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Erman Köken, Sinan Akyürek, Özge Akyürek, Yonatan Vaizman, and Ran Goldblatt

made my transition to San Diego easier. Also, special thanks to my close friends Halime
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ABSTRACT OF THE DISSERTATION

Structured Codes for Network Communication

by

Pinar Sen

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California San Diego, 2020

Professor Young-Han Kim, Chair

Random independently and identically distributed code ensembles play a funda-

mental role in characterizing the limits of communication rates over different network

models, with most existing coding schemes built on them. It has been shown in various

problems, on the other hand, these conventional random coding schemes are outper-

formed by structured ones that are well-suited to the problem of interest, resulting in

strictly better communication rates. This dissertation investigates the benefits of struc-

tured codes for a wider class of network models that can be grouped into two parts. In the

first part, a special code structure that is built on linearity shared by multiple senders is

studied for the two conflicting canonical problems defined over multiple access channels:

xvi



linear computation of codewords and message communication. For linear computation,

the optimal decoding performance of such structured codes is analyzed, which yields

strictly larger rates than random coding. For message communication, it is shown that

the aforementioned family of structured codes can achieve the optimal tradeoff between

communication rates. In the second part, a structured transmission scheme, referred to

as caching, is studied to reduce the network load between a server that stores a set of file

contents and users that request a file from the server. To cope with the unpredictable

nature of file contents and user requests, two new caching problems are formulated. As

an answer to these caching problems, a successive refinement approach is proposed to

store some partial information about file contents in small increments into the memories

of end users. These results motivate further research into the potential of structured

codes in network communication.
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Chapter 1

Introduction

Network communication can be defined as multiple senders trying to convey some

information source to multiple receivers via a transmission medium in a reliable manner.

At each sender, information source is encoded into a sequence, which is transmitted

through the medium. At each receiver, an estimation for the desired sources (or a func-

tion of sources) is computed. The goal of network information theory is to characterize

the optimal tradeoffs among the encoding rates of information sources for arbitrarily

small probability of error in communication. In his ground-breaking paper [1], Shannon

established the fundamental limit of reliable communication between one sender and one

receiver via a probabilistic method by utilizing independent and identically distributed

(i.i.d.) random code ensembles. Following this seminal work, extensive research effort

was put into establishing fundamental limits of network communications for various spe-

cific scenarios, with most existing coding schemes built on random i.i.d. code ensembles;

see, for example, [2–4].

As shown by Körner and Marton [5], on the other hand, for the problem of

encoding a modulo-two sum of distributed dependent binary sources, using the same

random ensemble of linear codes at multiple senders can achieve strictly better rates than

using independently generated ensembles of codes. Building on this observation, Nazer

1



and Gastpar [6] developed a channel coding scheme that uses the same random ensemble

of lattice codes at multiple encoders and showed that this structured coding scheme

outperforms conventional random coding schemes for computing a linear combination of

the sources over a linear multiple access channel (MAC), even for independent sources.

This influential work led to the development of the compute–forward strategy for relay

networks, which, together with the extensions, was shown to provide higher achievable

rates for several communication problems involving relay networks in part.

More recently, nested coset codes [7,8] were proposed as more flexible alternatives

for achieving the desired linear structure at multiple encoders. In particular, Padakandla

and Pradhan [8] developed a fascinating coding scheme for the computation problem

over an arbitrary MAC. Motivated by the physical meaning of compute–forward and

interference alignment, where a linear combination of codewords is to be utilized at

the receiver to cancel out the interferer codewords, Lim, Feng, Pastore, Nazer, and

Gastpar [9, 10] tackled codeword computation and generalized the nested coset codes

constructed with the same generator matrix to asymmetric rate pairs. We referred to

this generalized version as homologous codes [11–14]. This terminology is motivated from

its biological definition, i.e., the structures modified from the same ancestry (underlying

linear code) to adapt to different purposes (desired shape).

In the first part of this dissertation, we study the performance of homologous

codes for different communication scenarios. In Chapter 2, we start with formal defini-

tions of nested coset codes and homologous codes. In Chapter 3, we concentrate on linear

computation problem over a multiple access channel with two sender and one receiver,

in which the receiver wishes to reliably estimate a linear function of transmitted code-

words from the senders. We establish inner and outer bounds on the optimal tradeoff

between the communication rates when encoding is restricted to random ensembles of

homologous codes but when decoding is optimized with respect to the realization of the

encoders. For the special case in which the desired linear combination and the channel

structure are “matched” to the structure of the multiple access channel in a natural
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sense, which is the case in which the benefit of computation can be realized to the fullest

extent as indicated by [15], these inner and outer bounds coincide. Generalizing some

of the techniques, we provide a single-letter outer bound for the capacity region of the

linear computation problem.

Construction of homologous codes has many similarities to Marton’s coding

scheme, one of the fundamental coding schemes in network information theory. Mar-

ton’s coding scheme [16] was proposed to provide an inner bound on the optimal tradeoff

between the communication rates for a two-receiver broadcast channel, which consists

of a sender wishing to convey two separate messages to each receiver reliably. Dated

back to 1979, Marton’s coding scheme is still the best known inner bound for a general

broadcast channel. In Chapter 4, we adapt the proof techniques that we developed for

homologous codes to establish an outer bound on the optimal rate region for broadcast

channels with Marton’s coding scheme. The resulting outer bound coincides with the

inner bound that is achieved by simultaneous nonunique decoding, thus characterizing

the optimal rate region of a two-receiver general broadcast channel achieved by a given

random code ensemble.

Returning back to our discussion on the performance of homologous codes, one

question remains. Can the benefit of computation be realized to the full extent only in

special cases for which desired linear combinations and channel structures are matched,

as implied by [13–15]? In the same vein, for a given code distribution, the aforementioned

rate region achievable by homologous codes for the linear computation in Chapter 3 turns

out to be strictly smaller than the optimal, which is achievable by random i.i.d. codes,

when computation is specialized to communication (i.e., the identity function compu-

tation). In Chapter 5, we analyze the performance of homologous codes for a multiple

access channel, in which the receiver wishes to reliably estimate the transmitted mes-

sages themselves. Starting from a two-sender multiple access channel, we show that

homologous codes can achieve the optimal tradeoff among communication rates by a

careful combination with a channel transformation technique, which allows constructing
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algebraic codes over a larger finite field and mapping them to the channel input alpha-

bet. We then extend this result to multiple access channels with more than two senders

and with one or more receivers as well as their Gaussian counterparts. We finalize our

discussion on homologous codes by constructing an example of a multi-receiver multi-

ple access channel that requires simultaneous communication and computation, which

illustrates the superiority of homologous codes over random i.i.d. codes even in such a

competing scenario.

Coding schemes built on a certain structure benefits another class of network

models as well. Storage networks consists of a server (sender) that stores some file

contents and multiple users (receivers) that request a file from the server. Up on users’

requests, server maps the requested file contents into a sequence and conveys it to the

users via a noiseless link. Due to the ever-growing number of devices in real storage

systems, such networks encounter heavy traffic during peak hours of the day. One

structured scheme to shifting the network traffic to off-peak hours is to cache partial

information about contents on local memories of end users during the off-peak hours for

potential future use. After this cache placement phase, user requests are revealed to the

server, possibly during the peak hours, and the server broadcasts some other information

about the contents. After this content delivery phase, each user recovers its requested

content by combining the new information with its cache.

Recently, coding-theoretic approaches were proposed to develop practical close-

to-optimal codes for cache placement and content delivery. Breaking off from earlier

studies [17,18] that concentrated on optimizing either cache placement or content delivery

while the other is fixed, Maddah-Ali and Niesen [19] brought further structure to a coding

scheme that optimizes both phases, achieving the optimal tradeoff among communication

rates for cache placement and content delivery up to a constant multiplicative factor.

In this pioneering work, each file is split into subfiles, where a set of properly chosen

subfiles is cached at user devices and a set of linearly encoded subfiles is broadcast in

the delivery phase.

4



Taking an information-theoretic approach, Wang, Lim, and Gastpar [20,21] for-

mulated a caching problem for a single user and showed a close connection to the Gray–

Wyner network [22], a well-known distributed source coding problem in network infor-

mation theory. Utilizing this connection, they established a single-letter characterization

of the optimal tradeoff among communication rates for cache placement and average-case

content delivery (for uniformly random requests) as an optimization problem and solved

it explicitly when the cache rate is above a well-defined threshold.

In these existing caching problems and extensive research efforts put into im-

proving the results or extending them to other scenarios, cache placement is completed

in a single step, which falls short of capturing the unpredictable nature of contents and

demands in real networks. In the second part of this dissertation, particularly through

Chapters 7 to 8, we formulate new caching problems to address: 1) contents being sub-

ject to random modifications during the cache placement phase (dynamic contents) and

2) requests arising at any point of time possibly interrupting the cache placement phase

(dynamic requests). To answer these dynamic caching problems, we propose a successive

refinement approach to cache placement.

In Chapter 6, we present a successive version of the Gray–Wyner network (or the

successive Gray–Wyner network in short) and we establish a single-letter characterization

for the optimal rate region of this network. In Chapter 7, we formulate a single-user

caching problem for dynamic contents, in which the cache placement phase consists of

two successive steps and the second step refines the cache content stored in the first step

when the file contents are modified. Taking an information-theoretic approach similar

to [20, 21], we relate this problem to the successive Gray–Wyner network and present

a single-letter characterization of the optimal tradeoff between communication rates for

cache placement and average-case content delivery as an optimization problem. We then

derive an explicit characterization of the optimal tradeoff for certain classes of content

distributions.

In Chapter 8, we formulate a caching problem for dynamic requests, in which
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the cache placement phase consists of an arbitrary number of successive steps and each

step refines the cache content stored in prior steps for possible requests arising at that

moment in time. Taking an information-theoretic approach, we consider a single user and

two time points at which the request can arise, and relate this problem to the successive

Gray–Wyner network. We characterize the optimal tradeoff between communication

rates for cache placement and average-case delivery rates at different request times when

the cache rate is above a well-defined threshold. We also consider a coding-theoretic

version of the problem with an arbitrary number of users and a finite set of time points

at which requests can arise, assuming the class of i.i.d. Bern(1/2) contents. For this

setting, we develop a structured successive caching algorithm that benefits from a linear

encoding in the delivery phase and achieves average-case delivery rates that are uniformly

within a constant multiplicative factor of their respective minima at every request time.

Our algorithm is also uniformly near-optimal when the performance criterion is the

worst-case delivery rates.

Chapter 9 makes concluding remarks and comments on future directions.
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Chapter 2

Homologous Codes

Nested coset codes, recently developed by Padakandla and Pradhan to preserve

the linear structure as well as a desired shape on the codewords, is described. Its con-

struction is based on generating a coset code with a rate higher than the target (message)

rate and selecting a codeword of a desired property (such as type or joint type) from

a subset of codewords (a coset of a subcode). For multiple senders, a family of nested

coset codes that is built on the same linear code and referred to as homologous codes is

described. With its common structure shared among senders, homologous codes will be

the main interest of the subsequent chapters.

2.1 Introduction

Random independently and identically distributed (i.i.d.) code ensembles play

a fundamental role in network information theory, with most existing coding schemes

built on them; see, for example, [1–3]. As shown by Körner and Marton [4] for the

problem of encoding a modulo-two sum of distributed dependent binary sources, using

the same random ensemble of linear codes at multiple encoders can achieve strictly

better rates than using independently generated ensembles of codes. Building on this

observation, Nazer and Gastpar [5] developed a channel coding scheme that uses the same
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random ensemble of lattice codes at multiple encoders and showed that this structured

coding scheme outperforms conventional random coding schemes for computing a linear

combination of the codewords over a linear multiple access channel (MAC), even for

independent sources.

More recently, nested coset codes [6,7] were proposed as more flexible alternatives

for achieving the desired linear structure at multiple encoders. In particular, Padakandla

and Pradhan [7] developed a fascinating coding scheme for the computation problem over

an arbitrary MAC. In this coding scheme, a coset code with a rate higher than the target

(message) rate is first generated randomly. Next, in the shaping step, a codeword of a

desired property (such as type or joint type) is selected from a subset of codewords (a

coset of a subcode). Although reminiscent of the multicoding scheme of Gelfand and

Pinsker [8] for channels with state, and Marton’s coding scheme [9] for broadcast chan-

nels, this construction is more fundamental in some sense, since the scheme is directly

applicable even for classical point-to-point communication channels. A similar shaping

technique was also developed for lattice codes in [10]. For multiple encoders, the desired

common structure is obtained by using coset codes with the same generator matrix.

Recent efforts exploited the benefit of such constructions for a broader class of chan-

nel models, such as interference channels [11, 12], multiple access channels [13, 14], and

multiple access channels with state [15].

Motivated by the physical meaning of compute–forward and interference align-

ment, where a linear combination of codewords is to be utilized at the receiver to cancel

out the interferer codewords, Lim, Feng, Pastore, Nazer, and Gastpar [16, 17] tackled

codeword computation and generalized the nested coset codes constructed with the same

generator matrix to asymmetric rate pairs. We referred to this generalized version, to-

gether with the shaping step, as homologous codes [13, 14, 18, 19]. This terminology

is motivated from its biological definition, i.e., the structures modified from the same

ancestry (underlying linear code) to adapt to different purposes (desired shape).

In the first part of this dissertation, particularly in Chapters 3 and 5, we will study
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the performance of homologous codes for computing a linear combination of codewords

and for communicating messages, respectively. As a preliminary step, in this chapter,

we describe homologous codes in details starting from nested coset codes.

We adapt the notation in [1, 2]. The set of integers {1, 2, . . . , n} is denoted by

[n]. For a length-n sequence (vector) xn = (x1, x2, . . . , xn) ∈ X n, we define its type

as π(x|xn) = |{i : xi = x}|/n for x ∈ X . Upper case letters X,Y, . . . denote random

variables. For ǫ ∈ (0, 1), we define the ǫ-typical set of length-n sequences (or the typical

set in short) as T (n)
ǫ (X) = {xn : |p(x)− π(x|xn)| ≤ ǫp(x), x ∈ X}.

2.2 For Point-to-point Channels

For the ease of exposition, we start with a discrete memoryless channel, i.e., k = 1.

For the discrete memoryless channel p(y|x), shaping of the channel input distributions

via nested coset codes was first proposed in [6] and later appeared in [16,20]. Following

a similar notation to these studies, the nested coset codes can be defined as follows.

Definition 2.2.1 (Nested coset codes). An (n, nR, nR̂,Fq) nested coset code consists of

a message set FnR
q , a generator matrix G ∈ F

n(R+R̂)×n
q , a coset sequence dn, a shaping

function s : FnR
q → FnR̂

q , an encoder that assigns a codeword to each message according

to the steps below.

1. For each m ∈ FnR
q and l ∈ FnR̂

q , compute

un(m, l) = [m l] G⊕ dn. (2.1)

2. For each message m ∈ FnR
q , choose xn(m) = un(m, s(m)) as the assigned codeword,

where s(m) is the specified shaping function.

Remark 2.2.1. An (n, nR,Fq) coset code is a special case of an (n, nR, nR̂,Fq) nested

coset code with R̂ = 0 (no shaping). Specializing further, we can view an (n, nR,Fq)

linear code as an (n, nR,Fq) coset code with dn = 0.
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The encoding steps of nested coset codes can be interpreted as follows. In Step

1), an (n, n(R+ R̂),Fq) coset code, C1, of rate R+ R̂ that is larger than the target rate

R is created using a generator matrix G, which includes an (n, nR,Fq) coset code, C2,

generated by the first nR rows of G, as a subcode. Thus, these two coset codes are

nested, i.e., C2 ⊆ C1. The intentional redundancy in the size of the code C1 then allows

selecting a subset with the desired properties induced by the shaping function in step 2).

By the nested construction of C2 ⊆ C1, any selected codeword in C1 will be in a coset of

C2.

We now continue with a formal description of a random ensemble of nested

coset codes that are constructed via a random generator matrix G and a random coset

sequence Dn to emulate the behavior of a random (nonlinear) code ensemble drawn

from a specified probability mass function (pmf) p(x) on Fq [20]. For ǫ ∈ (0, 1), we

define the ǫ-typical set of length-n sequences (or the typical set in short) as T (n)
ǫ (X) =

{xn : |p(x)−π(x|xn)| ≤ ǫp(x), x ∈ X}, where type of sequence xn, π(x|xn), is defined as

π(x|xn) := |{i : xi = x}|/n for x ∈ X .

Definition 2.2.2 (Random nested coset codes). Given a pmf p(x) on Fq and ǫ > 0,

an (n, nR, nR̂,Fq; p(x), ǫ) random nested coset code ensemble consists of a message set

FnR
q , a random generator matrix G ∈ F

(nR+nR̂)×n
q and a random coset sequence Dn with

entries i.i.d. Unif(Fq), an encoder that assigns a codeword to each message m ∈ FnR
q

according to the steps below.

1. Given the realizations G, and dn, compute un(m, l) for each m ∈ FnR
q and l ∈ FnR̂

q

by (2.1).

2. For each message m ∈ FnR
q , choose an l ∈ FnR̂

q such that un(m, l) ∈ T (n)
ǫ (X). If

there are more than one such l, choose one of them at random; if there is none,

choose one in FnR̂
q .1 For the chosen l, Let xn(m) = un(m, l) be the assigned

codeword for message m.
1This specific shaping function is referred to as the joint typicality encoding in [20]; see [10] for a

similar technique in the context of lattice-based source coding.
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Remark 2.2.2. Encoding error is defined as the event of

E = {Un(M, l) /∈ T (n)
ǫ (X) for every l ∈ F

nR̂
q }.

When the message is uniformly i.i.d. over its alphabet, the probability P(E) tends to zero

as n→∞ if

R̂ ≥ D(pX | |Unif(Fq)) + δ(ǫ),

for some 0 < δ(ǫ) < ǫ, where D(p(x)||q(x)) denotes the KL-divergence

D(p(x)| |q(x)) := EX∼p(x)

[

log
p(X)

q(X)

]

.

Intuitively, the redundancy in the auxiliary codeword generation in step 1), the amount

of which is determined by R̂, provides the existence of a codeword within the typical set

T (n)
ǫ (X) with high probability.

Similar to the deterministic setting, we can also consider random coset codes and

random linear codes.

Remark 2.2.3. An (n, nR,Fq) random coset code ensemble is a special case of an

(n, nR, nR̂,Fq; p(x), ǫ) random nested coset code ensemble with R̂ = 0, p(x) = Unif(Fq)

and ǫ = 0. Specializing further, we can view an (n, nR,Fq) random linear code ensemble

as an (n, nR,Fq) random coset code ensemble with Dn = 0.

As shown in [16,20], random nested coset code ensembles can achieve the capacity

of a discrete memoryless channel p(y|x). When the input alphabet X is not isomorphic

to a finite field, the channel can be transformed into a virtual channel p(y|v) with equal

capacity via an appropriately chosen auxiliary input V and symbol-by-symbol mapping

X = ϕ(V ). This result can be extended to the Gaussian channel [16] (via a quantization

argument) to be discussed further in Section 5.6.

We next consider nested coset codes that preserve a common structure among

different senders.
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2.3 For Networks with Multiple Senders

Definition 2.3.1 (Homologous codes). An (n, ((nRj , nR̂j) : j ∈ [k]),Fq) homologous

code is a collection of (n, nRj , nR̂j,Fq) nested coset codes, j ∈ [k], and consists of k

message sets F
nRj
q , a common generator matrix G ∈ Fκ×n

q with κ = maxj(nRj + nR̂j),

k coset sequences dnj , k shaping functions sj : F
nRj
q → F

nR̂j
q , k encoders, where encoder

j ∈ [k] assigns a codeword to each message according to the steps below.

1. For each mj ∈ F
nRj
q and lj ∈ F

nR̂j
q , compute2

unj (mj , lj) = [mj lj 0κ−n(Rj+R̂j)
]G⊕ dnj . (2.2)

2. For each message mj ∈ F
nRj
q , choose xnj (mj) = unj (mj , s(mj)) as the assigned

codeword, where sj(mj) is the specified shaping function.

The term “homologous” was first proposed by the well-known biologist Owen [21]

and later adopted by Darwin [22] to characterize the structures that have evolved from

the same ancestor but differ in detail. In biological analogy, even though homologous

codes are constructed from the same generator matrix, the actual “shape” of the codes

can be quite different due to individual shaping functions.

We are particularly interested in the performance of a randomly generated ho-

mologous code ensemble, which is defined as follows.

Definition 2.3.2 (Random homologous codes). Given a pmf p =
∏k

j=1 p(xj) over Fq

and ǫ > 0, an (n, ((nRj , nR̂j) : j ∈ [k]),Fq; p, ǫ) random homologous code ensemble is a

collection of (n, nRj, nR̂j ,Fq; p(xj), ǫ) random nested coset code ensembles, j ∈ [k], and

consists of k message sets F
nRj
q , a common random generator matrix G ∈ Fκ×n

q with

κ = maxj(nRj + nR̂j) and k random coset sequences Dn
j with entries i.i.d. Unif(Fq),

k encoders, where encoder j ∈ [k] assigns a codeword to each message according to the

steps below, and a decoder that assigns an estimate to each received sequence yn.

2Zero padding in (2.2) is because nRj + nR̂j may differ for different j.
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1. Given the realizations G, and dn, compute unj (mj, lj) for each mj ∈ F
nRj
q and

lj ∈ F
nR̂j
q by (2.2).

2. For each message mj ∈ F
nRj
q , choose an lj ∈ F

nR̂j
q such that unj (mj , lj) ∈ T (n)

ǫ (Xj).

If there are more than one such lj , choose one of them at random; if there is none,

choose one in F
nR̂j
q . For the chosen lj , Let x

n
j (mj) = unj (mj, lj) be the assigned

codeword for message mj .

Remark 2.3.1. In the construction of homologous codes, the codewords of different

senders are build from the same underlying linear code and thus a linear combination of

codewords is a codeword from a coset of the same underlying linear code. This property

benefits linear computation over multiple access channels to be discussed in Chapter 3,

where decoder wishes to recover a linear combination of codewords.

2.4 Discussion

We have described how to construct random ensembles of homologous codes. The

underlying linearity shared by multiple encoders benefits linear computation problem,

in which a decoder wishes to recover a linear combination of codewords transmitted

from multiple encoders. In the next chapter, we will analyze the optimal performance

of random ensembles of homologous codes for such a linear computation problem when

the decoder applies the optimal maximum likelihood decoding rule.

Acknowledgment

This chapter is, in part, a reprint of the material in the papers: Pinar Sen and

Young-Han Kim, “Homologous Codes for Multiple Access Channels,” in IEEE Transac-

tions on Information Theory, vol. 66, no. 3, pp. 1549-1571, March 2020; and Pinar Sen

and Young-Han Kim, “Homologous Codes for Multiple Access Channels,” Proceedings

of the IEEE International Symposium on Information Theory, Aachen, Germany, June

14



2017. The dissertation author was the primary investigator and author of this paper.

Bibliography

[1] Abbas El Gamal and Young-Han Kim. Network Information Theory. Cambridge
University Press, Cambridge, 2011.

[2] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley,
New York, second edition, 2006.

[3] Gerhard Kramer. Topics in multi-user information theory. Found. Trends Comm.
Inf. Theory, 4(4/5):265–444, 2007.

[4] János Körner and Katalin Marton. How to encode the modulo-two sum of binary
sources. IEEE Trans. Inf. Theory, 25(2):219–221, 1979.

[5] Bobak Nazer and Michael Gastpar. Computation over multiple-access channels.
IEEE Trans. Inf. Theory, 53(10):3498–3516, October 2007.

[6] Shigeki Miyake. Coding theorems for point-to-point communication systems using
sparse matrix codes. PhD thesis, 2010.

[7] A. Padakandla and S. Sandeep Pradhan. Computing sum of sources over an arbi-
trary multiple access channel. In Proc. IEEE Int. Symp. Inf. Theory, pages 2144–
2148, July 2013.

[8] S. I. Gelfand and M. S. Pinsker. Coding for channel with random parameters. Probl.
Control Inf. Theory, 9(1):19–31, 1980.

[9] Katalin Marton. A coding theorem for the discrete memoryless broadcast channel.
IEEE Trans. Inf. Theory, 25(3):306–311, 1979.

[10] T. Gariby and U. Erez. On general lattice quantization noise. In Proc. IEEE Int.
Symp. Inf. Theory, pages 2717–2721, July 2008.

[11] A. Padakandla, A. G. Sahebi, and S. S. Pradhan. A new achievable rate region for
the 3-user discrete memoryless interference channel. In Proc. IEEE Int. Symp. Inf.
Theory, pages 2256–2260, July 2012.

[12] A. Padakandla, A. G. Sahebi, and S. S. Pradhan. An achievable rate region for
the three-user interference channel based on coset codes. IEEE Trans. Inf. Theory,
62(3):1250–1279, March 2016.

[13] P. Sen and Y.-H. Kim. Homologous codes for multiple access channels. In Proc.
IEEE Int. Symp. Inf. Theory, pages 874–878, June 2017.

[14] P. Sen and Y.-H. Kim. Homologous codes for multiple access channels. IEEE Trans.
Inf. Theory, 66(3):1549–1571, 2020.

15



[15] A. Padakandla and S. S. Pradhan. Achievable rate region based on coset codes for
multiple access channel with states. In Proc. IEEE Int. Symp. Inf. Theory, pages
2641–2645, July 2013.

[16] S. H. Lim, C. Feng, A. Pastore, B. Nazer, and M. Gastpar. A joint typicality
approach to compute–forward. IEEE Trans. Inf. Theory, 64(12):7657–7685, Dec
2018.

[17] S. H. Lim, C. Feng, A. Pastore, B. Nazer, and M. Gastpar. Towards an algebraic
network information theory: Simultaneous joint typicality decoding. In Proc. IEEE
Int. Symp. Inf. Theory, pages 1818–1822, June 2017.

[18] P. Sen, S. H. Lim, and Y.-H. Kim. Optimal achievable rates for computation with
random homologous codes. In Proc. IEEE Int. Symp. Inf. Theory, pages 2351–2355,
June 2018.

[19] P. Sen, S. H. Lim, and Y.-H. Kim. On the optimal achievable rates for linear
computation with random homologous codes. accepted to IEEE Trans. Inf. Theory,
2020.

[20] A. Padakandla and S. S. Pradhan. An achievable rate region based on coset codes
for multiple access channel with states. IEEE Trans. Inf. Theory, 63(10):6393–6415,
Oct 2017.

[21] Richard Owen. Lectures on the Compara- tive Anatomy and Physiology of the In-
vertebrate Animals. Longman, Brown, Green, Longmans, London, 1843.

[22] Charles Robert Darwin. On the Origins of Species. John Murray, London, 1859.

16



Chapter 3

Linear Computation Over

Multiple Access Channels with

Homologous Codes

The problem of computing a linear combination of sources over a multiple ac-

cess channel is studied. Inner and outer bounds on the optimal tradeoff between the

communication rates are established when encoding is restricted to random ensembles of

homologous codes, namely, structured nested coset codes from the same generator matrix

and individual shaping functions, but when decoding is optimized with respect to the re-

alization of the encoders. For the special case in which the desired linear combination is

“matched” to the structure of the multiple access channel in a natural sense, these inner

and outer bounds coincide. This result indicates that most, if not all, coding schemes

for computation in the literature that rely on random construction of nested coset codes

cannot be improved by using more powerful decoders, such as the maximum likelihood

decoder. Generalizing some of the techniques, a single letter outer bound for the capac-

ity region of the computation problem is presented and compared with the inner bound

achieved by homologous codes.
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3.1 Formal Statement of the Problem

Consider the two-sender finite-field input memoryless multiple access channel

(MAC)

(X1 × X2, p(y |x1, x2),Y)

in Figure 3.1, which consists of two sender alphabets X1 = X2 = Fq for a finite-

field Fq, a receiver alphabet Y, and a collection of conditional probability distributions

pY |X1,X2
(y|x1, x2). Each sender j = 1, 2 encodes a message Mj ∈ F

nRj
q into a codeword

Encoder 1

Encoder 2

Decoderp (y|x1, x2)
Y n ̂a1X

n
1 ⊕ a2X

n
2

Xn
1

Xn
2

M1 ∈ FnR1
q

M2 ∈ FnR2
q

Figure 3.1. Linear computation over two-sender multiple access channel.

Xn
j = xnj (Mj) ∈ Fn

q and transmits Xn
j over the channel. Message Mj is said to be con-

fusable if xnj (Mj) = xnj (mj) for some mj 6=Mj ∈ F
nRj
q . Here and henceforth, we assume

without loss of generality that nR1 and nR2 are integers. The goal of communication is

to convey a linear combination of the codewords. Hence, the receiver finds an estimate

Ŵ n
a = ŵn

a(Y
n) ∈ Fn

q of

W n
a := a1X

n
1 ⊕ a2Xn

2

for a desired (nonzero) vector a = [a1 a2] over Fq, where the operator ⊕ denotes the q-ary

addition. Formally, an (n, nR1, nR2) computation code for the multiple access channel

consists of two encoders that map xnj (mj), j = 1, 2.

Remark 3.1.1. For simplicity of presentation, we consider the case X1 = X2 = Fq, but

our arguments can be extended to arbitrary X1 and X2 through the channel transformation

technique by Gallager [1, Sec. 6.2]. More specifically, given a pair of symbol-by-symbol

mappings ϕj : Fq → Xj, j = 1, 2, consider the virtual channel with finite field inputs,

p(y|v1, v2) = pY |X1,X2
(y|ϕ1(v1), ϕ2(v2)), for which a computation code is to be defined.

The goal of the communication is to convey Wa := a1V
n
1 ⊕ a2V n

2 , where V n
j = vnj (Mj) ∈
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Fn
q is the virtual codeword mapped to message Mj at sender j = 1, 2. Our results can be

readily applied to this computation problem defined on the virtual channel.

The performance of a given computation code Cn that is paired with a decoding

map ŵn
a(y

n) for a fixed desired vector a is measured by the average probability of error

P (n)
e (Cn) = P(Ŵ n

a 6=W n
a |Cn),

when M1 and M2 are independent and uniformly distributed. A rate pair (R1, R2)

is said to be achievable for a-computation if there exists a sequence of (n, nR1, nR2)

computation codes along with a decoding map ŵn
a(y

n) such that

lim
n→∞

P (n)
e (Cn) = 0

and

lim
n→∞

P(Mj is confusable|Cn) = 0, ∀j ∈ {1, 2} with aj 6= 0. (3.1)

Note that without the condition in (3.1), the problem is trivial and an arbitrarily large

rate pair is achievable.

We concentrate on the random homologous code ensembles described in Defini-

tion 2.3.2 in Chapter 2. Given an input pmf p = p(x1)p(x2) on Fq × Fq and parameter

ǫ > 0, consider an (n, nR1, nR̂1, nR2, nR̂2,Fq; p, ǫ) random homologous code ensemble

with

R̂j = D(pXj | |Unif(Fq)) + ǫ, for j = 1, 2, 1

where D(pX ||Unif(Fq)) denotes the KL-divergence. Since the underlying finite field Fq

and the rates R̂1 and R̂2 are fixed, for the simplicity of the notation, we drop them

throughout this chapter and continue with the term of (n, nR1, nR2; p, ǫ) random ho-

mologous code ensemble. With a slight abuse of terminology, we refer to the random

tuple Cn := (G,Dn
1 ,D

n
2 , (L1(m1) : m1 ∈ FnR1

q ), (L2(m2) : m2 ∈ FnR2
q )) as the random

1Please refer to Remark 2.2.2 in Chapter 2 for the choice of R̂j .
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homologous code. Each realization of the random homologous code results in one in-

stance {(xn1 (m1), x
n
2 (m2)) : (m1,m2) ∈ FnR1

q × FnR2
q } of such generated codewords. A

rate pair (R1, R2) is said to be achievable for a-computation by the (p, ǫ)-distributed ran-

dom homologous code ensemble if there exits a sequence of (n, nR1, nR2; p, ǫ) random

homologous code ensembles along with the optimal decoding map such that

lim
n→∞

ECn [P
(n)
e (Cn)] = 0 (3.2)

and

lim
n→∞

ECn [P(Mj is confusable|Cn)] = 0, ∀j ∈ {1, 2} with aj 6= 0. (3.3)

Here the expectations are with respect to the random homologous code Cn, i.e.,

(G,Dn
1 ,D

n
2 , (L1(m1) : m1 ∈ F

nR1
q ), (L2(m2) : m2 ∈ F

nR2
q )).

Given (p, ǫ,a), let R∗(p, ǫ,a) be the set of all rate pairs achievable for a-computation by

the (p, ǫ)-distributed random homologous code ensemble. Given the input pmf p and the

desired vector a 6= 0 ∈ F2
q, the optimal rate region R∗(p,a), when it exists, is defined as

R
∗(p,a) := cl

[

lim
ǫ→0

R
∗(p, ǫ,a)

]

.

Remark 3.1.2. Given a pmf p(x), its entropy, H(X), is defined by

H(X) := E

[

1

log p(X)

]

.

Instead of (3.3), one may consider alternative notions for the confusability of the trans-

mitted message, such as

lim
n→∞

H(Mj |Xn
j (Mj), Cn)
n

= 0, (3.4)
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or

lim
n→∞

ECn [P(G is rank deficient|Cn)] = 0. (3.5)

It is easy to show that our results for the optimal rate region R∗(p,a) under (3.3) still

apply if we change the confusability notion with (3.4) or (3.5).

3.2 Main Result

In this section, we present a single-letter characterization of the optimal rate

region when the target linear combination is in the following class.

Definition 3.2.1. A linear combination Wa = a1X1 ⊕ a2X2 for some a = [a1 a2] ∈

F2
q \ {0} is said to be natural if

H(Wa |Y ) = min
b6=0

H(Wb |Y ), (3.6)

where b = [b1 b2] and Wb = b1X1 ⊕ b2X2 are over Fq.

In words, a natural combination Wa is the easiest to recover at the receiver

and thus, in some sense, is the best linear combination that is matched to the channel

structure.

We are now ready to present the optimal rate region for computing natural linear

combinations.

Theorem 3.2.1. Given an input pmf p = p(x1)p(x2) and a vector a 6= 0 ∈ F2
q such that

Wa is a natural combination, the optimal rate region R∗(p,a) is the set of rate pairs

(R1, R2) such that

Rj ≤ I(Xj ;Y |Xjc), (3.7a)

Rj ≤ I(X1,X2;Y )−min{Rjc , I(Xjc ;Wa, Y )} (3.7b)
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for every j ∈ {1, 2} with aj 6= 0, where jc = {1, 2} \ {j}.2

The rate region in (3.7) in Theorem 3.2.1, which we will denote as R∗∗(p,a), can

be equivalently characterized in terms of well-known rate regions for compute–forward

and message communication. Let RCF(p,a) be the set of rate pairs (R1, R2) such that

Rj ≤ H(Xj)−H(Wa |Y ), ∀j ∈ {1, 2} with aj 6= 0. (3.8)

Let RMAC(p) be the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y |X2), (3.9)

R2 ≤ I(X2;Y |X1), (3.10)

R1 +R2 ≤ I(X1,X2;Y ). (3.11)

Proposition 3.2.1. For any input pmf p = p(x1)p(x2) and any linear combination Wa,

R
∗∗(p,a) = RCF(p,a) ∪RMAC(p).

The proof of Proposition 3.2.1 is relegated to Appendix 3.A.

We prove Theorem 3.2.1 in three steps: 1) we first present a general (not neces-

sarily for natural combinations) inner bound on the optimal rate region in Section 3.3,

where we follow the results in [2,3] that studied the rate region achievable by random ho-

mologous code ensembles using a suboptimal joint typicality decoding rule, 2) we then

show by Lemma 3.3.1 in Section 3.3 that this inner bound is equivalent to R∗∗(p,a)

in Proposition 3.2.1 if Wa is a natural combination, and 3) we present a general (not

necessarily for natural combinations) outer bound on the optimal rate region in Sec-

tion 3.4 by showing that if a rate pair (R1, R2) is achievable for a-computation by the

(p, ǫ)-distributed random homologous code ensemble for arbitrarily small ǫ, then (R1, R2)

2Mutual information I(X;Y ) := D(p(x, y)||p(x)p(y)) and conditional mutual information
I(X;Y |Z) := EZ [D(p(x, y|z)||p(x|z)p(y|z))], where D(·||·) denotes the KL divergence.
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must lie in R∗∗(p,a) in Theorem 3.2.1.

Remark 3.2.1. Due to the underlying linearity shared between different users’ code, the

computation problem defined in Section 3.1 is closely related to the message computation.

Indeed, one may redefine the computation problem over messages where the goal of trans-

mission is to convey a linear combination a1M1 ⊕ a2M2 of messages for R1 = R2 and

redefine the achievability for a-computation by the (p, ǫ)-distributed random homologous

code ensemble and optimal symmetric rate R∗(p,a) in a similar manner but based on

condition (3.2) only, then R∗(p,a) is equal to the largest symmetric rate satisfying (3.7)

in Theorem 3.2.1. The achievability simply follows from the inner bound in Section 3.3.

To see this, note that a linear combination of codewords is of the form

a1X
n
1 (M1)⊕ a2Xn

2 (M2)

=
(

a1[M1 L1 0κ−n(R1+R̂1)
]⊕ a2[M2 L1 0κ−n(R2+R̂2)

]
)

G⊕ a1Dn
1 ⊕ a2Dn

2 .

Since the generator matrix G is full rank almost surely as n→∞ by Lemma 3.B.1 under

the rate constraints in Theorem 3.2.1,
(

a1[M1 L1 0]⊕a2[M2 L1 0]
)

can be recovered from

a1X
n
1 (M1, L1) ⊕ a2Xn

2 (M2, L2) almost surely. When R1 = R2 = R, the first nR bits of
(

a1[M1 L1 0]⊕a2[M2 L1 0]
)

would give a1M1⊕a2M2 as desired. To prove the optimality,

an outer bound can be obtained by following similar steps with Section 3.4.

3.3 An Inner Bound

The computation performance of random homologous code ensembles was studied

using a suboptimal joint typicality decoder in [2, 3]. For completeness, we first describe

the joint typicality decoding rule and then characterize the rate region achievable for

a-computation by the (p, ǫ)-distributed random homologous code ensemble under this

joint typicality decoding rule. We then concentrate on an arbitrarily small ǫ to provide

an inner bound on the optimal rate region R∗(p,a). We will omit the steps that were
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already established in [2, 3] and instead provide detailed references.

Upon receiving yn, the ǫ′-joint typicality decoder, ǫ′ > 0, looks for a unique

vector s ∈ Fκ
q such that

s = a1[m1 l1 0κ−n(R1+R̂1)
]⊕ a2[m2 l2 0κ−n(R2+R̂2)

],

for some (m1, l1,m2, l2) ∈ FnR1
q × FnR̂1

q × FnR2
q × FnR̂2

q that satisfies

(un1 (m1, l1), u
n
2 (m2, l2), y

n) ∈ T (n)
ǫ′ (X1,X2, Y ),

where unj (mj , lj) = [mj lj 0κ−n(Rj+R̂j)
]G⊕dnj is the auxiliary codeword defined in step 2)

of the code construction in Definition 2.3.2. If the decoder finds such s, then it declares

ŵn
a = sG⊕ a1dn1 ⊕ a2dn2 as an estimate; otherwise, it declares an error.

To describe the performance of the joint typicality decoder, we define RCF(p, δ,a)

for a given input pmf p, δ ≥ 0, and nonzero vector a ∈ F2
q as the set of rate pairs (R1, R2)

such that

Rj ≤ H(Xj)−H(Wa |Y )− δ, ∀j ∈ {1, 2} with aj 6= 0.

Similarly, we define R1(p, δ) as the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y |X2)− δ, (3.12a)

R2 ≤ I(X2;Y |X1)− δ, (3.12b)

R1 +R2 ≤ I(X1,X2;Y )− δ, (3.12c)

R1 ≤ I(X1,X2;Y )−H(X2) + min
b1,b2∈F∗

q

H(Wb |Y )− δ, (3.12d)

and R2(p, δ) as the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y |X2)− δ, (3.13a)

R2 ≤ I(X2;Y |X1)− δ, (3.13b)
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R1 +R2 ≤ I(X1,X2;Y )− δ, (3.13c)

R2 ≤ I(X1,X2;Y )−H(X1) + min
b1,b2∈F∗

q

H(Wb |Y )− δ, (3.13d)

where b = [b1 b2] and Wb = b1X1 ⊕ b2X2 are over Fq. Note that the region RCF(p,a) =

RCF(p, δ = 0,a), as defined in (3.8) in Section 5.3. Similarly, let Rj(p) denote the region

Rj(p, δ = 0) for j = 1, 2 in (3.12) and (3.13).

We are now ready to state the rate region achievable by the random homologous

code ensembles that combines the inner bounds in [3, Theorem 1] and [2, Corollary 1].

Theorem 3.3.1. Let p = p(x1)p(x2) be an input pmf, δ > 0, and a ∈ F2
q be a nonzero

vector. Then, there exists ǫ′ < δ such that for every ǫ < ǫ′ sufficiently small, a rate pair

(R1, R2) ∈ RCF (p, δ,a) ∪R1(p, δ) ∪R2(p, δ) (3.14)

is achievable for a-computation by the (p, ǫ)-distributed random homologous code ensem-

ble along with the ǫ′-joint typicality decoder. In particular,

[RCF (p,a) ∪R1(p) ∪R2(p)] ⊆ R
∗(p,a). (3.15)

Proof. The proof of [3, Theorem 1] analyzes the average probability of error for a-

computation by the (p, ǫ)-distributed random homologous code ensemble paired with

the ǫ′-joint typicality decoder for ǫ′ > ǫ > 0. Two upper bounds on the average proba-

bility of error were given. The first one, direct decoding bound, captures the error event

that incorrect linear combinations are confused with the correct one and shows that for

sufficiently small ǫ < ǫ′ < δ, the average probability of error tends to zero as n→∞ if

(R1, R2) ∈ RCF (p, δ,a). (3.16)

The second one, multiple access bound, captures the error event that incorrect message

pairs (codeword pairs) are confused with the correct one. This bound was later improved
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in the proof of [2, Corollary 1]. The improved version shows that for every a ∈ F2
q, the

average probability of error for a-computation tends to zero as n→∞ if

(R1, R2) ∈ R1(p, δ) ∪R2(p, δ). (3.17)

Combining (3.16) and (3.17) establishes (3.14).

We still need to show that the condition in (3.3) holds. Suppose that aj 6= 0. For

a given code Cn, let Gj denote the submatrix that consists of the first (nRj + nR̂j) rows

of G within Cn and sj(G) be the indicator variable such that sj = 1 if Gj is full rank.

