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Abstract 
Essays on Competition: Contests, Personnel Economics, and Corporate Citizenship 

by 

Dylan Blu Minor 
 

Doctor of Philosophy in Business Administration 
 

University of California, Berkeley 
 

Professor John Morgan, Chair 

I explore competition in three different settings.  First, I examine how a contest designer can 

increase total efforts through softening incentives.  In particular, softer incentives are called for 

when the following is met: contestants have more convex costs, there are many contestants, or 

designers have (sufficient) concave valuation of effort.  In the extreme, more total effort can be 

generated from offering a larger second than first prize. 

Next, I test this theory experimentally in the lab under the framing of personnel economics.  I 

find the general comparative statics given above hold.  However, on an individual basis, people 

depart from the theoretical predictions.  Workers use a heuristic of going "all in" or abstaining 

from  work when they find themselves above or below, respectively, some private target level 

of ability.  Additionally, most workers take on different roles-slackers, quitters, or consistent 

workers--depending on the institutional setting (i.e., degree of competition and incentives 

structure). The consequence of such behavior is the comparative statics for optimal 

organizational design are softened. 

Finally, I study empirically and theoretically how firms compete on the dimension of corporate 

social responsibility (CSR).  More efficient firms are able to use CSR as an insurance mechanism.  

That is, some firms invest ex-ante in higher levels of CSR, which enables them to better 

withstand the tumult of negative business shocks; stakeholders give higher CSR firms the 

benefit of the doubt in terms of  the cause of an adverse event (i.e., the cause is more often 

attributed to bad luck over bad management), resulting in an insurance like benefit to CSR.  This 

finding is validated empirically by studying S&P500 firms over a 16 year period. 
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Part I

Competition via Contests
In our �rst section we study competition in the setting of contests. We �nd when
designing incentives for heterogeneous agents facing competition there is a con�icting
interaction: as the more able are incentivized the less able are disincentivized. I label
the former the "incentive e¤ect" and the latter the "discouragement e¤ect." Such
adverse interaction becomes severe in the face of participants having convex costs of
e¤ort or capacity constraints, larger contests, contestants with similar levels of ability,
and contest designers with concave bene�t over participant e¤ort. Indeed, in such
a world, the "discouragement e¤ect" dominates the "incentive e¤ect," prescribing
the optimal incentives to be �at or possibly even inverted� o¤ering a larger prize to
second place than to �rst place. In short, providing greater bene�t to the lesser able
can elicit more total e¤ort than having greater bene�t awarded to the most able.
These �ndings are explored for both all-pay and winner-pay contests.

1 Introduction

Designing optimal incentives within employment relationships has been an impor-
tant and well researched topic. A fundamental lesson from this work has been the
prescription of sharp incentives within the �rm. Consider the canonical principal
(employer) and agent (employee) model. Assuming risk neutrality of both parties
the trivial solution is to �sell the store�to the employee, yielding �rst best from max-
imally powered incentives. But when employees are di¤erent the problem becomes
more complex.
Instead, we will argue, interacting sharp, competitive incentives with heteroge-

neous ability can in fact destroy e¤ort. In particular, the less able are less likely to
win and thus �give up.�We dub this the "discouragement e¤ect." Meanwhile, the
most able do increase their e¤orts when facing sharper incentives, which we dub the
"incentive e¤ect." However, the interaction of these two e¤ects can become so severe
that the "discouragement" e¤ect dominates the "incentive e¤ect," thus prescribing
soft incentives.
The intuition for shifting the top performer�s reward to the lesser performers is

actually quite simple: we lose some e¤ort from the most able, who are most likely
to receive the �rst place reward. However, we receive increased e¤ort from all the
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rest as a result of their more likely earned second place reward being larger. If this
increased e¤ort overcomes the most able�s lessoned e¤ort, total e¤ort is increased.
We naturally have in mind broader applications of softened incentives than per-

sonnel economics. In fact, whenever we encounter people or �rms competing for a
prize or prizes, our results will often apply. Indeed, many economic settings can be
cast as a contest. Whether �rms are competing for business or to avoid a regulator,
nonpro�ts are vying for donors�dollars or even politicians seeking election, we have
multiple agents competing after prizes. Therefore, for most of our analysis, we will
refer to competing agents more generally as contestants or participants. The �rm or
bene�ciary of the agents�e¤ort is simply called the designer of the contest.
We are certainly not the �rst to suggest it might be optimal to o¤er a portion

of a prize to second place over a winner-takes-all (WTA) scheme. Moldovanu and
Sela (2001), hereafter MS, in their seminal paper �nd a designer ought to o¤er some
fraction of the total prize to second place if the contestant�s cost function has the
"right" curvature. In particular, if the curvature of the cost function is convex
"enough" the result follows. Contrarily, they �nd, if the cost function is linear or
concave, a winner-takes-all scheme dominates.
My paper begins by generalizing MS�s analysis by removing their restriction on

monotonic prize ordering. We create a new mechanism dubbed the Generalized
Second Prize Contest that allows non-monotonic prize allocations. We can then
provide conditions of when equal prizes, or even a larger second prize, is preferred,
in addition to asking when we want to o¤er any fraction of a second prize. We can
then also determine for the case of an indivisible prize if it is best to reward a single
prize to �rst or second place. This new mechanism then weakly dominates MS�s
mechanism in terms of total revenue generated from o¤ering two prizes.
We next study an important class of contests� linear contestant costs with ca-

pacity constraints�to extend our results and address four questions that MS do not
consider. First, what is the best prize division when the degree of contestant hetero-
geneity changes? One can imagine some settings where there is a group of mostly
very skilled contestants, while some other settings witness contestants with a wide
distribution of ability. When a designer faces a group of similarly high skilled com-
petitors, intuition suggests o¤ering a WTA contest would result in Bertrand price
competition and maximal prize dissipation, yielding maximum e¤ort for the designer.
In contrast, when facing a group with diverse skill, extant contest theory tells us total
e¤ort tends to be depressed since the lesser give up due to little prospect of winning
and in response the most able exert less e¤ort. Thus, the previous intuition from
the "incentive" and "discouragement" e¤ect would suggest we ought to o¤er more
of a second prize to induce e¤ort from the lesser able and then force e¤ort from the
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most able, creating a "race to the top." However, in turns out both these intuitions
are wrong. In fact, it is actually when competition is the �ercest� when contestants
have similar levels of ability, even if very high levels of ability� that it is critical to
soften incentives by �attening the prize distribution (i.e., moving from a WTA to
equal prize contest).
Second, we explore how a designer should construct a contest if she values e¤ort

across contestants in a manner other than perfect substitutes� extant literature usu-
ally assumes perfect substitutes. However, one can imagine a setting where workers
have complementary work inputs. Another example is the designer that has the
goal of contestant pro�ciency. These examples mean the curvature of the designer�s
bene�t function over e¤ort is concave. Under such a setting, it turns out it is often
best to o¤er more of a second prize, even when contestant cost functions are lin-
ear with no constraints. That is, linear participant costs is no longer su¢ cient to
recommend a WTA contest, as it was in the setting of MS.
Third, we provide some clear empirical predictions. It is often di¢ cult to observe

cost functions in data, let alone to measure their curvature. However, with our class
of contests, we are able to provide some sharp predictions that do not rely on cost
function curvature and instead are based on more readily observable factors.
Finally, we show how our predictions and comparative statics also apply to an

English auction in the setting when a divisible good is being auctioned o¤ to bidders
with independent private values. This then also provides an analog for the winner-
pay contest where only winner(s) pay their bid.

2 Related Literature

A thorough review of providing incentives within the �rm can be found in Prendergast
(1999). The end result is much of the theoretical literature has prescribed sharp
employee incentives. However, as he points out, the empirical literature, at best,
�nds mixed support that such high powered schemes are witnessed in practice. In
short, it seems �rms should generally be o¤ering very sharp incentives, but they do
not. We argue this inconsistency is reconciled by accounting for the interaction
e¤ect of incentives and competition.
The contest literature, meanwhile, can be divided into three main strands. One of

the �rst, and earliest, strands was initiated by Tullock (1980). He set the problem
up as players having a chance of winning a contest as a function of a particular
contestant�s e¤ort vis-a-vis all other contestants� e¤ort level. Much of the focus
of this literature is the degree of rent dissipation through rent seeking. That is,
determining what percent of the prize is exerted in e¤ort to obtain such a prize.
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Another strand has to do with casting a contest as an all-pay auction (e.g., see
Bulow & Klemperer (1999)). Here we �nd we can analyze contest outcomes and
participant behavior by drawing on the rich auction literature. However, it is almost
always assumed e¤ort costs are linear, as in auctions where a bidder�s cost of a bid is
most often linear. Nonetheless, in practice, and in many economic applications the
�rm or individual�s cost function is assumed to be convex. An important exception
of assumed cost linearity (though only under complete-information) is the recent
contribution of Siegel (2009). However, he is concerned with player behavior and
equilibrium payo¤s, and does not explore contest design.
The third strand has to do with designing contests, moving from the focus on

participant behavior to how to design an optimal contest. That is, from the per-
spective of a contest designer, deciding how much to allocate between multiple prizes
or deciding between single or multiple stage contests to maximize contest revenue or
e¤ort. Moldovanu and Sela (2001) is eponymous of this work. As mentioned previ-
ously, Moldovanu and Sela make a seminal contribution in this literature of allowing
participant costs to be convex. See also Moldovanu and Sela (2006) and Moldovanu
et al. (2007) for more examples of contest design.
The early work of Lazear and Rosen (1981) can also be thought of as from the

perspective of a contest designer. They analyze using output rank order payments
to maximize worker e¤ort. We begin our analysis by generalizing MS in terms of
prize ordering and designer goals, before moving on to some entirely new questions.

3 Contestant E¤ort Choices

Our general model consists of k agents that commonly value n < k prizes as V1; V2; � �
�Vn: However, in contrast to past literature, we do not require any ordering on the
value of prizes. In addition, each agent has private information of their cost of e¤ort.
In particular, their cost of e¤ort level e is assumed to be c
(e); where c is drawn
from some F with lower support c bounded away from zero (to assume away costless
or negative cost of e¤ort) and upper support c. Our cost function 
(e) is assumed
endowed with 
0(e) > 0; 
00(e) � 0; and 
(0) = 0: Hence, the objective function of
each agent is:

max
e
P1(e; e�i)� V1 + :::+ Pn(e; e�i)� Vn � c
(e)

Each Pi(e; e�i) is then the probability e¤ort level e induces for winning the ith
prize given the strategy of all the other players. However, using the revelation
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principle we can rewrite the agent�s problem as simply choosing a type bc to declare
himself, yielding:

maxbc F1(bc)� V1 + :::+ Fn(bc)� Vn � c
(b(bc))
Here we have b(bc) as the equilibrium bidding function and Fi(bc) the probability

of placing i given her declaration of being type bc: Now since we assume each agent�s
cost type is also unknown to the contest designer, the designer has the following
problem, as he wants to maximize total expected agent e¤ort:

max
(V1;:::;Vn)

k

Z
h (b(c; V1; :::; Vn))F

0(c)dc

subject to V1 + � � �+ Vn � V total prize mass
The designer is simply choosing the values of the prizes V1;:::; Vn such that the

expected revenue is maximized. For example, if h(x) � x then this is simply the
expected e¤ort of any particular agent multiplied by k; the number of agents1. We
thus generally say expected revenue over e¤ort since h(�) may not be linear, and in
particular we will sometimes assume it is concave to allow for di¤erent designer goals.
Based on our setup, we can now �nd the equilibrium bidding function b(�). Note we
will use the term bidding and e¤ort function interchangeably, so we can think of the
optimal e¤ort of a particular agent as their e¤ort cost bid for the given prize.

3.1 The E¤ort Function

We now focus our analysis on two prizes, which will be su¢ cient to provide our
results and intuition. We leave generalizing to an arbitrary number of prizes to
future work.

1At �rst blush, the notion of choosing di¤erent prize mass distributions for optimal e¤ort output
seems similar to so called handicapping. That is, under handicapping the designer forces certain
participant(s) to essentially get partial credit for their e¤ort, thus causing di¤erent outcomes. This
can be sensible under a complete information setting, where much of the handicapping literature
resides. However, in our setting, where a designer does not know each participant�s cost of e¤ort
and such cost types are not correlated, handicapping is not practical; the designer does not know
who has a particular cost type. Consequently, handicapping in this incomplete information world
means the designer arbitrarily designates one contestant (s) with a handicap. However, doing so
necessarily means less revenue for the designer, and thus we do not consider this scenario as we are
studying contest design from a revenue maximization perspective.
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Following MS, we denote the value of 2nd prize as � and 1� � the value of the
�rst prize, giving a normalized total prize mass of 1. However, we will relax their
constraint of � 2 [0; 1

2
], instead allowing for any distribution of �rst and second

prize: � 2 [0; 1] . That is, we now will solve for the optimal prize allocation given the
designer�s choice of any prize distribution over two prizes.
The inverse of our contestant cost (of e¤ort) function 
(x) is g(x). As outlined

above, we assume 
(x) is weakly convex. First assuming V1 � V2; it is then routine
to �nd the bidding function of each participant by integrating "down" the �rst order
condition of contestants (i.e., their di¤erential equations) with the initial condition
of the highest cost type providing zero e¤ort. However, MS provide their bidding
function in a particularly helpful form, de�ning a participant�s bid as a convex com-
bination of two objects based on the distribution of prize mass:

b(c) = g(A(c)(1� �) +B(c)(�))

These two objects A(c) and B(c) represent the optimal bid by a cost type c with
linear costs of e¤ort under the case of there only being a �rst prize and second prize,
respectively. They are de�ned thus:

A(c) � (k � 1)
cZ
c

1

a
(1� F (a))k�2 � F 0(a)da

B(c) � (k � 1)
cZ
c

1

a
(1� F (a))k�3 � [(k � 1)F (a)� 1]� F 0(a)da

In Figure 1, we now consider the equilibrium e¤ort as a function of contestant
type in the face of a single prize of $1 and two equal prizes, each worth $.50. The
red curve, representing e¤ort under a single prize, is the highest for the lowest cost
(i.e., most able types), but then is lower for the top 80% of cost types compared with
the blue e¤ort curve, which is e¤ort under equal prizes. Thus, we see equal prizes
elicit less e¤ort from the most able, but more from all the rest. In fact, there is a
crossing point at about 20% of the most able population (i.e., the cost type c � :62).
Hence, to the left of this point, a single prize incentivizes greater e¤ort from the most
able, thus we label this the "Incentive E¤ect"�i.e., all the area between the blue and
red curves for the most able type. However, to the right of this dividing cost type
point we lose e¤ort from all participants and thus label this area of di¤erence as the
"Discouragement E¤ect"�i.e., incentivizing the most able means discouraging over
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80% of the population, resulting in their reduced e¤ort. The intuition is since the
top 80% cost types now have to be best rather than just second best to get a prize,
they start giving up, as their chances for such achievement are dismal.

Figure 1: Incentive and Discouragement E¤ect

Now we want to consider what would happen if we actually o¤er a second prize
larger than �rst prize. That is, in our notation, we want to explore allowing � > :5:
When we do allow � > :5; we run into the problem (for an incomplete contest setting)
that the best response function then becomes non-monotonic in type, as we prove in
our next lemma. Thus, we will need to provide a mechanism to correct for this.

Lemma 1 If � > :5; the contestant best response function becomes single peaked
with a maximum at bc such that F (bc) = 2��1

k��1

Proof: see appendix.

We now turn to another example in Figure 2 of increasing the value of the second
prize compared with the �rst prize, as well as having a second prize larger than
�rst prize. Here, as we assumed above, we have 
(x) = x2; c 2 U [:5; 1];and k = 5
participants:
Our horizontal axis on the above �gure represents cost type c. The vertical axis

is best response e¤ort for a given type. The blue (solid) line is the bidding function
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Figure 2: E¤ort of Each Type for Di¤erent Prize Divisions

assuming � = 0 (i.e., only a 1st prize is o¤ered) and the red (dotted) shows bidding
under � = 1 (i.e., only a second prize is o¤ered). These two lines again show the
trade o¤ between o¤ering more of a �rst versus second prize. The 1st prize always
increases the e¤ort of the lowest cost types until about type .61. However as the
cost becomes greater for a given type, then it is the second prize that creates more
e¤ort. Hence, o¤ering more of a second prize increases the e¤ort of the roughly top
80% of cost types, but reduces the e¤ort of the bottom 20% of cost types. Thus,
where the marginal revenue increase of raising the 2nd prize equals the marginal loss
in reducing the 1st prize, we �nd our optimal ��:
Finally, the yellow (dashed) line traces the bidding function of � � :64; which is

the optimal � for this example. Of course, even though � � :64 yields the highest
total expected e¤ort, it is not feasible2 due to its e¤ort function non-monotonicity.
We now turn to making such prize allocation feasible.

2Here we mean not feasible in the contract theory sense. That is, since types are private
information for each contestant, we must have each type�s local IC met, which is violated with a
non-monotonic bidding function.
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4 Generalized 2nd Prize Contest

We propose the generalized second prize contest (GSPC), which then �xes the non-
monotonicity of the bidding function for � > :5: We "iron out" the non-monotonic
part of the bidding function by creating a pooling interval. In particular, we �nd
some maximal e¤ort level e� at which pooling will occur endogenously by partici-
pants. Any exerting e¤ort below this level will be ranked by e¤ort, as before, to
determine prize allocation. However, any contestants at e� are pooled. If there is
only one such contestant, they receive 1st prize. The next highest e¤ort contestant
with e¤ort below e� will get second prize. If there are two or more contestants in
the e¤ort pooling interval, �rst and second prize will be randomly allocated with
equal chance among contestants along the pooling interval. For example, if 3 people
pool, each of them has a separate 1/3 chance of getting 1st prize and a 1/3 chance
of receiving 2nd prize. Hence, there is a 1/9 chance a contestant receives both �rst
and second prize.
To see an example of the GSPC mechanism, we continue our last bidding function

example and add the location of the pooling interval, as seen in Figure 3:

Figure 3: The GSPC Mechanism

Here the blue (dashed) line represents e¤ort if we instead set � = :5;whereas the
red (solid) line shows � � :64: The yellow (dotted) line then shows the e¤ort level
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of the pooling interval. Note if the area between the blue and red line but below
the yellow line is greater than the area above the yellow line and below the blue line,
then the GSPC generates more total e¤ort than a contest constraining � = :5.
It turns out we can always �nd a symmetric equilibrium, as our next proposition

gives:

Proposition 1 The generalized 2nd prize contest mechanism exists, meets all incen-
tive compatibility constraints, and induces a (weakly) monotonic bidding function.

Proof:
See Appendix.
The idea of the proof is we can �nd a unique contestant type that is indi¤erent

between pooling and participating under the non-pooling contest. We then show
that everyone in the pooling interval (i.e., all cost types lower than the indi¤erent
cost type) prefers not to deviate up or down. Next we see everyone not pooling (i.e.,
everyone with greater cost than the indi¤erent cost type) strictly prefers to remain
as they are. Finally, we then show the pooling interval always arises beyond the
single peak of the original non-monotonic best response function, ensuring the new
mechanism induces a weekly monotonic bidding structure. We also note if � � :5;
then the GSPC has a pooling interval with zero mass and thus collapses to a strictly
monotonic bidding function. That is, the extant literature�s constrained contest is
nested within this one: Additionally, we now see that our generalization allows us
to o¤er a larger second then �rst prize, but it also allows us to o¤er only a second
prize, as we return to later.

