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PHYSICAL REVIEW FLUIDS 4, 074305 (2019)

Consolidation of freshly deposited cohesive and noncohesive sediment:
Particle-resolved simulations

Bernhard Vowinckel,* Edward Biegert, Paolo Luzzatto-Fegiz, and Eckart Meiburg
Department of Mechanical Engineering, University of California, Santa Barbara,

Santa Barbara, California 93106, USA

(Received 10 March 2019; published 15 July 2019)

We analyze the consolidation of freshly deposited cohesive and noncohesive sediment
by means of particle-resolved direct Navier-Stokes simulations based on the immersed
boundary method. The computational model is parametrized by material properties and
does not involve any arbitrary calibrations. We obtain the stress balance of the fluid-particle
mixture from first principles and link it to the classical effective stress concept. The detailed
data sets obtained from our simulations allow us to evaluate all terms of the derived stress
balance. We compare the settling of cohesive sediment to its noncohesive counterpart,
which corresponds to the settling of the individual primary particles. The simulation results
yield a complete parametrization of the Gibson equation, which has been the method of
choice to analyze self-weight consolidation.

DOI: 10.1103/PhysRevFluids.4.074305

I. INTRODUCTION

Fine-grained sediments interact via attractive electric forces, commonly referred to as van der
Waals forces [1,2], and adhesive forces due to extracellular polymeric substances such as biofilms
[3,4]. Cohesive sediment thus behaves very differently from its cohesionless granular counterpart.
This is especially true for sediment mixtures containing large quantities of cohesive sediment
and organic matter, which are also known as mud [5–7]. Mud deposition can lead to siltation of
marine and riverine infrastructure or it can bind contaminants, which has important implications for
ecology, sedimentology, and civil engineering as it is ubiquitous in various aquatic environments
such as lakes, estuaries, and benthic habitats [8,9]. The consolidation of mud is also important in
the context of deep-sea hydrocarbon exploration [10].

The deposition of mud can be subdivided into two processes: hindered settling [11–16] and
consolidation [17–22]. Both processes can happen simultaneously in the water column as sediment
is still in the process of settling until all suspended grains have made contact with the sediment
bed that is supported by a bottom wall [14,23,24]. Consolidation is characterized by a contracting
sediment bed due to the weight of the overlying deposits. This yields an excess pore pressure, which
imposes an upward counterflow through the porous bed that is governed by the bed’s permeability
and the effective stress of the sediment. These processes were the basis of the Gibson equation [25]

∂φv

∂t
= ∂

∂y

(
k(ρp − ρ f )φ2

v

ρ f
+ kφv

ρg

∂σeff

∂y

)
, (1)

which is derived from one-dimensional mass and momentum conservation principles for the
fluid and the sediment to predict the change of the horizontally averaged volume fraction φv of
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consolidating soils over time [24]. Here t is time, y is the vertical coordinate, ρp and ρ f are the
particle and fluid densities, ρ = φpρp + (1 − φp)ρ f is the averaged density of the suspension in a
given control volume, g is the gravitational acceleration, k is the permeability of the porous medium
in units of length per time, and σeff is the effective normal stress component in the y direction.

The effective stress has classically been assessed by means of the effective stress concept [26],
which states that the total stress is the sum of the pore pressure and the effective stress. While it is a
common definition that the effective stress reflects the part of the sediment weight that is supported
by interparticle contact, the experimental assessment of this physical quantity has been subject to
debate. Winterwerp and Van Kesteren [27] argued that this term is used as a mathematical concept
to close the stress balance and Sills [19] even claimed that there is no physical meaning to effective
stress. Hence, while simulations using the Gibson equation [28,29] show excellent agreement with
experimental data, the model lacks general predictive capabilities since the empirical fitting of the
parameters entering the Gibson equation has to be performed separately for each new experiment.

There are several reasons for the limitations of the Gibson model. First, the effective stress
concept remains one dimensional, whereas it has been acknowledged that viscous fingering due
to spatially heterogeneous particle concentrations can trigger instabilities that lead to complex
three-dimensional flow features [30,31]. Furthermore, it was pointed out that every experimental
setup inevitably contains sidewalls [19]. These sidewalls can lead to preferential drainage that
introduces artifacts in the analysis. In recent years, experimental efforts have focused on the settling
of sand-mud mixtures [32–37], where particles are too large to exhibit Brownian motion. Since
the Gibson theory was derived for pure mud in the first place, applying the model to sand-mud
mixtures might be problematic [38]. At the same time, the larger sized particles render the physical
configuration attractive for phase-resolved simulations that allow for a full description of the fluid
and the particle motion [39–44].

The present study addresses these issues from a computational perspective. Following our earlier
particle-resolved simulations [45–47], we present simulation data of settling cohesive and noncohe-
sive sediment where we compute the motion of every particle in a fully resolved three-dimensional
flow field without sidewalls. We present a detailed stress balance for the fluid-particle mixture that
allows for a direct transfer of the governing equations to the classical effective stress concept. As
a result, we provide a way to parametrize the Gibson equation in a straightforward fashion and
illustrate the effects of cohesive forces on macroscopic particles by means of intergranular stresses
in the sediment packing.

The paper is structured as follows. First, we briefly review our fully coupled computational
approach to simulate particles in a viscous flow in Sec. II. Then we derive the effective stress
concept from our governing equations in Sec. III, before we present results for the settling behavior
of cohesive grains of silt size and its noncohesive counterpart in Sec. IV.

