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ABSTRACT OF THE THESIS

Human Activity Understanding and Prediction with Stochastic Grammar

by

Baoxiong Jia

Master of Science in Computer Science

University of California, Los Angeles, 2019

Professor Song-Chun Zhu, Chair

Video understanding is a booming research problem in computer vision. With its innate fea-

ture where spatial and temporal information entangles with each other, video understand-

ing has been challenging mainly because of the difficulty for having a unified framework

where these two aspects can be modeled jointly. Among the tasks in video understand-

ing, human activity understanding and prediction serve as a good starting point where the

spatial-temporal reasoning capability of learning modules can be tested. Most of the current

approaches towards solving the human activity understanding and prediction problems use

deep neural networks for spatial-temporal reasoning. However, this type of approach lacks

the ability to reason beyond the local frames and conduct long-term temporal reasoning.

On the other hand, stochastic grammar models are used to model observed sequences on a

symbolic level with all history information considered, but they perform poorly on handling

noisy input sequences. Given these insights and problems of current approaches, we propose

the generalized Earley parser for bridging the gap between sequence inputs and symbolic

grammars. By combining the advantages of these two types of methods, we show that the

proposed model achieves a better performance on both human activity recognition and future

prediction.
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CHAPTER 1

Introduction

In the past years, we have witnessed a tremendous progress in the capabilities of computer

systems where amazing results are achieved on image analysis tasks. With models perform-

ing comparably well as human in the scope of image classification, the focus of computer

vision field has gradually shifted to harder vision tasks. Among them, video understanding,

especially human activity recognition and prediction, have received great attention because

of its crucial role for future applications e.g. surveillance systems and collaborative robots.

The major challenge of these two tasks compared to image classification or pose estimation is

the fact that these inference processes requires reasoning not only on the current frame, but

also previous frames that provide definitive hints of what activities the subjects are doing.

Consider the scenario shown in Figure 1.1. With the current observation that the subject

is walking at this frame, we human can make the prediction that the subject is probably go-

ing to get water or use microwave. This simple reasoning process actually requires machines

to have the capability of making inference with different level of spatial information com-

bined (e.g. pose estimation, object detection, etc.). If we take this example further, spatial

information alone is not enough for making prediction since we could have similar observa-

tions when people are doing tasks completely different from each other. For example, if the

person just finished drinking, he is probably heading for the water cooler for more water, but

if the person just arrived at the office, it is highly likely that he is pouring the old tea from

yesterday. These two actions can not be distinguished from the information contained in the

current frame along. So in such cases, reasoning jointly on the spatial-temporal domain is

necessary for machines to truly understand what is going on.

With the boom of deep learning research, deep neural networks (DNNs) have been applied
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Figure 1.1: An illustrative example for human activity recognition and prediction. (a)(b)

Input RGB-D video frames. (c) The prediction of possible activities with the current obser-

vation.

to various tasks and achieved good performance. With its dense representations generated

along back propagation, it serve as backbone models for most of the representation learning

tasks. In video understanding, various design of DNN backbones have been used for learning

the spatial-temporal representations [KTS14, SZ14, TBF15, CZ17]. This type of approach

generally works well for learning in a local time frame, but the long-term information is often

addressed weakly [QHW17, QJZ18]. In addition, the representation obtained from back

propagation is usually not meaningful enough for us to design explicit reasoning algorithms

on it. With these two major challenges, the video understanding problem is hard to be

solved with merely deep neural networks.

To address the importance of retrieving meaningful representations and take the long-

term information into consideration at the same time, insights can be drawn from logical

reasoning and grammar models. Probabilistic logic models have been used for explicitly

2



modeling reasoning problems before deep learning took off. Similarly, stochastic grammar

models have also been used for modeling and reasoning on the natural language long before

deep learning methods took over. These two types of models share the common feature that

the internal structure of the modeled data are explicitly learned and used for inference. We

argue that this type of structure modeling is crucial for video understanding, especially for

long-term temporal inference problems. However, with the domain constrained to symbolic

space, finding a good and expressive mapping from the observation space (often continuous

and dense) to the symbolic space is generally hard for grammar models.

With the advantages and disadvantages of these two models in mind, it is natural to

think about combining DNNs with models that have a explicit representation for the in-

ternal structure of the problems. Taking the compositional nature of human activities into

consideration, we propose to aggregate the advantages of both neural network models and

grammar models, bridge the gap between the two approaches and reason on the spatial-

temporal domain jointly through Generalized Earley Parser (GEP). The parser tries to relax

the hard symbolic constraint of traditional grammar and operates on the probability space

for inference. In our formulation, the parsing or reasoning process takes soft labels (prob-

ability distribution over activity categories) for each frame, instead of hard symbolic labels

as inputs. As we show further, this greatly improves the capability of grammar models and

also enhance the performance of neural network models.
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CHAPTER 2

Literature Review

The essence of human activity recognition and prediction problem is to find the most mean-

ingful representation for human activities. Such a representation should be able to capture

the spatial-temporal relations inside video sequences. In this section, we take a brief overview

on the problems in human activity understanding.

