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FAST AUXILIARY SPACE PRECONDITIONER FOR LINEAR

ELASTICITY IN MIXED FORM

LONG CHEN, JUN HU, AND XUEHAI HUANG∗

Abstract. A block diagonal preconditioner with the minimal residual method

and a block triangular preconditioner with the generalized minimal residual
method are developed for Hu-Zhang mixed finite element methods of linear

elasticity. They are based on a new stability result of the saddle point system

in mesh-dependent norms. The mesh-dependent norm for the stress corre-
sponds to the mass matrix which is easy to invert while the displacement it

is spectral equivalent to Schur complement. A fast auxiliary space precon-

ditioner based on the H1 conforming linear element of the linear elasticity
problem is then designed for solving the Schur complement. For both diagonal

and triangular preconditioners, it is proved that the conditioning numbers of

the preconditioned systems are bounded above by a constant independent of
both the crucial Lamé constant and the mesh-size. Numerical examples are

presented to support theoretical results. As byproducts, a new stabilized low
order mixed finite element method is proposed and analyzed and superconver-

gence results of Hu-Zhang element are obtained.

1. Introduction

We consider fast solvers for the Hu-Zhang mixed finite element methods [28, 29,
30] for linear elasticity, namely fast solvers for inverting the following saddle point
system

(1.1)

(
Mλ
h BTh

Bh O

)
,

where Mλ
h is the mass matrix weighted by the compliance tensor and Bh is the

discretization of the div operator. The subscript h is the mesh size of a underlying
triangulation and the superscript λ is the Lamé number which could be very large
for nearly incompressible material. We aim to develop preconditioners robust to
both h and λ.

In [28, 29, 30], a stability result is established in the H(div; Ω) × L2(Ω) norm
whose matrix form is (Mh + BThM

−1
u,hBh) ×Mu,h, where Mu,h is the mass matrix

for the displacement and Mh is the abbreviation of M0
h . By the theory developed
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2 LONG CHEN, JUN HU, AND XUEHAI HUANG∗

by Mardal and Winther [41], the following block diagonal preconditioner leads to a
parameter independent condition number of the preconditioned system

(1.2)

(
(Mh +BThM

−1
u,hBh)−1 O

O M−1
u,h

)
.

To compute the first block of (1.2), however, a non-trivial solver should be designed
to account for the discrete div operator.

Motivated by our recent work [21], we shall establish another stability result of
(1.1) in mesh dependent norms ‖ · ‖0,h × | · |1,h whose equivalent matrix form is

Mh ×BhM−1
h BTh . Therefore we can use the block diagonal preconditioner

(1.3)

(
M−1
h O
O (BhM

−1
h BTh )−1

)
together with the MINRES method to solve (1.1). The mass matrix Mh can be
further replaced by its diagonal matrix and thus a spectral equivalent approximation
of M−1

h is easy to construct. The difficulty is the inverse of the Schur complement.
We shall develop a fast auxiliary space preconditioner for the Schur complement.

The auxiliary space preconditioner was initially designed by Xu [52] to avoid the dif-
ficulty in creating a sequence of nonnested grids or nonnested finite element spaces.
As a two level method, the auxiliary space preconditioner involves smoothing on
the fine level space which is usually the to-be-solved finite element space, and a
coarse grid correction on an auxiliary space which is much more flexible to choose.
It has been successfully applied to many finite element methods for partial differ-
ential equations, including conforming and nonconforming finite element method
for the second order or fourth order problem [52, 53], H(curl) and H(div) prob-
lems [26, 33, 34, 47, 35], DG type discretizations [17, 23, 20, 39, 54], and general
symmetric positive definite problems [36] etc.

We use the H1 conforming linear finite element discretization on the same mesh
for the linear elasticity equation with parameter λ = 0 as the auxiliary problem
to preconditioning the Schur complement. Since λ = 0, we can solve the auxiliary
problem by geometric multigrid methods for structured meshes and algebraic multi-
grid methods in general. Using the Korn’s inequality, we can further adopt the H1

conforming linear finite element discretization for vector-type Poisson equation as
the auxiliary problem.

Our stability result is robust to the parameter λ and h, therefore the condition
number of the preconditioned system is uniformly bounded with respect to both
the size of the problem and the parameter λ. The later is notoriously difficult
to construct for linear elasticity. Furthermore our results hold without the full
regularity assumption.

We now give a brief literature review on robust multigrid methods for the linear
elasticity problem. Discretization of the linear elasticity equations can be classi-
fied into three categories: displacement primary formulation, displacement-pressure
mixed formulation and stress-displacement mixed formulation. Robust conforming
and nonconforming multigrid methods for the primary formulation have been dis-
cussed in [44, 50, 38], and discontinuous Galerkin H(div)-conforming method in
[27]. The W-cycle multigrid methods are the most studied multigrid methods for
the displacement-pressure mixed formulation, which can be found in [37, 14] for
conforming discretization and [11, 12] for nonconforming discretization. A V-cycle
multigrid method for the finite difference discretization was developed in [55]. In
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[6], the Taylor-Hood element method was reduced to the pressure Schur comple-
ment equation, based on which an inner/outer iteration scheme was set up. So far
the solvers for the stress-displacement mixed formulation are mainly concentrated
on the block diagonal preconditioned MINRES method, see [32, 49, 42]. In [32],
the multigrid preconditioner was advanced for the PEERS element method with
weakly symmetric stress. As for the Arnold-Winther element discretization, the
overlapping Schwarz preconditioner was exploited in [49], and the variable V-cycle
multigrid preconditioner was developed in [42]. The majority of existing works is to
deal with the discrete null space ker(div) by using either block-wise Gauss-Seidels
smoother or overlapping Schwarz smoothers. And only works in [38, 27, 14, 32, 42]
do not rely on the H2 regularity assumption. As we mentioned early our approach
do not require a prior knowledge of the discrete ker(div). We transfer this diffi-
culty to solve the Schur complement problem but with λ = 0, which only involves
standard Poisson-type solvers. So it is much easier to implement and analyze.

To further improve the performance, we propose the following block-triangular
preconditioner

(1.4)

(
I D−1

h BTh
0 −I

)(
Dh 0

Bh S̃h

)−1

,

where Dh is the diagonal of Mh and S̃h = BhD
−1
h BTh will be further preconditioned

by the auxiliary space preconditioner we mentioned before. Numerical results in
Section 6 show that the preconditioned GMRES converges around 40 steps to push
the relative tolerance below 10−8.

Results in this paper can be also applied to other H(div) conforming and sym-
metric stress elements developed in [5, 2, 1, 3]. Indeed we present our results for
both the original Hu-Zhang element k ≥ n + 1 and a new stabilized version for
1 ≤ k ≤ n.

The rest of this article is organized as follows. In Section 2, we present the
mixed finite element methods for linear elasticity. In Section 3, we establish the
stability based on the mesh dependent norms. Then we describe the block diag-
onal and triangular preconditioners in Section 4 and construct an auxiliary space
preconditioner in Section 5. In Section 6, we give some numerical experiments to
demonstrate the efficiency and robustness of our preconditioners. Throughout this
paper, we use “. · · · ” to mean that “≤ C · · · ”, where C is a generic positive con-
stant independent of h and the Lamé constant λ, which may take different values
at different appearances.

2. Mixed Finite Element Methods

Assume that Ω ⊂ Rn is a bounded polytope. Denote by S the space of all
symmetric n × n tensors. Given a bounded domain G ⊂ Rn and a non-negative
integer m, let Hm(G) be the usual Sobolev space of functions on G, and Hm(G;X)
be the usual Sobolev space of functions taking values in the finite-dimensional vector
space X for X being S or Rn. The corresponding norm and semi-norm are denoted
respectively by ‖ · ‖m,G and | · |m,G. Let (·, ·)G be the standard inner product

on L2(G) or L2(G;X). If G is Ω, we abbreviate ‖ · ‖m,G, | · |m,G and (·, ·)G by
‖ · ‖m, | · |m and (·, ·), respectively. Let Hm

0 (G;Rn) be the closure of C∞0 (G;Rn)
with respect to the norm ‖ · ‖m,G. Denote by H(div, G;S) the Sobolev space of
square-integrable symmetric tensor fields with square-integrable divergence. For
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any τ ∈H(div,Ω;S), we equip the following norm

‖τ‖H(div) :=
(
‖τ‖20 + ‖divτ‖20

)1/2
.

