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In this paper, we consider the scheduling of jobs that may be com
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jobs with a conflict graph, so that the set of all concurrently running jobs
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must form an independent set in the graph. This model is natural and

general enough to have applications in a variety of settings; however, we

are motivated by the following two specific applications: traffic inter

section control and session scheduling in high speed local area networks

with spatial reuse. Our results focus on two special classes of graphs

motivated by our applications: bipartite graphs and interval graphs.

In all of the upper bounds, we devise algorithms which maintain a set

of invariants which bound the accumulation of jobs on cliques (in the

case of bipartite graphs, edges) in the graph. The lower bounds show

that the invariants maintained by the algorithms are tight to within a

constant factor. For the specific graph which arises in the traffic inter

section control problem, we show a simple algorithm which achieves the

optimal competitive ratio.

1 Introduction

In this paper, we consider scheduling jobs which are competing for limited

resources. Jobs arrive in the system through time and require a certain set

of resources to be completed. Any two jobs which require the same resource

can not be executed simultaneously. We model the conflicts between jobs by
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a conflict graphs where each node in the graph represents a type of job. Jobs

of the same type have the same requirements. If two types of jobs demand a

common resource, there is an edge between those nodes in the graph. Thus, at

all times, the set of jobs currently being executed must belong to nodes which

form an independent set in the graph. Note that if there are two jobs of the

same type in the system, one must wait until the other is completed.

We were motivated by the following two specific applications:

Traffic Intersection Control ([8, 11, 12, 15, 18, 19, 20, 26, 29, 31, 34,

35, 36, 38, 39]). Today's traffic intersection controllers are based on thirty

year old signal phasing strategies. Signal phasings are optimized offline with

historical data, downloaded into the controller and triggered by the presence

of vehicles. Even the state of the art in adaptive traffic signal control only

extend the optimization to a few seconds before every phase change. How

ever, one expected consequence of an effective advanced traveler information

system (ATIS) [1, 2, 3, 23] is the rerouting of congested traffic to streets and

arterials that may either temporarily be under-utilized or which normally op

erate below capacity. Under such conditions, signal settings which have been

determined based on recurrent traffic demand will not, in general, be "tuned"
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to accommodate the transient demand generated by the real-time driver in

formation. As a result, system performance (as well cis the effectiveness of the

AXIS) is limited by the capacity of the signal system to adapt to transient

traffic demand. Better strategies will be necessary for many of the proposed

Intelligent Transportation Systems.

A traffic intersection is depicted in Figure 1. As all drivers know, the traffic

on 1 is typically not allowed to proceed with the traffic on 2, 3, 4, 7, or 8. The

complete conflict graph for the traffic intersection is also depicted in Figure 1.

The intersection controller must schedule the vehicles through the intersection

so as to avoid any conflicts. We consider a 'job' to be a platoon or closely

spaced line of cars which must pass through the intersection.

1 I

1' I
5 2

6 1

5 2

Figure 1; The graph depicting a traffic intersection.
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Scheduling in high-speed local-area networks with spatial reuse

([14]). Local area networks with spatial reuse allow the concurrent access

and transmission of user data with no intermediate buffering of packets. If

some node s has to send data to some other node a 'session^ is established

between the s and t. A session typically Icists for much longer than its data

transmission time and can be active only if it has exclusive use of all the links

in its route from s to t. Therefore, sessions whose routes share at least one link

are in conflict. Data transmissions among sessions must be scheduled so as to

avoid these conflicts. We examine the problem of scheduling connections on a

bus where there is exactly one possible route between any two pairs of points.

Thus, if connections are defined by the two nodes which must be connected, it

is determined whether a given pair of connections will conflict with each other.

In the first application and for small networks in the second application,

it is reasonable to assume that each job requires roughly the same amount of

time to execute. Thus, we adopt a discrete model of time and assume that

each job requires one time unit to be completed once it is started. At the

beginning of a time unit, jobs may arrive on any subset of the nodes in G;

several jobs can arrive on the same node. The algorithm then chooses any



5. Irani and V. Leung

independent set of nodes from which to schedule a job for each node. At the

end of the time unit, the scheduled jobs are gone from the graph, and all other

jobs remain on their respective nodes. Then at the beginning of the next time

unit, another set of jobs may arrive.

There are two natural optimization problems that arise from this model.

The first is to minimize the total response time of all jobs in the system. The

second is to minimize the maximum response time of any job which enters

the system. We focus on bounding the maximum response time of any job

which is the maximum, over all jobs j, of dj —Cj, where dj is the time when

j departs and aj is the time when j arrives. In both applications we consider,

it is important to guarantee the best turnaround time to any job entering the

system. In the proofs, it will be convenient to refer to the latency of a job,

which is the time that a job waits in the system before it is started. Since

each job requires only one time unit to complete once it is started, the final

latency of a job is one less than its response time.



Scheduling with ConBicts

1.1 Our Results

Typical scheduling algorithms are faced with the problem of making decisions

about which jobs to perform at a given time without any knowledge of the

demands that will be made on the system in the future. Such algorithms are

said to be online. We compare the performance of the online algorithm to

the performance of the optimal offline algorithm. An algorithm is said to be

c-competitive if for any sequence of jobs, its cost on the sequence is at most

c times the cost of the optimal offline algorithm on that sequence plus an

additive term which is independent of the sequence. The competitive ratio of

the algorithm is the infimum over all c such that the algorithm is c-competitive.