2.1 Latent Features in Images

One starting point of activity recognition is to extract meaningful features from still images.

Among the information lay inside images, human poses are the most informative hints on

people’s activities. Pose models [WBR07, TH08, CLS15] has been used for extracting low-

level features for human activity recognition. In this type of modeling, features like spatial

location of joints, angles between different parts, offsets of features between frames are all

commonly used for representing human actions. Other features like velocity of the joints,

momentum of the joints are also frequently used when sequence of images are given. Next, as

activities are highly correlated with objects and scene contexts, some approaches propose to

explicitly address the focus on the scene contexts and human-object interactions. Koppula

et al. [KGS13] modeled object affordance and predict human activity using spatial-temporal

conditional random field. Further, Jain et al. [JZS16] extended the model with deep neural

networks and gained huge improvements on affordance prediction using the structural-RNN

architecture. Qi et al. [QWJ18] modeled human-object interactions (HOI) explicitly using

HOI graph and generate HOI predictions through graph parsing.
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2.2 Video Representation

Compared to image representation, generating good video representation are difficult in

nature for its temporal relations across frames. With the success of deep neural networks in

image representation learning, various methods have been proposed for learning good video

representation. Karpathy et al. [KTS14] first proposed to use fusion schemes for passing

information across frames into 2D convolutions. Then, to address the change across frames,

Simonyan et al. [SZ14] first proposed the two-stream neural network which takes both RGB

frame input and optical flow to capture movements. Tran et al. [TBF15] built on the two-

stream idea and proposed 3D convolution to have convolutional filters that operates on 2D

spatial information across a set of frames. Carreira et al. [CZ17] further improved the model

and proposed I3D architecture which leverage the pretrained results on image classification

tasks to help video analysis.

2.3 Temporal Structure of Activities

When assigned to predict what a person is doing and will be doing, we human often rely

on the internal compositional structure of activities learned from previous experiences. Sim-

ilarly, many argues that the retrieval of such structures is crucial for the task of activity

understanding and proposes to address this temporal structure of activities for better activ-

ity recognition. Niebles et al. [NCF10] retrieved the temporal structure by training different

motion segment classifiers and extracting sequential patterns. Tang et al. [TFK12] used

the variable-duration hidden Markov model to represent the duration of segments and the

transitional probabilities between states. Wei et al. [WZZ16] proposed a 4D human-object

interaction model for event recognition which integrates different low-level features using

a stochastic hierarchical graph similar to And-Or Graph. Qi et al. [QHW17, QJZ18] also

learned And-Or activity grammar unsupervisedly from videos for activity understanding.
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2.4 Structured Modeling and Inference

One of the biggest challenges for predicting human activities is that we need to reason on the

latent hierarchical structure of activities for future forecasting. As we discussed earlier, one

activity might not immediately affect the upcoming activity, but activities that happen in

relatively far future. Thus, the problem comes to reasoning on the structured representation

learned and making inference.

Probabilistic graphical models are commonly used for sequential prediction problems.

The general idea is to find the most probable next state based on the probabilistic graph

built from training videos. Laxton et al. [LLK07] used a dynamic Bayesian network to rep-

resent the underlying temporal structure between activities and predicts the most probable

next state. Wu et al. [WZS15] used a modified LDA topic model for activity prediction and

model the latent topic of activities.Inspired by how human finish this task using grammar

and language, grammar models are proposed to improve the probabilistic graphical mod-

els [PJZ11, HZG16, QHW17]. Pei et al. [PJZ11] used an unsupervised learning method to

learn the temporal grammar for video parsing . Holtzen et al. [HZG16] used an hierarchi-

cal task model for human intent prediction. For these grammar models, the inference step

is essentially finding the best parse that satisfies the learned grammar and predictions are

usually made based on the top-down parsing process.

As DNNs are already widely applied in practice, there are methods that attempt to

model and solve the structured prediction problem with DNNs. Du et al. [DWW15] proposed

the Hierarchical RNN for contextual information modeling and inference. Others proposed

to add human knowledge in the learning process and have multi-step learning for activity

understanding and prediction. Walker et al. [WMG17] generated frames by first predicting

the human pose. Villegas et al. [VYZ17] also attempted to learn the latent structure using

LSTMs for the task of pose prediction. The advantage of deep neural networks provide tasks

specific representations that perform well on the given dataset but generalize poorly to other

scenarios.
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CHAPTER 3

Background

3.1 Stochastic Grammar

With its origin tracing back to the first millenium BCE, the modern formalization of grammar

attributed to Chomsky [Cho02]. By definition, a stochastic grammar is defined into a 4-

tuple G = (VN , VT , R,Γ), where VN is a finite set of non-terminal nodes, VT is a finite set of

terminal symbols, Γ ∈ VN is a start symbol, and R is a finite set of production rules. We

constrain the production rules to be

R = {γ : α→ β} (3.1)

Here we require that α, β ∈ (VN ∪ VT )+ are strings of grammar nodes and α includes at

least a non-terminal symbol. Depending on the type of production rules, Chomsky classified

language into four types.

