649) 

524.833 
(0.016) 

445.848 
(0.649) 

H-L H Statistics 
(p-value) 

9334.108 
(<1e-22) 

182.842 
(0.220) 

1746.332 
(<1e-22) 

182.842 
(0.220) 

ECE 0.197 0.138 0.192 0.138 

MCE 0.766 0.668 0.767 0.668 

 

4.10 Discussion 

A smooth isotonic regression model can be built in a federated manner. The method I 

developed used peer-to-peer aggregation of intermediary results to first sort the estimates and 

then derive the smooth isotonic regression function. The results show that a calibration model 

built with local data may not be enough to improve calibration. Leveraging data in a federated 

manner such that no private data are revealed is very important to medical systems that desire 

to collaborate but are reluctant to share individual-level data. Sharing intermediary results is less 

risky but not completely guaranteed to protect privacy, particularly in rare cases, therefore 

additional studies of privacy risks involving the intermediary aggregations are still necessary.  

The current algorithms can safeguard against semi-honest adversaries (i.e., they are 

honest but ‘curious’), but not against malicious adversaries. The participants of the distributed 

calibration model building process need to follow the prescribed protocol of the algorithm in 
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order for the model to be built correctly. A malicious adversary, on the other hand, can disrupt 

the entire process. In terms of data privacy, no observation-level data are leaked to semi-honest 

participants. However, if more than one participating member is malicious, it is possible to 

collude and potentially gain some information about other participating members. No safeguard 

is in place to combat malicious adversaries. Even if all participants are just semi-honest 

adversaries, the federated sorting algorithm requires more than two participating members in 

order for data to remain private. Because the Counting Sort Matrix is distributed to all sites, if 

there are only two sites and if a site subtracts the counts of its own digits from the Counting Sort 

Matrix, the other site’s counts would be revealed. In order to protect the count of the digits, the 

central server can inject random numbers to create an artificial third site or each local site can 

create artificial instances. However, to properly account for these random numbers in the final 

SIR, more research is required. 

I showed here that a calibration model built in a federated manner produced the same 

results as a calibration model built from centralized data. Such a method is important to curtail 

the difficulties in model building due to the lack of data interoperability in healthcare. It provides 

researchers who may have too few instances with a reliable method to construct calibration 

models, avoiding bias and noise with the help of a large sample of data in a privacy-preserving 

manner.   

Chapter 4, in part, is in preparation for submission as Isotonic Regression Calibration 

through a Federated Network of Private Localized Patient Data. Huang, Yingxiang; Gabriel, 

Rodney; Jiang, Xiaoqian; Ohno-Machado, Lucila, 2020. The dissertation author was the primary 

investigator and author of this paper.  
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5. Final Remarks 

Data sharing has been a big challenge in biomedical informatics due to privacy or other 

concerns. Patient data privacy is an important issue since the leakage of sensitive material could 

lead to social and economical damage. In order to protect data privacy, patient data are generally 

protected in localized silos, which makes consolidation of data from different medical systems 

difficult. However, in order to build predictive models, a large sample size is often needed.  

I described innovative methods to (1) build federated predictive models using contextual 

embeddings, (2) measure calibration in a federated manner, and (3) build calibration models in 

a federated manner. Contextual embedding models have demonstrated a very strong 

representative capability to describe medical concepts (and their context), and they have shown 

promise as an alternative way to support deep learning applications without the need to disclose 

original data. However, contextual embedding models acquired from individual medical systems 

cannot be directly combined because their embedding spaces are different and naive pooling 

renders combined embeddings useless. I presented a novel approach to address these issues to 

promote sharing representations without sharing individual-level data. I built a global model 

from representations learned from local private data without sacrificing privacy and synchronize 

information from multiple sources.  

The proposed method harmonizes different local contextual embeddings into a global 

model. I used a popular NLP tool to generate contextual embeddings from each source and the 

Procrustes method to fuse different vector models into one common space by using a list of 

corresponding pairs as anchor points. With harmonized embeddings, I made predictions based on 

cosine similarity to a diagnosis vector.  
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I used sequential medical events extracted from the MIMIC-III database to evaluate the 

proposed methods in predicting the next likely diagnosis of a new patient using structured data 

and unstructured data. Under different experimental scenarios, I confirmed that the global model 

built from harmonized local representation models achieved more accurate predictions than local 

models. Such an aggregation of local models using our unique representation harmonization can 

serve as a proxy for a global model, combining information from a wide range of institutions and 

information sources to generate diagnosis vectors. It allows information unique to a certain 

medical system to become available to other sites, in an aggregate fashion. 

In addition to building models in a federated manner, it is also important to evaluate them 

this way. While measuring discrimination in a federated manner has previously been 

described,18,108 measuring calibration this way has not been previously described. Measuring 

calibration is paramount, especially in the field of biomedical informatics. Existing calibration 

models have been shown to improve calibration. Such models are often post-processing models 

where estimates produced by a predictive model and the true outcomes are used to build 

calibration models. However, the constraint of building models locally limits the degree of 

calibration improvement. I used a Secure Multiparty Computation (SMC) method to build a global 

isotonic regression calibration model using data from different medical systems without sharing 

individual-level data. To show that the federated model could outperform local models, I also 

proposed measuring calibration in such a federated manner.  

With the help of a central server that does not contribute any private data nor sees data 

from the sites, I first sorted the estimates produced by a predictive model without sharing the 

actual estimates. The sorted estimates were useful in both building calibration models and 
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measuring calibration in a federated manner. To train an isotonic regression model in a federated 

manner, I found that the breakpoints at which each step of the isotonic regression function can 

be determined by a combination of adding random numbers and sharing partial results from each 

local site with the central server. I conducted experiments on both simulated and clinical data 

and compared the calibration from a centralized isotonic regression and from federated Isotonic 

regression. The results are essentially the same, but privacy protection comes at the expense of 

computational efficiency.  

Valuable models have been built from large multi-institutional studies, but such 

collaborations take considerable effort to establish due to the concerns over patient and 

institutional privacy. Federated learning allows for aggregation of knowledge, while alleviating 

some concerns on privacy by keeping medical system data in their respective sites as much as 

possible. With the possibility of building both classifier and calibration models in a federated 

manner, I can expect model building and evaluation to occur without sharing of sensitive 

information. Continued development in federated learning models and their evaluations will 

encourage more collaborations between institutions, fostering an environment for new 

discoveries from big data that otherwise would not be possible using only localized data. 

Finally, the novel solutions I developed and describe here do not limit themselves to 

applications in healthcare, although they were inspired by real scenarios of clinical data research 

networks that cannot share individual-level data but still want to collaborate in research. For 

example, networks such as pSCANNER114 and many networks based on i2b2 software115 operate 

under these circumstances. It is possible to envision equivalent situations in other fields. The 

solutions I developed could be used for applications in finance, marketing, and many other areas 
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in which there is a need to use data from multiple institutions or countries to personalize 

predictions, sharing estimates and outcomes is not possible, but it is important to use as much 

data as possible to verify that the predictive models are well calibrated (and consequently try to 

improve calibration if necessary).  
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