UC Irvine
ICS Technical Reports

Title
Material and Ideas to Teach an Introductory Programming Course Using Logo

Permalink
https://escholarship.org/uc/item/9dm?2s4qi

Author
Fischer, Gerhard

Publication Date
1973-06-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9dm2s4qr
https://escholarship.org
http://www.cdlib.org/

MATERIAL AND IDEAS TO TEACH
AN INTRODUCTORY PROGRAMMING COURSE
USING L0GO
by

‘Gerhard Fischer

* TECHNICAL REPORT #42 ~ JUNE 1973

- June

1973

MATERIAL AND IDEAS TO TEACH

AN INTRODUCTORY PROGRAMMING COURSE

USING LOGO

N

A e LA
ﬂm ‘_\ ‘\“
suea NN

N

%

~

Vs
TS -
{ ||!.'III““‘\ N }\?

&
R

0:;
7
p

e

e

1900
O S

o

%5
X
o,:,
)

-y

»

\
i

&%

|

&,
X
|

5o
<7

-,

r
.0

o,

-,

0N

7

sees
)

- L

Gerhard Fischer

Uc Irvine

Department of Information and Computer Science

PREFACE

These notes represent a first draft for creating a problem

book for an introductory LOGO course. It is primarily a

|
collection of non-numerical problems which were written down
. I

in some hurry. He hope tgat by using these notes it will
turn out which of the prablems and ideas are interesting
.enougp to think about and to work with them in furthep
‘courses.
'We would be pleased if you, the reader, would write down and
address your cbmments, criticism and sugges;ed changes:

Gerhard Fischer

ICS Department

ver

Irvine, Calif. 922064

 TABLE OF CONTENTS

i,

2.

3.

Introduction .

Problems

2.1 Problems to get started with LOGO

2.1.1 The box theory

2.1.2 Non-recur®ive procedures

2.2 Recursive procedures

Projects

3.1 Vowels and consonants

3.2 The wizard's problem

3.3 A question answerer system
3.4.Piggy énd Unpiggy

3.5 The poetry problem

3.6vRandom numbers

3,7 The animal problem-

3.8 The Tower of Hanoi

20

34 -

42
43
53

55

58

62

68

3.9 A LOGO INIT file

4, Errors

5. High school project

APPENDIX

-A The little brother theory
B Note about names and placeholders
C Texts for the vowel problem

D Notes about the wizard's problem

70

73

80

4. INTRQDUCTION

The following notes originated from two sources:

A) The course SOCIAL SCIENCE 15(SS 15), taught by John
S. Brown with the assistance of Richard Burton,
Steve Levin and myself.

B) A project for an ICS 190 Senior Seminar where six
students and myéelf (as a teaching assistant for
this class) attempted to gain insight into proﬁlems

' - which arise from rteaching High School students

programming. |

Both activities took plgce during Spring Quarter 1973 at UC
Irvine; and they were based on previous experience in
. teaching ss 15, which is documented in [1]. These notes can
be regarded as an extension of [1], and we assume that the
reader is familiar with this document. There he can find
some insight into what our goalg have been ana why we have
chosen LOGO aé our programming language (the reéder, who is

‘not familiar with LOGO will find a brief introduction in

{11).

2,PROBLEMS

This section may be regarded as an initial step toward the

creation of a problem book for an introductory LOGO course
' i

and will point out a few ;strategies'which may be used to

introduce new concepts.

|
i
|
!

2,1- PROBLEMS TO GET STARTED WITH LOGO

2.1.1 THE BOX THEORY

. LOGO deals with words and sentences, so it was quite natural
to start off with the operations which construct new items
(WORD and SENTENCE) and tbose which gét parts of existing
items (FIRST,LAST,BUTFIRST and BﬁTLAST). Wé introduced the
operations with the "box theory". For example, FIRST could
be represented as folloys (with a sample input):

*poG"

l

FIRST

{

‘_D' i . .

This approach has many advantages which cannot Dbe

overemphasized, since it will make the student familiar with

the following ideas?y
A) that a .certain procedure (or operation) has a
certain number of inputs and outputs (and this

number stays the. same for a box at all times)

B) it helps later to show how we can build big boxes

from little ones
A .

C) it clarifies {hét after having constructed a box,
this box is availab£E ?o the student for his further
work.

With respect to A), we noticed that even after a few weeks
it wasn't quite obvious to some students tﬁat this way of
thinking (that you represent your procedurés as boxes) was
- very helpful to construct new procgdurgs (see later remarks
on STOP and OUTPUT).