For the clarity of illustration, we use the notation where α, β ∈ (VN ∪VT )∗ denote strings

of grammar nodes, η ∈ (VN ∪ VT )+ denotes an non-empty string of grammar nodes, lower-

case letter a ∈ VT denotes a terminal node, A,B ∈ VN denote non-terminal nodes and ω

denotes a terminal string. The Chomsky hierarchy of language is defined as follows:

Type-0 grammars are unrestricted grammars with production rules of form

αAβ → β

Type-1 grammars are context-sensitive grammars with production rules of form

αAβ → αηβ

7



Type-2 grammars are context-free grammars with production rules of form

A→ α

Type-3 grammars are regular grammars with production rules of the form

A→ a and A→ aB

Walking from the bottom of the language hierarchy to the top, the constraints on gram-

mar production rules are gradually relaxed. The expressive power of the grammar gradually

decreases going from top to the bottom at the same time. Such expressive power is defined

as the different sets of language that can be generated from the grammar. Here we borrow

the notations from [ZM07]. A language of a grammar G is defined as the set of all possi-

ble strings of terminals ω that can be derived from the grammar. We denote grammar G’s

language as L(G):

L(G) = {ω : S
R∗
=⇒ ω, ω ∈ V ∗T } (3.2)

where R∗ denotes a sequence of production rules γ1, γ2, ..., γn(ω) that corresponds to the

derivation of ω from S. If the grammar is of type 1, 2, or 3, a parse tree pt can be defined

for ω where

pt(ω) = (γ1, γ2, ..., γn(ω)) (3.3)

Here we state the fact that type 0 and type 1 grammars are non-deterministic, meaning

that no assumptions can be made based on simply the right hand side of the production.

Although some certain classes of type 1 grammar are easier to parse since type 2 grammar

is contained type 1, parsing type 1 grammar is difficult in general. Therefore, we will mainly

focus on type 2 grammar (context-free grammar, CFG) in the following discussion.

As formal grammars only generate language deterministicly, to connect with the real-

world scenario where the occurrences of strings comes with probabilities, we must aug-

ment the formal grammar with probability measures P . A stochastic context free grammar

8



(SCFG) is then defined with a fifth component, Gp = (VN , VT , R,Γ,P(R)). For each produc-

tion rule, starting from A we define the probability of different branches as following

A→ α1B1β1 | α2B2β2 | · · · | αn(A)Bn(A)βn(A)

p(A→ αiBiβi) = pi

n(A)∑
i=1

p(A→ αiBiβi) =

n(A)∑
i=1

= 1

With probability measure defined on the production rules, we can define the language of a

SCFG Gp as

L(Gp) = {(ω, p(ω)) : S
R∗
=⇒ ω, ω ∈ V ∗T }

where p(ω) is the proability that ω is generated by grammar Gp. Assume R∗ = γ1γ2 · · · γn(w)

where γ1, we can first define the parse tree probability p(pti(ω)) as

p(pti(ω)) =

n(ω)∏
j=1

p(γj)

and the sentence probability p(ω) is thus defined as

p(ω) =

m(ω)∑
i

p(pti(ω))

Here m(ω) is the number of parse trees for string ω. The sentence probability p(ω) is also

referred as parsing probability for sentence ω.

3.2 Earley Parser

In this section, we review the original Earley parser [Ear70], which is an algorithm for parsing

sentences of a given context-free language. The basic concepts are bases for the generalized

Earley parser introduced in chapter 4. Following the previous annotations, we use α, β, and

γ to represent string of terminals/nonterminals (including the empty string ε), A and B to

represent single nonterminals, and a to represent a terminal symbol. We adopt Earley’s dot

notation: for production of form A→ αβ, the notation A→ α · β means α has been parsed

and β is expected.

9



Input position n is defined as the position after accepting the nth token, and input

position 0 is the position prior to input. At each input position m, the parser generates a

state set S(m). Each state is a tuple (A→ α · β, i), consisting of

• The production currently being matched (A→ αβ).

• The dot: the current position in that production.

• The position i in the input at which the matching of this production began: the position

of origin.

Seeded with S(0) containing only the top-level rule, the parser then repeatedly executes

three operations: prediction, scanning and completion:

• Prediction: for every state in S(m) of the form (A → α · Bβ, i), where i is the origin

position as above, add (B → ·γ,m) to S(m) for every production in the grammar with

B on the left-hand side (i.e., B → γ).

• Scanning: if a is the next symbol in the input stream, for every state in S(m) of the

form (A→ α · aβ, i), add (A→ αa · β, i) to S(m+ 1).

• Completion: for every state in S(m) of the form (A→ γ·, j), find states in S(j) of the

form (B → α · Aβ, i) and add (B → αA · β, i) to S(m).