4.1 GSPC With Divisible Prizes

First note In the case of divisible prizes it is then natural to solve for an optimal ��

such that we maximize expected contest revenue. We are using the term revenue
over e¤ort to again accommodate that under concave designer bene�t functions, it is
total revenue and not e¤ort per se that we are maximizing. That is, we solve under
linear designer bene�ts:

max
�2[0;1]

R(�) = k

cZ
c

g(A(c) + �(B(c)� A(c)))� F 0(c)dc
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However, if we allow the designer�s bene�t function to be non-linear, we then
have:

max
�2[0;1]

R(�) = k

cZ
c

h(g(A(c) + �(B(c)� A(c))))� F 0(c)dc

Unfortunately, �� must generally be solved for numerically, thus requiring a given
set of parameters for a given problem. Here are some examples of the optimal � given
the total participants k and pair (w; z); where the contest designer�s bene�t function
is yw and the contestant�s total cost function is c � xz: Throughout our examples we
assume c is distributed uniform such that c 2 U [:5; 1]:

Optimal Second Prize �� 2 [0; 1]
bene�t/cost exponents k participants

(w; z) 3 4 5 10
(1; 2) :38 :54 :64 :84
(1; 3) :50 :65 :74 :89
(:5; 2) :54 :69 :77 :91

For example, with k = 3 participants, functional form of participant cost c
(x) =
cx2 and designer concave bene�t of y:5; the optimal prize allocation is 54% to second
and 46% to �rst. This gives us a ratio of prizes of :54

:46
;or about a 17% greater second

prize.
Thus, with a bit more convexity of cost, concavity of designer bene�t or more

participants, we can quickly get the optimal allocation being greater than 50% al-
located to second prize. We now state in general when we want to o¤er a larger
second than �rst prize.

Proposition 2 It is optimal to o¤er a larger second prize than �rst prize through
our GSPC if our su¢ cient condition is met:

k

cZ
c

h0
�
g(
1

2
(A(c) +B(c)))

�
� g0(1

2
(A(c) +B(c)))(B(c)� A(c))� F 0(c)dc > 0
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Proof: see appendix.

Note this su¢ cient condition is only an assumption on the primitives: the convex-
ity of the participant cost function (which determines its inverse g(�)); the concavity
of the designer bene�t function h(�); number of participants k; and the distribution
F (�) of cost types c: If these four factors are combined in a su¢ cient manner, then
our above condition is met.

Corollary 1 The GSPC always yields (weakly) more total revenue than the con-
strained (MS) contest:

This corollary, which follows immediately from our previous Proposition, gives
that whenever we must o¤er equal prizes under the constrained contest (i.e., � � :5
binds), the GSPC will provide more total e¤ort with a larger second prize. Mean-
while, when the optimal �� < :5; then the two contests agree, providing the same
revenue. Thus, in short, the GSPC dominates the constrained mechanism of MS.
Now many prizes in practice aren�t readily divided up into equal (or even multiple

prizes). For example, consider the position of CEO. A �rm would not (likely) want
to divide this into 10 smaller equal positions due to (presumed) synergy of the CEO
multi-tasking. Also, we could think of certain prizes costing the designer in terms
of both a �xed and variable cost for each prize unit o¤ered. With su¢ cient �xed
costs, the designer will want to limit the number of prizes, maybe even o¤ering only
a single prize. We now explore the question when is it better under an indivisible
prize to o¤er it to second place over �rst place.

4.2 GSPC With an Indivisible Prize

From our previous analysis of divisible prizes, we have an obvious condition for
o¤ering only a second prize versus �rst prize being optimal if eR(1) > R(0): However,
this is more than is needed. There may be some 0 < �� < 1 such that eR(��) > eR(1)
and yet we still have eR(1) > eR(0): Thus, in the spirit of our divisible prize results,
we can make similar assumptions on the primitives to assure a sole second prize is a
preferred to a �rst prize.
We now consider some examples comparing the revenue of o¤ering only a �rst

prize versus only a second prize. We as before assume total cost is cxz for e¤ort x
and cost type c 2 U [:5; 1]: The designer�s bene�t function is simply yw; where y is
a contestant�s total e¤ort. We report the increased revenue in the table below.
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Strikingly, total revenue is increased some 10% to 20% once we have four or �ve
contestants by o¤ering a prize only to second place over �rst place. The intuition is
through shifting the prize from �rst to second, the most able (i.e., lowest cost), which
are most likely to win �rst prize, have a lower marginal bene�t and thus exert less
e¤ort (recall there is still the possibility of pooling, so there is a chance the most able
can get second place if at least one other contestant pools). However, others that are
less able (i.e., higher cost) are more likely to win second, which is now quite large,
thus causing them to exert greater e¤ort. As long as the latter group�s increased
e¤ort overcomes the former group�s reduced e¤ort, total e¤ort is increased.

Increased Revenue from O¤ering a Sole 2nd Prize
bene�t/cost k participants
(w; z) 3 4 5 10
(1; 2) 1:9% 6:4% 9:4% 16:4%
(1; 3) 6:4% 11:3% 14:5% 21:2%
(:5; 2) 7:2% 11:9% 14:9% 21:3%

We now turn to considering in more detail a designer with di¤erent goals.

5 Designers with Di¤erent E¤ort Goals

Consider the professor that has a student moving from a 98% to a 100% grade
and another student moving from 68% to 70%. The latter 2% change is likely
more valued than the former 2% change. This suggests a class of contests where
the designer does not value e¤ort as perfect substitutes: pro�ciency. If a teacher
is educating students with the primary goal of helping them all reach a level of
pro�ciency, then the designer has diminishing valuation of e¤ort across participants.
Similarly, consider the regulator who wants to move �rms to a certain standard
of environmental care. As yet another example, consider contestants that have
complementary e¤ort inputs. If this is so, then again the designer values e¤ort
across any particular worker in a diminishing manner. In other words, each of these
classes are such that the designer has concave bene�t over the e¤ort of contestants.
One could even argue this concave valuation over e¤ort case is more the rule than
the exception in the real world. Concavity of e¤ort valuation provides a nice parallel
to the role of convexity of contestant costs in inducing greater revenue from o¤ering
a larger second prize. Now we can have linear contestant costs and still want to
o¤er a second prize if the designer has concave valuation of e¤ort, in contrast to MS
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(2001) �nding linear costs always prescribe a WTA structure. In fact, we can state
the following link between contestant costs and designer bene�ts.

Lemma 2 For every (invertible) convex cost function 
(e); there exists a concave
designer bene�t function h(x); such that with linear bene�ts and linear costs, respec-
tively, revenue is the same.

max
�2[0;1]

R(�) = k

cZ
c

g(A(c) + �(B(c)� A(c)))� F 0(c)dc

where g(x) 2 f
(e)�1; h(x)g
Proof. This result can be seen immediately by writing out the revenue function
under linear designer bene�ts and strictly convex participant costs and then again
with strictly concave designer bene�ts and linear contestant costs. If we de�ne
h(x) � 
(e)�1; the result follows.
It should be clear if both the contestant has convex costs and the designer con-

cave valuation of e¤ort, then these two e¤ects only amplify one another, even more
readily pushing the optimal prize mass down from the top performer to second place.
However, we still have the problem of disentangling the precise e¤ect of a particular
primitive on whether or not to o¤er more of a second prize. We thus next turn to
a class of cost functions that allows us to make some clear prescriptions.

6 E¤ort Capacity Constraints

Though we will give up some of the generality of our contestant cost function, in
return we will be able to disentangle the e¤ects of our primitives, as well as garner
some intuition of how it works for general convex cost functions. In particular, we
will assume contestants have linear costs of e¤ort but face some e¤ort capacity con-
straint. We could instead assume a common budget constraint or even monotonically
decreasing constraints (or budget constraints) in cost type. It should be clear only
minor modi�cation of our proofs are necessary to show the same results for these
settings. However, to ease exposition we will assume a common e¤ort capacity
constraint.
In addition to simplifying analysis, the notion of capacity constraints on e¤ort is

quite realistic in some settings. For example, lobbying caps are imposed or lawyers
are limited on maximal award amounts. Workers can only work 24 hours a day and
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are subject to some maximal physical strength. All we require for the analysis to
be interesting is these constraints still bind for the most able.
Consider the class of linear cost functions with cost type c, e¤ort e, and capacity

constraint be3:
c
(e) = ce if 0 � e < be
c
(e) = +1 if e � be

We will call the capacity threshold be maximal e¤ort.
Thus we next show in Figure 4 the total cost function for type c � U(:5; 1);taking

the lowest, highest, and mean cost type, and bx = 2 is:
Figure 4: Linear E¤ort Cost with Capacity Constraints

We can also imagine an analog where the designer has a constraint on the return
to e¤ort. That is, rather than having a smooth, concave valuation over e¤ort as
before, assume the designer has a sharp cuto¤from the value of any particular player�s
production of e¤ort. This can be though of as a simpli�ed version of capturing say
a teacher that gets rewarded for the number of students passing some standard as

3See Megidish and Sela (2009) for example of linear costs and �oor constraints. That is,
contestants must put in a minimal amount of e¤ort.

15



opposed to rewarded for their mean score. Alternatively, imagine a group of workers
operating in some dangerous environment where they only remain safe if all engage
in some several safety steps.

6.1 Equal vs. WTA Contest

We will only consider how our primitives must change to ensure an equal prize contest
provides more revenue than a WTA contest. However, it should be apparent in the
proofs, the arguments can be used to show the results apply as a comparative static
as well, calling for a greater second prize, but not necessarily equal prizes. To
proceed it is �rst helpful to prove a Lemma.

Lemma 3 There exists a unique type c��that provides the same level of e¤ort re-
gardless of �; the share of second prize. As � %; types c < c�� reduce e¤ort and
types c > c�� increase e¤ort.

Proof. MS (2001) prove there exists some unique c�� such that A(c��) = B(c��);
where A(c) > B(c) when c < c��; and A(c) < B(c) when c > c��: Combining this
result with bidding b(�; c) = (1 � �)A(c) + �B(c) means increasing the share of
second prize � increases e¤ort for all cost types c > c�� and reduces e¤ort for all
types c < c��:
This Lemma tells us there is some unique type that is indi¤erent to any prize

structure. That is, she provides the same e¤ort regardless of the distribution of
prizes. Meanwhile, everyone below this cost type reduces e¤ort as second prize is
increased and everyone with greater cost increases e¤ort. Hence, we need only com-
pare the di¤erence in these two changes as we increase the second prize to determine
the superior prize structure. Now we can prove our next Proposition.

Proposition 3 Fix a binding capacity constraint be and assume linear participant
costs and some atomless distribution of ability F (c) with strictly positive lower sup-
port. O¤ering two equal prizes over a winner-takes-all (WTA) contest produces more
total revenue given one of the following:
1) Enough of a contestant�s capacity constraint be
2) Enough of a designer�s constraint over the return of individual e¤ort e
3) Enough participants k

Proof. 1) De�ne the e¤ort of the type c�� : b(�; c��) = e��, where c�� is de�ned
in Lemma 3. Set capacity constraint be = e��: This means as we increase � ! 1

2
;
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revenue is strictly increased. This is because be is binding for all types subject to
the incentive e¤ect (i.e., c < c��). That is, these types would like to produce more
e¤ort but are unable for all values of � 2 [0; 1

2
]. However, all the other higher cost

types are subject to the discouragement e¤ect (i.e., c > c��) and thus increase e¤ort
as �! 1

2
: Hence, there is no tradeo¤ as �! 1

2
: Thus, there exists some be > e�� such

that the tradeo¤ of increasing � is an equal tradeo¤ at � = 1
2
:

2) Set the designer�s constraint over individual e¤ort at e�� and the argument is
identical to (1).
3) Fix some k and binding be: As the participants k increase, c�� and thus e��

changes. In particular, as shown in the appendix, as k �!1; c�� �!c and b(0; c)
increases. But this means, the maximal bid for an arbitrary k is eventually surpassed
by c�� as k �! 1: This also means there exists some �nite k� such that e�� = be:
The argument then proceeds as in (1).
The intuition for this proof is best seen by the following �gure:

Capacity Constraints and Optimal Prizes

The marginal type c��is key to the proof. If the capacity constraint is set tobe = e��;where e�� is the bid of the marginal type c��; there is no tradeo¤ in increasing
� from zero to 1

2
: Without a constraint, we would be losing e¤ort from all types

c < c�� while gaining e¤ort from all types c > c��: However, with the constraintbe; we do not lose any e¤ort from c < c�� because they would like to provide more
e¤ort but are unable for all values � 2 [0; 1

2
]: We could then chose some be > e��

such that the tradeo¤ is just equalized at � = 1
2
: This then also provides intuition

of why convex costs in general can induce greater e¤ort through �attening the prize
structure: rather than starkly removing the upper portion of e¤ort from the most
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able it simply distorts such e¤ort downward to a greater extent than when the most
able�s e¤ort is much lower under an equal prize contest. In other words, convexity
of cost blunts the incentive e¤ect.
The intuition is similar for the designer with concave valuation over e¤ort. How-

ever, now rather than distorting down the e¤ort of the most able, it is distorting
down the value of e¤ort exerted from the most able. Thus, concave valuation of
e¤ort reduces the return from the incentive e¤ect.
As we increase the number of participants, we also increase e��; which then means

it surpasses our original be for some k: In other words, the discouragement e¤ect has
relatively more impact as k �!1:We can say that increasing number of participants
ampli�es the discouragement e¤ect. Now we consider the role of skill heterogeneity
on prize structure.

6.2 Heterogeneity of Skill and Prize Structure

First we note some results derived in the appendix that can be used for estimating
linear bids. The �rst pair of expressions puts a lower and upper bound on the bid
of an equal prize contest, and the latter pair for a WTA:

1

2
(A(c) +B(c)) =

1

2c

�
(F (c)� (k � 2) + 1) � (1� F (c))k�2

�
1

2
(A(c) +B(c)) =

1

2c

�
(F (c)� (k � 2) + 1) � (1� F (c))k�2

�

A(c) =
1

c
(1� F (c))k�1

A(c) =
1

c
(1� F (c))k�1

Now we calculate the expected bid under a WTA under incomplete information
as c and c, the bounds of our distribution of types, collapse to the mean type ec. We
then get:

1ec
Z
(1� F (c))k�1f(c)dc = 1

k
� 1ec
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Hence, as usually assumed in the complete information case, with ec = 1; we
simply get the expected bid of 1

k
and thus expected revenue is 1

k
� k = 1;which

means 100% rent dissipation.
In other words, as we approach (perfect) homogeneity with linear costs and no

capacity constraints, the expected bid in a WTA contest is simply 1
k
per each contes-

tant, which is precisely the same as the expected bid under a complete information
case (and symmetric equilibrium) with mixed strategies. Note, however, that under
incomplete information the strategies are unique pure strategies as opposed to the
mixed strategies of the complete information case.
We now consider the expected bids under incomplete information and two equal

prizes (i.e., � = :5): As the (incomplete info) contest approaches homogeneity, we
write it thus:

cZ
c

1

2
(A(c) +B(c))� F 0(c)dc

! 1ec
Z �

(F (c)� (k � 2) + 1) � (1� F (c))k�2
�
f(c)dc =

1

k
� 1ec

This then provides the same result for equal and WTA case, as well as the com-
plete information case. In other words, as we approach homogeneity both in the
case of complete information and incomplete information we get the same expected
revenue of 1 regardless if we have a WTA or equal prizes. An easy extension to
our above analysis shows this relationship between the complete and incomplete
information contest is true for any � 2 [0; 1]:
In the spirit of the puri�cation theorem (i.e., Harsanyi (1973)), we have a found

a sequence of pure strategies (i.e., the sequence of unique bids for each type from
a distribution that converges to its mean type) under the incomplete information
game that converges to the (symmetric) mixed strategy equilibrium of the same
game under complete information. That is, we could consider our found relationship
as a re�nement of the multiple equilibria of a complete information contests� only
the symmetric equilibria survive. And we also see it only takes an " of uncertainty
over the type space to move from a (non-unique) mixed strategy equilibrium to a
symmetric pure strategy equilibrium. We will now use this relationship for another
proposition:

Proposition 4 If an e¤ort capacity constraint binds for some measure of the type
space, given enough homogeneity of types, an equal prize contest provides more rev-
enue than a WTA contest
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Proof. We already showed the expected revenue of the WTA contest converges
to that of the equal prize contest as we approach homogeneity (with no capacity
constraints). Again assuming the mean type ec; using our estimates found in the
appendix, as we approach homogeneity the maximal bid (i.e., of the lowest cost
type) in the WTA contest is

1ec � (1� F (c))k�1 = 1ec
With equal prizes we �nd, in the limit, the lowest cost type bidding

1

2ec �(F (c)� (k � 2) + 1) (1� F (c))k�2� = 1

2ec
Thus, with a capacity constraint be 2 � 1

2ec ; 1ec� ; e¤ort is reduced only under a WTA
contest. Thus, with su¢ cient homogeneity, the equal contest provides strictly greater
revenue, as revenue was roughly equal before any capacity constraints.
To understand what is happening under homogeneity Figure 5 below assumes

cost type distribution of c 2 [:9; 1:1] :

Figure 5: Approaching Homogeneity of Cost Type

As we approach cost type homogeneity, we have

cZ
(B(c)� A(c))�

F 0(c)dc ! 0; which means the area under the curve (i.e., the expected revenue) for
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both � = 0 and � = :5 is the same. But this means setting a capacity constraint of
e = :8; for example, results in the equal prize contest providing strictly more revenue
than the WTA contest. That is, doing so reduces the area of the former without
a¤ecting the area of the latter.
This proof also provides nice intuition of why with convex costs having a second

prize is superior to a WTA contest once types become homogeneous enough: as
types are su¢ ciently homogeneous, any combination of �rst and second prize provide
roughly the same revenue. However, under a WTA contest, the lowest cost types
are providing much greater e¤ort than under an equal prize. Hence, introducing
convex costs distorts downward these greatest e¤ort levels more than the lower e¤ort
levels these types provide under an equal prize scheme. The net result is again less
expected total revenue from a WTA over equal prize contest.

6.3 Empirical Predictions

Ideally, we would like to take our predictions to the data. However, the results of
MS and our earlier results that generalize theirs are di¢ cult to test. This is because
we all rely on the curvature of the contestant cost function. Cost functions are
di¢ cult to observe and measure in practice, let alone their degree of curvature.
Fortunately, our last class of contests� linear costs with capacity constraints�

provide some sharp empirical predictions that do not rely on measuring the curvature
of cost functions. Indeed, it should be clear that if we now introduce convex costs
coupled with capacity constraints, this only strengthens the above comparative stat-
ics. Hence, regardless of the curvature of the cost function, the comparative statics
still hold in the face of capacity constraints.
Thus, we can predict as follows:
When participants (or �rms) have a meaningful limitation on their maximal e¤ort

choice, we can say the following regarding optimal incentive structure:
1) As the range of ability decreases, incentives �atten
2) As the designer values e¤ort in a complementary manner or has the purpose

of incentivizing agents to reach a given standard or pro�ciency, incentives �atten
3) As the number of competitors increase, incentives �atten
4) As capacity limitations become more severe, incentives �atten

If we are able to observe total output, then we can replace all the above pre-
dictions� statements that "incentives �atten" with "revenue increases with �atter
incentives."
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We now turn to the English auction for not only further intuition by means of
order statistics, but also to show this interaction of the "incentive" and "discourage-
ment" e¤ect applies more broadly to other settings. In fact, an English Auction
can be though of as a winner-pay contest where contestants compete but only the
winner(s) pay his(their) bid(s). Yates (2010) provides some real world examples of
these kinds of contests, including versions where contest losers are reimbursed for
their e¤orts or bids ex-post.