In our results, we measure the performance of our algorithm by a generalized

version of the competitive ratio in which we bound the cost of our algorithms

by a (not necessarily linear) function of the adversary cost.

Minimizing the maximum response time for general conflict graphs is NP-

hard, even when all jobs arrive in a single time unit: the problem is equivalent

to graph coloring [22]. Even approximating the minimum majcimum response

time to within a fixed polynomial factor is NP-hard [27]. Our results focus on

two special clcisses of graphs motivated by our applications: interval graphs
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and bipartite graphs. Such graphs can be optimally colored in polynomial

time.

We argue in section 1.4 that the problem of scheduling with the traffic

intersection conflict graph depicted in Figure 1 is equivalent to scheduling on

a K2,2- In section 3.1, we describe a simple algorithm and prove that it obtains

a competitive ratio of 2 on a K2,2- This result is then generalized in section

3.2 to arbitrary bipartite graphs. In section 3.3 we address scheduling where

the conflict graph is an interval graph which models the problem of scheduling

connections on a bus. An interval graph consists of a graph where each node

c<in be identifiedwith a closed intervalon the real line. Two nodes are adjacent

if and only if their corresponding intervals intersect. Consider a bus with

processors viyV2,V3,... ,u„ connected in order along the bus. Associate each

processor with a point in the real line. The points are ordered from left to

right as the processors axe arranged on the bus. A connection between two

nodes Vi and Vj for i < j can be represented by an interval from the point just

to the left of u,- to the point which is just to the right of Vj. Thus, two intervals

intersect if and only if the two corresponding connections share a link.

Although the algorithms for bipartite and intervals graphs are quite differ-
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ent, the bounds they achieve are the same: we prove that for any sequence of

jobs in which the maximum response time of a job in the optimal schedule is

bounded by Z/, the algorithm can complete every job in time 0(n^L'̂ )^ where

n is the number of nodes in the conflict graph.

In all of the upper bounds, we devise algorithms which maintain a set of

invariants which bound the accumulation of jobs on cliques (in the case of

bipartite graphs, edges) in the graph. The lower bounds given in section 2

show that the invariants maintained by the algorithms are tight to within a

constant factor. For a 7^2,21 we describe an adversary which for any positive

integer L and any algorithm, can devise a sequence which forces the algorithm

to accumulate L jobs on an edge while the adversary has no jobs remaining

in the graph. Furthermore, each job in the sequence can be completed by the

optimal algorithm within L time units of its arrival. This bound gives a ratio

of at least 2 for the competitiveness of any deterministic algorithm on a A'2,2

where the cost is the maximum response time of a job. Therefore, the simple

algorithm described in section 3.1 achieves the optimal competitive ratio.

For bipartite and interval graphs, we describe an adversary which for any

positive integer L and any algorithm, can devise a sequence which forces the
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algorithm to accumulate Q(nL) jobs on a clique while the adversary has no

jobs remaining in the graph. Again, each job in the sequence can be completed

by the optimal algorithm within L time units of its arrival. These bounds give

a lower bound of n(u) for the competitiveness of any deterministic algorithm

on interval and bipartite graphs where the cost is the maximum reponse time

of a job.

1.2 Previous Work

Over the past twenty-five years, most of the work done on scheduling with

conflicts between certain pairs of jobs has been based on the well-known Din

ing Philosophers paradigm [4, 6, 13, 16, 17, 28, 32, 37] which is inherently a

problem in decentralized control. More recently, Motwani, Phillips, and Torng

[30] and Bar-Noy, Mayer, Schieber, and Sudan [7] considered problems with

centralized control. In [30], each vertex in the conflict graph represents a single

job and two vertices are adjacent when their corresponding jobs are in conflict.

When jobs arrive at integral times and have unit execution time, Motwani et

al. showed that the competitive ratio for the makespan is 2. When jobs ar

rive at arbitrary times and have arbitrary execution times, they gave an upper
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bound of 3 on the competitive ratio for the makespan using a model which

allows for preemption. In [7], each vertex in the conflict graph represents a

task that is to be scheduled as often as possible and again, two vertices are

adjacent when their corresponding tasks cannot be scheduled concurrently.

Bax-Noy et al. were interested in maximizing a measure of fairness among

competing types. A number of authors have also considered a related static

problem in multiprocessor scheduling [5, 9, 10, 21, 25].

1.3 Definitions

A node in a conflict graph G represents a class of jobs to be scheduled and

two adjacent nodes in G represent two classes of jobs that cannot be scheduled

together. Time is divided into discrete time units. At the beginning of a time

unit, jobs may arrive on any subset of the nodes in G; several jobs can arrive

on the same node. All jobs arrive with latency 0. The algorithm then chooses

any independent set of nodes and schedules the oldest job waiting on each

node in the independent set. At the end of the time unit, the scheduled jobs

axe gone from the graph and the latency of all the remaining jobs has increased

by one. Then at the beginning of the next time unit, another set of jobs may
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arrive.