Then,

ECn [P(Mj is confusable|Cn)] =
∑

Cn

P(Cn = Cn)P(Mj is confusable|Cn = Cn)

=
∑

Cn:
sj (G)=0

P(Cn = Cn)P(Mj is confusable|Cn = Cn)

≤
∑

Cn:
sj (G)=0

P(Cn = Cn)

= P(Sj(G) = 0).

Now, by Lemma 3.B.1 in Appendix 3.B (with R ← Rj + R̂j), the term P(Sj(G) = 0)

tends to zero as n→∞ if Rj + R̂j < 1. By definition, R̂j = D(pXj‖Unif(Fq))+ ǫ, which

reduces the constraint to the form of Rj < H(Xj)− ǫ. Since this condition is satisfied if

(3.14) holds, the proof of (3.14) follows.

The proof of (3.15) follows by taking the closure of the union of (3.14) over all

δ > 0, which completes the proof of Theorem 3.2.1.

The inner bound (3.15) in Theorem 3.2.1 is valid for computing an arbitrary linear

combination, which may not be equal to the rate region R∗∗(p,a) in Theorem 3.2.1 for

every a ∈ F2
q, in general. For computing a natural linear combination, however, the

following lemma shows that the equivalent rate region in Proposition 3.2.1 is achievable.
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Lemma 3.3.1. If the desired linear combination Wa = a1X1⊕a2X2 for (a1, a2) 6= (0, 0)

is natural, then

[RCF(p,a) ∪R1(p) ∪R2(p)] = [RCF(p,a) ∪RMAC(p)].

The proof of Lemma 3.3.1 is relegated to Appendix 3.C.

3.4 An Outer Bound

We first present an outer bound on the rate region R∗(p, ǫ,a) for a fixed input

pmf p, ǫ > 0, and nonzero vector a ∈ F2
q. We then discuss the limit of this outer bound

as ǫ → 0 to establish an outer bound on the rate region R∗(p,a). Given an input pmf

p, δ > 0, and nonzero vector a ∈ F2
q, we define the rate region R∗∗(p, δ,a) as the set of

rate pairs (R1, R2) such that

Rj ≤ I(Xj ;Y |Xjc) + δ, (3.18a)

Rj ≤ I(X1,X2;Y )−min{Rjc , I(Xjc ;Wa, Y )}+ δ, (3.18b)

for every j ∈ {1, 2} with aj 6= 0, where jc = {1, 2} \ {j}. Note that R∗∗(p, δ = 0,a) is

equal to R∗∗(p,a) as defined in (3.7).

We are now ready to state the outer bound on the optimal rate region for com-

puting an arbitrary linear combination, which is also an outer bound on R∗(p,a) in

Theorem 3.2.1 for computing a natural combination.

Theorem 3.4.1. Let p = p(x1)p(x2) be an input pmf, ǫ > 0, and a ∈ F2
q be a nonzero

vector. If a rate pair (R1, R2) is achievable for a-computation by the (p, ǫ)-distributed

random homologous code ensemble, then there exists a continuous δ′(ǫ) that tends to zero

monotonically as ǫ→ 0 such that

(R1, R2) ∈ R
∗∗(p, δ′(ǫ),a). (3.19)
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In particular,

R
∗(p,a) ⊆ R

∗∗(p,a). (3.20)

Proof. We first start with an averaged version of Fano’s inequality for a random homol-

ogous code ensemble Cn (recall the notation in Section 3.1).

Lemma 3.4.1. If

lim
n→∞

ECn [P
(n)
e (Cn)] = 0

and

lim
n→∞

ECn [P(Mj is confusable|Cn)] = 0 (3.21)

for every j ∈ {1, 2} with aj 6= 0, then for every j ∈ {1, 2} with aj 6= 0

H(Mj |Y n,Mjc , Cn) ≤ nǫn

for some ǫn → 0 as n→∞.

The proof of Lemma 3.4.1 is relegated to Appendix 3.D.

We next define the indicator random variable

En = 1

{(Xn
1 (M1),Xn

2 (M2))∈T
(n)

ǫ′
(X1,X2)}

(3.22)

for ǫ′ > 0. Since R̂i = D(pXi‖Unif(Fq)) + ǫ, i = 1, 2, by the Markov lemma [3, Lemma

12] for homologous codes, P(En = 0) tends to zero as n → ∞ if ǫ′ is sufficiently large

compared to ǫ. Let ǫ′ = δ1(ǫ), which still tends to zero as ǫ → 0. Suppose that aj 6= 0.

Then, for n sufficiently large,

nRj = H(Mj |Mjc , Cn)
(a)

≤ I(Mj ;Y
n |Mjc , Cn) + nǫn

≤ I(Mj , En;Y
n |Mjc , Cn) + nǫn
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(b)

≤ logq 2 + I(Mj ;Y
n |Mjc , Cn, En) + nǫn

≤ logq 2 + I(Mj ;Y
n |Mjc , Cn, En = 0)P(En = 0)

+ I(Mj ;Y
n |Mjc , Cn, E = 1)P(En = 1) + nǫn (3.23)

≤ logq 2 + nRj P(En = 0) + I(Mj ;Y
n |Mjc , Cn, En = 1) + nǫn

= logq 2 + nRj P(En = 0) +

n
∑

i=1

I(Mj ;Yi |Y i−1,Mjc , Cn,Xjci, En = 1) + nǫn

≤ logq 2 + nRj P(En = 0) +
n
∑

i=1

I(Mj ,Xji, Y
i−1,Mjc , Cn;Yi |Xjci, En = 1) + nǫn

(c)
= logq 2 + nRj P(En = 0) +

n
∑

i=1

I(Xji;Yi |Xjci, En = 1) + nǫn, (3.24)

where (a) follows by Lemma 3.4.1, (b) follows since En is a binary random variable, and

(c) follows since (M1,M2, Y
i−1, Cn, En)→ (X1i,X2i)→ Yi form a Markov chain for every

i ∈ [n]. To further upper bound (3.24), we make a connection between the distribution

of the random homologous code and the input pmf p as follows.

Lemma 3.4.2. Let (X1,X2, Y ) ∼ p(x1)p(x2)p(y|x1, x2) on Fq×Fq×Y and ǫ, ǫ′ > 0. Let

(Xn
1 (m1),X

n
2 (m2)) be the random codeword pair assigned to message pair (m1,m2) ∈

FnR1
q × FnR2

q by an (n, nR1, nR2; p, ǫ) random homologous code ensemble, where p =

p(x1)p(x2) is the input pmf. Further let Y n be a random sequence distributed according

to
∏n

i=1 pY |X1,X2
(yi|x1i, x2i). Then, for every (x1, x2, y) ∈ Fq × Fq × Y and for every

i = 1, 2, . . . , n,

(1− ǫ′)p(x1, x2, y) ≤ P(X1i = x1,X2i = x2, Yi = y |(Xn
1 ,X

n
2 ) ∈ T (n)

ǫ′ (X1,X2))

≤ (1 + ǫ′)p(x1, x2, y).

The proof of Lemma 3.4.2 is relegated to Appendix 3.E.

Back to the proof of Theorem 3.4.1, we are now ready to establish (3.18a). By

Lemma 3.4.2, each term I(Xji;Yi|Xjci, En = 1) is close to I(Xj ;Y |Xjc) upto a function
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of ǫ′ that vanishes as ǫ′ → 0. Therefore, combining (3.24) with Lemma 3.4.2, we have

nRj ≤ logq 2 + nRj P(En = 0) + n(I(Xj ;Y |Xjc) + δ2(ǫ
′)) + nǫn

(d)

≤ n(I(Xj ;Y |Xjc) + δ2(ǫ
′)) + 2nǫn

(e)

≤ n(I(Xj ;Y |Xjc) + δ3(ǫ)) + 2nǫn, (3.25)

where (d) follows since P(En = 0) tends to zero as n→∞ and (e) follows since ǫ′ = δ1(ǫ).

For the proof of (3.18b), we start with

nRj = H(Mj |Mjc , Cn)
(a)

≤ I(Mj ;Y
n |Mjc , Cn) + nǫn

= I(M1,M2;Y
n |Cn)− I(Mjc ;Y

n |Cn) + nǫn, (3.26)

where (a) follows by Lemma 3.4.1. Following arguments similar to (3.25), the first term

in (3.26) can be bounded as

I(M1,M2;Y
n |Cn)

≤ logq 2 + n(R1 +R2)P(En = 0) +

n
∑

i=1

I(M1,M2;Yi |Cn, Y i−1, En = 1)

≤ nǫn +
n
∑

i=1

I(M1,M2, Cn, Y i−1;Yi |En = 1)

= nǫn +

n
∑

i=1

I(M1,M2, Cn, Y i−1,X1i,X2i;Yi |En = 1)

= nǫn +

n
∑

i=1

I(X1i,X2i;Yi |En = 1)

≤ nǫn + n(I(X1,X2;Y ) + δ4(ǫ)). (3.27)

To bound the second term in (3.26), we need the following lemma, which is proved

in Appendix 3.F.
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Lemma 3.4.3. For every ǫ′′ > ǫ′ and for n sufficiently large,

I(Mjc ;Y
n |Cn) ≥ n[min{Rjc , I(Xjc ;Wa, Y )} − δ5(ǫ′′)]− nǫn.

Combining (3.26), (3.27), and Lemma 3.4.3 with ǫ′′ = 2δ1(ǫ), we have

nRj ≤ n(I(X1,X2;Y ) + δ4(ǫ)) − n[min{Rjc , I(Xjc ;Wa, Y )} − δ6(ǫ)] + 2nǫn (3.28)

for n sufficiently large. Letting n→∞ in (3.25) and (3.28) establishes

Rj ≤ I(Xj ;Y |Xjc) + δ3(ǫ),

Rj ≤ I(X1,X2;Y )−min{Rjc , I(Xjc ;Wa, Y )}+ δ7(ǫ).

The proof of (3.19) follows by taking a continuous monotonic function

δ′(ǫ) ≥ max{δ3(ǫ), δ7(ǫ)}

that tends to zero as ǫ→ 0. Letting ǫ→ 0 in (3.19) establishes (3.20), which completes

the proof of Theorem 3.4.1.

The arguments used in the proof of (3.18a) starting from Fano’s inequality can

be generalized for a fixed (n, nR1, nR2) computation code to provide a general outer

bound on the achievable rate pairs for a-computation. It seems, however, difficult to

generalize the arguments used in the proof of (3.18b). In particular, it is unclear whether

Lemma 3.4.3 can be generalized to a fixed computation code. In Section 3.6, we present a

single letter outer bound on the achievable rate pairs for a-computation and compare that

with the inner bound implied by Theorem 3.3.1. Before our discussion on a general outer

bound, we next present the optimal rate region achievable by conventional unstructured

random coding arguments for the linear computation problem.
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3.5 An Achievable Rate Region for Linear Computation

with Conventional Random Codes

We now concentrate on conventional random i.i.d. code ensembles for the linear

computation problem illustrated in Figure 3.1. Given an input pmf p = p(x1)p(x2) on

Fq×Fq, an (n, nR1, nR2; p) random i.i.d. code ensemble consists of two message sets FnR1
q

and FnR2
q , two encoders where encoder j = 1, 2 assigns randomly generated codewords

Xn
j (mj) that are drawn i.i.d. from

∏n
i=1 pXj (xji) to each message mj ∈ F

nRj
q . Similar to

section 3.1, we refer to the random tuple CIIDn := ((X1(m1),X
n
2 (m2)) : m1 ∈ FnR1

q ),m2 ∈

FnR2
q )) as the random i.i.d. code. Each realization of the random i.i.d. code results in

one instance {(xn1 (m1), x
n
2 (m2)) : (m1,m2) ∈ FnR1

q ×FnR2
q } of such generated codewords.

A rate pair (R1, R2) is said to be achievable for a-computation by the p-distributed ran-

dom i.i.d. code ensemble if there exits a sequence of (n, nR1, nR2; p) random i.i.d. code

ensembles along with the optimal decoding map such that

lim
n→∞

ECIID
n

[P (n)
e (CIIDn )] = 0 (3.29)

and

lim
n→∞

ECIID
n

[P(Mj is confusable|CIIDn )] = 0, ∀j ∈ {1, 2} with aj 6= 0. (3.30)

Here the expectations are with respect to the random i.i.d. code CIIDn .

Given a pmf p = p(x1)p(x2) and vector a 6= 0 ∈ F2
q, define the rate region

RTIN(p,a) as the set of rate pairs (R1, R2) such that

Rj ≤ I(Xj ;Y ), ∀j ∈ {1, 2} with aj 6= 0. (3.31)

We are now ready to present an achievable rate region by random i.i.d. code

ensembles, the proof of which simply follows from standard arguments by first estimating
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the message Mj for all j ∈ {1, 2} with aj 6= 0 and then computing the desired linear

combination of codewords.

Proposition 3.5.1 (i.i.d. codes for computation). Given an input pmf p = p(x1)p(x2)

and a vector a 6= 0 ∈ F2
q, a rate pair (R1, R2) is achievable by random i.i.d. code ensem-

bles if

(R1, R2) ∈ [RTIN(p,a) ∪RMAC(p)].

Note that the achievable rate region in Proposition 3.5.1 is included in the optimal

rate region in Theorem 3.2.1 that is achievable by random homologous codes when the

channel is matched to the desired linear combination.

3.6 Discussion on the Capacity Region of the Linear Com-

putation Problem

For the linear computation problem, the outer bound on the optimal rate region

presented in Section 3.4 is valid for any computation, not only for natural computation.

The inner bound presented in Theorem 3.3.1, however, matches with this outer bound

only for natural computation. It is an interesting but difficult problem to characterize

the optimal rate region for an arbitrary linear computation problem. At this point, it is

unclear whether it is the inner or the outer bound that is loose. The extension of the

results in this paper to more than two senders is also a challenging question.

A more fundamental question is to establish a general outer bound on the capacity

region of the linear computation problem. The following presents an outer bound on

the rate pairs (R1, R2) that is achievable for a-computation. The proof is deferred to

Appendix 3.G.

Proposition 3.6.1 (A general outer bound). Given a vector a = [a1 a2] ∈ F2
q with
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a1, a2 6= 0, if a rate pair (R1, R2) is achievable for a-computation, then it must satisfy

R1 ≤ min{I(X1;Y |X2, Q), I(X1,X2;Y |Q)− I(X2;Wa, Y |T,Q)}, (3.32a)

R2 ≤ min{I(X2;Y |X1, Q), I(X1,X2;Y |Q)− I(X1;Wa, Y |T,Q)}, (3.32b)

R1 +R2 ≤ I(X1,X2;Y |Q) + I(X1,X2;Wa, Y |T,Q)

− I(X1;Wa, Y |T,Q)− I(X2;Wa, Y |T,Q), (3.32c)

for some p(q)p(x1|q)p(x2|q)p(t|x1, x2, q) such that

(T,Q)→ (X1,X2)→Wa

and

(T,Q,Wa)→ (X1,X2)→ Y

each form a Markov chain, and

I(X1;Wa, Y |T,Q) + I(X2;Wa, Y |T,Q) ≤ I(X1,X2;Wa, Y |T,Q). (3.33)

Note that (3.33) is equivalent to

I(X1;X2 |T,Q) ≤ I(X1;X2 |Wa, Y, T,Q),

which is a variation of dependence-balance condition reminiscent from two-way chan-

nels [4].

We next take a closer look at the achievability. First, note that by Theorem 3.3.1,

there exists a sequence of (fixed) (n, nR1, nR2) computation codes that have vanishing

error probability and satisfy (3.1) if

(R1, R2) ∈ RCF(p,a) ∪R1(p) ∪R2(p)
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for some input pmf p = p(x1)p(x2). We now convexify this achievable rate region to get

the following general inner bound on the capacity region for a-computation.

Proposition 3.6.2 (A general inner bound). Given a vector a = [a1 a2] ∈ F2
q with

a1, a2 6= 0, a rate pair (R1, R2) is achievable for a-computation if

R1 ≤ min{I(X1;Y |X2, Q), I(X1,X2;Y |Q)− I(X2;Wa, Y |T,Q)}, (3.34a)

R2 ≤ min{I(X2;Y |X1, Q), I(X1,X2;Y |Q)− I(X1;Wa, Y |T,Q)}, (3.34b)

R1 +R2 ≤ I(X1,X2;Y |Q) + I(X1,X2;Wa, Y |T,Q)

− I(X1;Wa, Y |T,Q)− I(X2;Wa, Y |T,Q), (3.34c)

for some p(q)p(x1|q)p(x2|q)p(t|x1, x2, q) such that

T |x1, x2, q ∼











(x1, x2) with probability β

∅ with probability 1− β

for some β ∈ [0, 1].

Proof. Taking the convex hull of the rate region in Theorem 3.3.1, we know that the rate

region

conv





⋃

p=p(x1)p(x2)

[RCF(p,a) ∪R1(p) ∪R2(p)]





= conv





⋃

p=p(x1)p(x2)

conv
[

RCF(p,a) ∪R1(p) ∪R2(p)
]





(a)
= conv





⋃

p=p(x1)p(x2)

conv
[

RCF(p,a) ∪RMAC(p)
]





is achievable, where (a) follows since for every p = p(x1)p(x2), conv
(

R1(p) ∪R2(p)
)

=

RMAC(p). We now prove that this achievable rate region is equivalent to the rate region in

Proposition 3.6.2. Consider a fixed Q = q and let pq := p(x1|q)p(x2|q) and (X1q,X2q) ∼
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pq. It suffices to show that the rate region defined by (3.34) evaluated for Q = q and pq

is equivalent to

conv
[

RCF(pq,a) ∪RMAC(pq)
]

.

To see this, note that when T = (X1q,X2q), the rate region defined by (3.34) reduces

to RMAC(pq). Similarly, when T = ∅, the rate region defined by (3.34) reduces to

RCF(pq,a). In words, the random variable T for different β ∈ [0, 1] values plays the role

of time-sharing between the rate regions RMAC(pq) and RCF(pq,a). Therefore, taking

the union over β ∈ [0, 1] results in conv
[

RCF(pq,a) ∪ RMAC(pq)
]

, which completes the

proof.

3.A Proof of Proposition 3.2.1

Fix pmf p = p(x1)p(x2) and nonzero vector a ∈ F2
q. We first show that

[RCF (p,a) ∪RMAC(p)] ⊆ R
∗(p,a).

Suppose that the rate pair (R1, R2) ∈ RCF (p,a). Then, for every j ∈ {1, 2} with aj 6= 0,

the rate pair (R1, R2) satisfies

Rj ≤ H(Xj)−H(Wa |Y )

≤ H(Xj)−H(Wa |Y,Xjc)

= I(Xj ;Y |Xjc),

and

Rj ≤ H(Xj)−H(Wa |Y )

= I(X1,X2;Y )− I(Xjc ;Wa, Y )

≤ I(X1,X2;Y )−min{Rjc , I(Xjc ;Wa, Y )},
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which implies that (R1, R2) ∈ R∗(p,a). It follows that RCF (p,a) ⊆ R∗(p,a). Similarly,

suppose that the rate pair (R1, R2) ∈ RMAC(p). Then, for every j ∈ {1, 2} with aj 6= 0,

the rate pair (R1, R2) satisfies

Rj ≤ I(Xj ;Y |Xjc),

and

Rj ≤ I(X1,X2;Y )−Rjc

≤ I(X1,X2;Y )−min{Rjc , I(Xjc ;Wa, Y )},

which implies that (R1, R2) ∈ R∗(p,a). Therefore, RMAC(p) ⊆ R∗(p,a).

Next, we show that R∗(p,a) ⊆ [RCF (p,a) ∪ RMAC(p)]. Suppose that the rate

pair (R1, R2) ∈ R∗(p,a) such that Rjc > I(Xjc ;Wa, Y ) for every j ∈ {1, 2} with aj 6= 0.

Then, (R1, R2) satisfies

Rj ≤ I(X1,X2;Y )− I(Xjc ;Wa, Y )

= H(Xj)−H(Wa |Y ),

for every j ∈ {1, 2} with aj 6= 0. Then, (R1, R2) ∈ RCF (p,a). It is easy to see that

the rate pair (R1, R2) ∈ R∗(p,a) that satisfies Rjc ≤ I(Xjc ;Wa, Y ) for some j ∈ {1, 2}

with aj 6= 0, is included in RMAC(p). Thus, R∗(p,a) ⊆ [RCF (p,a) ∪RMAC(p)], which

completes the proof.
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3.B A Lemma on the Rank of a Random Matrix

Lemma 3.B.1. Let G be an nR × n random matrix over Fq with R < 1 where each

element is drawn i.i.d. Unif(Fq). Then,

P(G is not full rank) ≤ q−n(1−R−ǫn),

for some ǫn → 0 as n→∞.

Proof. Probability of choosing nR linearly independent rows can be written as

P(G is full rank) =

∏nR
j=1(q

n − qj−1)

(qn)nR

=
nR
∏

j=1

(1− qj−1−n)

≥ (1− q−n(1−R))nR

(a)

≥ 1− nRq−n(1−R),

where (a) follows by Bernoulli’s inequality for n large enough since R < 1. Using this

relation, we have

P(G is not full rank) = 1− P(G is full rank)

≤ nRq−n(1−R).

Defining ǫn =
logq(nR)

n completes the proof.

3.C Proof of Lemma 3.3.1

Fix pmf p = p(x1)p(x2) and nonzero vector a ∈ F2
q. We will show that if the

condition in (3.6) holds, then RCF (p,a) ∪ R1(p) ∪ R2(p) = RCF (p,a) ∪ RMAC(p). To

start with, note that the rate regions R1(p) and R2(p) have one additional rate constraint
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compared to RMAC(p). Therefore, Rj(p) ⊆ RMAC(p) for j = 1, 2 and it follows that

RCF (p,a)∪R1(p)∪R2(p) ⊆ RCF (p,a)∪RMAC(p) holds in general. Then, it suffices to

show that if the condition in (3.6) holds, then RMAC(p) ⊆ [RCF (p,a) ∪R1(p) ∪R2(p)].

Suppose that the condition in (3.6) is satisfied. Let the rate pair (R1, R2) ∈ RMAC(p) be

such that Rjc > I(Xjc ;Wa, Y ) for every j ∈ {1, 2} with aj 6= 0. Then, (R1, R2) satisfies

Rj ≤ I(X1,X2;Y )− I(Xjc ;Wa, Y )

= H(Xj)−H(Wa |Y ),

for every j ∈ {1, 2} with aj 6= 0, implying that (R1, R2) ∈ RCF (p,a). Now, let the rate

pair (R1, R2) ∈ RMAC(p) be such that Rjc ≤ I(Xjc ;Wa, Y ) for some j ∈ {1, 2} with

aj 6= 0. By condition (3.6), we have

I(Xjc ;Wa, Y ) = I(X1,X2;Y )−H(Xj) +H(Wa |Y )

= I(X1,X2;Y )−H(Xj) + min
b6=0

H(Wb |Y )

≤ I(X1,X2;Y )−H(Xj) + min
b1,b2∈F∗

q

H(Wb |Y ).

Then, the rate pair (R1, R2) ∈ R1(p) ∪R2(p), which completes the proof.

3.D Proof of Lemma 3.4.1

Note that for j = 1, 2,

H(Mj |Y n,Mjc , Cn) = I(Mj ;W
n
a |Y n,Mjc , Cn) +H(Mj |W n

a , Y
n,Mjc , Cn)

≤ H(W n
a |Y n, Cn) +H(Mj |W n

a , Y
n,Mjc , Cn). (3.35)

To bound the first term in (3.35), we need a version of Fano’s inequality for computation.

Lemma 3.D.1. If the average probability of error ECn [P
(n)
e (Cn)] tends to zero as n→∞,
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then

H(W n
a |Y n, Cn) ≤ nǫn

for some ǫn → 0 as n→∞.

Proof. For fixed code Cn = Cn, by Fano’s inequality

H(W n
a |Y n, Cn = Cn) ≤ 1 + nP (n)

e (Cn).

Taking the expectation over the random homologous code Cn, we have

H(W n
a |Y n, Cn) ≤ 1 + nECn [P

(n)
e (Cn)]

(a)

≤ nǫn,

where (a) follows since ECn [P
(n)
e (Cn)] tends to zero as n→∞.

Suppose that aj 6= 0. Define indicator variable θj, j = 1, 2, such that θj = 1 if

Mj is confusable. Combining (3.35) with Lemma 3.D.1, we have

H(Mj |Y n,Mjc , Cn) ≤ nǫn +H(Mj |W n
a , Y

n,Mjc , Cn)
(a)
= nǫn +H(Mj |W n

a ,X
n
jc(Mjc), Y

n,Mjc , Cn)
(b)
= nǫn +H(Mj |W n

a ,X
n
j (Mj),X

n
jc(Mjc), Y

n,Mjc , Cn)

≤ nǫn +H(Mj |Xn
j (Mj), Cn)

≤ nǫn +H(Mj , θj |Xn
j (Mj), Cn)

(c)

≤ nǫn + logq 2 +H(Mj |Xn
j (Mj), Cn, θj)

= nǫn + logq 2 +H(Mj |Xn
j (Mj), Cn, θj = 1)P(θj = 1)

≤ nǫn + logq 2 + nRj P(θj = 1)

(d)

≤ nǫn + logq 2 + nRjǫn

= n(ǫn +
logq 2

n
+Rjǫn),
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where (a) follows since Xn
jc(Mjc) is a function of (Mjc , Cn), (b) follows since Xn

j (Mj) is a

function of (Xn
jc(Mjc),W

n
a ) when aj 6= 0, (c) follows since θj is a binary random variable,

and (d) follows by the assumption in (3.21) in Lemma 3.4.1.

3.E Proof of Lemma 3.4.2

For the simplicity of the exposition without loss of generality, we provide a proof

from a single sender perspective and the memoryless point-to-point channel pY |X(y|x)

with X = Fq. Let ǫ > 0 and p = p(x) be a pmf on Fq. Define an (n, nR; pX , ǫ) random

nested coset code ensemble following steps 1)-3) for a single sender. Let Xn be the

codeword sent through the channel, ǫ′ > 0, i ∈ [n], and (x, y) ∈ Fq ×Y. Then,

P(Xi = x, Yi = y |Xn ∈ T (n)
ǫ′ (X))

= P(Xi = x|Xn ∈ T (n)
ǫ′ (X))P(Yi = y |Xi = x,Xn ∈ T (n)

ǫ′ (X))

= P(Xi = x|Xn ∈ T (n)
ǫ′ (X))pY |X(y |x). (3.36)

We make a connection between the conditional distribution of Xi given {Xn ∈ T (n)
ǫ′ (X)}

and the input pmf p(x). Therefore, we start with exploring the conditional distribution

of Xi given {Xn ∈ T (n)
ǫ′ (X)}.

Lemma 3.E.1. Let p(x) be a pmf on Fq, and ǫ, ǫ
′ > 0. Define T (n)

ǫ′ (X,Θ) as the set of

elements in T (n)
ǫ′ (X) with type Θ. Suppose Xn(m) = Un(m,L(m)) denote the random

codeword assigned to message m by (n, nR; p(x), ǫ) random nested coset code ensemble.

Then,

Un(m,L)|{Un(m,L) ∈ T (n)
ǫ′ (X,Θ)} ∼ Unif(T (n)

ǫ′ (X,Θ)),

for every m ∈ FnR
q .

Proof. Without loss of generality, we drop index m. It suffices to show that the distribu-

tion of Un(L) is permutation invariant. Let un, vn have the same type (typical or not)
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and let vn = σ(un) for some permutation σ. Then, we have

P(Un(L) = un) =
∑

l

∑

G

P(L = l, G = G,Dn = un ⊖ lG)

(a)
=

∑

l

∑

G

P(L = l, G = σ(G),Dn = vn ⊖ lσ(G))

= P(Un(L) = vn),

where σ(G) is the matrix constructed by applying permutation σ to the columns of G

and (a) follows since a permutation applied to a coset code preserves the type of each

codeword.

Building on top of Lemma 3.E.1, we next establish that the conditional distribu-

tion of Xi given {Xn ∈ T (n)
ǫ′ (X)} is close to the input pmf p(x).

Lemma 3.E.2. Let ǫ′ > 0. Define T (n)
ǫ′ (X,Θ) in a similar way to Lemma 3.E.1. Suppose

that the distribution of Xn is uniform within T (n)
ǫ′ (X,Θ), namely,

Xn |{Xn ∈ T (n)
ǫ′ (X,Θ)} ∼ Unif(T (n)

ǫ′ (X,Θ)) (3.37)

for every type Θ such that T (n)
ǫ′ (X,Θ) 6= ∅. Then, conditioned on the typical set, Xi’s

have identical distribution that satisfies

(1− ǫ′)p(x) ≤ P (Xi = x|Xn ∈ T (n)
ǫ′ (X)) ≤ (1 + ǫ′)p(x), ∀x ∈ X .

Proof. Let x ∈ X . For a type Θ, let Θx denote the empirical mode of x within type Θ.

Then, for every type Θ such that T (n)
ǫ′ (X,Θ) 6= ∅, we have

P(Xi = x|Xn ∈ T (n)
ǫ′ (X,Θ)) =

∑

xn∈T
(n)

ǫ′
(X,Θ)

s.t. xi=x

P(Xn = xn |Xn ∈ T (n)
ǫ′ (X,Θ))
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(a)
=

∑

xn∈T
(n)

ǫ′
(X,Θ)

xi=x

1

|T (n)
ǫ′ (X,Θ)|

(b)
= Θx |T (n)

ǫ′ (X,Θ)| 1

|T (n)
ǫ′ (X,Θ)|

= Θx,

where (a) follows since Xn is conditionally uniform over T (n)
ǫ′ (X,Θ), and (b) follows since

T (n)
ǫ′ (X,Θ) is closed under permutation. Combining this observation with the fact that

Θ is the type of a typical sequence, we get

(1− ǫ′)p(x) ≤ P(Xi = x|Xn ∈ T (n)
ǫ′ (X,Θ)) ≤ (1 + ǫ′)p(x), ∀x ∈ X .

Since T (n)
ǫ′ (X) is the disjoint union of T (n)

ǫ′ (X,Θ) over all types, multiplying each side

with P(Xn ∈ T (n)
ǫ′ (X,Θ)) and then summing over Θ gives

(1− ǫ′)p(x)P(Xn ∈ T (n)
ǫ′ (X))

≤ P(Xi = x,Xn ∈ T (n)
ǫ′ (X)) ≤ (1 + ǫ′)p(x)P(Xn ∈ T (n)

ǫ′ (X)),

for all x ∈ X . The claim follows from dividing each side by P(Xn ∈ T (n)
ǫ′ (X)).

Back to the proof of Lemma 3.4.2, we have by Lemma 3.E.1 that the distribution

of Xn (codeword from an (n, nR; p(x), ǫ) random nested coset code ensemble) satisfies

the condition in (3.37) in Lemma 3.E.2. Therefore, combining (3.36) with Lemma 3.E.2

completes the proof.

3.F Proof of Lemma 3.4.3

Let ǫ′′ > ǫ′. Suppose that aj 6= 0, and jc = {1, 2} \ {j}. First, by Lemma 3.D.1,

we have

I(Mjc ;Y
n |Cn) ≥ I(Mjc ;W

n
a , Y

n |Cn)− nǫn.
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Therefore, it suffices to prove that for n sufficiently large,

I(Mjc ;W
n
a , Y

n |Cn) ≥ n[min{Rjc , I(Xjc ;Wa, Y )} − δ5(ǫ′′)− ǫn].

Similar to [5], we will show that given W n
a , Y

n, and Cn, a relatively short list L ⊆ F
nRjc

q

can be constructed that contains Mjc with high probability. Define a random set

L = {m ∈ F
nRjc

q : (Xn
jc(m),W n

a , Y
n) ∈ T (n)

ǫ′′ (Xjc ,Wa, Y )}.

Note that the set L is random with the underlying distribution on (W n
a , Y

n, Cn), which

is induced by drawing a random homologous code Cn and using this code to encode

Xn
1 (M1) and Xn

2 (M2) that lead to W n
a = a1X

n
1 (M1) ⊕ a2Xn

2 (M2) and Y n through the

finite-field input memoryless MAC p(y|x1, x2). We first bound the probability that an

incorrect message is in the random set L. Define two events M1 = {M1 = M2 = 0}

andM2 = {L1(M1) = L2(M2) = 0}. The indicator random variable En is as defined in

(3.22). By the symmetry of the code generation, for every m 6= 0 ∈ F
nRjc

q , we have

P(m⊕Mjc ∈ L, En = 1) = P(m ∈ L, En = 1|M1,M2). (3.38)

To see this, we start with

P(m⊕Mjc ∈ L, En = 1)

= P((Xn
jc(m⊕Mjc),W

n
a , Y

n) ∈ T (n)
ǫ′′ (Xjc ,Wa, Y ), (Xn

1 (M1),X2(M2)) ∈ T (n)
ǫ′ (X1,X2))

=
∑

m1,l1,
m2,l2

∑

G,
dn1 ,dn2

P













(M1,M2) = (m1,m2), (L1(M1), L2(M2)) = (l1, l2), G = G,

Dn
1 = dn1 ,D

n
2 = dn2 , (X

n
jc(m⊕mjc),W

n
a , Y

n) ∈ T (n)
ǫ′′ (Xjc ,Wa, Y ),

(Xn
1 (m1),X

n
2 (m2)) ∈ T (n)

ǫ′ (X1,X2)













=
∑

m1,l1,
m2,l2

∑

G,
dn
1
,dn

2

P(M1 = m1,M2 = m2)P(G = G,Dn
1 = dn1 ,D

n
2 = dn2 )
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P













L1(M1) = l1, L2(M2) = l2,

(Xn
jc(m⊕mjc),W

n
a , Y

n) ∈ T (n)
ǫ′′ (Xjc ,Wa, Y ),

(Xn
1 (m1),X

n
2 (m2)) ∈ T (n)

ǫ′ (X1,X2)

(M1,M2) = (m1,m2),

G = G,

Dn
1 = dn1 ,D

n
2 = dn2













(3.39)

=
∑

m1,l1,
m2,l2

∑

G,
dn1 ,dn2

P(M1 = 0,M2 = 0)P







G = G,Dn
1 = [m1 l1 0]G⊕ dn1 ,

Dn
2 = [m2 l2 0]G⊕ dn2







P













L1(M1) = 0, L2(M1) = 0,

(Xn
jc(m),W n

a , Y
n) ∈ T (n)

ǫ′′ (Xjc ,Wa, Y ),

(Xn
1 (0),X

n
2 (0)) ∈ T

(n)
ǫ′ (X1,X2)

(M1,M2) = (0,0),

G = G,Dn
1 = [m1 l1 0]G ⊕ dn1 ,

Dn
2 = [m2 l2 0]G⊕ dn2













(3.40)

=
∑

m1,l1,
m2,l2

∑

G,
dn
1
,dn

2

P



















(M1,M2) = (0,0), (L1(M1), L2(M2)) = (0,0),

G = G,Dn
1 = [m1 l1 0]G ⊕ dn1 ,Dn

2 = [m2 l2 0]G⊕ dn2 ,

(Xn
jc(m),W n

a , Y
n) ∈ T (n)

ǫ′′ (Xjc ,Wa, Y ),

(Xn
1 (0),X

n
2 (0)) ∈ T

(n)
ǫ′ (X1,X2)



















=
∑

m1,l1,
m2,l2

P







(M1,M2) = (0,0), (L1(M1), L2(M2)) = (0,0),

(Xn
jc(m),W n

a , Y
n) ∈ T (n)

ǫ′′ (Xjc ,Wa, Y ), (Xn
1 (0),X

n
2 (0)) ∈ T

(n)
ǫ′ (X1,X2)







=
∑

m1,l1,
m2,l2

P(M1,M2)P







(Xn
jc(m),W n

a , Y
n) ∈ T (n)

ǫ′′ (Xjc ,Wa, Y ), M1,

(Xn
1 (0),X

n
2 (0)) ∈ T

(n)
ǫ′ (X1,X2) M2







= P((Xn
jc(m),W n

a , Y
n) ∈ T (n)

ǫ′′ (Xjc ,Wa, Y ), (Xn
1 (0),X

n
2 (0)) ∈ T (n)

ǫ′ (X1,X2)|M1,M2),

(3.41)

where (3.39) follows since (M1,M2) is independent from (G,Dn
1 ,D

n
2 ), (3.40) follows since

(M1,M2) is uniformly distributed and

(G,Dn
1 ,D

n
2 )

d
= (G, [m1 l1 0]G⊕Dn

1 , [m2 l2 0]G⊕Dn
2 )
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result in two equivalent codes (i.e., the same set of codewords with permuted mappings

from messages to codewords), and (3.41) follows by the fact proved in [3, Lemma 11]

that (M1, L1,M2, L2) is uniformly distributed over its support.

To bound the probability in (3.38), we continue from (3.41) as follows.

P(m ∈ L, En = 1|M1,M2)

= P((Xn
jc(m),W n

a , Y
n) ∈ T (n)

ǫ′′ (Xjc ,Wa, Y )(Xn
1 (0),X2(0)) ∈ T (n)

ǫ′ (X1,X2)|M1,M2)

≤ P







(Un
jc(m, l),W

n
a , Y

n) ∈ T (n)
ǫ′′ (Xjc ,Wa, Y ) for some l ∈ F

nR̂jc

q , M1,

(Un
1 (0,0), U2(0,0)) ∈ T (n)

ǫ′ (X1,X2) M2







(a)

≤ P







(Un
jc(m, l),W

n
a , Y

n) ∈ T (n)
ǫ′′ (Xjc ,Wa, Y ) for some l ∈ F

nR̂jc

q , M1,

(Un
1 (0,0), U2(0,0)) ∈ T (n)

ǫ′′ (X1,X2) M2







≤
∑

l

P







(Un
jc(m, l),W

n
a , Y

n) ∈ T (n)
ǫ′′ (Xjc ,Wa, Y ), M1,

(Un
1 (0,0), U2(0,0)) ∈ T (n)

ǫ′′ (X1,X2) M2







≤
∑

l

∑

(xn1 ,xn2 )∈

T
(n)

ǫ′′
(X1,X2)

∑

(un,wn,yn)∈

T
(n)

ǫ′′
(Xjc ,Wa,Y )

P







Un
jc(m, l) = un,W n

a = wn, Y n = yn, M1,

Un
1 (0,0) = xn1 , U

n
2 (0,0) = xn2 M2







=
∑

l

∑

(xn
1
,xn

2
)∈

T
(n)

ǫ′′
(X1,X2)

∑

(un,wn,yn)∈

T
(n)

ǫ′′
(Xjc ,Wa,Y )

P







Un
jc(m, l) = un, a1D

n
1 ⊕ a2Dn

2 = wn, M1,

Y n = yn,Dn
1 = xn1 ,D

n
2 = xn2 M2







(b)
=

∑

l

∑

(xn1 ,xn2 )∈

T
(n)

ǫ′′
(X1,X2)

∑

(un,wn,yn)∈

T
(n)

ǫ′′
(Xjc ,Wa,Y )

P













Un
jc(m, l) = un,

a1D
n
1 ⊕ a2Dn

2 = wn,

Dn
1 = xn1 ,D

n
2 = xn2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M1,

M2













p(yn |xn1 , xn2 )

(c)

≤ qn(R̂1+R̂2)
∑

l

∑

(xn1 ,xn2 )∈

T
(n)

ǫ′′
(X1,X2)

∑

(un,wn,yn)∈

T
(n)

ǫ′′
(Xjc ,Wa,Y )

P







Un
jc(m, l) = un, a1D

n
1 ⊕ a2Dn

2 = wn,

Dn
1 = xn1 ,D

n
2 = xn2






p(yn |xn1 , xn2 )

46



= qn(R̂1+R̂2)
∑

l

∑

(xn1 ,xn2 )∈

T
(n)

ǫ′′
(X1,X2)

∑

(un,wn,yn)∈

T
(n)

ǫ′′
(Xjc ,Wa,Y )

P







[m l]G⊕Dn
jc = un,

Dn
1 = xn1 ,D

n
2 = xn2






p(yn |xn1 , xn2 )1{wn=a1xn

1⊕a2xn
2 }

= qn(R̂1+R̂2)
∑

l

∑

(xn
1
,xn

2
)∈

T
(n)

ǫ′′
(X1,X2)

∑

(wn,yn)∈

T
(n)

ǫ′′
(Wa,Y )

∑

un∈

T
(n)

ǫ′′
(Xjc |w

n,yn)

q−3n p(yn |xn1 , xn2 )1{wn=a1xn
1⊕a2xn

2 }

≤ qn(R̂1+R̂2+R̂jc) q−3n qn(H(Xjc |Wa,Y )+H(X1,X2)+δ(ǫ′′))

(d)

≤ q−n(I(Xjc ;Wa,Y )−δ(ǫ′′)−3ǫ),

≤ q−n(I(Xjc ;Wa,Y )−δ5(ǫ′′)),

where (a) follows since ǫ′′ > ǫ′, (b) follows since conditioned on M1 and M2, U
n
jc →

(Dn
1 ,D

n
2 )→ Y n form a Markov chain, (c) follows by [3, Lemma 11] since (G,Dn

1 ,D
n
2 ) is

independent from (M1,M2), and (d) follows by the construction of the random homolo-

gous code Cn with R̂i = D(pXi‖Unif(Fq)) + ǫ. Since P(En = 1) tends to one as n→∞,

for n sufficiently large we have P(En = 1) ≥ q−ǫ. Therefore, for n sufficiently large, the

conditional probability is bounded as follows

P(m⊕Mjc ∈ L|En = 1) =
P(m⊕Mjc ∈ L, En = 1)

P(En = 1)

≤ P(m⊕Mjc ∈ L, En = 1)qǫ.