The Hellinger-Reissner mixed formulation of the linear elasticity under the load
f ∈ L2(Ω;Rn) is given as follows: Find (σ,u) ∈ Σ×V := H(div,Ω;S)×L2(Ω;Rn)
such that

a(σ, τ ) + b(τ ,u) = 0 ∀ τ ∈ Σ,(2.1)

b(σ,v) = −(f ,v) ∀v ∈ V ,(2.2)

where

a(σ, τ ) := (Aσ, τ ), b(τ ,v) := (divτ ,v)

with A being the compliance tensor of fourth order defined by

Aσ :=
1

2µ

(
σ − λ

nλ+ 2µ
(trσ)δ

)
.

Here δ := (δij)n×n is the Kronecker tensor, tr is the trace operator, and positive
constants λ and µ are the Lamé constants.

Suppose the domain Ω is subdivided by a family of shape regular simplicial grids
Th (cf. [15, 22]) with h := max

K∈Th
hK and hK := diam(K). Let Fh be the union of all

n− 1 dimensional faces of Th and F ih be the union of all n− 1 dimensional interior
faces. For any F ∈ Fh, denote by hF its diameter and fix a unit normal vector νF .
Let Pm(G) stand for the set of all polynomials in G with the total degree no more
than m, and Pm(G;X) denote the tensor or vector version of Pm(G) for X being S
or Rn, respectively.

Consider two adjacent simplices K+ and K− sharing an interior face F . Denote
by ν+ and ν− the unit outward normals to the common face F of the simplices
K+ and K−, respectively. For a vector-valued function w, write w+ := w|K+ and
w− := w|K− . Then define a jump as

[w] :=

{
w+(ν+ · νF ) +w−(ν− · νF ), if F ∈ F ih,
w, if F ∈ Fh\F ih.

For each K ∈ Th, define an H(div,K;S) bubble function space of polynomials
of degree k as

BK,k := {τ ∈ P k(K;S) : τν|∂K = 0} .

It is easy to check thatBK,1 is merely the zero space. Denote the vertices of simplex
K by xK,0, · · · ,xK,n. If not causing confusion, we will abbreviate xK,i as xi for
i = 0, · · · , n. For any edge xixj(i 6= j) of element K, let ti,j be the associated unit
tangent vectors and

T i,j := ti,jt
T
i,j , 0 ≤ i < j ≤ n.

It has been proved in [28] that the (n+ 1)n/2 symmetric tensors T i,j form a basis
of S, and for k ≥ 2,

BK,k =
∑

0≤i<j≤n

λiλjPk−2(K)T i,j ,



FASP FOR LINEAR ELASTICITY 5

where λi is the associated barycentric coordinates corresponding to xi for i =
0, · · · , n. Some global finite element spaces are given by

Bk,h := {τ ∈H(div,Ω; S) : τ |K ∈ BK,k ∀K ∈ Th} ,

Σ̃k,h :=
{
τ ∈H1(Ω;S) : τ |K ∈ P k(K;S) ∀K ∈ Th

}
,

Σh := Σ̃k,h +Bk,h,

V h :=
{
v ∈ L2(Ω;Rn) : v|K ∈ P k−1(K;Rn) ∀K ∈ Th

}
,

with integer k ≥ 1. The local rigid motion space is defined as

R(K) :=
{
v ∈H1(K;Rn) : ε(v) = 0

}
with ε(v) :=

(
∇v + (∇v)T

)
/2 being the linearized strain tensor.

With previous preparation, the mixed finite element method for linear elasticity
proposed in [28, 29, 30, 19] is defined as follows: Find (σh,uh) ∈ Σh × V h such
that

a(σh, τh) + b(τh,uh) = 0 ∀ τh ∈ Σh,(2.3)

b(σh,vh)− c(uh,vh) = −(f ,vh) ∀vh ∈ V h,(2.4)

where

c(uh,vh) := η
∑
F∈Fh

h−1
F

∫
F

[uh] · [vh] ds,

η :=

{
0, if k ≥ n+ 1,
1, if 1 ≤ k ≤ n.

The bilinear form c(·, ·) involving the jump of displacement is introduced to stabilize
the discretization which is only necessary for low order polynomials, i.e., 1 ≤ k ≤ n.
Note that the scaling h−1

F is different with the one in [19].
Choosing appropriate bases of Σh and V h, we can write the matrix form of

(2.3)-(2.4) as

(2.5)

(
Mλ
h BTh

Bh −Ch

)(
σh
uh

)
=

(
0
f

)
.

where Mλ
h is the mass matrix weighted by the compliance tensor, Bh is the dis-

cretization of the div operator, and Ch corresponds to the stabilization term. Here
with a slight abuse of notation, we use the same notation σh,uh, and f for the
vector representations of corresponding functions.

Let

Σ̂h := {τ ∈ Σh :

∫
Ω

trτ dx = 0},

A(σh,uh; τh,vh) := a(σh, τh) + b(τh,uh) + b(σh,vh)− c(uh,vh).

For k ≥ n+ 1, the following inf-sup condition is the immediate result of (3.4)-(3.5)
in [28]:

(2.6) ‖σ̃h‖H(div) + ‖ũh‖0 . sup
(τh,vh)∈Σ̂h×V h

A(σ̃h, ũh; τh,vh)

‖τh‖H(div) + ‖vh‖0
,

for any (σ̃h, ũh) ∈ Σ̂h × V h.
Thanks to the inf-sup condtion (2.6), the system (2.5) is stable in the space

Σh×V h equipped with the H(div; Ω)×L2(Ω) norm which leads to a block diagonal
preconditioner requiring a non-trivial solver for (Mh +BThM

−1
u,hBh)−1. In the next
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section we shall establish another stability result of (2.5) in mesh dependent norms
which leads to a new block-diagonal preconditioner.

3. Stability Based On Mesh Dependent Norms

To construct a new block diagonal preconditioner, we will show that the bilinear
form A(·, ·; ·, ·) is stable on Σ̂h × V h with mesh dependent norms.

For each K ∈ Th, denote by νi the unit outward normal vector of the i-th face
of element K. For any τh ∈ Σh and vh ∈ V h, define

‖τh‖20,h := ‖τh‖20 +
∑
F∈Fh

hF ‖τhνF ‖20,F

|vh|21,h := ‖εh(vh)‖20 +
∑
F∈Fh

h−1
F ‖[vh]‖20,F ,

‖vh‖2c := c(vh,vh).

Here εh is element-wise symmetric gradient. We shall prove the stability of (2.5)
in the mesh dependent norms ‖ · ‖0,h × | · |1,h. The key is the following inf-sup
condition: for k ≥ n+ 1

(3.1) |vh|1,h . sup
τh∈Σh

b(τh,vh)

‖τh‖0,h
, ∀vh ∈ V h.

For low order cases 1 ≤ k ≤ n, in addition to a variant of the inf-sup condition, we
also need a coercivity result in the null space of the div operator.

3.1. Properties on mesh dependent norms. We first present a different basis
of the symmetric tensor space S. Inside a simplex formed by vertices x0, . . . ,xn,
we label the face opposite to xi as the i-th face Fi. For the edge xixj , i 6= j, define

N i,j :=
1

2(νTi ti,j)(ν
T
j ti,j)

(νiν
T
j + νjν

T
i ), 0 ≤ i < j ≤ n.

Here recall that tij is an unit tangent vector of edge xixj and νi is the unit outwards
normal vector of face Fi. Due to the shape regularity of the triangulation, it holds

νTi ti,j h 1, 0 ≤ i < j ≤ n.

By direct manipulation, we have the following results about T i,j and N i,j :

(3.2) T i,j : Nk,l = δikδjl, 0 ≤ i < j ≤ n, 0 ≤ k < l ≤ n,

(3.3) T i,j : T i,j = 1, N i,j : N i,j h 1, 0 ≤ i < j ≤ n.