II. COMPUTATIONAL APPROACH

A. Particle-resolved simulations

We solve the unsteady Navier-Stokes equations for an incompressible Newtonian fluid, given by

∂u
∂t

+ ∇ · (uu) = − 1

ρ f
∇p + ν f ∇2u + fIBM, (2)

along with the continuity equation

∇ · u = 0 (3)

on a uniform rectangular grid with grid cell size �x = �y = �z = h following the scheme of
[43]. Here bold and italic symbols represent vectors and scalar quantities, respectively, where
u = (u, v,w)T designates the fluid velocity vector in Cartesian components, p denotes pressure
with the hydrostatic component subtracted out, ν f is the kinematic viscosity, and fIBM represents a
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volume force introduced by the immersed boundary method (IBM) [48,49]. This volume force acts
in the vicinity of the interphase boundaries and couples the fluid phase to the particle motion.

Within the framework of the IBM, we consider spherical particles as an approximation of primary
particles from the grain-size fraction of silt. We calculate the motion of each individual spherical
particle by solving an ordinary differential equation for its translational velocity up = (up, vp,wp)T ,

mp
dup

dt
=

∮
�p

τ · n dA︸ ︷︷ ︸
=Fh,p

+Vp(ρp − ρ f )g︸ ︷︷ ︸
=Fg,p

+Fc,p, (4)

and its angular velocity ωp = (ωp,x, ωp,y, ωp,z )T ,

Ip
dωp

dt
=

∮
�p

r × (τ · n)dA︸ ︷︷ ︸
=Th,p

+Tc,p. (5)

Here mp is the particle mass, �p the fluid-particle interface, τ the hydrodynamic stress tensor, ρp

the particle density, Vp the particle volume, g the gravitational acceleration, Ip = 8πρpR5
p/15 the

moment of inertia, and Rp the particle radius. Furthermore, the vector n is the outward-pointing
normal on the interface �p, r = x − xp is the position vector of the surface point with respect
to the center of mass xp of a particle, and Fc,p and Tc,p are the force and torque due to particle
interactions, respectively, which are computed using the discrete-element method as described in
[43]. Furthermore, note the designation of the hydrodynamic force and torque as Fh,p and Th,p,
respectively, as well as Fg,p the force due to gravity.

We employ the approach of [49] for evaluating the IBM forces and solve (4) and (5) according
to [43]. The particles are explicitly coupled to the fluid motion through the hydrodynamic stress
tensor τ comprising viscous and pressure drag as a direct result of the IBM. The integration scheme
subdivides the fluid time step into a total of 15 substeps to integrate (4) and (5) in time. It was shown
by Biegert et al. [43] that this is necessary to resolve short-range particle-particle interactions such
as lubrication and cohesive forces.

Our simulation approach was validated by [43] for the fluid-particle coupling of the method
against experimental data of a sphere settling in an unbounded quiescent fluid [50] as well as
towards a wall [51]. The particle-contact model was validated against benchmark data of [52,53].
The collective motion of a sediment bed sheared by a viscous flow was compared to the experimental
data of [54] and we found satisfactory agreement.

B. Particle-particle interaction

We use the computational approach of Biegert et al. [43] for modeling cohesionless particle-
particle interactions. This reference provides validation results for various benchmark experiments.
In addition, the present study employs the cohesive force model proposed and validated by
Vowinckel et al. [45]. The particle-particle interaction comprises short-range effects due to unre-
solved hydrodynamic lubrication forces Fl and cohesive forces Fcoh, as well as direct contact forces
Fd = Fn + Ft acting in the normal and tangential directions, denoted by Fn and Ft . The resulting
force on particle p is the sum of all these effects

Fc,p =
Np∑

q,q �=p

(Fl,pq + Fd,pq + Fcoh,pq) + Fl,pw + Fd,pw + Fcoh,pw, (6)

where the subscripts pq and pw indicate interactions with particle q or a wall, respectively. Detailed
information about how we model the lubrication and direct contact forces is provided in [43]. For
the present study, we have chosen the same parametrization determined for silicate materials in
experiments and used in our previous simulations [39,41–43,45,55,56].
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To account for cohesive forces, we take an approach that is consistent with the theory for colloids
developed by Derjaguin-Landau-Verwey-Overbeek (DLVO) [57,58], which states that there are two
dominant short-range forces that can be interpreted as opposing potentials surrounding particles
with grain sizes in the micro- to nanometer range. On the one hand, there exists a repulsive
force when equally charged surfaces are in close proximity. On the other hand, as one particle
causes correlations in the fluctuating polarization of a nearby particle surface an attractive force is
generated. The former effect is usually called the repulsive double-layer (DL) force, while the latter
effect is commonly referred to as van der Waals (vdW) force. These forces become important for
gap sizes ζ0 < ζn < ζ∞, where ζ0 defines the microscopic size of surface asperities and ζ∞ is the
distance for which these forces decay to zero [59]. The repulsive DL force and the attractive vdW
force due to polarization scale as Frep ∝ e−ζn and Fatt ∝ ζ−2

n , respectively. The superposition of the
two potentials yields a net force as a function of the gap size ζn. A model incorporating both effects
has been proposed by Pednekar et al. [60],

FDLVO = ARReff exp

(
−ζn

κ

)
︸ ︷︷ ︸

Frep

− AH Reff

12
(
ζ 2

n + ζ 2
0

)︸ ︷︷ ︸
Fatt

, (7)

where AR is a repulsive force scale for ζn = 0 as a measure of the particles’ surface potential, κ is
the Debye length, AH is the Hamaker constant, and ζ0 is the surface roughness preventing Fatt from
diverging to infinity for vanishing gap size. These four parameters need to be adjusted according to
the physical system.

