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ABSTRACT

Dynamically Determined Output Space For SpGEMM Using GPU Virtual Memory

Management

Sparse general matrix-matrix multiplication (SpGEMM) is a costly yet fundamental operation

used across numerous scientific computing domains, such as machine learning, graph algo-

rithms, and computational fluid dynamics. As GPUs are increasingly being used to accelerate

scientific computing applications, optimizing SpGEMM for GPUs is a critical research area.

One of the challenges in implementing SpGEMM on GPUs is determining the size of the out-

put matrix, as the sparsity of the input matrices is not known beforehand. Precisely determining

the size of the output matrix can add to the latency of the SpGEMM kernel, especially for large

graphs.

This work presents an algorithm that dynamically expands the size of the output matrix as

the SpGEMM kernel proceeds with the computation. This technique can improve memory uti-

lization efficiency by avoiding unnecessary memory allocation at a modest performance cost.

However, implementing a dynamic data structure like a vector to store the output matrix using

the default cudaMalloc-based allocator is not memory efficient. This is because it has to allo-

cate more memory than necessary when growing the vector, and there is latency associated with

the cudaMemcpy() calls to copy the data from the old allocation to the new allocation. Hence,

this work also presents a custom virtual memory-based allocator. Virtual memory-based allo-

cations are better for growing allocations because new allocations can be created and mapped

to a contiguous virtual address range with ease.

Our experiments show that the dynamic SpGEMM algorithm proposed in the work gives

70–99% memory efficiency with a modest performance cost when compared to the SpGEMM

algorithm that uses the upper bound method for estimation. The proposed algorithm also con-

sistently better performance for a modest loss in memory efficiency when compared to the

SpGEMM algorithm that uses the precise estimation method. We also demonstrate that our

custom virtual memory-based allocator can improve the memory efficiency and overhead la-

tency of dynamic data structures on GPUs.
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Chapter 1

Introduction

In this thesis, we propose an algorithm that can dynamically determine the output space for

Sparse General Matrix-Matrix Multiplication (SpGEMM). To aid with efficient growing vector

allocation, we also provide a custom virtual memory-based allocator, which is implemented

alongside the library Thrust. The algorithm proposed, when used with virtual memory-based

vector allocation, can provide better memory efficiency than SpGEMM algorithm using the

upper bound estimation method, and faster runtimes than the SpGEMM algorithm using precise

estimation method to determine the size of the output matrix.

1.1 Overview
Sparse General Matrix-Matrix Multiplication (SpGEMM) is an expensive, fundamental primi-

tive that is used in numerous scientific computing domains like machine learning, graph algo-

rithms, etc. Hence, any optimization to the implementation positively impacts a wide range of

applications. With the increasing use of Graphics Processing Units (GPUs) for accelerating sci-

entific computing applications, optimizing for GPU specific scenario is an interesting research

topic. One main issue with using GPUs for such big data applications is the low device memory.

So, the algorithms have to be memory efficient.

The general implementation of SpGEMM has a challenging task of estimating the number

of non-zeros in the output matrix which determines the size of the output matrix. This is because

the sparsity of the input graphs are not known prior to computation. Precisely estimating the size

by iterating through the matrices twice can add to the latency and this only increases with larger
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graphs. The methods that estimate an upper bound of the size leads to unnecessary overhead

of the available memory resource. The overestimation factor for this method is ∼ 1.5 − 20

with worse estimation for sparser matrices. Libraries like cuSPARSE and Intel Math Kernel

precisely allocate the output space by iterating twice while the library CUSP uses the upper

bound method to estimate the number of non-zeros in the output matrix. These approximate

methods that overestimate the size leads to wastage of precious memory resources which can

make or break the application in low memory cases and the ones that precisely calculate the

output space adds to latency by iterating through the matrices twice. Hence, an option is to

dynamically grow the output size of the data structure as the SpGEMM kernel progresses with

the computation and requires more memory.

1.2 The Problem
An ideal algorithm for SpGEMM will have low cost, iterate through the input matrices only

once, and minimizes over-allocation of memory resources. An algorithm that dynamically de-

termines the output space is ideal as it will eliminate the need to iterate through the matrices

twice and help with using the available memory resources wisely.

Implementing a dynamic data structure like vector to store the output matrix using the de-

fault cudaMalloc-based allocator is inefficient. cudaMalloc() has to allocate more memory

than necessary, because, to grow, it has to have enough space for the old allocation and the new

allocation. Additionally, there is also latency associated with the cudaMemcpy() calls to copy

the data from the old allocation to the new allocation during resizing the vector.

Memory efficiency for dynamic data structures can be achieved using virtual memory-based

allocators as they provide better control of memory. Virtual memory-based allocations are better

for growing allocations due to the ease with which new allocations can be created and mapped

to a contiguous virtual address range. Hence, using this custom virtual memory-based data

structure for dynamically determining the output space of an SpGEMM implementation is an

interesting solution for low memory situations.
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1.3 The Approach
To be able to manage virtual memory allocations, we require a system that can be called when

needed. We implement this system as a memory allocator which, at its core, does allocations

and de-allocations based on the principles of virtual memory. This custom virtual memory-

based memory allocator can then be used to allocate and grow the memory as required on the

fly for the SpGEMM algorithm.

The Thrust library is the most commonly used standard template library for dynamic data

structures like vectors in GPUs. An abstraction for virtual memory management that makes

sense for Thrust is a custom memory allocator. This custom memory allocator can be specified

when creating a vector so that the underlying memory allocations are based on virtual memory

management techniques. Since CUDA 10.2, low-level driver APIs are provided for GPU virtual

memory management. Using these APIs, we implement the custom memory allocator which,

when called along with the thrust::device_vector, provides us a custom virtual memory-

based vector. We can use this vector to dynamically grow the output matrix space for the

SpGEMM algorithm.

1.4 Contributions
We implemented the following two main contributions in this work:

1. A custom allocator implemented as an abstraction for virtual memory-based vector that

can be used alongside the Thrust library. This hides the complexities associated with the

memory allocation and de-allocation from the programmer and improves productivity.

2. An SpGEMM algorithm that uses the custom virtual memory-based vector to dynamically

grow the output space on the fly as needed. This algorithm avoids the need to iterate

through the input matrices twice to estimate the size of the output and provides memory

efficiency of 70–99%. This helps relieve the stress on the limited device memory resource

available on the GPU.
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1.5 Benefits
With this thesis, we show that using the custom virtual memory-based allocator can yield the

following benefits.

1. Memory efficiency: When growing, it does not have to create a new larger allocation

along with the old allocation.

2. Performance: It eliminates the latency caused by the cudaMemcpy() calls when the con-

tents of the older allocation have to be copied to the new allocation. In addition, the

wasteful use of bandwidth for the copy is also eliminated.

3. Simplicity: It makes the implementation of algorithms like resize, append, etc. for vector

manipulation simpler, as the complexities associated with creating and copying between

new and old allocation are not present.

4. Ease of use: With the custom allocator, it is easy to add a virtual memory-based system

to any application. Only the definition of the vector has to be changed to specify the use

of the custom virtual memory-based allocator. The functions to manipulate the vector

works the same as the default vector.

Using the benefits shown by the custom virtual memory-based vector, we can implement an

efficient dynamically determined output space for SpGEMM which can eliminate the need for

estimation methods.

1.6 Related Work
SpGEMM is used in a wide variety of domains, including engineering, chemistry, physics,

machine learning, and others. As the data size for these problems increases, there is a growing

need for parallel implementations of SpGEMM.

Some popular parallel implementations of SpGEMM on the GPU include the NVIDIA

CUDA Sparse library (cuSPARSE) [8], CUSP [3] and Intel Math Kernel Library (MKL) [7].

The libraries cuSPARSE and MKL precisely allocate the required memory for the resultant ma-

trix by iterating through the input matrices. CUSP employs the upper bound method to estimate
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the size of the output matrix. J. J. Elliott and C. M. Siefert proposed the Low Thread-count

Gustavson algorithm [5] designed for CPU using OpenMP, which uses dynamic memory allo-

cation. However, current implementations on the GPU do not use dynamic memory allocation

to store the resultant matrix.

This work proposes a method to dynamically determine and allocate space for SpGEMM

and the memory allocations are managed using a custom virtual memory-based allocator to

overcome the disadvantages of using a traditional memory allocator.

1.7 Outline of the Thesis
In Chapter 2, we will cover the background information about the libraries, techniques and

algorithms used throughout the thesis work. Chapter 3 describes the implementation of the

custom virtual memory-based allocator and its application in the dynamically determined output

space for SpGEMM. In Chapter 4, we talk about the methodology used to test the system

developed. In Chapter 5, we discuss the results obtained from the experiments, and conclude

the thesis in Chapter 6. We conclude with remarks on the work done and also talk about possible

future work that can be done to improve on the current implementation.
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Chapter 2

Background

In this chapter, we introduce the foundational material for the work. We start with discussing

SpGEMM and the different challenges with implementing a parallel SpGEMM for GPUs in

Section 2.1. Section 2.2 talks about the general design for a parallel SpGEMM algorithm. We

follow it with sections on why different components in the algorithm are inadequate. Finally,

Section 2.5 discusses the basics on virtual memory and we end with Section 2.6 briefing about

the APIs provided with CUDA to implement GPU virtual memory management.

2.1 Sparse General Matrix-Matrix Multiplication
Sparse General Matrix-Matrix Multiplication (SpGEMM) is an elementary matrix multiplica-

tion operation that is specific to sparse input matrices. SpGEMM is a building block that is

widely used in complex machine learning and data analysis algorithms. The two sparse in-

put matrices are represented using formats like Compressed Sparse Row (CSR) or Compressed

Sparse Column (CSC).

2.1.1 Challenges with Parallel SpGEMM Implementation

There are three main challenges that arise with the parallel implementation of SpGEMM [6].