7 Intuition via the English Auction

To begin we consider linear participant cost contests (with no constraint) and one
versus two equal prizes, and link these to an English Auction (EA), showing their
revenue equivalence. To correlate the two forms, we assume participants in the EA
only want, or are able, to acquire one unit and participants have independent private
valuations over objects. For the former, using some results from Moldovanu et al
(2008) and some further analysis, we write the revenue of an all-pay auction (AP),
which is equivalent to a contest with linear participant costs and no constraints, as
the following, normalizing the total prize mass to 1:

RAP (�) = (1� 2 � �)� E(k � 1; k) + 2 � �� E(k � 2; k)
We then see the revenue from an all-pay auction is a convex combination of

the 2nd and 3rd order statistics. Thus, with a WTA auction (i.e., � = 0) this
then collapses to E(k � 1; k); the expected value of the second most valuing type.
Through the revenue equivalence theorem, we know this is also the same as the
English auction with a single prize being auctioned o¤ (with linear costs).
Now with two equal prizes, we get RAP (12) = E(k � 2; k);the third most valuing

type. We could appeal to Krishna (2002), for a multi-unit revenue equivalence
theorem to show that we then obtain the same revenue from a (generalized) English
auction. However, it is more instructive to explicitly �nd the revenue from the
(generalized) English auction. We �rst note once the third to last participant drops
out of the auction, both remaining contestants will immediately drop out: since �rst
and second prize are the same, there is no value in further bidding. Hence, ex-ante,
for the auctioneer, the expected revenue for two equal prizes, or objects, is simply:

REA

�
1

2

�
=
1

2
� E(k � 2; k) + 1

2
� E(k � 2; k) = E(k � 2; k)

That is, the �rst and second most valuing type drop out immediately after the
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third most valuing type drops out, which for her is when her net expected return is
zero, as remaining in until the bid reaches ones valuation is the dominant strategy.
This can be expressed as 1

2
� Ai � bi = 0 ) bi =

1
2
� Ai; where Ai is the ith order

statistic. Taking the expectation then gives the third most valuing type dropping
out at a bid over equal objects each worth 1

2
as 1

2
� E(k � 2; k): Since after she

drops our there remain two contestants to pay for two objects, total revenue is then
2� 1

2
� E(k � 2; k) = E(k � 2; k); just the same as an AP auction.

Now when we introduce convex participant costs in the auction (or contest), the
revenue equivalence theorem fails since convex costs are equivalent to assuming risk
averse bidders. With convexity of costs we have 1

2
Ai � 
 ( bi) = 0; which can be

rewritten as g
�
1
2
� Ai

�
� bi = 0; where 
(�)�1 � g(�); and 
 (�) is the convex cost

function. If instead bidder costs are linear, having the auctioneer value individual
bids as g(�) shows the equivalence.
Again, with this auction format, the bidding strategy is simple in both a single

good or equal good auction: remain in the auction until your value is reached.
Thus, for the single prize, we get Ai � 
 (bi) = 0; which means the second most

valuing type drops out. The expected ex-ante revenue from this is then:

REA (0) =

Z
g (a)� fk2 (a)� da < g

�Z
a� fk2 (a)� da

�
= g (E(k � 1; k))

fk2 (a) is the pdf of the distribution of the second order statistic and integration
is over the support of types with k total contestants. The inequality follows from
Jensen�s inequality.
Similarly, we then �nd for the equal prize expected revenue is:

REA

�
1

2

�
= 2�

Z
g

�
1

2
� a
�
� fk3 (a)� da

We can now compare the two prize distribution revenues to determine which
garners more total (expected) revenue than the other. First, note as before, when
costs are linear we get g(x) = x:

REA (0) = E (k � 1; k) > E (k � 2; k) = REA
�
1

2

�
Thus, it is again always best to only o¤er a single 1st prize when costs are

linear. However, now consider what happens as convexity increases. Here we mean
convexity of the cost function 
(�) increases and thus the concavity of its inverse
g(�) increases in the Arrow-Pratt sense: �g(�)

00

g(�)0 ! z: This then means, in the limit,
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we get g(�)! c; some constant c: Hence, we have equal prizes producing revenue in
the limit of:

lim
�g(�)00
g(�)0 !z

REA

�
1

2

�
= 2�

Z
lim

�g(�)00
g(�)0 !z

�
g

�
1

2
� a
��
� fk3 (a)� da

= 2�
Z
c� fk3 (a)� da = 2� c� 1 = 2� c

:
Thus, we have:

lim
�g(�)00
g(�)0 !z

REA

�
1

2

�
= 2� c > c = lim

�g(�)00
g(�)0 !z

REA (0)

Thus, there exists some degree of convexity such that an equal good English
auction provides more revenue than a single good auction.
The intuition of how convexity causes equal goods to dominate a single good is

simple: with increased convexity, the di¤erential in revenue garnered from o¤ering a
$.50 versus $1 prize becomes increasingly small. However, under equal goods we are
getting two participants paying this revenue rather than just one under a WTA. In
other words, convexity starts limiting how much more of a bid a larger good elicits.
We then reach a crossing point where although the bid is less for a $.5 over $1 good,
it is not less than half the greater bid o¤ered for the $1 good. Thus, under an English
auction with (su¢ cient) participant convex costs, if an auctioneer could divide an
object into two equal parts, auctioning them o¤simultaneously would provide greater
expected revenue than auctioning it o¤ as a single object. This intuition then also
follows for a contest setting: increased convexity starts limiting the value of having
a larger �rst prize, thus allowing the two slightly less incentivizing prizes to garner
more total contestant e¤ort. Hence, with enough convexity, an equal prize contest
yields more total revenue than a WTA contest.
It is then also immediate how instead with participant linear costs but designer

concave valuation of individual bids, given enough concavity of bene�t, two prizes
dominates a single prize contest: convex costs and linear bene�ts is mathematically
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equivalent to linear costs and concave bene�ts. With both convex costs and concave
bene�ts, the need to o¤er equal prizes is only strengthened.
The English auction also provides intuition on how increasing the number of

participants makes an equal prize auction more likely to provide more revenue than
a single prize auction. Recall under linear costs we have the revenue of allocating
the prize mass as:

RAP (�) = (1� 2 � �)� E(k � 1; k) + 2 � �� E(k � 2; k)
Thus, as k !1; we have E(k�1; k)! E(k�2; k): This means in the limit of a

large contest, we receive the same revenue regardless of prize distribution. Nonethe-
less, in a �nite population it is still always best to only auction a single �rst prize
with linear participant costs. However, when we introduce strict participant cost
convexity, we are assured there exists some �nite k such that o¤ering equal prizes
yields more revenue than o¤ering only a �rst. This is immediate from our above
analysis of strict convexity causing the expected revenue garnered from a $:5 prize
to be strictly greater than revenue garnered from a $1 prize. That is, given large
enough k; E(k� 1; k) and E(k� 2; k) become su¢ ciently similarly valued to provide
greater total revenue from auctioning equal goods over a single good. Thus the size
of the auction and the degree of cost convexity amplify one another: more of one
requires then less of the other to still be assured we optimally auction o¤ two equal
goods over a single good.
We can also now see the role of heterogeneity of prize valuation. As the support

of the distribution of types approaches a single type, the 1st and 2nd order statistic
converge to one another� i.e., E(k� 1; k)! E(k� 2; k): Hence, following our argu-
ment above for increasing the number of participants, once we �x the convexity of
the cost function and number of participants, su¢ ciently decreasing the heterogene-
ity of valuation will also result in equal goods providing more revenue than a single
good to the auctioneer.
We summarize our above analysis in the following proposition:

Proposition 5 Fix the size (number of participants k), convexity of participant bid
costs, concavity of auctioneer bene�t over bids, and degree of heterogeneity of valua-
tion in an English auction with independent private values.
1) There exists some k� � k such that for all k � k� o¤ering two equal goods

each worth V provides greater total revenue than o¤ering a single good worth 2V
2) There exists some degree of convexity of bid cost such that c� � �h(�)00

h(�)0 �
�g(�)00
g(�)0

yields for all �h(�)
00

h(�)0 � c
�o¤ering equal goods dominates a single good (where our cost

function 
�1(�) = g(�)).
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3) There exists some degree of concavity of bene�t over bids such that o¤ering
equal goods dominates o¤ering a single good
4) There exists some decreased level of heterogeneity of valuation such that o¤er-

ing equal goods dominates o¤ering a single good

This then means we are given four levers to assure more revenue from auctioning
equal prizes over a single prize: the size of the auction, the convexity of participant
costs, the concavity of designer bene�t, and the degree of valuation homogeneity.
We only need to increase one to provide our result. We can again think of the
English auction as an analog for a winner pays contest. That is, a contest where
only the winner(s) has(have) to pay her(their) bid. Thus, the above results then
follow immediately for a winner-pay contest.

8 Conclusion

Whether it be business, politics, or even academics, much is actually a contest. As
such, an important task is to consider how to best design a contest. Central to
this problem is accounting for the interaction of the "incentive e¤ect" and "discour-
agement e¤ect." This interaction arises with the combination of competition and
heterogeneous ability. With only one of these factors, there is no tradeo¤. Similarly,
If only living in a world of linear costs and bene�ts and no capacity constraints, this
interaction means little. Though it is convenient to study only one of these inter-
acting factors in isolation, seldom does this characterize the real world. Instead, the
presence of these dual forces is more the norm than the exception.
And in a world with both forces, once we face contestants with capacity con-

straints or convex costs, larger contests, contestants of similar ability, or designers
with marginal decreasing bene�ts over e¤ort, this interaction can become severe: the
"discouragement" e¤ect dominates the "incentive" e¤ect calling for optimal incen-
tives to be �at or possibly even inverted� second prize should be larger than �rst
prize.
However, bidding under an inverted incentive scheme becomes non-monotonic.

For such a problem we designed a mechanism we dubbed the generalized second
prize contest (GSPC) mechanism, which nests in it the constrained contest that
restricts a weakly greater �rst prize. We then found the GSPC (weakly) dominates
the constrained contest in terms of total revenue generated for the contest designer.
In addition, we studied an alternative class of contests� contestants with linear

costs and capacity constraints� that has the characteristic of providing sharp and
measurable empirical predictions that can be taken to the data.
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Finally, we studied a di¤erent setting of an English auction and �nd all the
comparative statics applied in this setting, as well. The English auction is also an
analog for another important class of contests: winner-pay-contests, and thus the
results additionally apply here.
We do note that we only considered the case of two prizes. It would be interesting

to expand our analysis and consider the case when we can o¤er n prizes with n < k
contestants; which prize should be largest? What about if prizes are indivisible�
which place should receive the sole prize? We suspect we will �nd a k prize analog
of our results.
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Part II

Competition via Personnel
Economics
We next test the above theory experimentally in the setting of personnel economics.
We vary both the degree of competition and the bonus structure. We �nd,as theory
suggests, that softening incentives tends to increase overall e¤ort. However, we
also �nd that individuals behave quite di¤erently than expected. Instead of exerting
e¤ort in a smooth fashion declining in lessened ability, players mostly use a threshold
heuristic� working excessively or not at all, depending on their ability in comparison
to some threshold type. We also �nd that worker types are not immutable: di¤erent
institutional designs cause workers to become di¤erent types: some reasonable and
hard workers, but others slackers and quitters. We �nd in this setting, we maximize
total e¤ort by providing higher levels of worker competition but rewarding the best
performer less, even giving the largest bonus to the second best performer. This
structure elicits roughly 62% more total e¤ort per bonus dollar over our baseline
winner-takes-all bonus case.

9 Introduction

Many economic models prescribe sharp incentives. Incentives in the "real world,"
however, tend to be softer. For example, to align incentives and maximize perfor-
mance we ought to make employees residual claimants of a �rm. However, we see few
examples of material employee ownership of �rms. In fact, Kim & Ouimet (2009)
report a mere 18% of all workers own any of their employing �rm�s shares. Simi-
larly, although performance based labor contracts should usually be preferred over
�at salaries, we �nd little evidence of such contracts in the workplace. Lemieux, Mc-
Cleod and Parent (2009) report only 14% of workers receive any type of performance
pay� which includes bonuses, piece rates, or commissions.
Labor tournaments with steep incentives o¤er another approach to maximizing

e¤ort. However, this high powered structure is not so apparent in practice. Two
employees of similar activities but varying e¤ort can both advance to subsequent
positions. Seniority can sometimes trump performance for advancement. And
a higher position, though accompanied with higher pay, when paired with greater
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responsibility may not be such a steep jump in reward, if any.4

Why do soft incentives abound? We argue that it stems from the intersection
of employee heterogeneity and competition. In particular, if a �rm sharpens its
incentives� by giving a greater share of the bonuses to the top performer(s) or in-
creasing the number of workers competing over a set of bonuses� the most able are
incentivized but the rest give up due to discouragement. Recent theoretical devel-
opments suggest this latter e¤ect can overcome the former (e.g., see Moldovanu &
Sela (2001) and Minor (2010)). But this again is theorizing. Ideally, we would
like to manipulate �rm compensation and ownership to deduce why incentives are
soft in practice. In addition to the di¢ culty of having �rms agree to our running
experiments on their workers, even with such permission, it would be di¢ cult to ma-
nipulate worker ability, let alone know its precise value. This is important because
this newer strand of literature prescribing soft incentives relies heavily on precisely
knowing worker types. We can instead use the laboratory to simultaneously test the
e¤ects of incentives and competition. We can then not only vary reward structure
and degree of competition, but can also vary private information and ability among
participants, all the while knowing their precise values.
In this spirit, we explore experimentally the e¤ects of di¤erent institutional struc-

tures on e¤ort. By institutional structure we mean the workers�degree of compe-
tition and the "steepness" of the bonuses being faced. The greater the fraction of
bonuses given to the highest performers over lesser ones, the "steeper" the bonus
structure. We thus manipulate these factors, as well as varying the ability of em-
ployees, to uncover when soft incentives actually do increase overall e¤ort.
Our results are as follows:
1) As theory predicts, softer incentives tend to increase total e¤ort� up to 62%

over our baseline winner-takes-all case.
2) Individuals behave di¤erently than expected: contestants choose levels of e¤ort

in a binary fashion based on a threshold heuristic.
3) Worker types are not immutable. Instead, the institutional structure� the

degree of competition and bonus structure� creates di¤erent types of workers, which
has important implications for organizational design.
4) We propose a simple model with a single parameter that captures subject

behavior, and not only is a good �t for our data, but also explains well the data from
other experimental studies.

Thus, the general prediction of softer incentives increasing overall e¤ort is correct.
However, workers make unexpectedly simple e¤ort decisions. In particular, employ-

4See Prendergast (1999) for further examples of surprisingly soft incentives within the �rm.
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ees have some cuto¤ of ability type, which varies across people. When a worker has
ability above her cuto¤, she exerts great levels of e¤ort, and when she is below it she
exerts little or no e¤ort.
Further, we �nd there is a close interaction between a person and his environment.

Speci�cally, we �nd the location of the cuto¤ point is in�uenced by the institutional
structure, which means worker types are not immutable. In all of our institutional
settings we �nd about a third of the workers have very low ability thresholds, and
thus act as Strivers: overcon�dent types who work at capacity unless they are the
very lowest of ability. Meanwhile, when the bonus is reserved for only the top
performer and competition is �erce, the balance of workers tends to have very high
ability thresholds, thus becoming Quitters: unless the most able of types, they simply
give up due to discouragement. If instead, competition is reduced and more than
the best performer receives a bonus, Quitters become Slackers� rather than giving
up, workers put in minimal e¤ort, hoping to capture an easy payday by gaming
the system. Finally, when we maintain high competition but reward the typical
worker more than the top performer, we witness many Realists� having a threshold of
average ability, these people work very hard when they are above average ability and
minimally when below average. It is under this setting that Quitters are encouraged
to become Realists and Realists are discouraged from becoming Slackers. And it is
this setting that produces the greatest total worker e¤ort, some 62% greater than
our baseline case per dollar of bonuses awarded.

The balance of our paper is organized as follows. Our �rst section reviews some
relevant literature. The second section provides our theoretical predictions for our
class of experiments. The next two sections review our experimental design and
results. Section 5 provides the behavioral model to explain our observed threshold
bidding. The next two sections calibrate and test this model. We conclude with a
discussion and prescriptions for organizational design.

10 Literature Review

As mentioned in the introduction, Prendergast (1999) provides a survey of the dishar-
mony between theory and empirics in the realm of �rm incentives. In addition to
existing empirical analyses, there have been some �eld experiments that explore
varying work incentives. For example, Bandiera et al. (2005) study the e¤ects of
relative pay and piece rate pay on seasonal worker e¤ort. Lazear (2000) examines
the e¤ects of a particular company adopting a piece rate scheme and �nds that it
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increases productivity, though relative pay is not explored. Neither of these explore
the interaction of competition and incentive structure.
There has been considerable interest in exploring contests experimentally. Many

of these studies have been the special case of the complete information Tullock con-
test (see Morgan et al. (2010) for a summary). The focus of these studies is bidder
behavior versus theoretical predictions using the Tullock success function. Of par-
ticular interest in many of these studies is the degree of rent dissipation over optimal
design of incentives. We are instead interested in the optimal design of contests
over contestant behavior per se. We are also interested in contests where all players�
abilities are not perfectly known, as they generally are in the above literature.
A new literature does explore di¤erent contest and incentive designs, and their

e¤ect on e¤ort. For example, Cason et al. (2010) compare a winner-takes-all scheme
to alternative schemes of piece rates and sharing prize mass proportionally based on
output. Additionally, Freeman & Gelber (2010) study a winner-takes-all versus
multiple prize contest. They �nd that when contestants know their type and the
realized types of their competitors, a multi prize contest compared to a winner-takes-
all contest elicits more e¤ort from the less able and less e¤ort from the most able.
Finally, Muller & Schotter (2010), study private value contests with a constant degree
of competition and compare equal to winner-takes-all prizes. This latter paper tests
the constrained prize structure from Moldovanu & Sela (2006), which means it is
testing a suboptimal contest as shown in Minor (2010). More importantly, Muller &
Schotter (2010) do not vary competition, which as outlined below, is the central cause
of incentive trade-o¤s. Consequently, they do not fully identify subject strategy and
behavior.
Whatever the case, a consistent theme in this recent experimental work is identi-

fying a "discouragement" e¤ect. That is, as incentives become sharper, the most able
try harder, but the less able try less, or even give up, creating a sharp discontinuity
in e¤ort degradation. Though these �ndings are consistent, they remain largely
unexplained. One main purpose of this paper is to identify why we witness this
behavior and study explicitly not only the "discouragement" e¤ect but also identify
the tradeo¤ with incentivizing via sharper incentives.
These past studies also generally hold the level of competition constant and thus

are not able to identify how this interacts with the incentive and discouragement
e¤ect. Hence, another purpose of this paper is to determine the interaction e¤ect
of competition and incentives. We �nd when we optimally design incentives, we
must determine not only reward structure but also the best degree of competition.
Additionally, we �nd by varying the intensity of competition, we identify another
behavior in addition to quitting; softened incentives interacted with decreased com-
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petition, even though theoretically optimal, create a class of contestants that try to
"game the system" through regular but minimal e¤ort� i.e., slacking.
We will provide a simple behavioral model that predicts all three of the observed

e¤ects. In addition, not only does this model explain our data, we are able to obtain
data from two other similar studies that will also be explained by our model. In
fact, in some ways our model even better explains this "out of sample" data than
our own data. But �rst we review extant theory.

