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Abstract 

Monte Carlo simulations are inherently compute-bound. Although short computa­
tions may provide order-of-magnitude estimates, long CPU times are generally required 
to achieve the accuracy needed for reliable comparison of Monte Carlo results with 
experiment or theory. The advent of supercomputers, which have made possible 
significantly increased computer speeds for those applications which are amenable to vec­
tor or parallel processing, thus offers promise for Monte Carlo applications. In fact, 
l\'fonte Carlo codes are often highly parallel, and offer multiple avenues for both paralleli­
sation and vectorization. 

'vVe explore the gains to be obtained with supercomputers for the quantum Monte 
Carlo (Qi\IC) method. The QMC algorithm treated here is used in quantum mechanical 
molecular calculations, to obtain solutions to the Schrodinger equation. This approach 
has recently been shown to achieve high accuracy in electronic structure computations. 
Q~·fC is here demonstrated to fully take advantage of parallel and vector processor sys­
tems. Levels of parallelism are discussed, and an overview of parallel computer architec­
tures, as well as present vector supercomputers is given. 'vVe also discuss how one adapts 
Q~vfC to these machines. Performance ratios (versus scalar operation) for a number of 
supercomputer systems are given . 
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I. Introduction 

Many-body problems m physics are often treated by a Monte Carlo approach [1]. 

The Monte Carlo method is statistical in nature; based on the generation of "random" 

numbers or "coin tosses," it derives its name from a city famous for the random 

numbers embodied in its games of chance. Easy as it is to imagine using the Monte 

Carlo method for treating inherently statistical models, or even for numerical integration 

[2], it is less obvious how to solve many-body problems. Nevertheless, many such prob­

lems are readily treated by Monte Carlo. Of particular interest to chemistry are the 

quantum mechanical Monte Carlo methods [3!. These have recently been applied sucess­

fully to a number of molecular problems [4-9], where they have achieved very high accu­

racy compared to experiment and exact results (where available). In most cases, 90-

100% of the correlation energy has been obtained. Such quantum Monte Carlo (QMC) 

approaches stochastically solve the Schrodinger equation. Thus QMC provides an alter­

native to the conventional techniques of quantum chemistry. 

Monte Carlo algorithms are almost entirely compute-bound, doing almost no I/0 

and requiring minimal memory. Since Monte Carlo is a statistical procedure, high preci­

sion (i.e., knowledge of many decimal places) can require long computer runs. This is 

because statistical uncertainty decreases slowly with computational time, going as 

c (time )--12, where c is a constant. Because high precisi,on is required in chemistry, 

where most properties are obtained _as differences of alm_os_~ equal large numbers, long 

computation times are often necessary. 

One direction in addressing the problem of high preciSion is strictly algorithmic. 

An algorithm which has a significantly smaller value for the constant c will run faster 

by the ratio of these constants. Importance sampling [2,3) falls into this category of 

algorithmic approach. Other algorithmic approaches, like differential Monte Carlo 

methods [10), mcrease preciSion by computing energy differences directly. A 
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complementary direction m obtaining higher precision is machine oriented. In Monte 

Carlo applications, increases in computational speed translate into increases in precision. 

Vector and parallel processors promise vast enhancements in speed for those codes able 

to take advantage of these architectures. Most Monte Carlo codes, and the molecular 

QMC code in particular, can use these architectures extremely efficiently. 

In Section II we highlight some features of QMC theory and the corresponding algo­

rithm, exploring levels of parallelism. In Sect. III we present an overview of vector pro­

cessors, vectorizing QMC for these machines, and the enhancements in speed thus 

obtained. Sect. IV gives a discussion of parallel processing, including the various types 

of architectures which are categorized under this heading. Further, we discuss the gains 

that QMC can obtain through the use of parallel machines in terms of efficiency in using 

all processors. In conclusion, Sect. V gives a brief comparison of the quantum Monte 

Carlo speed enhancements achieved on supercomputers with those achieved by ab initio 

methods. 