To account for these effects in particle resolved simulations, Vowinckel et al. [45] proposed a
model with the following properties: (i) It decays to zero as the gap size goes to zero, (ii) it has a
maximum at a gap width orders of magnitude smaller than the particle diameter, and (iii) it decays
to zero for larger gap sizes, without any discontinuous jumps. The physical idea of this model is
described in [45]. The above properties are fulfilled with the mathematically simple model of a
parabolic spring force

Fcoh =
{−kcoh

(
ζ 2

n − ζnλ
)
n for 0 < ζn � λ

0 otherwise,
(8)

where kcoh = AH Reff
ζ0λ3 denotes the stiffness constant, λ represents the range over which the cohesive

force is distributed, AH is the Hamaker constant, ζ0 is the minimal separation distance [61], and
Reff = RpRq/(Rp + Rq) is the effective radius. The cohesive range λ can be interpreted as a Debye
length.

The dimensional form (8) still requires the proper parametrization of the empirical parameters
AH and ζ0. However, we can replace these empirical constants by writing (8) with respect to the
maximum cohesive force max(‖Fcoh,50‖). Choosing the median grain diameter D50, the buoyancy
velocity us = √

g′D50, the characteristic timescale τs = D50/us, and the characteristic mass m50 =
ρ f πD3

50/6, the characteristic force scale for particles settling under gravity in an otherwise quiescent
fluid becomes the specific weight m50g′, where g′ = (ρp − ρ f )g/ρ f denotes the reduced gravity.
After normalizing (8) with the specific weight we obtain

Fcoh =
{−Co 8Reff

λ2

(
ζ 2

n − ζnλ
)
n for 0 < ζn � λ

0 otherwise.
(9)

Hence, the characteristic parameter to define cohesive forces becomes the cohesive number

Co = max(‖Fcoh,50‖)

m50g′ . (10)

It represents the ratio of the maximum cohesive force for particles of diameter D50 to the
characteristic gravitational force scale of the problem [62].
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FIG. 1. The DLVO curve for Dp = 20 μm, AH = 1×10−20, ζ0 = 4.7 nm, and Csalt = 35 ppt.

We can transfer the DLVO theory (7) to our simpler model (9) by choosing the following
parameters: (i) AH = 1×10−20 J, which reflects silica materials in water according to [63], (ii)
Reff = RpRq

Rp+Rq
= Rp

2 = 5 μm for monodisperse silt particles of grain size Dp = 20 μm, (iii) ζ0 =
4.7 nm, and (iv) κ , which we determine using the approximation for the monovalent salt sodium
chloride given by [64] as κ = 0.304×10−9 m−1

|z|√Csalt
in meters, where z is the valence of the salt and Csalt

is the salt concentration in mol/liter. Here we choose the salinity of sea water with 35 ppt. These
parameters yield Csalt = 0.6 mol/liter and κ = 0.393 nm. (v) Since a key feature of our model is
to have vanishing forces for particle contact, i.e., ζn = 0, we set AR = AH/12ζ 2

0 . The DLVO curve
for this case is displayed in Fig. 1. In this scenario, the total force FDLVO follows the attractive
forces with a distinct minimum at ζn ≈ 1 nm. The minimum force is |min(FDLVO)| = 3×10−10 N,
while the weight becomes Fg = πg(ρp − ρ f )D3

p/6 = 6.78×10−11 N, where we set gravitational
acceleration, particle density, and fluid density to be g = 9.81 m/s2, ρp = 2650 kg/m3, and ρ f =
1000 kg/m3, respectively. This yields a cohesive number of Co = |min(FDLVO)|/Fg = 5.0. We found
our parabolic spring model to be a good approximation of the curve shown by the solid line in Fig. 1.

Consequently, the cohesive number used in our simulations corresponds to the properties of fine
to medium sized grains of silt settling in salt water. Note that the present approach can easily be
extended to different types of cohesive sediment given that the temporal discretization is able to
resolve the parabolic spring model during particle-particle interaction. In such a case, the parameter
needed to determine the cohesive number is |min(FDLVO)|, i.e., the maximum attractive force. To
investigate biofilms, for example, one can no longer use the present analogy of the DLVO theory.
Instead, the maximum attractive force would have to be determined experimentally [65].

C. Simulation scenario

To explore the influence of cohesive forces on the sedimentation process of a large polydisperse
ensemble of particles, we further analyze the simulation data first presented by Vowinckel et al.
[45], who investigated the hindered settling of silt particles. In that work, a polydisperse mixture
of particles with a relative density of ρp/ρ f = 2.6 was placed in a tank of viscous fluid to obtain an
initial volume fraction of φv = Vs/V0 = 0.155 [Fig. 2(a)], where Vs denotes the volume occupied by
the particles and V0 = Lx×Ly×Lz = 13.1D50×40.0D50×13.1D50 is the computational domain size.