In this process, duplicate states are not added to the state set. These three operations are

repeated until no new states can be added to the set. The Earley parser executes in O(n2)

for unambiguous grammars regarding the string length n, and O(n) for almost all LR(k)

grammars. A simple example is demonstrated in Figure 3.1.

As we can see from the process, the Earley parser operates on a symbolic space where

uncertainty at the input level is considered. Although it is widely used in natural language

processing domain, it still struggles at solving some problems where sequence data is pro-

vided.

10



Sample grammar: Γ→ R; R→ R +R; R→ “0”|“1”

Input string: 0 + 1

State: | state # | rule | origin | comment |

S(0)

(1) Γ→ ·R 0 start rule

(2) R→ ·R +R 0 predict: (1)

(3) R→ ·0 0 predict: (1)

(4) R→ ·1 0 predict: (1)

S(1)

(1) R→ 0· 0 scan: S(0)(3)

(2) R→ R · +R 0 complete: (1) and S(0)(2)

(3) Γ→ R· 0 complete: (2) and S(0)(1)

S(2)

(1) R→ R + ·R 0 scan: S(1)(2)

(2) R→ ·R +R 2 predict: (1)

(3) R→ ·0 2 predict: (1)

(4) R→ ·1 2 predict: (1)

S(3)

(1) R→ 1· 2 scan: S(2)(4)

(2) R→ R +R· 0 complete: (1) and S(2)(1)

(3) R→ R · +R 0 complete: (1) and S(2)(2)

(4) Γ→ R· 0 complete: (2) and S(0)(1)

Figure 3.1: An example of the original Earley parser.
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CHAPTER 4

Generalized Earley Parser

4.1 Overview

To leverage the capability of neural network for handling the uncertainty at input level

and combine it into the grammar model, we introduce the generalized Earley parser algo-

rithm [QWJ18]. Instead of taking symbolic sentences as input, we aim to design an algorithm

that can parse raw sequence data x of length T (e.g., videos or audios) into a sentence l of

labels (e.g., actions or words) of length |l| ≤ T , where each label k ∈ {0, 1, · · · , K} corre-

sponds to a segment of a sequence. To achieve that, a classifier (e.g., a neural network) is

first applied to each sequence x to get a T × K probability matrix y (e.g., from softmax

activations), with ykt representing the probability of frame t being labeled as k. The proposed

generalized Earley parser takes y as input and outputs the sentence l∗ that best explains the

data according to a stochastic context-free grammar G .

The core idea is to use the original Earley parser to help construct a prefix tree according

to the grammar as illustrated in Figure 4.1. A prefix tree is composed of terminal symbols

and terminations that represent ends of sentences. The root node of the tree is the “empty”

symbol. The path from the root to any node in the tree represents a partial sentence (prefix).

For each prefix, we can compute the probability that the best label sentence starts with this

prefix. This probability is used as a heuristic to search for the best label sentence in the

prefix tree: the prefix probabilities prioritize the nodes to be expanded in the prefix tree.

The parser finds the best solution when it expands a termination node in the tree. It then

returns the current prefix string as the best solution.

12
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1.0

0.8 0.1 0.0

0.6 6.4e-4

0.01 0.52 7e-3

0.05 0.43

Sample grammar:

γ → R

R→ R +R

R→ “0”|“1”

Input (classifier output):

frame “0” “1” “+”

0 0.8 0.1 0.1

1 0.8 0.1 0.1

2 0.1 0.1 0.8

3 0.1 0.8 0.1

4 0.1 0.8 0.1

Figure 4.1: Prefix search according to grammar. A classifier is applied to a 5-frame signal

and outputs a probability matrix (bottom right) as the input to our algorithm. The proposed

algorithm expands a grammar prefix tree (left), where “e” represents termination. It finally

outputs the best label “0 + 1” with probability 0.43. The probabilities of children nodes do

not sum to 1 since the grammatically incorrect nodes are eliminated from the search.

This heuristic search is realized by generalizing the Earley parser. Specifically, the scan

operation in the Earley parser essentially expands a new node in the grammar prefix tree.

For each prefix l, we can compute p(l|x0:T ) and p(l···|x0:T ) based on y, where p(l|x0:T ) is the

probability of l being the best label, and p(l···|x0:T ) is the probability of l being the prefix of

the best label of x0:T . The formulations for p(l|x0:T ) and p(l···|x0:T ) are derived in section 4.2.

We now describe the details for the algorithm. Each scan operation will create a new set

S(m,n) ∈ S(m), where m is the length of the scanned string, n is the total number of the

terminals that have been scanned at position m. This can be thought of as creating a new

leaf node in the prefix tree, and S(m) is the set of all created nodes at level m. A priority

queue q is kept for state sets for prefix search. Scan operations will push the newly created

13



set into the queue with priority p(l···), where l is the parsed string of the state being scanned.