• The first challenge is the estimation of size of the output matrix due to the unknown

sparsity of the input matrices. This estimation is crucial as it dominates the memory

resource overhead with larger matrices.
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• The second challenge is load balancing of the multiplication among the threads of the

GPU. A proper balancing of the work is important for efficient use of the computational

resources available in the GPU.

• The third challenge is accumulating the result properly in the output space. Due to the

unknown sparsity, it is a difficult task to identify which element of the output space the

computational unit should accumulate the result on.

This work addresses the first challenge with an algorithm that can dynamically determine

the output space.

2.2 Parallel Implementation of SpGEMM
There are many parallel SpGEMM implementations available. Some of the popular implemen-

tations are in GPU libraries like NVIDIA CUDA Sparse Library (cuSPARSE), CUSP, etc. For

our baseline implementation, we use the parallel SpGEMM provided with Gunrock, an open-

source graph-processing library designed for the GPU using CUDA.

The general parallel implementation of SpGEMM as provided by Gunrock [9, 11] is shown

in Listing 2.1. The first input matrix is represented using the Compressed Sparse Row (CSR)

format, while the second input matrix is represented using the Compressed Sparse Column

(CSC) format. This is because to compute an element in the output matrix, we have to tra-

verse along the row of the first matrix and the column of the second matrix. This can be done

optimally when they are in CSR and CSC formats respectively.

1 auto naive_spgemm = [=] __host__ __device__(vertex_t const& row)
-> bool {

2 // Get the number of non-zeros in row of sparse-matrix A.
3 auto a_offset = A.get_starting_edge(row);
4 auto a_nnz = A.get_number_of_neighbors(row);
5 auto c_offset = thread::load(&row_off[row]);
6 auto n = 0;
7 bool increment = false;
8

9 // Iterate over the columns of B.
10 for (edge_t b_col = 0; b_col < B.get_number_of_vertices(); ++

b_col) {
11 // Get the number of non-zeros in column of sparse-matrix B.
12 auto b_offset = B.get_starting_edge(b_col);
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13 auto b_nnz = B.get_number_of_neighbors(b_col);
14 auto b_nz_idx = b_offset;
15 auto a_nz_idx = a_offset;
16

17 // For the row in A, multiple with corresponding element in B
.

18 while ((a_nz_idx < (a_offset + a_nnz)) &&
19 (b_nz_idx < (b_offset + b_nnz))) {
20 auto a_col = A.get_destination_vertex(a_nz_idx);
21 auto b_row = B.get_source_vertex(b_nz_idx);
22

23 // Multiply if the column of A equals row of B.
24 if (a_col == b_row) {
25 auto a_nz = A.get_edge_weight(a_nz_idx);
26 auto b_nz = B.get_edge_weight(b_nz_idx);
27

28 // Calculate C’s nonzero index.
29 std::size_t c_nz_idx = c_offset + n;
30 assert(c_nz_idx < estimated_nzs);
31

32 // Assign column index.
33 thread::store(&col_ind[c_nz_idx], b_col);
34

35 // Accumulate the nonzero value.
36 nz_vals[c_nz_idx] += a_nz * b_nz;
37

38 a_nz_idx++;
39 b_nz_idx++;
40

41 increment = true;
42 } else if (a_col < b_row)
43 a_nz_idx++;
44 else
45 b_nz_idx++;
46 }
47 // A non zero element was stored in C, so we increment n.
48 if (increment) {
49 n++;
50 increment = false;
51 }
52 }
53 return false;
54 };

Listing 2.1: Parallel Implementation of SpGEMM

Each row of the output matrix is computed by a thread in parallel on the GPU. So, each

thread iterates through a row of the first input matrix and computes a dot product with the

corresponding column of the second input matrix. This is repeated until the row has computed

a dot product with every column in the second matrix. This simplifies load balancing of the
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algorithm and the accumulation of the result in the output space allocated.

As mentioned earlier, the output space of SpGEMM computation is difficult to estimate due

to the unknown sparseness of the input matrices. The precise method to estimate the size of

the output matrix is done by iterating through the input matrices once before computation. The

implementations of SpGEMM in cuSPARSE, Intel Math Kernel Library (MKL), etc. employ

this method.

Another common method to estimate the size is the upper bound method as shown in List-

ing 2.2. This method estimates the upper bound of the number of non-zeros in each row of the

output matrix. CUSP [3], a C++ template library for sparse linear algebra and graph computa-

tions on CUDA, applies the upper bound method to obtain the size of the result matrix.

In the upper bound method, for each non-zero in the row of the first matrix, the number of

non-zeros present in the corresponding row of the second matrix is computed and added to the

estimate. This is implemented in parallel for the GPU with each thread working on a non-zero

value from the first matrix. We need to use an atomic add operation as the threads working on

non zeros from the same row can compute an addition to the same vector location storing the

estimate for the respective row. We can observe from the tests performed on different datasets

as shown in Section 5.2 that it overestimates the size of the result matrix by a factor of 7.018.

This was obtained by taking the geometric mean of the overestimation factor observed across

the different datasets. The amount of overestimation varies depending on the sparsity of the

input matrices.

1 auto upperbound_nonzeros = [=] __host__ __device__
2 (vertex_t const& m, // ... source (row index)
3 vertex_t const& k, // neighbor (column index)
4 edge_t const& nz_idx, // edge (row -> column)
5 weight_t const& nz // weight (nonzero).
6 ) -> bool {
7 // Compute number of nonzeros of the sparse-matrix C for each

row.
8 math::atomic::add(&(estimated_nz_ptr[m]),
9 B_csr.get_number_of_neighbors(k));

10 return false;
11 };

Listing 2.2: Estimation of the upperbound of non-zeros per row of the output matrix

The output sparse matrix is stored using the CSR format. So, the row offsets are calculated
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using the estimation we obtain from Listing 2.2. This is used in the SpGEMM kernel to aid

with the accumulation of the intermediate results after computation. The non-zero values and

the column indices vectors are also allocated based on the size we obtain using the estimation

method.

Looking at the algorithm implementation we discussed, there is a need for memory alloca-

tions on the GPU for keeping track of different components of the result matrix. The memory

allocations for data structures like vectors to be used in the algorithms on the GPU are generally

done using the Thrust library. We will discuss what Thrust has to offer in the following sections.

2.3 Thrust
The C++ Standard Template Library (STL) is implemented for the GPU using CUDA for paral-

lel algorithms in the Thrust Library [1]. It is a header-only library, which means that in order to

be used, it does not need to be compiled or installed. It has a high-level interface that improves

the developer productivity by making it easier to write parallel code for GPUs. The library is

scalable and can be used to develop and accelerate high-performance applications with CUDA

alongside C++. Due to its ease of use, it hastens the time taken to prototype and develop parallel

algorithms.

A vast range of parallel algorithms like sort, scan, reduce, etc. are provided with Thrust.

It also provides vector containers for ease of manipulation of data, both on the CPU and GPU

memory.

2.3.1 Vectors

There are two vector containers in the Thrust Library, thrust::host_vector and thrust::

device_vector. thrust::host_vector is used to store data in the host or CPU memory, while

the thrust::device_vector is used to store data in the device or GPU memory. They are

implemented to resemble the C++ STL’s std::vector container. Hence, they also have features

like insert, erase, resize, etc., and can be expanded and contracted dynamically. One important

feature that vector provides is the ability to specify memory allocators. Listing 2.3 shows the

example usage of the vector containers thrust::host_vector and thrust::device_vector

of the Thrust library. As mentioned earlier, since Thrust is a header-only library we include
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thrust/device_vector.h and thrust/host_vector.h to use the respective vectors.

1 // include for Thrust host and device vector
2 #include <thrust/device_vector.h>
3 #include <thrust/host_vector.h>
4

5 size_t vector_size = 10;
6 // creates a device vector of given size and fills with value
7 thrust::device_vector<int> vector_d(vector_size, 15);
8 // reserves capacity of given size
9 vector_d.reserve(2 * vector_size);

10 // inserts the given number of elements at position and fills
with value

11 vector_d.insert(vector_d.begin(), vector_size, 0);
12

13 // creates a host vector
14 thrust::host_vector<int> vector_h;
15 // push back the given value
16 vector_h.push_back(10);
17 // resize to the given size
18 vector_h.resize(2 * vector_size);
19 // assign values using the operator []
20 vector_h[1] = 1;
21 vector_h[2] = 2;
22 vector_h[3] = 3;

Listing 2.3: Example usage of host_vector and device_vector

The allocation of memory that happens behind the scenes in the vector is managed using

memory allocators. Let us look into memory allocators and the different ones provided by

Thrust.

2.4 Memory Allocators
The memory allocator is a fundamental part of a library that is used to allocate and de-allocate

memory for data structures or containers, such as vector, list, set, map, etc. They keep track of

which memory is allocated and by whom, and free memory that is no longer necessary. They

are used when dynamic memory allocation is required. This helps to hide the complexity of the

memory management model from the programmers.

There are many types of memory allocators available, each with its own advantages and

disadvantages. There is a default allocator for general-purpose applications, but there are other

specific memory allocators available as well. There is also the option for the programmer to

implement custom memory allocators. The choice of memory allocator can have a significant
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impact on the performance of a program. Some memory allocators are designed for speed and

not necessarily for memory efficiency. So, one must be careful when choosing an appropriate

memory allocator based on the specific needs of the application in consideration.

Thrust provides three different allocators based on different memory resources. They are

the default allocator, universal allocator, and pinned allocator. We will go into detail about each

of the allocators in the following subsections.

2.4.1 Default Allocator

The default allocator is the simplest allocator and is suitable for most applications. It uses

the system’s default memory allocation routines. It uses the functions, cudaMalloc() and

cudaFree(), to allocate and de-allocate memory on the device. This is the default memory

resource for the system and it wraps the allocation with the cuda::pointer type.