Consistent with the experiments of [37], we chose a Reynolds number of Re = usD50/ν f =
1.35. The size distribution of the polydisperse particles was continuous with a ratio of
max{Dp}/min{Dp} = 4 obeying a log-normal size distribution, which yields min{Dp}/D50 = 0.6
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FIG. 2. Initial settling behavior at t = 17.6τs: (a) particle distribution, (b) particle volume fraction, and
(c) vertical profiles of particle and fluid stress for Co = 0 normalized by the total stress of the entire
computational domain (�CV = V0) according to (22).

and max{Dp}/D50 = 2.4 for the smallest and largest particle, respectively. A total of 1261 particles
was placed randomly to obtain an almost uniform initial profile of φv [Fig. 2(b)]. We conducted
preliminary tests of dry settling, i.e., neglecting fluid forces, with varying particle distributions and
domain sizes to investigate the dependence of the final deposit on the initial particle distribution.
With the present domain being 40D50 in height, we found no dependence of the final configuration
on the initial particle distribution either. We impose a no-slip condition at the bottom wall (y = 0)
and at the particle surfaces as well as a free-slip condition at the top wall (y = Ly), along with
periodic boundary conditions in the wall-parallel x and z directions. This means that sidewalls are
absent in our numerical simulations. Gravity is pointing towards the bottom wall in the −y direction.
The minimum, median, and maximum primary particle sizes are discretized by min{Dp}/h = 11,
D50/h = 18.25, and max{Dp}/h = 44 grid cells, respectively. It was shown by Vowinckel et al.
[45] by a comparison to the analytical particle settling velocity that the grid resolution of our
computational domain is fine enough to capture the settling behavior of all particle sizes at the
particle Reynolds numbers encountered in the simulations presented in Sec. IV. We spread the
cohesive forces over a shell of thickness λ = h, but it was shown by Vowinckel et al. [45] that the
simulation results are not sensitive to this choice provided that λ < Rp.

Two simulations were performed for different values of the cohesive number: (i) cohesionless
grains with Co = 0 and (ii) cohesive sediment with Co = 5. For both simulations, the particles with
identical initial particle distributions were released from rest in a quiescent fluid to guarantee a
straightforward comparison of (i) and (ii). Subsequently, the particles settle under the influence
of gravity undergoing different settling behavior due to cohesive forces. Following the scaling
argument of [60] presented in Sec. II B above, Co = 5 corresponds to the properties of fine to
medium sized silt in a saline ambient, i.e., the settling of macroscopic silica particles in ocean
water. For example, choosing a median grain size of D50 = 25 μm renders the simulation domain
1 mm tall. As will be shown in Sec. IV below, this choice allows for a simulation domain that is
large enough to capture all relevant processes of particle settling so that the results can be evaluated
along the lines of the effective stress concept.
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FIG. 3. Schematic of the control volumes for (a) the particle interior and (b) the fluid surrounding the
particle.

III. STRESS BALANCE FOR THE FLUID-PARTICLE MIXTURE

To understand the settling and the consolidation of the fluid-particle mixture, we analyze the
balance of the wall-normal stress components for the two phases separately. According to Biegert
et al. [46] and Biegert [47], we can write the momentum balance of the fluid (2) in an integral
sense to obtain fluid stresses for a control volume �CV that extends from the top wall (y = Ly) to
an arbitrary height y in the vertical direction and encompasses the entire domain in the x and z
directions (Fig. 3). We can write the integral form of (2) as

∫
�+

CV

ρ f
∂u
∂t

dV +
∫

�+
CV

ρ f (uu) · n+dA =
∫

�+
CV

τ+ · n+dA, (11)

where �+
CV = �w ∪ �s ∪ �+

y ∪ �
p
CV comprises all surfaces of the control volume shown for a single

particle as a minimal example in Fig. 3(b) and n+ is the normal vector pointing outward from
�+

CV. In addition, we recast the pressure and viscous terms using the fluid stress tensor τ+ =
−pI + μ f [∇u + (∇u)T ], where I is the identity matrix. Here we neglect the effect of the immersed
boundary force, assuming that it is implicitly handled by the fluid stress at the fluid-particle
interface.

All of these terms except for the fluid stress at the particle surface are straightforward to calculate.
However, we can evaluate the fluid stress indirectly using the IBM force, as was done to obtain the
particle equations of motion (4) and (5). That is, the IBM force acts as a jump in stress

∫
LCV

fIBMdV =
∫

�
p
CV

τ+ · n+dA +
∫

�
p
CV

τ− · n−dA, (12)

where we are careful to distinguish between n+, the outward surface normal for the volume �+
CV,

and n−, the outward surface normal for the volume �−
CV, which point in opposite directions.

To evaluate the fluid stress τ− · n− in the particle interior, we can perform a stress balance on
�−

CV [Fig. 3(a)]. The integral form of the Navier-Stokes equations together with divergence theorem
gives us

∫
�−

y

ρ f (uu) · n−dA =
∫

�
p
CV

τ− · n−dA +
∫

�−
y

τ− · n−dA. (13)
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Using (13) together with (12) and (11), we obtain∫
�+

CV

ρ f
∂u
∂t

dV︸ ︷︷ ︸
acceleration term

∫
�w

τ+ · n+dA +
∫

�CV

fbdV︸ ︷︷ ︸
external force

= −
∫

�y

τ · n dA +
∫

�y

ρ f (uu) · n dA︸ ︷︷ ︸
fluid force

−
∫

LCV

fIBMdV︸ ︷︷ ︸
particle force

, (14)

where �CV = �+
CV ∪ �−

CV, �w is the area of the top wall, and �y = �+
y ∪ �−

y . Using the definition
of the horizontal superficial average [66]

〈θ |y〉 = 1

LxLz

∫ Lz

0

∫ Lx

0
θ (x, y, z, t )dx dz, (15)

we can rewrite (14) for the y-velocity component as

1

Aw

∫
�CV

ρ f
∂v

∂t
dV︸ ︷︷ ︸

local acceleration

+〈p|Ly〉 + 2ν f ρ f

〈
∂v

∂y

∣∣∣∣
Ly

〉
︸ ︷︷ ︸

stress on the top wall

= −〈p|y〉 + 2ν f ρ f

〈
∂v

∂y

∣∣∣∣
y

〉
− ρ f 〈vv|y〉︸ ︷︷ ︸

fluid stress

−
∫ Ly

y
〈 fIBM,x〉dy︸ ︷︷ ︸

particle stress

, (16)

where Aw = LxLz is the area of the bottom wall. For this derivation, we have used the fact that μ f

and ρ f are constant throughout the domain. This yields the stress balance of the fluid phase for the
horizontally averaged vertical component of the normal stress