The expected cardinality of L given {En = 1} is then bounded as

E(|L| |En = 1) ≤ 1 +
∑

m6=0

P(m⊕Mjc ∈ L|En = 1)

≤ 1 + qn(Rjc−I(Xjc ;Wa,Y )+δ5(ǫ′′)+
ǫ
n
) (3.42)

= 1 + qn(Rjc−I(Xjc ;Wa,Y )+δ5(ǫ′′)+ǫn), (3.43)
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for n sufficiently large. Define another indicator random variable Fn = 1{Mjc∈L}. Since

ǫ′′ > ǫ′ and P(En = 1) tends to one as n → ∞, by the conditional typicality lemma

in [6, p. 27], P(Fn = 1) tends to one as n→∞. Then, for n sufficiently large, we have

H(Mjc |Cn,W n
a , Y

n)

= H(Mjc |Cn,W n
a , Y

n, En, Fn) + I(Mjc ;En, Fn |Cn,W n
a , Y

n)

≤ H(Mjc |Cn,W n
a , Y

n, En, Fn) + 2 logq 2

≤ 2 logq 2 + P(Fn = 0)H(Mjc |Cn,W n
a , Y

n, Fn = 0, En)

+ P(Fn = 1)H(Mjc |Cn,W n
a , Y

n, Fn = 1, En)

≤ 2 logq 2 + nRjc P(Fn = 0) +H(Mjc |Cn,W n
a , Y

n, Fn = 1, En). (3.44)

For the last term in (3.44), we use the fact that if Mjc ∈ L, then the conditional

entropy cannot exceed log(|L|):

H(Mjc |Cn,W n
a , Y

n, Fn = 1, En)

(a)
= H(Mjc |Cn,W n

a , Y
n, Fn = 1, En,L, |L|)

≤ H(Mjc |Fn = 1, En,L, |L|)

=

q
nRjc
∑

l=0

P(|L| = l, En = 1)H(Mjc |En = 1, Fn = 1,L, |L| = l)

+

q
nRjc

∑

l=0

P(|L| = l, En = 0)H(Mjc |En = 0, Fn = 1,L, |L| = l)

≤
q
nRjc

∑

l=0

P(|L| = l, En = 1)H(Mjc |En = 1, Fn = 1,L, |L| = l) + P(En = 0)nRjc

≤
q
nRjc

∑

l=0

P(|L| = l, En = 1) logq(l) + nRjc P(En = 0)

≤
q
nRjc

∑

l=0

P(|L| = l|En = 1) logq(l) + nRjc P(En = 0)

= E[logq(|L|)|En = 1] + nRjc P(En = 0)
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(b)

≤ logq(E[|L| |En = 1]) + nRjc P(En = 0)

(c)

≤ logq 2 + max{0, n(Rjc − I(Xjc ;Wa, Y ) + δ5(ǫ
′′) + ǫn)}+ nRjc P(En = 0)

≤ logq 2 + max{0, n(Rjc − I(Xjc ;Wa, Y ))}+ nδ5(ǫ
′′) + nǫn + nRjc P(En = 0)

where (a) follows since the set L and its cardinality |L| are functions of (Cn,W n
a , Y

n), (b)

follows by Jensen’s inequality, and (c) follows by (3.43) and the soft-max interpretation

of the log-sum-exp function [7, p. 72]. Substituting back gives

I(Mjc ;W
n
a , Y

n |Cn)

= H(Mjc |Cn)−H(Mjc |Cn,W n
a , Y

n)

= nRjc −H(Mjc |Cn,W n
a , Y

n)

≥ nRjc − 2 logq 2− nRjc P(Fn = 0)−H(Mjc |Cn,W n
a , Y

n, Fn = 1, En)

≥ nRjc − 3 logq 2− nRjc(P(En = 0) + P(Fn = 0))

−max{0, n(Rjc − I(Xjc ;Wa, Y ))} − nδ5(ǫ′′)− nǫn

= n[min{Rjc , I(Xjc ;Wa, Y )} − δ5(ǫ′′)− ǫn]− 3− nRjc(P(E = 0) + P(F = 0))

(a)
= n[min{Rjc , I(Xjc ;Wa, Y )} − δ5(ǫ′′)− 2ǫn],

where (a) follows for large n since both probabilities P(En = 0) and P(Fn = 0) tend to

zero as n→∞.

3.G Proof of Proposition 3.6.1

We start with another version of Fano’s inequality for computation, similar to

Lemma 3.4.1 but for a fixed code this time.

Lemma 3.G.1. If

lim
n→∞

P (n)
e = 0

49



and

lim
n→∞

P(Mj is confusable) = 0,

for every j ∈ {1, 2} with aj 6= 0, then for every j ∈ {1, 2} with aj 6= 0

H(Mj |Y n,Mjc) ≤ nǫn

for some ǫn → 0 as n→∞.

Proof. First note that for every j ∈ {1, 2}, we have

H(Mj |Y n,Mjc) ≤ H(Mj ,W
n
a |Y n,Mjc)

= H(W n
a |Y n,Mjc) +H(Mj |W n

a , Y
n,Mjc)

(a)

≤ nǫn +H(Mj |W n
a , Y

n,Mjc),

where (a) follows by Fano’s inequality. To bound the second term in (a), let j be such

that aj 6= 0 and let θj be an indicator random variable which is 1 if Mj is confusable.

Then, we get

H(Mj |W n
a , Y

n,Mjc)
(b)
= H(Mj |W n

a , Y
n,Mjc ,X

n
1 ,X

n
2 )

≤ H(Mj |Xn
j )

≤ H(Mj , θj |Xn
j )

(c)

≤ logq 2 +H(Mj |θj,Xn
j )

= logq 2 +H(Mj |θj = 1,Xn
j )P(θj = 1)

≤ logq 2 + nRj P(θj = 1)

(d)

≤ nǫn,

where (b) follows since (Xn
1 ,X

n
2 ) is a function of (Mjc ,W

n
a ) when aj 6= 0, (c) follows

since θj is a binary random variable, and (d) follows since P(θj = 1) tends to zero as
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n→∞.

Suppose now that a rate pair (R1, R2) is achievable. Let j is such that aj 6= 0.

Then,

nRj = H(Mj |Mjc)

(a)

≤ I(Mj ;Y
n |Mjc) + nǫn

=
n
∑

i=1

I(Mj ;Yi |Y i−1,Mjc) + nǫn

=

n
∑

i=1

I(Mj ,Xji;Yi |Y i−1,Mjc ,Xjci) + nǫn

≤
n
∑

i=1

I(Mj , Y
i−1,Mjc ,Xji;Yi |Xjci) + nǫn

(b)
=

n
∑

i=1

I(Xji;Yi |Xjci) + nǫn

(c)
= nI(XjQ;YQ |XjcQ, Q) + nǫn,

where (a) follows by Lemma 3.G.1, (b) follows since (M1,M2, Y
i−1) → (X1i,X2i) → Yi

form a Markov chain, and (c) follows by defining a time sharing random variable Q that

is uniform on [n] and independent from (Xn
1 ,X

n
2 , Y

n).

We can continue from (a) above to provide another bound on nRj as follows.

nRj ≤ I(Mj ;Y
n |Mjc) + nǫn

= I(M1,M2;Y
n)− I(Mjc ;Y

n) + nǫn

(d)

≤ I(M1,M2;Y
n)− I(Mjc ;W

n
a , Y

n) + 2nǫn

=
n
∑

i=1

I(M1,M2;Yi |Y i−1)−
n
∑

i=1

I(Mjc ;Wa,i, Yi |W i−1
a , Y i−1) + 2nǫn

=

n
∑

i=1

I(M1,M2,X1i,X2i;Yi |Y i−1)−
n
∑

i=1

I(Mjc ,Xjci;Wa,i, Yi |W i−1
a , Y i−1) + 2nǫn

(e)
=

n
∑

i=1

I(M1,M2,X1i,X2i;Yi |Y i−1)−
n
∑

i=1

I(Mjc ,Xjci;Wa,i, Yi |Ti) + 2nǫn
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≤
n
∑

i=1

I(M1,M2, Y
i−1,X1i,X2i;Yi)−

n
∑

i=1

I(Xjci;Wa,i, Yi |Ti) + 2nǫn

(f)
=

n
∑

i=1

I(X1i,X2i;Yi)−
n
∑

i=1

I(Xjci;Wa,i, Yi |Ti) + 2nǫn

= n
(

I(X1Q,X2Q;YQ |Q)− I(XjcQ;Wa,Q, YQ |TQ, Q)
)

+ 2nǫn,

where (d) follows by Fano’s inequality, (e) follows by defining Ti := (W i−1
a , Y i−1), and

(f) follows since (M1,M2, Y
i−1) → (X1i,X2i) → Yi form a Markov chain. Note that

Ti → (X1i,X2i)→Wa,i and (Ti,Wa,i)→ (X1i,X2i)→ Yi each form a Markov chain.

We next bound the sum rate using the fact that a1, a2 6= 0 as follows.

n(R1 +R2) = H(M1,M2)

= I(M1,M2;Y
n) +H(M1,M2,W

n
a |Y n)

(g)

≤ I(M1,M2;Y
n) +H(M1,M2 |W n

a , Y
n) + nǫn

= I(M1,M2;Y
n) +H(M1 |W n

a , Y
n) +H(M2 |M1,W

n
a , Y

n) + nǫn

(h)

≤ I(M1,M2;Y
n) +H(M1 |W n

a , Y
n) + 2nǫn

= I(M1,M2;Y
n) +H(M1 |W n

a , Y
n) +H(M2 |W n

a , Y
n)

−H(M1,M2 |W n
a , Y

n) +H(M1 |W n
a , Y

n,M2) + 2nǫn, (3.45)

where (g) follows by Fano’s inequality and (h) follows by Lemma 3.G.1 since a2 6= 0.

Note that since a1 6= 0, by Lemma 3.G.1, we also have

H(M1 |W n
a , Y

n,M2) ≤ nǫn.

Utilizing this observation in (3.45), we continue with

n(R1 +R2)

≤ I(M1,M2;Y
n) +H(M1 |W n

a , Y
n) +H(M2 |W n

a , Y
n)−H(M1,M2 |W n

a , Y
n) + 3nǫn

52



≤ I(M1,M2;Y
n) + I(M1,M2;W

n
a , Y

n)− I(M1;W
n
a , Y

n)− I(M2;W
n
a , Y

n) + 3nǫn

=

n
∑

i=1

I(M1,M2;Yi |Y i−1) +

n
∑

i=1

I(M1,M2;Wa,i, Yi |W i−1
a , Y i−1)

−
n
∑

i=1

I(M1;Wa,i, Yi |W i−1
a , Y i−1)−

n
∑

i=1

I(M2;Wa,i, Yi |W i−1
a , Y i−1) + 3nǫn

=

n
∑

i=1

I(M1,M2,X1i,X2i;Yi |Y i−1) +

n
∑

i=1

I(M1,M2,X1i,X2i;Wa,i, Yi |Ti)

−
n
∑

i=1

I(M1,X1i;Wa,i, Yi |Ti)−
n
∑

i=1

I(M2,X2i;Wa,i, Yi |Ti) + 3nǫn

≤
n
∑

i=1

I(M1,M2, Y
i−1,X1i,X2i;Yi) +

n
∑

i=1

I(M1,M2,X1i,X2i;Wa,i, Yi |Ti)

−
n
∑

i=1

I(X1i;Wa,i, Yi |Ti)−
n
∑

i=1

I(X2i;Wa,i, Yi |Ti) + 3nǫn

(k)
=

n
∑

i=1

I(X1i,X2i;Yi) +

n
∑

i=1

I(X1i,X2i;Wa,i, Yi |Ti)

−
n
∑

i=1

I(X1i;Wa,i, Yi |Ti)−
n
∑

i=1

I(X2i;Wa,i, Yi |Ti) + 3nǫn

= n
(

I(X1Q,X2Q;YQ |Q) + I(X1Q,X2Q;Wa,Q, YQ |TQ, Q)

− I(X1Q;Wa,Q, YQ |TQ, Q)− I(X2Q;Wa,Q, YQ |TQ, Q)
)

+ 3nǫn,

where (k) follows since (M1,M2,W
i−1
a , Y i−1) → (X1i,X2i) → (Wa,i, Yi) form a Markov

chain.

It remains to show the dependence balance condition in (3.33).

0 ≤ I(M1;M2 |W n
a , Y

n)

(a)
= I(M1;M2 |W n

a , Y
n)− I(M1;M2)

= H(M1 |W n
a , Y

n)−H(M1 |M2,W
n
a , Y

n)−H(M1) +H(M1 |M2)

= I(M1;W
n
a , Y

n |M2)− I(M1;W
n
a , Y

n)

=

n
∑

i=1

I(M1;Wa,i, Yi |M2,W
i−1
a , Y i−1)−

n
∑

i=1

I(M1;Wa,i, Yi |W i−1
a , Y i−1)
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=

n
∑

i=1

I(M1,X1i;Wa,i, Yi |M2,X2i,W
i−1
a , Y i−1)−

n
∑

i=1

I(M1,X1i;Wa,i, Yi |W i−1
a , Y i−1)

≤
n
∑

i=1

I(M1,M2,X1i;Wa,i, Yi |X2i,W
i−1
a , Y i−1)−

n
∑

i=1

I(X1i;Wa,i, Yi |W i−1
a , Y i−1)

(b)
=

n
∑

i=1

I(X1i;Wa,i, Yi |X2i,W
i−1
a , Y i−1)−

n
∑

i=1

I(X1i;Wa,i, Yi |W i−1
a , Y i−1)

=

n
∑

i=1

I(X1i;Wa,i, Yi |X2i, Ti)−
n
∑

i=1

I(X1i;Wa,i, Yi |Ti),

= n
(

I(X1Q;Wa,Q, YQ |X2Q, TQ, Q)− I(X1Q;Wa,Q, YQ |TQ, Q)
)

,

where (a) follows since M1 and M2 are independent and (b) follows since

(M1,M2,W
i−1, Y i−1)→ (X1i,X2i)→ (Wi, Yi)

form a Markov chain.

Letting X1 = X1Q,X2 = X2Q,Wa = Wa,Q, Y = YQ, and T = TQ and n → ∞

completes the proof.
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Chapter 4

Optimal Achievable Rates for

Broadcast Channels with Marton

Coding

The techniques developed in Chapter 3 are applied to broadcast channels to es-

tablish the optimal tradeoff between the communication rates when encoding is restricted

to random ensembles of Marton codes. This result indicates that Marton coding scheme,

which was only analyzed along with suboptimal decoders in the literature resulting in

the best known inner bound on the capacity region, cannot be improved by using more

powerful decoders, such as the maximum likelihood decoder.

4.1 Formal Statement of the Problem

Consider the two-receiver discrete memoryless broadcast channel (DM-BC)

(X , p(y1, y2 |x),Y1 × Y2)
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in Fig. 4.1, which consists of one sender alphabet X , two receiver alphabets Y1 and Y2,

and a collection of conditional probability distributions pY1,Y2|X(y1, y2|x).

Decoder 1

Decoder 2

Encoder p (y1, y2|x)

Y n
1

Y n
2

Xn(M1,M2)

M̂1

M̂2

Figure 4.1. Two-receiver broadcast channel.

An (n, nR1, nR2) code for the two-receiver broadcast channel consists of two

message sets1, [2nRj ], j ∈ {1, 2} and an encoder that assigns a codeword xn(m1,m2) ∈ X n

to each message pair (m1,m2) ∈ [2nR1 ] × [2nR2 ]. The performance of a given code that

is paired with two decoders where decoder j ∈ {1, 2} assigns an estimate m̂j to each

received sequence ynj is measured by the probability of error

P (n)
e = P((M̂1, M̂2) 6= (M1,M2)),

where the message pair (M1,M2) is assumed to be independent and uniformly dis-

tributed. A rate pair (R1, R2) is said to be achievable if there exists a sequence of

(n, nR1, nR2) codes for the two-receiver broadcast channel along with two decoders such

that limn→∞ P
(n)
e = 0. The capacity region is defined as the closure of the set of achiev-

able rate tuples.

This problem was first studied by [1–3], where the well-known Marton coding due

to [3] is still the best known inner bound on the capacity region in the literature. Our

main goal in this section is to investigate the optimal tradeoff between the communication

rates when encoding is restricted to random ensembles of Marton codes, which is formally

defined as follows.

Let p = p(u1, u2) be a given pmf on some finite set U1 × U2, and x = x(u1, u2)

be a function from U1 × U2 to X , and let ǫ > 0 and α ∈ [0 1]. The random ensemble of

1Throughout this section, information measures are in log base 2 to follow a similar notation with
the existing literature.
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Marton codes [3] is generated according to the following steps:

1. Let R̂1 = α(I(U1;U2) + 10ǫH(U1, U2)) and R̂2 = α(I(U1;U2) + 10ǫH(U1, U2)),

where α := (1− α).

2. For each m1 ∈ [2nR1 ], generate auxiliary codewords un1 (m1, l1), l1 ∈ [2nR̂1 ], each

drawn i.i.d. from p(u1). Similarly, for each m2 ∈ [2nR2 ], generate auxiliary code-

words un2 (m2, l2), l2 ∈ [2nR̂2 ], each drawn i.i.d. from p(u2).

3. At the sender, for each message pair, (m1,m2) ∈ [2nR1 ]× [2nR2 ], find an index pair

(l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ] such that

(un1 (m1, l1), u
n
2 (m2, l2)) ∈ T (n)

ǫ (U1, U2),

and assign the codeword xn(m1,m2) as xi(m1,m2) = x(u1i(m1, l1), u2i(m2, l2)), i ∈

[n]. If there are more than one such pair of (l1, l2), choose one of them uniformly

at random; otherwise, choose one uniformly at random from [2nR̂1 ]× [2nR̂2 ].

We refer to the random tuple Cn := ((Un
1 (m1, l1) : m1 ∈ [2nR1 ], l1 ∈ [2nR̂1 ]), (Un

2 (m2, l2) :

m2 ∈ [2nR2 ], l2 ∈ [2nR̂2 ]), ((L1, L2, x)(m1,m2) : m1 ∈ [2nR1 ],m2 ∈ [2nR2 ])) as the Marton

random code. Each realization of the Marton random code Cn results in one instance

{xn(m1,m2) : (m1,m2) ∈ [2nR1 ]×[2nR2 ]} of such generated codewords. The random code

ensemble generated in this manner is referred to as an (n, nR1, nR2; p, x, α, ǫ) Marton

random code ensemble, where p = p(u1, u2) is the given pmf, x = x(u1, u2) is the given

function from U1 × U2 to X , α ∈ [0 1] is the parameter used in step (1), and ǫ > 0 is

the parameter used in steps (1) and (3). A rate pair (R1, R2) is said to be achievable

by the (p, x, α, ǫ)-distributed Marton random code ensemble if there exits a sequence of

(n, nR1, nR2; p, x, α, ǫ) Marton random code ensembles along with the optimal decoders

such that

lim
n→∞

ECn [P
(n)
e (Cn)] = 0,

where the expectation is with respect to the Marton random code Cn. Given (p, x, α, ǫ),
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let R∗
BC(p, x, α, ǫ) be the set of all rate pairs achievable by the (p, x, α, ǫ)-distributed

Marton random code ensemble. Given pmf p = p(u1, u2) and function x = x(u1, u2), the

optimal rate region R∗
BC(p, x), when it exists, is defined as

R
∗
BC(p, x) := cl





⋃

α∈[0 1]

lim
ǫ→0

R
∗
BC(p, x, α, ǫ)



 .

4.2 Main Result

In this section, we present a single-letter characterization of the optimal rate

region.

Theorem 4.2.1. Given a pmf p(u1, u2) and a function x = x(u1, u2), the optimal rate

region R∗
BC(p, x) for the broadcast channel p(y1, y2|x) is the closure of the set of rate

pairs (R1, R2) satisfying

R1 ≤ I(U1;Y1, U2)− αI(U1;U2), (4.1a)

R1 ≤ I(U1, U2;Y1)−min{R2; I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)}, (4.1b)

R2 ≤ I(U2;Y2, U1)− αI(U1;U2), (4.1c)

R2 ≤ I(U1, U2;Y2)−min{R1; I(U1;Y2, U2)− αI(U1;U2), I(U1, U2;Y2)}, (4.1d)

for some α ∈ [0 1].

We prove Theorem 4.2.1 by showing that given a pmf p(u1, u2), a function

x(u1, u2), and α ∈ [0 1], the rate region R∗
BC(p, x, α) := cl [limǫ→0 R∗

BC(p, x, α, ǫ)] is

equal to the rate region characterized by (4.1), which we will denote as R∗∗
BC(p, x, α). We

take a two-step approach similar to Sections 3.3 and 3.4, and establish the inner and the

outer bounds on the rate region R∗
BC(p, x, α), respectively.

The inner bound is relegated to Appendix 4.A. For the outer bound, given a

fixed pmf p = p(u1, u2), a function x = x(u1, u2) from U1 × U2 to X , α ∈ [0 1], and
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δ > 0, we define the rate region R∗∗
BC(p, x, α, δ) as the set of rate pairs (R1, R2) such that

R1 ≤ I(U1;Y1, U2)− αI(U1;U2) + δ, (4.2a)

R1 ≤ I(U1, U2;Y1)−min{R2; I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)}+ δ, (4.2b)

R2 ≤ I(U2;Y2, U1)− αI(U1;U2) + δ, (4.2c)

R2 ≤ I(U1, U2;Y2)−min{R1; I(U1;Y2, U2)− αI(U1;U2), I(U1, U2;Y2)}+ δ. (4.2d)

Note that the region R∗∗
BC(p, x, α, δ = 0) is equal to R∗∗

BC(p, x, α) as defined in (4.1).

Proposition 4.2.1. Let p = p(u1, u2) be a pmf, x = x(u1, u2) be a function, α ∈

[0 1], and ǫ > 0. If a rate pair (R1, R2) is achievable by the (p, x, α, ǫ)-distributed

Marton random code ensemble, then there exists a continuous δ′(ǫ) that tends to zero

monotonically as ǫ→ 0 such that

(R1, R2) ∈ R
∗∗
BC(p, x, α, δ

′(ǫ)). (4.3)

In particular,

R
∗
BC(p, x, α) ⊆ R

∗∗
BC(p, x, α). (4.4)

Proof. We first start with an averaged version of Fano’s inequality for a Marton random

code ensemble Cn. Consider a fixed code Cn = Cn. By Fano’s inequality,

H(Mj |Y n
j , Cn = Cn) ≤ 1 + nRjP

(n)
e (Cn) j = 1, 2.

Taking the expectation over Marton random code Cn, it follows that

H(Mj |Y n
j , Cn) ≤ 1 + nRj ECn [P

(n)
e (Cn)] ≤ nǫn, j = 1, 2 (4.5)

for some ǫn → 0 as n→∞ since ECn [P
(n)
e (Cn)]→ 0.
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We next define the indicator random variable

Ẽn = 1

{(Un
1 (M1,L1),Un

2 (M2,L2))∈T
(n)
ǫ (U1,U2)}

. (4.6)

Since R̂1 + R̂2 = I(U1;U2) + 10ǫH(U1, U2), P(Ẽn = 0) tends to zero as n → ∞ by the

mutual covering lemma in [4, p. 208].

We are now ready to establish (4.2a). For n sufficiently large, we have

nR1

= H(M1 |M2, Cn)
(a)

≤ I(M1;Y
n
1 |M2, Cn) + nǫn

≤ I(M1, Ẽn;Y
n
1 |M2, Cn) + nǫn

(b)

≤ 1 + I(M1;Y
n
1 |M2, Cn, Ẽn) + nǫn

≤ 1 + I(M1;Y
n
1 |M2, Cn, Ẽn = 0)P(Ẽn = 0)

+ I(M1;Y
n
1 |M2, Cn, Ẽn = 1)P(Ẽn = 1) + nǫn

≤ 1 + nR1 P(Ẽn = 0) + I(M1;Y
n
1 |M2, Cn, Ẽn = 1) + nǫn

≤ 1 + nR1 P(Ẽn = 0) + I(M1, L2;Y
n
1 |M2, Cn, Ẽn = 1) + nǫn

≤ 1 + nR1 P(Ẽn = 0) + nR̂2 + I(M1;Y
n
1 |M2, L2, Cn, Ẽn = 1) + nǫn

= 1 + nR1 P(Ẽn = 0) + nR̂2 +

n
∑

i=1

I(M1;Y1i |Y i−1
1 ,M2, L2, Cn, U2i, Ẽn = 1) + nǫn

≤ 1 + nR1 P(Ẽn = 0) + nR̂2 +
n
∑

i=1

I(M1, U1i, Y
i−1
1 ,M2, L2, Cn;Y1i |U2i, Ẽn = 1) + nǫn

(c)
= 1 + nR1 P(Ẽn = 0) + nR̂2 +

n
∑

i=1

I(U1i;Y1i |U2i, Ẽn = 1) + nǫn

(d)

≤ 1 + nR1 P(Ẽn = 0) + nR̂2 + n(I(U1;Y1 |U2) + δ1(ǫ)) + nǫn,

≤ 1 + nR1 P(Ẽn = 0) + nα(I(U1;U2) + δ2(ǫ)) + n(I(U1;Y1 |U2) + δ1(ǫ)) + nǫn,

(e)

≤ n(I(U1;Y1, U2)− αI(U1;U2) + δ3(ǫ)) + 2nǫn, (4.7)
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where (a) follows by (the averaged version of) Fano’s inequality in (4.5), (b) follows since

Ẽn is a binary random variable, (c) follows since

(M1,M2, Y
i−1
1 , Cn, Ẽn)→ (U1i, U2i)→ Y1i

form a Markov chain for every i ∈ [n], (d) follows by the memoryless property of the

channel and by Lemma 3.E.2 in Appendix 3.E since the distribution of the pair of

random variables (Un
1 (M1, L1), U

n
2 (M2, L2)) is permutation invariant by construction,

and (e) follows since P(Ẽn = 0) tends to zero as n→∞.

For the proof of (4.2b), we start with

nR1 = H(M1 |M2, Cn)
(a)

≤ I(M1;Y
n
1 |M2, Cn) + nǫn

= I(M1,M2;Y
n
1 |Cn)− I(M2;Y

n
1 |Cn) + nǫn, (4.8)

where (a) follows by (the averaged version of) Fano’s inequality in (4.5). Following

arguments similar to (4.7), the first term in (4.8) can be bounded as

I(M1,M2;Y
n
1 |Cn) ≤ 1 + n(R1 +R2)P(Ẽn = 0) +

n
∑

i=1

I(M1,M2;Y1i |Cn, Y i−1
1 , Ẽn = 1)

≤ nǫn +

n
∑

i=1

I(M1,M2, Cn, Y i−1
1 ;Y1i |Ẽn = 1)

= nǫn +

n
∑

i=1

I(M1,M2, Cn, Y i−1
1 , U1i, U2i;Y1i |Ẽn = 1)

= nǫn +
n
∑

i=1

I(U1i, U2i;Y1i |Ẽn = 1),

≤ nǫn + n(I(U1, U2;Y1) + δ4(ǫ)). (4.9)

For the second term in (4.8), we need the following lemma, which is proved

in Appendix 4.B. This lemma is a version of Lemma 3.4.3 for Marton random code
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ensembles.

Lemma 4.2.1. For every ǫ′ > ǫ and for n sufficiently large,

I(M2;Y
n
1 |Cn) ≥ n[min{R2, I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)} − δ5(ǫ′)]− nǫn.

Combining (4.8), (4.9), and Lemma 4.2.1 with ǫ′ = 2ǫ, we have

nR1

≤ n[I(U1, U2;Y1)−min{R2, I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)}+ δ6(ǫ)] + 2nǫn

(4.10)

for n sufficiently large.

For (4.2c) and (4.2d), we can similarly establish for receiver 2

nR2 ≤ n(I(U2;Y2, U1)− αI(U1;U2) + δ7(ǫ)) + 2nǫn (4.11)

and

nR2

≤ n[I(U1, U2;Y2)−min{R1, I(U1;Y2, U2)− αI(U1;U2), I(U1, U2;Y2)}+ δ8(ǫ)] + 2nǫn

(4.12)

for n sufficiently large. The proof of (4.3) follows by letting n → ∞ in (4.7), (4.10),

(4.11), and (4.12) and taking a continuous monotonic function

δ′(ǫ) ≥ max{δ3(ǫ), δ6(ǫ), δ7(ǫ), δ8(ǫ)}

that tends to zero as ǫ → 0. Letting ǫ → 0 in (4.3) establishes (4.4), which completes

the proof of Proposition 4.2.1.
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Remark 4.2.1. Marton coding we have analyzed involves two codewords. Marton’s

original coding scheme [3] uses rate splitting and superposition coding, and involves an

additional codeword that carries messages for both receivers (see also [4, Proposition

8.1]). Our technique can be similarly adapted to this general version of Marton coding.

4.3 Discussion

In this chapter, we have established a single-letter characterization for the optimal

rate region of broadcast channels when the encoding is restricted to random ensembles of

Marton codes. The results implies that the performance of Marton coding scheme cannot

be improved by using the maximum likelihood decoder. Therefore, the gap between the

achievable rate region of Marton coding scheme and the best known outer bound on

the capacity region of broadcast channels is due to the lack of either a more powerful

encoding scheme or a better outer bound.

4.A Proof of Achievability for Theorem 4.2.1

Let α ∈ [0 1] and ǫ > 0. Consider an (n, nR1, nR2; p, x, α, ǫ) Marton random

code ensemble. We use the nonunique simultaneous joint typicality decoding rule in [5]

to establish the achievability. Let ǫ′ > ǫ. Upon receiving ynj at receiver j = 1, 2, the

ǫ′-joint typicality decoder j looks for a unique mj ∈ [2nRj ] such that

(un1 (m1, l1), u
n
2 (m2, l2), y

n
j ) ∈ T

(n)
ǫ′ (U1, U2, Yj),

for some l1 ∈ [2nR̂1 ], l2 ∈ [2nR̂2 ] and mjc ∈ [2nRjc ], where jc denotes {1, 2} \ j. If the

decoder j = 1, 2 finds such mj, then it declares mj as an estimate; otherwise, it declares

an error.

We analyze the probability of error. It suffices to consider decoder 1, which
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declares an error if one or more of the following events occur

E0 = {(Un
1 (M1, l1), U

n
2 (M2, l2)) /∈ T (n)

ǫ (U1, U2) for every (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]},

E1 = {(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n
1 ) /∈ T (n)

ǫ′ (U1, U2, Y1)},

E2 = {(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y1) for some m1 6=M1,

for some (m2, l1, l2) ∈ [2nR2 ]× [2nR̂1 ]× [2nR̂2 ]}.

By the union of events bound, P
(n)
e (Cn) ≤ P(E0) + P(E1 ∩ Ec0) + P(E2 ∩ Ec0). Since

R̂1 + R̂2 = I(U1;U2) + 10ǫH(U1, U2), by the mutual covering lemma in [4, p. 208],

the probability P(E0) tends to zero as n → ∞. By the conditional typicality lemma

in [4, p. 27], the probability P(E1 ∩ Ec0) tends to zero as n → ∞. The last term can be

bounded by two ways. First, by the symmetric code generation,

P(E2 ∩ Ec0)

≤ P(E2)

= P(E2 |M1 =M2 = 1)

≤ P((Un
1 (m1, l1), Y

n
1 ) ∈ T (n)

ǫ′ (U1, Y1) for some m1 6= 1, for some l1 ∈ [2nR̂1 ]|M1 = 1),

which tends to zero as n→∞ if R1+ R̂1 ≤ I(U1;Y1)−δ(ǫ′) by the packing lemma in [4].

Letting R̂1 = α(I(U1;U2) + 10ǫH(U1, U2)), we have

R1 ≤ max{0, I(U1;Y1)− αI(U1;U2)− 2δ(ǫ′)}. (4.13)

Secondly, we can decompose the event E2 = E21 ∪ E22 such that

E21 = {(Un
1 (m1, l1), U

n
2 (M2, l2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y1) for some m1 6=M1,

for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]},

E22 = {(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y1) for some m1 6=M1,
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for some m2 6=M2, for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]}.

We start with bounding P(E22) as follows:

P(E22)

= P(E22 |M1 =M2 = 1)

= P((Un
1 (m1, l1), U

n
2 (m2, l2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y1) for some m1 6= 1,

for some m2 6= 1, for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]|M1 =M2 = 1)

≤
∑

m1 6=1,
m2 6=2

∑

l1,l2

P((Un
1 (m1, l1), U

n
2 (m2, l2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y1)|M1 =M2 = 1)

≤
∑

m1 6=1,
m2 6=2

∑

l1,l2

∑

(un
1
,un

2
,yn

1
)∈

T
(n)

ǫ′
(U1,U2,Y1)

P(Un
1 (m1, l1) = un1 , U

n
2 (m2, l2) = un2 , Y

n
1 = yn1 |M1 =M2 = 1)

(a)
=

∑

m1 6=1,
m2 6=2

∑

l1,l2

∑

(un1 ,un2 ,yn1 )∈

T
(n)

ǫ′
(U1,U2,Y1)

p(yn1 |M1 =M2 = 1)

n
∏

i=1

pU1(u1i)pU2(u2i)

≤
∑

m1 6=1,
m2 6=2

∑

l1,l2

∑

(un
1
,un

2
,yn

1
)∈

T
(n)

ǫ′
(U1,U2,Y1)

p(yn1 |M1 =M2 = 1)2−n(H(U1)+H(U2)−δ(ǫ′))

≤
∑

m1 6=1,
m2 6=2

∑

l1,l2

2−n(H(U1)+H(U2)−H(U1,U2|Y1)−2δ(ǫ′))

≤ 2n(R1+R2+R̂1+R̂2)2−n(H(U1)+H(U2)−H(U1,U2|Y1)−2δ(ǫ′)),

where (a) follows since given {M1 = M2 = 1}, the pair (Un
1 (m1, l1), U

n
2 (m2, l2)) for

m1 6= 1,m2 6= 1 is i.i.d. with respect to the product pmf p(u1)p(u2) and is independent

from Y n
1 . Substituting R̂1 + R̂2 = I(U1;U2) + 10ǫH(U1, U2), it follows that P(E22) tends

to zero as n→∞ if R1 +R2 ≤ I(U1, U2;Y1)− 3δ(ǫ′).

We next bound the probability P(E21 ∩ Ec0). Define the events M1 := {M1 =
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M2 = 1} andM2 := {L1 = L2 = 1}. By the symmetry of the code generation,

P(E21 ∩ Ec0) = P(E21 ∩ Ec0 |M1,M2). (4.14)

To see this, define the tuple of auxiliary codewords for sender j = 1, 2 as C̃n(j) :=

(Un
j (mj , lj) : mj ∈ [2nRj ], lj ∈ [2nR̂j ]). We first show that (M1,M2, L1, L2) is uniformly

distributed over its support. It suffices to show that for every (m1,m2, l1, l2) ∈ [2nR1 ]×

[2nR2 ]× [2nR̂1 ]× [2nR̂2 ],

P(M1 = m1,M2 = m2, L1 = l1, L2 = l2) = P(M1 = 1,M2 = 1, L1 = 1, L2 = 1).

Fix a tuple (m1,m2, l1, l2) ∈ [2nR1 ]× [2nR2 ]× [2nR̂1 ]× [2nR̂2 ]. Given C̃n(j) = Cj, let σj(Cj)

denote the permuted version of Cj such that

{unj (mj , l
′
j) ∈ Cj : l

′
j ∈ [2nR̂j ]} = {ũnj (1, l′j) ∈ σj(Cj) : l′j ∈ [2nR̂j ]}

and unj (mj, lj) ∈ Cj and ũnj (1, 1) ∈ σj(Cj) satisfy

unj (mj , lj) = ũnj (1, 1).

Then, we have

P(M1 = m1,M2 = m2, L1 = l1, L2 = l2)

=
∑

C1,C2

P(M1 = m1,M2 = m2, L1 = l1, L2 = l2, C̃n(1) = C1, C̃n(2) = C2)

(a)
=

∑

C1,C2

P(M1 = m1,M2 = m2)P(C̃n(1) = C1)P(C̃n(2) = C2)

P(L1 = l1, L2 = l2 |M1 = m1,M2 = m2, C̃n(1) = C1, C̃n(2) = C2)

(b)
=

∑

C1,C2

P(M1 = 1,M2 = 1)P(C̃n(1) = σ1(C1))P(C̃n(2) = σ2(C2))

P(L1 = 1, L2 = 1|M1 = 1,M2 = 1, C̃n(1) = σ1(C1)C̃n(2) = σ2(C2))
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=
∑

C1,C2

P(M1 = 1,M2 = 1, L1 = 1, L2 = 1, C̃n(1) = σ1(C1), C̃n(2) = σ2(C2))

= P(M1 = 1,M2 = 1, L1 = 1, L2 = 1),

where (a) follows since (M1,M2, C̃n(1), C̃n(2)) are independent, (b) follows since (M1,M2)

is uniformly distributed and C̃n(j) d
= σj(C̃n(j)), j = 1, 2.

Following similar arguments, we can now prove the claim in (4.14).

P(E21 ∩ Ec0)

= P((Un
1 (m

′
1, l

′
1), U

n
2 (M2, l

′
2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y1) for some m′
1 6=M1,

for some (l′1, l
′
2) ∈ [2nR̂1 ]× [2nR̂2 ], (Un

1 (M1, L1), U
n
2 (M2, L2)) ∈ T (n)

ǫ (U1, U2))

=
∑

m1,m2,
l1,l2

∑

C1,C2

P



















(Un
1 (m

′
1, l

′
1), U

n
2 (M2, l

′
2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y1)

for some m′
1 6=M1, for some (l′1, l

′
2) ∈ [2nR̂1 ]× [2nR̂2 ],

(Un
1 (M1, L1), U

n
2 (M2, L2)) ∈ T (n)

ǫ (U1, U2),

(M1,M2, L1, L2) = (m1,m2, l1, l2), (C̃n(1), C̃n(2)) = (C1, C2)



















=
∑

m1,m2,
l1,l2

∑

C1,C2

P(M1 = m1,M2 = m2)P
(

(C̃n(1), C̃n(2)) = (C1, C2)
)

P



















(Un
1 (m

′
1, l

′
1), U

n
2 (M2, l

′
2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y1) M1 = m1,

for some m′
1 6=M1, for some (l′1, l

′
2) ∈ [2nR̂1 ]× [2nR̂2 ], M2 = m2,

(Un
1 (M1, L1), U

n
2 (M2, L2)) ∈ T (n)

ǫ (U1, U2), C̃n(1) = C1,

(L1, L2) = (l1, l2)) C̃n(2) = C2



















=
∑

m1,m2,
l1,l2

∑

C1,C2

P(M1 = 1,M2 = 1)P
(

(C̃n(1), C̃n(2)) =
(

σ1(C1), σ2(C2)
)

)

P



















(Un
1 (m

′
1, l

′
1), U

n
2 (M2, l

′
2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y1) M1 = 1,

for some m′
1 6=M1, for some (l′1, l

′
2) ∈ [2nR̂1 ]× [2nR̂2 ], M2 = 1,

(Un
1 (M1, L1), U

n
2 (M2, L2)) ∈ T (n)

ǫ (U1, U2), C̃n(1) = σ1(C1),

(L1, L2) = (1, 1)) C̃n(2) = σ2(C2)


















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=
∑

m1,m2,
l1,l2

∑

C1,C2

P



















(Un
1 (m

′
1, l

′
1), U

n
2 (M2, l

′
2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y1)

for some m′
1 6=M1, for some (l′1, l

′
2) ∈ [2nR̂1 ]× [2nR̂2 ],

(Un
1 (M1, L1), U

n
2 (M2, L2)) ∈ T (n)

ǫ (U1, U2),

(M1,M2, L1, L2) = (1, 1, 1, 1), (C̃n(1), C̃n(2)) =
(

σ1(C1), σ2(C2)
)



















=
∑

m1,m2,
l1,l2

P
(

E21 ∩ Ec0 , (M1,M2, L1, L2) = (1, 1, 1, 1)
)

=
∑

m1,m2,
l1,l2

P
(

(M1,M2, L1, L2) = (1, 1, 1, 1)
)

P
(

E21 ∩ Ec0 |M1,M2

)

(a)
= P

(

E21 ∩ Ec0 |M1,M2

)

,

where (a) follows since (M1,M2, L1, L2) is uniformly distributed.

To bound P(E21 ∩ Ec0), we continue from (4.14) as follows.

P(E21 ∩ Ec0 |M1,M2)

≤
∑

m1 6=1

∑

l1,l2

P







(Un
1 (m1, l1), U

n
2 (1, l2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y ), M1,

(Un
1 (1, 1), U

n
2 (1, 1)) ∈ T

(n)
ǫ (U1, U2) M2







(a)

≤
∑

m1 6=1

∑

l1,l2

P







(Un
1 (m1, l1), U

n
2 (1, l2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y ), M1,

(Un
1 (1, 1), U

n
2 (1, 1)) ∈ T

(n)
ǫ′ (U1, U2) M2







≤
∑

m1 6=1

∑

l1

P







(Un
1 (m1, l1), U

n
2 (1, 1), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y ), M1,

(Un
1 (1, 1), U

n
2 (1, 1)) ∈ T

(n)
ǫ′ (U1, U2) M2






+ (4.15)

∑

m1 6=1

∑

l1

∑

l2 6=1

P







(Un
1 (m1, l1), U

n
2 (1, l2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y ), M1,

(Un
1 (1, 1), U

n
2 (1, 1)) ∈ T

(n)
ǫ′ (U1, U2) M2






, (4.16)

where (a) follows since ǫ′ > ǫ. The summation term in (4.15) can be bounded as

∑

m1 6=1

∑

l1

P







(Un
1 (m1, l1), U

n
2 (1, 1), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y ), M1,

(Un
1 (1, 1), U

n
2 (1, 1)) ∈ T

(n)
ǫ′ (U1, U2) M2






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≤
∑

m1 6=1

∑

l1

∑

(un1 ,un2 )

∈T
(n)

ǫ′
(U1,U2)

∑

(ũn1 ,yn1 )

∈T
(n)

ǫ′
(U1,Y1|u

n
2
)

P







Un
1 (m1, l1) = ũn1 , U

n
1 (1, 1) = un1 , M1,

Un
2 (1, 1) = un2 , Y

n
1 = yn1 M2







(a)
=

∑

m1 6=1

∑

l1

∑

(un1 ,un2 )

∈T
(n)

ǫ′
(U1,U2)

∑

(ũn1 ,yn1 )

∈T
(n)

ǫ′
(U1,Y1|u

n
2
)

P







Un
1 (m1, l1) = ũn1 , M1,

Un
1 (1, 1) = un1 , U

n
2 (1, 1) = un2 M2






p(yn1 |un1 , un2 )

(b)

≤ 2n(R̂1+R̂2)
∑

m1 6=1

∑

l1

∑

(un
1
,un

2
)

∈T
(n)

ǫ′
(U1,U2)

∑

(ũn
1
,yn

1
)

∈T
(n)

ǫ′
(U1,Y1|u

n
2 )

P







Un
1 (m1, l1) = ũn1 ,

Un
1 (1, 1) = un1 , U

n
2 (1, 1) = un2






p(yn1 |un1 , un2 )

(c)

≤ 2n(R̂1+R̂2)
∑

m1 6=1

∑

l1

∑

(un1 ,un2 )

∈T
(n)

ǫ′
(U1,U2)

∑

(ũn1 ,yn1 )

∈T
(n)

ǫ′
(U1,Y1|u

n
2
)

p(yn1 |un1 , un2 )2−n(2H(U1)+H(U2)−δ(ǫ′))

≤ 2n(R̂1+R̂2)
∑

m1 6=1

∑

l1

∑

(un1 ,un2 )

∈T
(n)

ǫ′
(U1,U2)

2n(H(U1|Y1,U2)+δ(ǫ′))2−n(2H(U1)+H(U2)−δ(ǫ′))

≤ 2n(R̂1+R̂2)
∑

m1 6=1

∑

l1

2n(H(U1,U2)+δ(ǫ′))2n(H(U1|Y1,U2)+δ(ǫ′))2−n(2H(U1)+H(U2)−δ(ǫ′))

≤ 2n(R1+2R̂1+R̂2+H(U1,U2)+H(U1|Y1,U2)−2H(U1)−H(U2)+3δ(ǫ′))

= 2n(R1+2R̂1+R̂2−I(U1;U2)−I(U1;Y1,U2)+3δ(ǫ′)),

where (a) follows since given (M1,M2) the tuple

Un
1 (m1, l1)→ (Un

1 (1, 1), U
n
2 (1, 1)) → Y n

1

form a Markov chain, (b) follows by [6, Lemma 11] since the tuple

(Un
1 (m1, l1), U

n
1 (1, 1), U

n
2 (1, 1))
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is independent of the event M1 and (M1,M2, L1, L2) is uniformly distributed, and (c)

follows since the tuple (Un
1 (m1, l1), U

n
1 (1, 1), U

n
2 (1, 1)) is i.i.d. with respect to the product

pmf p(u1)p(u1)p(u2).