The default allocator is a good choice for most applications. It is simple to use and provides

good performance. However, for applications that requires frequent efficient transfer of data

between host and device, the universal or pinned allocators may be a better choice.

2.4.2 Universal Allocator

The universal allocator is more sophisticated than the default allocator and can be used to allo-

cate memory from different sources, including the host memory and the device memory. This

uses the universal memory resource which can be accessed both from the host and the de-

vice. The function cudaMallocManaged() is used for allocation and cudaFree() is used for

de-allocation, similar to the default memory allocator. It wraps the allocation using cuda::

universal_pointer.

2.4.3 Pinned Allocator

The pinned allocator is designed for applications that require a staging area between the host

and the device for exchange of data. The memory allocated by this allocator is page-locked to

the host. This ensures that the device can always read this memory with higher bandwidth

when compared to other types of allocations. To allocate and de-allocate the host pinned

memory resource, it uses the functions, cudaMallocHost() and the cudaFreeHost(). Sim-

ilar to the universal allocator, the pinned allocator also wraps its allocation using the cuda::
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universal_pointer type.

2.4.4 Disadvantages of Traditional Allocators

The memory allocators such as default allocator, universal allocator, and pinned allocator use

traditional allocators for their memory allocations.

As mentioned earlier, vector containers with memory allocators are used to implement dy-

namic data structures. When expanding a vector, if contiguous virtual memory address space is

not available immediately after the current allocation, then the vector has to take the long route.

It has to create a new allocation with the larger size and then copy the contents of the vector

from the older allocation using cudaMemcpy(). Once the copy is complete, the older allocation

is freed. This leads to two issues:

1. The need for extra space when resizing. The old allocation is kept to hold the data in

the vector, even though it is no longer being used. This leads to inefficient use of the GPU

memory.

2. The extra time spent to copy the data from the old allocation to the new allocation.

cudaMemcpy() calls are not cheap, and the time taken to copy increases with the increase

in size of the vector.

The custom virtual memory-based allocation proposed in the thesis overcomes both of the

issues mentioned. We will look into implementing it for GPUs in the next sections.

2.5 Virtual Memory
Virtual memory is a memory management technique that provides the illusion of a large, con-

tiguous storage to the programmer. The operating system, using a combination of hardware and

software resources, maps fragmented chunks of physical memory with physical addresses to a

contiguous virtual memory address space.

When the allocation has to be expanded, the operating system will allocate the required

physical memory and map it to a virtual memory address range of the appropriate size. The

physical memory can be fragmented but will appear contiguous in the virtual address space.

13



It is especially useful for applications that need to allocate large amounts of memory, such as

scientific simulations and graph algorithms.

Using a custom virtual memory management as the underlying virtual allocation system for

Thrust vectors can be advantageous and help overcome the inadequacies shown by the standard

memory allocators. It allows the vector to expand by reserving larger virtual address ranges.

When the vector is expanded, the new allocation is simply mapped to the old allocation. This

avoids the need to copy the data and also avoids the need to keep the old allocation.

So, it is clear that the custom virtual memory-based allocation is more efficient than tradi-

tional allocation. Now, let us look at how to create such allocations on the GPU.

2.6 GPU Virtual Memory Management APIs
Custom virtual memory-based allocation can be done on the GPU using four low-level driver

functions [10], which were introduced since CUDA 10.2, as shown in Figure 2.1.

Virtual Memory

Allocated virtual address range

Allocated physical chunk

Free

Virtual Memory

cuMemAddressReserve()

cuMemCreate()

cuMemMap()

Figure 2.1: GPU Virtual Memory Management APIs.

cuMemAddressReserve() reserves a contiguous virtual memory address range as required.

cuMemCreate() is used to allocate physical memory of the required size. It returns a physical
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memory handle which is mapped to the reserved virtual address space using cuMemMap(). The

device can access the allocation after cuMemSetAccess() is used to set the appropriate memory

access rights.

To de-allocate, we are provided with a similar set of CUDA driver APIs. cuMemUnmap()

unmaps the physical memory backing the allocated virtual address range. cuMemRelease()

releases the physical memory handle that was created, and cuMemAddressFree() frees the

reserved virtual address range.

We can implement a custom virtual memory-based memory allocator using the above pre-

sented virtual memory management APIs, which is a part of the work done for the thesis.
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Chapter 3

System Design

This chapter presents a high-level system design of the two contributions of this work: the

custom virtual memory-based vector and an algorithm to dynamically determine the output

space for SpGEMM.

3.1 Custom Virtual Memory-Based Vector
Dynamic data structures like vectors that use traditional memory allocation methods are inade-

quate as we have mentioned earlier. So, our goal is to implement a custom virtual memory-based

vector to be able to efficiently allocate more memory and grow. The three different components

of this system are as follows.

1. A custom virtual memory-based memory allocator: The vector, at its core, must have

memory allocations based on the concept of virtual memory.

2. Functionalities of the vector: The different methods in the vector container must be

updated to take advantage of the benefits of using the custom virtual memory-based allo-

cations.

3. Interfacing with the vector: Using the vector must be simple and intuitive. To achieve

this, we integrate the system with a commonly used C++ standard template library for

GPUs called Thrust.
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3.1.1 Custom Virtual Memory-Based Memory Allocator

A standard memory allocator manages the allocation, de-allocation and keeps track of the state

of the allocation. The basic idea of allocating more memory in this case is to be able to create

new physical memory and map it to a virtual address range that is of the appropriate size. There

are two basic cases that must be covered by the allocator.

1. Initial allocation: This is when the allocation is created for the first time or when it is

resized from zero to a non-zero size.

2. Growing allocation: This is when the allocation grows from a non-zero size to a larger

size.

As shown in Figure 3.1, the process for allocating memory for the first case, if the size

requested is less than the current capacity of the allocation is as follows. Since this is based on

virtual memory, we have a few steps to follow to complete the allocation.

1. Virtual address range reservation: A contiguous address range in the virtual memory

is reserved for the requested size. This is the address space that the user will interact with.

2. Create physical memory allocation: A physical memory region of the requested size

has to be created. Physical memory allocations can be fragmented, and the user does not

need to be aware of this.

3. Mapping the physical memory allocation to the virtual address range: The physical

memory allocated in step 2 is mapped to the contiguous virtual address range reserved in

step 1. This creates the illusion of a contiguous address space for the user to work with.

Figure 3.2 shows an example of this mapping.

Once the allocation is complete, we update the pointer to the start of the memory and the

size of the allocation. These values denote the state of the allocation.

In the second case, there are two possible paths that the procedure can take, as shown in

Figure 3.3. The ideal case is that there is enough space at the end of the current virtual address

reservation to accommodate the growing allocation, which is shown by the path on the left.
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Allocation Request

Requested Size
> Capacity?

Reserve virtual
address range for
the requested size

True

Return the allocation

False

Create a physical
memory for 

requested size

Map the physical
memory to the virtual

address range

Update the size, start
pointer, etc. (state)

Figure 3.1: Basic allocation

If this is the case, we can reserve the required space at the end of the current allocation by

requesting it. The larger virtual address reservation is returned, and it is then mapped to the

physical memory that was created for the appropriate size. This is shown in Figure 3.4.

If there is not enough space at the end of the current virtual address reservation, as shown

by Figure 3.5, we have to take the longer route depicted by the path on the right of the flowchart

in Figure 3.3. First, we have to unmap all of the current mappings. Then, we have to release
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Virtual Memory

Allocated virtual address range

Physical Memory

Mapping

Allocated physical memory

Start
pointer

Requested size

Figure 3.2: Memory mapping for a basic allocation

the existing virtual address range so that it can be used by another process. Next, we restart the

allocation by requesting a new virtual address range of the larger size, as shown by Figure 3.6.

This time, we should be able to get a contiguous virtual address range if there is enough memory

available in the device. One thing to note here is that the start address is different for this

allocation. Therefore, we need to update the start pointer of the allocation along with the size.

Finally, we remap the physical allocations to the new virtual address range and return the new,

larger virtual address range.

As seen in this subsection, to implement a custom memory allocator based on virtual mem-

ory, we need fine-grained control of the memory. The GPU virtual memory management APIs

provided by CUDA, described in Section 2.6, helps us achieve this.

3.1.2 Adding to Thrust

As mentioned earlier in Section 2.3, the library Thrust is commonly used for dynamic data

structures on the GPU Therefore, adding this functionality to Thrust can be beneficial to many

programmers who are interested in using the system. To integrate the allocator to Thrust, we im-

plement a class called thrust::mr::virtual_memory_resource_allocator which includes

all the methods to provide virtual memory-based allocations. Appendix A.1 gives a detailed

look into how this was implemented in Thrust.

For ease of use, we added the custom virtual memory-based allocator to the namespace

thrust. So, it can now be called as thrust::virtual_allocator<T>. This ensures that
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Virtual Address
Reservation Request

Can be
reserved

at the end
of current
allocation?

True False

Update the size
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Undo mappings
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range

Release the current
address range

Request new virtual
address range of total

size

Update the new start
pointer (state)

Remap old physical
allocation to the new
virtual address range

Figure 3.3: Virtual address reservation for a growing allocation

the user does not have to interact with the underlying memory management details mentioned

in the previous section. This allocator uses the CUDA device memory, which is denoted
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Virtual Memory

Virtual Memory

Mapping

Start
pointer

New requested size

Newly allocated
virtual address range

Requested start
pointer

Newly allocated
virtual memory

Figure 3.4: New virtual address reservation at the end of the current reservation

Virtual Memory

Start
pointer

New requested size

Size to grow by

Requested start
pointer

Figure 3.5: Failed virtual address reservation at the requested start address

Virtual Memory

Newly allocated virtual address range

Virtual Memory

Mappings

New start
pointer

New requested size

Newly allocated
virtual memory

Figure 3.6: New virtual address reservation for the requested size

with thrust::system::cuda::memory_resource. The definition of the custom allocator,

virtual_allocator, is shown in Listing 3.1.
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1 namespace thrust
2 {
3 template<typename T>
4 using virtual_allocator = thrust::mr::

virtual_memory_resource_allocator<
5 T, thrust::system::cuda::memory_resource
6 >;
7 }

Listing 3.1: The definition of virtual_allocator for the thrust namespace

3.1.3 Functionalities of the Vector

Now that our custom allocator, virtual_allocator, is added to Thrust, we need to look into

using it for the vector container. The vector container has functions to create and manipulate

the vector, such as copy, reserve, resize, insert, fill, erase, etc. The methods used to manipulate

the vector are written for a cudaMalloc-based allocation, which is the default. Therefore, some

changes have to be made to such methods in order to observe the benefits of using the custom

virtual memory-based allocator.