11 Theory

Assume a setting where workers exert e¤ort and are awarded a bonus in rank order
based on e¤ort. We are concerned with those settings where it is di¢ cult to precisely
measure employee e¤ort, but it is possible to rank them. For example, consider a
team setting where employee activities are not easily quanti�able but the manager
has a good sense of how much each employee relatively contributes to the project.
The cost of e¤ort x is linear. Employees have privately known heterogeneous

e¤ort cost types c drawn from a uniform distribution with support [:5; 1]: Workers
face one or two bonuses, depending on the treatment, with common values V1 and
V2. For simplicity, we assume a base wage of zero throughout. Although V1
is awarded for the greatest e¤ort and V2 for the second greatest e¤ort, they need
not be monotonically ordered in terms of value. A worker then faces the following
objective function:

max
x
F1(b(x)

�1)� V1 + F2(b(x)�1)� V2 � c � x

The CDF F1(x) (F2(x)) is the probability of placing 1st (2nd) given e¤ort x: The
term b(x)�1 is the inverse of the equilibrium e¤ort function. The general procedure
for �nding this e¤ort function is simply taking the �rst order condition and then
integrating down to an arbitrary cost type c: The equilibrium e¤ort function can be
pinned down assuming the highest cost type in equilibrium exerts zero e¤ort.
Assuming V1 � V2; we get the following equilibrium e¤ort, as originally outlined

in Moldovanu and Sela (2001):

b(c) = A(c) � V1 +B(c) � V2
We de�ne
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A(c) � (N � 1)
1Z
c

1

a
(1� c� :5

1
)N�2 � 2da

and

B(c) � (N � 1)
1Z
c

1

a
(1� c� :5

1
)N�3 � [(N � 1)c� :5

1
� 1]� 2da

with N 2 f3; 6g contestants.
To examine the full contract space of two prizes, we want to allow for the possi-

bility of a larger second prize. Minor (2010) develops a mechanism to accommodate
this case. In particular, when we have V1 < V2; a pooling interval endogenously
emerges where some measure of the most able types c 2 [:5; c�] all exert the same
e¤ort up to some marginal cost type c� that is indi¤erent to pooling or providing
e¤ort as under V1 � V2. All types c 2 [c�; 1] still provide e¤ort levels as given by
b(c) above.
We also want to allow for e¤ort capacity constraints. Many settings� whether it

be maximal physical strength or a maximum of 24 hours in a day� have some max-
imum of possible e¤ort. As Minor (2010) shows, with an e¤ort capacity constraint
and linear costs, we similarly have a pooling interval where some measure of the most
able types c 2 [:5; c] all provide the capacity e¤ort level � up to some upper type
c; and then all higher costs types exert e¤ort according to b(c): As shown, in Minor
(2010), once we introduce these capacity constraints the optimal prize structure can
become much �atter than without such constraints. Indeed, with linear costs and
no constraints, a winner-takes-all contest dominates. However, modest capacity
constraints quickly make such a scheme a poor design choice.
Below we show a chart for two experimental treatments of N = 3 and one with

a single bonus for the greatest e¤ort and another with equal bonuses for �rst and
second greatest e¤ort. Compared with an equal bonus scheme, the winner-takes-all
(i.e., WTA) setting induces the greatest e¤ort for the lowest cost types (i.e., the most
able) but less e¤ort for all other costs types. Hence, we see an immediate trade-o¤
in designing rewards: as we sharpen the incentives via shifting the bonus mass to �rst
place, we increase the e¤ort of the most able, but disincentivize all the others. We
term the former the "incentive e¤ect" and the latter the "discouragement e¤ect."
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We explore both of these e¤ects, as well as contestant behavior and contest design
in more general terms through controlled laboratory experiments, which we turn to
now.

12 Experimental Design

In total, we conducted 8 experimental sessions during February 2010. Our 141
Subjects were undergraduate and graduate students from UC Berkeley. Sessions
lasted approximately 45 minutes from reading instructions to subject payment, which
averaged approximately $15 per subject. Subjects were not allowed to participate
more than one time. The experiments were programmed and conducted with the
software z-Tree developed by Fischbacher (2007).
We designed the experiments to operationalize the notion of workers competing

for bonuses under varying bonus allocations and degrees of competition, as we are
not only interested in these individual e¤ects but also their interaction e¤ects.
We did not frame the experiments as workers and bonuses. Instead, we simply

awarded "prizes" for "e¤ort." We wanted to keep the framing more generic to make
sure we were capturing incentive and discouragement e¤ects that were not colored
by subjects�perceptions of the type of experiment being conducted.
We also used a chosen e¤ort design. The reason for this is two-fold. First, theory

suggesting softer incentives can increase total e¤ort relies heavily on knowing precise
ability types, which can be carefully done in a chosen e¤ort setting. Second, we
view this study as a �rst step to fully testing these ideas of increasing e¤ort through
soft incentives. If we are unable to obtain this result in a controlled laboratory
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environment, we have little hope of doing so in a �eld experiment, let alone the "real
world."

Sessions varied on the dimensions of bonus allocation, number of workers (i.e.,
degree of competition), and the presence of e¤ort capacity constraints. Since these
contest games are complex and require learning, we allowed subjects to compete
over 30 periods. For the bonus allocations, we simply changed the distribution of a
constant $400 (in experimental units) bonus mass, which amounted to a per period
bonus mass of $2 US dollars. The winner takes all (WTA) treatment awarded $400
per period to the most chosen e¤ort. The equal prize (EP) was then $200 awarded
to each of the top two workers in terms of e¤ort. Finally, the larger second prize
(SP) contest awarded $260 to second greatest e¤ort and $140 to the greatest. We
also varied treatments across 3 and 6 worker groups to study the e¤ects from the
degree of competition.
Finally, all but the �rst two sessions had a total e¤ort capacity constraint of 240

per period. This was done to allow us to explore how constraints a¤ect optimal
incentive structure. Theory predicts when workers have no constraint, such as 24
hours per day or some maximal physical strength, the optimal structure is to only
o¤er a WTA bonus structure. However, once workers have limits, it is best, in
theory, to o¤er softer incentives. Table 1 shows a summary of all 8 sessions and the
corresponding treatment.

Table 1: Comparing Di¤erent Treatments Across Sessions
Treatment Session Subjects Group Size 1st Prize 2nd Prize Constraint
WTA 1 15 3 $400 $0 none
Equal 2 18 3 $200 $200 none

Const. WTA 3 18 3 $400 $0 240
Const. Equal 4 18 3 $200 $200 240
Large WTA 5&6 36 6 $400 $0 240
1st< 2nd Prize 7&8 36 6 $140 $260 240

After instructions were read, play began. Subjects were given an endowment of
$300 experimental units each period. Each period a subject was randomly assigned a
cost type c, which was drawn from a uniform distribution with support [:5; 1] . Each
worker knew only their own cost type and then the distribution from which her other
2 (or 5) contestants cost types were drawn. After learning their cost type, workers
chose how much e¤ort to exert. In addition to his cost type, the subject�s endowment
value, the value of the bonus (or just one bonus if the contest was a WTA), and a
calculator should he need to calculate his cost of e¤ort, were all displayed. From this
screen, the worker would then enter his e¤ort. After all subjects submitted their
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chosen e¤ort, the next screen revealed all three (or six) submitted chosen levels of
e¤ort, as well as showing the calculation of the subject�s winnings for that particular
period:

V � c� e+W
Where, V is the value of any bonus awarded, c his cost type, e his chosen units

of e¤ort, and W is that period�s endowment.
Play continued to the next period where all subjects would again be randomly

assigned another cost type from the same distribution and independent of past pe-
riods of play, and independent of the other players. In the end, subjects, as they
were told before play began, were paid based on six randomly chosen periods. This
was done to limit the chances of any type of dynamic strategy and to limit income
e¤ects. At the end of the 30 periods of play, subjects took a short questionnaire and
risk test. The risk test was a coarse version of Holt & Laury (2002). Rather than
providing all 10 lotteries from their original study, we o¤ered subjects half of these,
as we had the twin purpose of parsimony and tracing a subject�s risk attitude. Our
aim was not to have a precise measure of risk aversion but instead be able to identify
risk neutral from risk averse and risk seekers, as will be discussed later.
One concern is our study, as any experimental study, su¤ers from a degree of

external validity. However, in our case, although we did not actually test workers
in �rms, it does have the feature that the subjects (i.e., students) are typically
workers or have the experience of being workers in real �rms. Whatever the case,
we knew if we could not generate theorized incentive e¤ects in a controlled laboratory
environment, we have no hope of doing so in the "wild" real world. Thus, these
experiments are an important �rst step in testing theory. We now turn to our
experimental test predictions.

12.1 Experimental Predictions

Our next table reports the Nash Equilibrium e¤ort bidding predictions across all our
sessions.
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Table 2: Nash Equilibrium E¤ort Predictions Across All Sessions
Treatment Expected E¤ort Type < c� E¤ort Type � c�E¤ort Subjects
WTA 164.28 347.97 70.59 15
Equal 156.04 227.66 120.22 18

Const. WTA 126.06 237.33 70.43 18
Const. Equal 155.88 227.20 120.22 18
Large WTA 63.39 238.83 36.40 36
1st<2nd Prize 86.43 230.57 64.26 36

We report in Table 2 not only the expected e¤ort as given by theory, but also
the expected e¤ort conditional on being below or above the marginal type c�: This
marginal type c�is indi¤erent between any distribution of bonuses. Thus, those
lower cost types than c� are subject to the "incentive e¤ect" and those higher cost
types to the "discouragement e¤ect." This can be seen when comparing session 1
(i.e., WTA) to session 2 (i.e., Equal). When we move from session 2 to 1, the most
able types (i.e., c < c�) increase their expected e¤ort from 227.66 to 347.97, for
roughly 120 increased e¤ort units. However, the less able decrease their e¤ort from
120.22 to 70.59, or about 50 reduced units of e¤ort. In this example, it still provides
more total revenue, as seen by the expected e¤ort �gure of 164.28 to provide a WTA
contest. That is, the "incentive e¤ect" overcomes the "discouragement e¤ect."
However, this is not true of the other sessions. These later sessions are designed
through capacity constraints such that softening incentives to equal prizes or in the
extreme even inverting incentives� making second place bonuses larger, as we did in
sessions 7&8� actually increases e¤ort over a WTA scheme. Now we consider our
experimental results.

13 Experimental Results

Table 3 summarizes the results per session in terms of total e¤ort. As can be
seen, our theoretical predictions are poor, and we can reject our theoretical e¤ort
predictions as correct at the 5% level for all treatments. However, the direction of
misprediction depends on the treatment. In particular, we �nd theory under-predicts
the total e¤ort of the winner takes all contests (WTA) but over-predicts e¤ort in the
equal bonus contests. However, for the large contests (i.e., sessions 5-8), theory
systematically under predicts total e¤ort for both treatments.
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What theory does get right, however, is the comparative static of softening incen-
tives in the face of e¤ort capacity constraints: when players face capacity constraints
on e¤ort (i.e., sessions 2-8), softening incentives does increase e¤ort, and increasingly
so for larger contests.
Comparing WTA to Constrained WTA shows us our competition e¤ect: total

e¤ort for the same total bonus dollars increases over 200. Next, comparing Larger
Second Prize to Large WTA shows the e¤ect of softening the incentives via not only
now o¤ering a second prize, but a larger one: e¤ort is increased yet another 50 units.
This means in combination, these two levers of competition and softening incentives
increases e¤ort over our baseline (i.e., constrained) winner-takes-all structure by some
62%.

Table 3: Nash Equilibrium E¤ort Predictions vs. Actual
Treatment Predicted E¤ort Actual E¤ort � E¤ort P Value
WTA 492: 84 607:65 114: 81 :0017
Equal 468: 12 398:63 �69: 49 :0000

Const. WTA 378: 18 421:33 43: 15 :0384
Const. Equal 467: 64 434:36 �33: 28 :0074
Large WTA 380: 34 634:40 254: 06 :0000
1st<2nd Prize 518: 58 681:43 162: 85 :0000

13.1 The Nature of E¤ort Disparity

To examine the source of our disparate results, we further divide e¤ort exerted into
e¤ort cost types that are below and above our marginal cost type c�� that is (in
theory) indi¤erent to prize structure. The cost types c < c��we call "low cost" and
the balance of types we dub "high cost." Table 4 summarizes each of these types
for each session over the last 15 periods of exerting e¤ort.

38



Table 4: Predictions vs. Actual For High and Low Cost Types
Nash Predicted E¤ort Actual E¤ort

Treatment Type < c� Type � c� Type < c� Type � c�
WTA 370:20 81:41 401:10(:07) 114:73(:01)
Equal 229:72 128:67 149:01(:00) 125:96(:31)

Const. WTA 238:13 82:00 186:95(:00) 120:51 (:00)
Const. Equal 228:97 128:67 157:63(:00) 139:28(:05)
Large WTA 238:73 38:21 165:17(:00) 97:46(:00)
1st<2nd Prize 230:59 67:61 201:71(:00) 101:30(:00)

P Values of Di¤erences in Parentheses

We �nd a general theme of the "low cost," most able types under exerting com-
pared with theory and the "high cost" types over-exerting. That is, these observed
e¤ort patterns are �atter than the Nash Equilibrium prediction. This is in contrast
to past all-pay-auction experiments where contestants generally have steeper e¤ort
behavior. That is, with this past behavior, players over-exert vis-a-vis the Nash
Equilibrium bid when a low cost type and under-exert when a high cost type. This
type of behavior is in line with augmenting the risk neutral theory above with players
being risk averse (see Fibich et al. (2006)). For our �ndings of �atter e¤ort exertion,
this same logic would mean our contestants were risk seekers. However, this possi-
bility is rejected based on subject risk test questionnaires, which report that subjects
are generally risk neutral to slightly risk averse. What are participants doing?

13.2 Actual E¤ort Behavior

It must be that at least some participants are doing something di¤erent than theory
predicts� there is some force �attening their e¤ort choices. To identify this force,
we must then examine e¤ort exertion on an individual level. It is then we notice
that there seems to be some cuto¤ cost type for each participant. When she receives
a cost type draw below this cuto¤ type, she exerts almost capacity e¤ort and when
her realization is above this cost type, she all but abstains (i.e., exerts zero e¤ort or
close to it).
For example, the subject, as reported in �gure 1, exerts maximal e¤ort� i.e.,

e¤ort is at the same level as the solid line, which is the capacity e¤ort level, when she
realizes cost types just below the average cost type of :75; and then provides no e¤ort
at type realizations above this. Actual e¤ort exerted is denoted by the diamonds.
The dashed line is the Nash Equilibrium predicted e¤ort, labeled NEBid. We also
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report the last 15 periods of play, as by then workers had stabilized their strategy,
as we discuss in our econometric section.
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Figure 1: Session 5, Subject 2

Next, in �gure 2 we witness a worker with a very low threshold. Indeed, for any
cost type realization below around .60, he provides very high e¤ort. However, above
this he provides no e¤ort.
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Figure 2: Session 5, Subject 11

Finally, in �gure 3 we have an example of a high threshold contestant� here she is
approximately always exerting high e¤ort if she realizes a cost type below .9. There
is only one period where this is not true, where she exerts no e¤ort.
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Figure 3: Session 6, Subject 14

This threshold bidding behavior can then be thought of as many bidders with
di¤erent step functions. Since these step functions have di¤erent cuto¤s, when we
aggregate them together, we can then get a �atter bidding structure, as noted in our
previous section.
Viewing such graphs as shown above for all 141 subjects, it seems for most ses-

sions, 1/2 to 2/3 of the workers exhibit this threshold behavior. The balance of
workers seem to be close to Nash Equilibrium predicted e¤ort or more often simply
a noise worker� randomly choosing a bid between zero and the maximal e¤ort. To
verify this subjective observation quantitatively, a simple threshold e¤ort strategy,
as outlined explicitly in our next section, compared to actual e¤ort, carries a mean
squared error of 1070.96 across all sessions. The Nash Equilibrium predicted e¤ort
compared to actual e¤ort carries a mean squared error of 3430.06. We now develop
a model to understand this threshold strategy.

14 A Threshold Model

For a player, calculating a best response over continuous type space is a complex
calculation. Indeed, expected e¤ort given in Table 2 must be calculated numerically.
It is thus plausible that contestants use some type of heuristic to calculate a best
response. An intuitive heuristic would simply be to best respond as if all other
players are the average cost type, here denoted c:
Thus, suppose a player optimized against an average person. A model describing

what average people do is captured by a complete information contest with all of
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mean cost type c and e¤ort capacity constraints. We can then �nd a mixed strategy5

equilibrium. The capacity constraint is denoted � < Vmax
c
; where Vmax is the greatest

valued prize. To our knowledge, equilibria have not yet been identi�ed in the case
of capacity constraints, and so we �rst turn to this analysis.
What we �nd is if all players are the average type c; they will go "all in," exerting

the full capacity e¤ort level � some fraction of them time, denoted p�: The other 1�p�
of the time the player will play a mixed strategy drawn from a distribution F (x) with
support x 2 [0; �]; as outlined in our appendix. That is, in addition to exerting full
capacity e¤ort �; the worker will periodically exert anything from 0 up to � < �
of e¤ort (where � is de�ned in our appendix). We state this formally in our next
Proposition:

Proposition 6 Assume a contest with N � 3 homogeneous players, up to 2 prizes,
and binding e¤ort capacity constraint �. The symmetric equilibrium requires players
play � with probability p� and bid with probability 1� p� from distribution F (x) with
support x 2 [0; �]; where � < �: See the appendix for expressions for p�and F (x) :

Proof: See Appendix.
This equilibrium is such that the expected pro�t from exerting either � or e¤ort

levels from F (x) is zero. Hence, all workers are indi¤erent between mixing between
providing e¤ort � and providing some e¤ort x according to F (x): There is no devi-
ation to exert e¤ort in the gap between � and �; as there is no increased chance of
winning a bonus and yet there is increased cost in doing so.
When such workers do not have a binding constraint (i.e., � > Vmax

c
);as is the

case for session 2 (note for session 1 the periodic endowment of 300 causes a binding
�), an easy extension of Baye et al. (1996), yields the equilibrium of mixing over a
distribution of some CDF F (x) with upper support Vmax

c
; where Vmax is the largest

prize value. Thus, we see for all sessions, the upper support for e¤ort exerted is the
lesser of Vmax

c
or �:

With the above results, we can now �nd the best response if playing as if all other
players are type c: Clearly, if a worker herself draws c; she is indi¤erent between ex-
erting x 2 [0; �] and �; as we are in the homogeneous game as given above. However,
if she draws c < c; her strict best response is to exert �; as now her expected pro�t
is maximally positive: Contrarily, if she draws c > c; her best response is to exert

5As can easily be shown, no pure strategy equilibrium exists. Suppose one does exist. If such
a pure strategy bid is less than Vmax

c ; one player can bid " more and capture the prize for sure, and
for a pro�t. Thus the only possible pure strategy is for all to bid Vmax

c : However, the expected
pro�t is negative at this level. Hence, any equilibrium must be mixed.
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zero, as her expected pro�t is strictly negative otherwise. This then gives us our
next proposition:

Proposition 7 Assume an employee exerts e¤ort as if other employees are the mean
type c: An employee with e¤ort cost level c then best responds with e¤ort e as follows,
where M � minf�; Vmax

c
g:

c < c exert e =M

c > c exert e = 0

c = c exert e 2 [0;M ]
Hence, using the simple heuristic that one exerts e¤ort as if others are of average

ability, yields a simple strategy: exert e¤ort M if realizing a below average cost type
and 0 otherwise.