II. Quantum Monte Carlo 

For the purpose of this discussion, our goal will be the solution of the time­

independent Schrodinger equation H 'li=E \ll for the energy E. Expectation values, 

<A >=<'lll A I '11>, can also be_obtained, however these details [11] obscure the 

main features of the approach, and so here we focus on E. It is readily apparent that 

the ground state of the time-independent Schrodinger equation is the steady-state solu-

. tion to the equation [5,6] 

~~ =D 'V 2\ll + [E-V (R )]'li(R ,t) . (1) 

Here R is the vector of coordinates of .all N particles in the system. If the particles 

being treated quantum mechanically are all electrons, 'V 2 is simply the 3-N dimensional 
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Laplacian and D =~2/2me . Note that Eq. 1 is simply a diffusion equation combined with 

a first-order rate process. The function 'II(R ,t) has the meaning of the density of 

diffusing particles, which may increase or decrease locally according to the rate term 

[E-V (R )]'II(R ). Such a diffusion process is readily simulated on a computer, and such 

simulations have been performed for simple molecules as long as a decade ago [12]. 

A key issue in treating molecular systems is the proper handling of the Fermi 

nature of electrons. The requirement that the wave function 'II be antisymmetric with 

respect to particle exchange leads to a wave function which, for more than two electrons, 

must have negative as well as positive values. In this situation, Eq. 1 may no longer be 

simulated as a diffusion process, since the density of diffusers 'II(R ,t) would no longer be 

everywhere positive. A number of methods have been proposed to deal with fermions 

[13,14]; the most stable algorithmically, as well as precise statistically, entails a small 

variational approximation known as the fixed-node approximation [13]. The antisym­

metry constraint on 'II(R) is built in by specifying in advance the nodes of the wave 

function to be those of a trial wave function 'llr (R ). A random walk simulation is per­

formed separately in each volume element bounded by these nodes. Since the sign of 'II 

does not change within a volume element, the problem with 'II being a density is 

removed. (Excited-state Fermi calculations may be done similarly, using such built-in 

nodal constraints [15].) The function 'II T (R) can further serve as a guiding function for 

importance sampling, during the Monte Carlo random walk. Such a guided walk pre­

ferentially samples regions of configuration space where the true wave function is 

expected to be large, and avoids divergent rate coefficients, such as that which occurs in 

Eq. 1 when an electron approaches either another electron or a nucleus. 

The result of introducing importance sampling and the fixed-node approximation 

into Eq. 1, is to leave it as essentially a diffusion equation with branching-- though now 

... 
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with an overall drift, and a modified branching term. The resulting equation is solved 

stochastically by allowing a set of diffusers ("random walkers") to evolve in time until a 

steady-state asymptotic distribution, is obtained [5]. Properties such as the energy are 

measured as the walkers proceed in this asymptotic distribution, and are thus averages 

over that distribution. The time evolution is achieved by using a Green function 

G (R -R I ,7) which evolves a walker at time t at coordinate R to time t+7 at coordi­

nate R 1
. The algorithm which performs this time evolution by Monte Carlo is quite 

simple. It is summarized here. 

(1) Nested loops over initial conditions. In most cases, a number of different initial con­

ditions are of interest. For example, in calculating a potential-energy surface, various 

separate calculations at different nuclear geometries must be performed. In other calcu­

lations, a number of different trial functions may be used, for example to ascertain 

basis-set dependence. ln. still other instances a n urn her of calculations with different 

time-steps 7 are required for extrapolation to 7-0, if the short-time approximation [5,6] 

is used. One may also want to perform a set of runs differing only in the initial "seed" 

for the random number generator. Such runs would not suffer from the serial correlation 

present in the block averages (see below). It is furthermore conceivable (and common) to 

need to loop over multiple initial conditions. For example, one may need to loop over 

geometries, at each geometry perform a loop over 7, and perhaps, at each 7 perform a 

loop over random seeds. Each of these loops is entirely independent of one another. 

For a given set of initial conditions, one generates an ensemble of Nc (typically 100-

500) spatial "configurations" of the N-electron system. These coordinates may be chosen 

randomly, or for greater efficiency in reaching the asymptotic distribution, they may be 

drawn from the distribution I 'l'r{R) 1
2. 

{2) Loop over blocks. A block IS an almost statistically independent 
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"sampling unit." Each block is a complete Monte Carlo "run," which 

provides estimates of the properties being sampled. Generally, the total 

microscopic sampling time (or "target time") in a block is taken as 

approximately one atomic unit or longer, in order to minimize the statisti­

cal (serial) correlation between blocks. This target time defines the length 

of a block. Calculation of a block entails: 

(3) Loop over configurations in the ensemble. For a partic­

ular configuration, one "measures" the properties of 

interest, such as the energy. (When using a trial function, 

the energy measured is the local energy. In the case of Eq. 