The functions like reserve, resize, append, insert, push back, etc. in the vector container

lead to growing allocations in the device memory. First, let us look at how growing allocations

are handled in the default functions given by Thrust. Algorithm 1 describes the procedure to

reserve more memory for the default vector. The following steps are followed:

1. A new storage with the new capacity requested is constructed.

2. The contents of the current storage are copied to the new storage.

3. The destructor is called on the current storage.

4. The new storage is swapped with the current storage.

This is done because the underlying memory allocation has to be contiguous for the default

vector. With virtual memory-based allocations, this is not a necessity, as we can reserve a

contiguous virtual address range and map the old allocations to it. Algorithm 2 shows how the

reserve is implemented for a custom virtual memory-based vector. It can be observed that the

difference between the current capacity and new capacity is calculated and this difference is

22



Algorithm 1 The function reserve() in the default vector
1: Input: n, new size to be reserved
2: Output: storage, an allocation of size n
3: if n > capacity() then
4: new capacity ← n
5: construct new storage(new capacity)
6: copy storage to new storage
7: storage.destroy()
8: storage← new storage
9: end if

allocated. At its core, as we saw in the previous section, a new physical memory is allocated

for the difference, and a contiguous virtual address range is reserved and they are mapped.

Algorithm 2 The function reserve() in the custom virtual memory-based vector
1: Input: n, new size to be reserved
2: Output: storage, an allocation of size n
3: if n > capacity() then
4: new capacity ← n
5: size← new capacity − capacity()
6: storage.allocate(size)
7: end if

Similar changes are made to functions like insert, append, etc. as well. A detailed look at

these functions are available in Appendix A.2.

3.1.4 Interfacing with the Vector

Thrust provides the functionality to mention memory allocators along with the vector container

when creating them. The Listing 3.2 shows how the vector container can be used along with

the custom virtual memory-based allocator, virtual_allocator. The only difference with the

usage of a custom allocator is when declaring the vector. We need to mention the required

allocator along with the data type for the vector. The use of the vector is the same as using

with the default allocator as shown in Section 2.3.1. So, it is simple to add the custom virtual

memory-based system to any application on the GPU that depends on Thrust vectors.

1 size_t vector_size = 10;
2 // creates a vector using the virtual_allocator of given size and

fills with value
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3 thrust::device_vector<int,thrust::virtual_allocator<int>>
vector_d(vector_size, 15);

4 // reserves capacity of given size
5 vector_d.reserve(2 * vector_size);
6 // inserts the given number of elements at position and fills

with value
7 vector_d.insert(vector_d.begin(), vector_size, 0);

Listing 3.2: Example usage of device_vector along with virtual_allocator

3.2 Dynamic Output Space Allocation for SpGEMM
The main idea behind the algorithm is to add more space to store the results as needed by the

kernel as it progresses with the computation. The Algorithm 3 shows the implementation of the

dynamic output space allocation for SpGEMM.

Algorithm 3 Dynamic Output Space Allocation for SpGEMM
1: Input: A, input graph
2: Input: num of vertices, number of vertices in the input graph
3: Input: size per row, size to be allocated per row for a kernel iteration
4: Input: active row, vector to store if a row has completed computation
5: Output: nz vals, vector to store the non-zero values of the output matrix
6: Output: col ind, vector to store the column indices of the output matrix
7: Output: row off, vector to store the row offsets of the output matrix
8: num active row← num of vertices
9: repeat

10: size← size per row x num active row
11: nz vals.resize(size)
12: col ind.resize(size)
13: nz vals ptr← nz vals.data().get()
14: col ind ptr← col ind.data().get()
15: thrust::exclusive scan(row off.begin(), row off.end(), size per row)
16: spgemm kernel(A, active row, nz vals ptr, col ind ptr, row off ptr)
17: num active row← thrust::count(active row.begin(), active row.end(), 1)
18: until num active row == 0

To start, a given size, size per row, in terms of the number of elements in the output vector

is allocated for each row of the output matrix and the kernel is launched. The threads perform

the computation, filling the allocated space for each row, and exit when the space is exhausted.

The threads also mark if the computation for the given row is completed or not using a vector,

active row. After the first kernel call, the host computes the number of rows that have not
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completed computation due to insufficient memory and allocates more space for them. The

kernel is then launched again. This is done in a loop until all the rows in the resultant matrix

have been computed.

The output is stored using the Compressed Sparse Row (CSR) format. So, we require three

vectors to store the non-zeros, the column indices and the row offsets, nz vals, col ind and

row off, of the output sparse matrix. We have to resize both the nz vals and col ind vectors

before every kernel iteration. After resizing, we need to make sure to update the pointer to the

vector as it may change, as we have seen from Section 3.1. To calculate the row off vector of the

output sparse matrix, we use the exclusive scan functionality provided with the library Thrust.
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Chapter 4

Experimental Setup

This chapter provides a brief description about the experimental setup, the datasets used to eval-

uate the performance of the implementation, and the parameters used to compare the different

algorithms.

4.1 Experiment
We compared the performance of the dynamic SpGEMM algorithm described in Section 3.2

against SpGEMM that uses the two different estimation methods, namely, the upper bound

estimation method and the precise estimation method. The performance metrics we focus on

are the end-to-end time elapsed for the algorithms and the memory efficiency of the estimation

techniques.

For the dynamic SpGEMM algorithm, we test eight different sizes with which the output

space grows for each kernel iteration. These sizes are denoted by size per row in Section 3.2.

The sizes used in the tests are 8, 16, 32, 48, 64, 96, 128 and 256 elements in the output vector

for each row. We also compared the dynamic SpGEMM algorithm which uses the default non-

virtual memory-based vector against one using the custom virtual memory-based vector. This

is done to observe if the custom virtual memory-based vector provides any benefit with the

growing allocations.

The tests were done on the NVIDIA GV100 GPU with multiple square matrices, which are

introduced in Section 4.2. A test entails multiplying the square matrices with itself. For each

test, 50 runs of the algorithm were performed. The first 25 runs are excluded to ensure a stable

26



environment with respect to the cache, power, and temperature of the device. The last 25 runs

were averaged to obtain the runtime. This was done because we observed that the variations in

the runtimes reduced as the number of runs increased. The runtimes are measured using CUDA

Events. The following chapter will tabulate and discuss the results in detail.

4.2 Datasets
SpGEMM is used to solve a variety of problems in areas such as chemistry, physics, engineer-

ing, machine learning and healthcare. To test the implemented algorithm, we chose datasets

from these different domains. We chose graphs that are uniformly degree distributed because

the SpGEMM implementation is not load balanced. This is sufficient to showcase the technique

this work proposes, as we only focus on the memory allocation for the output matrix and not

on the actual computation of the SpGEMM. The extension for this work using a load balanced

SpGEMM is discussed in Chapter 6. The datasets were obtained from the publicly available

SuiteSparse Matrix Collection [4], which hosts sparse matrices from different domains for the

development and testing of sparse algorithms. The description and the size of the datasets used

are given in Table 4.1.

Table 4.1: The description of the datasets

Dataset
Number of

rows

Number of

columns

Number of

non-zeros
Description

atmosmodl 1,489,752 1,489,752 10,319,760 Atmospheric modeling

pwtk 217,918 217,918 11,524,432 Structural engineering

af shell10 1,508,065 1,508,065 52,259,885 Sheet metal forming problem

cage14 1,505,785 1,505,785 27,130,349 DNA electrophoresis model

nv2 1,453,908 1,453,908 37,475,646 Semiconductor device simulation

Hook 1498 1,498,023 1,498,023 59,374,451 3D mechanical problem

BenElechi1 245,874 245,874 13,150,496 2D/3D problem

atmosmodm 1,489,752 1,489,752 10,319,760 Atmospheric modeling

Geo 1438 1,437,960 1,437,960 60,236,322 geomechanical problem
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af 3 k101 503,625 503,625 17,550,675 Sheet metal forming problem

Hardesty1 938,905 938,905 12,143,314 Surface fitting problem

Serena 1,391,349 1,391,349 64,131,971 Structural problem

boneS10 914,898 914,898 40,878,708 Model reduction problem

Emilia 923 923,136 923,136 40,373,538 geomechanical problem

dgreen 1,200,611 1,200,611 26,606,169 Semiconductor device simulation

ss 1,652,680 1,652,680 34,753,577 Semiconductor process simulation

Fault 639 638,802 638,802 27,245,944 Structural problem

Transport 1,602,111 1,602,111 23,487,281 Structural problem

nlpkkt80 1,062,400 1,062,400 28,192,672 Optimization problem

cage15 5,154,859 5,154,859 99,199,551 DNA electrophoresis model
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Chapter 5

Results

This chapter contains the results obtained by conducting the experimental setup described in

Chapter 4. Section 5.1 shows the results obtained and draws a comparison between the dif-

ferent algorithms. It also provides insights into why and where using the dynamic SpGEMM

algorithm and the custom virtual memory-based vector implemented by this work can be use-

ful. Section 5.2 discusses interesting questions regarding the dynamic SpGEMM algorithm

and Section 5.3 concludes the chapter with the limitations in the current implementation of the

algorithm.