Each state is a tuple (A→ α · β, i, j, l, p(l···)) augmented from the original Earley parser

by adding j, l, p(l···). Here l is the parsed string of the state, and i, j are the indices of the set

that this rule originated. The parser then repeatedly executes three operations: prediction,

scanning, and completion modified from Earley parser:

• Prediction: for every state in S(m,n) of the form (A → α · Bβ, i, j, l, p(l···)), add (B →

·γ,m, n, l, p(l···)) to S(m,n) for every production in the grammar with B on the left-hand

side.

• Scanning: for every state in S(m,n) of the form (A→ α ·aβ, i, j, l, p(l···)), append the new

terminal a to l and compute the probability p((l + a)···). Create a new set S(m + 1, n′)

where n′ is the current size of S(m + 1). Add (A → αa · β, i, j, l + a, p((l + a)···)) to

S(m+ 1, n′). Push S(m+ 1, n′) into q with priority p((l + a)···).

• Completion: for every state in S(m,n) of the form (A → γ·, i, j, l, p(l···)), find states in

S(i, j) of the form (B → α · Aβ, i′, j′, l′, p(l′···)) and add (B → αA · β, i′, j′, l, p(l···)) to

S(m,n).

This parsing process is efficient since we do not need to search through the entire tree.

As shown in Figure 4.1 and algorithm 1, the best label sentence l is returned when the

probability of termination is larger than any other prefix probabilities. As long as the prefix

probability is computed correctly, it is guaranteed to return the best solution. A step-by-step

generalized Earley parser example is shown in Figure 4.2.
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Algorithm 1: Generalized Earley Parser

Input : Grammar G, probability matrix y

Output: Best label string l∗

1 S(0, 0) = {(Γ→ ·R, 0, 0, ε, 1.0)}

2 q = priorityQueue()

3 q.push(1.0, (0, 0, ε, S(0, 0)))

4 while (m,n, l−, currentSet) = q.pop() do

5 for s = (r, i, j, l, p(l···)) ∈ currentSet do

6 if p(l) > p(l∗): l∗ = l then l∗ = l

7 if r is (A→ α ·Bβ) then // predict

8 for each (B → Γ) in G do

9 r′ = (B → ·Γ)

10 s′ = (r′,m, n, l, p(l···))

11 S(m,n).add(s′)

12 end

13 end

14 else if r is (A→ α · aβ) then // scan

15 r′ = (A→ αa · β)

16 m′ = m+ 1, n′ = |S(m+ 1)|

17 s′ = (r′, i, j, l + a, p((l + a)···))

18 S(m′, n′).add(s′)

19 q.push(p((l + a)···), (m
′, n′, S(m′, n′)))

20 end

21 else if r is (B → Γ·) then // complete

22 for each ((A→ α ·Bβ), i′, j′) in S(i, j) do

23 r′ = (A→ αB · β)

24 s′ = (r′, i′, j′, l, p(l···))

25 S(m,n).add(s′)

26 end

27 end

28 if p(l−) > p(l), ∀ un-expanded l then return l∗

29 end

30 end

31 return l∗
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4.2 Parsing Probability Formulation

The parsing probability p(l|x0:T ) is computed in a dynamic programming fashion. Let k be

the last label in l. For t = 0, the probability is initialized by:

p(l|x0) =


yk0 l contains only k

0 otherwise

(4.1)

Let l− be the label sentence obtained by removing the last label k from the label sentence

l. For t > 0, the last frame t must be classified as k. The previous frames can be labeled as

either l or l−. Then we have:

p(l|x0:t) = ykt (p(l|x0:t−1) + p(l−|x0:t−1)) (4.2)

It is worth mentioning that when ykt is wrongly given as 0, the dynamic programming process

will have trouble correcting the mistake. Even if p(l−|x0:t−1) is high, the probability p(l|x0:t)

will be 0. Fortunately, since the softmax function is usually adopted to compute y, ykt will

not be 0 and the solution will be kept for consideration.

Then we compute the prefix probability p(l···|x0:T ) based on p(l−|x0:t). For l to be the

prefix, the transition from l− to l can happen at any frame t ∈ {0, · · · , T}. Once the label k

is observed (the transition happens), l becomes the prefix and the rest frames can be labeled

arbitrarily. Hence the probability of l being the prefix is:

p(l···|x0:T ) = p(l|x0) +
T∑
t=1

ykt p(l
−|x0:t−1) (4.3)

In practice, the probability p(l|x0:t) decreases exponentially as t increases and will soon

lead to numeric underflow. To avoid this, the probabilities need to be computed in log

space. The time complexity of computing the probabilities is O(T ) for each sentence l

because p(l−|x0:t) are cached. The worst case complexity of the entire parsing is O(T |G|).
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4.3 Segmentation and Labeling

The generalized Earley parser gives us the best grammatically correct label sentence l to ex-

plain the sequence data, which takes all possible segmentations into consideration. Therefore

the probability p(l|x0:T ) is the summation of probabilities of all possible segmentations. Let

p(l|y0:e) be the probability of the best segmentation based on the classifier output y for sen-

tence l. We perform a maximization over different segmentations by dynamic programming

to find the best segmentation:

p(l|y0:e) = max
b<e

p(l−|y0:b)
e∏

t=b

ykt (4.4)

where e is the time frame that l ends and b is the time frame that l− ends. The best

segmentation can be obtained by backtracing the above probability. Similar to the previous

probabilities, this probability needs to be computed in log space as well. The time complexity

of the segmentation and labeling is O(T 2).