1, the potential energy is measured.) Perform the random 

walk by: 

(4) Loop over the electrons. Each electron 

will diffuse and drift as prescribed by the 

Green function. One must check if a node 

has been crossed in this process. In the 

fixed-node approximation, if the answer IS 

"yes," eliminate the configuration. If no, 

Continue the loop over electrons. 

After all electrons have been moved, one advances the time 

in the current configuration by T. The branching factor, or 

multiplicity M, which is also given by the Green function, 

is computed. This factor comes from the rate part of the 

differential equation (see e.g. Eq. 1). M copies of the 

current configuration are placed in the ensemble in place of 

the starting configuration. Averages for this configuration 
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are weigh ted by M. 

Continue the loop over configurations . 
. 

At this point, all surviving configurations in the ensemble have reached 

the target time. The current block is finished. Store the current aver-.. 
ages. "Renormalize" the ensemble back to Nc to avoid the otherwise 

inevitable overflow, or total death, of configurations in the ensemble.[3] 

Continue the loop over blocks. 

The pre-determined number of blocks have now been computed. Averages and standard 

deviations over the blocks are 'computed. This provides a Monte -Carlo estimate of the 

mean and standard errors of the quantities of interest for a particular initial condition. 

Continue the loops over initial conditions. 

In this outline, we have not included many of the details of the calculation, in order 

to focus more on the levels of parallelism and nesting. We have mentioned the key 

loops--many of which are totally independent of one another. This allows for a variety 

of options in creating efficient vector and parallel algorithms. The nominal communica-

tion overhead is particularly attractive, as it is beneficial in virtually every parallel archi-

tecture. 'We note, however, that the choice of loops vectorized can have an appreciable 
. 

impact on the amount of memory required. Replicating the whole program over initial 

conditions is only practical if the original code uses very little memory--as is the case for 

QMC. 

Iii. Vector processors 

.. 
Scalar computers perform sequential arithmetic operations on individual data ele-

ments. These are single-instruction, single-data (SISD) architecture machines. In con-

trast, vector processors are designed to perform identical arithmetic operations simul-
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taneously on multiple data elements (single-instruction, multiple-data or SIMD). Thus, 

in order that vectorization can be performed, there needs to be one operation to be per­

formed on many data elements at a given moment. (However, only certain operations on 

these elements are allowed.) Generally the compiler, together with some user directives, 

is responsible for finding such operations. What the compiler can recognize, even with 

user directives, is critically dependent on a program's overall structure. Thus structure 

as much as such conventional factors as cycle time, compiler efficiency, and memory 

access time, has a major effect on speed. A useful measure of the adaptability of a 

specific program to a vector machine is the ratio of its scalar run time to its vector run 

time on the same machine. For inherently scalar programs this number will be close to 

unity. Programs which make full use of ·a vector processor's capabilities will have much. 

larger ratios. T~ examine the adaptability of QMC to vector processors, we performed 

test runs on a two-pipe and a four-pipe CDC Cyber 205, and on a Cray IS and one pro­

cessor of a Cray X?vfP. 

The CDC Cyber 205 [16], cons~sts of a fast scalar processor in addition to a 

memory-to-memory vector processor. Vector arithmetic instructions are executed in two 

phases. General-purpose functional units (pipes) are initially filled or emptied during the 

startup phase. The time consumed during this period is independent of the vector 

length, and typically takes on the order of 50 machine cycles. During the stream phase, 

CPU time consumed is directly proportional to the vector length, and inversely propor­

tional to the number of pipes. On a two-pipe machine, fot example, a vector addition 

.uses the first pipe to add the odd pairs of operands, while the second pipe simultane­

ously adds the even pairs. This sort of operation yields two results per cycle. Similarly 

a four-pipe machine produces four results every cycle. Up to a maximum of four pipes 

are available on the Cyber 205. It should be noted, however, that not all vector opera-
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tions benefit from increasing the number of pipes. Furthermore, for a fixed number of 

pipes, certain operations are performed faster than others. Thus the ultimate speed 

attainable on the Cyber 205 is dependent not only on the degree to which the code can 

be vectorized, but also on the type of vector operations being performed. Further, 

although floating-point operations are normally done in full precision {64 bits), a facility 

'"' has been provided for the user to code in half-precision {32 bits). In most cases this dou­

bles both the speed and the amount of memory available [17]. Another feature of the 

Cyber 205 is the large, diverse instruction set available to the FORTRAN user. This 

enables one to convert many standard FORTRAN constructs directly into vector 

instructions. Thus vectorization of an algorithm does not depend strictly on the clever­

ness of the compiler. 