Similarly, the summation term in (4.16) can be bounded as

∑

m1 6=1

∑

l1

∑

l2 6=1

P







(Un
1 (m1, l1), U

n
2 (1, l2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y ), M1,

(Un
1 (1, 1), U

n
2 (1, 1)) ∈ T

(n)
ǫ′ (U1, U2) M2)







≤ 2n(R1+2R̂1+2R̂2−2I(U1;U2)−I(U1,U2;Y1)+3δ(ǫ′)).

Therefore, P(E21 ∩ Ec0) tends to zero as n → ∞ if R1 + 2R̂1 + R̂2 ≤ I(U1;U2) +

I(U1;Y1, U2) − 3δ(ǫ′) and R1 + 2R̂1 + 2R̂2 ≤ 2I(U1;U2) + I(U1, U2;Y1) − 3δ(ǫ′). Let-

ting R̂1 = α(I(U1;U2) + 10ǫH(U1, U2)) and R̂2 = α(I(U1;U2) + 10ǫH(U1, U2)) results in

R1 ≤ I(U1;Y1, U2)− αI(U1;U2)− 4δ(ǫ′) and R1 ≤ I(U1, U2;Y1)− 4δ(ǫ′).

Combining with (4.13), the probability of error at Decoder 1 tends to zero as

n→∞ if

R1 ≤ max{0, I(U1;Y1)− αI(U1;U2)− 4δ(ǫ′)}, (4.17)

or

R1 ≤ I(U1;Y1, U2)− αI(U1;U2)− 4δ(ǫ′), (4.18a)

R1 +R2 ≤ I(U1, U2;Y1)− 4δ(ǫ′). (4.18b)

Repeating similar steps, the probability of error at Decoder 2 tends to zero as

n→∞ if

R2 ≤ max{0, I(U2;Y2)− αI(U1;U2)− 4δ(ǫ′)}, (4.19)

or

R2 ≤ I(U2;Y2, U1)− αI(U1;U2)− 4δ(ǫ′), (4.20a)
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R1 +R2 ≤ I(U1, U2;Y2)− 4δ(ǫ′). (4.20b)

If we denote the set of rate pairs satisfying (4.17) or (4.18) as RBC,1(p, x, α, δ(ǫ
′)),

and denote the set of rate pairs satisfying (4.19) or (4.20) as RBC,2(p, x, α, δ(ǫ
′)), then

the rate region RBC,1(p, x, α, δ(ǫ
′))∩RBC,2(p, x, α, δ(ǫ

′)) is achievable by the ǫ′-typicality

decoders. Define the rate regions RBC,j(p, x, α) := RBC,j(p, x, α, δ(ǫ
′) = 0), j = 1, 2. Let

ǫ′ = 2ǫ. Taking ǫ→ 0 and then taking the closure implies

RBC,1(p, x, α) ∩RBC,2(p, x, α) ⊆ R
∗
BC(p, x, α).

The achievability proof follows from the next lemma that provides an equivalent char-

acterization for the rate region in Theorem 4.2.1.

Lemma 4.A.1. For any input pmf p = p(u1, u2), function x = x(u1, u2), and α ∈ [0 1],

R
∗∗
BC(p, x, α) = RBC,1(p, x, α) ∩RBC,2(p, x, α).

Proof. Fix pmf p = p(u1, u2), function x = x(u1, u2) and α ∈ [0 1]. It suffices to

show that the rate region RBC,1(p, x, α) is equivalent to the set of rate pairs (R1, R2)

that satisfy (4.1a)-(4.1b). We first show that any rate pair in RBC,1(p, x, α) satisfies

(4.1a)-(4.1b). Suppose that the rate pair (R1, R2) ∈ RBC,1(p, x, α), which implies that

R1 ≤ I(U1;Y1, U2)− αI(U1;U2),

and

R1 ≤ max{0, I(U1;Y1)− αI(U1;U2), I(U1, U2;Y1)−R2}

= I(U1, U2;Y1)−min{I(U1, U2;Y1), I(U2;Y1, U1)− αI(U1;U2), R2}.

Therefore, (R1, R2) satisfies (4.1a)-(4.1b).

72



For the other direction, suppose that the rate pair (R1, R2) satisfies (4.1a)-(4.1b).

Assume also that

R2 < min{I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)}.

It then follows that

R1 ≤ I(U1;Y1, U2)− αI(U1;U2),

R1 ≤ I(U1, U2;Y1)−R2.

So, (R1, R2) ∈ RBC,1(p, x, α). If instead

R2 ≥ min{I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)},

then

R1 ≤ I(U1;Y1, U2)− αI(U1;U2),

R1 ≤ I(U1, U2;Y1)−min{I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)}

= max{0, I(U1;Y1)− αI(U1;U2)}.

Therefore, (R1, R2) ∈ RBC,1(p, x, α), which completes the proof of the lemma.

4.B Proof of Lemma 4.2.1

Let ǫ′ > ǫ. First, by (the averaged version of) Fano’s lemma in (4.5), we have

I(M2;Y
n
1 |Cn) ≥ I(M2;M1, Y

n
1 |Cn)− nǫn.
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Therefore, it suffices to prove that for n sufficiently large,

I(M2;M1, Y
n
1 |Cn) ≥ n[min{R2, I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)} − δ(ǫ′)− 2ǫn],

for some δ(ǫ′) that tends to zero as ǫ′ → 0.

Similar to [7], we will show that given M1, Y
n
1 and Cn, a relatively short list

L ⊆ [2nR2 ] can be constructed that contains M2 with high probability. Define a random

set

L = {m2 ∈ [2nR2 ] : (Un
1 (M1, l1),U

n
2 (m2, l2), Y

n
1 ) ∈ T (n)

ǫ′ (U1, U2, Y1)

for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]}.

Note that the set L is random with the underlying distribution on (M1, Y
n
1 , Cn), which is

induced by drawing a Marton random code Cn and using this code to encode Un
1 (M1, L1)

and Un
2 (M2, L2) into X

n(M1,M2) that lead to Y n
1 through the DM-BC p(y1, y2|x). We

first bound the probability that an incorrect message is in the random set L. Define

the events M1 = {M1 = M2 = 1} and M2 = {L1 = L2 = 1}. The indicator random

variable Ẽn is as defined in (4.6). By the symmetry of the code generation discussed in

Appendix 4.A, for every m2 6=M2 ∈ [2nR2 ]

P(m2 ∈ L, Ẽn = 1) = P(m2 ∈ L, Ẽn = 1|M1,M2), (4.21)

which is easy to see following similar steps to the proof of (4.14). We will use the

conditioned version to bound the probability term in (4.21). For every m2 6= 1 ∈ [2nR2 ],

P(m2 ∈ L, Ẽn = 1|M1,M2)

(a)
= P((Un

1 (1, l1), U
n
2 (m2, l2), Y

n
1 ) ∈ T (n)

ǫ′ for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ],

(Un
1 (1, 1), U

n
2 (1, 1)) ∈ T (n)

ǫ |M1,M2)
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(b)

≤
∑

l2

∑

(un1 ,un2 )∈

T
(n)
ǫ (U1,U2)

∑

(ũn2 ,yn1 )∈

T
(n)

ǫ′
(U2,Y1|u

n
1
)

P







Un
1 (1, 1) = un1 , U

n
2 (1, 1) = un2 , M1,

Un
2 (m2, l2) = ũn2 , Y

n
1 = yn1 M2







+
∑

l1 6=1

∑

l2

∑

(un
1
,un

2
)∈

T
(n)
ǫ (U1,U2)

∑

(ũn
1
,ũn

2
,yn

1
)∈

T
(n)

ǫ′
(U1,U2,Y1)

P







Un
1 (1, 1) = un1 , U

n
2 (1, 1) = un2 , Y

n
1 = yn1 , M1,

Un
1 (m1, l1) = ũn1 , U

n
2 (m2, l2) = ũn2 M2







(4.22)

where (b) follows by the union of events bound and by decomposing the event in (a)

onto two sets: {l1 = 1} and {l1 6= 1}. Two summation terms on the right hand side of

(4.22) can be bounded by using similar arguments to the proof of the inner bound for

Theorem 4.2.1 (refer to the bounds on (4.15) and (4.16) in Appendix 4.A) to get

P(m2 ∈ L, Ẽn = 1) ≤ 2−n(I(U2;Y1,U1)−αI(U1;U2)−4δ(ǫ′)) + 2−n(I(U1,U2;Y1)−4δ(ǫ′)).

Since P(Ẽn = 1) tends to one as n→∞, for n sufficiently large, P(m2 ∈ L|Ẽn =

1) ≤ P(m2 ∈ L, Ẽn = 1)2ǫ. The expected cardinality of L given {Ẽn = 1} is then

bounded as

E(|L| |Ẽn = 1) ≤ 1 +
∑

m2 6=M2

P(m2 ∈ L|Ẽn = 1)

≤ 1 + 2n(R2−I(U2;Y1,U1)+αI(U1;U2)+4δ(ǫ′)+ ǫ
n
) + 2n(R2−I(U1,U2;Y1)+4δ(ǫ′)+ ǫ

n
)

= 1 + 2n(R2−I(U2;Y1,U1)+αI(U1;U2)+4δ(ǫ′)+ǫn) + 2n(R2−I(U1,U2;Y1)+4δ(ǫ′)+ǫn)

(4.23)

for n sufficiently large.

Define another indicator random variable F̃n = 1{M2∈L}. Since ǫ
′ > ǫ and P(Ẽn =

1) tends to one as n → ∞, by the conditional typicality lemma in [4, p. 27], P(F̃n = 1)
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tends to one as n→∞. Then, for n sufficiently large, we have

H(M2 |Cn,M1, Y
n
1 )

= H(M2 |Cn,M1, Y
n
1 , Ẽn, F̃n) + I(M2; Ẽn, F̃n |Cn,M1, Y

n
1 )

≤ H(M2 |Cn,M1, Y
n
1 , Ẽn, F̃n) + 2

≤ 2 + P(F̃n = 0)H(M2 |Cn,M1, Y
n
1 , Ẽn, F̃n = 0) +H(M2 |Cn,M1, Y

n
1 , Ẽn, F̃n = 1)

≤ 2 + nR2 P(F̃n = 0) +H(M2 |Cn,Mn
1 , Y

n
1 , Ẽn, F̃n = 1).

For the last term, we use the fact that if M2 ∈ L, then the conditional entropy

cannot exceed log(|L|):

H(M2 |Cn,M1, Y
n
1 , Ẽn, F̃n = 1)

(a)
= H(M2 |Cn,M1, Y

n
1 , Ẽn, F̃n = 1,L, |L|)

≤ H(M2 |Ẽn, F̃n = 1,L, |L|)

=

2nR2
∑

l=0

P(|L| = l, Ẽn = 1)H(M2 |Ẽn = 1, F̃n = 1,L, |L| = l)

+
2nR2
∑

l=0

P(|L| = l, Ẽn = 0)H(M2 |Ẽn = 0, F̃n = 1,L, |L| = l)

≤
2nR2
∑

l=0

P(|L| = l, Ẽn = 1)H(M2 |Ẽn = 1, F̃n = 1,L, |L| = l) + nR2 P(Ẽn = 0)

≤
2nR2
∑

l=0

P(|L| = l, Ẽn = 1) log(l) + nR2 P(Ẽn = 0)

≤
2nR2
∑

l=0

P(|L| = l|Ẽn = 1) log(l) + nR2 P(Ẽn = 0)

= E[log(|L|)|Ẽn = 1] + nR2 P(Ẽn = 0)

(b)

≤ log(E[|L| |Ẽn = 1]) + nR2 P(Ẽn = 0)

(c)

≤ max
{

0, n(R2 − I(U2;Y1, U1) + αI(U1;U2) + 4δ(ǫ′) + ǫn),

n(R2 − I(U1, U2;Y1) + 4δ(ǫ′) + ǫn)
}

+ nR2 P(Ẽn = 0)
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≤ n ·max{0, R2 − I(U2;Y1, U1) + αI(U1;U2), R2 − I(U1, U2;Y1)}

+ n4δ(ǫ′) + nǫn + nR2 P(Ẽn = 0),

where (a) follows since the set L and its cardinality |L| are functions of (Cn,M1, Y
n
1 ), (b)

follows by Jensen’s inequality, and (c) follows by (4.23) and the soft-max interpretation

of the log-sum-exp function [8, p. 72]. Substituting back gives

I(M2;M1, Y
n
1 |Cn)

= H(M2 |Cn)−H(M2 |Cn,M1, Y
n
1 )

= nR2 −H(M2 |Cn,M1, Y
n
1 )

≥ nR2 − 2− nR2 P(F̃n = 0)−H(M2 |Cn,Mn
1 , Y

n
1 , Ẽn, F̃n = 1)

≥ nR2 − 2− nR2 P(F̃n = 0)− n4δ(ǫ′)− nǫn − nR2 P(Ẽn = 0)

− n ·max{0, R2 − I(U2;Y1, U1) + αI(U1;U2), R2 − I(U1, U2;Y1)}
(a)
= n[min{R2, I(U2;Y1, U1)− αI(U1;U2), I(U1, U2;Y1)} − 4δ(ǫ′)− 2ǫn],

where (a) follows since both of the probabilities P(Ẽn = 0) and P(F̃n = 0) tend to zero

as n→∞.
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Chapter 5

Message Communication Over

Multiple Access Channels with

Homologous Codes

The roles of two techniques used in coset coding to generate nonuniform code-

words, namely, shaping and channel transformation, are clarified and illustrated via the

simple example of the two-sender multiple access channel. While individually deficient,

the optimal combination of shaping via nested coset codes of the same generator matrix

(which we refer to as homologous codes) and channel transformation is shown to achieve

the same performance as traditional random codes for the general two-sender multiple

access channel. The achievability proof of the capacity region is extended to multiple

access channels with more than two senders, and with one or more receivers. A quanti-

zation argument adapted to the proposed combination of two techniques is presented to

establish the achievability proof for their Gaussian counterparts.
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5.1 Problem Formulation

Consider the k-sender discrete memoryless (DM) multiple access channel (MAC)

(X1 × X2 × . . .× Xk, p(y |x1, x2, . . . , xk),Y)

in Fig. 5.1, which consists of k sender alphabets Xj , j ∈ [k], a receiver alphabet Y, and

a collection of conditional probability distributions pY |Xk(y|x1, x2, . . . , xk).

Decoder

Encoder k

Encoder 1

Encoder 2
p (y|x1, x2, . . . xk)

M1

M2

M̂1, M̂2, . . . , M̂kY n

Xn
k

Xn
1

Xn
2

Mk

Figure 5.1. k-sender multiple access channel.

An (n, nR1, nR2, . . . , nRk) code for the multiple access channel consists of k

message sets, F
nRj
q , j ∈ [k] and k encoders where encoder j ∈ [k] assigns a codeword

xnj (mj) ∈ X n
j to each message mj ∈ F

nRj
q . The performance of a given code paired

with a decoder that assigns an estimate (m̂1, . . . , m̂k) to each received sequence yn is

measured by the average probability of error

P (n)
e = P((M̂1, . . . , M̂k) 6= (M1, . . . ,Mk)),

where message tuple (M1, . . . ,Mk) is assumed to be independent and uniformly dis-

tributed. A rate tuple (R1, R2, . . . , Rk) is said to be achievable if there exists a sequence

of (n, nR1, nR2, . . . , nRk) codes along with a decoder such that limn→∞ P
(n)
e = 0. The

capacity region is defined as the closure of the set of achievable rate tuples. Single

letter characterization of this capacity region was derived in [1, 2] using random i.i.d.

coding arguments. For a given pmf p(xk), define RMAC(X
k) as the set of rate tuples
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(R1, R2, . . . , Rk) such that

∑

i∈J

Ri < I(X(J );Y |X(J c)), ∀J ⊆ [k], (5.1)

where X(J ) = (Xi : i ∈ J ). In (5.1), by the q-ary code construction, the information

rates are in terms of q-ary symbols and the information measures are in log base q.

One can divide both sides of the inequalities in (5.1) by log2 q to obtain a set of rate

constraints in terms of bits. Henceforth, we present all the achievability results in this

chapter in terms of bits by assuming this q-ary to bit conversion is performed. The

capacity region is then defined as the convex closure of
⋃

p(xk) RMAC(X
k).

Achievability for the random homologous codes described in Chapter 2 is defined

in a similar manner. A rate tuple (R1, R2, . . . , Rk) is said to be achievable by random

homologous codes in Fq for the multiple access channel p(y|x1, . . . , xk) if there exists a

sequence of (n, ((nRj , nR̂j) : j ∈ [k]),Fq; p(x
k), ǫ) random homologous code ensembles

along with a decoder such that limn→∞ E[P
(n)
e ] = 0 for some pmf p(xk) and for some

ǫ > 0, where the expectation is taken with respect to the randomness in the common

generator matrix and individual coset sequences.

Note that for the k-sender DM-MAC p(y|x1, x2, . . . , xk) and the input pmfs

p(x1), p(x2), . . . , p(xk), each sender can use a random nested coset code ensemble (with

individual generator matrices G1, G2, . . . , Gk) to achieve the region RMAC(X
k) charac-

terized in (5.1). Thus, the corresponding heterologous nested coset codes can emulate

the performance of typically nonlinear random code ensembles for MACs.1 On the other

hand, due to the use of a common generator matrix, homologous codes can achieve high

rates when the goal of communication is to recover a linear combination of codewords

as discussed in Chapter 3. For a 2-sender DM-MAC, an achievable rate region is charac-

terized in [4] for recovering linear combinations of codewords from random homologous

code ensembles. When recovering both messages, however, this achievable rate region

1Indeed, for k = 2, by controlling the structure of G1 and G2 more carefully, larger rates than random
codes can be achieved for channels with state [3].
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computed for a given input pmf is in general smaller than the region in (5.1). Even a

tighter probability of error analysis discussed in [5] does not guarantee the achievability

of the region in (5.1). This raises the question of whether random homologous codes are

useful only for communicating the sum of the codewords (or equivalently, the sum of the

messages) and fundamentally deficient compared to heterologous ones in communicating

the messages themselves.

5.2 Motivating Examples

We present two toy examples that illustrate the performance of homologous codes

and motivate our main result in Section 5.3.

Example 5.2.1 (Binary adder MAC). Let Y = X1 ⊕X2, where X1 = X2 = Y = {0, 1}

and the addition operation ⊕ is over F2. The capacity region of this channel is achieved

by random coding with i.i.d. Bern(1/2) inputs X1 and X2, and is depicted in Fig. 5.2a.

No binary linear or coset codes of the same generator matrix, however, can achieve this

region. As a matter of fact, binary linear or coset codes of the same generator matrix

can only achieve the rate region depicted in Fig. 5.2b. The achievability of (R1, R2) =

(1, 0) follows by using a pair of (n, n,F2) and (n, 0,F2) coset (or linear) codes with the

generator matrix G = I, arbitrarily chosen coset sequences dn1 and dn2 , and the decoder

that estimates m̂1 = yn ⊖ dn1 . Exchanging the roles of encoder 1 and 2 implies the

achievability of (R1, R2) = (0, 1). For the converse, suppose without loss of generality

that R1 ≥ R2 > 0. Any message pair (m1,m2) ∈ F
nR1
2 ×F

nR2
2 results in the same output

as the message pair (m1 ⊕ [m 0],m2 ⊕m) for some m 6= 0 ∈ F
nR2
2 , which implies the

converse.

By using homologous codes, however, the capacity region can be achieved as

follows. Suppose without loss of generality that R1 ≥ R2 where R1 + R2 ≤ 1. Consider

the (n, nR1, 0, nR2, n(1−R2),F2) homologous code constructed using the generator matrix

G = I and the coset sequences dn1 = dn2 = 0, where the shaping function for encoder 2

82



1

R2

R1

1

(a) The capacity region.

R1 ≤ 1, R2 = 0

or

R1 = 0, R2 ≤ 1

1

R2

R1

1

(b) An achievable rate region by coset codes.

Figure 5.2. The binary adder MAC in Example 5.2.1.

is specified as s2 : FnR2
2 → F

n(1−R2)
2 , s2(m2) = [0 m2]. It follows that the codeword pair

assigned to (m1,m2) ∈ F
nR1×nR2
2 is

xn1 (m1) = [m1 0],

xn2 (m2) = [m2 s2(m2)] = [m2 0 m2].

Given the channel output yn, the decoding rule that declares the estimates m̂1 and m̂2

according to

m̂2 = ynn−nR2+1 and m̂1 = ynR1
1 ⊖ [m̂2 0]

can recover the messages m1 and m2 without any errors.

In Example 5.2.1, homologous codes benefit from the algebraic structure of the

channel and emulate time division via the concatenation of two codes. The next example

has an underlying channel structure that is not fully compatible with the algebraic

structure of codes.

Example 5.2.2 (Binary erasure MAC). Let Y = X1 + X2, where X1 = X2 = {0, 1},

Y = {0, 1, 2}, and the addition operation + is over R. The capacity region of the channel

is achieved by random coding with i.i.d. Bern(1/2) inputs X1 and X2, and is depicted in

Fig. 5.3a. In contrast, no pair of binary coset codes with the same generator matrix can

achieve the rate pair (1/2 + ǫ, 1/2 + ǫ) for ǫ > 0. The proof of this proposition is given
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in Appendix 5.A.

This limitation of coset codes can be once again overcome by using homologous

codes. We first present the achievability of the rate pair (R, 1) for R < 1/2 with linear

codes. Let AnR×n be a full-rank binary generator matrix of a linear code that can reliably

communicate R < 1/2 bits over the point-to-point DM binary erasure channel of erasure

probability 1/2.2 Let

B =







A

A⊥






,

where A⊥ is an (n−nR)×n matrix whose rows are orthogonal to the rows of A. Consider

now a pair of (n, nR,F2) and (n, n,F2) linear codes with generator matrices A and B

respectively. Each message pair (m1,m2) ∈ F
nR×n
2 is assigned codewords xn1 (m1) =

[m1 0n(1−R)]B and xn2 (m2) = m2B, respectively. Notice that since messages M1 and

M2 are chosen independently, the codeword xn1 (M1) is independent from the codeword

xn2 (M2). Moreover, since B is a full-rank square matrix and M2 is chosen uniformly at

random among Fn
2 , entries of xn2 (M2) are i.i.d. Bern(1/2). Therefore, the channel from

the perspective of sender 1, p(yn|xn1 (M1)), is equivalent to the point-to-point DM binary

erasure channel with erasure probability 1/2, which is illustrated in Fig. 5.3b. Upon

receiving yn, the decoder first declares the maximum likelihood estimate m̂1 by treating

xn2 as noise and then declares the estimate m̂2 by successive cancellation xn2 (m̂2) =

yn − xn1 (m̂1). The reliable communication of M1 and M2 depends on the probability

of error of the first decoding step, which vanishes asymptotically as n → ∞ under the

described matrix A.

Consider now the (2n, n+nR, 0, n+nR, n−nR,F2) homologous code constructed

2The existence of such a linear code follows from [6, Section 3.1.3].
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using the generator matrix

G =













B On×n

OnR×n

A⊥
B













,

the coset sequences dn1 = dn2 = 0, where the shaping function for encoder 2 is specified

as s2 : F
n+nR
2 → F

n−nR
2 , s2(m2) = (m2,i)

n
i=nR+1. If each message m1 ∈ F

n+nR
2 is divided

into two sub-vectors as m1 = [m11 | m12], where m11 ∈ Fn
2 and m12 ∈ FnR

2 , and similarly

each message m2 ∈ F
n+nR
2 is divided into three sub-vectors as m2 = [m21 | m22 | m23],

where m21,m23 ∈ FnR
2 and m22 ∈ F

n−nR
2 , then the assigned codewords can be written as

x2n1 (m1) =
[

m11B
∣

∣ m12A
]

,

x2n2 (m2) =
[

m21A
∣

∣ [m23 m22]B
]

.

Upon receiving the first half of the sequence y2n, the decoder first declares the maximum

likelihood estimate m̂21 by treating the first half of x2n1 as noise and then declares the

estimate m̂11 by successive cancellation. Similarly after receiving the second half of the

sequence y2n, it declares the maximum likelihood estimate m̂12 by treating the second

half of x2n2 as noise and then declares the estimates m̂22 and m̂23 by successive cancel-

lation. By the construction of the matrix A, the first and second halves of codewords

are reliably communicated at rates (1, R) and (R, 1), which, combined together, can be

arbitrarily close to (3/4, 3/4). The resulting transmission corresponds to time sharing

via the concatenation of two codes. A similar argument can be extended to the entire

capacity region.

The constructions of homologous codes for the binary adder and erasure MACs

respectively emulate time division and time sharing in disguise via the concatenation of

two codes. Consequently, these codes do not scale to more complicated problems (such

as interference channels) in a satisfactory manner. As we will illustrate shortly, however,
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R1
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1
2

1
2

(a) The capacity region.

Y = 0X1 = 0

Y = 2X1 = 1

Y = 1

X2 = 0

X2 = 1

X2 = 1

X2 = 0

(b) The channel from the perspective of sender 1.

Figure 5.3. The binary erasure MAC in Example 5.2.2.

most (random) homologous codes are sufficient to achieve the capacity region, provided

that they are constructed according to appropriate distributions.

5.3 Achievable Rate Regions for Two Senders by Random

Homologous Codes

We now investigate the performance of random homologous codes described in

Chapter 2 for the two sender DM-MAC p(y|x1, x2). We take a gradual approach to

presenting the main result and first discuss the key technical ingredients of the proof one

by one.

5.3.1 Shaping

Symbols in an (n, nR,Fq) random coset code ensemble are uniformly distributed

over Fq. By the shaping step inherent in the nested coset codes, random homologous

code ensembles emulate the statistical behavior of a random (nonlinear) code ensemble

drawn from the desired distribution while maintaining a common algebraic structure

across users. To separate the benefit from channel transformation, in this section, we

are particularly interested in the finite-field input DM-MAC p(y|x1, x2), where X1 =

X2 = Fq, and random homologous codes designed over Fq for this channel. The block
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diagram of this scheme is depicted in Fig. 5.4.

shapingcoset code

nested coset code

homologous code

decoder

shapingcoset code

nested coset code

(G,Dn
2 )

Y n M̂1, M̂2
p(y|x1, x2)

Xn
2M2

Xn
1

(G,Dn
1 )

M1

Figure 5.4. Block diagram for shaping.

We describe the rate region achievable by random homologous codes. For given

input pmfs p(x1) and p(x2), we refer to the rate region in (5.1) as RMAC(X1,X2), i.e.,

the set of rate pairs (R1, R2) such that

R1 < I(X1;Y |X2),

R2 < I(X2;Y |X1),

R1 +R2 < I(X1,X2;Y ),

and define RL(X1,X2) as the set of rate pairs (R1, R2) such that

R1 < max{I(X1;Y ), H(X1)−H(X2) + I(X2;Y )}, (5.2)

or

R2 < max{I(X2;Y ), H(X2)−H(X1) + I(X1;Y )}. (5.3)

Proposition 5.3.1 (Shaping). A rate pair (R1, R2) is achievable by random homologous

codes in Fq for the finite-field input DM-MAC p(y|x1, x2) if

(R1, R2) ∈ RMAC(X1,X2) ∩RL(X1,X2)

for some input pmfs p(x1) and p(x2).
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Proof. Our proof steps follow [4, Sec. VI] essentially line by line, except the analysis

of one error event. Fix an input pmf p = p(x1)p(x2) and let paramter ǫ′ > 0. We

use an (n, nR1, nR̂1, nR2, nR̂2,Fq; p, ǫ
′) random homologous code ensemble constructed

in Definition 2.3.2. The decoder first fixes a sufficiently large ǫ > ǫ′ and then searches

a unique pair of (m̂1, m̂2) such that (un1 (m̂1, l1), u
n
2 (m̂2, l2), y

n) ∈ T (n)
ǫ (X1,X2, Y ) for

some (l1, l2), where u
n
j (m̂j , lj) is the auxiliary codeword generated in step 1) of random

homologous code construction in Definition 2.3.2. If the decoder finds the unique pair,

then it declares that (m̂1, m̂2) was transmitted. Otherwise, it declares error. Assume

that (M1,M2) is the transmitted message pair and (L1, L2) is the auxiliary index pair

chosen by the shaping functions. We bound the probability of error averaged over code

ensembles. As in [4], the decoder makes an error only if one or more of the following

events occur:

E1 = {Un
j (Mj , lj) /∈ T (n)

ǫ′ (Xj) for all lj, j = 1 or 2},

E2 = {(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) /∈ T (n)
ǫ (X1,X2, Y )},

E3 = {(Un
1 (M1, L1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ (X1,X2, Y ) for some (m2, l2) 6= (M2, L2)},

E4 = {(Un
1 (m1, l1), U

n
2 (M2, L2), Y

n) ∈ T (n)
ǫ (X1,X2, Y ) for some (m1, l1) 6= (M1, L1)},

E5 = {(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ (X1,X2, Y ) for some (m1, l1) 6= (M1, L1)

and (m2, l2) 6= (M2, L2) such that [m1 l1 0]⊖ [M1 L1 0] and [m2 l2 0]⊖ [M2 L2 0]

are linearly independent},

E6 = {(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ (X1,X2, Y ) for some (m1, l1) 6= (M1, L1)

and (m2, l2) 6= (M2, L2) such that [m1 l1 0]⊖ [M1 L1 0] and [m2 l2 0]⊖ [M2 L2 0]

are linearly dependent}.

Thus, by the union of events bound, E[P
(n)
e ] ≤ P(E1)+

∑

k 6=1 P(Ek ∩Ec1). By [4], the first
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five terms tend to 0 as n→∞ if

R̂j > DKL
j + δ(ǫ′), j = 1, 2

R1 + 2R̂1 + R̂2 < I(X1;Y |X2) + 2DKL
1 +DKL

2 − δ(ǫ),

R2 + R̂1 + 2R̂2 < I(X2;Y |X1) + DKL
1 + 2DKL

2 − δ(ǫ),

R1 +R2 + 2

2
∑

i=1

R̂i < I(X1,X2;Y ) + 2

2
∑

i=1

DKL
i − δ(ǫ),

where DKL
j := D(pXj ||Unif(Fq)) denotes the KL-divergence between the input pmf p(xj)

and Unif(Fq) for j = 1, 2. For the last term, one can use the analysis in [4] that is

originally conducted for decoding of two linearly independent combinations of X1 and

X2, namely, W1 = a1X1 ⊕ a2X2 and W2 = b1X1 ⊕ b2X2. Even for fixed W1 and W2,

however, the resulting upper bound on R1 and R2 includes a max-min optimization over

all linear combinations ofW1 andW2, which is difficult to compute in general. Therefore,

we present a new upper bound resulting in an achievable rate region that is easier to

compute than the optimized rate region provided by [4]. Moreover, it can be shown that

our achievable rate region is larger than the one in [4] for some channels, such as the

on–off erasure MAC with p = 1/2 to be defined in Example 3.

Lemma 5.3.1. The probability P(E6 ∩ Ec1) can be bounded by two different expressions:

P(E6 ∩ Ec1) ≤ (q − 1)qn(R̂1+R̂2+min{R1+R̂1,R2+R̂2})qn(H(X1)+H(X2)+H(X2|Y )−3+δ(ǫ)),

P(E6 ∩ Ec1) ≤ (q − 1)qn(R̂1+R̂2+min{R1+R̂1,R2+R̂2})qn(H(X1)+H(X2)+H(X1|Y )−3+δ(ǫ)).

Proof. Define the rate R = min{R1+ R̂1, R2+ R̂2}, and the eventsM = {M1 = 0,M2 =

0} and L = {L1 = 0, L2 = 0}. Define the set

D = {(m1, l1,m2, l2) ∈ F
nR1
q × F

nR̂1
q × F

nR2
q × F

nR̂2
q :

[m1 l1 0] 6= 0, [m2 l2 0] 6= 0 are linearly dependent}.
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By the symmetry of code generation, P(E6∩Ec1) = P(E6∩Ec1|M,L). To see this, we start

with marginalization over some random variables as follows.

P(E6 ∩ Ec1) =
∑

m1,l1

∑

m2,l2

∑

G

∑

dn1 ,d
n
2

P













E6 ∩ Ec1 , (M1,M2) = (m1,m2),

(L1, L2) = (l1, l2), G = G,

Dn
1 = dn1 ,D

n
2 = dn2













. (5.4)

Continuing from (5.4), we have

P(E6 ∩ Ec1)
(a)
=

∑

m1,l1

∑

m2,l2

∑

G

∑

dn1 ,d
n
2

P



















E6 ∩ Ec1 , (M1,M2) = (0,0),

(L1, L2) = (0,0), G = G,

Dn
1 = [m1 l1 0]G⊕ dn1 ,

Dn
2 = [m2 l2 0]G ⊕ dn2



















=
∑

m1,l1

∑

m2,l2

P(E6 ∩ Ec1 , (M1, L1,M2, L2) = (0,0,0,0))

(b)
= P(E6 ∩ Ec1 |(M1, L1,M2, L2) = (0,0,0,0)),

where (a) follows since (G, [m1 l1 0]G⊕Dn
1 , [m2 l2 0]G⊕Dn

2 )
d
= (G,Dn

1 ,D
n
2 ) results in a

permuted code and (b) follows by the fact proved in [4, Lemma 11] that (M1, L1,M2, L2)

is uniformly distributed over its support.

By this observation, it suffices to bound the conditional probability as follows.

P(E6 ∩ Ec1 |M,L)

= P
(

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ (X1,X2, Y )

for some (m1, l1,m2, l2) ∈ D, Un
j (0,0) ∈ T (n)

ǫ′ (Xj) j = 1, 2|M,L
)

(a)

≤
∑

(m1,l1,m2,l2)∈D

P







(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ (X1,X2, Y ),

Un
j (0,0) ∈ T

(n)
ǫ′ (Xj) j = 1, 2

∣

∣

∣

∣

∣

∣

∣

M,L







≤
∑

(m1,l1,m2,l2)∈D

P







Un
2 (m2, l2), Y

n) ∈ T (n)
ǫ (X2, Y ),

Un
j (0,0) ∈ T

(n)
ǫ′ (Xj) j = 1, 2

∣

∣

∣

∣

∣

∣

∣

M,L






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(b)

≤
∑

(m1,l1,m2,l2)∈D

P







Un
2 (m2, l2), Y

n) ∈ T (n)
ǫ (X2, Y ),

Un
j (0,0) ∈ T

(n)
ǫ (Xj) j = 1, 2

∣

∣

∣

∣

∣

∣

∣

M,L






,

=
∑

(m1,l1,m2,l2)∈D

∑

xn
1
∈T

(n)
ǫ (X1),

xn2 ∈T
(n)
ǫ (X2)

∑

(x̃n
2 ,y

n)∈T
(n)
ǫ (X2,Y )

P







[m2 l2 0]G⊕Dn
2 = x̃n2 ,

Dn
1 = xn1 ,D

n
2 = xn2 , Y

n = yn

∣

∣

∣

∣

∣

∣

∣

M,L







(c)
=

∑

(m1,l1,m2,l2)∈D

∑

xn
1
∈T

(n)
ǫ (X1),

xn
2
∈T

(n)
ǫ (X2)

∑

(x̃n
2 ,y

n)∈T
(n)
ǫ (X2,Y )

P







[m2 l2 0]G⊕Dn
2 = x̃n2 ,

Dn
1 = xn1 ,D

n
2 = xn2

∣

∣

∣

∣

∣

∣

∣

M,L






p(yn |xn1 , xn2 )

(d)

≤
∑

(m1,l1,m2,l2)∈D

∑

xn
1
∈T

(n)
ǫ (X1),

xn
2
∈T

(n)
ǫ (X2)

∑

yn∈T
(n)
ǫ (Y )

p(yn|xn1 , xn2 )
∑

x̃n
2∈T

(n)
ǫ (X2|yn)

qn(R̂1+R̂2) P







[m2 l2 0]G⊕Dn
2 = x̃n2 ,

Dn
1 = xn1 ,D

n
2 = xn2







=
∑

(m1,l1,m2,l2)∈D

∑

xn
1
∈T

(n)
ǫ (X1),

xn
2
∈T

(n)
ǫ (X2)

∑

yn∈T
(n)
ǫ (Y )

p(yn|xn1 , xn2 )
∑

x̃n
2∈T

(n)
ǫ (X2|yn)

qn(R̂1+R̂2)q−3n

≤ qn(R̂1+R̂2)q−3nqn(H(X1)+H(X2)+H(X2|Y )+δ(ǫ))|D|

≤ qn(R̂1+R̂2)q−3nqn(H(X1)+H(X2)+H(X2|Y )+δ(ǫ))qnR(q − 1),

where (a) follows by the union of events bound, (b) follows since ǫ > ǫ′, (c) follows since,

conditioned on (M,L), the triple G → (Dn
1 ,D

n
2 ) → Y n form a Markov chain, and (d)

follows by [4, Lemma 11]. By changing the order of Xn
1 and Xn

2 , we obtain the second

bound on P(E6 ∩ Ec1).

By Lemma 5.3.1 and using the relation DKL
j = 1 − H(Xj), we have P(E6 ∩

Ec1) → 0 as n → ∞ if min{R1 + 2R̂1 + R̂2, R2 + R̂1 + 2R̂2} < H(X1) + 2DKL
1 + DKL

2 −

min{H(X1|Y ),H(X2|Y )} − δ(ǫ). Choosing R̂1 = DKL
1 + 2δ(ǫ′), R̂2 = DKL

2 + 2δ(ǫ′) and
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letting ǫ→ 0 yield that the rate pairs (R1, R2) is achievable if

R1 < I(X1;Y |X2),

R2 < I(X2;Y |X1),

R1 +R2 < I(X1,X2;Y ),

min{R1 +H(X2), R2 +H(X1)} < H(X1) +H(X2)−min{H(X1 |Y ),H(X2 |Y )}.

(5.5)

The rate region defined by (5.5) is equivalent to the region RMAC(X1,X2)∩RL(X1,X2),

as will be proved in Appendix 5.B. Taking the union over input pmfs p(x1) and p(x2)

completes the proof.

For the binary adder MAC, the achievable rate region in Proposition 5.3.1 is

indeed equivalent to the capacity region, which is proved in Appendix 5.C.

For the binary erasure MAC, however, the rate region in Proposition 5.3.1

is strictly smaller than the capacity region, as sketched in Fig. 5.5. In particular, the

largest achievable symmetric rate is 2/3 (see Appendix 5.D).

1

R2

R11
2

2
3

1

2
3

1
2

Figure 5.5. The achievable rate region in Proposition 5.3.1 for the binary erasure MAC in
Example 5.2.2.

We now introduce another simple example, which will be used again in Section 5.5

when we deal with multiple-receiver MACs.

Example 5.3.1 (On–off erasure MAC). Let Y = (2X1 − 1) + Z(2X2 − 1), where X1 =

X2 = {0, 1}, Z = {0, 1}, and Y = {0,±1,±2}, where the random variable Z ∼ Bern(p)
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R2

R1

p
2

p

1− p
2

1

(a) The capacity region for 0 < p ≤ 1.

R2

R111− p
2 p

1− p(1−p)
2

p

1− p
2
p
2

(b) The achievable rate region in Proposi-
tion 5.3.1 for 2/3 < p ≤ 1.

Figure 5.6. The on–off erasure MAC in Example 5.3.1.

is independent from X1 and X2. If Z = 1, the channel is equivalent to the binary erasure

MAC. If Z = 0, the output Y is only dependent on X1. That is why this channel is called

the on–off erasure MAC.

For any p ∈ (0, 1], the capacity region of the on–off erasure MAC is achieved by

random coding with i.i.d. Bern(1/2) inputs X1 and X2, and is shown in Fig. 5.6a (in

terms of p). If p ≤ 2/3, the achievable rate region in Proposition 5.3.1 is equivalent

to the capacity region. If p > 2/3, however, it reduces to the rate region depicted in

Fig. 5.6b that is strictly smaller than the capacity region (see Appendix 5.E). Note that

for p = 1, the rate region in Fig. 5.6b is equivalent to the achievable rate region for the

binary erasure MAC sketched in Fig. 5.5, since the on–off erasure MAC is equivalent to

the binary erasure MAC when p = 1.

Remark 5.3.1. As shown by [5], the achievable rate region in Proposition 5.3.1 can

be improved by stronger analysis tools, which we will discuss later in Section 5.4.1 and

Proposition 5.4.1. For Examples 5.2.1–5.3.1, however, the achievable rate region in [5]

reduces to that of Proposition 5.3.1.

5.3.2 Channel Transformation

Instead of choosing an appropriate shaping function within a nested coset code,

there is a simpler way of achieving the performance of nonuniformly distributed codes.
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Following the basic idea in [7, Sec. 6.2], we can simply transform the channel p(y|x1, x2)

into a virtual channel with finite-field inputs

p(y |v1, v2) = pY |V1,V2
(y |ϕ1(v1), ϕ2(v2)) (5.6)

for some symbol-by-symbol mappings ϕ1 : Fq → X1 and ϕ2 : Fq → X2, as illustrated in

Fig. 5.7. Note that this transformation can be applied to any DM-MAC p(y|x1, x2) of

arbitrary (not necessarily the same finite-field) input alphabets.

Y np(y|x1, x2)

V n
1M1

M2 V n
2

ϕ1

ϕ2

Xn
1

Xn
2

Figure 5.7. The virtual DM-MAC p(y|v1, v2) with virtual inputs V1 and V2.