The weight of a node is defined to be the number of jobs waiting on the

node, including the jobs that have just arrived in the system (i.e. the jobs

with latency 0). A node is said to be empty if it has weight 0. The weight of

an edge is the sum of the weights of the two endpoints.

1.4 The Traffic Intersection Graph

Notice that in the traffic intersection graph shown in Figure 1 since 1 and 2

are adjacent and have exactly the same neighborhood, they can be merged

into one node. The same for 3 and 4, 5 and 6, 7 and 8. The resulting conflict

graph is a K2,2' Name the nodes of the A'2,2 ^i^r2 on the right side and lij2

on the left side.

2 Lower Bounds

2.1 i^2,2

Lemma 1 Let A be an arbitrary scheduling algorithm. If at the end of some

time unit (say 0), the adversary has no jobs and A has i jobs on li for some
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i less than L, then the adversary can force a configuration in which A has an

edge of weight i + 1 while the adversary has an empty graph, i.e. has no jobs

left, and the adversary never has a job with latency more than i + 1.

Proof. For up to z+ 1 consecutive time units, the adversary will have a job

arrive on eaeh of li and ri. For some t £ {1»2, — ,i + 1}, at the end of time

unit the algorithm has i + 1 jobs on /i or ri- For any t in {1,2,... ,7 + 1},

the adversary can schedule the jobs incurring a latency of at most i +1 so that

after time t, li or ri is empty.

The adversary strategy is the following. Keep offering jobs cts described

above until the algorithm has li or ri with i +1 jobs after some time t. Assume

without loss of generality that it is li. The adversary will serve the sequence

up to that point so that li is empty after time t.

This allows the adversary to adopt the following strategy to empty out its

own graph while forcing the algorithm to keep i + 1 jobs on edge (/i,r2). The

adversary requests a job on r2. The adversary schedules the oldest job on ri

and the new job on r2. After t time units, the adversary's graph is empty.

Since a job was requested on r2 in each time unit, the algorithm still has i -I-1

jobs on (/i,r2).
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Theorem 2 For K2,2, no algorithm can have a competitive ratio for the max

imum response time better than 2.

Proof. There will be L stages. As j goes from 0 to L —1, we will start eaeh

stage with j jobs on /i. We then invoke Lemma 1 to obtain an edge e with

j +1 jobs. All we have to do is show how to establish the conditions of Lemma

1 for the next step. The adversary will do the following:

For 2L consecutive time steps, have a job arrive on r^, the right node

incident to edge e. The adversary can schedule each job as it arrives.

The algorithm must eventually have all j +1 jobs on if it avoids having

a job of latency 2L.

• For 2L consecutive time steps have a job arrive on l-y. Eventually the

algorithm must request all jobs on and have j + 1 jobs on /i if it

avoids having a job of latency 2L. The adversary schedules each job as

it arrives.

At the end of the whole process, the algorithm has an edge (ly^Vz) with

L jobs while the adversary's graph is empty. For the next L time units, the

adversary has a job arrive on rg and ly. By always scheduling the oldest job,
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the adversary never incurs a latency of more than L. The algorithm will have

2L jobs on edge (ly^rg) and must incur a latency of at least 2L. m

2.2 Bipartite and Interval Graphs

In order to prove the lower bound for bipartite and interval graphs, we prove

the following lemma for a conflict graph consisting of a simple path on 4(fc + l)

nodes. Number every other edge from —k to k, starting with the second edge.

The rest of the edges are unnumbered. The nodes are numbered consecutively

from —2k —2 to + 1. The graph is pictured in Figure 2.

.tt-2 -2k -2k'»2 -2k*4 •2 0 2 2k-4 2k-2 a

k-b k-

-a* I -ik*)

Figure 2: The conflict graph

Lemma 3 Let A be an arbitrary scheduling algorithm. If at the end of some

time unit (say 0), the adversary has no jobs and A has Lk + i jobs on each

odd node in the path for some i less than L, then the adversary can force a

configuration in which A has an edge of weight Lk + i + 1 while the adversary
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has an empty graph, and the adversary never has a job with latency more than

Proof. For each j = 0 to k, the adversary will do the following for L con

secutive time units:

Have a job arrive on each of the odd numbered nodes incident to edges

-I-1).

Have a job arrive on each of the two endpoints in edges —j, —i+2,..., j —

• Have a job arrive on each of the even numbered nodes incident to edges

j + IJ -\-2,...,k.

Note that jobs are never placed on the first node (—2Ar —2) or the last node

{2k -|-1). Figure 3 shows how the jobs arrive for j = 2 and j = 3 on a graph

with A: = 5.

Claim 4 For some t 6 {1,2,..., LA: + «+ 1}, at the end of time unit t, the

algorithm has LA: -j-1 + 1 jobs on some unnumbered edge.
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-5 \-4 \-3 \-2 \-1

-5 \ -4 \ -3 \ -2 \ -1

Figure 3: The job arrival pattern for a graph in which k = 5. Jobs arrive

on the shaded nodes.