The next step was to connect boxes,eg

.HT“ ““\ TH’EREH
i] RUTFIRST LAST
\'Tu : “lTH.E‘P\E“
F)RST ' BUT LAST

u'.rn) HERE
K WO RD

L] t W

'THERE"

Some effort should be directed toward showing +the student
how he <can transform this two-dimensional representation
into a one-dimensional LOGO line, and how he can parse a
more complex line such as
_HORD FIRST BUTFIRST "AT" BUTLAST LAST."HI THERE"

to get back to the two-dimensional representation. We
explained it roughly in the following way:

1) start to scan the line from the left

2) first element is WORD- requires two inputs - go on

to find these two inputs

3) second element is FIRST - requires one input
"B) teeeecasesss.and SO oOn
The'barsing of the LOGO line shows the importance of A).
The next box introduced is the PRINT box |

- DO G“

-

TTY
P0G

""‘PR\NT i S

its input to the teletype.
At this time the student should know enough (after we showed
him briefly, how to use the operating system to get into -

LOGO) that he can play with . LOGO. Some other LOGO

operations can be explained briefly. (eg what a predicate
is); most LOGO operation names are well chosen so the
student can guess what they are designed to do.

Ri'chard Burton wrote an interesting program with which the

students could test wheth?r they had understood how the
i : '
basic LOGO commands work., Here is a sample run:

e e e e P R A . I
. LT : {

2315 .
HOW MAMY EXAMFLES wOULD WOU LIKE ME TO bI 'E YOuUT ;
*3 : ;

WHRT I3 -- ZENTEMCE OF "LIFE I3 JUST" AND "GLORK™ —-— 7 .

«]1 DOM-T EMOW :
THAT 3 NOT @JITE RIGHT. WATCH WHILE I DO IT.

*RENTEMCE OF “LIFE I3 Ju3T" AND "HBLORKE” : '
<SEMTEMCE QUTPUTS “LIFE IS JU=T GLORKT - ' -

MY ANIWER I3 —— LIFE IZ JURT BLORK

WHAT IS —- BUTLAST OF "I¥T THE kA" -— 7

+I¥T THE , o . ' ;
YERY =O0D ' ,

WHAT IS -—- LAST OF SENTENCE OF “MEKUZ" AND "AMONG FRIENDZ® —-= 7

© .+DO YO KMOW o
* THAT’S MOT GUITE RIGHT. WATCH WHILE 1 D0 I7. i

*ZENTEMCE OF "MEKLZ™ AMD “"AMDNG FRIEMDIT

*SENTENCE OUTFUTSE “MEKUZ AmMLMHE FRIEMDE® : ‘
L ART OF “MEKUZ Ambta: FRIEHDEZT o /
“LAST OUTFUTS "FRIENDZ

MeY ANSWER I3 —- FRIEMDE

SR, S P, C e . P PO N L S DU SO P . e .~ e

We also gave the first assignment:

A) What are the results? (If you don'f know'try it on the machine!)

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
" PRINT
PRINT
PRINT
PRINT

LAST OF LAST OF LAST OF "THEL CAT ATE THE MOUSL"
FIRST OF _LAST OF LAST OF "THE CAYT ATE THE MOUS:n"
SUM OF 2 BUTLAST "1A% - :
SCNTENCEP OF BUTLAST "“THE CATY

SLNTENCLP BUTFIRST BUTFIRLT. "THE CAT"

SUM OF 12 COUNT 3u5

IS COUWT OF "THu BIG CAT"™ AND COUNT BUTFIRST OF "THE BIG CAT"
WORD SLNTENCEP "TIlE) OUSE"™ "y .
WORD FIRST BUTLAST L2ST "%Hi CAT ATE" "Foo"

WORD 1 BUTLAST "AM e

WORD LAST BUTLAST "Ti#Z CAT" "ATE"Y

BUTFIRST DIFFERENCE 2 BUTFIRST "X14"

SENTENCEP OF BUTFIRST OF "HI THERE"

WORDP OF BUTFIRST OF "HI ‘THERE"

SENTENCEP OF LAST "HI THLRE" N

WORDP OF LAST "HI THELRE"

IS LAST "HI THERE™ BUTFIRST "HI THERE"

SUM OF FIRST 223 LAST 123

SUM OF WORD "-" 4 AND 4

COUNT OF "-123"

SuM OF 1 0
IS "-4"WORD "-" 4
LAST OF "A"

BUTLAST OF "an

FIRST OF "a"

BUTFIRST QF "a"

EMPTYP OF BUTLAST OF "A™

IS LAST "A"™ FIRST m"A"

IS EHPTYP "AA™ "FALSL"

IS o4 4 '

WORD OF ™A™ WORD)F W"pB" w(w

WORD OF WORD '"A®W 7rpnw wcen.