We now consider a pair of (n, nR1,Fq) and (n, nR2,Fq) random coset code en-

sembles with the same generator matrix for the virtual channel, which is equivalent to

random homologous codes with R̂1 = R̂2 = 0. The block diagram of this scheme is

depicted in Fig. 5.8. For a given pair of symbol-by-symbol mappings ϕ1 and ϕ2, we can

coset code

coset code

decoder

M2

(G,Dn
2 )

V n
2

M1

(G,Dn
1 )

V n
1

ϕ2

Xn
2

ϕ1

Xn
1

p(y|x1, x2)
M̂1, M̂2Y n

Figure 5.8. Block diagram for channel transformation.

establish the following whose proof is deferred to Appendix 5.F.

Proposition 5.3.2. A rate pair (R1, R2) is achievable by random coset codes in Fq with

the same generator matrix for the DM-MAC p(y|x1, x2), if

(R1, R2) ∈ RMAC(V1, V2) ∩RL(V1, V2),
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where RMAC(V1, V2) is defined as in (5.1) for the virtual channel p(y|v1, v2) in (5.6) and

for the inputs V1 and V2 drawn independently according to Unif(Fq), and RL(V1, V2) is

the set of (R1, R2) such that

min(R1, R2) < max{I(V1;Y ), I(V2;Y )}. (5.7)

Note that (5.7) is equivalent to (5.2) and (5.3) with (V1, V2) in place of (X1,X2)

since V1 and V2 are uniform on Fq.

Proposition 5.3.2 was stated for a fixed channel transformation specified by a

given pair of symbol-by-symbol mappings ϕ1(v1) and ϕ2(v2) on a finite field Fq. We

now consider all such channel transformations, which results in a simpler achievable rate

region.

Corollary 5.3.1 (Channel transformation). A rate pair (R1, R2) is achievable by random

coset codes generated in some finite field with the same generator matrix for the DM-

MAC p(y|x1, x2), if

(R1, R2) ∈ RMAC(X1,X2) ∩R
′
L(X1,X2)

for some input pmfs p(x1) and p(x2), where R′
L(X1,X2) is the set of (R1, R2) such that

min(R1, R2) < max{I(X1;Y ), I(X2;Y )}.

Proof. First suppose that p(x1) and p(x2) are of the form

i

ρm
(5.8)

for some prime ρ and i,m ∈ Z+ for all x1 and x2. Then there exist ϕ1(v1) and ϕ2(v2)

on Fq such that Xj
d
= ϕj(Vj) with Vj ∼ Unif(Fq), where q = ρm. Hence, we can

transform the channel p(y|x1, x2) into a virtual channel p(y|v1, v2) and achieve the rate
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region in Proposition 5.3.2. Now, since (V1, V2) → (X1,X2) → Y form a Markov chain

and (V1,X1) and (V2,X2) are independent, the rate region RMAC(V1, V2)∩RL(V1, V2) in

Proposition 5.3.2 can be simplified as RMAC(X1,X2) ∩R′
L(X1,X2). Finally, the earlier

restrictions on the input pmfs can be removed since the set of pmfs of the form (5.8) is

dense. This completes the proof.

We now revisit the previous examples to evaluate the achievable rate region in

Corollary 5.3.1.

• Binary adder MAC: The achievable rate region in Corollary 5.3.1 is equivalent to

the capacity region. To see this, note that for the binary adder MAC, RL(X1,X2) ⊆

R′
L(X1,X2) for any p(x1) and p(x2), and the former region achieved by the shaping

(with the intersection with RMAC(X1,X2)) reduces to the capacity region as proved

in Appendix 5.C. Therefore, the capacity region of the binary adder MAC is

achievable by using coset codes over the virtual channel. This does not contradict

the fact that no coset code on the binary field can achieve a positive symmetric

rate pair, since channel transformation allows the use of linear (or coset) codes

over larger finite fields.

• Binary erasure MAC: The achievable rate region in Corollary 5.3.1 reduces to

the one in Proposition 5.3.1 sketched in Fig. 5.5, although R′
L(X1,X2) is in general

different than RL(X1,X2) for fixed pmfs p(x1) and p(x2). The proof is given in

Appendix 5.D.

• On–off erasure MAC: If p ≤ 2/3, the achievable rate region in Corollary 5.3.1

reduces to the capacity region sketched in Fig. 5.6a. If p > 2/3, however, it reduces

to the rate region sketched in Fig. 5.9. While larger than what is achieved by the

shaping (cf. Fig. 5.6b), the achievable rate region by channel transformation in

Corollary 5.3.1 is still strictly smaller than the capacity region. The details are

given in Appendix 5.E.
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1

1− p
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Figure 5.9. The achievable rate region in Corollary 5.3.1 for the on–off erasure MAC in
Example 5.3.1 when 2/3 < p ≤ 1.

Remark 5.3.2. The achievable rate region for the channel transformation technique

in Corollary 5.3.1 can be easily evaluated for fixed input pmfs p(x1) and p(x2). Using

the analysis tools developed in [5], Proposition 5.3.2 and Corollary 5.3.1 can be poten-

tially strengthened. Given a virtual channel p(y|v1, v2) with input pmfs p(v1) and p(v2)

on some Fq, the resulting achievable rate region would depend on the distribution of

(a1V1⊕a2V2, Y ) for every a1, a2 6= 0 ∈ Fq. The union of these rate regions over all chan-

nel transformations, however, is not computable. Therefore, it is unclear whether the

insufficiency of the channel transformation technique for Examples 5.2.2–5.3.1 (binary

erasure MAC and on–off erasure MAC) is fundamental or due to the deficiency of our

analysis tools.

5.3.3 Combination

As shown for the binary erasure MAC and on–off erasure MAC examples, shap-

ing (with homologous codes) and channel transformation (with coset codes of the same

generator matrix) seemingly cannot achieve the capacity region. When combined to-

gether, these techniques can achieve the pentagonal region RMAC(X1,X2) for any p(x1)

and p(x2) while maintaining the algebraic structure of the code. Consider the virtual

channel in (5.6) and random homologous codes for this channel, a block diagram for

which is depicted in Fig. 5.10. Then, Proposition 5.3.1 implies the following.
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(G,Dn
2 )

M1

M2

Figure 5.10. Block diagram for homologous codes over the virtual channel.

Proposition 5.3.3. A rate pair (R1, R2) is achievable by random homologous codes in

Fq for the DM-MAC p(y|x1, x2), if

(R1, R2) ∈ RMAC(X1,X2) ∩RL(V1, V2)

for some pmfs p(v1) and p(v2) on Fq, and some mappings x1 = ϕ1(v1) and x2 = ϕ2(v2),

where RL(V1, V2) is the set of rate pairs (R1, R2) satisfying (5.2) or (5.3).

Proof. Given pmfs p(v1) and p(v2) on Fq, and mappings x1 = ϕ1(v1) and x2 = ϕ2(v2),

by Proposition 5.3.1, the rate region RMAC(V1, V2) ∩ RL(V1, V2) is achievable by ran-

dom homologous codes in Fq for the virtual channel p(y|v1, v2). Now, since (V1, V2) →

(X1,X2)→ Y form a Markov chain and (V1,X1) and (V2,X2) are independent, the rate

region RMAC(V1, V2) ∩RL(V1, V2) simplifies to RMAC(X1,X2) ∩RL(V1, V2). The proof

follows by taking the union over pmfs p(v1) and p(v2) on Fq, and mappings x1 = ϕ1(v1)

and x2 = ϕ2(v2).

We are now ready to state one of the main technical results of this paper, which

follows from Proposition 5.3.3 by optimizing over all channel transformations.

Theorem 5.3.1 (Combination). A rate pair (R1, R2) is achievable by random homolo-

gous codes in some finite field for the DM-MAC p(y|x1, x2), if (R1, R2) ∈ RMAC(X1,X2)

for some p(x1) and p(x2).

Proof. Our argument is similar to the proof of Corollary 5.3.1, except that the choice

of channel transformation needs more care. First suppose that p(x1) and p(x2) are
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of the form (5.8) for some prime ρ. We will show that there exist a finite field Fq,

pmfs p(v1) and p(v2) on Fq, and mappings x1 = ϕ1(v1) and x2 = ϕ2(v2) such that

RMAC(X1,X2) ⊆ RL(V1, V2). Consider random homologous codes over Fq with q = ρ2m.

Choose V1 and ϕ1 such that V1 and ϕ1(V1)
d
= X1 are one-to-one on the support of V1

(this is always possible since q ≥ ρm). Also choose V2 ∼ Unif(Fq) and ϕ2 such that

ϕ2(V2)
d
= X2 (this is possible due to the form of p(x2)). Let (R1, R2) ∈ RMAC(X1,X2).

Then, (R1, R2) satisfies

R2 < I(X2;Y |X1)

≤ H(X2)

≤ log ρm

≤ H(V2)−H(V1)

≤ H(V2)−H(V1) + I(V1;Y ),

which implies that (R1, R2) ∈ RL(V1, V2). Finally, the restrictions on the input pmfs can

be removed again by the denseness argument.

Remark 5.3.3. Theorem 5.3.1 can be strengthened by putting a cardinality bound on the

underlying finite field. We need a different construction. By Bertrand’s postulate, there

exists a prime q such that |X1||X2| < q < 2|X1||X2|. For a given input pmf p(x1) and

p(x2), consider a random homologous code ensemble over Fq. Choose V1 and ϕ1 such

that V1 and ϕ1(V1)
d
= X1 are one-to-one on the support of V1, which is always possible

since q ≥ |X1|. Also choose V2 and ϕ2 such that V2 and (X1,X2) are one-to-one on the

support of V2 and that ϕ2(V2)
d
= X2, which is always possible since q ≥ |X1||X2|. The

claim is that RMAC(X1,X2) ⊆ RL(V1, V2). To see this, let (R1, R2) ∈ RMAC(X1,X2).

Then, (R1, R2) satisfies

R2 < I(X2;Y |X1)
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≤ H(X2)

= H(X1,X2)−H(X1)

= H(V2)−H(V1)

≤ H(V2)−H(V1) + I(V1;Y ),

which implies that (R1, R2) ∈ RL(V1, V2). Therefore, for any pmfs p(x1) and p(x2), the

rate region RMAC(X1,X2) is achievable by random homologous codes in some finite field

Fq such that q ≤ 2|X1||X2| for the DM-MAC p(y|x1, x2).

5.4 Extension to More Than Two Senders

The achievable rate region by random homologous codes for the 2-sender DM-

MAC can be extended to DM-MACs with more senders. In this section, we present

the performance of random homologous code ensembles for the k-sender DM-MAC

p(y|x1, x2, . . . , xk). Similar to Section 5.3, we first discuss the performance of random

homologous codes under the fixed channel alphabets, following the recent work in [5].

We then generalize the result by incorporating channel transformation.

5.4.1 Shaping

The achievable rate region for the finite-field input DM-MAC p(y|x1, x2, . . . , xk),

X1 = X2 = · · · = Xk = Fq, by random homologous code ensembles was studied in [5].

For the sake of completeness, we review the main result in [5] on which we build the

achievability of the capacity region for the k-sender DM-MAC. Let A denote the set of

rank deficient k× k matrices over Fq. For a given matrix A ∈ A, we define the collection

D(A) = {J ⊆ [k] : |J | = k − rank(A), rank[AT e(J )T ]T = k},
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where e(J ) ∈ F
|J |×k
q denotes the matrix whose rows are the standard basis vectors ej

for j ∈ J . For a given set J ∈ D(A) and input pmfs p(x1), p(x2), . . . , p(xk), we define

the rate region R(A,J ,Xk) as the set of rate tuples (R1, R2, . . . , Rk) such that

∑

j∈J

Rj < I(X(J );Y,WA),

where

WA = A [X1 X2 . . . Xk]
T .

We are now ready to state the main result of [5].

Proposition 5.4.1 ([5, Theorem 1]). A rate tuple (R1, R2, . . . , Rk) is achievable by

random homologous codes in Fq for the finite-field input DM-MAC p(y|x1, x2, . . . , xk), if

(R1, R2, . . . , Rk) ∈
⋂

A∈A

⋃

J∈D(A)

R(A,J ,Xk)

for some input pmfs p(x1), p(x2), . . . , p(xk).

Remark 5.4.1 (Revisit of the 2-sender DM-MAC). Consider the 2-sender DM-MAC

p(y|x1, x2) with given input pmfs p(x1) and p(x2). To compute the achievable rate region

in Proposition 5.4.1, it suffices to consider the set of rank deficient 2 × 2 matrices with

different spans. There are four types of such matrices:

• A =







0 0

0 0






:

D(A) = {{1, 2}} and ∪J∈D(A)R(A,J ,X1,X2) reduces to the set of rate pairs

satisfying

R1 +R2 < I(X1,X2;Y ),

• A =







0 1

0 0






:
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D(A) = {{1}} and ∪J∈D(A)R(A,J ,X1,X2) is the set of rate pairs satisfying

R1 < I(X1;Y |X2),

• A =







1 0

0 0






:

D(A) = {{2}} and ∪J∈D(A)R(A,J ,X1,X2) is the set of rate pairs satisfying

R2 < I(X2;Y |X1),

• A =







1 a

0 0






for some nonzero a ∈ Fq:

D(A) = {{1}, {2}} and ∪J∈D(A)R(A,J ,X1,X2) is the set of rate pairs satisfying

R1 < I(X1;Y,Wa),

or

R2 < I(X2;Y,Wa),

where Wa = X1 ⊕ aX2.

The achievable rate region in Proposition 5.4.1 is then equivalent to RMAC(X1,X2) ∩

R̃L(X1,X2) where R̃L(X1,X2) is the set of rate pairs (R1, R2) such that for every nonzero

a ∈ Fq

R1 < I(X1;Y,X1 ⊕ aX2) (5.9)

or

R2 < I(X2;Y,X1 ⊕ aX2). (5.10)

One may notice that for every nonzero a over Fq

H(X1 |Y,X1 ⊕ aX2) = H(X2 |Y,X1 ⊕ aX2)
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≤ min{H(X1 |Y ),H(X2 |Y )},

which implies that R̃L(X1,X2) is in general larger than RL(X1,X2) defined in Proposi-

tion 5.3.1 in Section 5.3.1. Indeed, the error analysis in the proof of Proposition 5.3.1

can be modified to account for the larger R̃L(X1,X2) region.

Remark 5.4.2. The achievable rate region in Proposition 5.4.1 is the largest region

thus far established with homologous codes in the literature. As a matter of fact, there

is some indication that this region is optimal in the sense that it cannot be improved

by using maximum likelihood decoding [8, 9]. Still, it is in general strictly smaller than

the capacity region of the k-sender DM-MAC. In particular, for the channels defined

in Examples 5.2.1–5.3.1, the achievable rate region in Propositon 5.4.1 reduces to the

achievable rate region in Proposition 5.3.1 described in Section 5.3.1. To see this, fix

input pmfs p(x1) and p(x2). The set of rate pairs satisfying (5.9) or (5.10) for a = 1 is

equivalent to the rate region RL(X1,X2).

As a corollary of Proposition 5.4.1, we can come up with a smaller rate region

achievable by random homologous codes that is easier to compute. As we will discuss

in the next section, however, this smaller achievable rate region combined with channel

transformation gives rise to the achievability of the capacity region. Let B denote the

set of rank deficient k × k matrices over Fq that is not row equivalent3 to a diagonal

matrix. Note that B ⊂ A. Given a matrix A ∈ B, a set J ∈ D(A), and input pmfs

p(x1), p(x2), . . . , p(xk), we define the rate region R̃(A,J ,Xk) as the set of rate tuples

(R1, R2, . . . , Rk) satisfying

∑

j∈J

Rj < H(X(J ))− min
S∈D(A)

H(X(S)|Y ).

3Two matrices are row equivalent if one can be obtained from the other by a sequence of elementary
row operations.
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Given input pmfs p(x1), p(x2), . . . , p(xk), we define the rate region

RL(X
k) =

⋂

A∈B

⋃

J∈D(A)

R̃(A,J ,Xk). (5.11)

Corollary 5.4.1 (Shaping–Extension of Proposition 5.3.1 to k senders). A rate tuple

(R1, R2, . . . , Rk) is achievable by random homologous codes in Fq for the finite-field input

DM-MAC p(y|x1, x2, . . . , xk), if

(R1, R2, . . . , Rk) ∈ RMAC(X
k) ∩RL(X

k)

for some input pmfs p(x1), p(x2), . . . , p(xk).

We first revisit the 2-sender case with Corollary 5.4.1 and then provide a proof

for Corollary 5.4.1.

Remark 5.4.3 (Revisit of the 2-sender DM-MAC with Corollary 5.4.1). For the case

k = 2, the achievable rate region in Corollary 5.4.1 reduces to the achievable rate region

in Proposition 5.3.1. To see this, fix input pmfs p(x1) and p(x2). A rank-deficient 2× 2

matrix over Fq that is not row equivalent to a diagonal matrix must be row equivalent to

a matrix of the form







a1 a2

0 0







for some nonzero a1 and a2 over Fq. Then, for every such matrix A, D(A) = {{1}, {2}}.

Therefore, the rate region RL(X1,X2) defined in (5.11) is the set of rate pairs (R1, R2)

such that

R1 < H(X1)−min{H(X1 |Y ),H(X2 |Y )}

or

R2 < H(X2)−min{H(X1 |Y ),H(X2 |Y )},
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which is equivalent to the rate region RL(X1,X2) defined in Section 5.3.1.

Proof of Corollary 5.4.1. We will show that given input pmfs p(x1), p(x2), . . . , p(xk)

(RMAC(X
k) ∩RL(X

k)) ⊆
⋂

A∈A

⋃

J∈D(A)

R(A,J ,Xk),

by first showing that

RMAC(X
k) =

⋂

A∈A\B

⋃

J∈D(A)

R(A,J ,Xk),

and then showing that

RL(X
k) ⊆

⋂

A∈B

⋃

J∈D(A)

R(A,J ,Xk).

To prove the first claim, let A be a rank-deficient k× k matrix that is row equivalent to

a diagonal matrix D (i.e., A ∈ A \ B), and let J be the set of indices such that j ∈ J

if Djj = 0. Then, by Lemma 5.G.1 in Appendix 5.G, D(A) = J and R(A,J ,Xk) is

reduced to the set of rate tuples (R1, R2, . . . , Rk) satisfying

∑

j∈J

Rj < I(X(J );Y,X(J c)).

Taking the intersection over all A ∈ A \ B proves the first claim. For the second claim,

it suffices to show that given a matrix A ∈ B and a set J ∈ D(A)

R̃(A,J ,Xk) ⊆ R(A,J ,Xk).

Now, a rate tuple (R1, R2, . . . , Rk) ∈ R̃(A,J ,Xk) satisfies

∑

j∈J

Rj < H(X(J ))− min
S∈D(A)

H(X(S)|Y )
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≤ H(X(J ))− min
S∈D(A)

H(X(S)|Y,WA)

(a)
= H(X(J ))−H(X(J )|Y,WA),

= I(X(J );Y,WA),

where (a) follows sinceH(X(J )|Y,WA) = H(Xk|Y,WA) is constant for every J ∈ D(A).

Therefore, we have (R1, R2, . . . , Rk) ∈ R(A,J ,Xk), which completes the proof.

5.4.2 Combination

We incorporate channel transformation into random homologous codes to prove

the achievability of the capacity region of the k-sender DM-MAC. Similar to the idea

discussed in Section 5.3.2, we can simply transform the channel p(y|x1, x2, . . . , xk) into

a virtual channel with finite-field inputs

p(y |v1, v2, . . . , vk) = pY |X1,X2,...,Xk
(y |ϕ1(v1), ϕ2(v2), . . . , ϕk(vk)) (5.12)

for some symbol-by-symbol mappings ϕj : Fq → Xj, j ∈ [k].

Now, consider the virtual channel in (5.12) and random homologous codes for

this channel. Then, Corollary 5.4.1 implies the following.

Proposition 5.4.2. A rate tuple (R1, R2, . . . , Rk) is achievable by random homologous

codes in Fq for the DM-MAC p(y|x1, x2, . . . , xk), if

(R1, R2, . . . , Rk) ∈ RMAC(X
k) ∩RL(V

k)

for some p(v1), p(v2), . . . , p(vk) on Fq and some mappings x1 = ϕ1(v1), x2 = ϕ2(v2), . . .,

xk = ϕk(vk), where RL(V
k) is the set of rate tuples (R1, R2, . . . , Rk) satisfying (5.11)

for the virtual channel p(y|v1, v2, . . . , vk).

We are now ready to extend Theorem 5.3.1 to the k-sender case, which follows

from Proposition 5.4.2 by optimizing over all channel transformations.
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Theorem 5.4.1 (Combination). A rate tuple (R1, R2, . . . , Rk) is achievable by random

homologous codes in some finite field for the DM-MAC p(y|x1, x2, . . . , xk), if

(R1, R2, . . . , Rk) ∈ RMAC(X
k)

for some p(x1), p(x2), . . . , p(xk).

Proof. We follow similar arguments to the proof of Theorem 5.3.1 and show that given in-

put pmfs p(x1), p(x2), . . . , p(xk), there exists a finite field Fq, pmfs p(v1), p(v2), . . . , p(vk)

on Fq, and mappings x1 = ϕ1(v1), x2 = ϕ2(v2), . . . , xk = ϕk(vk) such that

RMAC(X
k) ⊆ RL(V

k). (5.13)

First, suppose that p(xj), j ∈ [k], are of the form i/ρm for some i,m ∈ Z+

and prime ρ. We consider random homologous codes over Fq with q = ρk
km. Let

qj = ρk
(k−j+1)m for j ∈ [k] and note that

Fqk ⊂ Fqk−1
⊂ · · · ⊂ Fq1 = Fq.

Consider Vj ∼ Unif(Fqj), and ϕj such that ϕj(Vj)
d
= Xj for j ∈ [k] (this is possible

due to the form of p(xj) and by the choice of qj). To see (5.13), it suffices to show

that for every matrix A ∈ B, RMAC(X
k) ⊆ ∪J∈D(A)R̃(A,J , V k). Consider a rate tuple

(R1, R2, . . . , Rk) ∈ RMAC(X
k) and a matrix A ∈ B. By Lemma 5.G.1 (see Appendix 5.G)

and by the choice of p(vj), there exist at least two different sets J1,J2 ∈ D(A) such that

H(V (J1))−H(V (J2)) ≥ k log ρm ≥ H(Xk).

Then, (R1, R2, . . . , Rk) satisfies

∑

j∈J1

Rj < H(Xk)
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≤ H(V (J1))−H(V (J2))

≤ H(V (J1))− min
S∈D(A)

H(V (S))

≤ H(V (J1))− min
S∈D(A)

H(V (S)|Y ),

which implies that (R1, R2, . . . , Rk) ∈ R̃(A,J1, V k). The claim follows since A is an

arbitrary set in B. The restrictions on the input pmfs can be removed again by the

denseness argument.

5.5 Multiple-Receiver Multiple Access Channels

We consider the two-receiver DM-MAC p(y1, y2|x1, x2), where each sender wishes

to convey its own message to both of the receivers. Given input pmfs p(x1) and p(x2),

define R
(1)
MAC(X1,X2) as the set of rate pairs satisfying

R1 ≤ I(X1;Y1 |X2),

R2 ≤ I(X2;Y1 |X1),

R1 +R2 ≤ I(X1,X2;Y1),

and R
(2)
MAC(X1,X2) as the set of rate pairs satisfying

R1 ≤ I(X1;Y2 |X2),

R2 ≤ I(X2;Y2 |X1),

R1 +R2 ≤ I(X1,X2;Y2).

The following proposition then characterizes the achievable rate region by random ho-

mologous codes.

Proposition 5.5.1 (Extension of Theorem 5.3.1 to two-receiver). A rate pair (R1, R2) is

achievable by random homologous codes in some finite field for the two-receiver DM-MAC
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p(y1, y2|x1, x2), if

(R1, R2) ∈ R
(1)
MAC(X1,X2) ∩R

(2)
MAC(X1,X2)

for some pmfs p(x1) and p(x2).

Proof. The achievable rate region depends on the conditional pmf p(y1, y2|x1, x2) only

through the conditional marginal pmfs p(y1|x1, x2) and p(y2|x1, x1). First suppose that

p(x1) and p(x2) are of the form (5.8). We consider random homologous codes over Fq

with q = ρ2m. Choose V1 and ϕ1 such that V1 and ϕ1(V1)
d
= X1 are one-to-one on the

support of V1 (this is always possible since q ≥ ρm). Also choose V2 ∼ Unif(Fq) and ϕ2

such that ϕ2(V2)
d
= X2 (this is possible due to the form of p(x2)). By Proposition 5.3.3,

the achievable rate region is

2
⋂

j=1

[R
(j)
MAC(X1,X2) ∩R

(j)
L (V1, V2)],

where R
(j)
L (V1, V2), j = 1, 2, is the set of rate pairs (R1, R2) satisfying (5.2) or (5.3)

for the virtual DM-MAC p(yj|v1, v2). The argument in the proof of Theorem 5.3.1

can be applied to both of the DM-MACs p(y1|x1, x2) and p(y2|x1, x2). As a result,

the rate region R
(j)
MAC(X1,X2) ∩ R

(j)
L (V1, V2), j = 1, 2, is equivalent to the rate region

R
(j)
MAC(X1,X2), which implies the claim. The restriction on the input pmfs can be

removed by the denseness argument.

As shown in the examples of the binary adder MAC, the binary erasure MAC,

and the on–off erasure MAC, the insufficiency of shaping or channel transformation for

single-receiver MACs can be overcome by time sharing. Indeed, either shaping or channel

transformation can achieve the corner points of RMAC(X1,X2) of a general DM-MAC

p(y|x1, x2). This is no longer the case for multiple receivers, however. As illustrated by

the following example, a proper combination of shaping and channel transformation can

strictly outperform shaping or channel transformation alone even when time sharing is

allowed only for the individual techniques.
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Example 5.5.1 (A two-receiver MAC). Let Y1 = X1 +X2 (binary erasure MAC), and

Y2 = (2X1 − 1) + Z(2X2 − 1) (on–off erasure MAC), where X1 = X2 = {0, 1} and

Z ∼ Bern(2/3) is independent of X1 and X2. The capacity region of this two-receiver

MAC is achieved by random coding with i.i.d. Bern(1/2) inputs X1 and X2, and is

sketched in Fig. 5.11a. Given input pmfs p(x1) and p(x2), the achievable rate region via

shaping in Proposition 5.3.1 (and Proposition 5.4.1) is

2
⋂

j=1

[R
(j)
MAC(X1,X2) ∩R

(j)
L (X1,X2)],

where R
(j)
L (X1,X2), j = 1, 2, is the set of rate pairs (R1, R2) satisfying (5.2) or (5.3) for

the DM-MAC p(yj|x1, x2). The union of this rate region over input pmfs p(x1) and p(x2)

is shown in Fig. 5.11b. Even after convexification via time sharing, it is strictly smaller

than the capacity region with the largest symmetric rate of 11/18, whereas the symmetric

capacity is 2/3. In comparison, we can combine shaping with channel transformation to

achieve the entire capacity region as follows. Consider random homologous codes over

F4 = {0, 1, α, α+1}. Let V1 ∼ Unif(F4) and V2 ∼ Bern(1/2) be independent. For channel

transformation, let xj = ϕ(vj) where ϕ(0) = ϕ(α) = 0, and ϕ(1) = ϕ(α + 1) = 1. By

this construction, X1 and X2 are i.i.d. Bern(1/2). Following similar steps to the proof of

Proposition 5.5.1, it is easy to see that the achievable rate region under this construction

is equivalent to R
(1)
MAC(X1,X2) ∩ R

(2)
MAC(X1,X2), which is the capacity region of this

channel since p(x1) and p(x2) are chosen as the capacity-achieving distributions. Thus,

combination of shaping with channel transformation not only achieves higher rates than

the shaping technique alone, but also achieves the capacity region without the need for

time sharing.

Remark 5.5.1. Proposition 5.5.1 can be extended to k-sender and r-receiver DM-MACs

and compound MACs via the proof of Theorem 5.4.1.
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Figure 5.11. The two-receiver MAC in Example 5.5.1.

5.6 Gaussian Multiple Access Channels

Consider the 2-sender Gaussian MAC model

Y = g1X1 + g2X2 + Z,

with channel gains g1 and g2, additive noise Z ∼ N(0, 1), and average power constraints

∑n
i=1 x

2
ji(mj) ≤ nP for j = 1, 2. Let Sj = g2jP , j = 1, 2. The following theorem

establishes the achievability of the capacity region of the Gaussian MAC by random

homologous codes.

Theorem 5.6.1 (Gaussian MACs). A rate pair (R1, R2) is achievable by random ho-

mologous codes in some finite field for the 2-sender Gaussian MAC, if

R1 ≤ C(S1),

R2 ≤ C(S2),

R1 +R2 ≤ C(S1 + S2),

where C(x) = (1/2) log(1 + x), x ≥ 0, is the Gaussian capacity function.

Proof. Theorem 5.6.1 can be proved using the discretization argument in [6, Section

3.4.1] together with the achievability proof for the 2-sender DM-MAC by random ho-
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mologous codes. The proof along this line, however, needs two limit arguments—one

for approximating a Gaussian random variable by a discrete random variable, and one

for approximating the resulting pmf on a finite alphabet to the desired form in (5.8).

We instead provide a simpler proof via a discretization mapping that results in a pmf of

desired form in (5.8) and thus eliminates one of the limit arguments.

Let X1 and X2 be i.i.d. N(0, P ). For every j = 1, 2, . . ., let [X1]j ∈ {F−1
X1

(i/2j) :

i ∈ [2j − 1]} be a quantized version of X1 obtained by mapping X1 to the closest point

[X1]j such that |[X1]j | ≤ |X1|, where FX1(x) denotes the cdf of random variable X1.

Clearly, E([X1]
2
j ) ≤ E(X2

1 ) = P and the pmf of [X1]j is of the form r/2j for some positive

integer r. Define [X2]j in a similar manner. Let Yj = g1[X1]j+g2[X2]j+Z be the output

corresponding to the input pair [X1]j and [X2]j, and let [Yj ]k be a quantized version of

Yj defined in the same manner. Now, by the achievability proof of Theorem 5.3.1, for

every j, k, random homologous codes over Fq with q = 22j can achieve the rate pair

satisfying

R1 ≤ I([X1]j ; [Yj ]k |[X2]j),

R2 ≤ I([X2]j ; [Yj ]k |[X1]j),

R1 +R2 ≤ I([X1]j , [X2]j ; [Yj ]k).

By this type of discretization, weak convergence of [X1]j to X1 and [X2]j to X2 is

preserved, and ([Yj]k − Yj) tends to 0 as k → ∞. Therefore, one can follow the same

steps in the proof of [6, Lemma 3.2] to show that

lim inf
j→∞

lim
k→∞

I([X1]j ; [Yj ]k |[X2]j) ≥ I(X1;Y |X2),

lim inf
j→∞

lim
k→∞

I([X2]j ; [Yj ]k |[X1]j) ≥ I(X2;Y |X1),

lim inf
j→∞

lim
k→∞

I([X1]j , [X2]j; [Yj ]k) ≥ I(X1,X2;Y ),

which establishes the claim.
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Remark 5.6.1. It is straightforward to extend the discretization argument described for

the 2-sender Gaussian MAC to the k-sender case. Therefore, the capacity region of a

Gaussian MAC in general is achievable by random homologous codes.

5.7 Simultaneous Computation and Communication Over

Multiple Access Channels

In the previous sections, we have investigated the performance of homologous

codes—which were originally proposed for computing linear combinations of the trans-

mitted codewords—for message communication over MACs. One immediate question

arising from our investigations is whether one can use homologous codes for computation

and communication at the same time. To be more specific, consider a multiple-receiver

MAC in which some receiver wishes to recover a desired linear combination of codewords

(computation) while another receiver wishes to recover the messages themselves (com-

munication). In this section, we demonstrate how random homologous codes discussed

thus far can be adapted to simultaneously achieve such competing goals, highlighting

the potential of homologous codes for a broader class of applications beyond multiple

access communication.

Consider the two-sender two-receiver DM-MAC p(y1, y2|x1, x2) with finite-field

inputs X1 = X2 = Fq, in which the first receiver wishes to recover a desired linear

combination of codewords in Fq

W n
a = a1X

n
1 ⊕ a2Xn

2

for a given a 6= 0 ∈ F2
q, as formally defined in Chapter 3, and the second receiver wishes to

recover the messages themselves. We refer to this channel as the compute-communicate

DM-MAC.

We start with the performance of random i.i.d. codes. Given an input pmf
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p = p(x1)p(x2), let R
(j)
MAC(X1,X2), j = 1, 2, denote the pentagonal region in (5.1) eval-

uated for the DM-MAC p(yj|x1, x2) and let R
(1)
TIN(X1,X2,a) denote the rate region in

(3.31) evaluated for the DM-MAC p(y1|x1, x2). We can define the achievability by p-

distributed random i.i.d. codes for the compute-communicate DM-MAC p(y1, y2|x1, x2)

in a similar manner to Section 3.5. The following achievability result follows from Propo-

sition 3.5.1 and the fact that the rate region R
(j)
MAC(X1,X2) is achievable for the DM-

MAC p(yj|x1, x2) by random i.i.d. codes, which was proved in [].

Corollary 5.7.1 (i.i.d. codes for compute-communicate). Given a pmf p = p(x1)p(x2)

and a 6= 0 ∈ F2
q, a rate pair (R1, R2) is achievable by p-distributed random i.i.d. codes

for the compute-communicate DM-MAC p(y1, y2|x1, x2) if

(R1, R2) ∈ [R
(1)
TIN

(X1,X2,a) ∪R
(1)
MAC(X1,X2)] ∩R

(2)
MAC(X1,X2).

We then return back to our discussion on random homologous codes. Proposi-

tions 5.3.1 and 3.2.1 imply the following.

Corollary 5.7.2 (Homologous codes for compute-communicate). Given a pmf p =

p(x1)p(x2) and a 6= 0 ∈ F2
q, a rate pair (R1, R2) is achievable by random homologous

codes for the compute-communicate DM-MAC p(y1, y2|x1, x2) if it is included in

R
(1)
CF(X1,X2,a) ∩R

(2)
MAC(X1,X2) ∩R

(2)
L (X1,X2), (5.14)

where R
(1)
CF(X1,X2,a) denotes the compute–forward rate region defined in (3.8) evaluated

for the DM-MAC p(y1|x1, x2) with the input pmfs p(x1) and p(x2).

Indeed, it is possible to construct homologous codes over the extension field Fqr

for some positive integer r to enlarge the achievable rate region in Corollary 5.7.2. By

allowing extension fields Fqr for some positive integer r in the channel transformation

step, we get the following.
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Corollary 5.7.3 (Homologous codes over extension fields). Given a pmf p = p(x1)p(x2)

and a 6= 0 ∈ F2
q, a rate pair (R1, R2) is achievable by random homologous codes for the

compute-communicate DM-MAC p(y1, y2|x1, x2) if it is included in

R
(1)
CF(U1, U2,a) ∩R

(2)
MAC(X1,X2) ∩R

(2)
L (U1, U2), (5.15)

for some input pmfs p(u1) and p(u2) over Fqr for r ∈ Z+ and for some mapping ϕ :

Fqr → Fq such that

x1 = ϕ(u1), x2 = ϕ(u2),

and

ϕ(a1u1 ⊕ a2u2) = a1ϕ(u1)⊕ a2ϕ(u2).

The results presented thus far in this section can be extended to arbitrary number

of senders and receivers. As an example, we consider simultaneous computation and

communication over a two-sender three-receiver DM-MAC and illustrate that random

homologous codes, combined with carefully chosen channel transformation, outperform

random i.i.d. codes as well as random homologous codes without channel transformation.

Example 5.7.1. Consider the compute-communicate DM-MAC p(y1, y2, y3|x1, x2), in

which X1 = X2 = {0, 1} and

Y1 = X1 ⊕X2, (binary adder MAC)

Y2 = X1 +X2, (binary erasure MAC)

Y3 = (2X1 − 1) + Z(2X2 − 1), (on–off erasure MAC)

where Z ∼ Bern(2/3) is independent of X1 and X2. Receiver 1 wishes to recover M1⊕M2

over a binary field F2, whereas both receivers 2 and 3 wish to recover the message pair

(M1,M2).

We now compare achievable rates by different class of codes.
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1. Random i.i.d. codes: Corollary 5.7.1 implies that a rate pair (R1, R2) is achiev-

able if it is included in the intersection of the capacity regions of the DM-MACs

p(y1|x1, x2), p(y2|x1, x2), and p(y3|x1, x2), any one of which is achieved by i.i.d.

Bern(1/2) inputs X1 and X2, and so is the intersection. Fig. 5.12a sketches the

rate region. In particular, the largest possible symmetric rate achievable by random

i.i.d. codes is 1/2.

2. Binary random homologous codes: Corollary 5.7.2 implies that for any given

input pmfs p(x1) and p(x2) over F2, a rate pair (R1, R2) is achievable if it is

included in

R
(1)
CF(X1,X2, [1 1]) ∩

3
⋂

j=2

[R
(j)
MAC(X1,X2) ∩R

(j)
L (X1,X2)]. (5.16)

Note that the rate region R
(1)
CF(X1,X2, [1 1]) is larger than the rest of the terms in

(5.16) for any given input pmfs p(x1) and p(x2). Taking the union of the rate region

in (5.16) over the input pmfs results in the same rate region sketched earlier in

Fig. 5.11b for the two-receiver DM-MAC p(y2, y3|x1, x2) and is given in Fig. 5.12b

for comparison. Therefore, the largest achievable symmetric rate in this region is

3/5.

3. Quaternary random homologous codes: We are now allowed to use a larger

finite field via channel transformation, but we need to be more careful for the choice

of channel transformation because we have an additional receiver decoding for the

sum of virtual codewords rather than the messages themselves. Let U1 ∼ Unif(F4)

and

U2 =



































0 with probability 1−γ
2

1 with probability 1−γ
2

α with probability γ
2

α+ 1 with probability γ
2

,
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be independent for some γ chosen such that H(γ) ∈ [1/3, 2/3]. Let xj = ϕ(uj)

where ϕ(0) = ϕ(α) = 0, and ϕ(1) = ϕ(α + 1) = 1. By this construction, X1 and

X2 are i.i.d. Bern(1/2). By Corollary 5.7.3, for a given γ and the corresponding

pmf p(u1, u2, x1, x2), it is easy to see that a rate pair (R1, R2) is achievable if it

satisfies

R1 < 4/3 −H(γ),

R2 < H(γ).

Taking the union over γ such that H(γ) ∈ [1/3, 2/3] results in the rate region

sketched in Fig. 5.12c. Therefore, the largest achievable symmetric rate is 2/3,

which can be shown to be the symmetric capacity for this example.
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(a) Corollary 5.7.1.

R2

R1

2
3

1
3

1
2

1
2 15

6
4
9

(b) Corollary 5.7.2.
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(c) Corollary 5.7.3.

Figure 5.12. Achievable rate regions for the compute-communicate MAC in Example 5.7.1.

5.8 Discussion

In this chapter, we examined the possibility of reestablishing the well-known

achievable rate regions by random code ensembles for the MACs by using structured,

homologous codes. We identified two key techniques to employ nonuniform codewords

while preserving a similar structure across the codes of users. The analysis tools devel-

oped for these techniques, shaping and channel transformation, imply that their individ-

ual performance is insufficient. It is unclear, however, whether there is a fundamental
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limitation behind each technique. As a constructive alternative to these two techniques

and their limits, we showed that an appropriately designed combination of the two can

establish the performance of random code ensembles. This development and its general-

ization to multiple senders and receivers motivate further research into the potential of

homologous coding in network information theory.

5.A A Proposition on Coset Codes for the Binary Erasure

MAC

Proposition 5.A.1. For the binary erasure MAC, no pair of binary coset codes with

the same generator matrix can achieve the rate pair (1/2 + ǫ, 1/2 + ǫ) for ǫ > 0.

Proof. Let ǫ > 0 and R1 = R2 = R = 1/2 + ǫ. Suppose without loss of generality that

nR ∈ Z+, and that the generator matrix G is a fixed full rank nR× n matrix and does

not have an all zero column. Let dn1 and dn2 be two arbitrary fixed binary coset sequences

of length n. The messages M1 and M2 are assumed to be i.i.d. Unif(FnR
2 ). The received

sequence is then written as

Y n = (M1G⊕ dn1 ) + (M2G⊕ dn2 ).

Define Ỹi = (Yi) mod 2 for every i ∈ [n], which implies

Ỹ n = (M1 ⊕M2)G⊕ (dn1 ⊕ dn2 ).

Define the random set S(Ỹ n) = {i : Ỹi = 0}, and let the random variable N0 = |S(Ỹ n)|

denote the number of positions where sequence Ỹ n has 0. We construct a new (random)

matrix GS of size nR × N0 by including the columns gi of G for i ∈ S. Note that the

randomness in GS is only due to the randomness of the messages M1 and M2 because

the coset code parameters (G, dn1 , d
n
2 ) are arbitrarily fixed. Then, the decoder makes an
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error if the following event occurs

E = {N0 < nR}.

This observation follows from the fact that on E , the dimension of the null space of GT
S

is strictly larger than 0, so ∃ (m1,m2) 6= (M1,M2) such that (m1 ⊕M1)GS = 0 and

m1 ⊕m2 =M1 ⊕M2, which leads to the same received sequence Y n.

By the union of events bound, we have P
(n)
e ≥ P(E) = 1− P(Ec). To bound the

probability P(Ec), we define the coset code C = {xn ∈ Fn
2 : xn = mG⊕dn1⊕dn2 , m ∈ FnR

2 }.

Then, Ỹ n is uniformly distributed among C, and we have

P (Ec)
(a)

≤ E[N0]

nR

=

∑

xn∈C
P(Ỹ n = xn)wt((xn)c)

nR

=

∑

xn∈C
2−nRwt((xn)c)

nR
,

(b)
=

2−nR(n2nR−1)

nR
,

=
1

1 + 2ǫ
,

where function wt : Fn
2 → Z+ returns the Hamming weight of the input, (a) follows

from Markov’s inequality and (b) follows from the fact that for a binary coset code C,

at a given index, exactly half of the codewords have 0 and exactly half of the codewords

have 1 (remember that its generator matrix G has no all-zero column). It follows that

P
(n)
e ≥ 2ǫ

1+2ǫ , which proves the claim.
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5.B Equivalence of Two Rate Regions

Lemma 5.B.1. Given input pmfs p(x1) and p(x2), let the rate region R(X1,X2) consist

of the set of rate pairs (R1, R2) such that

min{R1 +H(X2), R2 +H(X1)} < H(X1) +H(X2)−min{H(X1 |Y ),H(X2 |Y )}.