Proof of Claim 4. Let t € {1,2,... t + 1}. Let's assume that at the

end of time t the algorithm has the following:

1. At least weight Lk + i on each unnumbered edge.

2. Node 2k has weight at least t.

Note that the conditions are satisfied after time unit 0. After the jobs arrive

at the beginning of time t, the weight of each unnumbered edge increases by

1. Furthermore a job always arrives on node 2k.

If there is some unnumbered edge from which the algorithm does not sched

ule a job, then the weight of that edge remains Lk-hi-\-l after the time unit,

and we are done. Since node —2k —2 (the first node in the path) never heis
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any jobs on it, the only way for the algorithm to schedule a job from every

unnumbered edge is to schedule a job from all the odd nodes. This would also

maintain conditions 1 and 2. By the time t = Lk + i + 1^ the second condition

would imply that node 2k (and hence the last unnumbered edge) has weight

at least Lk + i + 1. •

Claims Let e be any unnumbered edge. For any t in {1^2^... ,Lk-\-i 1],

the adversary can schedule the jobs incurring a latency of at most L so that

after time t, e is empty.

Proof of Claim 5. In the following scheme, the adversary can avoid having

jobs on half the unnumbered edges. For each 0 < t < L(k + 1), let

I •

During time i, the adversary will schedule the following.

1. The job that just arrived on each of the odd numbered nodes in edges

+ + 1).

2. The oldest job on each of the even or odd numbered nodes in edges

—j, —j + 1,..., j depending on whether j is even or odd, respectively.
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3. The job that just arrived on each of the even numbered nodes in edges

j + l,j + 2,.. .,A:.

If e is in the other half of the unnumbered edges then the adversary would

use the same procedure except swap even and odd nodes in step 2. •

The adversary strategy is the following. Keep offering jobs as described

above until the algorithm has an unnumbered edge c with Lk jobs at

some time t. The adversary will serve the sequenceup to that point so that its

edge c is empty at time t. Notice also that the adversary's strategy in serving

the requests has the property that at the end of a time unit, all even nodes are

either empty or have the same set of jobs and all odd nodes are either empty

or have the same set of jobs. Furthermore, if an odd node has x jobs, then all

even nodes have at most L —x jobs.

This allows the adversary to adopt the following strategy to empty out its

own graph while forcing the algorithm to keep Lk-\- i •\-l jobs on edge e. If

the odd nodes in the adversary's graph have the oldest job, then the adversary

requests a job on the odd node incident to e. The adversary schedules the

oldest job on each odd node. Alternatively, if the even nodes in the adversary's

graph have the oldest job, then the adversary requests a job on the even node
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incident to e. The adversary schedules the oldest job on each even node. After

L time units, the adversary's graph is empty. Since a job was requested on c

in each time unit, the algorithm still has LA: + i + 1 jobs on e. •

Theorem 6 For bipartite graphs, no algorithm can have a competitive ratio

for the maximum response time better than

Proof. Let the number of nodes n be 4(A: + 1) + 1 for some k. The graph

consists of the path used in Lemma 3 with one additional node u adjacent to

all the odd nodes in the path. There will be A: + 1 stages. As I goes from 0 to

A;, we will start each stage with LI jobs on each of the odd nodes in the path

from —21 —2 to 2/ + 1. There are L steps within a stage. As j goes from 0

to L —1, we start each step with LI + j jobs on each of the odd nodes from

—21 —2 to 2/+ 1. We then invoke Lemma 3 to obtain an edge e with L/ +j' +1

jobs. All we have to do is show how to establish the conditions of Lemma 3

for the next step. The adversary will do the following:

• For nL consecutive time steps, have a job arrive on u, the odd node

incident to edge e. The adversary can schedule ecich job as it arrives.
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The algorithm must eventually have all L/ + j 4-1 jobs on v if it avoids

having a job of latency nL.

For nL consecutive time steps have a job arrive on u. Eventually the

algorithm must request all jobs on v and have LI j -h I jobs on u if it

avoids having a job of latency nL. The adversary schedules each job as

it arrives.

If j < L —2, let the set K be the nodes —21 —1, —21 + 1,,.., 2/ + 1.

Otherwise (we are setting up for a new stage), let K be the nodes —2(/+

1)—1,—2(/ + 1)+ 1,... ,2(/4-1) +1. For the next nL time units, havea

job arrive on each node in K. The adversary schedules all jobs as they

arrive. The algorithm must eventually have Ll-^j-i-l jobs on each node

in K.

At the end of the whole process, the algorithm has an edge (u,u;) with

L{k + 1) jobs while the adversary's graph is empty. For the next L time units,

the adversary has a job arrive on w and v. By always scheduling the oldest job,

the adversary never incurs a latency of more than L. The algorithm will have

L(k + 2) jobs on edge (u, u;) and must incur a latency ofat least L{k + 2) —1.
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Theorem 7 For interval graphs, no algorithm can have a competitive ratio

for the maximum response time better than

Proof. The proof is exactly the same as the prooffor bipartite graphs, except

that the graph consists of a simple path on 4(fc +1) nodes plus a node u which

is adjacent to all nodes in the path. •

3 Upper Bounds

3.1 K,

The algorithm picks the side of the graph with the oldest job. If there is a tie,

pick the side of the graph with the node of largest weight.
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Lemma 8 The algorithm will maintain the following invariants:

1. If the algorithm has an edge of weight w, then the adversary has at least

max{ti; —i,0} jobs on the edge.

2. If the algorithm has a node of weight w, then the adversary has at least

max{it; —L, 0} jobs on the node.