5.1 Performance of the SpGEMM Algorithms
In general, we observe from the results obtained that the dynamic SpGEMM algorithm provides

memory efficiency of 70–99%, which is consistently better when compared to the SpGEMM

algorithm that uses the upper bound method for estimation, with a modest performance cost.

For 17 out of the 20 datasets, it also provides solutions with memory efficiencies between 70

and 99% for faster runtimes tested when compared to the SpGEMM algorithm that uses the

precise method for estimation. Although we observed runtime being larger by ∼8% for the 3

datasets, there were other solutions on the graph that provided decent memory efficiency for

faster runtimes.

We constructed graphs for each of the datasets used for testing, with the time in seconds on

the x-axis and the memory efficiency of the algorithms on the y-axis. The memory efficiency is

computed by dividing the size of the ideal vector, which is the total number of non-zeros in the
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output matrix, by the estimated vector size for the different algorithms under test. In the graph,

the optimal solution in terms of memory efficiency will be on the topmost part of the graph, and

the optimal solution for faster runtimes will be on the leftmost part of the graph. A point in the

top leftmost part of the graph would be an optimal solution for a good tradeoff between the two

parameters.

Figure 5.1 shows the graphs for the 20 different datasets tabulated in Section 4.2. In the

graphs, the red square represents the SpGEMM algorithm that uses the upper bound method for

estimation, the green triangle represents the SpGEMM algorithm that uses the precise estima-

tion method, and the blue pentagons are the dynamic SpGEMM algorithm implemented in this

work for different sizes, as mentioned in Chapter 4.

The smaller datasets like pwtk (5.1b), af shell10 (5.1c), af 3 k101 (5.1g), atmosmodm

(5.1h), Transport (5.1i), atmosmodl (5.1n), Hardesty1 (5.1p), nlpkkt80 (5.1q), ss (5.1s), and

BenElechi1 (5.1t) have similar graphs. The dynamic SpGEMM algorithm performs best in

terms of memory efficiency with the smallest size per row of 8. It also achieves higher memory

efficiency than the SpGEMM that uses the upper bound estimation method with the same run-

times for optimal solutions for size per row values varying between 32 and 256 for the different

datasets. For the datasets, atmosmodm and atmosmodl, the efficiency gets worse for larger val-

ues of size per row because of their high sparsity. Most of the rows in the resultant matrix has

less than 32 elements leading to overallocation for size per row values greater than 32.

For the larger datasets like Fault 639 (5.1a), cage14 (5.1d), nv2 (5.1e), Hook 1498 (5.1f),

boneS10 (5.1j), cage15 (5.1k), dgreen (5.1l), Emilia 923 (5.1m), Geo 1438 (5.1o), and Serena

(5.1r), the smaller size per row values perform better than the larger size per row values in

terms of memory efficiency and runtimes.

We can observe from the graphs that the SpGEMM algorithm that uses the precise method

to estimate the size of the output space has the ideal memory efficiency, but is slower compared

to the others due to the need to iterate through the input matrices twice. Table 5.1 shows the

time taken for estimation and the total runtime for the SpGEMM algorithm with the precise

estimation method. It can be observed that the estimation takes more than 50% of the total

runtime with a geometric mean of 61.46% for the different datasets leading to longer runtimes.
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(a) Fault 639 (b) pwtk

(c) af shell10 (d) cage14

(e) nv2 (f) Hook 1498
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(g) af 3 k101 (h) atmosmodm

(i) Transport (j) boneS10

(k) cage15 (l) dgreen
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(m) Emilia 923 (n) atmosmodl

(o) Geo 1438 (p) Hardesty1

(q) nlpkkt80 (r) Serena
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Table 5.1: The estimation time compared to the total runtime for the SpGEMM algorithm using
the precise estimation method for the datasets

Dataset Estimation Time (ms) Total Runtime (ms) Percentage of Total Runtime

pwtk 225728 449094 50.26

atmosmodl 45445.2 96971.5 46.86

cage14 2413180 2600780 92.79

af shell10 7333460 14171800 51.75

nv2 12387200 18745500 66.08

Hook 1498 8452150 10437300 80.98

af 3 k101 697222 1378340 50.58

atmosmodm 46424.2 97763.6 47.49

BenElechi1 306939 575953 53.29

boneS10 5131020 8181740 62.71

dgreen 6525400 8042480 81.14

Emilia 923 3658290 6549040 55.86

Fault 639 1830820 3130430 58.48

Geo 1438 8646480 15593000 55.45

Hardesty1 38607.7 76762 50.30

Serena 9043490 12956000 69.80

Transport 314604 451029 69.75

ss 5983500 7867570 76.05

nlpkkt80 3865260 5333560 72.47

Geometric Mean (Percentage of Total Runtime) 61.46
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Figure 5.1: Memory efficiency and the runtime plotted for the algorithms for different datasets

The SpGEMM algorithm that uses the upper bound method for estimation is mostly the

fastest, but has worse memory efficiency. Table 5.2 shows the overestimation factor for the

upper bound method for the datasets. The upper bound method overestimates by an average

factor of 7.018, which we determined by taking the geometric mean for the different datasets.

This overestimation of the resultant matrix size leads to low memory efficiency and can be

a significant problem in low memory scenarios. For example, for the datasets Hook 1498,

boneS10, Geo 1438, and Serena, shown in Figures 5.1f, 5.1j, 5.1o, and 5.1r, it does not complete

the run due to an out-of-memory error. From the Table 5.2, we can observe that the upper bound

method overestimated the output matrix by a factor of 8.863, 16.741, 10.207, and 9.854, for

the datasets Hook 1498, boneS10, Geo 1438, and Serena respectively, which led to the GPU

running out of memory.

The dynamic SpGEMM takes the middle ground by providing solutions that have between

70 and 99% memory efficiency, with runtimes closer to the SpGEMM algorithm with the upper

bound estimation. This shows that the dynamic SpGEMM algorithm is a good candidate for

low memory cases.

5.2 Discussion
In this section, we discuss the answers to some interesting questions regarding the dynamic

SpGEMM algorithm.
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Table 5.2: Overestimation for the datasets for the upper bound estimation method.

Dataset Actual Estimation Overestimation Factor

pwtk 32,772,236 626,054,402 19.103

atmosmodl 36,486,008 71,590,768 1.962

cage14 236,999,813 532,205,737 2.246

af shell10 142,742,975 1,840,916,875 12.897

nv2 310,543,360 2,034,624,478 6.552

Hook 1498 312,415,749 2,768,898,411 8.863

af 3 k101 47,472,025 612,413,375 12.901

atmosmodm 36,486,008 71,590,768 1.962

BenElechi1 36,261,344 705,555,870 19.458

boneS10 223,561,566 3,742,712,082 16.741

dgreen 228,101,325 1,376,588,233 6.035

Emilia 923 179,867,448 1,834,209,036 10.198

Fault 639 126,633,024 1,298,780,298 10.256

Geo 1438 274,478,976 2,801,728,386 10.207

Hardesty1 38,292,287 157,652,676 4.117

Serena 315,805,689 3,111,966,351 9.854

Transport 99,905,089 346,715,709 3.470

ss 138,289,810 687,203,895 4.969

nlpkkt80 154,663,144 790,384,704 5.110

Geometric Mean (Overestimation Factor) 7.018
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Why do changes in size per row values cause performance changes? Is there a trend with

larger/smaller size per row? A fixed number of elements, size per row, is added to the out-

put row for every iteration of the kernel. This means that there is wasted space if the row does

not completely utilize the space allocated. This is also why there is higher memory efficiency

when the fixed size allocated for each kernel iteration is smaller, as this provides finer-grained

control over memory usage. Therefore, we see that the run with a larger size allocated per kernel

iteration leads to lower memory efficiency.

For runtime, there is no straightforward trend that we can observe. For smaller datasets, the

larger values of size per row lead to faster runtimes, while smaller values of size per row are

slower in comparison. From profiler analysis for the kernels, we understand that the kernels are

latency bound from the following insight from NVIDIA Nsight Compute. “This kernel exhibits

low compute throughput and memory bandwidth utilization relative to the peak performance

of this device. Achieved compute throughput and/or memory bandwidth below 60.0% of peak

typically indicate latency issues.” This can also be seen in Figures 5.2a and 5.2b, which show

the achieved active warps per SM for the kernel calls with the dataset pwtk. When size per row

is 64, the average active warps per SM is more than when size per row is 8. More active warps

per SM allows for better latency hiding, leading to lower total runtime.

However, for larger datasets, the reverse can be observed, with smaller size per row values

providing better runtimes compared to the larger size per row values. This could be due to

better latency hiding by the threads in the larger datasets. The threads that have finished com-

putation do not have to wait as long for other threads that are still active, because only smaller

amounts of computation are done per kernel launch. These kernels are also observed to be la-

tency bound from the profiler as seen earlier. Figures 5.2c and 5.2d showcase this behavior for

the dataset Hook 1498. For the value of 16 for size per row, the achieved active warps per SM

is consistently large for most of the kernel calls, leading to a smaller total runtime due to good

latency hiding. For the latter case, there is low achieved active warps per SM for the kernel

calls, therefore it has a worse runtime.

If you had no other information at all, and didn’t get to exhaustively search, how can you

pick the right size per row value for the matrix? This is an interesting research problem,
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(a) pwtk with size per row = 8
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(b) pwtk with size per row = 64
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(c) Hook 1498 with size per row = 16
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(d) Hook 1498 with size per row = 64

Figure 5.2: Achieved active warps per SM observed for dynamic SpGEMM kernels for a large
dataset, Hook 1498, and a small dataset, pwtk, for different size per row values

and some ideas to tackle it are provided in Section 6.2. Based on the observations we have made

through the results of this work, the following suggestions can be made:

• If memory efficiency is what you are optimizing for, then you should be choosing smaller

size per row values. The smaller size per row value provides finer-grained control over

the memory allocation.