'" 

The Crays [18], like the Cyber 205, combine fast scalar capability with vector pro­

cessmg. Unlike the Cyber 205, however, Crays are not memory-to-memory machines. 

Instead, vectors are loaded from memory into one of 8 vector registers, each holding 64 

words of 64 bits each. From these registers the numbers are sent to one of 12 specialized 

functional units where arithmetic operations are performed .. Operations involving 

seperate functional units can proceed concuren tly. All result vectors are returned to the 

vector registers. Since each operand does not have to be fetched or each result stored in 

memory, operations are performed much faster. The vector registers act a.s fa.st cache 

memory. As a result Cray vector instructions are characterized by relatively short 

startup times, rangmg from 2 to 14 clock cycles. Clock cycles range from 12.5 

nanoseconds on the Cray IS to 9.5 ns on the Cray XMP -.:. in constrast to 20 ns for the 

Cyber 205. On the other hand, Cray machines have a relatively small number of 

instructions available to the FORTRAN user, which can hinder vectorization of some 

codes. 
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Direct quantitative comparison of the Cyber 205 and the Crays is difficult because 

their different capabilities give rise to differen't optimal coding techniques. Nevertheless, 

some general conclusions may be drawn. In applications involving short vectors, the 

Crays seem to be superior due to their shorter startup times. Their faster clock cycles 

will also give them an advantage in many applications. However, for long loops, and in 

cases where explicit vector instructions are necessary, the Cyber 205 (especially with 4 

pipes) may be more desirable, due to its higher processing rate per machine cycle, and its 

large, diverse set of vector FORTRAN instructions. 

The QMC algorithm, as described in Sect. II, is well suited to scalar machines. 

However, this structure prevents it from being vectorized efficiently. Typically only the 

inner loops of a program can be vectorized. The longer a loop the more efficient the pro-

cess [19]. The innermost loops, however, are over the electrons and over the basis func-

tions. The number of electrons, and even the number of basis functions, is relatively 

small for the systems currently being considered. For example, vectorizing these loops 

for CH'> [20] yields a scalar/vector ratio very close to unity on both the Cray 1 and the .. ' 

Cyber 205. A similar result is obtained for the carbon atom [21]. This algorithm is 

clearly not taking advantage of the vector architecture. Even writing explicit vector 

code (for the Cyber) [20] and using it only for vectors longer than an optimized length 

C • ~16 (optimized to minimize the effect of the vector start-up time) leads to a 

scalar/vector ratio only in the range of 1-1.5, depending on the number of basis func-

tions. Much longer vectors are clearly needed for these machines to show their abilities. 

A more appropriate arrangement of the. code -- that will allow the compiler to 

create a long vector -- is to make the loop over configurations innermost. This involves 

storing a linear array the size of the ensemble for every quantity in the original loop over 

configurations. Since each configuration is independent of the others, and since the 
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number of configurations is usually quite large, this restructured algorithm should be 

much more efficient. Certain operations in the inner loop pose something of a problem, 

however, since they are performed on some configurations but not others. These can 

nevertheless be vectorized by using special mask operations available on all the machines 

we considered. The restructured algorithm does, however, require considerably more 

memory than the original form. Nevertheless, the minimal memory requirements of the 

scalar algorithm are such that the vector code still requires only a small memory alloca­

tion. 

We note that even the scalar VAX time obtained with the restructured algorithm 

shows a speed-up in execution of about 40%. This type of tradeoff between speed and 

memory is common. When automatic vectorization is invoked on the Crays and Cybers, 

CPU time drops by a factor of roughly three. The current generation of compilers, how­

ever, have only a limited capability to recognize vectorizable code. To achieve faster 

execution it was necessary to explicitly hand-vectorize portions of the program. In 