Thus the (n+ 1)n/2 symmetric tensors {N i,j} also form a basis of S which is the
dual to {T i,j}.

Lemma 3.1. For any qij ∈ L2(K), 0 ≤ i < j ≤ n, let τ 1 =
∑

0≤i<j≤n
qijT i,j and

τ 2 =
∑

0≤i<j≤n
qijN i,j, then it holds

‖τ 1‖20,K h ‖τ 2‖20,K h
∑

0≤i<j≤n

‖qij‖20,K .
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Proof. Using the Cauchy-Schwarz inequality and (3.3), we have

‖τ 1‖20,K ≤
(n+ 1)n

2

∑
0≤i<j≤n

‖qijT i,j‖20,K =
(n+ 1)n

2

∑
0≤i<j≤n

‖qij‖20,K ,

‖τ 2‖20,K ≤
(n+ 1)n

2

∑
0≤i<j≤n

‖qijN i,j‖20,K .
(n+ 1)n

2

∑
0≤i<j≤n

‖qij‖20,K .

On the other side, it follows from Cauchy-Schwarz inequality and (3.2),∑
0≤i<j≤n

‖qij‖20,K =
∑

0≤i<j≤n

∫
K

q2
ij dx =

∑
0≤i<j≤n

∑
0≤k<l≤n

∫
K

qijqklδikδjl dx

=
∑

0≤i<j≤n

∑
0≤k<l≤n

∫
K

qijT i,j : qklNk,l dx

=

∫
K

τ 1 : τ 2 dx ≤ ‖τ 1‖0,K‖τ 2‖0,K .

Hence we conclude the result by combining the last three inequalities. �

We then embed εh(V h) into the H(div,K;S) bubble function space. For each
element K ∈ Th, introduce a bijective connection operator EK : P k−2(K;S) →
BK,k with k ≥ 2 as follows: for any τ =

∑
0≤i<j≤n

qijN i,j with qij ∈ Pk−2(K),

0 ≤ i < j ≤ n, define

EKτ :=
∑

0≤i<j≤n

λiλjqijT i,j .

Applying Lemma 3.1 and the scaling argument, we get for any τ ∈ P k−2(K;S)

(3.4) ‖EKτ‖20,K h
∑

0≤i<j≤n

‖λiλjqij‖20,K h
∑

0≤i<j≤n

‖qij‖20,K h ‖τ‖20,K ,

(3.5)

∫
K

EKτ : τ dx =
∑

0≤i<j≤n

∫
K

λiλjq
2
ij dx h

∑
0≤i<j≤n

‖qij‖20,K h ‖τ‖20,K .

Denote by E the elementwise global version of EK , i.e. E|K := EK for each
K ∈ Th.

Third, we give an equivalent formulation of the mesh dependent norm | · |1,h.

For each F ∈ Fh, denote by πF the orthogonal projection operator from L2(F ;Rn)
onto P 1(F ;Rn). Define the broken H1 space as

H1(Th;Rn) :=
{
v ∈ L2(Ω;Rn) : v|K ∈H1(K;Rn) ∀K ∈ Th

}
.

The domain of mesh dependent norm |·|1,h can be extended from V h toH1(Th;Rn).

Lemma 3.2. We have the norm equivalence:

(3.6) |v|21,h h ‖εh(v)‖20 +
∑
F∈Fh

h−1
F ‖πF [v]‖20,F ∀ v ∈H1(Th;Rn).
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Proof. For any elementK ∈ Th, let πK be an interpolation operator fromH1(K;Rn)
onto R(K) defined by (3.1)-(3.2) in [13]. And let π be the elementwise global ver-
sion of πK , i.e. π|K := πK for each K ∈ Th. It follows from (3.3)-(3.4) in [13] that
for any v ∈H1(Th;Rn),∑

F∈Fh

h−1
F ‖[v]− πF [v]‖20,F =

∑
F∈Fh

h−1
F ‖[v − πv]− πF [v − πv]‖20,F

≤
∑
F∈Fh

h−1
F ‖[v − πv]‖20,F . ‖εh(v)‖20.(3.7)

Then the equivalence (3.6) follows from the triangle inequality. �

We shall also use the following discrete Korn’s inequality (cf. (1.22) in [13] and
(34) in [4])

(3.8) ‖∇hv‖20 + ‖v‖20 . ‖εh(v)‖20 +
∑
F∈Fh

h−1
F ‖πF [v]‖20,F ∀ v ∈H1(Th;Rn).

Together with (3.6), we conclude | · |1,h defines a norm on V h.

3.2. inf-sup condition in mesh dependent norms. The inf-sup condition we
need is actually for the subspace Σ̂h with vanished mean trace, c.f., (3.9) below.
It is obvious that inf-sup condition (3.9) implies inf-sup condition (3.1). On the
other hand, if inf-sup condition (3.1) is true, then (3.9) holds by taking τ̂h =
τh − ( 1

n

∫
Ω

trτh dx)δ. Therefore inf-sup conditions (3.1) and (3.9) are equivalent.

Lemma 3.3. For k ≥ n+ 1, we have the following inf-sup condition

(3.9) |vh|1,h . sup
τ̂h∈Σ̂h

b(τ̂h,vh)

‖τ̂h‖0,h
,

for any vh ∈ V h.

Proof. Given a vh ∈ V h, we shall construct a τ̂h ∈ Σ̂h to verify (3.9).
We first control the norm ‖εh(vh)‖0. For any vh ∈ V h, take τ 1 = Eεh(vh). It

follows from (3.4)

(3.10) ‖τ 1‖0 h ‖εh(vh)‖0.

According to integration by parts and (3.5), there exists a constant C1 > 0 such
that

(3.11) b(τ 1,vh) =

∫
Ω

τ 1 : εh(vh) dx ≥ C1‖εh(vh)‖20.

Next we control the jump term. Choose τ 2 ∈ Σh such that all the degrees of
freedom (cf. Lemma 2.1 in [19]) for τ 2 vanish except the following one:∫

F

(τ 2νF ) ·w ds = h−1
F

∫
F

[vh] ·w ds ∀ w ∈ P 1(F ;Rn) on each face F.

Then we have∫
K

τ 2 : εh(vh) dx = 0,

∫
F

(τ 2νF ) · πF [vh] ds = h−1
F ‖πF [vh]‖20,F ,

(3.12) ‖τ 2‖20 .
∑
F∈Th

h−1
F ‖πF [vh]‖20,F .
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Thus by (3.7) and (3.12), there exists a constant C2 > 0 such that

b(τ 2,vh) =
∑
F∈Fh

∫
F

(τ 2νF ) · [vh] ds

=
∑
F∈Fh

∫
F

(τ 2νF ) · ([vh]− πF [vh]) ds+
∑
F∈Fh

h−1
F ‖πF [vh]‖20,F

≥ −C2‖εh(vh)‖20 +
1

2

∑
F∈Fh

h−1
F ‖πF [vh]‖20,F .(3.13)

Now taking τh = τ 1 + C1

2C2
τ 2, it holds from (3.11) and (3.13)

b(τh,vh) = b(τ 1,vh) +
C1

2C2
b(τ 2,vh)

≥ C1

2
‖εh(vh)‖20 +

C1

4C2

∑
F∈Fh

h−1
F ‖πF [vh]‖20,F .

Thanks to (3.6), we get

|vh|21,h . b(τh,vh).

On the other hand, it follows from the inverse inequality, (3.10) and (3.12)

‖τh‖0,h . ‖τh‖0 . |vh|1,h.
Finally the inf-sup condition (3.1) is the result of the last two inequalities and
consequently (3.9) holds by taking τ̂h = τh − ( 1

n

∫
Ω

trτh dx)δ. �

3.3. Coercivity in the null space of the div operator. Besides the inf-sup
condition, another issue of the linear elasticity in the mixed form is the coercivity
of bilinear form a(·, ·). On the whole space: for all σ ∈ Σ,

(3.14) a(σ,σ) ≥ 1

nλ+ 2µ
‖σ‖20.