IS (WORD ™A"™ WOR) "L™ "CM™ 3} (WORD WORD '"Aw nwpm wcen)
IS FIRST "B'" LAST "B" ' : - s
IS BUTIFIRST "B"™ BUTLAST ™LpLY

.SUM OF WORD 1 4 5

IS 0 00 - ' .
ZEROP 0 -

ZEROP 00

COUNT WORD "v maBC™

IS (BUTFIRST BUTLAST "AEC") BUTLAST BUTFIRST "ARC"

This didn't work out too well for the following reasons:

a) nobody tried to figﬁre out the results in advance;
‘they just typed in the lines and watched what was.
printed

b) some of the lines introduced .queétions which they

couldn't understand at this point in the course, eg
' !

~a P SENTENCEP BUTFIRST "HI THERE"
TRUE

whereas

© --w P SENTENCEP "THERE"

FALSE

This led us into endless discussions which were too advanced
for this part of the course and which were confusing to

guite a few students.

2.1.2 NON-RECURSIVE PROCEDURES -

~

Next we introduced procedures or in other words showed them

Yhow to construct their own boxes." The first few examples

yoeT

were non-recursive, which limits the procedures to a small
.class, but it still helps to acquaint the. student with a few
jmportant concepts (eg- how to give a certain number of

instructions a name so we can refer to them later by this

‘name). E

B .
Here is a list of non-recursive procedures {the code for the

«

‘trivial procedures is left out):
1) write a procedure BUTFIRST2 (BUTLAST2) which takes one
input (word or sentence)} and outputs the input without

the first (last) two elements

—~uw P BUTFIRST2 "HELLO"™

LLO

2) write a procedure SECONDFIRST, SECONDLAST,
THIRDFIRSTueeacesevessy Which do the obvious thing (ie

they output the second, secon@last, third ...,..element)-

—ww P THIRDLAST "DOWNTOWN"

0.

3) write a procedure GLUEIT, which takes two inputs (words)

and glues them together

—». P GLUEIT "“HE"™ “RE"

HERE

4) write a prpéédure TENSE, whieh takes two. inputs. The
first input Es either the literal "PAST" or "PRES"; the
second is an English. verb
If the first input is thST“, TENSE should remove "EDY
from the verb, if tEe first input is "PRES"™, it should
tag on a "s" A

.

-
: .

- ——amw P TENSE "PAST"™ "HAPPENED"

HAPPEN

5) write a procedure ADD1 (SUB1), which takes one input, a

" pumber and outputs the sum (difference) of the number

and 1.

-——» P SUB1 14
13

6) write a predicate LONGERP, which takes two inputs (words’
or sentences) and outputs true, if the first input has

.more elements than the second

—=P LONGERP "HOW ARE YOU" "“DOWNTOWN BOSTON"

TRUE

This should be an example of what we mean when we talk about

elements with respect to a word or sentence.

7) Write a predicate NEGATIVP, which takes

number) and ocutputs true,

—w P NEGATIVP "-u"

TRUE

TO NEG1P :NUM:
10 TEST IS FIRST OF :NUM:
20 IFTRUE OQUTPUT “TRUE"

30 IFFALSE OUTPUT "“FALSE"

END

| TO Ntszp tNUM:
10 TEST IS FIRST OF :NUM:
20 IFTRUE OUTPUT "TRUE"
30 OUTPUT "FALSE" |

- END

if the number is

-

- 10 -

one input (a

negative.

TO NEG3P :NUM:

10 OUTPUT IS FIRST OF :NUM: "=

END

TO NEGH4P :NUM:

10 PRINT IS FIRST OF :NUM: “-v

END -

/

8) write a procedure ABS, which takes one input (a number

N) and outputs N, if N»0, otherwise =N

—wP ABS "-u

4

TO ABS :NUM:
10 TEST NEG1P :NUM:
20 IFTRUE OUTPUT BUTFIRST OF :NUM:

30 OUTPUT :NUM:
END

The first <three definitions for the NEﬁATIVP‘predicate
‘(which are obviously all equivalent) may be wused to
introduce new elements of LOGO. The best way to start off

is. with definition 1, where we can explain the use of the

-

TEST command (similar to the explanation of recursion in

[1]): TEST is a box with one input and no output

YESTFLOS
NeeqLée

L]

EMPTYP - " DuM o
o /

U

TEST f—-—-

: . i LS. 2 :
But it has the effect ‘of setting a flag in the conceptual

cloud of a little man accoﬁ@ing to the value of its input.
" The IFTRUE or IFFALSE boxes‘ then look up this flag to
determihe whether the rest of the line where they appear
should be executed. :

OﬁTPUT is another box with one input and no output; its
effect 'is to terminate the procedure and its input
determines what comes out of the proceﬁure,box in which the
OUTPUT box is embedded.

with this explanation it seems most natural to use
definition 1 for NEGP. Then def 2land def 3 are natural

simplifications, 1f the students understand exactly what
OUTPUT is doing.
pef % (which isn't a predibate any more, because prédigates

were defined as procedures which output either "TRUE" or

MFALSE") should not be presented to the students at this

time. Unfortunately some of the students came up with
solutions of this kind. The best answer at this moment is
probably that ‘the sqlution is .correct, but it is not what we

want because NEGUP can not be used instead of NEG1P in the

procedure ABS.