Now we allow workers to have varying degrees of con�dence6. Malmendier & Tate
(2005) and Heaton (2002) model overcon�dence as a worker assuming their project
has greater expected return than its true expected return. The former model it as
the expected value being magni�ed by some factor greater than one, while the latter
assumes that managers attach a greater probability to success than is warranted. In
our setting, these two approaches are identical. Hence, we write the expected payo¤
to worker i as follows:

E[�i] = E[win] � 
i � c � x
The only di¤erence from Proposition 2 is now the introduction of our con�dence

parameter 
i; which represents the degree of con�dence. If 
i = 1; we have, as under
Proposition 2, a perfectly rational employee. If 
i > 0 the worker is over con�dent

6Alternatively, we get the same result as in Proposition 3 if we instead allow employees to have
varying degrees of risk aversion. However, this approach in our view does not make as much sense
conceptually. As shown later, this would mean that varying degrees of competition and bonus
structure a¤ect a subject�s risk preferences.
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and if 
i > 0 the employee is undercon�dent. For notation simplicity we have above
de�ned

E[win] � (1� p�)N�1 � F (x)N�1 � V1
+(N � 1) � (1� p�)N�1 � F (x)N�2 � (1� F (x))� V2
+(N � 1) � (1� p�)N�2 � p� � F (x)N�2 � V2

If we additionally de�ne eci � 
i �c and replace c with eci; we have as in Proposition
2 the same p� and a threshold strategy as a best response. However, now the
threshold strategy is based on the cuto¤ cost type eci rather than c: This provides
our next Proposition:

Proposition 8 Assume an employee exerts e¤ort as if all other employees are the
mean type c: An employee with e¤ort cost level c and degree of con�dence 
i then
best responds with e¤ort e as follows, where M � minf�; Vmax

c
g and eci � 
i � c:

c < eci exert e =M
c > eci exert e = 0

c = eci exert e 2 [0;M ]

In summary, we have generated a best response strategy for contestants that
simpli�es an admittedly very complex optimization problem over continuous type
space into simply two states of the world: when realizing a cost type below the
threshold type, exert very high levels of e¤ort and when realizing a cost type below,
exert zero e¤ort. To explore how well this heuristic strategy describes our actual
subject behavior, we �rst estimate ec:
15 Estimating the Threshold Model

Allowing for a distribution of 
i over workers, we estimate eci separately for each
worker. Note then each worker�s e¤ort function is a step function. However, since
each contestant is allowed to have his own 
i, in aggregate the session wide bidding
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function can look like a �atter Nash Equilibrium e¤ort function, as it is an amalgam
of step functions with varying step points.
To estimate eci;we will use what we call an Absolute Error Minimization (AEM)

algorithm. This process is simply minimizing the following loss function over 30
periods of e¤ort for a given contestant i:
mineci

h
jbbi;t � (Ibci<eci �Mi) j

i
The term bbi;t is the observed e¤ort. When bci > eci;the expected e¤ort is zero.

Since M � minf�; V max
ci
g; M varies across sessions and individuals, but not periods.

Note, however, M = � for all sessions, except session 2, where M = V max
ci

= 266:67:
For sessions 3-8, we get � = 240: Finally, for session 1, through the periodic capacity
constraint, we have � = 400:
We use the absolute value loss function rather than squared deviations since the

former is more robust to outliers. Further, this estimation procedure identi�es the
true eci if we have subjects making e¤ort exertion errors of no more than half the
maximal e¤ort, as our next proposition proves.

Proposition 9 If the exertion error �t <
M
2
for all periods t; then our AEM algo-

rithm identi�es the true threshold type eci
Proof: See appendix.
This proposition says as long as the contestant is "close enough" to using the

threshold heuristic with true cuto¤ type ec, which means not over or under exerting
by 1/2 of the maximal e¤ort, our algorithm identi�es the true ec of such a worker.
15.1 Workers Take on Di¤erent Roles

Based on our above algorithm, we report the empirical distribution of our eci esti-
mates:
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Figure 4: Disribution of eci
Interestingly, as Figure 4 shows, there are three groupings of ec estimates. A large

mass of players are just about the mean of the cost types at eci = :75: We again call
these Realists. There is also a substantial grouping just below eci = 1. These are
overcon�dent workers we dub Strivers� they are working as if all others are almost
the worst type. Finally, there is a smaller group of workers close to eci = :5, playing
as if all others are close to the most able, lowest cost type. This means they exert
little or no e¤ort most of the time.
Having a low eci can mean one of two things: either the player is very pessimistic

of her chance at winning (i.e., under-con�dent) or she simply wants to puts forth
minimal e¤ort, hoping to win something for almost nothing� i.e., gaming the system.
We again dub these threshold types as Quitters or Slackers, respectively.
These Slackers are prevalent in sessions 2 and 4� treatments with two bonuses

for only three contestants. In these sessions, if we consider players with below
average eci (i.e., eci < :75), we get the mean e¤ort to be 89:13 when they realize a cost
type draw c > eci. Our theory model, however, suggests this should be zero, though
we should allow for some noise. In contrast, the other six sessions do approximate
this, as there mean e¤ort is 29:55 for below average eci workers when realizing an
above eci cost type draw. This di¤erence in low e¤orts is signi�cant at the 1% level.
Meanwhile, when this same group of below average eci threshold workers realizes cost
type c < eci, they should aggressively exert e¤ort. And that is exactly what all do
for the sessions other than 2 and 4: the mean e¤ort put in for sessions other than 2
and 4 is 235:6: However, session 2 and 4 players exert an e¤ort of only 110:5: This
di¤erence is again signi�cant at the 1% level. Recall also with a low eci threshold,
a worker does not often realize a cost type draw c < eci. Hence, the Slacker mostly
exerts e¤ort at modest levels and generally avoids high levels of e¤ort. Meanwhile,
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Quitters all but give up, only exerting e¤ort when receiving the most able of all type
draws.

15.2 Threshold Model Goodness of Fit

Now having estimated eci and explored its heterogeneity across workers, we consider
a simple measure of �t of our best response bidding: mean squared error of predicted
versus actual e¤ort. Table 5 records the mean squared errors for both bidding
models, divided per session. We combine sessions 5 and 6 and then 7 and 8, as they
are the same treatment. For the �rst session, forced to choose between the threshold
model and the Nash Equilibrium model, the latter is a better �t for describing the
aggregate data. Nonetheless, for all seven other sessions, the threshold bidding
model is a much better �t.

Table 5: Mean Squared Errors of Predicted E¤ort per Session, per Model
1 2 3 4 5&6 7&8

Nash Equilibrium 2331.75 2867.50 2555.16 3008.69 5326.93 2920.22
Threshold Model 2757.62 1384.794 1230.37 793.16 1046.89 665.47

One might be concerned that our identi�ed threshold behavior are somehow iso-
lated to UC Berkeley undergraduate students. However, we were able to obtain
data from the Noussair & Silverman (2006) study. Their subjects were from Emory
University. Additionally, they had an entirely di¤erent framing� that of a private
values all-pay auction. Thus, players in their setting realized valuations as opposed
to cost types. Players also received an initial endowment as opposed to our periodic
endowment. Finally, their study was a paper and pencil experiment versus ours
which was computerized. Despite all these di¤erences, we found a similarity to their
individual bidding results and ours. Within their treatments, for the last 15 peri-
ods of bidding, the mean squared error of actual bidding to the Nash prediction is
42,086.74 (note this error is much higher than our treatments because their bidding
ranges from zero to 1,000 versus ours is zero to 600 for the most able type (and
300 for the least able type). In comparison, our threshold model yields an error of
23,847.69, roughly half the Nash prediction error.
In addition to NS (2006), Muller & Schotter (2010) �nd the same threshold

behavior as this study. Their setting is a private values contest with equal or
winner-takes-all prizes and a constant group size of four contestants. They also have
quadratic vs. linear as opposed to our capacity constraints vs. linear. In addition to
threshold behavior identi�ed in their data, our model can also predict their realized
revenues which were again incongruent with extant theory. We summarize this in
Table 6 below.
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Threshold Nash
Treatment ctilda Max Bid Predicted Rev Predicted Rev Actual Rev

LC­1 0.71 1.330 2.234 1.452 2.391
LC­2 0.78 0.670 1.501 1.164 1.452
QC­1 0.67 1.155 1.570 1.859 1.524
QC­2 0.81 0.816 2.025 1.944 1.963
Table 6: Predicting Contest Revenue in Muller & Schotter (2010)

For example, for treatment LC-1 (i.e., linear costs with a single WTA prize),
the Nash Equilibrium predicts 1.452 of revenue versus their actual revenue average
of 2.391. Meanwhile, if we input their data into our threshold model, we predict
average revenue of 2.234. Interestingly, their model does an even better job of
predicting their out-of-sample revenue than our own.
Though it seems many are engaged in this threshold behavior, it would be naive

for us to assume that this is what the entire subject pool does. We now consider
what proportion of players best represents our data� allowing not just for threshold
behavior but also Nash and noise workers (i.e., randomly selecting e¤ort levels over
the entire e¤ort support).

15.3 Worker Roles Depend on Institutional Structure

It would be tempting to consider these worker types as exogenous� some are just
Quitters, Realists, some Slackers, and some Strivers. However, it turns out work-
ers take on these di¤erent roles as a function of the reward structure and not simply
based on some �xed characteristic. This becomes apparent when we examine the dis-
tribution of eci as a function of the institutional structure� i.e., degree of competition
and bonus structure.
To see this, we formally designate a Striver as having eci > :85 (i.e., the top 30%

of the type support). This means these players are almost always exerting full e¤ort.
Symmetrically, we dub those players with eci < :65 (i.e., the bottom 30% of the type
support) as either a Slacker or Quitter. The former is one that puts in at least
20% of the capacity constraint e¤ort (i.e., 48 units of e¤ort). The latter puts in less
than this amount. Results do not materially change using alternative cuto¤s. The
fundamental idea is when eci < :65;the player is rarely putting in much e¤ort. If
they are exerting e¤ort close to zero when they are below there cuto¤ type, we call
it Quitting, whereas a more material but low e¤ort level is Slacking� hoping to win
a prize on minimal e¤ort. The remaining players are called Realist. In Figure 5
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below we report the proportion of each of these types as a function of the reward
structure.

Figure 5: Worker Types vs. Reward Structure

As can be seen in Figure 5, for any reward structure, there is always a healthy
population of Strivers. These overcon�dent types tend to represent around 1/3 of
workers. However, once we increase competition (i.e., move from 3 to 6 workers),
as the case in WTA large, about 1/3 of the workers become Quitters� giving up due
to discouragement. If instead, we keep competition low but soften incentives, as in
Equal Prize treatment, instead of Quitters, workers become Slackers� about 1/3 try
to game the system through minimal e¤ort. Finally, if we make incentives moderate
by o¤ering 1/3 of the workers a bonus and inverting the bonus structure� giving
an even larger bonus to the second best, as in the case of Larger Second prize� we
again get over 50% of workers becoming Realists. When they are above average,
they work at capacity and abstain when below average. Having a large number of
Realists interacted with increased competition, also means the greatest total revenue,
as shown above in Table 3. Thus we see with threshold bidding, we want to increase
competition because we get more overall e¤ort from the most able. However, we must
soften (but not too much) the bonus structure to make sure everyone besides the top
performer continues to put in healthy levels of e¤ort. This works because moderate
incentives discourages Realists from becoming Slackers and encourages Quitters not
to quit.
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16 Estimating the Proportion of Player Types

Our �nal analysis is another robustness check to determine how well our threshold
model explains our individual choice data over alternative models. In particular,
we next estimate from the entire subject pool what proportion of players are best
described as choosing e¤ort according to the Nash Equilibrium prediction versus the
threshold e¤ort strategy versus simply being a noise worker.
To do so, we use a non-linear least squares pooled panel regression. To account

for potential serial correlation and idiosyncratic errors, we cluster the standard errors
on subject. In particular, our model is as follows:

min

1;
2

Q �
X�

efforti;t � 
1
�
Icci;t<eci �Mi

�
+ 
2 (bNE(cci;t)) + (1� 
1 � 
2) � nt + ei;t�2

Again, we have M � minf�; V maxeci g: The term Icci;t<eci is an indicator function
taking on the the value 1 when cci;t < eci and zero otherwise. Each eci is estimated in
a �rst step per our algorithm outlined in the previous section. We denote bNE(bci)
as the Nash Equilibrium predicted e¤ort given realized cost type bci: Our third term
nt is simply the mean of the e¤ort support, for the given session, for a mean type�
i.e., the expected e¤ort of the mean noise worker. For the �rst two sessions this is
n1 =

300
2�:75 = 200 and n2 =

200
2�:75 = 133:33: However, for all other sessions due to the

binding capacity constraint of 240, we have nt = 240
2
= 120. Finally, we have an

error term ei;t; which we cluster on individuals.
We are estimating the parameters 
1 and 
2 to predict the proportion of thresh-

old and Nash Equilibrium workers, respectively. This then implies 1�
1�
2 is the
proportion of predicted noise workers. Regression results show the population of
threshold workers to represent about 56% of all workers, the Nash Equilibrium work-
ers, about 19%, and noise workers the balance. When estimating these parameters
on an individual session basis, for all but the �rst session, we cannot reject the null
hypothesis that the proportion of Nash Equilibrium workers is zero. Meanwhile, the
proportion of threshold workers is always highly signi�cant.
For above estimates we are using the last 15 periods of exerted e¤ort, as the �rst

15 periods are much nosier. Indeed, if we use all 30 periods we estimate 50% being
threshold workers and just 11% being Nash Equilibrium workers. This means some
subjects that were early �agged as noise workers learn to be threshold workers or
Nash Equilibrium workers for the last 15 periods. In the end, it seems clear that
the vast majority, if not all, subjects for some sessions are engaged in this threshold
heuristic.
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17 Discussion and Conclusion

We set out to explore simple economic models and their relationship to real world
incentives. There has been disharmony between these two, as the former has pre-
dicted much sharper incentives than witnessed in practice. However, recent theory is
now suggesting softening incentives can increase overall e¤ort. And so it is this line
of thought that we pursued experimentally. What we �nd is it is true. At least in
the laboratory, we can increase total e¤ort with softer incentives. However, we also
discovered workers do not work as we thought they would� in a sophisticated opti-
mization over continuous type space. Instead, we �nd that workers greatly simplify
individual e¤ort choices with a heuristic. In particular, there is some threshold type
for players such that they exert capacity e¤ort if realizing a cost type better than
this, and all but abstain otherwise. This has important implications in organization
design: workers tend to over- and under-exert themselves depending on their sense
of ability relative to their peers.
The most surprising �nding is we also discovered institutional structure� the

degree of competition and "steepness" of bonuses� actually a¤ects the location of
the threshold for many players. All structures had the presence of Strivers�
overcon�dent types that almost always worked at capacity. However, having incen-
tives too soft with low competition or too high with high competition transformed
the balance of workers into Slackers or Quitters, respectively. Finally, o¤ering mod-
erate incentives in terms of a larger second prize and interacting this with greater
competition resulted in a lot of Realists� those that work very hard when above
average and very little when below. It was then this setting that also created the
greatest total e¤ort.
The designer must be careful since institutional design ultimately determines

worker behavior, which means workers are not immutable types. For example, a
�rm �nding itself with a long list of Slackers producing minimal e¤ort might make
the wrong decision by �ring them and hiring new workers. Indeed, �ring the Slackers
and hiring new workers could result in simply more slackers, as the real problem is
the institutional design and not the type of workers. Instead, the �rm may need to
increase the degree of competition. In a sales organization, for example, this would
mean making sales regions over which salespeople compete for bonuses larger (but
not too large), resulting in more salespeople competing for the same bonuses. As
another example, if a �rm�s turnover is very high, instead of the cause being unskilled
workers that cannot cut it, it could be that the �rm needs to provide more rewards
to other than the top performer(s).
Hence, we see the organizational designer actually has two tools: the degree of
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competition and the prize structure. It is then a delicate balance between these
two that ultimately generates the most e¤ort: a blend of competition and bonuses
to adequately spread the work and rewards among workers.
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Part III

Competition via Corporate
Citizenship
Our �nal section explores how �rms can compete on the dimension of corporate
citizenship. In particular, I posit that corporate citizenship, as obtained through
Corporate Social Responsibility (CSR), is being used by some �rms as an insurance
mechanism, helping them better withstand the tumult of negative business shocks.
Guided by this theory, I empirically test CSR as insurance in the setting of product
markets. I �nd higher CSR type �rms enjoy $600 million of saved �rm value after
an adverse event compared with low types. In addition, as theory predicts, I �nd
higher type �rms experience events less often.

18 Introduction

"CSR is best seen as the management of risk, as the avoidance of damages
to the company�s reputation." Financial Times, July 7, 2004.

There have been a plethora of past studies examining the relationship of a
�rm�s �nancial performance with its level of corporate social responsibility (CSR). In
short, the studies show there is little relation between the two (see Elfenbein (2007)
for an extensive survey). Meanwhile, CSR seems to be increasingly important to
�rms. Indeed, a recent survey by the Economist magazine7 reports some 56% of
managers consider CSR as a "high" or "very high" priority. This compares with
roughly 34% three years ago and an expected 69% three years hence. Further, they
report 87% of �rms now have a CSR �rm program. Echoing �rm sentiment, many
MBA program ranking schemes now include a standalone category for CSR. Why
are �rms so concerned with CSR?
Recent work has o¤ered various reasons from managers seeking "warm" glow

from their CSR activities (e.g., Fisman et al. 2006) to �rms simply appeasing the
demands of NGOs to prevent boycott, or even forestalling looming governmental
regulation (e.g., Baron & Diermeier 2007). Additionally, it has been suggested that
�rms use CSR to signal a whole swath of di¤erent messages, most revolving around

7January 7th, 2008
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the trustworthiness of the �rm and its e¤ect on current revenue (e.g., Goyal 2006), or
even �rms that use CSR as a form of penance, o¤setting the �rm�s past irresponsible
behavior (e.g., Kotchen & Moon 2007).
However, when managers are actually asked why they engage in CSR, they claim

it is to secure a better brand and reputation. However, only some 6.5% of managers
report that CSR increases revenue. What is the value of increasing (brand) reputa-
tion if in the end it does not increase revenue? Similarly, some 63% of managers say
their adoption of sustainability practices either does not change or even decreases
pro�t. How does this make business sense? We posit that a primary value of CSR
is that of an insurance mechanism for the �rm�s value. That is, investing in CSR
can help build social reputation that softens the blow of future business shocks on
a �rm�s value. The primary bene�t comes after an event. Thus, CSR is engaged
in not wishing to increase a �rm�s value but rather to protect it. This is much in
the spirit of Hermalin (2008) who shows that higher levels of corporate governance
are a result of �rms wanting to protect their pro�ts as opposed to better governance
yielding higher pro�ts. But, whereas he is concerned with corporate governance
protecting current pro�ts, we are concerned with protecting the value of the �rm
through a contingent future bene�t when facing shocks.
The mechanism by which CSR investment is expected to "payo¤" during an event

is at least twofold. First, there are NGOs that will make demands of �rms in terms
of CSR commitments. To the extent such �rms meet these requests, it is expected
they will receive limited wrath from these NGOs after a "bad" event occurs (see
Vogel (2005))8. A second reason could be that when �rms invest in CSR, they
indicate their level of CSR related issue e¤ort (e.g., environmental e¤ort), helping
improve investors and regulators�posteriors after a negative issue related event.
For example, if a �rm overtly incurs extra expense to have superior environmen-

tal management systems, when it faces an environmental accident, such an ex-ante
commitment could help tip the scale from the view of the investor and regulator that
such an event was really due to bad luck instead of negligence. Hence, assuming that
negligence is more costly than noise, the �rm�s market value would be less punished
and it would be less likely to be pursued by a regulator than had the �rm not shown
such commitment. For this paper, we examine the mechanism of this latter form.
For a very recent concrete example of this mechanism consider British Petroleum

(hereafter, BP) and Johnson and Johnson (hereafter, J&J). Leading up to its recent
devastating oil spill on April 20th, 2010, BP had begun developing a reputation of
carelessness through outsourcing safety and cost cutting, providing few actions that
showed a genuine concern for environmental safety. Indeed, as publicly noted by the

8See also Baron and Diermeier (2007) for a further exploration of this possibility.
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US Chemical safety board, BP was "cutting the costs for safety and maintenance to
increase pro�ts9." Consequently, on April 20th, 2010 while analysts best estimates
of total spill costs were around $3 to $12 billion, the stock market wiped out $32
billion of �rm value10. Investors weighed the scale of negligence versus noise and it
tipped heavily toward negligence.
In contrast, Johnson and Johnson (J&J) faced a product recall of various over-

the-counter children�s medicines based on serious manufacturing problems. However,
J&J had already begun hiring outside experts to help improve its quality control in
the problem plant, as it detected a need to do so. Thus, while J&J will certainly
have to pay for faulty manufacturing, J&J showed it was taking substantive steps
to improve safety and quality, reducing total expected long run �rm cost. When a
recall was triggered investors instead tipped the scale more in the direction of noise
and not gross negligence11, providing nominal change in �rm value.