The coercivity constant, unfortunately, is in the order of O(1/λ) as λ → +∞.
Namely it is not robust to λ. To obtain a robust coercivity, we first recall the fol-
lowing inequality which implies the coercivity in the null space of the div operator.

Lemma 3.4 (Proposition 9.1.1 in [8]). For τ ∈H(div,Ω;S) satisfying
∫

Ω
trτ dx =

0, we have

‖τ‖0 . ‖τ‖a + ‖ div τ‖−1,

where ‖τ‖2a := a(τ , τ ) and ‖ div τ‖−1 = supv∈H1
0(Ω;Rn) b(τ ,v)/|v|1.

We then move to the discrete case. Define discrete norms

‖ div τ‖−1,h := sup
vh∈V h

b(τ ,vh)

|vh|1,h
,

‖hdiv τ‖2 :=
∑
K∈Th

h2
K‖divτ‖20,K .

Let Qk−1
h be the L2 orthogonal projection from L2(Ω;Rn) onto V h, which will be

abbreviated as Qh. It holds the following error estimate (cf. [22, 15])

(3.15) ‖v−Qhv‖0,K +h
1/2
K ‖v−Qhv‖0,∂K . h

min{k,m}
K |v|m,K ∀ v ∈Hm(Ω;Rn)

with integer m ≥ 1.
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Lemma 3.5. For any τ ∈H(div,Ω;S) satisfying
∫

Ω
trτ dx = 0, we have

‖τ‖0 . ‖τ‖a + ‖hdiv τ‖+ ‖div τ‖−1,h.

Proof. It is sufficient to prove the case k = 1. Let v ∈ H1
0(Ω;Rn), then it follows

from the Cauchy-Schwarz inequality and (3.15)

b(τ ,v) = b(τ ,v −Qhv) + b(τ ,Qhv)

. ‖hdiv τ‖|v|1 + b(τ ,Qhv).

Again by (3.15), it holds

(3.16) |Qhv|21,h =
∑
F∈Fh

h−1
F ‖[Qhv]‖20,F =

∑
F∈Fh

h−1
F ‖[Qhv − v]‖20,F . |v|21.

Hence we get from the last two inequalities

‖div τ‖−1 = sup
v∈H1

0(Ω;Rn)

b(τ ,v)

|v|1
. ‖hdiv τ‖+ sup

vh∈V h

b(τ ,vh)

|vh|1,h
.

Therefore we can end the proof by using Lemma 3.4. �

3.4. Stability in mesh dependent norms. We now present stability in mesh
dependent norms. For k ≥ n+ 1, since there is no stabilization term and div Σh ⊂
V h, then ker(div) ∩Σh ⊂ ker(div) ∩Σ. The stability follows from Lemma 3.4 and
inf-sup condition (3.9).

Theorem 3.6. For k ≥ n+ 1, it follows for any (σ̃h, ũh) ∈ Σ̂h × V h,

(3.17) ‖σ̃h‖0,h + |ũh|1,h . sup
(τh,vh)∈Σ̂h×V h

A(σ̃h, ũh; τh,vh)

‖τh‖0,h + |vh|1,h
.

Corollary 3.7. Let k ≥ n+ 1. Assume that σ ∈Hk+1(Ω; S) and u ∈Hk(Ω;Rn),
then

(3.18) ‖σ − σh‖0,h + |Qhu− uh|1,h . hk+1‖σ‖k+1,

(3.19) |u− uh|1,h . hk−1 (‖σ‖k+1 + ‖u‖k) .

Moreover, when Ω is convex, we have

(3.20) ‖Qhu− uh‖0 . hk+2‖σ‖k+1.

Proof. Subtracting (2.3)-(2.4) from (2.1)-(2.2), we get the error equation

a(σ − σh, τh) + b(τh,u− uh) = 0 ∀ τh ∈ Σh,(3.21)

b(σ − σh,vh) = 0 ∀vh ∈ V h.(3.22)

Let IHZh be the standard interpolation from H1(Ω; S) to Σh defined in [28, Remark
3.1], and it holds

(3.23) div(IHZh σ) = Qh(divσ).

Thus we have from (3.22)

b(IHZh σ − σh,vh) = b(σ − σh,vh) = 0.

By the definition of Qh and (3.21),

b(τh,Qhu− uh) = b(τh,u− uh) = −a(σ − σh, τh).
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Combining the last two equalities, it holds

A(IHZh σ − σh,Qhu− uh; τh,vh)

=a(IHZh σ − σh, τh) + b(τh,Qhu− uh) + b(IHZh σ − σh,vh)

=a(IHZh σ − σ, τh),

which together with (3.17) implies

‖IHZh σ − σh‖0,h + |Qhu− uh|1,h . ‖I
HZ
h σ − σ‖0,h.

Therefore we will achieve (3.18)-(3.19) by using the last inequality, and the error

estimate of IHZh and Qh. The error estimate (3.20) can be derived by using the
duality argument as in [24, 46]. �

Remark 3.8. The optimal convergence rate of ‖σ−σh‖0,h has been mentioned in
[28, Remarks 3.1-3.2] and [30, Remarks 3.6], but the 2-order higher superconvergent
rates of |Qhu−uh|1,h and ‖Qhu−uh‖0 are new which can be used to reconstruct
a better approximation of displacement. The convergence rate of |u−uh|1,h is also
optimal.

Due to the stabilization term (for inf-sup condition), our proof of the stability is
more complicated for the low order case 1 ≤ k ≤ n.

Theorem 3.9. For 1 ≤ k ≤ n, it holds for any (σ̃h, ũh) ∈ Σ̂h × V h that

(3.24) ‖σ̃h‖0,h + |ũh|1,h . sup
(τh,vh)∈Σ̂h×V h

A(σ̃h, ũh; τh,vh)

‖τh‖0,h + |vh|1,h
.

Proof. As demonstrated in Lemma 3.3, it is equivalent to prove

(3.25) ‖σ̃h‖0,h + |ũh|1,h . sup
(τh,vh)∈Σh×V h

A(σ̃h, ũh; τh,vh)

‖τh‖0,h + |vh|1,h
:= β.

The notation β is introduced just for ease of presentation. Let τ 1 = Eεh(ũh) for
k ≥ 2 and τ 1 = 0 for k = 1, then it holds from Cauchy-Schwarz inequality

A(σ̃h, ũh; τ 1, 0) = a(σ̃h, τ 1) + b(τ 1, ũh) ≥ −‖σ̃h‖a‖τ 1‖a + b(τ 1, ũh).

Using (3.10)-(3.11), there exists a constant C3 > 0 such that

A(σ̃h, ũh; τ 1, 0) ≥ C1‖εh(ũh)‖20 − C3‖σ̃h‖a‖εh(ũh)‖0

≥ C1

2
‖εh(ũh)‖20 −

C2
3

2C1
‖σ̃h‖2a.(3.26)

Let v1 ∈ V h such that v1|K = h2
Kdivσ̃h for each K ∈ Th. Applying inverse

inequality, we have

(3.27) |v1|1,h . ‖hdiv σ̃h‖ . ‖σ̃h‖0.

Thus there exists a constant C4 > 0 such that

A(σ̃h, ũh; 0,v1) = b(σ̃h,v1)− c(ũh,v1) ≥ ‖hdiv σ̃h‖2 − ‖ũh‖c‖v1‖c
≥ ‖hdiv σ̃h‖2 − C4‖ũh‖c‖hdiv σ̃h‖

≥ 1

2
‖hdiv σ̃h‖2 −

C2
4

2
‖ũh‖2c .(3.28)
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Now taking τh = σ̃h+ C1

C2
3
τ 1 and vh = −ũh+ 1

C2
4
v1, we have from (3.26) and (3.28)

A(σ̃h, ũh; τh,vh)

= A(σ̃h, ũh; σ̃h,−ũh) +
C1

C2
3

A(σ̃h, ũh; τ 1, 0) +
1

C2
4

A(σ̃h, ũh; 0,v1)

≥ 1

2
‖σ̃h‖2a +

1

2
‖ũh‖2c +

1

2C2
4

‖hdiv σ̃h‖2 +
C2

1

2C2
3

‖εh(ũh)‖20,

which together with (3.10) and (3.27) indicates

‖σ̃h‖2a + ‖hdiv σ̃h‖2 + |ũh|21,h . A(σ̃h, ũh; τh,vh) . β(‖σ̃h‖0 + |ũh|1,h).