• On the other hand, if you are optimizing for runtime, then depending on the size of the

dataset, you have to choose either the smaller or the larger size per row value. For larger

datasets, we observed the smaller size per row values to be faster, and for small datasets,

the larger size per row values are faster.
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Figure 5.3: Resize time for default vector and virtual memory-based vector with dynamic
SpGEMM as a function of the number of non-zeros in the output matrix

• If you are looking for a trade-off between the two parameters, then a size per row value

is hard to predict. In general, for larger datasets, a smaller size per row value would be a

good candidate, but for smaller datasets, it is difficult to conclude on a size per row value.

Why is it advantageous to use the custom virtual memory-based vector to store the re-

sultant vector in the dynamic SpGEMM algorithm? The dynamic SpGEMM algorithm

needs to resize the output vector between the kernel calls due to the need for more memory.

We learned earlier the disadvantages of using the default non-virtual memory-based vector for

growing allocations. To reiterate, it requires extra space to resize and adds to latency from the

cudaMemcpy() calls to copy the contents of the vector from the old allocation to the new allo-

cation. Therefore, we use the custom virtual memory-based vector for the dynamic SpGEMM

algorithm. Figure 5.3 shows the percentage of time taken to resize as a function of the num-

ber of non-zeros in the output matrix. Here, resize time includes the time taken for memory

management like allocation, copying memory from the old allocation to the new one and de-

allocation. We can observe that the custom virtual memory-based vector takes smaller fraction

39



of the total runtime than the default vector.

5.3 Limitations
The current implementation of the dynamic SpGEMM algorithm does not work well for skewed

matrices because it depends on an SpGEMM algorithm that is not load balanced. The memory

efficiency for this case is good, but it takes longer time than the SpGEMM algorithms that use

the precise and upper bound methods for estimation. Some engineering can be done to make

this work with a load balanced SpGEMM implementation, which will be discussed in the future

work section in Chapter 6.

Another issue with the current implementation is the use of kernel launch as a way to syn-

chronize threads across the device. When we explored persistent kernels to achieve this, we

ran into issues with running the dynamic SpGEMM kernel and the memory allocation at the

same time. This is because we used the Thrust library for memory allocation, which requires

cub kernels to allocate and initialize the memory. These kernels were blocked when enough

resources were not available, due to them being used by the dynamic SpGEMM kernel, which

are waiting for the memory allocation to complete before continuing its computation. Secondly,

CUDA provides cooperative groups, which can be used to synchronize across a grid using grid

groups. We did not explore this option.

The third issue, which is an interesting research challenge, is identifying the right value

for size per row based on the needs of the user. For larger matrices that take longer times for

SpGEMM computation, it is not ideal to iterate over different values of size per row to identify

the optimal solution. Some ideas to tackle this are mentioned in the future work found in

Chapter 6.
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Chapter 6

Conclusion and Future Work

This chapter will provide concluding remarks in Section 6.1 for the custom virtual memory-

based allocator and the dynamic output space allocation algorithm for SpGEMM. We will also

include potential improvements and interesting ideas to continue on the work done in this thesis

in the Section 6.2.

6.1 Conclusion
In conclusion, we have presented an algorithm to dynamically determine the output space for

SpGEMM and a custom virtual memory-based vector that can used alongside applications that

use Thrust vectors. The dynamic SpGEMM algorithm was evaluated by performing experi-

ments on a collection of sparse matrices from the SuiteSparse Matrix Collection.

From the experiments, we can conclude that the dynamic SpGEMM algorithm can be used

in low memory applications with runtimes that are close to the SpGEMM algorithm using the

upper bound estimation method. Even though the SpGEMM algorithm with precise estimation

method provides us with the ideal memory efficiency, its runtimes are slower than the dynamic

SpGEMM.

Based on the graphs and the insights provided, the user can choose the optimal size per row

value as per their requirements to provide the desired tradeoff between runtime and memory

efficiency. We can conclude that the smallest size per row value provides us with the solution

that is optimal in terms of memory efficiency. For smaller datasets, a larger size per row value

provides faster runtimes, but for larger datasets, a smaller size per row value provides the
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faster runtimes.

The custom virtual memory-based vector provides a memory efficient and faster way to

resize growing vector allocations. Due to its integration to a header-only library like Thrust,

it makes it very simple to port this system to any application. Therefore, this custom virtual

memory-based system can be used in any algorithm that requires growing allocations.

6.2 Future Work
The integration of the custom virtual memory-based system with the library Thrust must be done

efficiently. The current implementation replicates classes to do partial template specialization

due to complexities associated with using templates. This was done to prototype and speed

up the development of the system for testing. An efficient way to redefine only a few selected

functions must be determined and implemented.

The custom virtual memory-based vector implemented in this work can be used for other

graph algorithms that use growing allocations as well. Some examples of such algorithms

include depth-first search, breadth-first search, and single-source shortest path. The impact

of using the custom virtual memory-based allocation on the runtimes and memory utilization

efficiency can be studied.

The dynamic output space allocation algorithm for SpGEMM currently uses a fixed value

for size per row because optimizing for different parameters leads to different values for

size per row. An algorithm or formula to identify an ideal size per row value for the require-

ments of the user would be a useful addition to the system. Cohen [2] proposes a probabilistic

method to predict the size of the resultant matrix using the Monte Carlo algorithm for sparse

graph problems, which can be an interesting way to approach the problem.

The dynamic output space allocation algorithm as mentioned earlier does not work with a

load balanced SpGEMM implementation. To be able to work with a load balanced implemen-

tation, there needs to be some facility for the threads that work on the same row of the output

matrix to communicate and store the results efficiently. This is an interesting but necessary

research that needs to done to further improve the algorithm.

The current implementation of the dynamic SpGEMM algorithm uses kernel launch for
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synchronization across the device. However, CUDA provides grid groups, which can be used

to synchronize across the grid. This functionality can be used to avoid the multiple kernel

launches, and the performance of the algorithm needs to be observed.
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Appendix A

Implementation

A.1 Custom Virtual Memory-Based Memory Allocator
We implemented a custom memory allocator based on GPU virtual memory management called

thrust::mr::virtual_memory_resource_allocator on the Thrust library shown in Listing

A.1. It is a class publicly derived from the class thrust::mr::allocator. The class, thrust

::mr::allocator, fulfills the C++ requirements for memory allocators.

This class has a constructor, copy constructor, and member functions for reserving, grow-

ing and de-allocating memory. It also holds state of the memory allocator, such as the vector

of virtual address ranges, allocation handles and handle sizes, pointer and size of allocation,

properties of the mapping, etc. as shown on lines 8-22 in Listing A.1.

1 class virtual_memory_resource_allocator : public thrust::mr::
allocator

2 {
3 // properties of the allocation
4 CUmemAllocationProp prop;
5 CUmemAccessDesc accessDesc;
6

7 // holds the state of the allocation
8 struct Range {
9 CUdeviceptr start;

10 size_t sz;
11 };
12 // vector of virtual address ranges
13 std::vector<Range> va_ranges;
14 // vectors of CUDA memory handles and its sizes
15 std::vector<CUmemGenericAllocationHandle> handles;
16 std::vector<size_t> handle_sizes;
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17 // CUDA device pointer to the start of the allocation
18 CUdeviceptr d_p;
19 // sizes of minimum granularity, allocation and total

reservation
20 size_t chunk_sz;
21 size_t alloc_sz;
22 size_t reserve_sz;
23

24 public:
25 // constructor
26 virtual_memory_resource_allocator();
27 // allocates memory of size n
28 pointer allocate(size_t n);
29 // reserves virtual address range of size new_size
30 CUresult reserve(size_t new_size);
31 // de-allocates memory of size n at address pointed by p
32 void deallocate(pointer p, size_t n);
33 // destructor
34 ˜virtual_memory_resource_allocator();
35 }

Listing A.1: Overview of the class virtual_memory_resource_allocator

We look into the different parts of the class virtual_memory_resource_allocator in the

following subsections.

A.1.1 Construction

The setup required for using the virtual memory management driver APIs is performed in the

constructor call.

Firstly, the CUDA driver APIs have to be initialized for every process created by calling

cuInit(). Each physical memory chunk allocation has properties and a handle associated with

it, which is stored in the structs CUmemAllocationProp and CUmemGenericAllocationHandle

respectively.

The struct CUmemAllocationProp holds fields for the type and location of the memory al-

location. We use pinned memory in the device, so CU_MEM_ALLOCATION_TYPE_PINNED is given

as input for the allocation type. Here, pinned memory means that the allocation cannot migrate

from the current location while the application is actively using it. The struct CUmemLocation is

used to hold the location and the device ID of the allocation. CU_MEM_LOCATION_TYPE_DEVICE

denotes that the location of the memory allocation is a device and the ID is its ordinal.

To set access rights to the memory allocation, we use the struct CUmemAccessDesc. The first
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field describes the location of the memory allocation, which is the same as the location field in

CUmemAllocationProp. The second field is used to specify the memory protection flags for the

allocation. We assign CU_MEM_ACCESS_FLAGS_PROT_READWRITE for the flag as we would like

to be able to read from and write to the memory allocated. CU_MEM_ACCESS_FLAGS_PROT_READ

should be used if the address range only has to be read accessible.

Finally, we need to obtain the minimum granularity with which we can allocate memory.

The function cuMemGetAllocationGranularity() returns the minimal granularity when pro-

vided with the properties of the allocation for which we need the granularity. The multiples of

the granularity returned can be used for alignment and size of the memory allocation. Putting it

all together, the Listing A.2 shows the constructor implemented.