We thus view the contribution of this paper as twofold. To our knowledge, this is
the �rst paper to formally12 examine CSR as an insurance mechanism. Second, this
is the �rst paper to empirically test the notion of CSR as reputation insurance. In
short, we aim to open the black box of CSR decision making by examining CSR as
reputation insurance, examining the e¢ cacy of the primary reason given by managers
for engaging in CSR.
Our paper is organized as follows. In the �rst section we present our model

of CSR investment, exploring the mechanism of CSR bene�t and identifying when
it is expected to payo¤. The next section provides our empirical analysis, which
suggests CSR does generally provide a substantial insurance bene�t. Our �nal
section provides a concluding discussion.

19 CSR as Insurance

The central idea of CSR as an insurance mechanism is, again, that a �rm �rst
makes a CSR investment to obtain a higher CSR reputation. By CSR reputation
we mean the �rm�s reputation of how conscientiously it goes about the production
and selling of its goods, which in turn then creates a sense of how trustworthy the
�rm is.

9See Wall Street Journal story "Drilling Down: A Troubled Legacy in Oil" May 1,2010.
10See http://money.cnn.com story "BP loses $32 billion in value on spill."
11See Wall Street Journal story "J&J Lapses Are Cited in Drugs for Kids" on 5/27/2010.
12For an informal discussion of CSR as an insurance mechanism for �rm value see Minor and

Morgan (2010). In additon, see Peloza (2006).
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For example, consider the realm of product markets. Product recalls can provide
shocks to �rm value and reputation. Now CSR in product markets can be thought
of as a �rm�s superior reputation earned from the conscientious creation, marketing,
and distribution of its products. A �rm with high CSR would, for example, embrace
superior quality assurance procedures in the development and production of its prod-
ucts, conduct ethical marketing campaigns, provide products with extra social value,
provide products to disadvantaged demographic groups, and generally face product
recalls voluntarily. In contrast, a bad CSR �rm could often be involved in regulation
�ghts, su¤er safety violation fees, accept lower product safety standards, and conduct
limited due diligence on their supply chain. One key distinguishing characteristic
between high and low CSR activities is that the latter will tend to be less costly in
the short term, and particularly less costly if the bad event never occurs, which, for
the current example, is a product recall. Since some of the low CSR type activities
are unobservable by the public, if an event never occurs, it is di¢ cult to know the
full extent of how responsible or irresponsible the �rm is being. Nevertheless, to the
extent that these unobservable activities (e.g., limited supply chain due diligence)
are correlated with other activities that are observable (e.g., regulatory �nes), it is
still possible to develop reasonable ex-ante reputations.

Now if a bad business shock should occur, the �rms with higher CSR reputations
will not be punished as badly. This net result is similar to an example: consider a
group of workers with typical incomes of $50,000 and homeowner insurance premiums
of $500. The insured and uninsured would only have a 1% di¤erence in annual
income, which would likely be di¢ cult to distinguish statistically. However, upon
an event (e.g., a house �re), there would be a very signi�cant di¤erence between an
uninsured and insured homeowner in terms of cash �ow via the insurance bene�t.
Hence, to �nd out if the homeowners insurance acted like insurance, we would again
have to make sure we capture negative events and not simply a time series of ordinary
cash �ows.
Therefore, here the expected CSR insurance bene�t, just as with homeowners in-

surance, is both a function of the probability of the event occurring and the expected
net bene�t received, conditional on the event occurring. Also, CSR is not expected
to o¤er 100% insurance. Typically, with insurance there is a deductible and/ or
coinsurance. Thus, a �rm will still likely lose value during an adverse event, but
they will lose less value than had they not been insured.
Therefore, in our formulation, it is not expected that CSR will ever payo¤ in

a current revenue or pro�t sense, just as with traditional insurance. In fact, we
conjecture a slight negative contemporaneous e¤ect since CSR investment is costly,
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though there may be some o¤setting of current value (e.g., high CSR might attract or
retain higher quality employees). Moreover, if a higher CSR reputation lessens the
chance of an adverse event (and thus its cost), this too does not show in a time series.
This explains how the past literature could have had such di¢ culty establishing a
statistical relationship between CSR and accounting for �nancial performance� most
�rms for a typical time series experience no CSR bene�t. To �nd the value of CSR,
we must instead examine time periods of unlikely events.
Now the precise bene�t of CSR reputation during an event is the di¤erential

of lost �rm value between a higher and lower CSR type �rm. This di¤erential is
driven by how investors ex-post asses the probability that the �rm willfully caused
the event versus the event simply being due to bad luck, which will be determined
by the �rm�s ex-ante CSR reputation. This probability assessment then a¤ects how
likely the event will be found to result from negligence. The �rm�s punishment then
increases in the likelihood it is found to be negligent, which is determined by an
enforcer. We now turn to formally modeling this idea.
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19.1 A Model of CSR as Reputation Insurance

Firms choose t ; e Nature chooses event/no event(s)

Nature chooses high/low risk state Firms with events are revalued
We examine a model of CSR as reputation insurance where �rms choose their level

of CSR activity as well as direct e¤ort to manage business risk. The above diagram
provides the timeline of the game. Formally, suppose that a �rm chooses its CSR
type, t 2 fR;Ng, which is publicly observed. R (N) denotes a responsible (negligent)
�rm. While it costs zero for a �rm to be a negligent type, choosing to be a responsible
type costs a �rm c; where this cost is the realization of a privately observed random
variable having support [0;1) over an atomless distribution function F (�). A �rm
also chooses its level of e¤ort e � 0; which is unobservable. E¤ort costs are increasing
and convex. For simplicity, suppose that the cost of e units of e¤ort is C (e) = 1

2
e2.

The combination of CSR activity and e¤ort determine the business risk state
� 2 fh; lg of the �rm. With probability 
te the low risk state is realized while the
high risk state occurs with complementary probability. The parameter 
t represents
the in�uence of CSR activity on the business risk state where 0 < 
N < 
R. In
other words, responsible CSR activity reduces the chance of being in the high risk
state. Following the state realization, nature then determines whether an adverse
event occurs. With probability p� an event occurs in state � where 0 < pl < ph. That
is, events are less likely to occur if the �rm is operating in the low risk state than in
the high risk state.
Stakeholders only observe whether an event, E; has occurred and the �rm�s level

of CSR activity (i.e., 
t). A �rm�s direct e¤ort is unobservable. Thus, stakeholders
make an assessment of the likelihood that the �rm was operating in a high risk state
conditional on an event occurring. De�ne

� (t) = Pr [� = hjE; t]

That is, � (t) denotes the (equilibrium) beliefs of stakeholders that the �rm was in the
high risk state conditional on an event occurring and the �rm�s level of CSR activity.
A �rm triggering an event from a high risk state can be thought of as having been
"at fault," whereas if the event was triggered from a low risk state the �rm is not
"at fault." A �rm then su¤ers losses K, scaled by � (t) ; stakeholders�belief the �rm
was operating in a high risk state. That is, being "at fault" is more costly than not
being "at fault."
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To summarize, the expected pro�ts of a �rm with cost parameter c choosing type
t and e¤ort e are

� (c; t; e) = �0 � cIt=R �
1

2
e2 � f(1� 
te) ph + 
teplg � (t)K

Here, I is an indicator function which equals one if the �rm chooses a high level of
CSR activity (i.e., a responsible type). We denote status quo pro�t �0.
To summarize the various states, below is a probability tree of possible outcomes:

There exist unique values (e�N ; e
�
R) corresponding to the equilibrium e¤ort of a

�rm of type t: To see this, notice that, the optimal e¤ort choice for a �rm of type t
is a globally concave problem having as its solution:

e�t = 
t (ph � pl) � (t)K (1)

To close the model, it remains to determine equilibrium beliefs. Recall stakeholders
know a �rm�s type and can then deduce its equilibrium e¤ort. Hence, from Bayes�
rule, upon an event, we have belief

� (t) =
(1� 
te�t ) ph

(1� 
te�t ) ph + 
te�tpl
(2)

Thus, any equilibrium e¤ort levels simultaneously solve

e�N =
(1� 
Ne�N) ph
N (ph � pl)K
(1� 
Ne�N) ph + 
Ne�Npl

(3)

e�R =
(1� 
Re�R) ph
R (ph � pl)K
(1� 
Re�R) ph + 
Re�Rpl
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Finally, to assure beliefs are well de�ned, we require K to be bounded as 0 <
K < 1


2R(ph�pl)
: This also means then e�t is bounded from above.

Not also, in equilibrium, for some unique c�we have

� (0; N; e�N) = � (c
�; R; e�R) (4)

This can readily be seen by noting � (�) is strictly decreasing in c and � (0; R; e�R) >
0 while � (c; R; e�R) < 0 as c! +1:

This hitherto analysis provides our �rst proposition:

Proposition 10 In the unique equilibrium, responsible (negligent) �rms exert e¤ort
e�R ( e

�
N) as given in (3) and have CSR cost c � c� (c > c�);where c�solves equation

(4).

Proof. From our above analysis, we know the pair (e�N ; e
�
R) are the result of a global

concave problem and thus unique. By (4) we know there exists some unique c� such
that all �rms below (above) this cost are responsible (negligent) types.
The following lemma proves useful in identifying properties of optimal e¤ort.

Lemma 4 In any equilibrium, 
Ne�N < 
Re
�
R:

Proof. Suppose to the contrary that 
Ne�N � 
Re�R. Equivalently 
Ne�N=
Re�R � 1.
Using equation (1) ; we have


Ne
�
N


Re
�
R

=

�

N

R

�2
� (N)

� (R)

and, substituting using equation (2) ; we obtain


Ne
�
N


Re
�
R

=

�

N

R

�28><>:
(1�
Ne�N)ph

(1�
Ne�N)ph+
Ne�Npl
(1�
Re�R)ph

(1�
Re�R)ph+
Re�Rpl

9>=>; (5)

Next, notice that the function

� (x) =
(1� x) ph

(1� x) ph + xpl
is strictly decreasing in x: Therefore, the expression in the curly brackets in equation
(5) is at most one. Since 
N


R
< 1; it then follows that the RHS equation (5) is

fractional, which contradicts the hypothesis that 
Ne
�
N=
Re

�
R � 1.
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Though we could solve for e�t explicitly using the quadratic formula, it is much
simpler to use that fact we always have e�N
N < e�R
R in equilibrium. That is,
we know the responsible �rm is less likely to �nd itself in a high risk state than a
negligent �rm. Indeed, this inequality is all that is necessary to prove our next
proposition, which then provides our core empirical implications. To ease notation,
we de�ne Pr(E j t) � (1� 
te) ph + 
tepl and E[C j t] � � (t)K for t 2 fN;Rg:

Proposition 11 Responsible �rms have events less often than negligent �rms (i.e.,
Pr(E j R) < Pr(E j N)) and also face a lesser expected penalty upon an event (i.e.,
E[C j R] < E[C j N ]).

Proof. Invoking Lemma 1, in equilibrium e�N
N < e�R
R: But this means Pr(E j
R) < Pr(E j N) by de�nition. Similarly, E[C j R] < E[C j N ]:

This proposition tells us responsible �rms face fewer events and lesser penalties
upon events. This then implies responsible �rms also experience a lesser change in
�rm value upon an event, as we show in our next section.

20 Empirical Examination

20.1 General Strategy

Our primary empirical aim is to test the notion that CSR can work as reputation
insurance. That is, high CSR type (i.e., responsible) �rms enjoy a bu¤ering of their
�rm value vis-a-vis a low-type (i.e., negligent) �rm upon an event. From Proposition
2, we have that the high type �rms are imposed with a lesser expected cost upon
an event compared to a low type �rm. This also implies high CSR type �rms will
experience a lesser change in �rm value compared with a low CSR type �rm, as we
now show.

In particular, we can write out explicitly the expected change in �rm value. First,
a �rm�s value is the present value of all future expected cash �ows. This means we
have:

Firm Value =
1X
k=0

�

(1 + r)k
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=

1X
k=0

�0 � cIt=R � 1
2
e2 � 1

2

2t � Pr(E j t)� E[C j t]

(1 + r)k

=
1X
k=0

�0 � 1
2
e2 � 1

2

2t

(1 + r)k
�

1X
k=0

Pr(E j t)� E[C j t]
(1 + r)k

Now once an event happens we replace Pr(E j t) with 1. The change in �rm
value then becomes the di¤erence between the value with a current period event (i.e.,
Pr(E j t) = 1) and an uncertain period event (i.e., Pr(E j t) < 1):

 1X
k=0

�0 � 1
2
e2 � 1

2

2t

(1 + r)k
�

1X
k=0

1� E[C j t]
(1 + r)k

!

�
 1X
k=0

�0 � 1
2
e2 � 1

2

2t

(1 + r)k
�

1X
k=0

Pr(E j t)� E[C j t]
(1 + r)k

!

= �(1� Pr(E j t))� E[C j t]
As outlined below, in our data, our parameters are such that 1�Pr(E j t) is 97%

or 98%, when a �rm is a negligent or responsible type, respectively. However, the
average event costs E[C j t] are roughly $1 billion or $:5 billion for negligent and
responsible types, respectively. Hence, the high type �rms should be losing much
less in �rm value.
We are then going to estimate the insurance bene�t between di¤erent CSR type

�rms. This amounts to the di¤erence between the change in value of a responsible
and negligent �rm upon an event:

insurance bene�t

= (1� Pr(E j R))� (R)K
�(1� Pr(E j N))� (N)K

It should also be clear from the previous arguments, we can readily expand our two
types to three (or more) types to get the same predictions in monotonic ordering13.
13For example, for three types, assign the medium CSR type cost cMR 2 [0;1) across �rms.

Thus, now the medium responsibility level �rm versus the negligent �rm analysis is just as before
when comparing just two types. However, adding a high responsibility type cost as cHR = acMR

for some a > 1; can provide a partition of three levels of ct such that we have one of each three
types of �rms in equilibrium, depending of a �rm�s particular cost cMR:
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That is, the higher the type, the lower the event rate and the lesser the change in
�rm value. Here we will empirically study three di¤erent types, as we describe in
detail below.
Our empirical setting is product markets where the event is a product recall.

These events are often seen by the investment committee as a potential shock to
a �rm�s value and reputation due to their signaling nature (Davidson and Worrell
(1992) provide a review of past product recall literature. See also Hartman (1987)
for a hedonic model treatment of recalls).
CSR reputation in product markets can be thought of as a �rm�s superior rep-

utation earned from the conscientious creation, marketing, and distribution of its
products. "Good�CSR will typically mean a �rm will embrace superior quality as-
surance procedures in the development and production of its products, conduct ethi-
cal marketing campaigns, provide products with extra social value, provide products
to disadvantaged demographic groups, and generally face product recalls voluntarily.
In contrast, "Bad" CSR means �rms are usually involved in regulation �ghts, su¤er
safety violation fees, accept lower product safety standards, and conduct limited due
diligence on their supply chain.
Thus, we categorize our three �rm types as follows. The lowest type, which

we will call "Irresponsible" types, are involved in "Bad" things, ex-ante an event.
The next type, "Responsible" types, are not involved with "Bad" things, but neither
are they involved in "Good" things� they are simply responsible corporate citizens.
Finally, there are some exceptional �rms that not only avoid being involved in "Bad"
things, but are also participating in some extra "Good" things. These �rms we dub
"Stellar" types. This typology aligns with the notion that it is costly to move from
one to the other: as a �rm becomes more conscientious in its activities it moves
from Irresponsible to Responsible, and then with even further conscientiousness it
becomes a Stellar type.
Our empirical strategy is to �rst calculate the abnormal change in �rm values

(i.e., after controlling for �rm heterogeneity) during an event and to regress these
varying percent changes in �rm value on the level of ex-ante CSR reputation, as well
as various time, �nancial, and industry controls. We begin by reviewing our data
characteristics and then turn to our event study methodology and regression model.

20.2 Data

Our Data consist of three components. The �rst part is the abnormal returns
of various �rms during our product recalls, which we describe in detail in the next
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section. The event returns are then merged with Compustat, our second set of data.
For �rm control data of the S&P 500 �rms we have: annual sales ("Sales (net)"),
asset value ("Assets-total"), market value ("common shares outstanding"�"price-
calender year-closing"), and percent of pro�ts per share ("EPS (Basic) - Exclude
Extra. Items "�"price-calender year-closing"). Actual product recall events were
obtained from manual collection of product recall events of S&P 500 �rms as indexed
by the Wall Street journal from 1991 through 2006. Although this categorization of
product recalls is certainly not perfect, it is the primary source used by past product
recall literature. Further, we wanted to have an ex-ante �xed criteria of selecting
recalls to prevent subjective inclusion or exclusion on the part of the researcher. We
do note recalls included in the Wall Street Journal press announcements are biased
towards larger event recalls. However, our theory predicts it is these large scale
recalls where we will see any e¤ects, if any exist, from ex-ante CSR reputation.
Occasionally some �rms had more than one event announcement in a year, most

often a later press announcement related to the same event. For our data collection,
we simply summed the abnormal returns together, following the methodology as
shown below, by summing abnormal returns over event window days. Having more
than one event in a year for a given �rm occurred for 25 of the �rm/ event years for
an average of 1.5 additional events for each occurrence. This excludes autos, and
so is out of a total of 147 �rm event years. In other words, roughly 17% of the �rm
years had multiple events, each averaging an additional 1.5 events.
An important exception was automobile �rms (GM, Ford, and Chrysler pre-

1999). These �rms are very di¤erent in that they have a product recall every year,
and typically multiple recalls in a given year. Hence, we dummy for these three
�rms since the probability of recall is 100% every year versus less than a 3% chance
of recall for all �rms. Our results are also robust to simply dropping automobiles
from the data.
Our �nal component of data is CSR ratings from KLD analytics. KLD is con-

sidered the "gold standard" of CSR ratings by social investment �rms. It is also
most commonly used in past related academic studies (see Chatterji et al. (2007)
for a review). KLD conducts proprietary research to assign annual CSR ratings to
publicly held �rms across various dimensions .
For KLD�s CSR ratings on the product dimension, analyst�s score a �rm on four

areas of positive (i.e., "product strengths") and negative (i.e., "product concerns")
CSR. The four areas of CSR strengths include "Product Quality," "R&D," "Bene-
�ts economically disadvantaged people," and "Other. " The concerns areas include
"Product Safety," "Marketing Controversy," "Antitrust Concerns," and "Other."
One can think of this rating scheme as a latent variable model: each �rm is rated by
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analysts on various factors unobserved by the econometrician. Once a �rm has a
value above some threshold, they receive an outcome of one for each of 8 categories
(i.e., four strengths and four concerns), and zero otherwise. Finally, KLD then
provides a Product Strengths and Product Concerns rating that are each simply
coded 0,1,2,3 or 4, measuring the number of ones earned in each of the respective
categories. Now we consider the probability of event for an "Irresponsible," "Re-
sponsible," and "Stellar" �rm. "Irresponsible" is a �rm that has at least total
product concerns of 1 or greater before an event occurs. A "Responsible" �rm has
avoided bad marks (i.e., no product concerns marks) but neither does it have any
exceptional marks (i.e., product strengths marks). Finally, "Stellar" �rms have
avoided bad marks while additionally obtaining exceptional marks. The empirically
likelihood14 (i.e., probability) of a Irrepsonsible (I), Responsible (R), and Stellar (S)
type �rm of having an event over the entire 15 year period is Pr(eventj
I) =3.5%,
Pr(eventj
R) =2.2%, Pr(eventj
S) =2.1%, respectively. Both of the higher types
(i.e., Responsible and Stellar types) are statistically di¤erent from the Irresponsi-
ble type. However, the higher types are not statistically di¤erent from each other.
Nonetheless, the monotonic ordering theory suggests in event rates is preserved. We
now turn to the estimation of abnormal event returns for the core of our study.