4.4 Future Label Prediction

Given the parsing result l, we make grammar-based predictions for the next label z to be

observed. The predictions are naturally obtained by the predict operation in the generalized

Earley parser.

To predict the next possible symbols at current position (m,n), we search through the

states S(m,n) of the form (X → α·zβ, i, j, l, p(l···)), where the first symbol z after the current

position is a terminal node. The predictions Σ are then given by the set of all possible z:

Σ = {z : ∃s ∈ S(m,n), s = (X → α · zβ, i, j, l, p(l···))} (4.5)

The probability of each prediction is then given by the parsing likelihood of the sentence

constructed by appending the predicted label z to the current sentence l. Assuming that the

best prediction corresponds to the best parsing result, the goal is to find the best prediction

z∗ that maximizes the following conditional probability as parsing likelihood:

z∗ = arg max
z∈Σ

p(z, l|G) (4.6)
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For a grammatically complete sentence u, the parsing likelihood is simply the Viterbi like-

lihood [Vit67] given by the probabilistic context-free grammar. For an incomplete sentence

l of length |l|, the parsing likelihood is given by the sum of all the grammatically possible

sentences:

p(l|G) =
∑

u1:|l|=l

p(u|G) (4.7)

where u1:|l| denotes the first |l| words of a complete sentence u, and p(u|G) is the Viterbi

likelihood of u.

4.5 Maximum Likelihood Estimation for Prediction

We are interested in finding the best grammar and classifier that give us the most accurate

predictions based on the generalized Earley parser. Let G be the grammar, f be the classifier,

and D be the set of training examples. The training set consists of pairs of complete or

partial data sequence x and the corresponding label sequence y for all the frames in x. By

merging consecutive labels in y that are the same, we can obtain partial label sentences l

and predicted labels z. Hence we have D = {(x,y, l, z)}. The best grammar G∗ and the

best classifier f ∗ together minimizes the prediction loss:

G∗, f ∗ = arg min
G,f

Lpred(G, f) (4.8)

where the prediction loss is given by the negative log likelihood of the predictions over the

entire training set:

Lpred(G, f) = −
∑

(x,z)∈D

log(p(z|x))

= −
∑

(x,l,z)∈D

(log(p(z|l, G))︸ ︷︷ ︸
grammar

+ log(p(l|x))︸ ︷︷ ︸
classifier

)
(4.9)

Given the intermediate variable l, the loss is decomposed into two parts that correspond to

the induced grammar and the trained classifier, respectively. Let u ∈ {l} be the complete

label sentences in the training set (i.e., the label sentence for a complete sequence x). The

best grammar maximizes the following probability:
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∏
(z,l)∈D

p(z|l, G) =
∏

(z,l)∈D

p(z, l|G)

p(l|G)
=

∏
u∈D

p(u|G) (4.10)

where denominators p(l|G) are canceled by the previous numerator p(z, l−|G), and only the

likelihood of the complete sentences remain. Therefore inducing the best grammar that gives

us the most accurate future prediction is equivalent to the maximum likelihood estimation

(MLE) of the grammar for complete sentences in the dataset. This finding lets us to turn

the problem (induce the grammar that gives the best future prediction) into a standard

grammar induction problem, which can be solved by existing algorithms, e.g., [SHR05] and

[TPZ13].

The best classifier minimizes the second term of Equation 4.9:

f ∗ = arg min
f
−

∑
(x,l,z)∈D

log(p(l|x)

≈ arg min
f
−

∑
(x,y)∈D

∑
k

yk log(ŷk)
(4.11)

where p(l|x) can be maximized by the CTC loss [GFG06]. In practice, it can be substi-

tuted by the commonly adopted cross entropy loss for efficiency. Therefore we can directly

apply generalized Earley parser to outputs of general detectors/classifiers for parsing and

prediction.
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Sample grammar: γ → R; R→ R +R; R→ 0|1

Input (classifier output) Cached probability

Frame 0 1 +

0 0.8 0.1 0.1

1 0.8 0.1 0.1

2 0.1 0.1 0.8

3 0.1 0.8 0.1

4 0.1 0.8 0.1

Frame ε 0 1 0 + 0 + 0 0 + 1 0 + 1 +

0 0 8e-1 0.1 0 0 0 0

1 0 6.4e-1 1e-2 8e-2 0 0 0

2 0 6.4e-2 1e-3 0.58 8e-3 8e-3 0

3 0 6.4e-3 8e-4 6.4e-2 5.8e-2 0.47 8e-4

4 0 6.4e-4 6.4e-5 7e-4 1.2e-2 0.42 4.7e-2

prefix 1 8e-1 0.1 0.60 7.2e-2 0.52 4.8e-3

State: | state # | rule | origin | prefx | comment |

S(0, 0) : l = ε, p(l) = 0.0, p(l···) = 1.0

(1) γ → ·R 0, 0 ε start rule

(2) R→ ·R +R 0, 0 ε predict: (1)