Tables i and 2 we present the results achieved. Scalar /vector ratios range from 5-6 for 

a vector length of 100, and from 6-10 for a vector length of 500. (In actual QMC calcu­

lations the ensemble size is generally in the range of 100 to 500.) Thus overall, for avec­

tor length of 500, we achieve a factor of 117-186 over a VAX 11/780 running the same 

code, and a factor of 192-304 over the same V A.X running the original algorithm. It is 

also important to note that in comparing speeds with the V A..X we are comparing single 

prec1s1on on the VAX (32-bits--this is all that QMC requires in most cases) with single 

prec1s1on on the supercomputers (64 bits). For comparisons with equal numbers of 

significant figures, one must use single precision on the VAX and half precision on the 

supercomputers (where available), or double precision on the VA ... X and single precision 

on the supercomputers. In such a comparison (for a vector length of 500) we expect to 
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achieve a speed-up over the VAX (for the same code) of roughly 370 on the Cray XMP 

and about the same on the four-pipe Cyber 205. This is a significant increase, especially 

when compared with the naive vectorization [20] of the scalar algorithm, which only led 

to factors of 20 to 30. Expressed in millions of .floating-point operations per second 

(MFLOPS), we obtain an average rate of roughly 70 MFLOPS on the Cray XMP and on 

the four-pipe Cyber 205 at a vector length of 500. This is to be compared to the 14 

Livermore kernels, which range from 3-150 MFLOPS on the Cray XMP, and average 

either 50 or 58 MFLOPS depending on the use of compiler directives [22a]. The har­

monic mean, which is a better indicator of the actual speed of a code running sections 

going at different rates, gives an average rate of roughly 14 MFLOPS for the Livermore 

kernels on the Cray XMP [22b]. On the other hand, in half-precision we would expect 

our code to achieve an average rate of about 140 MFLOPS. We note especially that 

these rates are for the code ove.rall, not just for selected parts of it. 

IV. Parallel Processing 

A more ambitious approach than the SIMD vector machines are the fully parallel 

:MIMD (multiple-instruction, multiple-data) structures, in which parallelism is achieved 

at the processor level, rather than with the functional units. The two approaches, how­

ever, should not be viewed as mutually exclusive. Ideally, one can envision a system 

that encompasses both strategies, i.e., a multiprocessor system whose component proces­

sors are capable of vector processing. Such an approach allows for more rapidly solving 

those problems that are vector decomposable, as well as solving a multitude of problems 

that are not [23]. QMC (and other Monte Carlo) can be decomposed simultaneously into 

vector and parallel parts, gaining from both types of architecture. 

A number of new computational issues arise when approaching a parallel processing 

system. Thf: first, of course, is in understanding the level of parallelism that a problem 
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manifests. Such parallalism may exist, for example, at the "fine-grained" instruction 

level. Pipelining techniques of the vector supercomputers currently avail themselves of 

this form of parallelism. More ambitious approaches have been concerned with the con­

struction of multiple-instruction pipes [24j and with data-flow architectures [25j. At the 

opposite extreme, the highest level of parallelism may be the segmentation of a problem 

in to a group of concurrent co-operative sub tasks, or even replication of the entire pro­

gram with, for example, differing initial conditions, constraints, etc. (see Sect. II). 

Closely related to the understanding of a program's parallelism is the question of 

how best to express this in a programming language. Is it adequate to modify an exist­

ing language with appropriate constructs, as done for vectorization, or must a new 

language be defined? Further, to what relative degrees shall the programmer or the 

compiler be responsible for the program decomposition? To a first approximation, it is 

generally conceded that the finer the grain size, the more emphasis must be placed upon 

the "intelligence" of the compiler. The higher levels will require greater participation of 

the programmer with perhaps interactive compilers. 

Even with some understanding of the level of parallelism that a problem exhibits, 

and of how to map it onto a system of co-operative processors, there remains the critical 

issue of how best to implement processor coordination. This is related to the general 

issue of communication. Two broad approaches have been most extensively analysed in 

this regard: tightly- and loosely-coupled systems. Tightly-coupled systems may be 

thought of as a collection of processors that share a global memory. Important for such 

systems is the selection of a processor/memory interconnection network [26]. This net­

work must ensure that the potentially very high interprocessor communication 

bandwidth is not degraded by memory contention conflicts and slow arbitration schemes. 