According to Lemma 3.5 and the definition of β, it holds

‖σ̃h‖0 . ‖σ̃h‖a + ‖hdiv σ̃h‖+ sup
vh∈V h

b(σ̃h,vh)

|vh|1,h

= ‖σ̃h‖a + ‖hdiv σ̃h‖+ sup
vh∈V h

A(σ̃h, ũh; 0,vh) + c(ũh,vh)

|vh|1,h
. ‖σ̃h‖a + ‖hdiv σ̃h‖+ |ũh|1,h + β.

Thus we obtain from the last two inequalities

‖σ̃h‖20 + |ũh|21,h . ‖σ̃h‖2a + ‖hdiv σ̃h‖2 + |ũh|21,h + β2

. β(‖σ̃h‖0 + |ũh|1,h) + β2,

which implies inf-sup condition (3.25). �

Corollary 3.10. Let 1 ≤ k ≤ n. Assume that σ ∈Hk+1(Ω;S) and u ∈Hk(Ω;Rn),
then

‖σ − σh‖0,h + |u− uh|1,h . hk−1 (‖σ‖k+1 + ‖u‖k) .

The convergence of rate of |u − uh|1,h is optimal. But the L2-type error of
‖σ − σh‖0,h is two order less.

Remark 3.11. Using the stability in mesh dependent norms established in [40, 9],
the MINRES method with additive Schwarz preconditioner was developed for the
mixed finite element methods of the Poisson problem in [43], and the CG method
with auxiliary space preconditioner for the corresponding Schur complement prob-
lem was designed in [25]. Similar stability in mesh dependent norm for the mixed
finite macroelement methods of the linear elasticity can be found in [45], hence the
fast auxiliary space preconditioner constructed in this paper can be easily extended
to these mixed methods. For example, the block-triangular preconditioner similar
to (4.5) for the mixed Poisson problem has been included in iFEM [18] since 2012.

3.5. Postprocessing. Based the superconvergent results of the displacement in
(3.18) and (3.20), we will construct a superconvergent postprocessed displacement
from (σh,uh) for the higher order case k ≥ n+ 1 in this subsection.

To this end, let

V ∗h :=
{
v ∈ L2(Ω;Rn) : v|K ∈ P k+1(K;Rn) ∀K ∈ Th

}
.

Then a postprocessed displacement can be defined as follows: Find u∗h ∈ V
∗
h such

that

(3.29) Qhu
∗
h = uh,
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(3.30) (ε(u∗h), ε(v))K = (Aσh, ε(v))K ∀ v ∈ (I −Qh)V ∗h|K ,
for any K ∈ Th. To derive the error estimate for the postprocessed displacement u∗h,
we will merge the mixed finite element method (2.3)-(2.4) and the postprocessing
(3.29)-(3.30) into one method as in [40]. To be specific, find (σh,u

∗
h) ∈ Σh × V ∗h

such that

(3.31) Ah(σh,u
∗
h; τh,v

∗
h) = −(Qhf ,v

∗
h) ∀ (τh,v

∗
h) ∈ Σh × V ∗h,

where

Ah(σh,u
∗
h; τh,v

∗
h) := A(σh,u

∗
h; τh,v

∗
h) + (εh(u∗h)− Aσh, εh(v∗h −Qhv

∗
h)).

Lemma 3.12. The mixed finite element method (2.3)-(2.4) and the problem (3.31)
are equivalent in the following sense: if (σh,u

∗
h) ∈ Σh × V ∗h is the solution of

the problem (3.31) and let uh = Qhu
∗
h, then (σh,uh) ∈ Σh × V h solves the mixed

finite element method (2.3)-(2.4); Conversely, if (σh,uh) ∈ Σh×V h is the solution
of the mixed finite element method (2.3)-(2.4) and u∗h ∈ V

∗
h is the postprocessed

displacement defined by (3.29)-(3.30), then (σh,u
∗
h) ∈ Σh ×V ∗h solves the problem

(3.31).

Proof. Taking any (τh,vh) ∈ Σh × V h, and noting the fact that vh = Qhvh and
divΣh ⊂ V h, we have

Ah(σh,u
∗
h; τh,vh) =A(σh,u

∗
h; τh,vh) = a(σh, τh) + b(τh,u

∗
h) + b(σh,vh)

=a(σh, τh) + b(τh,Qhu
∗
h) + b(σh,vh) = A(σh,Qhu

∗
h; τh,vh).(3.32)

Hence we can see from (3.32) that (σh,uh) solves the mixed finite element method (2.3)-
(2.4) if (σh,u

∗
h) is the solution of the problem (3.31).

Conversely, since divΣh ⊂ V h and (I −Qh)2 = I −Qh, it follows from (3.32)
and (3.29)

Ah(σh,u
∗
h; τh,v

∗
h) =Ah(σh,u

∗
h; τh,Qhv

∗
h) + Ah(σh,u

∗
h; 0,v∗h −Qhv

∗
h)

=A(σh,uh; τh,Qhv
∗
h) + (εh(u∗h)− Aσh, εh(v∗h −Qhv

∗
h))

=− (f ,Qhv
∗
h) + (εh(u∗h)− Aσh, εh(v∗h −Qhv

∗
h)),(3.33)

which together with (3.30) means that (σh,u
∗
h) solves the problem (3.31). �

Lemma 3.13. For any v ∈H1(Th;Rn), it holds that

(3.34) |v −Qhv|1,h h ‖εh(v −Qhv)‖0.

Proof. It is sufficient to prove

(3.35)
∑
F∈Fh

h−1
F ‖[v −Qhv]‖20,F . ‖εh(v −Qhv)‖20.

Let π be defined as in Lemma 3.2 and w = v −Qhv. It follows from (3.3) in [13]∑
F∈Fh

h−1
F ‖[w −Qhw]‖20,F =

∑
F∈Fh

h−1
F ‖[(w − πw)−Qh(w − πw)]‖20,F

≤
∑
K∈Th

|w − πw|21,K . ‖εh(w)‖20.(3.36)

On the other hand,∑
F∈Fh

h−1
F ‖[v −Qhv]‖20,F =

∑
F∈Fh

h−1
F ‖[w −Qhw]‖20,F .
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Therefore (3.35) follows from (3.36). �

Theorem 3.14. For any (σ̃h, ũ
∗
h) ∈ Σ̂h × V ∗h, it follows

(3.37) ‖σ̃h‖0,h + |ũ∗h|1,h . sup
(τh,v∗h)∈Σ̂h×V ∗h

Ah(σ̃h, ũ
∗
h; τh,v

∗
h)

‖τh‖0,h + |v∗h|1,h
.

Proof. For any vh ∈ V h, we have from (3.32)

Ah(σ̃h, ũ
∗
h; τh,vh) = A(σ̃h,Qhũ

∗
h; τh,vh).

Since (σ̃h,Qhũ
∗
h) ∈ Σ̂h × V h, it holds from (3.17)

‖σ̃h‖0,h + |Qhũ
∗
h|1,h . sup

(τh,vh)∈Σ̂h×V h

A(σ̃h,Qhũ
∗
h; τh,vh)

‖τh‖0,h + |vh|1,h

= sup
(τh,vh)∈Σ̂h×V h

Ah(σ̃h, ũ
∗
h; τh,vh)

‖τh‖0,h + |vh|1,h

≤ sup
(τh,v∗h)∈Σ̂h×V ∗h

Ah(σ̃h, ũ
∗
h; τh,v

∗
h)

‖τh‖0,h + |v∗h|1,h
.(3.38)

Similarly as in (3.33), we get

Ah(σ̃h, ũ
∗
h; 0, ũ∗h −Qhũ

∗
h) = (εh(ũ∗h)− Aσ̃h, εh(ũ∗h −Qhũ

∗
h)).