σt, f = σh, f − σw, f + σi, f . (17)

Here

σt, f (y, t ) = 1

Aw

∫
�CV

ρ f
∂v

∂t
dV (18)

is the stress due to local acceleration. Further,

σw, f (t ) = −〈pw|Ly〉 + 2ρ f ν f

〈
∂v

∂y

∣∣∣∣
Ly

〉
(19)

is the hydrodynamic stress on the top wall. The angular brackets denote horizontal averaging. The
hydrodynamic stress due to fluid motion becomes

σh, f (y, t ) = −〈p|y〉 + 2ν f ρ f

〈
∂v

∂y

∣∣∣∣
y

〉
− ρ f 〈vv|y〉, (20)

which comprises pressure and viscous forces as well as convection. Finally,

σi, f (y, t ) = − 1

Aw

∫
Sint

τ · n dA (21)

is the interfacial stress exerted on the fluid by the particles, where Sint is the total area of the fluid
particle interface enclosed in the control volume �CV. In our simulations, we found that σw, f −
σh, f = σi, f holds at all y locations and all times [see, e.g., Fig. 2(c)]. Furthermore, the fluid stress

074305-8



CONSOLIDATION OF FRESHLY DEPOSITED COHESIVE …

was dominated by the pressure term, so we conclude σw, f − σh, f ≈ 〈p|y〉, provided viscous stresses
and stresses due to convection are small. Since the hydrostatic component is subtracted out for (2),
p is equivalent to the excess pressure in the water column [27].

For the particle phase, we sum over all particles within the control volume for the different terms
in the particle equation of motion (4) to get integral quantities

1

Aw

∑
NCV

mp
dvp

dt︸ ︷︷ ︸
=〈σt,p〉y

= 1

Aw

∑
NCV

∮
�p

τyy · nydA

︸ ︷︷ ︸
=〈σi,p〉y=〈p|y〉

+ 1

Aw

∑
NCV

Vp(ρp − ρ f )gy

︸ ︷︷ ︸
=〈σtot〉y

+ 1

Aw

∑
NCV

Fc,p,y

︸ ︷︷ ︸
=〈σeff〉y

, (22)

where NCV is the number of particles enclosed in �CV and the operator 〈·〉y indicates the volume
average over �CV, which is to be distinguished from the horizontal averaging operator 〈·〉 defined
by Eq. (15).

The explicit link between the two phases via the IBM yields that σi, f is equal to the static excess
pressure [cf. Fig. 2(c)]. Hence, (17) and (22) are coupled through the equality −σi, f = 〈p|y〉 =
〈σi,p〉y. Using this equality and assuming 〈σt,p〉y to be small, we can interpret (22) in terms of the
effective stress concept [26]. It was described in this reference that

−〈σtot〉y = 〈p|y〉 + 〈σeff〉y, (23)

where −〈σtot〉y is the weight of the particles submerged within �CV, 〈p|y〉 is the pore water pressure
at location y, and 〈σeff〉y is the effective stress due to particle interactions. For this reason, we
normalize all stresses by the total submerged weight of all the particles 〈σtot〉0 in the following
section.

The weight of the sediment can be computed in a straightforward manner

〈σtot〉y = (ρp − ρ f )g
∫ Ly

y
φv (y, t )dy, (24)

where φv is particle volume fraction and Ly is the length of the domain in the y direction. The
pressure is computed as the horizontal average in plane y, which is the lower bound of the control
volume under consideration:

〈p|y〉 = 1

Aw

∫ Lz

0

∫ Lx

0
p(x, y, z, t )dx dz. (25)

To compute depth-resolved distributions of effective stresses, we introduce a horizontal averaging
operator that uses a step function to distinguish between particles and fluid

〈σeff〉y = 1

Aw

∫ Lz

0

∫ Lx

0

�Vp

Vp
Fc,p,y(x, y, z, t )dx dz, (26)

where Aw is the area of the bottom wall, �Vp is the volume of particle p cut by the horizontal slice,
and Vp is the total volume of this particle. This operator is very similar to the one used in [45] to
compute averages of particle velocities.

IV. RESULTS

A. Settling behavior

After the initial release of the particles from rest, the grains start to settle towards the bottom.
As shown by Vowinckel et al. [45], the kinetic energy of the particles peaks at t = 17.6τs. The
stress balance for this moment is shown in Fig. 2(c). Since both the cohesionless and the cohesive
simulation are initialized identically, their results collapse for this initial stir-up phase. During this
phase, particles have not yet settled out and all the static pressure induced by the particle weight
is transferred to the fluid pressure. As the particle distribution is still fairly uniform [Figs. 2(a)
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FIG. 4. Particle configurations during the settling process for (a) Co = 0 and (b) Co = 5. The color scheme
reflects the vertical velocity and the solid black line denotes the contour of vanishing vertical fluid velocity.

and 2(b)], the two profiles shown in Fig. 2(c) are approximately linear in the y direction. The excess
pore pressure builds up throughout the water column to reach a balance with 〈σtot〉0 at the bottom
wall.