Further, in the event that the processors retain an additional private memory or data 



14 

cache, it is vitally important that local data be correct in a global sense, i.e., data 

updates or modifications must be distributed across private memory boundaries. This 

latter criterion is the essence of what is known as the cache coherency problem [27]. The 

loosely-coupled alternative approach encompasses multiprocessor systems that operate as 

high-speed local-area networks. Here the problem of resource contention and validity is 

replaced by the concern with how interprocessor communication may be most effectively 

implemented, and the degree of system-wi~e connectivity that the applications merit. In 

the event that complete pairwise connectivity is required, bus structures may be 

employed. Higher communication band-width, however, requires more elaborate and 

costly interconnection networks [26]. Alternatively, in some applications static 

geometries of processors with solely nearest-neighbor communication abilities are 

sufficient. These generally are special-purpose machines with only a few applications. A 

number of such systems have been designed with topologies such as grids, rings, trees, 

pyramids, hypercubes, and other exotic structures [26,28]. In examples such as these, 

the architecture is designed to embody as closly as pbssible the "model of computation" 

required by the application. Every problem has some "natural connectivity" [28]. Hav­

ing established the connection scheme, there still remains the specification of communi­

cation protocols and communication method (e.g., packet switching, memory circuit 

switching, etc.). 

However the issue of processor coordination is resolved--whether in favor of loosely­

or tightly-coupled architectural approaches--there still remain other issues. For example, 

should an application require intensive data throughput ( > 10 Mbytejsec ), it may be 

necessary to design specialized input and output processors, an addition~! interconnec­

tion network to distribute data, and sophisticated mass storage subsystems. Other 

system-level issues to be dealt with are job dispatching, fault tolerance, the ability to 
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control synchronization and data broadcasting among processors, and of vital impor­

tance, the ability to monitor system performance while experimenting with problem 

decomposition. 

At present there exists no consensus as to what approach is best. While many sys­

tems have been suggested, relatively few have actually been constructed and tested. 

Moreover, those that have, of necessity have been prototypes with small numbers of pro­

cessors ( ~ 2-64) and usually with limited memory and .J/0 capability. Thus the bench­

marking of real, large-scale problems has consisted primarily o_f extrapolation of the 

results obtained on these prototypes, into the region of the large numbers of processors 

(~ 1~1000) envisioned for future systems. These considerations led to the design and 

construction of a parallel processing system called MIDAS [29] at the Advanced Com­

puter Architecture Laboratory at the Lawrence Berkeley Laboratory. MIDAS (Modular 

InteraCtive Data Analysis Systems) has combined many of the advantages of both 

loosely- and tightly-coupled architectures (high communication speeds without resource 

contention), and dealt explicitly with 1/0 intensive problems. 

Since Monte Carlo probl"ems are so ideally suited to multiprocessor systems, we 

have adapted QMC to MIDAS (and MIDAS to QMC) [30]. The most intuitive and usu­

ally most efficient means of distributing a Monte Carlo computation is such that each 

processor is responsible for performing an independent statistical sample. An ensemble 

average replaces a time average in those Monte Carlo applications where equilibrium 

time averaging is performed. Actually, one has an ensemble average of time-averaged 

quantities. Increasing the number of processors substitutes more elements in the ensem­

ble for parts of the time average. This, however, also raises the overhead of equilibrat.­

ing all members of the ensemble. Some Monte Carlo applications involve only ensemble 

averaging, and these are most readily modified for parallel execution. The decomposition 
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of QMC chosen for MIDAS was to give each procesor initially an equal fraction of the 

total ensemble. This choice, rather than e.g. breaking up the calculation over blocks or 

initial conditions, was dictated by the limited memory size of the individual processors 

(128 Kwords). 

In Monte Carlo, the necessity of inter-processor communication is primarily depen­

dent on whether the sampling conditions or rules change as a function of previous sam­

ple estimates. In the event that such conditions remain constant, communication may 

be unnecessary (other than that required for averaging the final estimates of each proces­

sor). If, on the other hand, the set of estimates from all processors needs to be assessed 

for the purpose of defining a new sampling condition, periodic communication is 

required. Such a synchronization step represents a "critical section" of the problem. 

The computation may be thought of as a "fork and join" process, wherein processors 

fork to arrive at their estimates, followed by a join operation to define the new sampling 

condition. The join represents the critical section that must be performed prior to 

another fork. This type of critical section was explicitly realized in the QMC calculation: 

Each processor calculated an estimated energy by allowing its configurations to perform 

random walks for a fixed number of time steps. When the last processor completed this 

operation, all local estimates of the energy were combined to update the trial energy for 

the next sample period. 