8) Write a procedure EQP, which determines whether'two.

numbers are equal.
TO0 EQP :F: :5:
10 OUTPUT IS (DIFFERENCE :F: :8:) ¢

END

- There are obvious cases where we want to use EQP instead of

18, eg

—w P EQP 3 03

TRUE
whereas
—w=P IS 3 03

FALSE

- 13 -

10) write a procedure TWIST, which takes the first and the

jast element of a word(or sentence) and switches them

TO TWIST :W: ;
i ‘
10 OUTPUT WORD OF LAST ;W: WORD OF BUTFIRST BUTLAST :W:
FIRST :W: E
END |

This procedure is an example where a student has to check

whether his procedures work for all cases

—— P TWIST "A"™

AA

. Most of these procedures seem to be érivial, but we should
not fofget that we had students who had used the computer
just a little more than a Week. - In spite of this, it seems
to be essential that the important featurés are explained
‘well, withoﬁt overemphasizing aspects which are too formal
;{in the sense that the work of the students didn't provide
any motivation for thenm).

C A big problem to a large number of students was the use of
parameters in the declaration of a procedure, They had a .

- hard time understanding the difference between "A" and :A:

e 14 -

(because we hadn't talked about names at this moment). The

following was a big surprise for most students:

11) write a brécedure BEGINP, which takes two inputs, a

letter and a senténce, and checks whether the letter is

the same as the first letter of the sentence,

TO BEGINP :L: :SENT+ ™
10 OUTPUT IS :L: FIRST OF FIRST OF :SENT:

END
Some students used it in the following way:

«wnP BEGINP :H: :HI THERE:

- TRUE

—w=P BEGINP :H: :YQU DUMMY:

TRUE

The second example returns true because both inputs by being'
specified as names have as their "thing" the empty word, At
this point, we didn't want to talk about the MAKE command

(see [1] for some arguments), so we tried to explain to the

- 15 -

studenfs that they had to enclose the inputs to a procedure
with quotes when they are e#ecuting a procedure whereas iﬂ
define mode, they Bad to enclose the parameters in colons,

The meaning of the ﬁarameters seems to. be best explained as
fdllows (to distinguish them right at the béginning from the
concépt'of having names and things): in the box theory, we

|
tag on a bucket to every arc leading in the box which we]

call a placeholder,

! ;e I l:SENT:,

y | v

BEGINS

When we define a'procedure, it is used to hold a place for
the actual argument, which is filled in at the time that the

procedure is invoked.

A-short remark about the concept of numbers in LOGO: they

can be introduced as a subset of LOGO words. For

- 16 =

simplicity, it is not necessary to surround positive numbers
by quotes but to aveoid confusion it is best to teach the
students tc do so. As an exampie of this, our EQP procedure

(no 9) works fine in the case of positive numbers

|
;—bP EQP 3 3 ¢

TRUE

but we are in trouble in the following case

1

~—wP EQP 3 -8

THERE ARE 1 INPUTS MISSING FOR EQP,

And the students are faced with a very strange error message

{which is, due to the fact that our LOGO system has infix

0perat6rs).

By always enclosing numbers in quotes this problem is

completely avoided.

.;.-.p EQP nan nwoyn ‘

FALSE

Another word about the EQP procedure: a student came up with

the following solution: . .

- 17 =

TO EQ1P :NUM:

10 TEST IS DIFFERENCE :FIRST: :SECOND: 0
20 IFTFUE OUTPUT "EQUAL"

30 IFFALSE OUTPUT "“UNEQUAL"™

END

Té the beginner this appears to be certainly a bettep way to
write the procedure (because it returns more information).
With an- example . like the following (which determines,
wpether the remainder of the first iﬁput -divided by the
second input is equal to the third input) we show the

students why the above version of NEGH4P is not desirable.

TO REMP :F: :5: :T:

10 TEST EQ1P (REMAINDER :F: :5:) :T:
20 IFTRUE OUTPUT "TRUE"

30 OUTPUT "FALSE"

" END

—wP REMP 6 4 2
TEST OF “EQUAL"
INPUT MUST BE PREDICATE.

I WAS AT LINE 10 IN REMP

|
We have shown that we would|like to use EQP as a predicate
(ie the input has either to.be "TRUE" or "FALSE", because we

want to use it as an input te the TEST box).