20.3 Financial Event Studies

The particular event study methodology we use is a �nancial events study15. The

idea behind a (�nancial) event study is to measure the e¤ect of an event on �rm
value. This approach relies on �nance theory�s notion of market e¢ ciency: �rms are
priced based on all currently available public information. Thus, once new public
information is released it is almost immediately absorbed into the value of the �rm
via its stock price.
The event study methodology procedurally has the �rst step of estimating how

a particular company�s stock price changes in relation to various market factors
before the event occurs. The particular factor model we use is the most commonly
used Fama/ French model. Expected return in this setting is estimated as an OLS
speci�ed by:

Ri;t = �i + �iRM;t + SiSMBt +HiHMLt + "i;t

14We exclude the Auto industry, as previously mentioned it has exceptionally high recall rates
compared with all other �rms.
15For a thorough review see MacKainly (1997).
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That is, the return of the stock equals a �rm �xed e¤ect , plus a sensitivity to the
general market return RM , sensitivity to small stocks versus large stocks (SMB),
and �nally a sensitivity to high versus low book to market type stocks. Coe¢ cients
are estimated from a time series just before but disjoint to the particular event of
interest; here, following common practice, the estimation period begins 8 months
prior and ends 30 days prior to the event. These coe¢ cient estimates are then used
to predict the return during the event period. That is, our predicted return around
the event period becomes:bRi;t = b�i + b�iRM;t + bSiSMBt +cHiHMLt
The next step is to then use this estimated returns model from the �rst step to

predict what the expected returns are during the event of interest and then calculate
the "abnormal return," de�ned as the di¤erence in actual return from the predicted
return: ARi;t = Ri;t � bRi;t: The cumulative abnormal return is then simply the
sum of these returns. For our study, we used the day before and the day of the
event announcement as our "event window." This is the most stringent of windows;
however, we wanted to minimize the e¤ect of any other previous or subsequent news
confounds. We begin the window the day before, as is practice, to capture any
"news leakage" the day before the event announcement. Thus cumulative abnormal

return is then simply: CARi =
0X

t=�1
ARi;t, where 0 is the event day. Below is a

graph of the event study estimation method.

time

event

Estimate model Calculate abnormal return

Financial Event Study Methodology

Our next �gure reports the distribution of our CARs in relation to an estimated
normal distribution of the data. As expected, the actual data has a fatter negative
tail than a normal distribution. That is, we expect there to be more severe negative
events and fewer severe positive events than a normal distribution would predict,
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since recalls are generally costly. There is also a much greater grouping of events
at the center of just below zero, which seems to be close to the direct cost of a
typical event. Hence, it seems there are routine recalls that are presumably of an
exogenous type, thus only changing �rm value by close to the direct recall cost e¤ect.
However, there a good number of events that have huge negative costs, much beyond
routine recall expenses. It is these events against which we hypothesize superior CSR
reputation will help protect �rm value. We now turn to examining the relationship
of event returns to ex-ante CSR reputation.
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Actual Distribution of CAR versus Normal Distribution

20.4 Regression Model and Results

Once we calculate our abnormal returns (CAR) through a �nancial event study on
every �rm facing an adverse event, our �nal step is to examine any relationship
between the ex-ante product CSR level and the respective CAR via a cross sectional
regression. In particular, we specify the following:

CARi = �+�1Autoi+�2L:responsiblei+�3L:stellari +�4
����!
Y EARi+�5L:

����!
FIRM i+"i
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CARi is again the cumulative abnormal return for �rm i as calculated in the
previous section. Autoi is simply a dummy for if the �rm is an automobile man-
ufacture. L:responsiblei is a dummy for an average product CSR type, as de�ned
in our former section, but its value is for the year prior to the event. Similarly,
L:stellari denotes the �rm was a high type �rm the year before the event. Thus, our
low types, Irresponsible �rms, are our baseline. That is, the former two dummies
will tell us how much better compared with a low type the higher types fare under
an adverse event.
We added year �xed e¤ects for some speci�cations, denoted by the vector

����!
Y EARi:

Finally, our �rm �nancial and industry controls captured in the vector L:
����!
FIRM i;again

valued based on year prior to an event.
Industry controls are made by dummying the NAICS industry code to the 2 digit

level. We do not dummy at the 3 digit level because most dummies could not be
estimated since we only have 184 �rm event years over 15 years. Even with 2 digit
level industry codes about half of our dummies cannot be estimated due to a paucity
of observations. Below we report our regression results. When we control for lagged
�nancials we lose some observations due to their not being in the index previously
or recent mergers.

Variable None Time Financial Industry All
Responsible Type .0279*** .0287*** .0305*** .0240** .0283**

(.0091) (.0095) (.0108) (.0098) (.0134)
Stellar Type .0274*** .0251*** .0314*** .0190* 0.0163

(.0097) (.0097) (.0104) (.0105) (.0158)

Year Control NO YES NO NO YES
Firm Control NO NO YES NO YES

Industry Control NO NO NO YES YES
N 184 184 156 184 156

R Squared 0.0719 0.1413 0.0855 0.1191 0.2266

Dependent Variable: Cumulative Abnormal Return

Notes: *,**,*** represent statistical significance at 90%,95%,and 99% confidence levels.   Standard errors reported in parentheses.

The baseline type is irresponsible.  All specification include a dummy for Auto.

Each column of results di¤ers based on controls included. As can be seen, if
a �rm is able to carefully avoid being involved in bad activities (i.e., a Responsible
type), it will save close to 3% of abnormal �rm value should it face an event compared
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with the losses of a low type �rm. This e¤ect is also economically signi�cant, as
it amounts to an average saved �rm value of over $600 million for the median �rm
(market) value of $23 billion. Meanwhile, if a �rm is one of those exceptional �rms
that not only is careful to avoid bad activities, but also is involved in good ones� a
Stellar type, the savings in �rm value is similar to the Responsible �rm type. Even
for the �nal column, using all controls, the di¤erence in coe¢ cients is not statistically
di¤erent.
What this says is, it really pays to carefully avoid harmful activities in building

reputation. However, it does not seem to pay, at least in an insurance sense, to build
reputation of going the extra mile and providing some additional "good" activities.
Of course, there could be contemporaneous bene�ts in provisioning some extra

"good" activities. However, as past literature has found, there has not been any
�nancial bene�t identi�ed in doing so. In short, at least �nancially speaking, it
really pays to be responsible by avoiding bad, but neither does it pay to also be
exceptionally good.
It might seem curious that adding time, �nancial, and industry controls does

not change our CSR coe¢ cient estimates. However, recall in the event study, we
already controlled for time and �nancial characteristics as a well as a �xed �rm
e¤ect for each �rm. The main e¤ect of adding all the controls is to introduce
more noise while not a¤ecting coe¢ cient estimates. Indeed, when estimating all
our coe¢ cients (i.e., the �nal column) we are estimating a parameter per fewer than
every 5 observations. Thus not surprisingly, our �nal column of estimates have our
coe¢ cients less signi�cant.
One concern in estimating these that abnormal returns is it could be the case

abnormal return is simply the expected direct cost (e.g., the cost of replacing faulty
automobile tires) of the product recall. If ex-ante CSR level is related with actual
event cost, this in itself would be interesting, as it indicates that CSR predicts the
level of an event. Nonetheless, it would not support our CSR reputation story where
there is uncertainty over the degree of negligence and its punishment that the market
must price in immediately after an event. Unfortunately, the expected direct cost
of a product recall is seldom made public (nor is it commonly disclosed ex-post).
However, for our sample, roughly 10% of the announcements were accompanied by
estimates of the direct event costs. For this subsample, the direct costs explain
roughly 16% of the variation in CAR. Further, when a loss is sustained by a �rm
(i.e., a negative CAR), the direct costs represent 38% of the total loss on average.
In absolute value terms (i.e., because sometimes a �rm has a positive CAR during an
event), direct costs represent 26% of the value of CAR. Thus, while this sub-sample
is only a small portion of the events, it suggests it is not the expected direct cost of
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an event driving di¤erences in CAR. Further, the direct costs have a very narrow
band of cost di¤erence, whereas the change in abnormal �rm value varies widely,
suggesting there is much more than just product recall direct cost embedded in the
CAR. Our theory suggests the CAR should be a combination of direct recall loss
and (expected) �nancial loss if negligent.
In the end, the evidence is quite suggestive that ex-ante CSR reputation a¤ects

ex-post value of a �rm. But it is not so much being involved with exceptionally
good things as it is in carefully avoiding bad things. Thus, e¤ective CSR in in-
surance terms seems to be more about making sure a �rm is being careful to avoid
harmful behavior� i.e., simply being a responsible corporate citizen rather than an
exceptional one.
One can even estimate what a �rm should pay for such carefulness. As far as

bene�t, �rms moving from Irresponsible to Responsible (or Stellar), saves some $600
million of �rm value. With an incidence rate of roughly 2.5%, this means a risk
neutral �rm should be willing to pay over $15 million per annum to be a higher
type.

21 Concluding Discussion

We have o¤ered a (partial) solution to the puzzle of why �rms invest in CSR when
it has no apparent e¤ect on current pro�ts or �rm value, yet it is a costly activity.
In particular, we proposed that �rms use CSR as a reputation insurance mechanism.
We developed a model that showed we generally expect a �rm with high ex-ante
CSR to better weather a shock to �rm value, as well as experience such events less
often.
Empirically, we also found support for CSR acting as insurance, though the results

are nuanced. In particular, it really pays to be responsible as a �rm to avoid
bad behavior� this tends to save over $600 million of abnormal should a �rm face
an adverse event. However, then becoming an exceptional corporate citizen by
engaging in additional stellar behavior, does not seem to pay additional dividends in
an insurance sense or �nancial sense.
Hence, with many business schools and �rms focusing on "doing well by doing

good," a better mantra might be "doing well by carefully avoiding bad." There is
perhaps a more succinct way to put it: primum non nocere� �rst do no harm. In
fact, if a manager becomes too focused on doing good, she very well could miss the
seemingly more important task of avoiding harm.
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This is the very advice BP missed as it spent signi�cant sums of money to rebrand
itself with its sunburst logo and the tagline "Beyond Petroleum." It was involved
with some "good" environmental projects. However, it completely missed the call
to avoid harm, to be careful to avoid bad events. Consequently, as its number came
up, and nature drew a bad event for BP, investors and regulators swung the scale of
responsibility �rmly to negligent. And so it is, completely uninsured, BP will have
to pay substantial sums of money.

�Most of the rhetoric on CSR may be about doing the right thing and
trumping competitors, but much of the reality is plain risk management.
It involves limiting the damage to the brand and the bottom line that
can be in�icted by a bad press and consumer boycotts, as well as dealing
with the threat of legal action.�
Economist , January 7,2008
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22 Appendix

22.1 Proofs of Lemmas and Propositions

Lemma 1: If � > :5; the contestant best response function becomes single peaked
with a maximum at bc such that F (bc) = 2��1

k��1
Proof: We �rst write the bidding function as b(�; c) = g((1 � �)A(c) + �B(c));

where g(�)�1 = 
(�) (i.e., g(�) is the inverse of the cost function). Now note d
dc
g((1�

�)A(c)+�B(c)) = g0((1� �)A(c) + �B(c))| {z }
>0

[(1��)A0(c)+�B0(c)]: The former term

is always positive for c 2 [c; c) since g(�) is strictly increasing and (1��)A(c)+�B(c)
is always positive. The latter term, we will see, is single peaked, thus making our
entire expression single peaked. Expanding (1� �)A0(c) + �B0(c); we get:

(1� �)(�(k � 1)1
c
(1� F (c))k�2 � F 0(c)

+�((k � 1)1
c
(1� F (c))k�3 � [(1� (k � 1)F (c)]� F 0(c)

Rearranging terms then yields:

(k � 1)1
c
(1� F (c))k�3 � F 0(c)�| {z }

>0

[(F (c)� 1)(1� �) + �(1� (k � 1)F (c)]

The former term is always positive so we only focus on the latter term, which
further rearranging gives:

F (c)� �F (c)� 1 + �+ �� k�F (c) + �F (c)
= �k�F (c)� (1� F (c)) + 2�

First note at the lowest cost type c;we get simply 2��1; which is always positive
for � > :5 at c = c: That is, our bidding function is increasing at the lowest cost type.
Similarly, with the highest cost type, we get �k�+ 2�; which is always negative for
k � 3: Thus, our bidding function is decreasing at the highest cost type.
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Now solving the above for a unique zero gives:

�k�F (c)� (1� F (c)) + 2� � 0

) (k�� 1)F (c) = 2�� 1) F (c) =
2�� 1
k�� 1

:
De�ne then bc such that F (bc) = 2��1

k��1 :Now when c 2 [c, bc) we have a � F (c):
(1� k�)| {z }

<0

a+ 2�� 1

Once we �x � and k; we see the above expression, which then determines the sign
of the derivative of the bidding function, is strictly decreasing in a: At a = 2��1

k��1 ; the
above expression equals zero. Meanwhile, with a 2 [c, bc) the expression is positive
and with a 2 (bc; c] the expression is negative. Hence, the bidding function is single
peaked at bc: Thus, our type c< bc < c provides the highest e¤ort over all types. �:
Proposition 1 The generalized 2nd prize contest mechanism exists, meets all

incentive compatibility constraints, and induces a (weakly) monotonic bidding func-
tion.
Proof: We �rst show how the mechanism meets all incentive compatibility con-

straints. For contestants who would optimally provide e¤ort below e�; this problem
is just as before so their bidding function remains as under a contest with no pool-
ing, which we will call no pool bidding or no pool contest, depending on the context.
Call this cuto¤ c� such that for all c 2 [c�; c] these participants provide their e¤ort
below e� as under no pool. Now all that have costs of e¤ort c 2 [c; c�] are to be in the
pooling e¤ort interval. For this pooling group we now must make sure such e¤ort
interval is incentive compatible against the deviation of exerting more or less e¤ort
than e�; make sure such c� is beyond bc (i.e., the peak of the non-modi�ed bidding
function) to induce a (weakly) monotonic bidding function, and also make sure at c�

such participant is indi¤erent between optimal e¤ort solved under no pool and the
pooling interval payo¤. We check each of these necessary conditions in turn.
Let the total prize be worth 1, as before. Let � > 1

2
be the second place share

with the remainder being the �rst place share. Suppose there are k players. Let p be
the measure of types in the pooling interval. Then, the expected payo¤ from bidding
in the pooling interval is

�pool =

k�1X
i=1

�
k � 1
i

�
1

i+ 1
pi (1� p)k�1�i| {z }

1 or more other contestants pool

+ (1� p)k�1 (1� �)| {z }
No other contestant pool

76



We �rst need to verify the contestant c� at the end of the pooling interval (i.e.,
type c� where p = F (c�)) is indi¤erent between pooling or exerting the identical
e¤ort e� under no pool bidding. When we set p � F (c�); the payo¤ for c� under a
no pool contest is as follows:

�no pool = (k � 1)�p (1� p)k�2 + (1� �) (1� p)k�1

Hence, we require �pool = �no pool ; thus we solve for the indi¤erent value of p

k�1X
i=1

�
k � 1
i

�
1

i+ 1
pi (1� p)k�1�i + (1� �) (1� p)k�1

= (k � 1)�p (1� p)k�2 + (1� �) (1� p)k�1 ()

k�1X
i=1

�
k � 1
i

�
1

i+ 1
pi (1� p)k�1�i = (k � 1)�p (1� p)k�2

Now divide by (1� p)k�1 to obtain

k�1X
i=1

�
k � 1
i

�
1

i+ 1

�
p

1� p

�i
= (k � 1)� p

1� p

Now, with a change of variable, let z = p
1�p to obtain

k�1X
i=1

�
k � 1
i

�
1

i+ 1
(z)i�1 = (k � 1)�

Now �x � and k: Then the LHS of the equality is strictly increasing in z;which is
strictly increasing in p: Further at the limit as p! 0) z ! 0; the LHS converges
to k�1

2
, only the i = 1 term remains16. The RHS is then a greater �nite number

(k � 1)� > k�1
2
with � > :5 as p! 0:

Oppositely, as p! 1 the LHS approaches +1;whereas the RHS is again a �nite
number. Hence, there exists a unique p� 2 (0; 1) that solves the above equation.
Solving for p� then determines both e� and c�: Hence, once we �x � and k; we

16This can also be seen by taking the limit of the generating function of
Pk�1

i=1

�
k�1
i

�
1
i+1 (z)

i�1 �
(1+z)k�(k)z�1

(k)z2 as z ! 0:
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can always �nd our needed c� uniquely. Further, by meeting the above equality
we have actually also met the IC constraint, which we call ICdown, for preventing
pooling types from deviating down; thus, we see ICdown binds. Note also p� is
increasing in �: However, p� can be either increasing or decreasing in k depending on
the parameterization, as k a¤ects both � and p (holding � constant) in a complex
way.
Once we have e� and c� we already know any c 2 [c�; c] does not want to deviate,

as they are already choosing their optimal e¤ort per the no pool bidding structure.
Meanwhile, any c 2 [c; c�) will not want to deviate by providing less e¤ort than the
pooling e¤ort level because if it was not worth it for the c� type to do so, then it
certainly is not worth it for the lower cost types. That is, in considering whether
to exert less e¤ort, the c� type trades o¤ the saved cost of less e¤ort with a reduced
expected gross bene�t. Thus, if the c� type�s cost savings did not justify less e¤ort,
it certainly will not be justi�ed for those with lower cost (savings) facing the same
reduced expected bene�t.
Now we need to check that a participant in the pooling interval does not want to

deviate up, as doing so would guarantee a �rst prize. The payo¤ from deviating up
is thus:

�up = 1� �
Hence, we require that

�pool � �up � 0
Substituting.