The rate region R(X1,X2) is equivalent to the rate region RL(X1,X2) described in (5.2)

and (5.3).

Proof. It is easy to see that R(X1,X2) ⊆ RL(X1,X2). To see the other direction, let the

rate pair (R1, R2) ∈ RL(X1,X2) such that R1+H(X2) ≤ R2+H(X1). By the definition

of the rate region RL(X1,X2), we have

R1 +H(X2) ≤ max{H(X2) + I(X1;Y ),H(X1) + I(X2;Y )},

which implies that (R1, R2) ∈ R(X1,X2). Similarly, a rate pair (R1, R2) ∈ RL(X1,X2)

such that R2 + H(X1) ≤ R1 + H(X2) is in R(X1,X2). Therefore, RL(X1,X2) ⊆

R(X1,X2), from which the claim follows.

5.C The Binary Adder MAC

The Achievable Rate Region by Proposition 5.3.1

When specialized to the binary adder MAC, the achievable rate region in Propo-

sition 5.3.1 is reduced to the rate pairs (R1, R2) such that

R1 < I(X1;Y ),

R2 < I(X2;Y |X1) = H(X2),
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or

R1 < I(X1;Y |X2) = H(X1),

R2 < I(X2;Y ),

for some input pmfs p(x1) and p(x2), which is equivalent to the capacity region depicted

in Fig. 5.2a. To see this, let α ∈ [0, 1/2], and consider X1 ∼ Bern(α) and X2 ∼ Bern
(

1
2

)

.

Then, the rate pairs (R1, R2) that satisfy

R1 < H(α),

R2 < 1−H(α)

are achievable, where H(α) denotes the binary entropy function defined in Section 2.1.

Since H(α) is continuous on α, taking the union over α ∈ [0, 1/2] implies that every

point within the capacity region is achievable by the shaping technique. It follows from

the converse proof for the capacity region of the binary adder MAC that the achievable

rate region in Proposition 5.3.1 (over all input pmfs) is indeed equivalent to the capacity

region.

5.D The Binary Erasure MAC

The Achievable Rate Region by Proposition 5.3.1

For the binary erasure MAC, we will evaluate the rate region in Proposition 5.3.1.

Let α, β ∈ [0, 1/2], and consider X1 ∼ Bern(α) and X2 ∼ Bern(β). By Proposition 5.3.1,

the set of rate pairs (R1, R2) such that

R1 < I(X1;Y ) = f(α, β),

R2 < I(X2;Y |X1) = H(β),
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or

R1 < I(X1;Y |X2) = H(α),

R2 < I(X2;Y ) = f(β, α),

is achievable, where the function f : [0, 1/2] × [0, 1/2] → R is defined as

f(x, y) = H(x)− y(1− x) log
(

1 +
x

1− x
1− y
y

)

− x(1− y) log
(

1 +
1− x
x

y

1− y

)

.

(5.17)

Since f(x, y) is increasing on x for any y ∈ [0, 1/2], the union of such regions over

α, β ∈ [0, 1/2] is the set of rate pairs (R1, R2) satisfying

R1 < 1− H(α)

2
,

R2 < H(α),

or

R1 < H(α),

R2 < 1− H(α)

2
,

for some α ∈ [0, 1/2]. By the fact that H(α) ∈ [0, 1] is continuous on α, this union is

equivalent to the union of two trapezoids defined by

R2 < 1,

2R1 +R2 < 2,

and

R1 < 1,
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R1 + 2R2 < 2,

which proves the claim.

The Achievable Rate Region by Corollary 5.3.1

For the binary erasure MAC, we will evaluate the rate region in Corollary 5.3.1.

Let α, β ∈ [0, 1/2], and consider X1 ∼ Bern(α) and X2 ∼ Bern(β). By Corollary 5.3.1,

the set of rate pairs (R1, R2) such that

R1 < min{I(X1;Y |X2),max[I(X1;Y ), I(X2;Y )]}

= min{H(α),max[f(α, β), f(β, α)]},

R2 < I(X2;Y |X1) = H(β),

R1 +R2 < I(X1,X2;Y )

= H(α) + f(β, α) = H(β) + f(α, β),

(5.18)

or

R1 < I(X1;Y |X2) = H(α),

R2 < min{I(X2;Y |X1),max[I(X1;Y ), I(X2;Y )]}

= min{H(β),max[f(α, β), f(β, α)]},

R1 +R2 < I(X1,X2;Y )

= H(α) + f(β, α) = H(β) + f(α, β),

(5.19)

is achievable, where the function f is as defined in (5.17). First, consider the union of

such regions over α, β ∈ [0, 1/2] such that α ≥ β (or equivalently f(α, β) ≥ f(β, α)),

which results in the rate region defined by

R1 < f(α, β),

R2 < H(β),
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or

R1 < H(α),

R2 < min{H(β), f(α, β)},

R1 +R2 < H(β) + f(α, β),

for some α, β ∈ [0, 1/2] such that α ≥ β. Since f(x, y) is increasing over x for any

y ∈ [0, 1/2], the resulting region consists of the rate pairs (R1, R2) satisfying

R1 < f(1/2, β) = 1− H(β)

2
,

R2 < H(β),

(5.20)

or

R1 < 1,

R2 < min{H(β), 1 − H(β)

2
},

R1 +R2 < 1 +
H(β)

2
,

(5.21)

for some β ∈ [0, 1/2]. The union of the rate region defined in (5.20) over β ∈ [0, 1/2] is

equivalent to the trapezoid defined by R2 < 1, and 2R1 +R2 < 2. The union of the rate

region defined in (5.21) over β ∈ [0, 1/2] is clearly included in the trapezoid defined by

R1 < 1, R1 + 2R2 < 2.

By similar arguments, the union of the rate region defined in (5.18) and (5.19)

over α, β ∈ [0, 1/2] such that β ≥ α, is reduced to the rate pairs (R1, R2) such that

R1 < min{H(α), 1 − H(α)

2
},

R2 < 1,

R1 +R2 < 1 +
H(α)

2
,
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or

R1 < H(α),

R2 < 1− H(α)

2
,

for some α ∈ [0, 1/2]. By symmetry, the overall achievable rate region in Corollary 5.3.1

is equivalent to the union of two trapezoids defined by R2 < 1, 2R1+R2 < 2 and R1 < 1,

R1 + 2R2 < 2.

5.E The On–off Erasure MAC

The Achievable Rate Region by Proposition 5.3.1

For the on–off erasure MAC, we will evaluate the achievable rate region in Propo-

sition 5.3.1. If the channel parameter p ≤ 2/3, it is easy to see that i.i.d. Bern(1/2)

inputs X1 and X2 can achieve the capacity region in Fig. 5.6a. Suppose that p > 2/3.

Let α, β ∈ [0, 1/2], and consider X1 ∼ Bern(α) and X2 ∼ Bern(β). Then, by Proposi-

tion 5.3.1, the set of rate pairs (R1, R2) such that

R1 < I(X1;Y ) = (1− p)H(α) + pf(α, β),

R2 < I(X2;Y |X1) = pH(β),

(5.22)

or

R1 < I(X1;Y |X2) = H(α),

R2 < min{I(X2;Y |X1),H(X2)−H(X1) + I(X1;Y )}

= min{pH(β), (1 − p)H(β) + pf(β, α)},

R1 +R2 < H(α) + pf(β, α),

(5.23)

is achievable, where function f is as defined in (5.17). First, consider the union of the

rate region defined in (5.22) over α, β ∈ [0, 1/2]. Since f(x, y) is increasing on x for every
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y ∈ [0, 1/2], the union is equivalent to the set of rate pairs (R1, R2) satisfying

R1 < 1− p+ p

(

1− H(β)

2

)

= 1− pH(β)

2
,

R2 < pH(β),

for some b ∈ [0, 1/2], that reduces to the trapezoid defined by R2 < p and 2R1 +R2 < 2.

Second, we consider the union of the rate region defined in (5.23) over α, β ∈

[0, 1/2]. By similar arguments, the union is equivalent to the set of rate pairs (R1, R2)

such that

R1 < H(α),

R2 < min{p, 1− pH(α)

2
},

R1 +R2 < p+H(α)
(

1− p

2

)

,

for some α ∈ [0, 1/2], that is equivalent to the hexagon defined by R1 < 1, R2 < p,

R1 +R2 < 1 + p/2, and (p/2)R1 +R2 < 1− (p/2) + (p2)/2.

The Achievable Rate Region by Corollary 5.3.1

For the on–off erasure MAC, we will evaluate the achievable rate region in Corol-

lary 5.3.1. Again, if the channel parameter p ≤ 2/3, it is easy to see that i.i.d. Bern(1/2)

inputsX1 andX2 can achieve the capacity region in Fig. 5.6a. Suppose that p > 2/3. Let

α, β ∈ [0, 1/2], and consider X1 ∼ Bern(α) and X2 ∼ Bern(β). Then, by Corollary 5.3.1,

the set of rate pairs (R1, R2) such that

R1 < I(X1;Y |X2) = H(α), (5.24a)

R1 < max{I(X1;Y ), I(X2;Y )} (5.24b)

= max{pf(α, β) + (1− p)H(α), pf(β, α)},

R2 < I(X2;Y |X1) = pH(β), (5.24c)
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R1 +R2 < I(X1,X2;Y ) = H(α) + pf(β, α), (5.24d)

or

R1 < I(X1;Y |X2) = H(α),

R2 < I(X2;Y |X1) = pH(β),

R2 < max{I(X1;Y ), I(X2;Y )}

= max{pf(α, β) + (1− p)H(α), pf(β, α)},

R1 +R2 < I(X1,X2;Y ) = H(α) + pf(β, α),

(5.25)

is achievable, where the function f is as defined in (5.17). First, consider the union of the

rate region defined in (5.24) over α, β ∈ [0, 1/2] such that H(α) > pH(β) (or equivalently

pf(α, β) + (1 − p)H(α) > pf(β, α)). Then, the inequalities in (5.24a) and (5.24d) are

inactive. Since f(x, y) is increasing on x for every y ∈ [0, 1/2], the union is equivalent to

the set of rate pairs (R1, R2) satisfying

R1 < p

(

1− H(β)

2

)

+ (1− p) = 1− pH(β)

2
,

R2 < pH(β),

for some β ∈ [0, 1/2], that reduces to the trapezoid defined by R2 < p and 2R1+R2 < 2.

It is easy to see that the union of the rate region defined in (5.24) over α, β ∈ [0, 1/2]

such that H(α) ≤ pH(β) is included in this trapezoid.

Second, we consider the union of the rate region defined in (5.25) over α, β ∈

[0, 1/2] such that H(α) > pH(β). By similar arguments, the union is equivalent to the

set of rate pairs (R1, R2) such that

R1 < 1,

R2 < min{pH(β), 1 − pH(β)

2
},
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R1 +R2 < 1 +
p

2
H(β),

for some β ∈ [0, 1/2], that is equivalent to the hexagon defined by R1 < 1, R2 < 2/3,

R1 + R2 < 1 + p/2, and R1 + 2R2 < 2. Finally, it is easy to see that the union of the

rate region defined in (5.25) over α, β ∈ [0, 1/2] such that H(α) ≤ pH(β) is equivalent

to the trapezoid defined by R1 < p and (p/2)R1 +R2 < p.

5.F Proof of Proposition 5.3.2

We use a pair of (n, nR1,Fq) and (n, nR2,Fq) random coset code ensembles

constructed for the virtual channel p(y|v1, v2) as follows. A generator matrix G ∈

F
nmax{R1,R2}×n
q and coset sequences Dn

1 and Dn
2 are randomly generated by drawing

each entry i.i.d. Unif(Fq). Given the realizations of G, dn1 and dn2 , for every message

mj ∈ F
nRj
q , encoder j = 1, 2 then assigns

vnj (mj) = [mj 0n(max{R1,R2}−Rj)]G+ dnj .

Upon receiving yn, the decoder first fixes an ǫ > 0 and then searches a unique pair of

(m̂1, m̂2) such that (vn1 (m̂1), v
n
2 (m̂2), y

n) ∈ T (n)
ǫ (V1, V2, Y ), where V1 and V2 are i.i.d.

Unif(Fq). If the decoder finds the unique pair, then it declares that (m̂1, m̂2) was trans-

mitted. Otherwise, it declares error. Assume that (M1,M2) is the transmitted message

pair. We bound the probability of error E[P
(n)
e ] averaged over (M1,M2) and (G,Dn

1 ,D
n
2 ).

The code construction is symmetric with respect to the transmitted message pair. There-

fore, E[P
(n)
e ] = E[P

(n)
e |(M1,M2) = (0,0)] and without loss of generality, we can assume

that (M1,M2) = (0,0). The decoder makes an error only if one or more of the following

events occur:

E1 = {(V n
1 (0), V n

2 (0), Y n) /∈ T (n)
ǫ (V1, V2, Y )},

E2 = {(V n
1 (0), V n

2 (m2), Y
n) ∈ T (n)

ǫ (V1, V2, Y ) for some m2 6= 0},
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E3 = {(V n
1 (m1), V

n
2 (0), Y n) ∈ T (n)

ǫ (V1, V2, Y ) for some m1 6= 0},

E4 = {(V n
1 (m1), V

n
2 (m2), Y

n) ∈ T (n)
ǫ (V1, V2, Y ) for some m1 6= 0,m2 6= 0 such that

[m1 0] and [m2 0] are linearly independent},

E5 = {(V n
1 (m1), V

n
2 (m2), Y

n) ∈ T (n)
ǫ (V1, V2, Y ) for some m1 6= 0,m2 6= 0 such that

[m1 0] and [m2 0] are linearly dependent}.

Thus, by the union of events bound, E[P
(n)
e ] ≤ ∑5

k=1 P(Ek). Since V n
1 (0) = Dn

1 and

V n
2 (0) = Dn

2 are i.i.d. Unif(Fn
q ) and independent from each other, by the law of large num-

bers, P(E1
∣

∣(M1,M2) = (0,0)) tends to zero as n→∞. For the second term, note that for

m2 6= 0, V n
2 (m2) ∼

∏n
i=1 pV2(v2i) is independent of (V n

1 (0), Y n) ∼ ∏n
i=1 pV1,Y (v1i, yi).

Hence, by the packing lemma in [6, Section 3.2], P(E2) tends to zero as n → ∞ if

R2 ≤ I(V2;V1, Y ) − δ(ǫ). Changing the role of sender 1 and 2, P(E3) tends to zero as

n→∞ if R1 ≤ I(V1;V2, Y )−δ(ǫ). For the forth term, note that ifm1 6= 0 andm2 6= 0 are

linearly independent, then by [5, Lemma 14], (V n
1 (m1), V

n
2 (m2)) ∼

∏n
i=1 pV1(v1i)pV2(v2i);

i.e., linear independence implies statistical independence. Moreover, in this case, the pair

(V n
1 (m1), V

n
2 (m2)) is independent from the tuple (V n

1 (0), V n
2 (0), Y n). Hence, again by

the packing lemma P(E4) tends to zero as n→∞ if R1 +R2 ≤ I(V1, V2;Y )− δ(ǫ).

Due to linear dependency among V n
1 (m1) and V

n
2 (m2), to bound the last term,

we will use a similar technique in Lemma 5.3.1. Define the rate R = min{R1, R2} and

the set

D = {(m1,m2) ∈ F
nR1
q × F

nR2
q : [m1 0] 6= 0 and [m2 0] 6= 0 are linearly dependent}.

Then,

P(E5) = P((V n
1 (m1), V

n
2 (m2), Y

n) ∈ T (n)
ǫ (V1, V2, Y ) for some (m1,m2) ∈ D)

(a)

≤
∑

(m1,m2)∈D

P((V n
1 (m1), V

n
2 (m2), Y

n) ∈ T (n)
ǫ (V1, V2, Y ))
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≤
∑

(m1,m2)∈D

P((V n
2 (m2), Y

n) ∈ T (n)
ǫ (V2, Y ))

=
∑

(m1,m2)∈D

∑

(vn2 ,y
n)∈T

(n)
ǫ (V2,Y )

P(V n
2 (m2) = vn2 , Y

n = yn)

=
∑

(m1,m2)∈D

∑

(vn2 ,yn)∈

T
(n)
ǫ (V2,Y )

∑

ṽn1 ∈F
n
q ,

ṽn2 ∈Fnq

P(V n
2 (m2) = vn2 , Y

n = yn, V n
1 (0) = ṽn1 , V

n
2 (0) = ṽn2 )

=
∑

(m1,m2)∈D

∑

(vn
2
,yn)∈

T
(n)
ǫ (V2,Y )

∑

ṽn
1
∈Fnq ,

ṽn
2
∈Fnq

P([m2 0]G +Dn
2 = vn2 ,D

n
1 = ṽn1 ,D

n
2 = ṽn2 , Y

n = yn)

(b)
=

∑

(m1,m2)∈D

∑

(vn
2
,yn)∈

T
(n)
ǫ (V2,Y )

∑

ṽn
1
∈Fnq ,

ṽn
2
∈Fnq

P







[m2 0]G+Dn
2 = vn2 ,

Dn
1 = ũn1 ,D

n
2 = ṽn2






p(yn |ṽn1 , ṽn2 )

(c)
=

∑

(m1,m2)∈D

∑

(vn2 ,y
n)∈T

(n)
ǫ (V2,Y )

∑

ṽn
1
∈Fnq ,

ṽn2 ∈Fnq

q−3np(yn |ṽn1 , ṽn2 )

=
∑

(m1,m2)∈D

∑

(vn2 ,y
n)∈T

(n)
ǫ (V2,Y )

q−np(yn |ṽn1 , ṽn2 )

=
∑

(m1,m2)∈D

∑

yn∈T
(n)
ǫ (Y )

p(yn|ṽn1 , ṽn2 )
∑

vn2 ∈T
(n)
ǫ (V2|yn)

q−n

≤ |D| qn(H(V2|Y )+δ(ǫ))q−n

(d)

≤ qn(R−I(V2;Y )+δ(ǫ)),

where (a) follows by the union of events bound, (b) follows since under the assumption

that (M1,M2) = (0,0), the the triple G → (Dn
1 ,D

n
2 ) → Y n form a Markov chain, (c)

follows since m2 6= 0 and the entries of G,Dn
1 and Dn

2 are chosen i.i.d., and (d) follows

since H(V2) = 1 and |D| ≤ qqnR. By changing the order of V n
1 and V n

2 , we can conclude

that

P(E5) ≤ qn(R−max{I(V1;Y ),I(V2;Y )}+δ(ǫ)),

which tends to zero as n→∞ if R = min{R1, R2} < max{I(V1;Y ), I(V2;Y )} − δ(ǫ).
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Letting ǫ→ 0 yield that the rate pairs (R1, R2) is achievable if

R1 < I(V1;Y |X2),

R2 < I(V2;Y |X1),

R1 +R2 < I(V1, V2;Y ),

min{R1, R2} < max{I(V1;Y ), I(V2;Y )},

as claimed.

5.G A Variation of Steinitz Lemma

Lemma 5.G.1. Suppose that Z = {z1, z2, . . . , zr} is a set of linearly independent vectors

in a vector space V of dimension k > r, and W = {w1, w2, . . . , wk} span V . Let T ⊆W

be a set such that

i) |T | = k − r, and

ii) Z ∪ T span V .

(The existence of such T is guaranteed by the Steinitz Lemma in [10]). Then, for a given

set J ⊆W with |J | = r, T =W \J is the unique subset of W satisfying i) and ii) if and

only if span(Z) = span(J).

Proof. Let J ⊆W with |J | = r. First suppose that span(Z) = span(J). Then, it is easy

to see that T = W \ J is the only subset of W that satisfies i) and ii). Now, suppose

that T =W \ J is the unique subset of W that satisfies i) and ii). We will show that

span(Z) = span(J).

Both Z and J consist of r linearly independent vectors, so it suffices to show that for
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every w ∈ J , w ∈ span(Z). Let w ∈ J . Since Z ∪ T span V , we have

w =

r
∑

l=1

alzl +
∑

wi∈T

biwi. (5.26)

We want to show that bi = 0 for all wi ∈ T in (5.26). Assume to the contrary that

bm 6= 0 for some wm ∈ T . Then we can write wm as a linear combination of the

vectors in Z ∪ T \ {wm} ∪ {w}. Note that w 6= wm since J and T are disjoint. Thus,

T ′ := T \ {wm} ∪ {w} also satisfies i) and ii), which contradicts with the uniqueness of

T . The claim follows since w ∈ J is arbitrary.
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Chapter 6

Successive Gray–Wyner Network

A distributed source coding problem is introduced in which two encoders having

access to nested sets of discrete memoryless sources describe them to four decoders

via common and private channels. A single-letter characterization for the optimal rate

region of this problem is established. Lower boundaries on the optimal rate region are

investigated and a sufficient condition on the source distribution is provided to attain

these lower bounds. A relation to conditional Wyner’s common information is presented:

it arises as an answer to the minimum rate of common link such that more informed

encoder efficiently describes the sources when the strategy of less informed encoder is

fixed.

6.1 Introduction

Gray–Wyner network in Fig. 6.1 was first proposed as a distributed source coding

problem in [1], in which a pair of sequences (Xn
1 ,X

n
2 ) drawn i.i.d. from p(x1, x2) is

described by an encoder to two decoders via a common channel of rate R0 and two

private channels of rates R1 and R2, respectively, so that decoder d, d = 1, 2, having

the descriptions M0 ∈ [2nR0 ] and Md ∈ [2nRd ], can losslessly recover Xn
d . A single letter

characterization for the achievable rate tuples was provided in [1] as the set of rate tuples
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Decoder 1

Decoder 2

M1

M0

M2

Xn
1

Xn
2

X̂n
1

X̂n
2

Encoder

Figure 6.1. Gray–Wyner network.

(R0, R1, R2) such that

R0 ≥ I(X1,X2;W ), (6.1a)

R1 ≥ H(X1 |W ), (6.1b)

R2 ≥ H(X2 |W ) (6.1c)

for some conditional pmf p(w|x1, x2) with |W| ≤ |X1||X2|+ 2.

This problem later inspired the formulation of a common information measure

between two random variables X1 and X2, referred to as Wyner’s common information

in [2], that appears as an answer to the minimum rate of the common channel for efficient

encoding of source pair (Xn
1 ,X

n
2 ) in the Gray–Wyner network and is characterized as

C(X1;X2) := min
p(w|x1,x2)

I(X1;X2|W )=0

I(X1,X2;W ). (6.2)

More recently, Gray–Wyner network was found to be related to a single-user

caching problem [3], in which a server storing some file contents aims to reduce peak

network traffic by sending partial data to users during the off-peak hours before the

actual requests are known. After user requests a file, server delivers more data to user

so that it can decode its requested file by combining this new information with the

previously stored data in its cache. In this setting, cache placement corresponds to the

private channel of Gray–Wyner network and delivery after the requests are revealed

corresponds to private channels.

Similar to [3], with the goal of creating a close connection to dynamic caching
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problems formulated in the subsequent chapters, in this chapter, we describe a successive

version of Gray–Wyner network (or the successive Gray–Wyner network in short, cf.

Fig. 6.2) and establish a single-letter characterization for the optimal rate region of this

network.

6.2 Successive Gray–Wyner Network

Consider the successive Gray–Wyner network in Fig. 6.2, in which a tuple of

sequences (Xn
11,X

n
21,X

n
12,X

n
22) drawn i.i.d. from p(x

(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) is described by

two encoders so that decoder (d, 1), d = 1, 2, having the descriptions L1 and Md1, can

losslessly recover Xn
d1 and decoder (d′, 2), d′ = 1, 2, having the descriptions L1, L2, and

Md′2, can losslessly recover Xn
d′2.

Encoder 2

Encoder 1

M21

M12

M22

M11

X̂n
11

X̂n
21

X̂n
12

X̂n
22

Decoder (1, 1)

Decoder (2, 1)

Decoder (1, 2)

Decoder (2, 2)

Xn
11

Xn
21

Xn
12

Xn
22

L1

L2

Figure 6.2. Successive Gray–Wyner network.

An (nC1, nR11, nR21, nC2, nR12, nR22, n) code for the successive Gray–Wyner

network consists of

• two encoders, where encoder 1 assigns an index tuple (l1,m11,m21)(x
n
11, x

n
21) ∈

[2nC1 ] × [2nR11 ] × [2nR21 ] to each pair of sequences (xn11, x
n
21) ∈ X n

11 × X n
21 while

encoder 2 assigns an index tuple (l2,m12,m22)(x
n
11, x

n
21, x

n
12, x

n
22) ∈ [2nC2 ]×[2nR12 ]×

[2nR22 ] to each tuple of sequences (xn11, x
n
21, x

n
12, x

n
22) ∈ X n

11 × X n
21 × X n

12 × X n
22,
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• four decoders, where decoder (d, 1), d = 1, 2, assigns an estimate x̂nd1(l1,md1) to

each index pair (l1,md1) ∈ [2nC1 ]× [2nRd1 ] and decoder (d′, 2), d′ = 1, 2, assigns an

estimate x̂nd′2(l1, l2,md′2) to each index tuple (l1, l2,md′2) ∈ [2nC1 ]×[2nC2 ]×[2nRd′2 ].

The probability of error is defined as

P (n)
e = P{(X̂n

11, X̂
n
21, X̂

n
12, X̂

n
22) 6= (Xn

11,X
n
21,X

n
12,X

n
22)}.

A rate tuple (C1, R11, R21, C2, R12, R22) is said to be achievable if there exists a sequence

of (nC1, nR11, nR21, nC2, nR12, nR22, n) codes such that limn→∞ P
(n)
e = 0.

6.3 Optimal Rate Region for Successive Gray–Wyner Net-

work

Define the optimal rate region R as the set of achievable rate tuples (C1, R11, R21,

C2, R12, R22) for the successive Gray–Wyner network. The following theorem presents a

single-letter characterization of the optimal rate region R, the proof of which is given in

Appendix 6.A.

Theorem 6.3.1. The optimal rate region R consists of the rate tuples such that

C1 ≥ I(X(1)
1 ,X

(1)
2 ;W1), (6.3a)

Rd1 ≥ H(X
(1)
d |W1), d = 1, 2, (6.3b)

C2 ≥ I(X(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ;W2 |W1), (6.3c)

Rd′2 ≥ H(X
(2)
d′ |W1,W2), d′ = 1, 2, (6.3d)

for some conditional pmfs p(w1|x(1)1 , x
(1)
2 ) and p(w2|w1, x

(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) with |W1| ≤

|X11||X21|+ 2 and |W2| ≤ |X11||X21||X12||X22|+ 2.

Remark 6.3.1. The optimal rate region R in Theorem 6.3.1 is convex.
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Remark 6.3.2. The projection of the optimal rate region R onto the first three coordi-

nates (C1, R11, R21) is equivalent to the optimal rate region for the classical Gray–Wyner

network [1] in (6.1).

Remark 6.3.3. Instead of a pair of two files in Fig. 6.2, consider a pair of N files

(Xn
j1 : j ∈ [N ]) and (Xn

j2 : j ∈ [N ]), which are described by two encoders to 2N decoders.

Encoder 1 maps the tuple (Xn
j1 : j ∈ [N ]) to the descriptions L1 and (Md1 : d ∈ [N ]),

whereas encoder 2 maps all the files to the descriptions L2 and (Md2 : d ∈ [N ]). Decoder

(d, i), d ∈ [N ] and i ∈ {1, 2}, having access to (Lk)
i
k=1 and Mdi, then wishes to recover

Xn
di. Defining a code, achievability, and the optimal rate region in a similar way, we can

characterize the optimal rate region R as the set of rate tuples such that

C1 ≥ I(X(1)
1 ,X

(1)
2 , . . . ,X

(1)
N ;W1),

Rd,1 ≥ H(X
(1)
d |W1), d ∈ [N ],

C2 ≥ I(X(1)
1 ,X

(1)
2 , . . . ,X

(1)
N ,X

(2)
1 ,X

(2)
2 , . . . ,X

(2)
N ;W2 |W1),

Rd′,2 ≥ H(X
(2)
d′ |W1,W2), d′ ∈ [N ],

for some pmfs p(w1|x(1)1 , x
(1)
2 , . . . , x

(1)
N ) and p(w2|w1, x

(1)
1 , x

(1)
2 , . . . , x

(1)
N , x

(2)
1 , x

(2)
2 , . . . , x

(2)
N )

with |W1| ≤
∏N

j=1 |Xj1|+ 2 and |W2| ≤
∏N

j=1 |Xj1||Xj2|+ 2.

6.4 Lower Boundaries of the Optimal Rate Region

To better understand the boundaries of the optimal rate region R, we now provide

some lower bounds.

Corollary 6.4.1. If (C1, R11, R21, C2, R12, R22) ∈ R, then

C1 +R11 +R21 ≥ H(X
(1)
1 ,X

(1)
2 ), (6.4)

C1 + C2 +R12 +R22 ≥ H(X
(2)
1 ,X

(2)
2 ). (6.5)
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To see this, fix two pmfs p(w1|x(1)1 , x
(1)
2 ) and p(w2|w1, x

(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) (or equivalently,

fix a pmf p(w1, w2|x(1)1 , x
(1)
2 , x

(2)
1 , x

(2)
2 ) such that (X

(2)
1 ,X

(2)
2 )→ (X

(1)
1 ,X

(1)
2 )→ W1 form

a Markov chain). Then,

C1 +R11 +R21 ≥ I(X(1)
1 ,X

(1)
2 ;W1) +H(X

(1)
1 |W1) +H(X

(1)
2 |W1)

= H(X
(1)
1 ,X

(1)
2 ) + I(X

(1)
1 ;X

(1)
2 |W1)

(a)

≥ H(X
(1)
1 ,X

(1)
2 ),

where (a) holds with equality if and only if X
(1)
1 → W1 → X

(1)
2 form a Markov chain.

For example, if we let p(w1|x(1)1 , x
(1)
2 ) attain Wyner’s common information C(X

(1)
1 ;X

(1)
2 )

defined in (6.2), then (6.4) holds with equality. Similarly for (6.5), we have

C1 + C2 +R12 +R22 ≥ I(X(1)
1 ,X

(1)
2 ;W1) + I(X

(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ;W2 |W1)

+H(X
(2)
1 |W1,W2) +H(X

(2)
2 |W1,W2)

= H(X
(2)
1 ,X

(2)
2 ) + I(X

(2)
1 ;X

(2)
2 |W1,W2)

+ I(X
(1)
1 ,X

(1)
2 ;W1,W2 |X(2)

1 ,X
(2)
2 )

(b)

≥ H(X
(2)
1 ,X

(2)
2 ),

where (b) holds with equality if and only if X
(2)
1 → (W1,W2)→ X

(2)
2 and

(X
(1)
1 ,X

(1)
2 )→ (X

(2)
1 ,X

(2)
2 )→ (W1,W2)

form Markov chains. For example, if we let W1 = ∅ and let p(w2|x(2)1 , x
(2)
2 ) attain

Wyner’s common information C(X
(2)
1 ;X

(2)
2 ), then (6.5) holds with equality.

Intuitively, Corollary 6.4.1 expresses the fact that the communication system in

Fig.6.2 cannot perform better than the optimistic case where decoders (1, 1) and (2, 1)

cooperates as well as decoders (1, 2) and (2, 2). A natural question then arises: is there

any achievable rate tuple (C1, R11, R21, C2, R12, R22) that attains the lower bounds in

(6.4) and (6.5) simultaneously? The answer is affirmative if and only if there exists a
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pmf p(w1, w2|x(1)1 , x
(1)
2 , x

(2)
1 , x

(2)
2 ) such that

(X
(2)
1 ,X

(2)
2 )→ (X

(1)
1 ,X

(1)
2 )→W1, (6.6a)

(X
(1)
1 ,X

(1)
2 )→ (X

(2)
1 ,X

(2)
2 )→W1, (6.6b)

X
(1)
1 →W1 → X

(1)
2 , (6.6c)

(X
(1)
1 ,X

(1)
2 )→ (X

(2)
1 ,X

(2)
2 ,W1)→ W2, (6.6d)

X
(2)
1 → (W1,W2)→ X

(2)
2 (6.6e)

form Markov chains. We can simplify these constraints using the following lemma.

Lemma 6.4.1. For every conditional pmf p(w1|x(1)1 , x
(1)
2 ), there exists a conditional pmf

p(w2|w1, x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) such that

I(X
(1)
1 ,X

(1)
2 ;W2 |X(2)

1 ,X
(2)
2 ,W1) = I(X

(2)
1 ;X

(2)
2 |W1,W2) = 0.

It is easy to justify Lemma 6.4.1 by letting W2 = (X
(2)
2 ,X

(2)
2 ) as one example

among many. As a result, there exists an achievable rate tuple (C1, R11, R21, C2, R12, R22)

attaining (6.4) and (6.5) if and only if there exists a pmf p(w1|x(1)1 , x
(1)
2 , x

(2)
1 , x

(2)
2 ) such

that (6.6a)-(6.6c) form Markov chains. A simple example can be constructed as follows.

Example 6.4.1. Suppose that X
(1)
1 and X

(1)
2 are independent, i.e.,

p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) = p(x

(1)
1 )p(x

(1)
2 )p(x

(2)
1 , x

(2)
2 |x

(1)
1 , x

(1)
2 ).

Let W1 = ∅ and let p(w2|x(2)1 , x
(2)
2 ) attain Wyner’s common information C(X

(2)
1 ;X

(2)
2 ).

Then, (6.6a)-(6.6e) form Markov chains and thus there exists an achievable rate tuple

(C1, R11, R21, C2, R12, R22) that attains the lower bounds in (6.4) and (6.5).

If X
(1)
1 and X

(1)
2 are correlated unlike Example 6.4.1, is it still possible to find

such a W1? The answer does in fact depend on the distribution of the whole content,
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p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ). In the following, we present a necessary condition on the content

distribution to attain the lower bounds in Corollary 6.4.1.

Proposition 6.4.1. Suppose that (X
(1)
1 ,X

(1)
2 ) are not independent. Let G be a bipartite

graph with vertex set A ∪ B where A = X1,1 × X2,1 and B = X1,2 × X2,1 such that there

is an edge between two vertices (t1, t2) if and only if p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) > 0 where

t1 = (x
(1)
1 , x

(1)
2 ) and t2 = (x

(2)
1 , x

(2)
2 ). If G is connected, then the lower bounds in (6.4)

and (6.5) cannot be attained simultaneously.

Proof. We prove by contradiction. Suppose that there is a pmf p(w1|x(1)1 , x
(1)
2 , x

(2)
1 , x

(2)
2 )

such that (6.6a)-(6.6c) form Markov chains and that the described bipartite graph G

is connected. The Markov chains in (6.6a) and (6.6b) implies that for any w1 ∈ W1,

p(w1|x(1)1 , x
(1)
2 , x

(2)
1 , x

(2)
2 ) is a constant over each connected component of G. Since G is

connected, then

p(w1 |x(1)1 , x
(1)
2 , x

(2)
1 , x

(2)
2 ) = p(w1), ∀(x(1)1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) ∈ X1,1 × X2,1 × X1,2 × X2,2.

Thus, W1 is independent of (X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ), which contradicts with the Markov

chain in (6.6c) since X
(2)
1 and X

(2)
2 are correlated.

The necessary condition in Proposition 6.4.1 is in fact closely related to Gács-

Korner common information [4], which is another well-known quantity proposed to mea-

sure the common information between two random variables and is defined as

K(X;Y ) := max
p(w|x,y):

W→X→Y,
W→Y →X

I(X,Y ;W ).

[5, Corollary 1] provides a way to compute K(X;Y ). Let G be a bipartite graph

with vertex set X ∪ Y such that there is an edge between two vertices (x, y) if and

only if p(x, y) > 0 and let W be the labels of the connected components of G. Then,

K(X;Y ) = H(W ). Therefore, K(X;Y ) = 0 if and only if G is connected. Letting

X ← (X
(1)
1 ,X

(1)
2 ) and Y ← (X

(2)
1 ,X

(2)
2 ) implies the following in our setting.
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Corollary 6.4.2. For a correlated pair of (X
(1)
1 ,X

(1)
2 ), it is not possible to attain the

lower bounds in (6.4) and (6.5) if

K(X
(1)
1 ,X

(1)
2 ;X

(2)
1 ,X

(2)
2 ) = 0.

We next construct an example where the information carried over the common

link (L1) is useful for all decoders, which allows to attain (6.4) and (6.5).

Example 6.4.2. Suppose the pmf p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) is given as

(x
(1)
1 , x

(1)
2 )/(x

(2)
1 , x

(2)
2 ) 00 11 01 10

00 α/2 0 0 0

11 0 α/2 0 0

01 0 0 α/2− β β

10 0 0 β α/2− β

.

Note that both (x
(1)
1 , x

(1)
2 ) and (x

(2)
1 , x

(2)
2 ) are doubly symmetric binary source with pa-

rameter α. Let

W1 |x(1)1 , x
(1)
2 =























Bern(q), if (x
(1)
1 , x

(1)
2 ) = (0, 0)

Bern(q̄), if (x
(1)
1 , x

(1)
2 ) = (1, 1)

Bern(0.5), otherwise

, (6.7)

where q = 0.5−0.5
√
1− 2α/(1−α), which attains both of the Wyner common information

C(X
(1)
1 ;X

(1)
2 ) and C(X

(2)
1 ;X

(2)
2 ) (refer to [2,6] for the proof). Therefore, letting W2 = ∅

attains the lower bounds in (6.4) and (6.5).

6.5 Relation to Conditional Wyner’s Common Information

Given a fixed strategy for Encoder 1, what would be the optimal strategy for

Encoder 2 to minimize the total rate of the descriptions transmitted from Encoder 2 to
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Decoders (1, 2) and (2, 2)? First, Theorem 6.3.1 implies that given a pmf p(w|x(1)1 , x
(1)
2 ),

a rate tuple (C1, R11, R21, C2, R12, R22) ∈ R must satisfy

C2 +R12 +R22 ≥ H(X
(2)
1 ,X

(2)
2 |W ).

Therefore, given a pmf p(w|x(1)1 , x
(1)
2 ), we define

C∗
2 (W ) = min

(C1,R11,R21,C2,R12,R22)∈R

C2+R12+R22=H(X
(2)
1

,X
(2)
2

|W )

C2.

In words, C∗
2 (W ) is the smallest rate of the common link to Decoders (1, 2) and (2, 2)

required to losslessly describe (X
(2)
1 ,X

(2)
2 ) by the help of W . Note that H(X

(2)
1 ,X

(2)
2 |W )

is the minimum compression rate required for a single receiver to recover both Xn
12 and

Xn
22 when both encoder and decoders are furnished with a side information sequence

W n drawn i.i.d. from p(w|x(2)1 , x
(2)
2 ). In our successive setting, on the other hand, W n

is not such a standard side information but related to (Xn
12,X

n
22) through (Xn

11,X
n
21).

We, however, can still establish a closed form solution for C∗
2 (W ) as a corollary of

Theorem 6.3.1.

As a corollary of Theorem 6.3.1, one can prove the following.

Corollary 6.5.1. Given a pmf p(w|x(1)1 , x
(1)
2 ), the minimum rate

C∗
2 (W ) = C(X

(2)
1 ;X

(2)
2 |W ),

where C(X
(2)
1 ;X

(2)
2 |W ) denotes the conditional Wyner’s common information [7] and is

defined by

C(X
(2)
1 ;X

(2)
2 |W ) := min

p(v|x
(2)
1

,x
(2)
2

,w)

X
(2)
1

−(W,V )−X
(2)
2

I(X
(2)
1 ,X

(2)
2 ;V |W ). (6.8)

It is worth to note that Lapidoth and Wigger [7] studied the Gray–Wyner net-

work with i.i.d. side information W n available at encoder and decoders and obtained
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the same answer in (6.8) for the minimum common rate to achieve the sum rate of

H(X
(2)
1 ,X

(2)
2 |W ).

6.6 Discussion

In this chapter, we have introduced the successive Gray–Wyner network and

presented its optimal rate region. In the subsequent chapters, we will describe two

new dynamic caching problems and establish a close connection of each problem to

the successive Gray–Wyner network. We will utilize the optimal rate region presented

in Theorem 6.3.1 when analyzing the optimal performance for those dynamic caching

problems.

6.A Proof of Theorem 6.3.1

We first provide an outer bound (achievability) and then an inner bound (con-

verse) for the optimal rate region R.

For the achievability, given the source distribution p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ), fix two

conditional pmfs p(w1|x(1)1 , x
(1)
2 ) and p(w2|w1, x

(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ), and let ǫ > 0. Gener-

ate 2nC1 sequences wn
1 (j), j ∈ [1 : 2nC1 ] i.i.d. with respect to p(w1). Encoder 1 chooses

an index l1 such that

(wn
1 (l1), x

n
11, x

n
21) ∈ T (n)

ǫ (W1,X
(1)
1 ,X

(1)
2 ),

and transmits to all four decoders. Given wn
1 (l1), encoder 1 assigns indices m11 ∈

[2nR11 ] and m21 ∈ [2nR21 ] to the sequences in T (n)
ǫ (X

(1)
1 |wn

1 (l1)) and T (n)
ǫ (X

(1)
2 |wn

1 (l1)),

respectively, and send them to decoders (1, 1) and (2, 1), respectively. Decoder (d, 1),

d = 1, 2, first decodes wn
1 from l1 and then decode for xnd1.

Similarly, at encoder 2, given wn
1 (l1), generate 2nC2 sequences wn

2 (k), k ∈ [1 :

2nC2 ] i.i.d. with respect to the conditional pmf p(w2|w1). Encoder 2 chooses an index l2
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such that

(wn
2 (l2), w

n
1 (j), x

n
11, x

n
21, x

n
12, x

n
22) ∈ T (n)

ǫ (W1,W2,X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ),

and transmits l2 to decoders (1, 2) and (2, 2). Given (wn
1 (l1), w

n
2 (l2)), encoder 2 assigns

indices m12 ∈ [2nR12 ] and m22 ∈ [2nR22 ] to the sequences in T (n)
ǫ (X

(2)
1 |wn

1 (l1), w
n
2 (l2))

and T (n)
ǫ (X

(2)
2 |wn

1 (l1), w
n
2 (l2)), respectively, and send them to decoders (1, 2) and (2, 2),

respectively. Decoder (d, 2), d = 1, 2, first recovers wn
1 , w

n
2 from l1 and l2, and then

decode for xnd2. By standard arguments similar to the proof of Slepian-Wolf coding, it is

easy to see that P
(n)
e → 0 as n→∞ if the rate tuple (C1, R11, R21, C2, R12, R22) satisfies

C1 ≥ I(X(1)
1 ,X

(1)
2 ;W1) + δ(ǫ),

Rd1 ≥ H(X
(1)
d |W1) + δ(ǫ), d = 1, 2,

C2 ≥ I(X(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ;W2 |W1) + δ(ǫ),

Rd2 ≥ H(X
(2)
d |W1,W2) + δ(ǫ), d = 1, 2,

where δ(ǫ) is a function of ǫ such that δ(ǫ) tends to zero as ǫ → 0. Letting ǫ → 0

completes the proof of the achievability.