The MIDAS structure can be configured in a number of ways. The structure 

chosen to implement QMC was that of a master /slave topology. In this configuration, a 

single processor acts as the master and performs the join operation of updating the trial 

energy. Thus it was responsible for polling the slaves to ascertain whether they had 

completed their samples. In the event that all were completed, it read the current 

energy value, recalculated the trial energy, wrote this value into each slave processor's 

.. 
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memory, and initiated (forked) the next sample period. At a lower level, the master was 

also responsible for detecting abnormal conditions or failures in each of the slave proces­

sors (underflow, overflow, memory parity errors, etc.). In the event that such conditions 

were uncorrectable, the master deallocated the processor in question, while increasing the 

sub-ensemble populations in the remaining processors such that the total ensemble 

remained constant. If any processor's population of configurations died entirely during a 

sample period (as happens more frequently with larger time steps) the master was 

responsible for downloading a new set of configurations to that processor prior to initiat­

ing a new sample period. This process of augmenting a processor's population was made 

by randomly selecting surviving configurations from neighbor processors. 

Modifications to the original serial QMC code were fairly minor [30]. A subroutine 

was added that· performed all of the master functions described above. It is called in the 

master once all initial conditions have been set, and the sampling portion of the code 

downloaded and initiated in each slave processor. This routine, consisting of several 

hundred lines of FORTRAN, executes system routines [31] which read and write selected 

variables within slave processors' memories, which poll processor status conditions, and 

which start execution at selected program addresses. Modification of the QMC code that 

was executed in each slave was minimal. It consisted of setting software flags for various 

conditions at the end of a sample period, and thereafter calling a system routine that 

suspended execution at a particular instruction address. This latter address and condi­

tion was recognized by the master as the termination of a normal sample period. 

We now address how well QMC performs on a parallel system. Since the efficiency 

of a multiprocessor calculation may be defined as the fraction of time that an average 

processor is employed in performing useful work, 100% efficiency corresponds to a P-fold 

increase in speed over a uniprocessor, for a ?-processor machine. Because of the random 
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nature of the QMC birth/death process, the time for a gtven processor to complete 

(before the next "join") isitself randomly distributed. Hence, in this implementation, a 

processor upon completion of its calculation, is forced to remain idle until the last pro­

cessor has finished. Only at that point does the master compute the new trial energy 

and reinitiate the slave processors. Thus the efficiency can be approximated as 

tave / t maz, where tave is the average time at which the processors finish and t maz is the 

average time at which the last processor finishes. With MIDAS configured with 8 slave 

processors, calculations were performed for the saddle-point energy of H3, and the 

ground-state energies of N and of N2. These calculations ran at approximately 95%, 

85%, and 80% efficiencies respectively. Decreasing the number of processors increased 

the efficiencies to a small extent, but, of course, at the expense of decreasing the overall 

computational rate. The decrease in efficiency with the number of processors is attribut~ 

able to t maz increasing with P, as one samples further under the tail of the distribution 

of finishing times. The decrease in efficiency with the larger molecules may be attributed 

to sampling from a broader distribution. 

Although the actual calculations were performed as described above, the parallel 

algorithm can be readily modified to improve overall performance. The master can be 

programmed to perform dynamic load balancing as the sampling process proceeds. Any 

processor completing its work can be given additional configurations, extracted from pro­

cessors which still have unfinished ones waiting to run. It should also be noted that the 

need for even the minimal interprocessor communication, and its resultant inefficiency, 

could have been entirely eliminated had each slave processor had sufficient, memory to 

hold the entire ensemble. In this case the loop over blocks or any (or all) of the loops 

over initial conditions (see Sect. II) could have been decomposed over the processors. 

Thus each processor could have run at 100% efficiency. This demonstrates clearly how 

.. 
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the actual strategy for parallelising depends on external factors, such as memory con­

staints. 

The n urn her of available processors also dictates the strategy for parallelising an 

application. Consider the availability of an unlimited number of processors. Then an 

ideal parallelisation of QMC would follow the nested nature of the algorithm. At the 

top level, independent processors would run differing sets of initial conditions--e.g. 

nuclear geometries. Each such processor, however, would itself be a parallel processor, 

·running multiple (identical) codes, differing e.g. in the time-step size. Each of these pro­

cessors would be a multi-processor also. These next-lower-level processors could run sta­

tistically independent samples by using different random number generators, or (if this is 

deemed unnecessary) by using differing seeds for the same generator. These processors 

could be further subdivided, with separate processors handling parts of the ensemble -­

as was actually implemented on MIDAS and described above. All the above steps can be 

run at virtually 100% efficiency, leading to increases in execution speed of P, the number 

of processors. In a truly massively parallel architecture, if there are more processors 

available than can be used in this description, one can further parallelise the random­

walk algorithm, for example, parallelising the computation of the Coulomb potential. At· 

this stage, efficiency would begin to drop, although speed would continue to increase, but 

no longer as rapidly. At a certain point saturation will set in, and speed will no longer 

rise even linearly with the number of processors. For QMC however, this stage 

apparently will not be reached until P is quite large indeed. 