1 virtual_memory_resource_allocator
2 ::virtual_memory_resource_allocator()
3 {
4 // to initialize the CUDA driver APIs
5 cuInit(0);
6 // assign properties of the allocation
7 prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
8 prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
9 int device_id;

10 cudaGetDevice(&device_id);
11 prop.location.id = device_id;
12 // assign access rights for the allocation
13 accessDesc.location = prop.location;
14 accessDesc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
15 // returns minimum granularity for the given allocation

properties
16 cuMemGetAllocationGranularity(&chunk_sz, &prop,

CU_MEM_ALLOC_GRANULARITY_MINIMUM);
17 }

Listing A.2: Constructor for the class virtual_memory_resource_allocator

A.1.2 Allocation

As mentioned earlier, allocation happens in multiple steps involving multiple driver APIs. We

implemented an allocate() function depicted by Listing A.3 which receives the number of

elements, n, for allocation. Then, the size of memory required is calculated. To request a virtual

address range, we need to first pad the size to align with the minimum granularity, chunk sz

which is done in line 6. A function, reserve(), is used to reserve the required virtual address
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range.

1 pointer virtual_memory_resource_allocator
2 ::allocate(size_t n)
3 {
4 CUmemGenericAllocationHandle handle;
5 // pad size to multiple of minimum granularity
6 size_t sz = ((n * sizeof(T) + chunk_sz - 1) / chunk_sz) *

chunk_sz;
7 // reserves virtual address range for given size
8 CUresult status = reserve(alloc_sz + sz);
9

10 if (status == CUDA_SUCCESS) {
11 // creates physical memory handle
12 if ((status = cuMemCreate(&handle, sz, &prop_new, 0ULL))

== CUDA_SUCCESS) {
13 // maps physical handle to virtual address range
14 if ((status = cuMemMap(d_p + alloc_sz, sz, 0ULL,

handle, 0ULL)) == CUDA_SUCCESS) {
15 if ((status = cuMemSetAccess(d_p + alloc_sz, sz,

&accessDesc_new, 1ULL)) == CUDA_SUCCESS) {
16 // store state
17 handles.push_back(handle);
18 handle_sizes.push_back(sz);
19 // extend the size
20 alloc_sz += sz;
21 }
22 // if unsuccessful, then un-map
23 if (status != CUDA_SUCCESS) {
24 (void)cuMemUnmap(d_p + alloc_sz, sz);
25 }
26 // release the physical handles
27 if (status != CUDA_SUCCESS) {
28 (void)cuMemRelease(handle);
29 }
30 }
31 }
32 }
33 return (pointer((void *)d_p));
34 }

Listing A.3: The function allocate() for the class virtual_memory_resource_allocator

Assuming the virtual address range reservation was a success, we then allocate the physi-

cal memory using cuMemCreate(). It creates and returns a CUDA memory handle denoted by

CUmemGenericAllocationHandle, which represents a physical memory allocation with the

requested properties and size. Then, the physical memory allocation has to be mapped to

the virtual address range, which is taken care of by cuMemMap(). This driver function maps
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the CUDA allocation handle to the reserved virtual address range, d p + alloc sz. d p is the

pointer to the start of the address range and alloc sz is the total size of the allocation. Finally,

cuMemSetAccess() sets access flags for each location specified by the struct CUmemAccessDesc

passed to it. If the allocation is successful, the state of the allocation is updated. handles and

handle sizes are vectors that house the memory handles and sizes of the physical memory allo-

cations. This is used to remap allocations in the case of when virtual address range reservation

changes.

Now, let us look closer at what happens during virtual address reservation. The reserve()

function we implemented is passed the total size, new sz, of the virtual address range required,

as observed in Listing A.4. This is padded for alignment with the minimum granularity to get

the aligned size, aligned sz. cuMemAddressReserve() is the driver API used to make the

address range reservation.

1 CUresult virtual_memory_resource_allocator
2 ::reserve(size_t new_sz)
3 {
4 CUresult status = CUDA_SUCCESS;
5 // pad size to multiple of minimum granularity
6 size_t aligned_sz = ((new_sz + chunk_sz - 1) / chunk_sz) *

chunk_sz;
7 // try to reserve new size at the end of current virtual

address range
8 status = cuMemAddressReserve(&new_ptr, (aligned_sz -

reserve_sz), 0ULL, d_p + reserve_sz, 0ULL);
9 // if unsuccessful, we take the longer route

10 if (status != CUDA_SUCCESS || (new_ptr != d_p + reserve_sz))
{

11 // free if virtual address range was allocated at random
start address

12 if (new_ptr != 0ULL)
13 status = cuMemAddressFree(new_ptr, (aligned_sz -

reserve_sz));
14 // try to reserve for total allocation size
15 status = cuMemAddressReserve(&new_ptr, aligned_sz, 0ULL,

0U, 0);
16

17 if (status == CUDA_SUCCESS && d_p != 0ULL) {
18 CUdeviceptr ptr = new_ptr;
19 // un-map old allocation
20 status = cuMemUnmap(d_p, alloc_sz);
21 // map the new virtual address range to old physical

handles and set access rights
22 for (size_t i = 0ULL; i < handles.size(); i++) {
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23 const size_t hdl_sz = handle_sizes[i];
24 if ((status = cuMemMap(ptr, hdl_sz, 0ULL, handles

[i], 0ULL)) != CUDA_SUCCESS)
25 break;
26 if ((status = cuMemSetAccess(ptr, hdl_sz, &

accessDesc_new, 1ULL)) != CUDA_SUCCESS)
27 break;
28 ptr += hdl_sz;
29 }
30 // un-map and throw error if unsuccessful
31 if (status != CUDA_SUCCESS) {
32 status = cuMemUnmap(new_ptr, aligned_sz);
33 assert(status == CUDA_SUCCESS);
34 status = cuMemAddressFree(new_ptr, aligned_sz);
35 assert(status == CUDA_SUCCESS);
36 }
37 // if successful, we free the old virtual address

range reservations
38 else {
39 for (size_t i = 0ULL; i < va_ranges.size(); i++)

{
40 status = cuMemAddressFree(va_ranges[i].start,

va_ranges[i].sz);
41 }
42 va_ranges.clear();
43 }
44 }
45 // store state of the allocation - update pointer, size,

etc.
46 if (status == CUDA_SUCCESS) {
47 Range r;
48 d_p = new_ptr;
49 reserve_sz = aligned_sz;
50 r.start = new_ptr;
51 r.sz = aligned_sz;
52 va_ranges.push_back(r);
53 }
54 }
55 // store state of the allocation - update pointer, size, etc.
56 else {
57 Range r;
58 r.start = new_ptr;
59 r.sz = aligned_sz - reserve_sz;
60 va_ranges.push_back(r);
61 if (d_p == 0ULL) {
62 d_p = new_ptr;
63 }
64 reserve_sz = aligned_sz;
65 }
66 return status;
67 }

Listing A.4: The function reserve() for the class virtual_memory_resource_allocator
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It takes the size of reserved virtual address range requested and a fixed starting address

for the requested reservation, and returns a pointer to the start of the virtual address range

allocated if successful. The easiest way to increase the size of the address range is to add

the required size range to the end of the current address. So, an attempt to reserve at starting

address d p + reserve sz of size aligned sz − reserve sz is made as shown by the line 8.

Here, reserve sz is the total size of the current address range. If the reservation was a success,

then we can store the state of the allocation, which is the pointer to the start of the address range

and the size of the handles. This is done in the code by the vector va ranges in the lines 57-64.

If reserving at the end of the current virtual address range is a failure, then we have to free

any reservations done and start over. Now, a virtual address range for the total aligned size,

aligned sz, is requested. If this is a success, then we have to un-map the previous mappings to

the old virtual address range and map the physical memory handles to the new virtual address

range. This is implemented in the lines 10-29. The access rights are also set for the new address

range. Finally, the old virtual address reservation is freed and the current state of the allocation

is updated to the vector va ranges. We will go into more detail of the driver functions used to

un-map and free reservations in the next subsection.

A.1.3 De-allocation

We implemented a deallocate() function, given in Listing A.5, that receives the pointer and

the size of memory to be de-allocated. Similar to the procedure for allocation, we need to

execute multiple steps to un-map and free the physical and virtual address reservation.

Firstly, we un-map the backing memory of the given virtual address range using the driver

function cuMemUnmap(). Then, we free the virtual address range reservations stored by the

state variable va ranges using cuMemAddressFree(). Lastly, we release the CUDA physical

memory handles kept in track with the state variable handles. The state variables are also

cleared and reset for future new allocations.

1 void virtual_memory_resource_allocator
2 ::deallocate(pointer p, size_t n)
3 {
4 CUresult status = CUDA_SUCCESS;
5 if (d_p != 0ULL) {
6 // un-map the allocations
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7 status = cuMemUnmap((CUdeviceptr) p.get(), n * sizeof(T))
;

8 assert(status == CUDA_SUCCESS);
9 // if successful, free the virtual address range

reservations
10 for (size_t i = 0ULL; i < va_ranges.size(); i++) {
11 status = cuMemAddressFree(va_ranges[i].start,

va_ranges[i].sz);
12 assert(status == CUDA_SUCCESS);
13 }
14 // release the CUDA physical handles
15 for (size_t i = 0ULL; i < handles.size(); i++) {
16 status = cuMemRelease(handles[i]);
17 assert(status == CUDA_SUCCESS);
18 }
19 // reset state
20 va_ranges.clear();
21 handles.clear();
22 handle_sizes.clear();
23 }
24 }

Listing A.5: The function deallocate() for the class virtual_memory_resource_allocator

A.2 Using the Custom Virtual Memory-based Allocator with
Vectors

The functionalities of std::vector are implemented for the GPU on the Thrust library in the

class thrust::detail::vector_base. This class contains functions to create and manipulate

the vector, like copy, reserve, resize, insert, fill, erase, etc. It also has the pointer, reference,

iterators and properties of the vector. The methods used to manipulate the vector are written for

a cudaMalloc-based allocation, which is the default. Hence, some changes have to be made to

such methods in order to observe the benefits of using the custom virtual memory-based alloca-

tor. Since some of the methods have to be changed, we specialized the class thrust::detail::

vector_base for thrust::virtual_allocator<T> to redefine the functions according to our

needs. Let us look at some of the functions that had to be changed in the following subsections.