- ig -

2.2 RECURSIVE PROCEDURES

Before introdpé?ng the student to recursi;n, it may be
appropriate to t;lk about the editor, the error messages,
and how to file his own. procedures away so they can be used
1ater.' The student shpuld pe aware that he can extend the
hagic set of LOGO oberatipns with his own procedures.

Recursion is a powérfﬁl-concept which not only represents a
certain way of programming ﬁbﬁf a way of thinking about a
‘ pﬁoblem. Recursion cannot be represented in an appropriate

’way within the box theory, therefore we switched to the

wljttle brother theory", where every little brother has its

own conceptual cloud (we mentioned this idea briefly in
| connection with the TEST command). The explanation of how
we introduced the first recur#ive - procedure, MEMBERP, is
described in great detail in [1],p7-pli, which tﬁe reader
may refer to . A slightly modified reprint (which we handed
out to our students) appears in the appendix.
The MEMBERP predicate-seemed to all of us the best example
to_introduce recursion for the followiﬂg.reasons:

i) it is a predicate(ie it outputé)

2) it is the simplest form of recursion in the sense

that if you come out of your recursion you just pass

the information back
3) it is a more natural problem than the FACTORIAﬁ
- funection, which is not a well known function to
social science or high school students (and whichA
fails in its usual version with respect to 2))

Another important feature of LOGO at this state is the frac%
|
feature. It helps the student to see exactly what is goinﬁ

on (eg, how many 1little brothers were generated) and it
usually shows him what he is doing wrong when he writes the
first few procedures on his own(ég if his process goes into

an infinite recursiocn).

Boran e
«

+P MEMBERP "A" "HAT"
MEMEERP OF "A" AMI "HAT"
MEMBERF OF “A" AND “AT"
MEMEERF DUTPUTE "TRUE”
MEMEERP OUTFUTE "TRUE"
TRUE -
P MEMEERP "A" "NWE"
MEMEERP OF "R" AMD "WE"
MEMBERP OF "A" AMD "E"
MEMEERP OF "R” AND
MEMEERF OUTFUTE “FALZE"
MEMBERP OLTPUTE "FALSE"
MEMEERF OUTPLTI "FRLIE"
FALZE . :
<P MEMEERF "LIKE" "DO vOU LIKE TO WORK?"
MEMEERP OF "LIKE" AHD "D0 ¥OU L1KE TO WORKT"
MEMEERP OF "LIKE" AND "YOU LIKE TO WORK?"
MEMEERP OF "LIKE" AMD "LIKE TO WORKT®
MEMEERP OUTFUTS “TRUE”
MEMBERF OUTFUTT "TRUE"
.. MEMEERF OUTPUTS “TRUE"
. . JRUE

R D i i S]

.

. s . e b it 3" e

[~

. < .
., - e S x- . s e et
P VPR PR P en” PRSI R LSS i ot v DS - 01 e dallate

- 21 -~

Discussions which usually arise at this point are centered
around the question of how to avoid a circular definition;
During the process of defining a procedure, We are using the

same procedure (before we h?ve'finished the definition). It

m#y help some students if wé show them. how this process is

related to the look-up proéedure of a word in a dictionary.

If we want to look up a w&rd, we have to look up the first

unknown word in its definition, before we can understand the
ﬁhole definition. If we don't hit a trivial case (ie a case

ﬁhere Wwe know the answer, which is the empty word in our

MEMBERP predicate and some atomic information or words in

the look-up procedure) then. there is no way to come to an

end.

Hith recursion the usual fact is true} you can't learn it by

| séeing how other people do it, you have to do it Xoﬁrself!'
Therefore we gave the students a large number of-different

recursive procedures and eﬁcouraged them to write them.

They should be embedded in a meaningful task so that the

students doq't get the impreséion that they are oﬁly solving

‘toy pfoblems. The nekt section gives a set of projects

.where most of the recursive procedurest below caﬁ be

embedded.

1) HWrite a procedure HASNUMBERP which determines whether a

word contains a number.

‘TO HASNUMBERP :W:

10 TEST EMPTYP :W:
20 IFTRUE OUTPUT "FALSE"

30 TEST MEMBERP FIRST OF :W: "0123456789"
40 IFTRUE OUTPUT "TRUE"

50 OUTPUT HASNUMBERP- BUTFIRST :W:

END

" w

' —»P HASNUMBERP "DOG3CAT"

2)

3)

TRUE o

write a procedurée VOWELP which determines

letter is a vowel

TO VOWELP :W:

10 OUTPUT MEMBERP :W: "AEIOUY

END

write a procedure CONSONANTP which determines

~letter is a consonant

TO CONSONANTP :W:

.10 OUTPUT NOT VOWELP :W:

END

- 23 =

whether a

whether a

All of the preceeding procedures obviously can be written by
using our previously defined érocedures. Not too man;
students understood this idea and some of them worked hard
to achieve what could be done obviousl& in a much easier way
(ég' they didn't see how MEMBERP could be used for VOWELP
because the +two procedures have a different number ofi
|

inputs; some others gave a list of all the consonants to

CONSONANTP),

4) Write a procedure REVERSE, which reverses a word

" TO REVERSE :W:
110‘TEST EMPTYP :W:

" 20 IFTRUE OUTPUT "v

s
=

30 OUTPUT WORD LAST :W: REVERSE BUTLAST

END

—w P REVERSE "UCI"™

IcU

This is a more complicated example of a recursive procedure
(eg it can't be replaced too easily by an iterative -
procedure), because it performs an operation after it comes

out of the recursion.

- 24 -

5) Write a procedure ALLCOUNT which cduntsﬁall the symbols

in a sentence

70 ALLCOUNT :SENT: j

10 TEST EMPTYP :SENT: |

20 IFTRUE OUTPUT 0

30 OUTPUT SUM COUNTAPIRET OF :SENT: AND
ALLCOUNT BUTFIRST :SENT:

END

—w-P. ALLCOUNT "“HOW ARE YOU"

g

6) write a procedure PACK which takes a sentence and

deietes all the blanks in it.

"TO PACK :STR:
10 TEST EMPTYP :S8TR:

20 IFTRUE oOUTPUT nm
30 OUTPUT WORD OF (FIRST OF :STR:) AND

(PACK OF BUTFIRST OF :STR:)

- END

- 25 -

—=P PACK "HOW ARE YOU"™
- HOWAREYOU |
:
7) write a procedure NTH which takes two inputs, a number
and a word(or sentanc%) and gives the N-th element
(counte@ from the end, %f N 0) of fhg ﬁord(or senteﬂce).

This procedure is An obvious generalization of

SECONDLAST, THIRDFIRSTuveeeesses

TO NTH :NUM: :STR:
10 TEST EMPTYP :STR:
20 IFTRUE OUTPUT "
30 TEST NEG1P :NUM:
40 IFTRUE OUTPUT NTH (ABS :NUM:)(REVERSE :STR:)
50 TEST EQP :NUM: 1
60 IFTRUE OUTPUT FIRST OF :STR:

70 OUTPUT NTH (SUB1 :NUM:)(BUTFIRST OF :STR:) -

END

—_wP NTH -3 "“GERD"

E

8) write a procedure DELETE, which takes two inputs, and

deletes all occurrences of the first input from the

L= 26 -

TO

10

‘20
30
1Y

50

END

.second

DELETE :EL: :STR:
TEST EMPTYP :STR:
IFTRUE OUTPUT "'
TEST IS :EL: (FIRST OF :STR:)
IFTRUE OUTPUT DELETE OF :EL:

AND (BYTFIRST OF :STR:)
OUTPUT SENTENCE (FIRST :STR:)

(DELETE :EL: BUTFIRST :STR:)

~-P DELETE "PRETTY" "PRETTY GIRLS ARE NOT PRETTY Boys"

9

GIRLS ARE NOT BOYS

write a procedure REPLACE, which takes three inputs and

‘replaces the occurrences of the first input by the

second input within the third input

"~ TO

g0

290

40

REPLACE :W1l: :W2: :TEXT:
TEST EMPTYP :TEXT:

IFTRUE OUTPUT ""

=30 TEST IS FIRST :TEXT: :W1l:

-IFTRUE- QUTPUT GSENTENCE :W2: REPLACE :Wl: :W2:

- 27 =

(BUTFIRST OF :TEXT:)

50 OQUTPUT SENTENCE FIRST :TEXT: REPLACE :Wl1l: :W2;
BUTFIRST OF :TEXT:

END

~—uw P REPLACE "UGLY" "PRETTY" "BOYS ARE UGLY"

BOYS ARE PRETTY

bELETE is now a special case of REPLACE, with the empty word
aé second input.

At this point, we may introduce the STOP command, because
some procedures can be written more naturally if they are

executed for a side-effect,.rathef'than returning a value,

’

10) Write a procedure RECTANGLE, which takes two inputs, the

number of rows and columas, and prints a rectangle of

stars.

TO RECT%NGLE :ROW: :COL:

10 TEST EMFPFTYP :ROQ:

20 iFTRUE STOP

30 PRINT STARS :COL:

40 RECTANGLE (SUB1 :ROW:) :COL:

END

- 28 -

Before we can use RECTANGLE, we have to define STARS, which

prints one row,.

TO STARS :C0L:
10 TEST EMPTYP :COL:
20 IFTRUE OUTPUT "

30 OUTPUT WORD "#" STARé (SUB1 :COL:)

'wmww~ RECTANGLE 3 4

EE
LR

1 3

It may be interesting to make the . students aware of the
recursive structure of the arithmetic functions by showing

them that we need only SUB%X and ADD1 to define addition,

multiplication and exponentiation.