(3) R→ ·0 0, 0 ε predict: (1)

(4) R→ ·1 0, 0 ε predict: (1)

S(1, 0) : l = “0”, p(l) = 6.4e− 4, p(l···) = 0.8

(1) R→ 0· 0, 0 “0” scan: S(0, 0)(3)

(2) R→ R · +R 0, 0 “0” complete: (1) and S(0, 0)(2)

(3) γ → R· 0, 0 “0” complete: (2) and S(0, 0)(1)

S(1, 1) : l = “1”, p(l) = 6.4e− 4, p(l···) = 0.1

(1) R→ 0· 0, 0 “1” scan: S(0, 0)(4)

S(2, 0) : l = “0 + ”, p(l) = 7.0e− 3, p(l···) = 0.599

(1) R→ R + ·R 0, 0 “0 + ” scan: S(1, 0)(2)

(2) R→ ·R +R 2, 0 “0 + ” predict: (1)

(3) R→ ·0 2, 0 “0 + ” predict: (1)

(4) R→ ·1 2, 0 “0 + ” predict: (1)

S(3, 0) : l = “0 + 0”, p(l) = 1.2e− 2, p(l···) = 7.2e− 2

(1) R→ 0· 2, 0 “0 + 0” scan: S(2, 0)(3)

S(3, 1) : l = “0 + 1”,p(l)=0.43, p(l···) = 0.52

(1) R→ 1· 2, 0 “0 + 1” scan: S(2, 0)(4)

(2) R→ R +R· 0, 0 “0 + 1” complete: (1) and S(2, 0)(1)

(3) R→ R · +R 2, 0 “0 + 1” complete: (1) and S(2, 0)(2)

(4) γ → R· 0, 0 “0 + 1” complete: (2) and S(0, 0)(1)

S(4, 0) : l = “0 + 1 + ”, p(l) = 4.7e− 2, p(l···) = 4.8e− 2

(1) R→ 0· 2, 0 “0 + 0” scan: S(3, 1)(3)

Final output: l∗ = “0 + 1” with probability 0.43

Figure 4.2: An example of the generalized Earley parser. This example corresponds to Figure

3 in the original paper.
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CHAPTER 5

Experiments

5.1 Experiment Setup

We evaluate our method on the task of human activity recognition and prediction on two

datasets, CAD-120 [KGS13] and Watch-n-Patch [WZS15].

The CAD-120 dataset is a standard dataset for human activity prediction. It contains

120 RGB-D videos of four different subjects performing 10 high-level activities, where each

high-level activity was performed three times with different objects. It includes a total of

61,585 total video frames. Each video is a sequence of sub-activities involving 10 different

sub-activity labels. The videos vary from subject to subject regarding the lengths and

orders of the sub-activities as well as the way they executed the task. For this dataset, we

use the precomputed features from KGS [KGS13] provided with the dataset and test the

performance of our algorithm.

Watch-n-Patch is an RGB-D dataset that features action recognition and forgotten ac-

tions. In some of the videos, a action is forgotten compared to the standard action sequence.

For example, a subject might fetch milk from a fridge, pour milk, and leave where the typical

action “putting the milk back into the fridge” is forgotten. The dataset contains 458 videos,

each video in the dataset contains 2-7 actions interacted with different objects. 7 subjects

are asked to perform daily activities in 8 offices and 5 kitchens with complex backgrounds.

It consists of 21 types of fully annotated actions interacted with 23 types of objects. We ex-

tract the same features described in [WZS15] for all methods. These features are composed

of human-object interaction features extracted from RGB-D images and skeleton features.

Some of the visualizations for the features extracted are shown in Figure 5.2.
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In both experiments, we used a modified version of the ADIOS (automatic distillation of

structure) [SHR05] grammar induction algorithm to learn the event grammar. The algorithm

learns the production rules by generating significant patterns and equivalent classes. The

algorithm starts by loading the corpus of activity onto a graph whose vertices are sub-

activities, augmented by two special symbols, begin and end. The algorithm then finds

the equivalent classes that are interchangeable. And therefore find the possible grammar

production rules based on the significant patterns found. An example grammar generated

by ADIOS is shown in Figure 5.1

S3

P12

②

P14

③

standing

①

placing

④

S2

② ④①

walking

③ ⑤

S1

③②① ④

S4

④②① ③ ⑤

E11

①

pouring_milk

②

E13

①

pouring_cereal

②

reaching_milk

0.68

reaching_bottle

0.32

S

0.210.210.42 0.16

reaching_bag

0.26

reaching_box

0.74

Figure 5.1: An example grammar learned by ADIOS for activity ”making cereal”.
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5.2 Results

For the CAD-120 dataset, We follow the convention in KGS [KGS13] to train on three sub-

jects and test on a new subject with a 4-fold validation. The results for the three evaluation

metrics are summarized in Table 5.1, Table 5.2 and Table 5.3, respectively. Our method

outperforms the comparative methods on all three tasks. Specifically, the generalized Earley

parser on top of a Bi-LSTM performs better than ST-AOG, while ST-AOG outperforms the

Bi-LSTM.