A.2.1 Reserve

Reserve is one of the most important functions in the vector container. It is used to reserve

memory for a given number of elements. The Listing A.6 showcases the default implementation

of this function. Let us look at a gist of what happens when reserve is called:
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If the new size is greater than the current capacity of the vector, then a new storage with the

new size is created. Then, the contents of the vector is copied from the old storage to the newly

created storage. Then, the old storage is destroyed and the new storage is added to the state of

the vector.

1 template<typename T, typename Alloc>
2 void vector_base<T,Alloc>
3 ::reserve(size_type n)
4 {
5 if(n > capacity()) {
6 // compute the new capacity after the allocation
7 size_type new_capacity = n;
8

9 // create new storage
10 storage_type new_storage(copy_allocator_t(), m_storage,

new_capacity);
11 iterator new_end = new_storage.begin();
12

13 // construct copy all elements into the newly allocated
storage

14 new_end = m_storage.uninitialized_copy(begin(), end(),
new_storage.begin());

15

16 // call destructors on the elements in the old storage
17 m_storage.destroy(begin(), end());
18

19 // record the vector’s new state
20 m_storage.swap(new_storage);
21 }
22 }

Listing A.6: The function reserve() for default allocators

There are a few inefficiencies with the way reserve() is done in the default implementation

in Listing A.6. To grow the allocation, both the old and new storage must be in memory. This

significantly reduces by how much we can reserve more memory. For example, if the GPU

has 4 GB of memory and you need to grow a 2 GB vector to 3 GB, it is not possible. This

is because there is no space to allocate a new larger allocation of size 3 GB along with old

2 GB allocation. Therefore, in low memory scenarios, this implementation can fail to run the

application. Secondly, there is a copy called to transfer the data of the vector from the old vector

to the new storage. This adds to the latency of the application. It also occupies the bandwidth

when it replicates data, which is very wasteful for high performance applications.
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Using virtual_allocator resolves the inefficiencies mentioned above. Listing A.7 shows

the implementation for the function reserve() when specialized for virtual_allocator.

From the listing, we can observe that the creation of a new larger storage to grow is elimi-

nated. Instead, we allocate the difference between the new required capacity and the current

capacity. In the backend, the virtual_allocator allocates the required physical memory and

virtual address range as discussed in the previous section. Then, it maps the physical memory

handle to the virtual address range and updates the pointer to the allocation in case of a change.

1 template<typename T>
2 void vector_base<T,thrust::virtual_allocator<T>>
3 ::reserve(size_type n)
4 {
5 if(n > capacity()) {
6 // compute the new capacity after the allocation
7 size_type new_capacity = n;
8

9 // find size difference to allocate
10 const std::size_t sz = new_capacity - capacity();
11

12 // allocate takes the number of elements to allocate as input
13 m_storage.allocate(sz);
14 }
15 }

Listing A.7: The function reserve() specialized for virtual_allocator

A.2.2 Append

Similar to the function reserve() mentioned in the previous subsection, append() is another

important and frequently used function in the vector container. Listing A.8 shows the imple-

mentation for reseve() for default allocators, and the Listing A.9 shows the definition of the

same specialized for the virtual_allocator to yield the benefits of using virtual memory.

1 template<typename T, typename Alloc>
2 void vector_base<T,Alloc>
3 ::append(size_type n)
4 {
5 if(n != 0) {
6 if(capacity() - size() >= n) {
7 // we’ve got room for all of them
8 // add to end and increase size
9 // ...

10 }
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11 else {
12 const size_type old_size = size();
13

14 // compute the new capacity after the allocation
15 size_type new_capacity = old_size + thrust::max(

old_size, n);
16 new_capacity = thrust::max(new_capacity, 2 * capacity

());
17

18 // create new storage
19 storage_type new_storage(copy_allocator_t(),

m_storage, new_capacity);
20 iterator new_end = new_storage.begin();
21

22 // construct copy all elements into the newly
allocated storage

23 new_end = m_storage.uninitialized_copy(begin(), end()
, new_storage.begin());

24

25 // construct new elements to insert
26 new_storage.default_construct_n(new_end, n);
27 new_end += n;
28

29 // call destructors on the elements in the old
storage

30 m_storage.destroy(begin(), end());
31

32 // record the vector’s new state
33 m_storage.swap(new_storage);
34 m_size = old_size + n;
35 }
36 }
37 }

Listing A.8: The function append() for default allocators

In general, when append() is called, if the current capacity cannot hold the new elements

to append, then it creates a new large storage. This is followed by a copy of the elements from

the old storage to the new, and adding the elements to append to the end of the new storage.

Finally, the old storage is destroyed and the new state of the vector is recorded. This is shown

in lines 19-34 in the Listing A.8.

Similar to Listing A.7, when specializing for virtual_allocator, the function append()

only allocates the necessary storage and appends as normal. In addition to the performance

benefits of using virtual memory, we can also observe that this simplifies the algorithm for

vector manipulation as seen in Listing A.9 when compared to the default implementation in
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Listing A.8.

1 template<typename T>
2 void vector_base<T,thrust::virtual_allocator<T>>
3 ::append(size_type n)
4 {
5 if(n != 0) {
6 if(capacity() - size() >= n) {
7 // we’ve got room for all of them
8 // add to end and increase size
9 // ...

10 }
11 else {
12 const size_type old_size = size();
13

14 // compute the new capacity after the allocation
15 size_type new_capacity = old_size + thrust::max(

old_size, n);
16 new_capacity = thrust::max(new_capacity, 2 * capacity

());
17

18 // find size difference to allocate
19 const std::size_t sz = new_capacity - capacity();
20

21 // allocate takes the number of elements to allocate
as input

22 m_storage.allocate(sz);
23

24 append(n);
25 }
26 }
27 }

Listing A.9: The function append() specialized for virtual_allocator

A.2.3 Insert

The insert() is another useful functionality provided by vectors. It can insert elements at a

given position in the vector. There are a couple of different helper functions to support the insert

operation. One of them is fill_insert(). We will take a closer look at it in this subsection.

fill_insert() inserts n number of elements to the index given by position and fills it with

the value x. If the capacity of the vector is sufficient for the insertion of the n elements, then the

functionality is the same for both the default and the custom virtual memory-based allocator.

When there is a need to increase the capacity of the vector, the default implementation as

mentioned previously creates a new large storage and copies the elements from the old storage
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to the new one in addition to inserting the elements. This is depicted in the Listing A.10.

1 template<typename T, typename Alloc>
2 void vector_base<T,Alloc>
3 ::fill_insert(iterator position, size_type n, const T &x)
4 {
5 if(n != 0) {
6 if(capacity() - size() >= n) {
7 // we’ve got room for all of them
8 // insert the elements
9 // ...

10 }
11 else {
12 const size_type old_size = size();
13

14 // compute the new capacity after the allocation
15 size_type new_capacity = old_size + thrust::max(

old_size, n);
16 new_capacity = thrust::max(new_capacity, 2 * capacity

());
17

18 storage_type new_storage(copy_allocator_t(),
m_storage, new_capacity);

19 iterator new_end = new_storage.begin();
20

21 // construct copy elements before the insertion to
the beginning of the newly allocated storage

22 new_end = m_storage.uninitialized_copy(begin(),
position, new_storage.begin());

23

24 // construct new elements to insert
25 m_storage.uninitialized_fill_n(new_end, n, x);
26 new_end += n;
27

28 // construct copy displaced elements from the old
storage to the new storage

29 new_end = m_storage.uninitialized_copy(position, end
(), new_end);

30

31 // call destructors on the elements in the old
storage

32 m_storage.destroy(begin(), end());
33

34 // record the vector’s new state
35 m_storage.swap(new_storage);
36 m_size = old_size + n;
37 }
38 }
39 }

Listing A.10: The function fill_insert() for default allocators
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When the same function is specialized for the virtual_allocator, we need to be cautious

of the change in the start pointer that could happen if a contiguous virtual address range is not

available at the end of the current reservation. Hence, we make sure to obtain the index of the

insertion before allocate() is called as shown in line 22. We can compute the new position,

position new, using the index and the pointer pointing to the start of the vector as implemented

in line 29. This position new is used to call fill_insert() on the vector now that there is

enough capacity required for insertion of the elements. This can be seen in the Listing A.11.

1 template<typename T>
2 void vector_base<T,thrust::virtual_allocator<T>>
3 ::fill_insert(iterator position, size_type n, const T &x)
4 {
5 if(n != 0) {
6 if(capacity() - size() >= n) {
7 // we’ve got room for all of them
8 // insert the elements
9 // ...

10 }
11 else {
12 const size_type old_size = size();
13

14 // compute the new capacity after the allocation
15 size_type new_capacity = old_size + thrust::max(

old_size, n);
16 new_capacity = thrust::max(new_capacity, 2 * capacity

());
17

18 // find size difference to allocate
19 const std::size_t sz = new_capacity - capacity();
20

21 // get index of the insertion
22 size_type index = thrust::distance(begin(), position)

;
23

24 // allocate takes the number of elements to allocate
as input

25 m_storage.allocate(sz);
26

27 // update position in case the begin pointer changes
during allocation

28 iterator position_new = begin();
29 thrust::advance(position_new, index);
30

31 fill_insert(position_new, n, x);
32 }
33 }
34 }
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Listing A.11: The function fill_insert() specialized for virtual_allocator
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