11) Write procedures MYADD, MYPROD, EXP, by using only ADD1

and SUB1

CTO MYADD :X: :Y:

.10 TEST ZEROP :Y:

20 IFTRUE OUTPUT :X:

= 29 -

.30 OUTPUT MYADD (ADD1 :X:) (SUB1 :Y:)

END

—s=P MYADD 12 43

55

TO MYPRODUCT :X:
10 TEST IS :Y: 1

20 IFTRUE OUTPUT

Y
e

- &

&

30 OUTPUT MYADD :X: (MYPRODUCT :X: SUB1 :Y:)

 END

—w= P MYPRODUCT 21 5

105

TO EXP :A: :N:
10 TEST IS :N: 1

20 IFTRUE OQUTPUT

tA:

30 OUTPUT MYPRODUCT:A: (EXP :A: SUB1 :N:)

END

=]

—» P EXP 3 5

243

- 30 -

A

" Some students liked to generate random numbers and studiea

THE 1. HUMBER I3 —-- B83S18S473937I97
THE 2. NUMBER I3 ~--- SEE3S40Z2E2071363731
THE 3. HUMBER I3 -—— S3705417428513%10345

. GEM 3 T

THE 1. MUMEER IS ——— £3041001332141635 063556 0495043 1644477233832 1201
SETTIS1EEE 0T 157561 154T4 322748 0T 11T 1223837050936

THE 2. HUMEER 13 -—— 573451650763 1262651741451036T0478T 11T IRRE57RA82
THE 3. NUMBER IS —---— 4939538551530000776 |

the patterns which appeared. This lead into a aiscussion of
how "random" these numbers really were and how they were

generated.

12) Write procedures which generate a random number with a

random number of digits between 0 and 99.

TO BEM s

10 TEST ZERDOP Nz

20 IFTRUE ZTOF

25 S3EH ZUEL O HE

%0 PRINT SEMTEMCEZ "THE" wWORD H: ".°7 “MUMEER I3 —-~—" ZUFERERHMDOHM
EMD '

TO SLFERRANDOM .
10 OUTPUT EBIGRANDCHM wORD RAMDUOM REAMIOM

END

TO EBIGEAMDOM M:

10 TEET ZERDP M3

20 IFTRUE QUTPUT EAMHDOM _ '

20 OUTPUT WORD GF FEAMLDGM MO EBIGRAMICM DIFFERENCE M2 1

EMD

+3EH 3

- 31 =

v oL .
- -'.::‘- PR B P PPN T TIPSRy Y SRR

13) A more difficult example of a recursive procedure
- is: | ‘

Write procedures which switch two words in a sentence

TO ZWITCH t3EM: :F: :L:

10 TEST GREATERF L@ iF:

20 IFTRUE OUTPUT ZWITCHU :SEM: sF: :l:
20 OUTPUT SWITCHYD s3EM: L@ iF
EHMI

H
. ! -
- . G e ' B L T T T T IR
i
i

TO SWITOHL $ZEM: sLOW: tHIGH:

40 TEST 13 :LOW: 1 '

20 IFFALZE OUTPUT ZENTEMCE FIRET #3EM: SWMITCHL BUTFIRST :ZEM: <
DIFFERENCE :LOW: 1 o ¢ DIFFEREMCE :hliSH: 1 &

20 OUTFOT SEHTENCE EWITCHE :SEM: sHISH: BUTFIRET 3ZWITCH3 5EM: sHISH:

© FIRET 3EM: :

END

- TO SWITCHE fZEM: :HIGH:

10 TEST IE :HIGH: 1

20 IFTRUE OUTPUT FIRET :ZEN ’
30 OUTFUT SWITCH2 EUTFIRET :ZEM: « DIFFERENCE :HIGH: 1 2
END :

TO SWITCH2 :3EM: sHIGH: :RHOLD:

10 TEST IZ sHIGH: 1 _

20 IFTRUE OUTPUT ZEMTENCE :hOLD: BUTFIRST PREM:

30 OUTPUT SEMTEMCE FIRST :3EM: SWITCHZ ¢ BUTFIRET PTEM: » ¢ DIFFEREMUE
sHISHs 1 » :HOLDS)

EHI

&P SWITCH "A MOUZE 12 BIGSER THAM AM ELEPHANT™ 2 7
A ELEPHANT 15 BIGGER THAN AN MOUZE

. ", - e eaeila oA
e S e AR onme g el o ¢ m et feml e B afer T T R e i e T

- 32 -

As mentioned before, these procedures shoula be' embedued in

.