Then we rewrite it as

‖εh(ũ∗h −Qhũ
∗
h)‖20 =(Aσ̃h − εh(Qhũ

∗
h), εh(ũ∗h −Qhũ

∗
h))

+ Ah(σ̃h, ũ
∗
h; 0, ũ∗h −Qhũ

∗
h).(3.39)

According to the triangle inequality and (3.38), it holds

‖Aσ̃h − εh(Qhũ
∗
h)‖0 ≤‖Aσ̃h‖0 + ‖εh(Qhũ

∗
h)‖0 . ‖σ̃h‖0 + |Qhũ

∗
h|1,h

. sup
(τh,v∗h)∈Σ̂h×V ∗h

Ah(σ̃h, ũ
∗
h; τh,v

∗
h)

‖τh‖0,h + |v∗h|1,h
.

Due to (3.34), we have

Ah(σ̃h, ũ
∗
h; 0, ũ∗h −Qhũ

∗
h)

≤‖εh(ũ∗h −Qhũ
∗
h)‖0 sup

(τh,v∗h)∈Σ̂h×V ∗h

Ah(σ̃h, ũ
∗
h; 0,v∗h −Qhv

∗
h)

‖εh(v∗h −Qhv
∗
h)‖0

.‖εh(ũ∗h −Qhũ
∗
h)‖0 sup

(τh,v∗h)∈Σ̂h×V ∗h

Ah(σ̃h, ũ
∗
h; 0,v∗h −Qhv

∗
h)

|v∗h −Qhv
∗
h|1,h

.‖εh(ũ∗h −Qhũ
∗
h)‖0 sup

(τh,v∗h)∈Σ̂h×V ∗h

Ah(σ̃h, ũ
∗
h; τh,v

∗
h)

‖τh‖0,h + |v∗h|1,h
.

Using the last two inequalities and Cauchy-Schwarz inequality, we get from (3.39)

‖εh(ũ∗h −Qhũ
∗
h)‖0 . sup

(τh,v∗h)∈Σ̂h×V ∗h

Ah(σ̃h, ũ
∗
h; τh,v

∗
h)

‖τh‖0,h + |v∗h|1,h
,

which together with (3.34) implies

(3.40) |ũ∗h −Qhũ
∗
h|1,h . sup

(τh,v∗h)∈Σ̂h×V ∗h

Ah(σ̃h, ũ
∗
h; τh,v

∗
h)

‖τh‖0,h + |v∗h|1,h
.
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Finally we can finish the proof by combining (3.38) and (3.40). �

Theorem 3.15. Assume that σ ∈Hk+1(Ω;S) and u ∈Hk+2(Ω;Rn), then

(3.41) ‖σ − σh‖0,h + |u− u∗h|1,h . hk+1 (‖σ‖k+1 + ‖u‖k+2) .

Moreover, when Ω is convex, we have

(3.42) ‖u− u∗h‖0 . hk+2 (‖σ‖k+1 + ‖u‖k+2) .

Proof. By direct computation, we have

Ah(σ,u; τh,v
∗
h) = −(f ,v∗h) ∀ (τh,v

∗
h) ∈ Σh × V ∗h.

Combining with (3.31), we get the error equation

(3.43) Ah(σ − σh,u− u∗h; τh,v
∗
h) = (Qhf − f ,v∗h) ∀ (τh,v

∗
h) ∈ Σh × V ∗h.

Let Q∗h be the L2 orthogonal projection from L2(Ω;Rn) onto V ∗h. It holds from
(3.23) that

Ah(σ − IHZh σ,u−Q∗hu; τh,v
∗
h)

=a(σ − IHZh σ, τh) + b(σ − IHZh σ,v∗h)

+ (εh(u−Q∗hu)− A(σ − IHZh σ), εh(v∗h −Qhv
∗
h))

=a(σ − IHZh σ, τh) + (Qhf − f ,v∗h)

+ (εh(u−Q∗hu)− A(σ − IHZh σ), εh(v∗h −Qhv
∗
h)).

Then we obtain from (3.43), Cauchy-Schwarz inequality and the error estimates of

IHZh ,Q∗h and Qh

Ah(IHZh σ − σh,Q∗hu− u∗h; τh,v
∗
h)

=a(σ − IHZh σ, τh) + b(σ − IHZh σ,v∗h)

+ (εh(u−Q∗hu)− A(σ − IHZh σ), εh(v∗h −Qhv
∗
h))

=a(IHZh σ − σ, τh)− (εh(u−Q∗hu)− A(σ − IHZh σ), εh(v∗h −Qhv
∗
h))

.hk+1 (‖σ‖k+1 + ‖u‖k+2) (‖τh‖0 + ‖εh(v∗h)‖0).

Applying the inf-sup condition (3.37), it follows

‖IHZh σ − σh‖0,h + |Q∗hu− u∗h|1,h . hk+1 (‖σ‖k+1 + ‖u‖k+2) .

Hence we will achieve (3.41) by using the triangle inequality, and the error estimates

of IHZh and Q∗h.
When Ω is convex, we have from the triangle inequality, the error estimate of

Qh and (3.29)

‖u− u∗h‖0 ≤‖(I −Qh)(u− u∗h)‖0 + ‖Qhu−Qhu
∗
h‖0

.h|u− u∗h|1,h + ‖Qhu− uh‖0.
Finally (3.42) is achieved by using (3.41) and (3.20). �

4. Block Diagonal and Triangular Preconditioners

Direct use of the mesh dependent norm ‖·‖0,h×|·|1,h would require the additional
assembling of the jump term. In this section, we first derive equivalent matrix forms
for these mesh dependent norms and then construct block-diagonal and block-
triangular preconditioners.
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4.1. Equivalent matrix forms of the mesh dependent norms. By the trace
theorem and the inverse inequality, it is easy to see that

(4.1) ‖τh‖0,h h ‖τh‖0 ∀ τh ∈ Σh,

which implies that we can use the weighted mass matrix Mλ
h with λ = 0, i.e., Mh.

For each vh ∈ V h, denote by vh the matrix representation of vh based on the
basis of V h used to form the mass matrix Mu,h (cf. [51, Subsection 4.4]). For the
mesh dependent norm | · |1,h of displacement, we can use the Schur complement of

(1, 1) block, i.e., Sh := BhM
−1
h BTh + Ch. It is easy to see Sh is SPD and induce a

norm ‖ · ‖Sh
on V h, i.e.

‖vh‖2Sh
:= vh

TShvh, ∀ vh ∈ V h.

Lemma 4.1. We have the norm equivalence:

|vh|1,h h ‖vh‖Sh
∀ vh ∈ V h.

Proof. We focus on the case k ≥ n+ 1 first. The low order case 1 ≤ k ≤ n can be
proved similarly by adding the stabilization term.

The inf-sup condition (3.1) implies BTh is injective and thus Sh is SPD and defines
an inner product on V h. The identity

(4.2) (vh
TShvh)1/2 = ‖M−1/2

h BTh vh‖ = sup
τh∈Σh

b(τh,vh)

‖τh‖0
, ∀ vh ∈ V h

follows from the Riesz representation. Here ‖ · ‖ denotes the Euclidean norm of a
vector. The inequality |vh|1,h . ‖vh‖Sh

is a combination of (3.1), (4.1), and (4.2).
From integration by parts, we can easily get b(τh,vh) . ‖τh‖0,h|vh|1,h. Then

the inequality ‖vh‖Sh
. |vh|1,h follows from (4.1) amd (4.2). �

We define the operator Ph : Σ′h×V
′
h → Σh×V h with the matrix representation

(4.3) Ph =

(
M−1
h 0
0 S−1

h

)
,

and denoted by

Lλh =

(
Mλ
h BTh

Bh −Ch

)
.

Theorem 4.2. The Ph is a uniform preconditioner for Lλh, i.e., the corresponding
operator norms

‖PhLλh‖Σh×V h→Σh×V h
, ‖(PhLλh)−1‖Σh×V h→Σh×V h

are bounded and independent of parameters h and λ.