Proof. Let us assume that the algorithm has maintained the invariants

through time t —I and we will prove that the invariants are still maintained

after time t. When new jobs arrive, clearly the invariants are still maintained.

As long as the invariants are maintained, we will never have an edge of weight

2L + 2 or more. Otherwise, the adversary would have an edge of weight L-\-2

which would mean it eventually incurs a latency of at least L + 1 on some job.

Thus, we know that it is impossible to have nodes of weight more than L on

both sides of the graph. This means as long as the algorithm picks the side of

the graph with the maximum weight node, there axe no nodes of weight more

than L on the other side of the graph and the invariants will be maintained

after time t.

Now suppose that the algorithm does not pick the side of the graph with
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the maximum weight node. Assume without loss of generaJity that it is the

left side and that /i is the node with the oldest job. We address two cases:

Case 1: /i has a job with latency at least L. The only problem happens if

a node on the right side has at least L + 1 jobs. Suppose ri is a node

with at least L + 1 jobs. (The same argument will hold for r2 if it has

at least L + 1 jobs). Let's suppose the algorithm has x jobs on li and y

jobs on ri. This means that the adversary has at least x-^y —L jobs on

(/i, ri) at least y —L oi which must be on ri. If the algorithm has any

jobs on I2, then a job will be taken from every edge, and invariant 1 will

certainly be maintained. If there are no jobs on /21 then the algorithm

has y jobs on the edge (/2,7'i) and we must be certain the adversary will

continue to have at least y —L jobs on the edge in order to maintain

invariant 1. As long as we can verify that at least y —L jobs remain on

Ti, this condition as well as invariant 2 will be satisfied.

If the adversary still has the latency-at-least-L job on /i, it must pick

that one, which means that y —L jobs still remain on ri. Now suppose

that the adversary does not still have the latency-at-least-X job on l\.

We first observe that no more than x —I jobs have arrived on h in the
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last X—1 time units (the algorithm has at most a: —1 jobs that are more

recent than the latency-at-least-X job and would not have picked a more

recent job over the latency-at-least-X job). Thus, the adversary can have

at most X—1 jobs on li, which means that it has at least y —X+ 1 jobs

on ri. Thus, at least y —L remain after the time unit.

Case 2: li does not have a job with latency at least X. Again, the only

problem happens if a node on the right side has at least X + 1 jobs.

Suppose ri is a node with at least X+ 1 jobs. (The same argument will

hold for ri if it has at least X + 1 jobs). Let's suppose the algorithm

has X jobs on /i and y jobs on ri. This means that the adversary has

at least x + y —X jobs on (/i, ri) at least y —X of which must be on ri.

If the algorithm has any jobs on then a job will be taken from every

edge, and invariant 1 will certainly be mciintained. If there are no johs

on then the algorithm has y jobs on the edge (hy^i) and we must be

certain the adversary will continue to have at least y —L jobs on the

edge in order to maintain invariant 1. As long as we can verify that at

least y —X jobs remain on ri, this condition as well as invariant 2 will

be satisfied.
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We first observe that no more than 2L —1 jobs can arrive on ri in L —1

consecutive time units. We next observe that no more than L —1 jobs

on ri can be scheduled by the adversary during L —1 consecutive time

units. Thus, at least y —L remain after the time unit. •

Theorem 9 The algorithm never has a job older than 2L.

Proof. Since the algorithm never has more than 2L + 1 jobs on an edge,

when a job j arrives on a node (say /i), there are never more than 2L other

jobs on any edge incident to li. Let x be the number of jobs already on

when the job j arrives. 0 < x < 2L. There are at most 2L —x jobs on either

node on the right side.

After the left side has been chosen x times, j will be the oldest job on the

left side and will be scheduled the next time the left side is chosen. Thus, if we

can prove that the right side is not chosen more than 2L —x times before j is

scheduled, then we know that j will wait in the system at most 2L time units

before it is scheduled. After the right side has been chosen 2L —x times, if j

has not yet been chosen, then the left side has the oldest job in the system.
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Note that by using one greedy criteria, majcimum latency, we are able

to bound another greedy criteria, maximum weight. In general, this is not

possible. On a path of length six, the algorithm is unbounded.

3.2 Bipartite Graphs

We will assume that we know X, the maximum latency incurred by the adver

sary. Let X = (y -I- 4)X + 2. Let H be the subgraph consisting of all edges

whose weight is more than X and any node incident to such an edge. Suppose

we have a simple path in the graph G and number the edges according to their

sequence in the path, starting with 1. We say that the path is an H-path if all

the odd numbered edges are in H. Call a node immediately forbidden if it is

adjacent to a node of weight at least X i-\ and only has jobs with latency less

than L. As soon as a node becomes immediately forbidden, it is marked. If

there is a time unit in which there are no immediately forbidden nodes, then

unmark all nodes. The set of forbidden nodes consists of all marked nodes

which have at most one job with latency at least L.

The independent set is chosen in a series of three rounds:

Round 1: Pick all nodes that are adjacent only to empty nodes.
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Round 2: Pick any node v such that there is an odd length //-path from a

forbidden node to v.