V. Comparison with conventional ab initio methods. 

As we have seen, Monte Carlo is a computationally intensive method, but one that 

requires relatively little memory. The independence of the configurations, the near 

independence of the blocks, and the possibility of parallelising over initial conditions, 
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makes QMC particularly well suited to vector and parallel machines. Furthermore, the 

relatively small size of most Monte Carlo codes (roughly 1500 lines of FORTRAN in the 

present case) allows the user to easily optimize the algorithm to a specific machine. In 

this section we discuss whether these factors allow QMC to make more efficient use of 

current supercomputers and upcoming parallel computers, than more traditional ab ini­

tio methods (e.g., Hartree-Fock, multiconfiguration Hartree-Fock, configuration interac­

tion)-- as the latter also benefit from the new computer architectures. 

Scalar/vect?r ratios of from 10 to 50 have been quoted by Rappe [32] for selected 

portions of SCF and MCSCF codes on a two-pipe Cyber 205. The corresponding rates 

are from 26-100 MFLOPS. (This implies that at least in part his high ratios result from 

a scalar execution rate of only approximately 2 MFLOPS, in contrast to the more usual 

scalar rate of 5 MFLOPS.) It should also be noted that only 14% of his CPU time is 

spent in the sections going at the highest rates [32]. In programs containing a mixture of 

vectorizable and nonvectorizable code, the nonvectorizable part dominates the calcula­

tion [33]. The question of how much vectorization helps his SCF codes overall is not 

addressed. Sanders and Guest [34] discuss rates for somewhat larger program sections 

than Rappe. Their rates on a Cray 1S range from 10 MFLOPS for the Hartree-Fock sec­

tion to 1~0 MFLOPS for the CI part. However the overall benefit remains an open ques­

tion here too. (This question has, ho"wever, been addressed recently for ab initio calcula­

tions performed on an FPS 164 array processor [35] where relative to a VA.:"'{ an overall 

enhancement of 10-12 was achieved.) 

For QMC, virtually the entire code vectorizes. In fact, usmg a formula from 

Ahlrichs et a/ [36] we estimate that oyer 90% of the code must vectorize to achieve the 

rates attained. Further, QMC can be decomposed in a number of ways into virtually 

identicaL non-communicating parts suitable for parallel processing. Although ab initio 
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codes can be decomposed over some initial conditions as well, the increase in memory 

. required for such program replication makes this degree of parallelism impractical in 

most cases. Analysis of recent work in optimizing ab ·initio codes for parallel processors 

shows efficiencies ranging from 50-95%, depending on the type of code, and the number 

of processors [37]. We note, however, that these efficiencies are generally not linear in P, 

and begin to saturate (i.e. deviate from linearity) for P quite small (on the order of 4-10 

processors). J:hus, overall it appears that QMC can more easily and efficiently take 

advantage of the new computer architectures than conventional ab initio approaches. 
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Table 1. Comparative run times for the restructured algorithm with an ensemble size of 
100 .. Single precision is used on all machines. · 

Machine 
VAX 11/780 
Cyber 205 (2 pipe) 
Cyber 205 (4 pipe) 
Cray 1S 
Crav XMPa 

scalar seconds 
1620.0 

82.4 
81.7 
70.5 
49.8 

vector seconds 

16.7 
13.9 
14.5 
9.9 

a All calculations were done using only one processor. 

Table 2. Comparative run times for the restructured algorithm with an ensemble size 
of 500. Single precision is used on all machines. Other than the ensemble size, all 
parameters are the same as in Table 1. Thus the scalar time rises by a factor of 5, but 
the vector times rise less rapidly. 

Machine 
VAX 11/780 
Cyber 205 (2 pipe) 
Cyber 205 (4 pipe) 
Crav XMPa 

scalar seconds 
8100.0 

413.6 
415.9 
246.7 

vector seconds 

69.2 
43.6 
44.4 

a All calculations were done using only one processor. 
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