The mass matrix M−1
h can be further replaced by the inverse of the diagonal

matrix or symmetric Gauss-Seidel iteration and thus the computation of M−1
h is

not a problem. The difficulty is the inverse of the Schur complement which will be
further preconditioned by an auxiliary space preconditioner in the next section.
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4.2. Triangular Preconditioner. When the diagonal of the mass matrix Dh is
used, we can make use of the block decomposition

(4.4)

(
Dh BTh
Bh −Ch

)(
I D−1

h BTh
0 −I

)
=

(
Dh 0

Bh S̃h

)
,

where S̃h = BhD
−1
h BTh + Ch to obtain a triangular preconditioner.

We define the operator Gh : Σ′h × V
′
h → Σh × V h

(4.5) Gh =

(
I D−1

h BTh
0 −I

)(
Dh 0

Bh S̃h

)−1

,

If we denote by

L̃h =

(
Dh BTh
Bh −Ch

)
,

it is trivial to verify that Gh = L̃h
−1

. For mass matrix Mh, by standard scaling

argument, we have Dh is spectrally equivalent to Mh and so L̃h is also stable in the
mesh dependent norm. We thus obtain the following result. Detailed eigenvalue
analysis of the preconditioned system can be found in [7].

Theorem 4.3. The Gh is a uniform preconditioner for Lλh i.e., the corresponding
operator norms

‖GhLλh‖Σh×V h→Σh×V h
, ‖(GhLλh)−1‖Σh×V h→Σh×V h

are bounded and independent of parameters h and λ.

In both diagonal and triangular preconditioners, to be practical, we do not com-
pute S−1

h or S̃−1
h . Instead we shall apply the fast auxiliary space preconditioner to

be developed in the next section.

5. Auxiliary Space Preconditioner

In this section we first review the framework on auxiliary space preconditioners
developed by Xu [52] and then construct one for the linear elasticity problem in
mixed forms. We use H1 conforming linear element and primary formulation of
linear elasticity with λ = 0 as the auxiliary space preconditioner and verify all
assumptions needed in the framework.

5.1. Framework. Let

Vh :=
{
v ∈H1

0(Ω;Rn) : v|K ∈ P 1(K;Rn) ∀K ∈ Th
}
.

Then Vh ⊂ V h for k ≥ 2, and

(5.1) |vh|1,h = ‖ε(vh)‖0 h |vh|1 ∀ vh ∈ Vh.

The conforming linear finite element method for the linear elasticity with λ = 0 is
defined as follows: Find uh ∈ Vh such that

2µ(ε(uh), ε(vh)) = (f ,vh) ∀vh ∈ Vh.

Denote A : Vh → Vh by

(Awh,vh) := 2µ(ε(wh), ε(vh)) ∀ wh,vh ∈ Vh.

It is apparent that the operator A is SPD.
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In what follows we assume Th is quasi-uniform. Based on the norm equivalence
(5.1), we can easily derive the estimate of spectral radius and condition number of
the Schur complement operator S

(5.2) ρS = λmax(S) h h−2, κ(S) =
λmax(S)

λmin(S)
h h−2.

The relation between S and Sh is given by

Sh = Mu,hS

with S being the matrix representation of S.
We introduce the auxiliary space preconditioner for the Schur complement. The

idea is to construct a multigrid method using V h as the “fine” space and Vh as the
“coarse” space. Denote B : Vh → Vh to be such a “coarse” solver. It can be either
an exact solver or an approximate solver that satisfies certain conditions, which will
be given later. Next, on the fine space, we need a smoother R : V h → V h, which
is symmetric and positive definite. For example, R can be a Jacobi or symmetric
Gauss-Seidel smoother. Finally, to connect the “coarse” space with the “fine”
space, we need a “prolongation” operator Π : Vh → V h. A “restriction” operator
Πt : V h → Vh is consequently defined by

(Πtv, w) = (v, Πw) for v ∈ V h and w ∈ Vh.

It is also well-known that the matrix representation of the restriction operator Πt

is just the transpose of the matrix representation of the prolongation operator Π.
Then, the auxiliary space preconditioner X : V h → V h, following the definition
in [52], is given by

Additive X = R+ ΠBΠt,(5.3)

Multiplicative I −XS = (I −RtS)(I −ΠBΠtS)(I −RS).(5.4)

According to [52], the following theorem holds.

Theorem 5.1 (Xu [52]). Assume that for all v ∈ V h, w ∈ Vh,

(Sv, v) . (R−1v, v) . ρS(v, v),(5.5)

(Aw, w) . (BAw, Aw) . (Aw, w),(5.6)

|Πw|1,h . |w|1 (stability of Π),(5.7)

and furthermore, assume that there exists a linear operator P : V h → Vh such
that

|Pv|1 . |v|1,h (stability of P ),(5.8)

‖v −ΠPv‖20 . ρ−1
S |v|

2
1,h (approximability).(5.9)

Then the preconditioner X defined in (5.3) or (5.4) satisfies

κ(XS) . 1.

5.2. Construction. Now we construct an auxiliary space preconditioner which
satisfies all conditions in Theorem 5.1, namely, inequalities (5.5)-(5.9). It is straight
forward to pick B that satisfies condition (5.6). For example, B can be either the
direct solver, for which B ∼ A−1, or one step of classical multigrid iteration which
satisfies condition (5.6).

The smoother R is also easy to define. A Jacobi or a symmetric Gauss-Seidel
smoother [10] will satisfy condition (5.5). The operator Π is the natural inclusion
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for k ≥ 2 and the L2 projection Qh for k = 1, i.e., taking the averaging of nodal
values inside each simplex. Then the condition (5.7) follows from (5.1) and (3.16)
immediately.

The technical part is to define an operator P : V h → Vh that satisfy the condi-
tions (5.8)-(5.9). Note that operator P is needed only in the theoretical analysis.
In the implementation, one needs B, R and Π only.

Construction of P is equivalent to specify the function values at each vertex. For
an interior vertex xi of Th, denoted by Ωi the vertex patch of xi, we will simply
choose (Pv)(xi) := |Ωi|−1

∫
Ωi
v dx, i.e., the average of a discontinuous polynomial

v in the vertex patch. For boundary vertex xi ∈ ∂Ω, we set (Pv)(xi) := 0.
For any K ∈ Th, let Q0

Kv := (Q0
hv)|K = |K|−1

∫
K
v dx. Define

Th,i := {K ∈ Th : K ⊂ Ωi}, Fh,i := {F ∈ Fh : xi ∈ F}.

Obviously for interior nodes we have

(5.10) (Pv)(xi) =
∑

K∈Th,i

|K|
|Ωi|

Q0
Kv.

The error estimate of the operator P can be derived by standard argument used
in [48, 13, 16, 31]. For completeness, we show it in details as follows.

Lemma 5.2. The operator P satisfies

‖v − Pv‖0 + h|Pv|1 . h|v|1,h ∀ v ∈ V h.

Proof. According to (5.10), it holds for each interior node xi

|Q0
Kv − (Pv)(xi)|2 .

∑
K′∈Th,i

|Q0
Kv −Q

0
K′v|2 .

∑
F∈Fh,i

|[Q0
hv]|2.

For each boundary node xi, we obtain by similar technique and the definition of
jump on the boundary

|Q0
Kv − (Pv)(xi)|2 = |Q0

Kv|2 .
∑

F∈Fh,i

|[Q0
hv]|2.

Then using the scaling argument, we have∑
K∈Th

h−2
K ‖Q

0
Kv − Pv‖20,K =

∑
K∈Th

n∑
i=0

hn−2
K |Q0

Kv − (Pv)(xK,i)|2

.
∑
F∈Fh

h−1
F ‖[Q

0
hv]‖20,F .

From the L2 error estimate (3.15), discrete Korns inequality (3.8), and the norm
equivalence (3.6), we get∑
K∈Th

h−2
K ‖v − Pv‖

2
0,K .