Figure 4 shows the settling process over time as snapshots taken at t/τs = 25% Tsim, 50% Tsim

and 100% Tsim, where Tsim is the total simulation time. The figures show both the instantaneous
particle distribution and a translucent contour slice cutting through the front of the domain showing
the vertical fluid velocity component. Particles are also colored by their wall-normal velocity
component following the color scheme of the contour slices. Since particles appear as opaque
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FIG. 5. Zoom into the lower third of the domain with settling cohesive sediment [Fig. 4(b) at t = 240τs].

objects, the grains in the front are blocking the view on the particles in the back of the domain.
Note, however, that since we are resolving the motion of each particle individually, the number of
particles remains constant throughout the simulations.

As particles start to settle, they replace fluid at the bottom of the tank and generate an upward
counterflow (red regions in Fig. 4 at t = 120τs). For the current simulations, this counterflow
is sufficiently strong to sweep smaller particles upward. This effect is more pronounced for
cohesionless particles. The upwelling fluid represents one mechanism for hindered settling and
for the segregation of the grain sizes for very large water columns [37]. Indeed, it was shown by
Vowinckel et al. [45] that the present data yield excellent agreement with the classical hindered
settling functions of Richardson and Zaki [12] and Winterwerp [14].

As time progresses the impact of cohesive forces on the settling behavior becomes evident (Fig. 4
at t = 240τs). The cohesive sediment starts to built aggregates as particles attach to each other once
they come into close enough contact. The flocculation process is exemplified in Fig. 5, which shows
a zoom into Fig. 4(b) at t = 240τs. For the current physical configuration, cohesive particles are able
to form chains of several particles with varying diameter. Hence, small cohesive particles that bond
to bigger ones move with the settling velocity of the large particle. As a result, smaller particles
settle faster than individual primary particles would. This observation is in line with experimental
evidence [67–69].

This observation is addressed in a statistical sense in Fig. 6. Figure 6 shows the number of settling
particles ns (conditioned by vp > 0.01us). Initially, particles start to accelerate and those that were
initially close to the bottom are immediately filtered out. Later in time, a steady decrease of ns

over time can be observed for the cohesionless sediment, whereas for cohesive sediment ns shows
a slight increase, reaching a local maximum at t ≈ 100τs. During this time, particles are moving
rather fast through the domain, and once they get into contact, they form larger aggregates such as
the one depicted in Fig. 5. Subsequently, the number of settling particles decreases more rapidly for
cohesive sediments as the aggregates settle faster than the noncohesive sediments.

The aggregation process is further addressed by counting all particle-particle interactions of all
settling particles. Throughout the entire simulation time, the average number of direct contacts
ncon and the average number of short-range interactions ncoh (within the distance λ) remains fairly
constant for cohesionless grains. Note that for this type of sediment, short-range interactions are
influenced by lubrication forces only. Cohesive sediment, on the other hand, forms larger aggregates
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FIG. 6. (a) Number of settling particles (vp > 0.01us) over time. (b) Number of direct contacts ncon and
short-range interactions ncoh for all settling particles.

with up to three different particles on average considering direct contacts and cohesive short-range
interaction combined. As larger aggregates settle faster than individual particles, these aggregates
make contact with the bottom wall earlier in time, so the number of particle-particle interactions
summed over all settling particles starts to decay at t ≈ 300τs. As the cohesive sediment settles out
faster than the noncohesive sediment, the counterflow decays earlier in time [Fig. 4(b) t = 480τs].

B. Transition from hindered settling to consolidation

The enhanced settling speed for Co = 5 is confirmed by the horizontally averaged concentration
profiles plotted over time [Figs. 7(a) and 7(b)] following the analysis of Been and Sills [17]. Up to
t = 120τs, the volume fraction contours for the two simulations are nearly identical, as cohesive
forces have not yet had sufficient time to cause a noticeable change. As time progresses, two
fronts become clearly visible for both simulations. The upper front marks the transition between
the clear fluid and the suspended sediment, whereas the second front shows the transition between
the suspended sediment and the sediment bed. The isoline marking this front is called the gelling
concentration [14]. Since cohesive forces result in the formation of flocs with larger settling speeds,
particles accumulate at the bottom of the tank more quickly. At t ≈ 350τs, the two fronts merge
into one for the simulation data of the cohesive sediment. This point in time is called the point of
contraction (POC) and marks the transition between hindered settling and consolidation [27]. The
cohesionless sediment, on the other hand, has not yet reached the POC by the end of the simulation.

The transition from hindered settling to consolidation can also be analyzed in terms of the
effective stress concept (23). To this end, we compute all stress components for �CV = V0, i.e.,
the entire computational domain. To evaluate the effective stress, we compute the normal stresses
due to contact forces in the wall-normal direction. Note that we also computed the normal stress
components in the periodic x and z directions, as will be shown in Sec. IV D below. We found these
two wall-parallel components to be identical, which yields transversal isotropic conditions. This
proves that the width of the simulation domain is large enough to capture all relevant effects of
particle-particle interactions in these directions.