For the converse, suppose that the rate tuple (C1, R11, R21, C2, R12, R22) ∈ R.

By Gray and Wyner [1], (C1, R11, R21, C2, R12, R22) must satisfy (6.3a) and (6.3b). We

now prove (6.3c). Suppose that the i’th entry of Xn
dt is denoted by (Xdt)i and the

sequence consisting of the first i entries of Xn
dt is denoted by Xi

dt for d, t ∈ {1, 2}. Define

the auxiliary random variables W1i := (L1,X
i−1
11 ,Xi−1

21 ) and W2i := (L2,X
i−1
12 ,Xi−1

22 ),

i ∈ [n]. We start with

nC2 ≥ H(L2 |L1)

≥ I(L2;X
n
11,X

n
21,X

n
12,X

n
22 |L1)
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=

n
∑

i=1

I(L2; (X11)i, (X21)i, (X12)i, (X22)i |L1,X
i−1
11 ,Xi−1

21 ,Xi−1
12 ,Xi−1

22 )

=
n
∑

i=1

I(L2,X
i−1
12 ,Xi−1

22 ; (X11)i, (X21)i, (X12)i, (X22)i |L1,X
i−1
11 ,Xi−1

21 )

− I(Xi−1
12 ,Xi−1

22 ; (X11)i, (X21)i, (X12)i, (X22)i |L1,X
i−1
11 ,Xi−1

21 )

(a)
=

n
∑

i=1

I(L2,X
i−1
12 ,Xi−1

22 ; (X11)i, (X21)i, (X12)i, (X22)i |L1,X
i−1
11 ,Xi−1

21 )

=

n
∑

i=1

I(W2i; (X11)i, (X21)i, (X12)i, (X22)i |W1i),

where (a) follows since

(

Xi−1
12 ,Xi−1

22

)

→
(

Xi−1
11 ,Xi−1

21

)

→
(

L1, (X11)i, (X21)i, (X12)i, (X22)i
)

form a Markov chain.

Lastly, to prove (6.3d), for d = 1, 2, we start with

nRd2 ≥ H(Md2 |L1, L2)

≥ I(Md2;X
n
d2 |L1, L2)

(a)

≥ H(Xn
d2 |L1, L2)− nǫn

=

n
∑

i=1

H
(

(Xd2)i |L1, L2,X
i−1
d2

)

− nǫn

≥
n
∑

i=1

H
(

(Xd2)i |L1, L2,X
i−1
11 ,Xi−1

21 ,Xi−1
12 ,Xi−1

22

)

− nǫn

=

n
∑

i=1

H
(

(Xd2)i |W1i,W2i

)

− nǫn,

where (a) follows by Fano’s inequality.

Finally, the cardinality bound on W1 and W2 can be shown using the convex

cover method in [8].
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Chapter 7

Successive Refinement to Caching

for Dynamic Contents

To reduce the load of the heavy network traffic, servers deliver partial data to

users during the off-peak hours of the network before the actual requests are known,

which is known as caching. This chapter introduces a new single-user caching problem

in which the file contents are subject to random modifications during the cache placement

phase (dynamic contents). To cope with the dynamic nature of the contents, a two-step

successive refinement approach is proposed: some partial information of the original

data is cached in the first step and second step refines the cache content stored in

the first step when the file contents are modified. Given a fixed cache rate, there is

a tension between the rates of two cache descriptions to minimize the delivery rate.

Founding a close connection to the successive Gray–Wyner network in Chapter 6, a

single-letter characterization of the minimum average-case delivery rate is established as

an optimization problem, which is solved explicitly for certain classes of contents.
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7.1 Introduction

Due to exponentially growing number of devices, networks usually encounter

heavy traffic during the popular time of the day. A recent solution to reduce the net-

work traffic during these busy hours is to deliver partial data for future use before

database knows which file is to be requested by the users [1, 2]. In the classical (static)

single-user caching problem [3], communication is divided into three phases. In caching

phase, database delivers partial information about the file contents to user. Database

is informed which of the files is requested by the user in request phase. Finally, in

delivery phase, the remaining part of the requested file is delivered. Taking an infor-

mation theoretical approach, [3, 4] formulated this problem through its similarity to

Gray-Wyner network [5] and discussed the optimal caching strategy. This information-

theoretic approach was extended to multi-user networks in [4,6]. In parallel, building on

rate–distortion theory, counterparts of these caching problems for lossy reconstruction

were investigated in [7–11].

On the other hand, the database has a dynamic nature in the sense that the

content files could be modified or completely changed into different files. For example,

news websites are continuously updated throughout the day with the most current in-

formation. This dynamic nature is taken into account in a more recent work [12], which

studied random modifications to the file contents that occur after cache placement is

completed. In this formulation, cache content is designed by using only the original files

and is placed in a single step, whereas delivery content is designed to benefit from the

correlation between the original and modified contents.

In all the existing caching problems, cache placement is completed in a single step,

which falls short of capturing the unpredictable nature of contents in real networks. In

this chapter, we introduce a new caching problem to address contents being subject to

random modifications during the cache placement phase and we propose a successive

refinement approach to cache placement as an answer to this dynamic caching problem.
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Taking an information-theoretic approach similar to [3, 4], we relate this problem to

the successive Gray–Wyner network in Chapter 6, in which the common message to all

decoders corresponds to the first step of cache placement whereas the common message

to a subset of decoders corresponds to the second step. Utilizing the results derived in

Chapter 6, we establish a single-letter characterization of the optimal tradeoff between

the total cache rate and the minimum average-case delivery rate as an optimization

problem. We then derive an explicit characterization of the optimal tradeoff for certain

classes of content distributions.

7.2 Problem Formulation

In this section, we introduce a new caching model in which the file contents stored

in the server are subject to random changes within the cache placement phase. For ease

of exposition, suppose that the server originally stores a pair of files (Xn
11,X

n
21) drawn

i.i.d. from the pmf p(x
(1)
1 , x

(1)
2 ) over a finite alphabet, which is modified to (Xn

12,X
n
22)

with probability ρ ∈ [0, 1], where the tuple (Xn
11,X

n
21,X

n
12,X

n
22) is distributed i.i.d. with

respect to a given pmf p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) over a finite alphabet. The indices i and j

in Xn
ij

i.i.d.∼ p(x
(j)
i ) denotes the file content and the version, respectively. As illustrated in

Fig. 7.1, server first sends out partial information about the original files (Xn
11,X

n
21) to

be cached at the user. If any modification occurs, having access to both versions of the

files, server conveys additional bits as an update for the cache. Once user request arises,

it then delivers the information required by the user to losslessly recover its desired file.

Combining this delivery with its cache, the user, which is aware of any possible change,

decodes for its desired file. Given a fixed cache rate, our goal is to minimize the expected

delivery rate with respect to uniform file popularity and randomness in the modification.

There is, however, a tension between caching for only (Xn
11,X

n
21) as if there will be no

modification on the content and sparing all the cache rate for (Xn
12,X

n
22), resulting in an

optimization problem of how to split the cache rate into two descriptions.
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Figure 7.1. Caching for dynamic contents: server first places some cache (1) based on the
original files (Xn

11, X
n
21) and then if there is any modification, it further places an update on the

cache (2). When the request arises (3), server delivers the required content for user to decode its
desired file (4).

We start with formalizing the problem. An
(

n, nC1, nR11, nR21, nC2, nR12, nR22

)

successive caching scheme for dynamic contents consists of

• two caching functions where

φ1 : X n
11 × X n

21 → {0, 1}nC1

maps the original files (Xn
11,X

n
21) into a cache content

L1 := φ1(X
n
11,X

n
21)

to be placed at the user during the first step of the successive cache placement

phase and

φ2 : X n
11 ×X n

21 × X n
12 × X n

22 → {0, 1}nC2

maps the original files and modified files (Xn
11,X

n
21,X

n
12,X

n
22) into a cache content

L2 := φ2(X
n
11,X

n
21,X

n
12,X

n
22)

to be placed at the user during the second step of the successive cache placement

phase,
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• four encoding functions, where

ψd1 : X n
11 × X n

21 → {0, 1}nRd1 , d ∈ {1, 2},

maps the files (Xn
11,X

n
21) to the delivery content

Md1 := ψd1(X
n
11,X

n
21)

corresponding to the request for file d ∈ {1, 2} when modification does not occur,

and

ψd2 : X n
11 × X n

21 × X n
12 ×X n

22 → {0, 1}nRd2 , d ∈ {1, 2},

maps the files (Xn
11,X

n
21,X

n
12,X

n
22) to the delivery content

Md2 := ψd2(X
n
11,X

n
21,X

n
12,X

n
22)

corresponding to the request for file d ∈ {1, 2} when there is modification,

• four decoding functions, where

µd1 : {0, 1}nC1 × {0, 1}nRd1 → X n
d1

maps the first piece of the cache content and the delivery content into an estimate

X̂n
d1 := µd1

(

L1,Md1

)

of the requested file Xn
d1 when the request vector d ∈ {1, 2} is received by the server

without any modification to the file contents and

µd2 : {0, 1}n(C1+C2) × {0, 1}nRd2 → X n
d2
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maps both of the cache contents and the delivery content into an estimate

X̂n
d2 := µd2

(

L1, L2,Md2

)

of the requested file Xn
d2 when the request vector d ∈ {1, 2} is received by the server

after the file contents are modified.

The probability of error is defined as

P (n)
e := P(X̂n

dt 6= Xn
dt for some t ∈ {1, 2}, d ∈ {1, 2}).

Given a pair of cache rates (C1, C2), a delivery rate tuple (Rdt)d,t∈{1,2} is said to be achiev-

able for dynamic contents if there exists an
(

n, nC1, nR11, nR21, nC2, nR12, nR22

)

suc-

cessive caching scheme for dynamic contents with limn→∞ P
(n)
e = 0. Given a cache rate

C ≥ 0 and modification probability ρ ∈ [0, 1], a delivery rate R is said to be average-case

achievable for dynamic contents if there exists an
(

n, nC1, nR11, nR21, nC2, nR12, nR22

)

successive caching scheme for dynamic contents such that

C1 + C2 ≤ C

and

(1− ρ)R11 +R21

2
+ ρ

R12 +R22

2
≤ R.

We define the optimal average-case delivery rate function for dynamic contents as

R∗
cont,avg(ρ,C) := min{R : R is average-case achievable for dynamic contents}. (7.1)

Similarly, a delivery rate R is said to be worst-case achievable for dynamic contents

if there exists an
(

n, nC1, nR11, nR21, nC2, nR12, nR22

)

successive caching scheme for

dynamic contents such that

C1 + C2 ≤ C
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and

max
i,j∈{1,2}

Rij ≤ R.

We define the optimal worst-case delivery rate function for dynamic contents as

R∗
cont,worst(C) := min{R : R is worst-case achievable for dynamic contents}. (7.2)

We are now ready to present the main result of this chapter.

7.3 Main Results

We next present a single-letter characterization of the optimal average-case de-

livery rate function as well as the optimal worst-case delivery rate function.

Theorem 7.3.1. Given modification probability ρ ∈ [0, 1], the optimal average-case de-

livery rate function is equal to

R∗
cont,avg(ρ,C) = min

p(w1|x
(1)
1

,x
(1)
2

),

p(w2|w1,x
(1)
1 ,x

(1)
2 ,x

(2)
1 ,x

(2)
2 ):

I(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ;W1,W2)≤C

[

(1− ρ)H(X
(1)
1 |W1) +H(X

(1)
2 |W1)

2

+ ρ
H(X

(2)
1 |W1,W2) +H(X

(2)
2 |W1,W2)

2

]

. (7.3)

Similarly, the optimal worst-case delivery rate function is equal to

R∗
cont,worst(C)

= min
p(w1|x

(1)
1 ,x

(1)
2 ),

p(w2|w1,x
(1)
1

,x
(1)
2

,x
(2)
1

,x
(2)
2

):

I(X
(1)
1

,X
(1)
2

,X
(2)
1

,X
(2)
2

;W1,W2)≤C

max

{

H(X
(1)
1 |W1),H(X

(1)
2 |W1),

H(X
(2)
1 |W1,W2) +H(X

(2)
2 |W1,W2)

}

. (7.4)

Proof. The key observation is that the described caching problem for dynamic contents is

equivalent to the source coding problem defined over the successive Gray–Wyner network,
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in which encoders correspond to the server before and after modification and decoders

correspond to the realizations of different requests. It is then easy to see that there

exists an
(

n, nC1, nR11, nR21, nC2, nR12, nR22

)

successive caching scheme for dynamic

contents if and only if there exists an
(

n, nC1, nR11, nR21, nC2, nR12, nR22

)

code for

the successive Gray–Wyner network. Following a similar notation to Chapter 6, let

R denote the optimal rate region for the successive Gray–Wyner network described in

Section 6.3. Then, the optimal average-case delivery rate function for dynamic contents

can be written as

R∗
cont,avg(ρ,C) = min

(C1,R11,R21,C2,R12,R22)∈R

C1+C2≤C

[

(1− ρ)R11 +R21

2
+ ρ

R12 +R22

2

]

(a)
= min

p(w1|x
(1)
1 ,x

(1)
2 ),

p(w2|w1,x
(1)
1

,x
(1)
2

,x
(2)
1

,x
(2)
2

):

I(X
(1)
1

,X
(1)
2

,X
(2)
1

,X
(2)
2

;W1,W2)≤C

[

(1− ρ)H(X
(1)
1 |W1) +H(X

(1)
2 |W1)

2

+ ρ
H(X

(2)
1 |W1,W2) +H(X

(2)
2 |W1,W2)

2

]

,

where (a) follows by Theorem 6.3.1. Similarly, the optimal worst-case delivery rate

function for dynamic contents can be written as

R∗
cont,worst(C)

= min
(C1,R11,R21,C2,R12,R22)∈R

C1+C2≤C

max[R11, R21, R12, R22]

(b)
= min

p(w1|x
(1)
1

,x
(1)
2

),

p(w2|w1,x
(1)
1 ,x

(1)
2 ,x

(2)
1 ,x

(2)
2 ):

I(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ;W1,W2)≤C

max

{

H(X
(1)
1 |W1),H(X

(1)
2 |W1),

H(X
(2)
1 |W1,W2) +H(X

(2)
2 |W1,W2)

}

,

where (b) follows by Theorem 6.3.1.

The explicit solutions of the optimization problems in (7.3) and (7.4) are nontriv-

ial in general. In the rest of this section, we particularly focus on the optimal average-case
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delivery rate function R∗
cont,avg(ρ,C) for uniformly at random modifications (ρ = 0.5)

and continue with the notation R∗
cont,avg(C) := R∗

cont,avg(ρ = 0.5, C), which reduces to

R∗
cont,avg(C) = min

p(w1|x
(1)
1 ,x

(1)
2 ),

p(w2|w1,x
(1)
1

,x
(1)
2

,x
(2)
1

,x
(2)
2

):

I(X
(1)
1

,X
(1)
2

,X
(2)
1

,X
(2)
2

;W1,W2)≤C

[

H(X
(1)
1 |W1) +H(X

(1)
2 |W1)

4

+
H(X

(2)
1 |W1,W2) +H(X

(2)
2 |W1,W2)

4

]

.

The solution of this minimization occurs at the boundary of

I(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ;W1,W2) = C.

It is, however, still a nontrivial optimization problem for an arbitrary content distribution

p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ). Nonetheless, for some classes of distributions, we can characterize

the explicit solution.

Example 7.3.1 (Nested Contents). Suppose that H(X
(1)
1 |X

(1)
2 ) = H(X

(1)
2 |X

(2)
1 ) =

H(X
(2)
1 |X

(2)
2 ) = 0. Define

H̄(C) :=
1

4

2
∑

i=1

2
∑

t=1

[

H
(

X
(t)
i

)

− C
]+
, (7.5)

where [a]+ := max{0, a}. We then have

R∗
cont,avg(C) = H̄(C).

To see this, note that H̄(C) ≤ R∗
cont,avg(C), in general. For the achievability, first cache

(X
(1)
1 ,X

(1)
2 ) up to the cache rate (via W1). If C > H(X

(1)
1 ,X

(1)
2 ) = H(X

(1)
2 ), cache

(X
(2)
1 ,X

(2)
2 ) given (X

(1)
1 ,X

(1)
2 ) (via W2) until the total cache rate C is exhausted.

Example 7.3.2 (Partially Nested Contents). Suppose that pmf p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 )
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satisfies

p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) = p(x

(1)
1 , x

(1)
2 )p(x

(2)
1 |x

(1)
1 )p(x

(2)
2 |x

(1)
2 ) (7.6)

and

H(X
(1)
1 ,X

(1)
2 |X

(2)
1 ,X

(2)
2 ) = 0. (7.7)

If C ≥ C(X
(1)
1 ;X

(1)
2 ), then

R∗
cont,avg(C) =

[

H(X
(1)
1 ,X

(1)
2 )− C

]+
+ [H(X

(2)
1 ,X

(2)
2 )− C]+

4
.

The converse follows from the general lower bound in Proposition 7.3.2. We show the

achievability of the corner points, from which the claim follows by time sharing. For

C = C(X
(1)
1 ;X

(1)
2 ), let W1 attain Wyner’s common information C(X

(1)
1 ;X

(1)
2 ) defined

in (6.2) and let W2 = ∅. By Theorem 7.3.1, we have

R∗
cont,avg(C)

≤ H(X
(1)
1 |W1) +H(X

(1)
2 |W1) +H(X

(2)
1 |W1) +H(X

(2)
2 |W1)

4

=
H(X

(1)
1 ,X

(1)
2 )− I(X(1)

1 ,X
(1)
2 ;W1) + I(X

(1)
1 ;X

(1)
2 |W1)

4

+
H(X

(2)
1 ,X

(2)
2 )− I(X(2)

1 ,X
(2)
2 ;W1) + I(X

(2)
1 ;X

(2)
2 |W1)

4

(a)
=
H(X

(1)
1 ,X

(1)
2 )− C +H(X

(2)
1 ,X

(2)
2 )− I(X(2)

1 ,X
(2)
2 ;W1) + I(X

(2)
1 ;X

(2)
2 |W1)

4

(b)
=
H(X

(1)
1 ,X

(1)
2 )−C +H(X

(2)
1 ,X

(2)
2 )− I(X(1)

1 ,X
(1)
2 ;W1) + I(X

(2)
1 ;X

(2)
2 |W1)

4

(c)
=
H(X

(1)
1 ,X

(1)
2 )− C +H(X

(2)
1 ,X

(2)
2 )− C

4
,

where (a) follows since W1 attains Wyner’s common information C(X
(1)
1 ;X

(1)
2 ), (b) fol-

lows by (7.7) since (X
(2)
1 ,X

(2)
2 ) → (X

(1)
1 ,X

(1)
2 ) → W1 forms a Markov chain, and (c)

follows by the fact that X
(2)
1 → W1 → X

(2)
2 form a Markov chain, which can be seen

from (7.6) since (X
(2)
1 ,X

(2)
2 )→ (X

(1)
1 ,X

(1)
2 )→W1 and X

(1)
1 →W1 → X

(1)
2 each form a
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Markov chain.

For C = H(X
(1)
1 ,X

(1)
2 ), letW1 = (X

(1)
1 ,X

(1)
2 ) and letW2 = ∅. By Theorem 7.3.1,

we have

R∗
cont,avg(C) ≤ H(X

(1)
1 |W1) +H(X

(1)
2 |W1) +H(X

(2)
1 |W1) +H(X

(2)
2 |W1)

4

=
H(X

(2)
1 |X

(1)
1 ,X

(1)
2 ) +H(X

(2)
2 |X

(1)
1 ,X

(1)
2 )

4

(d)
=
H(X

(2)
1 ,X

(2)
2 |X

(1)
1 ,X

(1)
2 )

4

(e)
=
H(X

(2)
1 ,X

(2)
2 )− C

4
,

where (d) follows by (7.6) and (e) follows by (7.7).

Finally, for C = H(X
(2)
1 ,X

(2)
2 ), let W1 = (X

(1)
1 ,X

(1)
2 ) and let W2 = (X

(1)
1 ,X

(1)
2 ,

X
(2)
1 ,X

(2)
2 ). By Theorem 7.3.1, it is easy to see that R∗

cont,avg(C) = 0, which proves the

claim.

Fig. 7.2 illustrates the optimal average-case delivery rate function for dynamic

contents, R∗
cont,avg(C), for C ≥ C(X

(1)
1 ;X

(1)
2 ). For C < C(X

(1)
1 ;X

(1)
2 ), we provide

a lower bound that follows from Proposition 7.3.2 and an upper bound that follows

from time sharing between (W1,W2) = (∅, ∅) and (W1,W2) attaining R∗
cont,avg(C =

C(X
(1)
1 ;X

(1)
2 )). In this example, to benefit from the correlation between the original and

the modified files, the cache rate is initially exhausted on the original file pair (X
(1)
1 ,X

(1)
2 ).

If the cache rate is larger than H(X
(1)
1 ,X

(1)
2 ), then additional information about the mod-

ified file pair (X
(2)
1 ,X

(2)
2 ) is cached when modification occurs (if any).

Example 7.3.3 (Pairwise Independent Content). Suppose that

p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) = p(x

(1)
1 , x

(1)
2 )p(x

(2)
1 , x

(2)
2 ).
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 No cache

H(X
(1)
1 , X

(1)
2 )

C
H(X

(1)
1 , X

(1)
2 , X

(2)
1 , X

(2)
2 )C(X

(1)
1 ;X

(1)
2 )

W2 = ∅

W2 = (X
(1)
1 , X

(1)
2 , X

(2)
1 , X2

2 )

W1 = (X
(1)
1 , X

(1)
2 )

W1 = (X
(1)
1 , X

(1)
2 )

W2 = ∅
H(X

(2)
1 ,X

(2)
2 )−H(X

(1)
1 ,X

(1)
2 )

4

R∗
cont,avg(C)

H(X
(1)
1 )+H(X

(1)
2 )+H(X

(2)
1 )+H(X

(2)
2 )

4

W1 attaining C(X
(1)
1 ;X

(1)
2 )

Upper Bound

Lower Bound

Figure 7.2. Bounds on the optimal average-case delivery rate function for dynamic contents
in Example 7.3.2.

If C ≥ C(X
(1)
1 ;X

(1)
2 ) + C(X

(2)
1 ;X

(2)
2 ), then

R∗
cont,avg(C) =

[H(X
(1)
1 ,X

(1)
2 ) +H(X

(2)
1 ,X

(2)
2 )− C]+

4
.

The converse follows from the general lower bound in Proposition 7.3.2. The achievability

follows by time sharing between (W1,W2) = ((X
(1)
1 ,X

(1)
2 ), (X

(2)
1 ,X

(2)
2 )) and (W1,W2) =

(W ∗
1 ,W

∗
2 ) in Theorem 7.3.1, for W ∗

j , j = 1, 2, attaining Wyner’s common information

C(X
(j)
1 ;X

(j)
2 ). This result implies that some of the cache rate should be spared for the

modified files while dealing with two independent libraries if the total cache rate is large

enough.

In these examples, we have used the structure of the content distribution to

propose upper bounds on the optimal average-case delivery rate function for dynamic

contents R∗
cont,avg(C). To provide an upper bound for arbitrarily correlated contents, let

W ∗ attain Wyner’s common information C(X
(1)
1 ;X

(1)
2 ) and define function R(C) as the
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lower complex envelope of the points
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


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
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
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
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



























H(X
(1)
1 )+H(X

(1)
2 )+H(X

(2)
1 )+H(X

(2)
2 )

4 , C = 0

H(X
(1)
1 ,X

(1)
2 )+H(X

(2)
1 ,X

(2)
2 )−C−I(X

(2)
1 ,X

(2)
2 ;W ∗)

4 , C =
C(X

(1)
1 ;X

(1)
2 )

+C(X
(2)
1 ;X

(2)
2 |W ∗)

H(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 )−C

4 , C =
H(X

(1)
1 ,X

(1)
2 )

+C(X
(2)
1 ;X

(2)
2 |X

(1)
1 ,X

(1)
2 )

0, C = H(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 )

,

which is illustrated in Fig. 7.3 by the red solid line. The following is an upper bound on

the optimal average-case delivery rate function.

Proposition 7.3.1 (Upper bound). For every pmf p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ),

R∗
cont,avg(C) ≤ R(C). (7.8)

Proof. It suffices to prove the achievability of the corner points of R(C) since the lower

convex envelope of these points can be achieved by time sharing. First, by Theorem 7.3.1,

it is trivial to see that C = 0 results in

R∗
cont,avg(C = 0) =

H(X
(1)
1 ) +H(X

(1)
2 ) +H(X

(2)
1 ) +H(X

(2)
2 )

4
.

For C = C(X
(1)
1 ;X

(1)
2 )+C(X

(2)
1 ;X

(2)
2 |W ∗), we letW1 =W ∗ and letW2 attain conditional

Wyner’s common information C(X
(2)
1 ;X

(2)
2 |W ∗). By Theorem 7.3.1, we have

R∗
cont,avg(C) ≤ H(X

(1)
1 |W1) +H(X

(1)
2 |W1) +H(X

(2)
1 |W1,W2) +H(X

(2)
2 |W1,W2)

4

=
H(X

(1)
1 ;X

(1)
2 )− I(X(1)

1 ,X
(1)
2 ;W1) + I(X

(1)
1 ;X

(1)
2 |W1)

4

+
H(X

(2)
1 ,X

(2)
2 |W1)− I(X(2)

1 ,X
(2)
2 ;W2|W1) + I(X

(2)
1 ;X

(2)
2 |W1,W2)

4

(a)
=
H(X

(1)
1 ;X

(1)
2 ) +H(X

(2)
1 ,X

(2)
2 |W1)− C

4
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=
H(X

(1)
1 ;X

(1)
2 ) +H(X

(2)
1 ,X

(2)
2 )− C − I(X(2)

1 ,X
(2)
2 ;W ∗)

4
,

where (a) follows by the choice of W1 and W2. Similarly, for C = H(X
(1)
1 ,X

(1)
2 ) +

C(X
(2)
1 ;X

(2)
2 |X

(1)
1 ,X

(1)
2 ), we letW1 = (X

(1)
1 ,X

(1)
2 ) and letW2 attain conditional Wyner’s

common information C(X
(2)
1 ;X

(2)
2 |X

(1)
1 ,X

(1)
2 ) to get

R∗
cont,avg(C) ≤ [H(X

(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 )− C]/4.

Finally, for C = H(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ), we let W1 = (X

(1)
1 ,X

(1)
2 ) and we let W2 =

(X
(2)
1 ,X

(2)
2 ) to get R∗

cont,avg(C) ≤ 0.

We next present a lower bound on the optimal average-case delivery rate function.

Proposition 7.3.2 (Lower bound). For every pmf p(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ),

R∗
cont,avg(C) ≥ max

{ H̄(C)
4 ,

[H(X
(1)
1 ,X

(1)
2 )−C]++[H(X

(2)
1 ,X

(2)
2 )−C]+

4 ,

[H(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 )−C]+

4

}

, (7.9)

where H̄(C) is as defined in (7.5). Equality at

R∗
cont,avg(C) =

[H(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 )−C]+

4

holds if and only if

C ≥ C∗ := min
p(w1,w2|x

(1)
1 ,x

(1)
2 ,x

(2)
1 ,x

(2)
2 )∈P

[I(X
(1)
1 ,X

(1)
2 ;W1) + I(X

(2)
1 ,X

(2)
2 ;W2 |W1)], (7.10)

where P is a class of conditional pmfs p(w1, w2|x(1)1 , x
(1)
2 , x

(2)
1 , x

(2)
2 ) such that

(X
(2)
1 ,X

(2)
2 )→ (X

(1)
1 ,X

(1)
2 )→W1,

(X
(1)
1 ,X

(1)
2 )→W1 → (X

(2)
1 ,X

(2)
2 ),

X
(1)
1 →W1 → X

(1)
2 ,
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X
(2)
1 → (W1,W2)→ X

(2)
2 ,

(X
(1)
1 ,X

(1)
2 )→ (X

(2)
1 ,X

(2)
2 ,W1)→W2

form Markov chains.

Proof. For every pmf p(w1|x(1)1 , x
(1)
2 )p(w2|w1, x

(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) such that

I(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ;W1,W2) ≤ C, (7.11)

the objective function of the optimization problem in Theorem 7.3.1 satisfies

H(X
(1)
1 |W1) +H(X

(1)
2 |W1) +H(X

(2)
1 |W1,W2) +H(X

(2)
2 |W1,W2)

4

=

∑2
i=1[H(X

(1)
i )− I(X(1)

i ;W1)] +
∑2

j=1[H(X
(2)
j )− I(X(2)

j ;W1,W2)]

4

(a)

≥
∑2

i=1[H(X
(1)
i )− C]+ +

∑2
j=1[H(X

(2)
j )−C]+

4

= H̄(C), (7.12)

where (a) follows by the condition in (7.11). Similarly, we have

H(X
(1)
1 |W1) +H(X

(1)
2 |W1) +H(X

(2)
1 |W1,W2) +H(X

(2)
2 |W1,W2)

4

=
H(X

(1)
1 ,X

(1)
2 )− I(X(1)

1 ,X
(1)
2 ;W1) + I(X

(1)
1 ;X

(1)
2 |W1)

4

+
H(X

(2)
1 ,X

(2)
2 )− I(X(2)

1 ,X
(2)
2 ;W1,W2) + I(X

(2)
1 ;X

(2)
2 |W1,W2)

4

≥ [H(X
(1)
1 ,X

(1)
2 )− C]+ + [H(X

(2)
1 ,X

(2)
2 )− C]+

4
(7.13)

and

H(X
(1)
1 |W1) +H(X

(1)
2 |W1) +H(X

(2)
1 |W1,W2) +H(X

(2)
2 |W1,W2)

4

=
H(X

(1)
1 ,X

(1)
2 )− I(X(1)

1 ,X
(1)
2 ;W1) + I(X

(1)
1 ;X

(1)
2 |W1)

4
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+
H(X

(2)
1 ,X

(2)
2 |W1)− I(X(2)

1 ,X
(2)
2 ;W2|W1) + I(X

(2)
1 ;X

(2)
2 |W1,W2)

4

(b)
=
H(X

(1)
1 ,X

(1)
2 )− I(X(1)

1 ,X
(1)
2 ;W1) + I(X

(1)
1 ;X

(1)
2 |W1) + I(X

(2)
1 ;X

(2)
2 |W1,W2)

4

+
H(X

(2)
1 ,X

(2)
2 |X

(1)
1 ,X

(1)
2 ) + I(X

(2)
1 ,X

(2)
2 ;X

(1)
1 ,X

(1)
2 |W1)− I(X(2)

1 ,X
(2)
2 ;W2|W1)

4

=
H(X

(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ) + I(X

(1)
1 ;X

(1)
2 |W1) + I(X

(2)
1 ;X

(2)
2 |W1,W2)

4

+
I(X

(2)
1 ,X

(2)
2 ;X

(1)
1 ,X

(1)
2 |W1) + I(X

(1)
1 ,X

(1)
2 ;W2|W1,X

(2)
1 ,X

(2)
2 )

4

− I(X
(1)
1 ,X

(1)
2 ;W1) + I(X

(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 ;W2|W1)

4
(c)

≥ [H(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 )− C]+

4
, (7.14)

where (b) follows since (X
(2)
1 ,X

(2)
2 ) → (X

(1)
1 ,X

(1)
2 ) → W1 form a Markov chain and (c)

follows by the condition in (7.11). Combining (7.12)-(7.14) implies the claim.

Note that the solution to the optimization problem in Theorem 7.3.1 occurs at

the boundary of (7.11). Therefore, the lower bound in (7.14) is attained if and only if

C ≥ C∗.

Remark 7.3.1. Let W1 = (X
(1)
1 ,X

(1)
2 ). The threshold C∗ in (7.10) then satisfies

C∗ ≤ H(X
(1)
1 ,X

(1)
2 ) + C(X

(2)
1 ;X

(2)
2 |X

(1)
1 ,X

(1)
2 ).

Therefore, if C ≥ H(X
(1)
1 ,X

(1)
2 ) + C(X

(2)
1 ;X

(2)
2 |X

(1)
1 ,X

(1)
2 ), by Proposition 7.3.2,

R∗
cont,avg(C) =

[H(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 )− C]+

4
.

Remark 7.3.2. The upper and lower bounds in Propositions 7.3.1 and 7.3.2 respectively

are demonstrated in Fig. 7.3, where the gap ∆ between these two bounds satisfies

∆ ≤ min{C, I(X(1)
1 ,X

(1)
2 ;X

(2)
1 ,X

(2)
2 )}/4,
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if C(X
(1)
1 ;X

(1)
2 ) + C(X

(2)
1 ;X

(2)
2 |W ∗) ≤ C ≤ C∗. Note that the gap ∆ is tight for inde-

pendent pair of files in Example 6.4.1.

No cache

Upper Bound

Lower Bound

H(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 )−C

4

W2 attaining C(X
(2)
1 ;X

(2)
2 |W1)

W2 attaining C(X
(2)
1 ;X

(2)
2 |W1)

W1 = (X
(1)
1 ,X

(1)
2 )

W2 = (X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 )

C

W1 = (X
(1)
1 ,X

(1)
2 )

H(X
(1)
1 )+H(X

(1)
2 )+H(X

(2)
1 )+H(X

(2)
2 )

4

C(X
(1)
1 ;X

(1)
2 )

+
C(X

(2)
1 ;X

(2)
2 |W ∗)

H(X
(1)
1 ,X

(1)
2 ,X

(2)
1 ,X

(2)
2 )

C(X
(2)
1 ;X

(2)
2 |X

(1)
1 ,X

(1)
2 )

H(X
(1)
1 , X

(1)
2 )

+

R∗
cont,avg(C)

W1 =W ∗

H(X
(1)
1 ,X

(1)
2 )+H(X

(2)
1 ,X

(2)
2 )−C−I(X(2)

1 ,X
(2)
2 ;W ∗)

4
∆

Figure 7.3. Bounds on the optimal average-case delivery rate function for arbitrarily corre-
lated dynamic contents.

7.4 Discussion

In this chapter, we have introduced a new caching problem to capture the un-

predictable nature of contents. As an answer to this dynamic caching problem, we have

proposed to place cache in small increments through successive steps to address the mod-

ifications within the contents (if any). In particular, we have followed an information-

theoretic approach considering a single user and we have established a single-letter char-

acterization of the optimal tradeoff between the total cache rate and the average-case

delivery rate in terms of an optimization problem. We have also presented a counterpart

of this result for the worst-case delivery rate. For both cases, the explicit solution to the

corresponding optimization problem is left as an open problem. Another open problem

is to extend our results to an arbitrary number of users. This direction was investigated

for the classical (static) caching setup in [6], in which the minimum average-case delivery

rate was established only up to upper and lower bounds when there are multiple users in
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the network. A coding-theoretic approach building an algorithm for dynamic contents

is also left as an open problem.
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Chapter 8

Successive Refinement to Caching

for Dynamic Requests

This chapter introduces another new caching problem in which the user requests

arise at any point of time possibly interrupting the cache placement phase (dynamic

requests). To cope with the dynamic nature of the demands, a successive refinement

approach is proposed: some partial information about file contents are cached in small

increments through successive steps to satisfy delayed requests while guaranteeing to

serve for earlier requests as well. Taking an information-theoretic approach, the opti-

mal tradeoff among average-case delivery rates at different request times is characterized

when the cache rate is above a well-defined threshold. For the class of i.i.d. Bern(1/2)

contents and an arbitrary number of users, taking a coding-theoretic approach, a succes-

sive caching algorithm that achieves near-optimal average-case delivery rates simultane-

ously at every request time is developed. This algorithm is also shown to be uniformly

near-optimal when the performance criterion is the worst-case delivery rates.
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8.1 Introduction

Recently, coding-theoretic approaches were proposed to develop practical close-

to-optimal codes for cache placement and content delivery. Breaking off from earlier

studies [1,2] that concentrated on optimizing either cache placement or content delivery

while the other is fixed, Maddah-Ali and Niesen [3] proposed a coding scheme that

optimizes both phases, achieving the optimal tradeoff among communication rates for

cache placement and content delivery up to a constant multiplicative factor. In this

pioneering work, each file is split into subfiles, where a set of properly chosen subfiles is

cached at user devices and a set of linearly encoded subfiles is broadcast in the delivery

phase. Following [3], extensive research effort was put into improving the multiplicative

gap [4–8] and extending the results to heterogeneous cache sizes [9–12], to nonuniform file

popularity [13–15], to correlated contents [16], and to dynamic contents that is modified

after cache placement is completed [17].

As argued in Chapter 7 for information-theoretic approaches, all these exist-

ing caching problems studied from a coding-theoretic perspective also limits the cache

placement to a single step, which falls short of capturing the unpredictable nature of

demands in real networks. In this chapter, we introduce another new caching problem

that addresses requests arising at any point of time possibly interrupting the cache place-

ment phase (dynamic requests). To answer this dynamic caching problem, we propose a

successive refinement approach to cache placement.

In particular, we formulate a caching problem for dynamic requests, in which

the cache placement phase consists of an arbitrary number of successive steps and each

step refines the cache content stored in prior steps for possible requests arising at that

moment in time. First, taking an information-theoretic approach, we consider a single

user and two time points at which the request can arise, and relate this problem to the

successive Gray–Wyner network discussed in Chapter 6. We characterize the optimal

tradeoff between the average-case delivery rates at different request times when the cache
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rate is above a well-defined threshold. Second, we consider a coding-theoretic version of

the problem with an arbitrary number of users and a finite set of time points at which

requests can arise, assuming the class of i.i.d. Bern(1/2) contents. For this setting,

we develop a successive caching algorithm that can achieve average-case delivery rates

that are uniformly within a constant multiplicative factor of their respective minima at

every request time. Our algorithm is also uniformly near-optimal when the performance

criterion is the worst-case delivery rates.

8.2 Problem Formulation

Formally, consider a server with a fixed number of N files (Xn
1 ,X

n
2 , . . . ,X

n
N )

drawn i.i.d. from p(x1, x2, . . . , xN ) and K users, each with a cache rate of nC bits. As

illustrated in Fig. 8.1, each user successively caches some information about the contents

in T steps of increments. At step t ∈ [T ], additional information L
(k)
t of rate Ct is stored

in the local cache of user k ∈ [K], where C1 +C2 + · · ·+CT = C. A request can arise at

any time point t ∈ [T ], the knowledge of which server does not have a priori. For a request

arising at time point t ∈ [T ], denoted by the request vector d = [d1 d2 . . . dK ] ∈ [N ]K

where dk ∈ [N ] corresponds to the request of user k ∈ [K], server broadcasts some other

information about the contents Md,t of rate Rd,t to all users so that each user is able to

recover the rest of its desired file.

Figure 8.1. Caching for dynamic requests with N = 2 files, K = 1 user, and T = 2 successive
steps: server first places some cache (1) based on the files (Xn

1 , X
n
2 ). If a request arises at T = 1

(2), it delivers the required content for user to decode its desired file (3); otherwise, it continues
with placing an update on the cache (2). If a request arises at T = 2 (3), server delivers the
required content for user to decode its desired file (4).
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An
(

n, (nCt, nRd,t)d∈[N ]K ,t∈[T ]

)

T -step successive caching scheme for dynamic

requests consists of

• KT caching functions where

φ
(k)
t : {0, 1}nN → {0, 1}nCt

maps the files (Xn
1 ,X

n
2 , . . . ,X

n
N ) into a cache content

L
(k)
t := φ

(k)
t (Xn

1 ,X
n
2 , . . . ,X

n
N )

to be placed at user k ∈ [K] during step t of the successive cache placement phase

for t ∈ [T ],

• NKT encoding functions, where

ψd,t : {0, 1}nN → {0, 1}nRd,t

maps the files (Xn
1 ,X

n
2 , . . . ,X

n
N ) to the delivery content

Md,t := ψd,t(X
n
1 ,X

n
2 , . . . ,X

n
N )

corresponding to the request vector d = [d1 d2 . . . dK ] ∈ [N ]K received by the

server at time point t ∈ [T ],

• KT decoding functions, where

µ
(k)
t : {0, 1}n(

∑t
r=1 Cr) × {0, 1}nRd,t → {0, 1}n

maps the cache contents placed until time point t ∈ [T ] and the delivery contents
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into an estimate

X̂n
dk,t

:= µ
(k)
t

(

(L
(k)
i : i ∈ [t]),Md,t

)

of the requested file Xn
dk

by user k ∈ [K] when the request vector d ∈ [N ]K is

received by the server at time point t.

The probability of error is defined as

P (n)
e := P(X̂n

dk ,t
6= Xn

dk
for some t ∈ [T ], k ∈ [K], dk ∈ [N ]).

Given a cache rate tuple (C1, C2, . . . , CT ), a delivery rate tuple (Rd,t)d∈[N ]K ,t∈[T ]

is said to be achievable for dynamic requests if there exists an
(

n, (nCt, nRd,t)d∈[N ]K ,t∈[T ]

)

T -step successive caching scheme for dynamic requests with limn→∞ P
(n)
e = 0.

Remark 8.2.1. One can distinguish the caching problem formulated above for dynamic

requests with the extension of the classical caching problem to heterogeneous cache rates,

which allows users utilize different amount of cache rates. In the heterogeneous caching

problem [9, 11, 12], the goal is to minimize the delivery rate for the given heterogeneous

cache rates. In our setting, on the other hand, every user stores the same amount of

information until the request arises, which could happen at any point of time, and the

goal is to simultaneously minimize the delivery rates corresponding to different request

times.

We are interested in the average delivery rates when the requested file tuple is uni-

formly at random among [N ]K . Formally, given a tuple of cache rates (C1, C2, . . . , CT ),

a rate tuple (Rt)t∈[T ] is said to be average-case achievable for dynamic requests if there

exists a delivery rate tuple (Rd,t)d∈[N ]K ,t∈[T ] achievable for dynamic requests such that

its average satisfies

1

NK

∑

d∈[N ]K

Rd,t ≤ Rt
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for every t ∈ [T ].

Similarly, we look at worst-case delivery rates when the requested file tuple is

arbitrary among [N ]K . Formally, given a tuple of cache rates (C1, C2, . . . , CT ), a rate

tuple (R1, R2, . . . , RT ) is said to be worst-case achievable for dynamic requests if there

exists a delivery rate tuple (Rd,t)d∈[N ]K ,t∈[T ] achievable for dynamic requests such that

its maximum satisfies

max
d∈[N ]K

Rd,t ≤ Rt

for every t ∈ [T ].