∑
K∈Th

h−2
K ‖v −Q

0
Kv‖20,K +

∑
K∈Th

h−2
K ‖Q

0
Kv − Pv‖20,K

. |v|21,h +
∑
F∈Fh

h−1
F ‖[Q

0
hv]‖20,F

. |v|21,h +
∑
F∈Fh

h−1
F ‖[Q

0
hv − v]‖20,F . |v|21,h.(5.11)
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It follows from (5.11) and (3.15)

|Pv|21 =
∑
K∈Th

|Pv −Q0
Kv|21,K .

∑
K∈Th

h−2
K ‖Pv −Q

0
Kv‖20,K

.
∑
K∈Th

h−2
K ‖v − Pv‖

2
0,K +

∑
K∈Th

h−2
K ‖v −Q

0
Kv‖20,K . |v|21,h.

Therefore we can finish the proof by combining the last two inequalities. �

Lemma 5.3. For any v ∈ V h, it holds

(5.12) ‖v −ΠPv‖20 . ρ−1
S |v|

2
1,h.

Proof. For k ≥ 2, (5.12) is the result of Lemma 5.2 and (5.2). For k = 1, we obtain
from the triangle inequality, (3.15), Lemma 5.2 and (5.2)

‖v −ΠPv‖20 =‖v −QhPv‖20 . ‖v − Pv‖20 + ‖Pv −QhPv‖20
. ‖v − Pv‖20 + h2|Pv|21 . h2|v|21,h . ρ−1

S |v|
2
1,h,

as required. �

Combining Lemma 4.1, Theorem 5.1, and Lemmas 5.2-5.3, we have the following
estimate of the condition number of XS.

Theorem 5.4. Let R be a Jacobi or a symmetric Gauss-Seidel smoother, B be
one step of classical multigrid iteration, and Π be Qh. Then the preconditioner X
defined in (5.3) or (5.4) satisfies

κ(XS) . 1.

6. Numerical Results

In this section, we will report some numerical results to testify the efficiency and
robustness of the auxiliary space preconditioners developed in Sections 4-5 for the
mixed finite element method (2.3)-(2.4). Let Ω = (−1, 1)2, µ = 0.5 and the load
f = 1. We use the uniform triangulation Th of Ω. The stopping criteria of our
iterative methods is the relative residual is less than 10−8, and the initial guess is
zero. We run the code on the laptop with Intel Core i5 CPU (1.7 GHz) and 4GB
RAM.

6.1. Block Diagonal Preconditioner. First we use the minimal residual (MIN-
RES) method with the block diagonal preconditioner(

D−1
h 0
0 (BhD

−1
h BTh + Ch)−1

)
to solve the mixed finite element method (2.3)-(2.4), where Dh is the diagonal
matrix of Mh. To solve the Schur complement BhD

−1
h BTh + Ch, we apply the

multiplicative auxiliary space preconditioner (5.4), in which we employ three steps
of the Gauss-Seidel smoother for R and one step of V-cycle multigrid method with
one pre-smoothing and one post-smoothing for B.

The iteration numbers and CPU time for the block diagonal preconditioned
MINRES method are shown in Tables 1-3 for k = 1, 2, 3, from which we can see
that the iteration steps are uniform with respect to the meshsize h and the Lamé
constant λ.
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Remark 6.1. The iteration steps can be further reduced by introduce a scaling
scale ∗BhD−1

h BTh .

Table 1. The iteration steps and CPU time (in seconds) of block
diagonal preconditioned MINRES method for k = 1

#dofs
λ = 0 λ = 10 λ = 100 λ = 1000 λ = +∞

steps time steps time steps time steps time steps time
1891 43 0.08 65 0.13 74 0.14 74 0.14 74 0.14
7363 46 0.39 75 0.61 84 0.69 86 0.70 86 0.70
29059 47 1.53 78 2.48 91 2.89 92 3.04 92 3.04
115459 47 6.11 81 10.4 95 12.3 96 12.3 96 12.3
460291 47 26.2 81 45.0 97 53.6 98 54.3 98 54.3

Table 2. The iteration steps and CPU time (in seconds) of block
diagonal preconditioned MINRES method for k = 2

#dofs
λ = 0 λ = 10 λ = 100 λ = 1000 λ = +∞

steps time steps time steps time steps time steps time
1811 57 0.17 85 0.25 93 0.27 94 0.28 94 0.28
7075 58 0.70 91 1.11 98 1.19 100 1.20 100 1.20
27971 58 2.87 93 4.58 102 5.13 102 5.13 102 5.13
111235 58 11.8 95 18.9 103 20.6 104 21.4 104 21.4
443651 57 48.4 96 79.7 104 86.0 104 86.0 106 87.7

Table 3. The iteration steps and CPU time (in seconds) of block
diagonal preconditioned MINRES method for k = 3

#dofs
λ = 0 λ = 10 λ = 100 λ = 1000 λ = +∞

steps time steps time steps time steps time steps time
971 56 0.13 89 0.19 91 0.20 91 0.20 91 0.20
3763 58 0.58 88 0.86 94 0.95 94 0.95 94 0.95
14819 58 2.44 90 3.78 96 4.01 96 4.01 96 4.01
58819 58 9.83 90 15.3 96 16.3 96 16.3 97 16.4
234371 57 39.7 90 62.8 96 66.3 98 67.4 98 67.4

6.2. Block Triangular Preconditioner. Next we examine the generalized min-
imal residual (GMRES) method with the block triangular preconditioner(

Dh BTh
Bh −Ch

)−1

=

(
I D−1

h BTh
0 −I

)(
Dh 0
Bh BhD

−1
h BTh + Ch

)−1

.

Set restart=20 in the GMRES method. We still exploit the same multiplicative
auxiliary space preconditioner as in the block diagonal preconditioner to solve the
Schur complement.



22 LONG CHEN, JUN HU, AND XUEHAI HUANG∗

The iteration numbers and CPU time for the block triangular preconditioned
GMRES method are shown in Tables 4-6 for k = 1, 2, 3. Again the iteration steps
are uniform with respect to the meshsize h and the Lamé constant λ. The per-
formance of the block triangular preconditioned GMRES method is better than
the block diagonal preconditioned MINRES method. The iteration steps and CPU
time are almost halved comparing with the block diagonal preconditioner.

Table 4. The iteration steps and CPU time (in seconds) of block
triangular preconditioned GMRES method for k = 1

#dofs
λ = 0 λ = 10 λ = 100 λ = 1000 λ = +∞

steps time steps time steps time steps time steps time
1891 20 0.05 34 0.06 38 0.08 39 0.08 39 0.08
7363 22 0.20 39 0.36 46 0.42 47 0.44 47 0.44
29059 24 0.88 45 1.64 50 1.85 51 1.88 51 1.88
115459 24 3.66 47 7.22 54 8.12 55 8.30 55 8.30
460291 25 16.6 50 32.6 57 37.5 59 39.3 59 39.3

Table 5. The iteration steps and CPU time (in seconds) of block
triangular preconditioned GMRES method for k = 2

#dofs
λ = 0 λ = 10 λ = 100 λ = 1000 λ = +∞

steps time steps time steps time steps time steps time
1811 18 0.06 29 0.10 31 0.11 31 0.11 32 0.11
7075 20 0.27 32 0.45 34 0.47 35 0.48 35 0.48
27971 22 1.24 35 1.92 37 2.05 38 2.12 38 2.12
111235 23 5.25 37 8.53 40 9.23 41 9.31 41 9.31
443651 24 23.0 39 37.1 44 41.5 44 41.5 44 41.5

Table 6. The iteration steps and CPU time (in seconds) of block
triangular preconditioned GMRES method for k = 3

#dofs
λ = 0 λ = 10 λ = 100 λ = 1000 λ = +∞

steps time steps time steps time steps time steps time
971 20 0.05 27 0.06 28 0.06 28 0.06 28 0.06
3763 21 0.24 29 0.31 30 0.33 30 0.33 30 0.33
14819 22 1.02 30 1.36 32 1.47 32 1.47 32 1.47
58819 23 4.30 31 5.80 33 6.16 33 6.16 33 6.16
234371 24 18.6 32 24.6 34 26.1 35 26.9 35 26.9
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