Round 3: Pick the side of the graph with the oldest job and pick all nodes

on that side of the graph which have not been already picked and are

not adjacent to a node which hcis already been picked.

The cdgorithm will maintain the following invariants:

1. If the algorithm ha^ weight A" -f a on an edge, then the adversary has

weight at least a on that edge.

2. If the algorithm has weight A 4- a on a node, then the adversary has

weight at least a on that node.

3. There is no odd length //-path between two forbidden nodes.

Lemma 10 The algorithm picks an independent set.

Proof. The only way for two adjacent nodes, Wi and W2, to be picked is if

there are two forbidden nodes, Vi and V2-, such that there is an odd length

//-path from vi to Wi and from V2 to W2' This means that there is an odd

length //-path from to V2 which violates the last invaricint. •
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Lemma 11 The algorithm maintains the invariants.

Proof. We first prove that invariant 3 holds as a result of invariant 1. Con

sider a forbidden node v\ v has at most one job older than L. Any node can

have at most 2L jobs with latency less than L because if more than 2L jobs

arrive at the same node during L consecutive time units, then the adversary

latency is more than L. Thus, v has weight at most 2L + 1.

Now consider a simple path with an odd number of edges and an even

number of nodes, po^pi,... ,P2it+i- Suppose that po and P2jt+i are both forbid

den and that for each 0 < z < /:, the edge {p2iyP2i+\) is in H (i.e. invariant 3

is false). Consider three consecutive nodes in the path P2i-2yP2i-iyP2i- If the

weight of p2i-2 is x, then the weight of P2»-i is at least X + 1 —x, since the

edge (p2i-2yP2i-i) is in H. But then the weight of node p2i is at most x -f L

since the edge (p2»-i?P2i) has weight at most X L -hi. Thus, the weight of

the even nodes in the path increases by at most L along the path. Since P2it+i

has weight at most 2L + 1, p2k has weight at least X ~ 2L. Furthermore, since

Po has weight at most 2L + 1, there must be at least

'(X -2L)-(21 + 1)1 ^ n
L ^2

even nodes in the path. Since there are the sctme number of even nodes and
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odd nodes in the path, there are not enough nodes in the graph.

Next we argue that if invariant 1 holds, then invariant 2 must hold as well.

Suppose there is a node v for which invariant 2 does not hold. If there were

a node w adjacent only to v which never received a job, the behavior of the

algorithm (and adversary) would be identical. So if invariant 2 does not hold

for u, then invariant 1 would not hold for the edge (u,w7).

We now prove that invariant 1 holds for each edge in H. We address

two cases:

Case 1: There axe jobs waiting on both w cind v. Let u be a neighbor of

V. If u is picked in round 2, then w is also picked since that path u, u, tv

would be a continuation of an odd length H-path to u. The scime holds

for a neighbor of w. Thus, if neither u or is picked in round 2, neither

is adjacent to a node which has been picked and one of them will be

picked in round 3.

Case 2: There are no jobs on w. (The same argument holds if there are

no jobs on u). Thus, v must have weight at least X I. If u has a

neighbor all of whose jobs have latency less thzin L, then v is adjacent to

a forbidden node and would have been picked in round 2. Furthermore,
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if it is adjacent to only empty nodes, it will be chosen in round 1.

It remains to address the case where v has weight at least A" + 1 and is

adjacent to some node u with a job of latency at least L. Let's say that

Vhas weight X a and u has weight 6. This means that the adversary

heis at least o + 6jobs on (u,u), at le£ist a of which must be on v.

Let b' be the number of jobs that have arrived on node u in the last L —1

time units. We know that the algorithm has all b' of these jobs still on u

since the older latency-at-least-L job is still remaining. Thus, the 6 jobs

which the algorithm has on u include the latency-at-least-L job and the

b' jobs which arrived since, and we can conclude that 6' < 6—1.

If the adversary has the latency-at-least-L job on u, it must pick it in

the next time step in which case a of its jobs will remain on u. If the

adversary does not have the latency-at-le£ist-L job, then it has at most

6' < 6—1 jobs on u. In this case, the adversary has at least a -f-1 jobs

on V and at least a will remain after the current step. •

Theorem 12 The maximum response time of a job is O(n^L^).
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Proof. When ajob j arrives, there are at most n(X-\-L'\-l) other jobs in the

system. We will argue that every Ln +1 time units, there is a time when there

are no forbidden nodes. This implies that every Ln-\-l time units, at least one

job that is older than j gets eliminated. Thus after n(X L + l){Ln 1) =

0(n^L^) time units, j will be scheduled.

A node can be immediately forbidden for at most L consecutive time units

after which it will remain marked and can not be immediately forbidden again

until it is unmarked. Nodes only become unmarked during a time unit in which

there are no immediately forbidden nodes. After Ln consecutive time units in

which there is an immediately forbidden node, all nodes will be marked and

there will be no immediately forbidden nodes. •

We will use a doubling trick to remove the assumption that we know the

maximum optimal latency in advance. We 'guess' L' and start with a guess of

L' = I. Notice that as long as the invariants are maintained, the maximum

latency of a job will be O(L'^n^). If ever the invariant is violated for L\ we

double our guess for L' and continue. Note that when L' doubles, the invariants

are still guaranteed to be maintained. Furthermore, the optimal schedule has

a job with latency which is at least half of the algorithm's current guess.
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3.3 Interval Graphs

We will call a node in the graph and the closed intervai on the real line which

defines the node by the same name. For an interval v, let l{v) be its left

endpoint and r(t;) be its right endpoint. Without loss of generality, we can

assume that for any node, the left endpoint and the right endpoint are distinct.