�in � �up =
k�1X
i=1

�
k � 1
i

�
1

i+ 1
pi (1� p)k�1�i �

�
1� (1� p)k�1

�
(1� �)

Now, recall by the binomial theorem:

1� (1� p)k�1 =
k�1X
i=1

�
k � 1
i

�
pi (1� p)k�1�i

Hence

�in � �up =
k�1X
i=1

�
k � 1
i

��
1

i+ 1
� (1� �)

�
pi (1� p)k�1�i

Clearly, if 1
k
> (1 � �) () � � 1 � 1

k
; ICup is met, as it means all sums being

added above are positive. This requirement simply says the second prize share �
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needs to be weakly greater than 1 minus the inverse the number of participants.
Thus, this requirement increases in k; however, the optimal �� is also increasing in
k: It is meanwhile trivial if � = 1 (i.e., there is only a second prize), ICup is met.
However, this su¢ cient condition is obviously more than needed.
The precise requirement is readily found by solving the generating function ofPk�1
i=1

�
k�1
i

� �
1
i+1
� (1� �)

�
pi (1� p)k�1�i :

(1� p)k�1(p� 1� kp� + ( 1
1�p)

k�1(1 + kp(�� 1))
kp

The term of interest is (p� 1� kp�+( 1
1�p)

k�1(1+ kp(�� 1)); as this determines
if the entire equation is (weakly) positive and thus ICup is met. We can then solve
for when this term is (weakly) greater than zero:

(p� 1� kp� + ( 1

1� p)
k�1(1 + kp(�� 1)) � 0)

kp�((
1

1� p)
k�1 � 1) � 1� p+ (kp� 1)( 1

1� p)
k�1 )

1 � � � 1� p
kp(( 1

1�p)
k�1 � 1)

+
(kp� 1)( 1

1�p)
k�1

kp(( 1
1�p)

k�1 � 1)

The middle term is our �rst su¢ cient condition. Since the designer gets to
choose �; this condition can regardless always be met since any � 2 [ 1�p

kp(( 1
1�p )

k�1�1) +

(kp�1)( 1
1�p )

k�1

kp(( 1
1�p )

k�1�1) ; 1] will satisfy ICup: Additionally, we will consider indivisible prizes,

which means we again have � = 1 or � = 0: Finally, when we do allow for divisible
prizes, we could allow that the designer to simply declare any observed e¤ort greater
than e� is still counted as e�: Since e¤ort is costly, no player would ever exert greater
than e�:
Lastly, we also need to check the type c� � bc: That is, we need to make sure the

indi¤erence point from where we end the pooling interval is after the single peak of
the no pool bidding function; otherwise, we still have not solved the non-monotonicity
problem. Recall our ICdown condition was the following being (weakly) positive:

k�1X
i=1

�
k � 1
i

�
1

i+ 1
(z)i�1 � (k � 1)�
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We then substitute in z = F (bc)
1�F (bc) ; where F (bc) = 2��1

k��1 as found in our �rst Lemma.
If the expression is negative, it means c� > bc; since ICdown is not yet met at bc. That
is, we need to choose a larger p� > F (bc) (since the above is strictly increasing in z;
which is strictly increasing in p) to meet ICdown: But this then means we get c� >bc:
To see we always have c� > bc; �rst note dF (bc)

d�
= @

@�
2��1
k��1 =

k(1�2�)�1
(k��1)2 < 0 (for

� � :5): This then means @z
@�
< 0 when evaluated at c = bc since z is strictly increasing

in p � F (c): Now we take the derivative of our ICdown condition with respect to �
and consider its value when evaluated at c = bc:

d

d�
(

k�1X
i=1

�
k � 1
i

�
1

i+ 1
(z)i�1 � (k � 1)�)

=
k�1X
i=1

�
k � 1
i

�
1

i+ 1
(i� 1)(z)i�2 @z

@�|{z}
<0| {z }

�0

+�(k � 1)| {z }
<0

< 0

Hence, our ICdown condition is strictly decreasing in �: This means if we can
show such expression is non positive at � = :5; we are done. Recall, as we already
showed, when � = :5; we get z = 0 )

Pk�1
i=1

�
k�1
i

�
1
i+1
(z)i�1 ! k�1

2
: But this then

means
Pk�1

i=1

�
k�1
i

�
1
i+1
(z)i�1 � (k � 1)1

2
= k�1

2
� k

2
+ 1

2
= 0 with � = :5: Hence, sincePk�1

i=1

�
k�1
i

�
1
i+1
(z)i�1 � (k � 1)� is strictly decreasing in �, it has to be the case for

any � > :5 we get c� > bc:�
Lemma 5 R and eR are concave in � for � 2 [0; 1

2
] and � 2 [0; 1

2
); respectively

Proof: Recall R(�) = k

cZ
c

g(A(c) + �(B(c)� A(c)))� F 0(c)dc:

Taking the �rst derivative with respect to � yields:

R0(�) = k

cZ
c

g0(A(c) + �(B(c)� A(c)))� (B(c)� A(c)))� F 0(c)dc

Taking the derivative again with respect to � yields:
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R00(�) = k

cZ
c

g00(A(c) + �(B(c)� A(c)))� (B(c)� A(c)))2 � F 0(c)dc

Since g00(�) < 0 (i.e., because g(�) is concave), we get R00(�) < 0; as desired.
Extending this to the GSPC, note eR(�) is the same as R(�) for � 2 [0; 1

2
). �

Lemma 6 eR0(1
2
) > R0(1

2
)

First note eR0(�) = R0(�) for all � 2 [0; 1
2
). Also recall for all � 2 [0; 1

2
] we haveeR(1

2
) = R(1

2
); the revenue is the same (and the functions precisely the same) since

there is no pooling interval until � > 1
2
: It would then be tempting to immediately

assert eR0(1
2
) = R0(1

2
): However, once we increase � by an " a pooling interval develops,

and thus we must account for this to determine eR0(1
2
): As we do increase � by an ";

all we do is shift the bottom support of the integral comprising R0(1
2
) to some c > c

just greater than c: Thus, we want to show d
dc
R(1

2
) > 0; and we will be done:

d

dt

����
c

24k cZ
t

g0(
1

2
(A(c) +B(c)))� (B(c)� A(c)))� F 0(c)dc

35 > 0
Hence, we get

d

dt

24k cZ
t

g0(
1

2
(A(c) +B(c)))� (B(c)� A(c)))� F 0(c)dc

35
= �k � g0(1

2
(A(t) +B(t)))� (B(t)� A(t))� F 0(t)

However, we know (B(t) � A(t)) < 0 when t = c. Thus, since we always have
g0(�) > 0 and F 0(t) > 0; the entire expression is then strictly positive. In addition,
we have now added a pooling interval that induces positive total revenue value once
� > 1

2
that is in addition to the revenue related to the above expression.

But both these facts then mean eR0(1
2
) > R0(1

2
);as desired. �

Proposition 2 It is optimal to o¤er a larger second prize than �rst prize through
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our GSPC if our su¢ cient condition is met:

k

cZ
c

h0
�
g(
1

2
(A(c) +B(c)))

�
� g0(1

2
(A(c) +B(c)))(B(c)� A(c))� F 0(c)dc > 0

Proof:
First take the derivative of our revenue function with respect to � :

d

d�
R(�) =

d

d�
k

cZ
c

h(g(A(c) + �(B(c)� A(c))))� F 0(c)dc

= k

cZ
c

h0 (g(A(c) + �(B(c)� A(c))))� g0(A(c)

+�(B(c)� A(c))))� (B(c)� A(c))� F 0(c)dc

No we evaluate this expression at � = 5 :

d

d�
R(:5) = k

cZ
c

h0
�
g(
1

2
(A(c) +B(c)))

�
�g0(1

2
(A(c) +B(c)))(B(c)�A(c))�F 0(c)dc

Now if d
d�
R(:5) > 0, we know then that eR0(1

2
) > R(:5) > 0; per the previous

Lemma . But this then means it is optimal to o¤er a larger second prize via the
GSPC. �

23 Estimating Some Convex Combinations of A(c)

and B(c)

We �rst �nd upper and lower bounds of A(c):

First recall A(c) � (k � 1)
cZ
c

1
a
(1� F (a))k�2 � F 0(a)da:
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Hence,

(k � 1)
cZ
c

1

a
(1� F (a))k�2 � F 0(a)da >

1

c

cZ
c

(k � 1)(1� F (a))k�2 � F 0(a)da

=
1

c

�
�(1� F (a))k�1

�c
c

=
1

c
(1� F (c))k�1 = A(c):

Thus we have:

A(c) =
1

c
(1� F (c))k�1

A(c) =
1

c
(1� F (c))k�1

That is, we have A(c) < A(c) < A(c):

Here is a plot of our estimates with k = 5, quadratic costs, and c 2 U [:5; 1] :

We next solve for some values of the above expression individually.
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By integration of parts we have

cZ
c

(1� F (a))k�3 � F (a)� F 0(a)da

= [F (a)�� 1

k � 2(1� F (a))
k�2]cc �

cZ
c

� 1

k � 2(1� F (a))
k�2 � F 0(a)da

= F (c)� 1

k � 2(1� F (c))
k�2 �

�
1

(k � 2)(k � 1) � (1� F (a))
k�1
�c
c

= F (c)� 1

k � 2(1� F (c))
k�2 +

(1� F (c))k�1
(k � 2)(k � 1)

:
That is, we get:

cZ
c

(1� F (a))k�3 � F (a)� F 0(a)da

= F (c)� 1

k � 2(1� F (c))
k�2 +

(1� F (c))k�1
(k � 2)(k � 1)

=
(k � 2) � F (c) + 1
(k � 2)(k � 1) � (1� F (c))k�2

Secondly, we note through similar analysis:

cZ
c

(1� F (a))k�3 � F 0(a)da = (1� F (c))k�2 � 1

k � 2

Now we estimate 1
2
(A(c) +B(c)):

Again after some basic calculations we have

1

2
(A(c) +B(c)) =

1

2
(k � 1)(k � 2)

Z c

c

(1� F (a))k�3
a

� F (a)� F 0(a)da

We then get using our results from above:

84



1

2
(k � 1)(k � 2)

�Z c

c

(1� F (a))k�3
a

� F (a)� F 0(a)da
�

>
1

2c
(k � 1)(k � 2)

�
(k � 2) � F (c) + 1
(k � 2)(k � 1) � (1� F (c))k�2

�
=

1

2c

�
(F (c)� (k � 2) + 1) � (1� F (c))k�2

�
Hence, we have:

1

2
(A(c) +B(c)) =

1

2c

�
(F (c)� (k � 2) + 1) � (1� F (c))k�2

�
1

2
(A(c) +B(c)) =

1

2c

�
(F (c)� (k � 2) + 1) � (1� F (c))k�2

�
This gives us 0 < 1

2
(A(c) +B(c)) < 1

2
(A(c) +B(c)) < 1

2
(A(c) +B(c)):

Here is a plot of these upper and lower bounds around the true value plotted as
the red curve:

Now we solve for upper and lower bounds of B(c)� A(c):
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First, we have by de�nition and some trivial calculations:

B(c)� A(c) = (k � 1)
Z c

c

(1� F (a))k�3

a
� (k � F (a)� 2)F 0(a)da

This means we know

B(c)� A(c)

< (k � 1)
Z c

F�1( 2k)

(1� F (a))k�3

F�1
�
2
k

� � (kF (a)� 2)F 0(a)da

+(k � 1)
Z F�1( 2k)

c

(1� F (a))k�3

F�1
�
2
k

� � (kF (a)� 2)F 0(a)da

Thus, we have

B(c)� A(c)

=
(k � 1)
F�1

�
2
k

� �k � (k � 2)F (c) + 1
(k � 2)(k � 1) � (1� F (c))

k�2 � (1� F (c))k�2 � 2

(k � 2)

�

=
1

F�1
�
2
k

� �k � (k � 2) � F (c) + 1
(k � 2) � (1� F (c))k�2 � (1� F (c))k�2 � 2(k � 1)

(k � 2)

�
=

1

F�1
�
2
k

� k(k � 2)F (c) + k � 2(k � 1)
(k � 2) � (1� F (c))k�2

=) B(c)� A(c) = 1

F�1
�
2
k

� �k � F (c)� 1)� (1� F (c))k�2�
This then implies we have F (c��) > 1

k
; where A(c��) = B(c��) (see MS (2001) for

a proof there exists a unique c�� 6= 1 such that A(c��) = B(c��)): This follows from
noting B(c)� A(c) = 0 when c = F�1( 1

k
): However, since B(c)� A(c) is an upper

bound, we know we have B(c)�A(c) < 0 at c = F�1( 1
k
) (since B(c)�A(c) < 0 for

all c < c��). But this then also means it must be that F (c��) > 1
k
: Thus, we now

know:

1

k
< F (c��) <

2

k
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Note this implies c�� �!c as k �!1:

Next, we solve for B(c)� A(c):
We want

B(c)� A(c) >

(k � 1)
Z c

F�1( 2k)

(1� F (a))k�3

c
� (k � F (a)� 2)F 0(a)da

+(k � 1)
Z F�1( 2k)

c

(1� F (a))k�3

c
� (k � F (a)� 2)F 0(a)da

First assuming c � F�1
�
2
k

�
; we can solve the above sum as simply the analog to

B(c)� A(c); replacing c with c :

(k � 1)
c

Z c

c

(1� F (a))k�3 � (k � F (a)� 2)F 0(a)da

=
1

c

�
k � F (c)� 1)� (1� F (c)k�2

�
Now when c < F�1

�
2
k

�
we must solve for the latter part of the sum, which we

�nd as:

(k � 1)
Z F�1( 2k)

c

(1� F (a))k�3

c
� (k � F (a)� 2)F 0(a)da

=
1

c

�
�(k � 2

k
)k�2 + (k � F (c)� 1)� (1� F (c))k�2

�

Thus, combining both the sums we have

B(c)� A(c)

=
1

c

�
k �
�
2

k

�
� 1)� (1�

�
2

k

�
)k�2

�
+
1

c

�
�(k � 2

k
)k�2 + (k � F (c)� 1)� (1� F (c))k�2

�
=

1

c
(
k � 2
k
)k�2 +

1

c

�
�(k � 2

k
)k�2 + (kF (c)� 1)� (1� F (c))k�2

�
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Thus, in total we have:

B(c)� A(c) =
1

c

�
(k � F (c)� 1)� (1� F (c)k�2

�
when c � F�1

�
2

k

�
B(c)� A(c) =

1

c
(
k � 2
k
)k�2 +

1

c

�
(kF (c)� 1)� (1� F (c))k�2 � (k � 2

k
)k�2

�
when c � F�1

�
2

k

�
Note also at F�1( 2

k
); we have

1

c

�
(kF (c)� 1)� (1� F (c)k�2

�
=

1

c
(
k � 2
k
)k�2 +

1

c

�
(kF (c)� 1)� (1� F (c))k�2 � (k � 2

k
)k�2

�

Here is a graph of our upper and lower bounds- red is the actual values (for upper
bound we have blue and for the lower bound we switch plots from yellow to green at
c = :7):

Lemma 7 For any distribution F with strictly lower positive support, we have:
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1) A lower bound for B(c)� A(c) is 1
3
�
�
1
c
� 1

c

�
� 1

c
; where c is the lowest cost

type and c the highest
2) A lower bound for the bid of the lowest cost type with equal �rst and second

prizes (i.e., 1
2
(B(c)� A(c))) is 1

2c

Proof: We can estimate this with the following lower bound:

B(c)� A(c) = 1

c
(
k � 2
k
)k�2 +

1

c

�
(k � F (c)� 1)� (1� F (c))k�2 � (k � 2

k
)k�2

�

=
1

c
(
k � 2
k
)k�2 +

1

c

�
(�1)� (1)k�2 � (k � 2

k
)k�2

�
=

�
1

c
� 1
c

�
(
k � 2
k
)k�2 � 1

c

As can be readily veri�ed, this increases in k to a �nite value in the limit. Thus
with k = 3 (we assume at least 3 participants), B(c)� A(c) has a minimal lower
bound of

�
1
c
� 1

c

�
� (3�2

3
)3�2 � 1

c
= 1

3
�
�
1
c
� 1

c

�
� 1

c
�B(c)� A(c). That is, recall

also B(c)�A(c) is most negative at B(c)�A(c); thus, 1
3
�
�
1
c
� 1

c

�
� 1

c
is the absolute

lower bound of B(c) � A(c): For example, with c � U(:5; 1); we get B(c)� A(c)=
�7
3
;regardless of the number of participants.
Now we �nd a lower bound for the lowest cost type�s bid when we have equal �rst

and second prizes (i.e., � = :5) and linear cost functions. Previous analysis shows
a lower bound for 1

2
(A(c) +B(c)) = 1

2c

�
(F (c)� (k � 2) + 1) (1� F (c))k�2

�
: For the

lowest cost type c; this becomes:

1

2c

�
(F (c)� (k � 2) + 1) (1� F (c))k�2

�
=
1

2c

For example, with c � U(:5; 1); we get the lower bound of the lowest cost type�s
bid to be 1

2c
= 1

2
; for any number of contestants : �

Thus, for our �rst portion of our Lemma, we have a found a simple lower bound
on B(c) � A(c); the maximal dis-incentivizing e¤ect of increasing the second prize
for the lowest cost type c; which is again also the most disincentivized type. In
particular, if we shift " of the prize mass from �rst to second prize, the lowest cost
type will reduce e¤ort by no more than

�
1
3
�
�
1
c
� 1

c

�
� 1

c

�
� " (and all other low

cost types c < c�� will reduce e¤ort by a lesser amount).
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The second part of the Lemma is simply �nding a lower bound on the bid of the
lowest cost type, regardless of the number of participants. That is, we know the
lowest cost type c will always bid at least 1

2c
:

Proposition 6 Assume a contest with N � 3 homogeneous players, up to 2
prizes, and binding e¤ort capacity constraint �. The symmetric equilibrium requires
players play � with probability p� and bid from distribution F (x) with probability
1� p� and support x 2 [0; �]; where � < �:
Proof: We will �nd a symmetric equilibrium where bidders have an atom at �; the

maximal bid, and spend the balance of their bidding mass mixing over a continuous
bidding support that is a strict subset of the entire possible bidding space x 2 [0; �]
with CDF F (x): We will show bidding either � or from F (x) both produce an
expected pro�t of zero.

Thus, we �rst want a player to be indi¤erent between bidding 0 and �:

We denote
�
N � 1
j

�
to mean of the N � 1 other players, j bid zero. V is the

total prize mass for an arbitrary K < N prizes (i.e., V =
X
k

Vk): Thus given the

probability p of playing �; we have the needed equality as :�
N � 1
0

�
� pN�1 � V

N
+

�
N � 1
1

�
� (1� p) � pN�1 � V

N � 1 + :::

+

�
N � 1
N � 1

�
(1� p)N�1 � V1 � c � � = 0

The LHS are all the possibilities of prize sharing, where the �rst term is the
expected prize if all N � 1 players and player i bid the maximum. This �nal term
is if all bid 0 save bidder i;who bids �. This then means player i receives the �rst
prize V1:
We know the above expression has at least one zero since clearly the LHS is

continuous and we have p = 0 ) Vmax� c � � > 0 (since � < Vmax
c
) and with p = 1 )

V
N
� c � � < 0 (since V

N �c < �). Denote p
�as a solution to above.

We next �nd the mixing strategy drawn from F (x) : We write expected pro�t of
mixing from F (x) as:

E(�) = (1� p�)N�1 � F (x)N�1 � V1
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+(N � 1) � (1� p�)N�1 � F (x)N�2 � (1� F (x))� V2

+(N � 1) � (1� p�)N�2 � p� � F (x)N�2 � V2 � c � x = 0

We can �rst �nd the bidding support by setting F (x) = 1 and F (x) = 0: We
also need to show F (x) is increasing in x over the bidding interval since it is a CDF,
which is readily veri�ed via the implicit function theorem.
Hence, we have found a symmetric equilibrium where each player bids � with

probability p� and then draws a bid from F (x) with probability 1� p�: �

Proposition 9 If the chosen e¤ort error �t <
M
2
for all periods t; then our AEM

algorithm identi�es the true threshold type eci
Proof: Assume our contestant�s true threshold type is ec: By assumption, a con-

testant makes all e¤ort choices with errors �t <
M
2
: Consider now minimizing the

sum of absolute estimation errors
X
Ti

j"tj; where we de�ne "t = bbt � bt(ec): We have
bbt as the actual e¤ort at time t and bt(ec) as the predicted e¤ort given a posited ec as
the true representative type and no e¤ort choice error. De�ne some arbitrary bc < ec
from the type space. De�ne A = A1 � A2 � A3;the disjoint partition, such that all
"t 2 A1 when c � ec, "t 2 A2 when ec > c � bc, and "t 2 A3 when c < bc: Denote
the number of elements in Ai as Ni 2 N for i 2 f1; 2; 3g: By assumption, if we chose
posited threshold to be ec; we know for any such "t 2 A, j"tj < M

2
;since �t <

M
2
. Thus

the total error is
X
T

j"tj < (N1 +N2 +N3) � M2 :

Now consider changing our posited threshold point from ec to bc: Since our sets
are disjoint,

X
T

j"tj over the regions A1 and A3 are just as before. However, nowX
T

j"tj over the region A2 is greater: This is because whereas when assuming ec;we
have

X
T

j"tj < N2� M
2
summed over the region A2;when we instead choose c we getX

T

j"tj � N2 � M
2
over the region A2: But this means now our total error

X
T

j"tj is

larger than before. Since bc is arbitrary and the argument is virtually identical for
choosing bc > ec, this completes the proof. �
In addition to being robust against frequent but moderate errors, our algorithm

is also robust against large but infrequent errors. To illustrate this point, consider
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a player that exerts e¤ort perfectly save one e¤ort choice that should have been M
but was instead entered as 0: As long as the deviation is more than one cost type
step (i.e., recall there are discrete number of realized cost types) from the thresholdec;the estimation error minimization choice of ec is still the true ec: This is because by
choosing a bc 6= ec, we now add to our total summed error m � jM j; where m is the
number of elements between ec and bc: Thus with more than one element (i.e., m > 1),
we get m � jM j > jM j: Hence, we will again chose the true ec as our estimate. Ifbc is one step away from ec (i.e., the next element below or above ec);then we simply
estimate ec as one step from the true ec: In short, if our algorithm gets it wrong it is
likely the subject is not acting like a threshold bidder.
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