We plot all components entering the effective stress balance (23) over time in Fig. 7(c). It was
shown in Sec. IV A that particles are deposited on the bottom more rapidly for cohesive sediment.
These dynamics are also reflected in the stress balance of the fluid-particle mixture. Recall that
〈p|0〉 is the fluid stress acting on the particle phase, which after the initial phase is equivalent to
the weight of those particles that are still suspended [17,24]. On the other hand, 〈σeff〉0 captures
all particle-particle interactions. Since the forces between two interacting particles in suspension
are opposite and equal, these do not cause a net force on the bottom wall. Thus, 〈σeff〉0 reflects
the weight of those particles that are supported by the external contact forces with the bottom
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FIG. 7. Contours of the horizontally averaged particle volume fraction φv over time: (a) cohesionless
sediment and (b) cohesive sediment. (c) Time evolution of the different components of the particle stress
balance acting on the bottom wall.

wall. After the initial increase of 〈p|0〉 up to 〈σtot〉0, when all of the particle weight is supported
by fluid forces [cf. Fig. 2(c)], 〈p|0〉 decays over time, whereas 〈σeff〉0 increases at the same rate.
Hence, less and less of the particle weight is supported by fluid forces, and more and more of it
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FIG. 8. (a) Vertical stress distributions reflecting the configurations illustrated in Fig. 4. (b) Permeability k
and effective stress 〈σeff〉y as a function of particle volume fraction φv to parametrize the Gibson equation (1).
Circles mark the data used to fit the regression function (Reg) given in the figure.

is supported by interparticle forces within the sediment bed, which illustrates the transition from
hindered settling to consolidation [27]. While 〈p|0〉 and 〈σeff〉0 behave very similarly for cohesive
and noncohesive sediment until t = 180τs, cohesive sediment experiences a systematic shift at this
time that illustrates the enhanced settling due to flocculation. Particles that assemble in flocs are
seen to make contact with the wall at earlier times. Apart from the initial increase, we obtain
〈p|0〉 + 〈σeff〉0 ≈ 〈σtot〉0, whereas the rate of change for both components is approximately linear.
This suggests that the local acceleration does not add to the stress balance of the particle motion
even though the processes under investigation are inherently transient. Interestingly, we obtain
〈σeff〉0 = 0.71〈σtot〉0 for the cohesive sediment at the POC (t ≈ 350τs). This is the same value
observed for cohesionless sediment at the end of the simulation time t = 480τs, where the POC has
not been reached [Fig. 7(a)], but the height of the cohesive sediment bed is much thicker compared to
the cohesionless sediment bed. Hence, comparing Figs. 7(a) and 7(b), we conclude that flocculation
promotes larger pore spaces due to different vertical distributions of effective stresses.

While (22) provides a measure for the volume averaged stresses, we can also evaluate the stress
terms as vertical profiles for all components of (23). The instants shown in Fig. 8(a) correspond
directly to the situations in Fig. 4. As expected, we obtain 〈p|y〉 = 〈σtot〉y far away from the wall,
where all particles are fully supported by the fluid. Initially, 〈p|y〉 decreases linearly with height
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(t = 120τs). Whereas 〈σtot〉y decreases linearly in the suspended region, the profile for cohesive
sediment becomes convex as flocs start to form, which indicates an accelerated settling process.

The increase of the sediment bed thickness is shown by regions with 〈σeff〉y > 0. Again, 〈σeff〉y

increases linearly with height. In addition, 〈σeff〉y and 〈p|y〉 add up to 〈σtot〉y by an imbalance of less
than 1%, illustrating the capability of our method to explicitly compute the stress balance of the
entire fluid-particle mixture.

C. Parametrization of the Gibson model

The Gibson equation (1) was derived in [24] for the simultaneous treatment of sedimentation and
self-weight consolidation by using continuity principles and the Darcy-Gersevanov law

(1 − φv )(v f − vp) = −k
1

gρ f

∂〈p|y〉
∂y

, (27)

where v f is the horizontally averaged vertical fluid velocity and vp is the horizontally averaged
particle velocity. Solving (1) requires constitutive relationships for the parameters k and σeff [70].
According to [24], it has been a common assumption that k and σeff depend on the volume fraction
only, even though it was discussed in this reference that the assumption can not hold for σeff, which
must be zero in a suspension while φv is not.

We can test this hypothesis by computing k and σeff based on (27) and (22). If k and σeff were
functions of φv only, then the data from different instants in time would collapse on a single master
curve. This is illustrated in Fig. 8(b) for the data plotted in Figs. 4 and 8(a). The curves for the
different quantities and different times do not collapse and the lines are highly convoluted in some
regions. While this is due to the semilogarithmic plot style as k and σeff approach zero, we can
clearly identify three characteristic regions for both quantities. (i) A suspension region (φv < 0.25)
has a high permeability, which decreases rapidly as φv decreases. This behavior is most pronounced
at t/τs = 120, when most of the particles are still in suspension. Since there are hardly any particle-
particle interactions in this region, σeff approaches zero. In addition, the lines of k and σeff are highly
convoluted around φv ≈ 0.15. Hence, as expected, the assumption of k and σeff being a function of
the volume fraction only does not hold in this region. (ii) A consolidating region (0.25 < φv < 0.58)
has an exponential decay of k and increase of σeff, respectively, as φv increases. Hence, this region
serves very well to derive scaling laws for k and σeff. (iii) A jamming region (φv = 0.58) has large
values for σeff representing the layer formed at the very bottom of the domain that holds the weight
of the entire overlying sediment. As the fluid flow ceases and the soil becomes fully consolidated, k
approaches zero as well.

As a result, we obtain a mean permeability of k/us = 5.7×10−4 within the sediment bed. We
can convert the nondimensional permeability into dimensional quantities choosing D50 = 20 μm,
ρp = 2600 kg/m3, ρ f = 1000 kg/m3, and g = 9.81 m/s2. This yields us = √

D50g(ρp − ρ f )/ρ f =
1.8×10−2 m/s and a dimensional value of k = 1×10−5 m/s. This value corresponds very well to
the permeability of a semipervious medium such as very fine sand or silt [71], which is exactly
in line with the chosen values for Co and Re that are meant to represent primary particles with a
median grain size of silt.