Consider a point p on the real line. We call the weight of point p to be the sum

of the weights of the nodes whose intervals contain p. We will initially assume

that the algorithm knows that the maximum adversary latency is at most L.

Let X = (21/ + l)n. The adgorithm will maintain the following inveiriant:

If the algorithm has weight + a on p, then the adversary has weight

at least a on p.

Note that since the adversary never has a job with latency more than L, it

never has a point with weight more than L + 1. By the invariant, this means

that the algorithm never has a point with weight more than X + L + 1.

The set of all points of weight X i-j forms a finite set of disjoint intervals

(some closed, some open, some half-open). We will call this set of intervals

Zj. The set of all points of weight at least X 1 form a finite set of disjoint

closed intervals which we will call J. Consider the set of points which are an
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endpoint of an interval in Ij for some 1 < j < L + 1 but not an endpoint of

an interval in J. Such a point must be the endpoint of a node of weight at

most L because the point has weight at most X + L + 1 and the point just to

its left or right has weight at least A" + 1. Let S be the subset of these points

which are an endpoint of a node with a job of latency at least L. Let X' be

the set of all intervals which are in Xj for some j > I and are contiguous with

a point in S. Finally, consider the set of all points which are in some interval

in X but not some interval in X'. When these points are grouped in maximal

contiguous intervals, they form a finite set of disjoint intervals. We will call

this set of intervals J" and will name them from left to right: di, J2j •••>«/m'

Note that some of the intervals may be open or half-open. Since it is more

convenient to talk about closed intervals, we will add endpoints if necessary

to intervals in X to assure that they are all closed. The algorithm will pick an

independent set which covers J. We will then prove that this is suflScient to

maintain the invariant.

Before the end of each time step, we must pick an independent set of

nodes. To do this, we will define a set of forbidden nodes. Once this set has

been determined, we can greedily pick an independent set from the set of non-



Scheduling with ConBicts 35

forbidden nodes. In order to determine the set of forbidden nodes, we require

some definitions. A node is immediately forbidden if it only has jobs of latency

less than L, We mark every node when it becomes immediately forbidden. A

node is said to be eligible if it has jobs and has a non-empty intersection with

an interval in J.

At the beginning ofa given timeunit, if there are no immediately forbidden

nodes, then we unmark all nodes. The set of forbidden nodes in this time unit

is then empty. Otherwise, we initialize the set of forbidden nodes to be all

the marked nodes which have at most one job older than L. We then make

a pass through the graph from right to left considering each interval J, in

reverse order (cis i goes from m to 1). Let J be the current interval under

consideration, and let w be the node with the right-most left endpoint whose

interval includes 1{J) and is not forbidden. Addto the forbidden set all eligible

nodes whose right endpoint is in the interval [/(ii)),/(7)]. (Refer to Figure 4).

Lemma 13 For any point p on the real line, the total weight of forbidden

nodes which intersect p is at most X —{2L -1- l)n.

Proof. We will scan the real line from right to left keeping track of the

maximumweight of forbidden nodes seen so far on any point. Every time the
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Figure 4: The forbidden nodes are shown in solid. The unforbidden node

is shown in a dcLshed line. The interval J must be covered by some node;

Vbecomes forbidden because its right endpoint lies in [/(u;),/(i/)]

maximum weight of forbidden nodes increases, wewill attribute the increase to

the right endpoint of some node. Furthermore, wewillshow that the maximum

weight of forbidden nodes increases at each point by at most 2L + 1.

Now suppose that the maximum weight of forbidden nodes we have seen so

far increases when the right endpoint of a forbidden node v has been reached.

Let the previous maximum be x. If d was added to the forbidden set when it

was initialized, then v has at most one job older than L. Any node can have

at most 2L jobs with latency less than L because if more than 2L jobs arrive

during L consecutive time units, then the adversary latency is more than L.

Thus, Vhas weight at most 2L + 1 and we can attribute the increase caused

by Vto the right endpoint of v.
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Now suppose that v was added because there are no unforbidden nodes

whose left endpoint falls in the interval (7'(v),/(J)] for some interval J ^ J.

Now consider the point just to the right of l(J). We know that at this point,

the weight is at least + 1 and the weight of the forbidden nodes is at most

X. Thus, the weight of the non-forbidden nodes at l(J) is at least X -\-l —x.

Since none of these unforbidden nodes have left endpoints in (r{v),l(J)]^ the

weight of the unforbidden nodes at r(t;) must be at least A + 1 — Since the

weight of r(u) is at most A + X -I-1, the weight of forbidden nodes at r(u) is

at most X L. We can account for the increase from x to x L hy the right

endpoint of u. •

Once the set of forbidden nodes has been determined, we can pick the

independent set as follows. If there are no forbidden nodes in the graph, start

with the node v with the oldest job. Scan right from v and then left from

V, greedily picking the independent set (i.e., whenever the end of the current

node is reached, pick the next node reached). If there axe forbidden nodes then

scan from left to right. Pick the first eligible unforbidden node that is reached.