Table 5.1: Detection results on CAD-120.

Method
Micro Macro

P/R Prec. Recall F1-score

KGS [KGS13] 68.2 71.1 62.2 66.4

ATCRF [KS16] 70.3 74.8 66.2 70.2

Bi-LSTM 76.2 78.5 74.5 74.9

ST-AOG + Earley [QHW17] 76.5 77.0 75.2 76.1

Bi-LSTM + Generalized Earley 79.4 87.4 77.0 79.7

Table 5.2: Future 3s prediction results on CAD-120.

Method
Micro Macro

P/R Prec. Recall F1-score

KGS [KGS13] 28.6 – – 11.1

ATCRF [KS16] 49.6 – – 40.6

Bi-LSTM 54.2 61.6 39.9 34.1

ST-AOG + Earley [QHW17] 55.2 56.5 56.6 56.6

Bi-LSTM + Generalized Earley 61.5 63.7 58.7 59.9
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Table 5.3: Segment prediction results on CAD-120.

Method
Micro Macro

P/R Prec. Recall F1-score

Bi-LSTM 31.4 10.0 12.7 10.1

ST-AOG + Earley [QHW17] 54.3 61.4 39.2 45.4

Bi-LSTM + Generalized Earley 72.2 70.3 70.5 67.6

For the Watch-n-Patch dataset, we use the same evaluation metrics as the previous

experiment and compare our method to ST-AOG [QHW17] and Bi-LSTM. We use the

train/test split in [WZS15]. The results for the three evaluation metrics are summarized in

Table 5.4, Table 5.5 and Table 5.6, respectively. Our method slightly improves the detection

results over the Bi-LSTM outputs, and outperforms the other methods on both prediction

tasks. In general, the algorithms make better predictions on CAD-120, since Watch-n-Patch

features forgotten actions and the behaviors are more unpredictable.

Table 5.4: Detection results on Watch-n-Patch.

Method
Micro Macro

P/R Prec. Recall F1-score

ST-AOG + Earley [QHW17] 79.3 71.5 73.5 71.9

Bi-LSTM 84.0 79.7 82.2 80.3

Bi-LSTM + Generalized Earley 84.8 80.7 83.4 81.5
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Table 5.5: Future 3s prediction results on Watch-n-Patch.

Method
Micro Macro

P/R Prec. Recall F1-score

Bi-LSTM 42.1 66.6 62.6 61.8

ST-AOG + Earley [QHW17] 48.9 43.1 39.3 39.3

Bi-LSTM + Generalized Earley 49.0 57.0 56.5 55.3

Table 5.6: Segment prediction results on Watch-n-Patch.

Method
Micro Macro

P/R Prec. Recall F1-score

Bi-LSTM 21.7 11.8 23.3 14.0

ST-AOG + Earley [QHW17] 29.4 28.5 18.9 19.9

Bi-LSTM + Generalized Earley 35.6 59.2 59.3 53.5
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Figure 5.2: Feature extraction for Watch-n-Patch dataset. The red lines are the poses of

subjects and the green parts are interactive objects at current frames.
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Figure 5.3: Qualitative results of segmentation results. In each group of four segmentations,

the rows from the top to the bottom shows: 1) ground-truth, 2) results of ST-AOG, 3)

Bi-LSTM, and 4) Bi-LSTM + generalized Earley parser.
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CHAPTER 6

Conclusion

In this work, we present the generalized Earley parser for parsing sequence data according

to symbolic grammars. Unlike previous methods, we tackle the spatial-temporal learning

problem for human activity recognition and prediction with the combination of neural net-

works and grammar models. In our model, detections and predictions are formulated as

a grammar constrained parsing problem on the probabilistic outputs of neural networks.

Such a formulation offers the ability to handle frame-wise input with neural network and

high-level parsing/prediction with the stochastic grammars. As the grammar learned for

the temporal structure is symbolic, we argue that the learned symbolic grammars can be

easily adapted to other scenarios where the temporal order of activities are the same but

the scene layout is different. In such a way, we can use the generalized Earley parser as a

add-on module for current classifiers to achieve better results when the tasks are similar in

the temporal domain. We are optimistic about and interested in further applications of the

generalized Earley parser. In general, we believe this is a step towards the goal of integrating

the connectionist and symbolic approaches and a good starting point for better solving the

spatial-temporal reasoning problem.
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