In Section 8.3, we consider a simplified version of this dynamic request problem

for a single user and two files to analyze the optimal tradeoff among the average-case

achievable delivery rates. In Section 8.4, we continue with an arbitrary number of users

and the class of i.i.d. Bern(1/2) files to propose a successive caching algorithm to simulta-

neously reduce the delivery rates and we characterize the performance of this algorithm

in terms of both average-case and worst-case delivery rates.

8.3 Information-Theoretic Approach

We analyze the optimal tradeoff among the average-case achievable delivery rates

for a single user (K = 1) and a pair of files (N = 2) Xn
1 and Xn

2 that are drawn i.i.d.

from the pmf p(x1, x2) over a finite alphabet. We first consider a request that is known

to arise after utilizing all of the cache rate C, which is referred to as static request and

corresponds to T = 1 in our dynamic setup. Define the optimal average-case delivery

rate function for static requests as

R∗
req,avg(C) := min{R : R is average-case achievable for static requests

for a given cache rate C}, (8.1)
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where the achievability for static requests is defined similarly by letting T = 1. This

function captures the tradeoff between the utilized cache rate and the average deliv-

ery rate under the traditional caching problem and characterized by Wang, Lim, and

Gastpar [18,19] as follows.

Proposition 8.3.1 ( [18, Proposition 3]). The optimal average-case delivery rate func-

tion for static requests is

R∗
req,avg(C) = min

p(w|x1,x2):
I(X1,X2;W )≤C

H(X1|W ) +H(X2|W )

2

=
H(X1,X2)−C

2
+

1

2
min

p(w|x1,x2):
I(X1,X2;W )=C

I(X1;X2 |W ). (8.2)

In particular, for C ≥ C(X1;X2)

R∗
req,avg(C) =

H(X1,X2)− C
2

.

Returning back to our dynamic model, assume now that user requests a file at one

of the two possible time points (T = 2). As illustrated in Fig. 8.2, the request is dynamic

in time in the sense that it is received either at t = 1 or at t = 2, which correspond to the

time right after placing nC1 and n(C1 + C2) bits of cache, respectively. Depending on

the realization d of uniformly random request D ∈ [2] received at time point t, the server

transmits nRd,t bits to deliver the remaining part of the requested file Xn
d . The question

is whether the rate pair of (R1, R2) = (R∗
req,avg(C1), R

∗
req,avg(C1 + C2)) is average-case

achievable for dynamic requests. Note that the problem is not trivial since a successive

caching scheme that is optimal at the first and the second intermediate step may not

achieve R∗
req,avg(C1 +C2), which is obtained by optimizing over two steps combined. We

next present a sufficient condition on the cache rates to simultaneously achieve these

lower bounds.

Theorem 8.3.1. Given C1 > 0, let W ∗ denote the random variable defined by the
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nC1

request at t = 1

nC1 nC2

request at t = 2

nRd,1

nRd,2

Figure 8.2. Caching for dynamic requests from user perspective: server first places nC1 bits
into the cache of user and checks if request arises. If it does, server delivers nRd,1 bits so that
user can decode its requested file. Otherwise, server places nC2 more bits into the cache of user
and waits for the request, after which it delivers nRd,2 so that user can decode its requested file.

conditional pmf p(w∗|x1, x2) that attains R∗
req,avg(C1) in (8.2) and let C(X1;X2|W ∗)

be the conditional Wyner common information defined in (6.8). For every C1 > 0 and

C2 ≥ C(X1;X2|W ∗), a rate pair (R1, R2) is average-case achievable for dynamic requests

if

R1 ≥ R∗
req,avg(C1), (8.3a)

R2 ≥ R∗
req,avg(C1 + C2). (8.3b)

Conversely, for every C1, C2 > 0, if a rate pair (R1, R2) is average-case achievable for

dynamic requests, then it must satisfy (8.3).

Proof. The converse follows from the operational definition. Intuitively, the perfor-

mance of a successive caching strategy for dynamic requests is bounded below by the

static caching strategies each of which is individually optimized for the corresponding

cache rate and request time. We next show that under the given sufficient condition on

the cache rates, these lower bounds can be attained simultaneously. To prove this,

once again, we benefit from the successive Gray–Wyner network in Fig. 6.2, which

also captures the dynamic request problem when we set (Xn
1,1,X

n
2,1) = (Xn

1,2,X
n
2,2) =

(Xn
1 ,X

n
2 ) with i.i.d. elements drawn from the pmf p(x1, x2). Consequently, a rate

tuple (C1, R1,1, R2,1, C2, R1,2, R2,2) is achievable for dynamic requests if and only if
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it is in the optimal rate region of the successive Gray–Wyner network evaluated for

p := p(x1, x2)1{(x(2)
1 ,x

(2)
2 )=(x1,x2)}

, which will be referred to as R(p). Therefore, given a

pair of cache rates (C1, C2), a rate pair (R1, R2) is average-case achievable for dynamic

requests if and only if there exists (C1, R1,1, R2,1, C2, R1,2, R2,2) ∈ R(p) such that

R1,1 +R2,1

2
≤ R1

and

R1,2 +R2,2

2
≤ R2.

Now, given C1 > 0, let pW ∗|X1,X2
(w|x1, x2) denote the pmf attaining R∗

req,avg(C1),

which directly implies

I(X1,X2;W
∗) = C1. (8.4)

Suppose that C2 ≥ C(X1;X2|W ∗). We let W1 =W ∗. It then suffices to show that there

exist a conditional pmf pW2|W1,X1,X2
(w2|w1, x1, x2) such that

I(X1,X2;W2 |W1) = C2

and

H(X1|W1,W2) +H(X2|W1,W2)

2
≤ R∗

req,avg(C1 + C2), (8.5)

from which the claim follows by Theorem 6.3.1 and letting Rj,1 = H(Xj |W1) and Rj,2 =

H(Xj |W1,W2) for j = 1, 2.

Consider now the conditional pmf

pW2|W1,X1,X2
(w2 |w1, x1, x2) =











pW ∗
2 |W1,X1,X2

(w2|w, x1, x2) with probability γ

1{w2=(x1,x2)} with probability 1− γ
,

(8.6)

where pW ∗
2 |W1,X1,X2

(w2|w1, x1, x2) attains the conditional Wyner common information
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C(X1;X2|W1) defined in (6.8) and γ ∈ [0, 1] is chosen such that

I(X1,X2;W2 |W1) = γC(X1;X2 |W1) + (1− γ)H(X1,X2 |W1) = C2, (8.7)

which is always possible since C2 ≥ C(X1;X2|W1) by our assumption and

C2 ≤ H(X1,X2)− C1 = H(X1,X2 |W1)

by (8.4). Now, we verify (8.5) by using the conditional pmf in (8.6).

H(X1|W1,W2) +H(X2|W1,W2)

2

=
H(X1,X2|W1)− I(X1,X2;W2|W1) + I(X1;X2|W1,W2)

2
(a)
=
H(X1,X2)− C1 − C2

2
(b)

≤ R∗
req,avg(C1 +C2),

where (a) follows by (8.4) and (8.7), and by the fact that

I(X1;X2 |W1,W2) = 0,

and (b) follows by Proposition 8.3.1.

Theorem 8.3.1 implies that if the user is equipped with sufficiently large memory

left for the cache refinement, then the problem of dynamic requests can be handled as

well as two separate problems of static requests. We next relax the sufficient condition

on the cache rate for the refinement, C2, and put the burden on the amount of cache

placed at the first step.

Corollary 8.3.1. For every C1 ≥ C(X1;X2) and C2 ≥ 0, a rate pair (R1, R2) is average-

case achievable for dynamic requests if and only if it satisfies (8.3).
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Proof. It suffices to prove the achievability. Note that for a given conditional pmf

p(w|x1, x2) such that X1 → W → X2 form a Markov chain, the conditional Wyner

common information C(X1;X2|W ) is zero by definition since

C(X1;X2 |W ) = min
pV |W,X1,X2

(v|w,x1,x2)

I(X1;X2|W,V )=0

I(X1,X2;V |W ) = 0

is attained by letting V = ∅. If C1 ≥ C(X1;X2) in Theorem 8.3.1, the conditional pmf

p(w∗|x1, x2) that attains R∗
req,avg(C1) satisfies I(X1;X2|W ∗) = 0 by Proposition 8.3.1.

Therefore, the conditional Wyner common information C(X1;X2|W ∗) = 0, from which

the result follows.

Inspired from Corollary 8.3.1, we consider independent files in the proceeding

example, where we have the full characterization of the average-case achievable rate

pairs for dynamic requests.

Example 8.3.1 (Independent files). If p(x1, x2) = p(x1)p(x2), then the Wyner common

information between X1 and X2 is C(X1;X2) = 0. Therefore, by Corollary 8.3.1, for

every given C1, C2 ≥ 0, a rate pair (R1, R2) is average-case achievable for dynamic

requests if and only if it satisfies

R1 ≥ R∗
req,avg(C1) =

H(X1) +H(X2)− C1

2
,

R2 ≥ R∗
req,avg(C1 + C2) =

H(X1) +H(X2)− C1 − C2

2
.

For a given memory pair (C1, C2), the set of average-case achievable rate pairs for dy-

namic requests is demonstrated in Fig. 8.3.

Remark 8.3.1. For independent files, it is easy to extend the single-letter characteriza-

tion of the average-case achievable rate pairs for dynamic requests that arise at one of the

two time points (T = 2) to an arbitrary number of time points. One can follow similar

arguments starting from the successive Gray–Wyner network and utilizing its optimal
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R1

R2

H(X1)+H(X2)−C1

2

H(X1)+H(X2)−C1−C2

2

Figure 8.3. The set of average-case achievable rate pairs for dynamic requests of independent
files.

rate region for the dynamic caching problem to obtain that for every C1, C2, . . . CT ≥ 0,

a rate tuple (R1, R2, . . . , RT ) is average-case achievable for dynamic requests if and only

if it satisfies

Rt ≥ R∗
req,avg(C1 + C2 + · · · +Ct) =

H(X1) +H(X2)−
∑t

r=1Cr

2

for every t ∈ [T ]. Such an extension for arbitrarily correlated files is left as an open

problem.

8.4 Coding-Theoretic Approach

We propose a successive caching algorithm to simultaneously reduce the delivery

rates for an arbitrary number N of files and K of users. We concentrate on independent

files, each of which is i.i.d. Bern(1/2). For the simplicity of the notation, we denote the

fileXn as X for the rest of this section. Similar to Section 8.3, we start with revisiting the

problem of static requests (T = 1) from a coding-theoretic perspective studied by [3, 6].

Let the optimal average-case delivery rate function for static requests R∗
req,avg(C) be

defined as in (8.1) for K users and N files i.i.d. with respect to Bern(1/2). Similarly,
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define the optimal worst-case delivery rate function for static requests as

R∗
req,worst(C) := min{R : R is worst-case achievable for static requests

for a given cache rate C}. (8.8)

To present an upper bound on R∗
req,avg(C) and R∗

req,worst(C), we define R(d, C)

as the lower convex envelope of

( K
KC/N+1

)

−
(K−|supp(d)|

KC/N+1

)

( K
KC/N

) , (8.9)

for C ∈ {0, N/K, 2N/K, . . . ,N}, where |supp(d)| denotes the number of distinct ele-

ments in the request vector d. We also define function Ravg(C) as

Ravg(C) := ED[R(D, C)], (8.10)

where the expectation is taken with respect to the request vector D that is uniformly

random among [N ]K . Note that Ravg(C) can be expressed as the lower convex envelope

of

ED

[

(

K
KC/N+1

)

−
(K−|supp(D)|

KC/N+1

)

(

K
KC/N

)

]

for C ∈ {0, N/K, 2N/K, . . . ,N}. Similarly, we define function Rworst(C) as

Rworst(C) := max
d∈[N ]K

R(d, C), (8.11)

which can be expressed as the lower convex envelope of

(

K
KC/N+1

)

−
(K−min{K,N}

KC/N+1

)

( K
KC/N

)

for C ∈ {0, N/K, 2N/K, . . . ,N}. Fig. 8.4 demonstrates the functions Ravg(C) and

Rworst(C) for (K,N) = (4, 4).
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Figure 8.4. Demonstration of the functions Ravg(C) and Rworst(C) for K = 4 users and
N = 4 files.

The following results by [6, 7] present upper bounds on the optimal values of

R∗
req,avg(C) and R∗

req,worst(C), and characterizes their gap to the respective optimal.

Proposition 8.4.1 ( [6,7]). For N files and K users each equipped with a cache rate of

C ≤ N ,

1 ≤ Ravg(C)

R∗
req,avg(C)

≤ 2.00884.

and

1 ≤ Rworst(C)

R∗
req,worst(C)

≤ 2.00884.

We are now ready to present the main result of this section, which generalizes

the previous works for T ≥ 2.

Theorem 8.4.1. For N files, K users, and given a tuple of cache rates (C1, C2, . . . , CT ),

a rate tuple (R1, R2, . . . , RT ) is average-case achievable for dynamic requests if

Rt ≥ Ravg(C1 + C2 + · · ·+ Ct) (8.12)

for every t ∈ [T ]. Conversely, if a rate tuple (R1, R2, . . . , RT ) is average-case achievable

for dynamic requests, then it must satisfy

Rt ≥
Ravg(C1 + C2 + · · ·+ Ct)

2.00884
(8.13)
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for every t ∈ [T ]. Similarly, a rate tuple (R1, R2, . . . , RT ) is worst-case achievable for

dynamic requests if

Rt ≥ Rworst(C1 + C2 + · · ·+ Ct) (8.14)

for every t ∈ [T ]. Conversely, if a rate tuple (R1, R2, . . . , RT ) is worst-case achievable

for dynamic requests, then it must satisfy

Rt ≥
Rworst(C1 + C2 + · · ·+ Ct)

2.00884
(8.15)

for every t ∈ [T ].

The inner and outer bounds on the achievable rate pairs for dynamic requests

established in Theorem 8.4.1 are illustrated in Fig. 8.5 for T = 2.

Outer Bound

Inner Bound

R1

R2

Ravg(C1 + C2)
Ravg(C1+C2)

2.00884

Ravg(C1)Ravg(C1)
2.00884

(a) Average-case.

Outer Bound

Inner Bound

R1

R2

Rworst(C1+C2)
2.00884

Rworst(C1)
2.00884

Rworst(C1 + C2)

Rworst(C1)

(b) Worst-case.

Figure 8.5. The inner and outer bounds on the achievable rate pairs for dynamic requests
in Theorem 8.4.1.

Proof of Theorem 8.4.1. We start with the converse. For every given cache rate tuple

(Ct)
T
t=1, if a rate tuple (R1, R2, . . . , RT ) is average-case achievable for dynamic requests,

then it must satisfy

Rt

(a)

≥ R∗
req,avg(C1 + C2 + . . . +Ct)

(b)

≥ Ravg(C1 + C2 + . . .+ Ct)

2.00884

for every t ∈ [T ], where (a) follows by operational definition and (b) follows by Propo-
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sition 8.4.1. In words, the delivery rate Rt at step t of the successive caching scheme

cannot be lower than the delivery rate minimized knowing a priori that a total amount

of (C1 +C2 + . . .+Ct) information is cached before the delivery. By similar arguments,

it is easy to see the converse for the worst-case delivery rates.

For the achievability, we provide a successive caching algorithm that can attain

a delivery rate of R(d,
∑t

r=1Cr) when the request d ∈ [N ]K arises at the successive step

t ∈ [T ]. We first prove this claim assuming that T = K and Ct =
N
K for every t ∈ [K].

We then extend our proof to an arbitrary tuple of (Ct)
T
t=1 by using a memory sharing

argument accommodating the successive nature of the cache placement.

Suppose now that T = K and Ct =
N
K for every t ∈ [K]. The cache placement

is performed successively on T steps. In the first step, file Xj, j ∈ [N ], is split into K

disjoint subfiles of equal size to be cached at different users. The subfiles of file Xj after

splitting are labeled as (Xj)(i1), i1 ∈ [K], and the subfile (Xj)(i1) is cached at user i1. In

the second step, subfile (Xj)(i1), j ∈ [N ], i1 ∈ [K], is further split into (K − 1) disjoint

subfiles of equal size to be cached at the users except user i1. Using a similar notation,

subfiles of (Xj)(i1) formed in the second step are labeled as (Xj)(i1,i2), i2 ∈ [K]\{i1}, and

the subfile (Xj)(i1,i2) is cached at user i2 in the second step. Repeating this procedure

successively, at step t ∈ [T ], subfile (Xj)(i1,i2,...,it−1) for every j ∈ [N ] and every ordered

subset (i1, i2, . . . , it−1) of [K], is further split into (K − t + 1) disjoint subfiles of equal

size to be cached at the users that do not have access to (Xj)(i1,i2,...,it−1). Subfiles after

this splitting are labeled as

(Xj)(i1,i2,...,it−1,it), it ∈ [K] \ {i1, i2, . . . , it−1},

each of which has the rate of
∏t

r=1
1

K−r+1 , and the subfile (Xj)(i1,i2,...,it) is cached at

user it at step t. The content cached at user k ∈ [K] during step t of the successive cache
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placement is then written as

L
(k)
t =

(

(Xj)(σ(S),k) : S ⊂ [K] \ k such that |S | = t− 1, σ ∈ Σt−1, j ∈ [N ]
)

and has the rate of

N

(

K − 1

t− 1

)

(t− 1)!
1

K(K − 1) · · · (K − t+ 1)
=
N

K
= Ct,

which satisfies the given cache rate. To see the total cache rate utilized at the end of

step t, note that the subfile (Xj)(i1,i2,...,it−1,it) is cached at user k if and only if k ∈

{i1, i2, . . . , it}. Therefore, at the end of step t, each user utilizes a total cache rate of

N

(

K − 1

t− 1

)

t!
1

K(K − 1) · · · (K − t+ 1)
=
tN

K
=

t
∑

r=1

Cr,

as claimed.

Suppose now that the request vector d = [d1 d2 . . . dK ] ∈ [N ]K is received by

the server at step t ∈ [T ]. For the content delivery corresponding to this request, we

utilize the delivery scheme in [6] by relabeling the subfiles in accordance with our new

cache placement scheme. Server first chooses a set of |supp(d)| users, denoted by U(d),

such that every user within this set requests different files. These users will be referred

to as leaders. For a positive integer t, let Σt denote the set of all permutations over

[t]. For a permutation σ ∈ Σt and a set S of size t over integers, let σ(S) denote the

sequence obtained by applying the permutation σ to the ascending order of set S. For

every subset S ⊂ [K] such that |S| = t+1 and S ∩ U(d) 6= ∅, and for every permutation

σ ∈ Σt, server then broadcasts the linear combination

Yσ,S :=
⊕

s∈S

(Xds)σ(S\{s}), (8.16)
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which has the rate of
∏t

r=1
1

K−r+1 . The delivery content is then written as

Md,t =
{

Yσ,S : S ⊂ [K] such that S ∩ U(d) 6= ∅ and |S | = t+ 1, σ ∈ Σt

}

(8.17)

and has the rate of

Rd,t =

[(

K

t+ 1

)

−
(

K − |supp(d)|
t+ 1

)]

t!

t
∏

r=1

1

K − r + 1

=

(

K
t+1

)

−
(

K−|supp(d)|
t+1

)

(K
t

) = R(d, tN/K).

These cache placement and delivery steps are summarized in Algorithm 1. It remains

to show that every user can recover its desired file from the delivery content in (8.17).

Let u ∈ U(d) be a leader user. We start with proving that user u can recover file Xdu

by similar arguments to [3, 6]. For every T ⊂ [K] \ {u} such that |T | = t and for every

permutation σ ∈ Σt,

Yσ,T ∪{u} = (Xdu)σ(T ) ⊕
⊕

s 6=u∈T ∪{u}

(Xds)σ(T ∪{u}\{s}) (8.18)

is among the broadcasted linear combination. Since every subfile (Xds)σ(T ∪{u}\{s}) for

s 6= u is already cached at user u, it is easy to see from (8.18) that user u can recover

(Xdu)σ(T ). It then follows that user u is able to recover all subfiles of the form

{(Xdu)σ(T ) : T ⊂ [K] \ {u} such that |T | = t, σ ∈ Σt}

of its requested file Xdu . With the remaining subfiles already available in its cache, user

u can completely recover its requested file Xdu . We now consider non-leader users and

provide computationally more efficient decoding approach than [6], answering the open

problem stated in [6, Remark 10]. Let a ∈ [K] \ U(d) be a non-leader user with the

request da = du for a leader user u ∈ U(d). Note that for every T ⊂ [K] \ {a} such that
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|T | = t and T ∩ U(d) 6= ∅, and for every permutation σ ∈ Σt,

Yσ,T ∪{a} = (Xdu)σ(T ) ⊕
⊕

s 6=a∈T ∪{a}

(Xds)σ(T ∪{a}\{s}) (8.19)

is among the broadcasted linear combination. Since every subfile (Xdu)σ(T ∪{a}\{s}) for

s 6= a is already cached at user a, it is easy to see from (8.19) that user a can recover

(Xdu)σ(T ). It then follows that user a is able to recover all subfiles of the form

{(Xdu)σ(T ) : T ⊂ [K] \ {a} such that |T | = t and T ∩ U(d) 6= ∅, σ ∈ Σt}. (8.20)

The rest of the subfiles of file Xdu is either cached at user a or is of the form of (Xdu)σ(A)

for some set A ⊂ [K]\{a} such that |A| = t and A∩U(d) = ∅, and for some permutation

σ ∈ Σt. For the second type of subfiles, we need the following lemma, the proof of which

is deferred to Appendix 8.A.

Lemma 8.4.1. Given a leader user u ∈ U(d) and a set A ⊂ [K] \ {a} such that |A| = t

and A∩ U(d) = ∅, define the set of users within A that does not request file du as

Auc := {z ∈ A : dz 6= du},

define the family of subsets of Auc that requests different files as

F(Auc) = {V ⊂ Auc : dy 6= dz ∀y, z ∈ V, y 6= z},

and define the set of leader users covering the request span of V ∈ F(Auc) as

U(V) = {u ∈ U(d) : du = dv for some v ∈ V}.

185



Then, for every permutation σ ∈ Σt,

⊕

V∈F(Auc)

Yσ,(A∪{u}∪U(V))\V =
⊕

V⊂F(Auc)

⊕

v∈A∪{u}:
dv=du

(Xdu)σ((A∪{u}∪U(V))\(V∪{v})) . (8.21)

We now show that for every A ⊂ [K] \ {a} such that |A| = t and A∩ U(d) = ∅,

and for every σ ∈ Σt, user a can recover (Xdu)σ(A) from

⊕

V∈F(Auc)

Yσ,(A∪{u}∪U(V))\V , (8.22)

which can be computed from the delivery content since Yσ,(A∪{u}∪U(V))\V is among the

broadcasted linear combinations. By Lemma 8.4.1, (8.22) can be rewritten as

⊕

V∈F(Auc)

Yσ,(A∪{u}∪U(V))\V

=
⊕

V⊂F(Auc)

⊕

v∈A∪{u}:
dv=du

(Xdu)σ((A∪{u}∪U(V))\(V∪{v}))

=
⊕

v∈A∪{u}:
dv=du

(Xdu)σ((A∪{u})\{v}) ⊕
⊕

V⊂F(Auc )

V6=∅

⊕

v∈A∪{u}:
dv=du

(Xdu)σ((A∪{u}∪U(V))\(V∪{v}))

= (Xdu)σ(A) ⊕
⊕

v∈A:
dv=du

(Xdu)σ((A∪{u})\{v}) ⊕
⊕

V⊂F(Auc )

V6=∅

⊕

v∈A∪{u}:
dv=du

(Xdu)σ((A∪{u}∪U(V))\(V∪{v})) .

(8.23)

Since every term in (8.23) except the first one is of the form of (8.20), user a has already

recovered them. Therefore, it can recover the desired subfile (Xdu)σ(A) by canceling out

those previously recovered terms. Since the set A and user a are arbitrary, it follows

that nonleader users can also recover their requested files from the delivery content in

(8.17).

We can remove the assumptions on the cache rates as follows. Suppose we are

given an arbitrary, positive tuple of cache rates (C1, C2, . . . , CT ). For every t ∈ [T ], we
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decompose the total utilized cache rate until the end of step t as

t
∑

r=1

Cr = zt
N

K
+ αt

N

K
, (8.24)

for zt ∈ Z+ and αt ∈ [0, 1], where zt denotes the integer multiple of N/K that is closest

to
∑t

r=1 Cr from below, and αt denotes the remaining fraction. At the end of step t ∈ [T ]

of the successive cache placement, following similar steps to Algorithm 1, the cache of

user u ∈ [K] includes the subfiles

(Xj)σ(S), S ⊂ [K] such that u ∈ S and |S | = zt, σ ∈ Σzt, j ∈ [N ],

as well as the first αt fraction of the subfiles

(Xj)(σ(S′),u), S ′ ⊂ [K] such that u /∈ S ′ and |S ′ | = zt, σ ∈ Σzt, j ∈ [N ].

Upon receiving the request vector d ∈ [N ]K at step t ∈ [T ] for a total utilized

cache rate in the form of (8.24), server utilizes time sharing between the two delivery

contents corresponding to the cache rates (zt+1)N/K and ztN/K, respectively, resulting

in a delivery rate of

Rd,t = αt

( K
zt+2

)

−
(K−|supp(d)|

zt+2

)

(

K
zt+1

) + (1− αt)

( K
zt+1

)

−
(K−|supp(d)|

zt+1

)

(

K
zt

) = R(d,
t

∑

r=1

Cr). (8.25)

Finally, the achievability of Ravg(
∑t

r=1 Cr) for the average-case delivery rates follows

by taking the expectation of (8.25) with respect to uniformly random request vector.

Similarly, the achievability of Rworst(
∑t

r=1Cr) for the worst-case delivery rates follows

by taking the maximum of (8.25) over arbitrary request vector.

We next present an example to illustrate the algorithm.

Example 8.4.1. Consider a network of K = 4 users and a server of N = 4 files.
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Algorithm 1 Successive caching for dynamic requests assuming Ct = N/K, ∀t ∈ [K].

1: for j = 1 : N do

2: (Xj)() ← Xj ⊲ initialization
3: end for

4: RequestBit ← 0
5: t← 1
6: while RequestBit = 0 and t ≤ K do

7: for j = 1 : N , σ ∈ Σt−1 do

8: for S ⊂ [K], |S| = t− 1 do

9: Split the subfile (Xj)(σ(S)) into (K − t + 1) subfiles (Xj)(σ(S),it) for it ∈
[K] \ S

10: end for

11: end for

12: for u = 1 : K do

13: At user u, cache subfiles

(

(Xj)(σ(S),u) : S ⊂ [K] \ {u} such that |S | = t− 1, σ ∈ Σt−1, j ∈ [N ]
)

⊲ successive cache placement
14: end for

For T = 2, suppose that the cache rates successively utilized at the users are given as

(C1, C2) = (1, 1). In the first step of the cache placement, user u ∈ [4] stores the collection

of subfiles

L
(u)
1 =

(

(X1)(u), (X2)(u), (X3)(u), (X4)(u)
)

in its cache, in which each subfile (Xj)(u) has the rate of 1/4 resulting in a cache rate of

1. In the second step, user u ∈ [4] adds the collection of subfiles

L
(u)
2 =

(

(Xj)(v,u) : v ∈ [4] \ {u}, j ∈ [4]
)

to its cache, in which each subfile (Xj)(v,u) has the rate of 1/12 resulting in a cache

rate of 1. For example, user 2 additionally stores (Xj)(1,2), (Xj)(3,2), and (Xj)(4,2) for

j ∈ [4] at step t = 2. Partition of file Xj for this two-step successive caching strategy is

demonstrated in Fig. 8.6.

We now closely look at the delivery content. Suppose that the request vector

d = [1 2 1 2] is received at step t = 1. In this case, server chooses U(d) = {1, 2} as the
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Algorithm 1 (continued)

15: if request d = [d1 d2 . . . dK ] received then

16: U(d)← ∅ ⊲ Initialize the set of leader users
17: for d ∈ supp(d) do
18: u← find(du = d) ⊲ Find a user that requests file d
19: U(d)← U(d) ∪ {u} ⊲ Add user u to the set of leader users
20: end for

21: Θ← {S ⊂ [K] : |S| = t+ 1,S ∩ U(d) 6= ∅}
22: for S ∈ Θ, σ ∈ Σt do

23: for s ∈ S do

24: Broadcast
⊕

s∈S(Xds)σ(S\{s}) ⊲ coded delivery
25: end for

26: end for

27: RequestBit = 1
28: end if

29: t = t+ 1
30: end while

(Xj)(4,3)(Xj)(2,3) (Xj)(3,1) (Xj)(3,2) (Xj)(3,4) (Xj)(4,2)(Xj)(1,2) (Xj)(1,4)(Xj)(1,3) (Xj)(2,1) (Xj)(2,4) (Xj)(4,1)

cache placement: step 2

(Xj)(4)(Xj)(3)(Xj)(1) (Xj)(2)

21 3

color code

4cache content for user

cache placement: step 1

Figure 8.6. Two-step successive cache placement for (C1, C2) = (1, 1) when K = 4 users and
N = 4 files.

leader users and broadcasts the collection of linear combinations

Md,1 = {Yσ,{1,2},Yσ,{1,3},Yσ,{1,4},Yσ,{2,3},Yσ,{2,4}}

=
{

(X1)(2) ⊕ (X2)(1), (X1)(3) ⊕ (X1)(1), (X1)(4) ⊕ (X2)(1),

(X2)(3) ⊕ (X1)(2), (X2)(4) ⊕ (X2)(2)
}

,

where σ ∈ Σ1 is just the identity permutation. Here, each broadcasted linear combination
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is of rate 1/4, resulting in the delivery rate of 5/4, which is equal to the delivery rate of

R(d, C1), as claimed. Note that user 1, as a leader user, can recover (X1)(2), (X1)(3),

and (X1)(4) by simply canceling its cache from Yσ,{1,2}, Yσ,{1,3}, and Yσ,{1,4}. Similarly,

user 2 can recover the subfiles of X2 that is not stored in its cache. Of the nonleader

users, user 3 can recover (X1)(1) and (X1)(2) by simply canceling its cache from Yσ,{1,3}

and Yσ,{2,3}. To recover the missing subfile (X1)(4), it computes

Yσ,{1,4} ⊕Yσ,{1,2} = (X1)(2) ⊕ (X1)(4).

By canceling the previously decoded subfile (X1)(2) from this linear combination, user

3 gains access to (X1)(4) and successfully recover the file X1. Similar arguments can

be applied for user 4 as well, concluding that every user can successfully recover their

desired file for the given request vector. Repeating same arguments, it can be seen that a

delivery rate of R(d, C1) can be achieved when request d ∈ [N ]K arises at step 1.

On one hand, by taking the expectation over uniformly random request vector, we

get the average-case delivery rate of

∑

d∈[N ]K

[

(4
2

)

−
(4−|supp(d)|

2

)

4

]

P(D = d) =

4
∑

θ=1

∑

d∈[N]K :
|supp(d)|=θ

6−
(4−θ

2

)

4
P(D = d)

=
3

4
× 1

64
+

5

4
× 21

64
+

6

4
× 42

64
=

45

32
,

corresponding to the first point (1, 45/32) in Fig. 8.4a.

On the other hand, by taking the maximum over all request vectors, we get the

worst-case delivery rate of
(4
2

)

/
(4
1

)

= 3/2, corresponding to the first point (1, 3/2) in

Fig. 8.4b.

Suppose now that the request d = [1 2 1 2] is received at step t = 2. In this case,

server again chooses U(d) = {1, 2} as the leaser users and broadcasts the collection of
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linear combinations

Md,2 = ∪σ∈Σ2{Yσ,{1,2,3},Yσ,{1,2,4},Yσ,{1,3,4},Yσ,{2,3,4}}

=
{

(X1)(2,3) ⊕ (X2)(1,3) ⊕ (X1)(1,2), (X1)(3,2) ⊕ (X2)(3,1) ⊕ (X1)(2,1),

(X1)(2,4) ⊕ (X2)(1,4) ⊕ (X2)(1,2), (X1)(4,2) ⊕ (X2)(4,1) ⊕ (X2)(2,1),

(X1)(3,4) ⊕ (X1)(1,4) ⊕ (X2)(1,3), (X1)(4,3) ⊕ (X1)(4,1) ⊕ (X2)(3,1),

(X2)(3,4) ⊕ (X1)(2,4) ⊕ (X2)(2,3), (X2)(4,3) ⊕ (X1)(4,2) ⊕ (X2)(3,2)
}

.

Here, each broadcasted linear combination is of rate 1/12, resulting in the delivery rate of

2/3, which is equal to the delivery rate of R(d, C1+C2), as claimed. This time, note that

every user u ∈ [K] can recover the subfile (Xdu)(v,v′) for every v, v
′ ∈ [4]\{u}, v 6= v′ from

the linear combination Yσ,{u,v,v′} for some permutation σ. With the remaining subfiles

already available in its cache, user u is able to completely recover Xdu. Repeating same

arguments, it can be seen that a delivery rate of R(d, C1 + C2) can be achieved when

request d ∈ [N ]K arises at step 2.

On one hand, by taking the expectation over uniformly random request vector, we

get the average-case delivery rate of

∑

d∈[N ]K

[

(4
3

)

−
(4−|supp(d)|

3

)

(4
2

)

]

P(D = d) =

4
∑

θ=1

∑

d∈[N]K :
|supp(d)|=θ

4−
(4−θ

3

)

6
P(D = d)

=
1

2
× 1

64
+

2

3
× 63

64
=

85

128
,

corresponding to the second point (2, 85/128) in Fig. 8.4a.

On the other hand, by taking the maximum over all request vectors, we get the

worst-case delivery rate of
(

4
3

)

/
(

4
2

)

= 2/3, corresponding to the second point (2, 2/3) in

Fig. 8.4b.

As demonstrated, the successive caching algorithm, the average-case delivery rates

of Ravg(C1) and Ravg(C1+C2) are achieved respectively at step 1 and 2, simultaneously.
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Similarly, the worst-case delivery rates of Rworst(C1) and Rworst(C1 + C2) are achieved

respectively at step 1 and 2, simultaneously.

Remark 8.4.1. Yu, Maddah-Ali, and Avestimehr proved in [7] that the average-case

and worst-case achievable delivery rates for static requests given in Proposition 8.4.1

are optimal provided that the cache placement is uncoded. This result implies that our

successive caching algorithm achieving the average-case and worst-case delivery rates for

dynamic requests in Theorem 8.4.1 are optimal provided that the cache placement is

restricted to be uncoded at every successive step.

8.5 Discussion

In this chapter, we have introduced a new caching problem to capture the un-

predictable nature of demands. As an answer to this dynamic caching problem, we have

proposed to place cache in small increments through successive steps to satisfy delayed

requests while guaranteeing to serve for earlier requests as well. In particular, first, we

have followed an information-theoretic approach considering a single user and two time

points at which requests can arise and we have established the optimal tradeoff between

the average-case delivery rates at different request times when the cache rate is above a

well-defined threshold. Extension of this result to an arbitrary number of users is left as

an open problem. We then have followed a coding-theoretic approach for an arbitrary

number of users while focusing only on the class of i.i.d. Bern(1/2) contents and we have

proposed a successive caching algorithm. We have shown that the delivery rate of our

algorithm is within a constant multiplicative gap to the optimal at every request time

for both the performance criteria of the average-case delivery rates and the worst-case

delivery rates. We have left the study of arbitrarily correlated contents from a coding

theoretic-approach as another open problem.
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8.A Proof of Lemma 8.4.1

We start with expanding Yσ,A∪{u}∪U(V)\V as follows.

⊕

V∈F(Auc)

Yσ,A∪{u}∪U(V)\V =
⊕

V∈F(Auc)

⊕

v∈A∪{u}∪U(V)\V

(Xdv)σ(A∪{u}∪U(V)\(V∪{v}))

=
⊕

V∈F(Auc)

⊕

v∈A∪{u}:
dv=du

(Xdu)σ(A∪{u}∪U(V)\(V∪{v}))

⊕
⊕

V∈F(Auc)

⊕

s∈Auc∪U(V)\V

(Xds)σ(A∪{u}∪U(V)\(V∪{s})) .

It suffices to show that

⊕

V∈F(Auc)

⊕

s∈Auc∪U(V)\V

(Xds)σ(A∪{u}∪U(V)\(V∪{s})) = 0.

For every given set of users K ⊂ [K], define the set D(K) := {d ∈ [N ] : dj =

d for some j ∈ K} as the set of requested files by the users in K. We start with

⊕

V∈F(Auc)

⊕

s∈Auc∪U(V)\V

(Xds)σ(A∪{u}∪U(V)\(V∪{s}))

=
⊕

V∈F(Auc)

⊕

d∈D(Auc)

⊕

s∈Auc∪U(V)\V:
ds=d

(Xd)σ(A∪{u}∪U(V)\(V∪{s}))

=
⊕

d∈D(Auc )

⊕

V∈F(Auc)

⊕

s∈Auc∪U(V)\V:
ds=d

(Xd)σ(A∪{u}∪U(V)\(V∪{s})).

Note that for every d ∈ D(Auc),

F(Auc) = {V ∈ F(Auc) : d /∈ D(V)} ⊔ {V ∈ F(Auc) : d ∈ D(V)}

= {V ∈ F(Auc) : d /∈ D(V)}

⊔ {V ∪ {y} : V ∈ F(Auc) such that d /∈ D(V), y ∈ Auc such that dy = d},
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where ⊔ denotes the disjoint union. Utilizing this expansion, for every d ∈ D(Auc), we

have

⊕

V∈F(Auc)

⊕

s∈Auc∪U(V)\V:
ds=d

(Xd)σ(A∪{u}∪U(V)\(V∪{s}))

=
⊕

V∈F(Auc ):

d/∈D(V)

⊕

s∈Auc∪U(V)\V:
ds=d

(Xd)σ(A∪{u}∪U(V)\(V∪{s}))

⊕
⊕

V∈F(Auc ):

d∈D(V)

⊕

s∈Auc∪U(V)\V:
ds=d

(Xd)σ(A∪{u}∪U(V)\(V∪{s}))

=
⊕

V∈F(Auc ):

d/∈D(V)

⊕

s∈Auc∪U(V)\V:
ds=d

(Xd)σ(A∪{u}∪U(V)\(V∪{s}))

⊕
⊕

V′∈F(Auc ):

d/∈D(V′)

⊕

y∈Auc :
dy=d

⊕

z∈Auc∪U(V′∪{y})\(V′∪{y}):
dz=d

(Xd)σ(A∪{u}∪U(V ′∪{y})\(V ′∪{y,z}))

(a)
=

⊕

V∈F(Auc ):

d/∈D(V)

⊕

s∈Auc :
ds=d

(Xd)σ(A∪{u}∪U(V)\(V∪{s}))

⊕
⊕

V′∈F(Auc ):

d/∈D(V′)

⊕

y∈Auc :
dy=d

⊕

z∈Auc∪U(V′∪{y})\(V′∪{y}):
dz=d

(Xd)σ(A∪{u}∪U(V ′∪{y})\(V ′∪{y,z}))

(b)
=

⊕

V∈F(Auc):

d/∈D(V)

⊕

s∈Auc :
ds=d

(Xd)σ(A∪{u}∪U(V)\(V∪{s}))

⊕
⊕

V′∈F(Auc ):

d/∈D(V′)

⊕

y∈Auc :
dy=d

(Xd)σ(A∪{u}∪U(V ′)\(V ′∪{y}))

⊕
⊕

V′∈F(Auc ):

d/∈D(V′)

⊕

y∈Auc :
dy=d

⊕

z∈Auc∪U(V′)\(V′∪{y}):
dz=d

(Xd)σ(A∪{u}∪U(V ′∪{y})\(V ′∪{y,z}))

=
⊕

V′∈F(Auc):

d/∈D(V′)

⊕

y∈Auc :

dy=d

⊕

z∈Auc∪U(V′)\(V′∪{y}):
dz=d

(Xd)σ(A∪{u}∪U(V ′∪{y})\(V ′∪{y,z}))

=
⊕

V′∈F(Auc):

d/∈D(V′)

⊕

y∈Auc :
dy=d

⊕

z∈Auc\{y}:
dz=d

(Xd)σ(A∪{u}∪U(V ′∪{y})\(V ′∪{y,z}))

(c)
= 0,
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where (a) follows since d /∈ D(V) in the first binary summation, (b) follows by taking

the term z = U({y}), the leader user requesting Xd, out of the binary summation, and

(c) follows since every pair {y, z} ⊂ Auc is counted twice and results in the same subfile

(Xd)σ(A∪{u}∪U(V ′∪{y})\(V ′∪{y,z})).
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Chapter 9

Concluding Remarks

We conclude this dissertation with comments for future research directions.

In Chapters 2, 3, and 5, we have studied the performance of homologous codes

for various communication problems defined over multiple access channels, such as linear

computation of codewords, message communication, and simultaneous computation and

communication. The results implies that such structured codes can outperform conven-

tional random codes when the structure is matched with the problem of interest (such as

linear structure benefits linear computation) or at least can completely replace them. In

order to develop a fundamental framework towards a general family of structured codes

built on shared linearity over different encoders, one should investigate the connection

between homologous codes and lattice-based structured codes. Another open problem

is the capacity region of the linear computation problem, for which we have established

general inner and outer bounds in Chapter 3. In Chapter 4, we adapted the proof tech-

niques we developed for homologous codes to analyze the performance of random Marton

codes with the optimal the maximum likelihood decoder. These proof techniques seem to

be a recurring path to establishing the optimal performance of random code ensembles.

In Chapters 6,7, and 8, we have formulated two new caching problems to capture

the unpredictable nature of contents and requests. As an answer to these problems,

197



we have proposed to place cache in small increments through successive steps to ad-

dress the modifications within the contents (if any) or to satisfy delayed requests while

guaranteeing to serve for earlier requests as well. For each problem, we have followed

an information-theoretic approach considering a single user and we have established a

single-letter characterization of the optimal tradeoff between the total cache rate and

the delivery rate in terms of an optimization problem. The extension of our results to

an arbitrary number of users is left as an open problem. For dynamic requests, we have

also followed a coding-theoretic approach for an arbitrary number of users while focus-

ing only on the class of i.i.d. Bern(1/2) contents and proposed a near-optimal successive

caching algorithm. In order to formulate and solve a unified caching problem that cap-

tures both dynamic contents and requests, one should better understand the connection

between information-theoretic and coding-theoretic approaches. In particular, there are

two research directions to investigate: information-theoretic approaches when there are

multiple users in the network and coding-theoretic approaches when the file contents are

arbitrarily correlated.
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