When the right endpoint of that node is reached, pick the eligible unforbidden

node with the next left endpoint. Continue until the end of the intervals have
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been reached. The fact that the invariant is maintained is implied by the

following two lemmas.

Lemma 14 Letp be any point contained in an interval inV. If the algorithm

has weight at least X a on p at the beginning of the time unit, then the

adversary will have weight a on p at the end of the time unit.

Lemma 15 The independent set chosen by the algorithm covers J.

Proof of Lemma 14. Consider some interval / € X'. / is an interval in Xj

for some j > I which was placed in X' because I is contiguous with a point p

in S. Let Q be the set of all nodes which cover p and do not cover all of I.

Since the interval I has the same weight on every point, the algorithm does

not have any jobs on any node with an endpoint in /. Suppose that the sum

of the weights of all nodes in Q is x and the weight of interval I is y. The

algorithm has weight x-\ry on p. The adversary has at least weight x-\-y —X

on p and at least weight y —X on nodes which cover all of I.

The algorithm has x jobs on nodes in Q, at least one of which has latency

at least L. If the adversary has any latency-X jobs on any node in Q, it must

schedule that job and will continue to have weight y —X on all of I. If the

adversary does not have any latency-X jobs on Q, then it must have weight
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at most a: —1 on Q. This is due to the fact that since the algorithm does not

schedule any jobs of latency less than L, if the adversary has any such jobs,

then the algorithm also has them. Thus, in this case, the adversary has weight

at most a: —1 on (5 which means it must have weight at least t/ —A" +1 on all

of 1. At least y —A of these jobs will remain after the time unit. •

Proof of Lemma 15. Consider any node t; with jobs such that the point

just to the right of r(u) or just to the left of l(v) is in Ji for some J, € J.

Let's say it is the point just to the right of r(i;). If v hcis any jobs, then the

weight at r(u) must be greater than the weight just to the right of r(v). In

this case, r(v) is the endpoint of some interval in Xj for some j > 1 but is not

an endpoint of an interval in J. (Since 1 contains all of J, any point in J is

also in X). If r(u) € 5, then the point just to the right of r(t;) is in X' and is

excluded from J (a contradiction). If r(i;) is not in 5, then all its jobs must

have latency less than L. This means that v is immediately forbidden.

We start with the case where there are no forbidden nodes. When we start

with the node with the oldest job and scan the graph left and right from there,

greedily picking the independent set, we know that there will always be some

node to pick before we hit an interval in J (otherwise there would be a node
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Vsuch that v has jobs and the point just to the right of r(v) or just to the

left of /(v) is in for some Ji € J'). Furthermore, we are guaranteed that if a

node intersects some interval in JT, it will cover the interval (otherwise, again,

by the above argument it would have been immediately forbidden).

If there are forbidden nodes, then by Lemma 13, the left endpoint of the

first unforbidden node is reached before any point of weight A" + 1 is reached

(since the maximum weight offorbidden nodes is at most X). Therefore, there

are no points in to the left of the independent set. Now suppose that there

is a point in J which is not covered by the independent set. Let p be the

left-most such point. Let v be the node in the independent set closest and

to the left of p. If p is not the left endpoint of an interval in J", then by

the argument at the beginning of this proof, v would have been immediately

forbidden. Thus, we canassume that p = 1{J) for some J € J. Theremust be

no eligible unforbidden nodes whose left endpoint falls in the range (r(t;), /(J)],

otherwise they would have been picked in the independent set and l(J) would

have been covered. But in this case, v would have been forbidden. •

Theorem 16 The maximum response time of a job is 0{n^L^).

Proof. The proof is identical to the proof of Theorem 12.
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We will use the same doubling trick used with interval graphs (and de

scribed at the end of the previous section) to remove the assumption that we

know the maximum optimal latency in advance. The trick works for the same

reasons it worked for interval graphs.

During each time step, the complete algorithm is as follows:

Update our guess for L.

• Determine the sets of intervals for 1 < j < ^4 + 1.

Determine the set of points S.

Determine the set of intervals X'.

Determine the set of intervals J.

• Determine the set of forbidden nodes.

t Pick an independent set of nodes and execute a job from each of those

nodes.
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4 Open Problems

Even though the lower bounds for bipartite and interval graphs show that the

invariants maintained by the algorithms, i.e. the number of jobs on a node or

clique in excess of the adversary, are tight to within a constant factor, there is

still quite a gap in the bounds for maximum response time. In particular, is

it possible to obtain a competitive ratio for either bipartite or interval graphs

which is strictly a function of n?

Modeling the problem of scheduling connections on other local area net

work architectures would require the use of more general classes of intersection

graphs (e.g. tree graphs, the intersection graphs of paths in a tree [33]). Is

it possible to obtain bounds on more general classes of intersection graphs?

Alternatively, is there a graph for which there is no competitive algorithm?

Finally, the assumption that the input sequence of job arrivals can be

arbitrarily bad may be somewhat pessimistic. An interesting direction for

future research would be to restrict the power ofthe adversary by allowing only

certain input distributions as proposed by Koutsoupias cind Papadimitriou [24].
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