Le Hir et al. [28] and Grasso et al. [29] have used power laws as constitutive relationships
to parametrize k and 〈σeff〉. Based on the observation above, we can immediately conclude that
fitting a power law function over all three regions will result in a poor fit. Hence, we performed a
regression of a power law for regions (ii) and (iii) in Fig. 8(b) for all data that are marked by the
circles. The fitted functions have different coefficients for cohesive and noncohesive sediments. Fair
agreement for region (ii) can be achieved, but region (iii) is not well described for k. The coefficient
of determination R2 ranges between 0.67 and 0.81, which is satisfactory. Hence, the presented data
highlight the capability of our simulation approach to improve parametrization strategies for the
Gibson equation. However, larger simulations for a wider range of cohesive numbers and larger
Reynolds numbers are needed to obtain a better scaling of k and σeff.
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FIG. 9. Zoom into the horizontally averaged interparticle stress at the time when σc,p/σg,p = 0.71 corre-
sponding to t = 480τs and t = 346τs for cohesionless and cohesive sediments, respectively: (a) direct contact,
(b) unresolved lubrication, and (c) cohesion.

D. Interparticle stress

While the analysis in Sec. IV C provides insight into how the support of the granular weight tran-
sitions from hydrodynamic forces to collision forces with the bottom wall, it does not characterize
internal granular stresses parallel to the wall since sidewalls are absent in our numerical simulations.
As a consequence, all interparticle forces are opposite and equal in this direction. On the other hand,
the weight of the particles Fg does not cancel out for contacts in the wall-normal direction, so contact
forces at a given height reflect the weight of the overlying sediment. We applied the operator (26)
to all contact forces summarized by Eq. (6). We define σ⊥ = σyy as the normal stress acting in the y
direction, whereas σ‖ = 1

2 (σxx + σzz ) denotes the normal stresses acting parallel to the wall. Having
this analysis in place, we can further subdivide the effective stress into its components comprising
stresses due to direct contact σd , unresolved lubrication σl , and cohesion σcoh.

Since we focus on the sediment deposit, Figs. 9(a)–9(c) show a close-up of the bottom part
of the domain. For cohesionless sediment, the data were taken at the final simulation stage, i.e.,
t = 480τs. At this stage, 71% of the particle weight is supported by contact forces. For a meaningful
comparison, we take the data from the cohesive sediment simulation at t = 346τs, when they have
the same value of 〈σeff〉0. For both simulations, it becomes immediately obvious that stresses due to
direct contact [Fig. 8(a)] are one order of magnitude larger than the other two components [Figs. 8(b)
and 8(c)]. As expected, the nearly linear profiles of σd,⊥ reflect effective stress as the weight of
the sediment beds. The steeper slope of the curve for cohesionless sediment is consistent with the
fact that it is packed much more densely. The horizontal component σd,‖ shows significant stresses
within the sediment deposit that peak at y/D50 ≈ 2. These are more pronounced for cohesive
grains. Throughout the sediment column, unresolved lubrication stresses remain small [Fig. 8(b)].
This holds for both simulations and is expected as most of the lubrication forces are resolved by
the IBM. Figure 8(c) shows significant cohesive forces throughout the entire sediment deposit.
Interestingly, the vertical component σcoh,⊥ is smaller than the horizontal component σcoh,‖. From
a physical point of view, the horizontal intergranular stress due to cohesionσcoh,‖ prevents particles
from arranging themselves into the densest packing formation, while the vertical cohesive stress
σcoh,⊥ works towards a more rapid consolidation of the sediment. In the present simulation the
horizontal component exceeds the vertical one, and we conclude that even small cohesive forces
enable the deposited particles to remain in flocs as they are subjected to the weight of the particles
settling from above. This effect accounts for the lower sediment volume fraction at the bottom of
the tank for the cohesive sediment simulation (Fig. 7).
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V. CONCLUSION

The present study successfully applied phase-resolved simulations to the situation of consolida-
tion of freshly deposited cohesive and noncohesive sediment. To this end, we have derived a stress
balance based on the governing equations that makes a direct connection to the effective stress
concept. The simulations fully resolve the three-dimensional flow field and provide an efficient way
for excluding sidewalls from the analysis by employing periodic boundary conditions. The highly
resolved data yield a physical interpretation of the effective stress as the part of the sediment weight
that is supported by external contact forces with the bottom wall, as well as a full parametrization
of the Gibson equation.

An analysis of the intergranular stresses clarified the respective roles of direct contact, unresolved
lubrication, and cohesive forces during consolidation and dewatering of a freshly deposited bed. For
the presented data, we found that direct contact forces dominate over the other two components. As
a result of the attractive van der Waals forces, cohesive sediment experiences larger intergranular
stresses due to direct contact forces. Within the sediment deposit, cohesive forces yield intergranular
stresses that lead to larger pore spaces than obtained for the consolidation of cohesionless sediment.

Hence, the test case presented here encourages further studies with larger physical domains and a
larger number of particles to achieve more realistic settling conditions. For example, larger domains
could accommodate three-dimensional instabilities of particle-induced viscous fingering in the flow
field [30,31] and the stress balance presented here could further enhance the development of two-
phase flow model closures such as the μ(I ) rheology [73,74] or kinetic theory [75]. In addition,
thicker sediment beds could lead to self-weight consolidation in a creeping motion [19,72]. To
extend the present simulation approach from macroscopic silica grains towards aggregates of mud,
a more realistic description of the particles is needed [6]. For example, the physical properties of
the spherical particles used in the present study could be extended to particles that are porous and
compressible [76] so that a description of creeping consolidation and dewatering becomes possible.
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