more interesting problems so the students don't become norea

by writing a large numper of .procedures for which they can

see no use.,

A good strategy may also be to give the students a large

number of problems and let them <choose those which they
' !

think are most interesting.

s . - 33 -

3. PROJECTS

This section describes a number of" proiects(we call a

problem a project if it rquires more than one or two simple

procedures to. solve it)* To come -up with good and

iﬁteresting projects was one of the main tasks with respect

to what we wanted to achievc in the two classes, Qur goal
&as not programming per se but to make our students familiar
with concepts like "world view" (or "conceptual cloud") and
"representation of knowledge™ and to teach them strategies
in problem solving which had some degree of transferability.
We tried to teach them debugging, handl%ng of error messages
aﬁd recognizing the structure cf prOg?ams (which they didn't
write themselve) as much as comstructing a program. ‘
In our opinion the following points are characteristic of a
"s00d" project:
-1) the problem should be interescing (ie a certain
prOgrahming task scculd | bc‘ embeddea in some
. © Ppelevant™ problem) so that the students can see

some reasons to solve the problem

. 2) it should be possible to start with a simple version

of the problem., ~After the students have achieved

-

o _‘.- .au-

3. PROJECTS

)

This section describes a number of projects(we call a

problem a project if it requires more than one or two simple

procedures to solve it). To come up with good and

interesting projects was one of the main tasks with respect
to what we wanted to agh%gve in the two classes, Our geal

-

was not programming per se but to make our students familiar
L ,
with concepts like "world view™ (or "conceptual cloud") and

"fepreéentation of knowledge" and to teach them strategies
in problem solving which had some degree of transferability.
We tried to teach them debugging, handling of error messages
aﬁdlrecognizing the structure of prograns (wﬁich they didn't
write themselve) as much as constructing a program.
In-our opinion the following points are characteristic of a
"good" project: |
1) the problem should be interesting (. ie a certain
prOgramming ’task sﬁduld be embeddeﬁ in some

"relevant" problem) so that the students can see

some reasons to solve the problenm

L ?) it should be possible to start with a simple version

of the problem, After the students have achieved

the first part, there shdﬁld be natural ways to
‘extend the problen in several directions (thi;
feature would emphasize a functional programming
style; the final problem has +to have a structure

which allows us to decompose it in subproblems)

3) the students should see some results already at an

early stage of the project

The rest of the section describes projécts which we found
interesting and we hope that some of them fit in the

structure of introductory LOGO courses,

- 35 -

3,1 VOWELS AND CONSONANTS

The basic part of'the problem was already mentioned in [1].:

We asked the student to write a number of procedures to

remove all vowels from a sentence. Procedure REMOVEVOWEL

(which removes the vowels from a word) can be written very

similar to DELETE (somebbdy ﬁay have the idea to call DELETE

five times with all the Vowels).

L o L T - +
. . ;! T T e Y e e e et s
: i L ; PR e e LT T T et N

<L IST REMOYEYOWEL

TO REMOVEYOWEL zi4:

10 TEET EMPTYP :this

‘20 . IFTRUE OUTPUT 1

30 TERT %YOWELP FIRST OF :t:

44 IFTRUE OUTFUT REMIOYEYOWEL EUTFIRET OF :i:

‘ ESDHUTPUT WORD OF ¢ FIRET OF :d: 3 AND © REMOVEYOWEL BUTFIRST OF :4: 3

U SV U Uy

' s . .
- SR R e e AR s et v L . . .
TR S ST CUE S P

The next procedure would be SCAN, which takes as input a

senténce and hands words over to REMOVEVOWEL.

TO 3CAN :SENT: ' T T TR T ST e e s

10 TEST EMFTYP $3EMT:

20 IFTRUE OUTPUT “* _

S0 OUTPUT SEMTENCE OF ¢ REMOVEYOWEL FIRST OF :SEMT: 5 AMD ¢ Srar
BUTFIRST OF soerns d 3 SEEMT: 3 AND ¢ ZCAN OF

-.36 -

At this point it may be appropriate to recall a problem'from
our first assignment. We recurse down a given sentence by
calling SCAN with BUTFIRST :SEN:. When we reach the level
of recursion; ?ghere :SEN: consists of a single word, we
wéu;d still liké SENTENCEP of :SENT: to be true, otherwise

we would get a result like

—wP SCAN "HI THERE"™ e

HTHR
%

T

Tﬁis example should be an explanation to the students of
what seemed to be a contradiction in the first assignment.

"It is obviously not possible to anticipate all necessary
cheéks on data attributes. Usually a procedure can be fixed
fairly easily, if we realize that it doesn't work for

certain special cases, eg if we .invoke SCAN with a word:

—w P SCAN "DUMMY"

DMMY
This problem can be fixed by inserting. :

3G TEST WORDP OF :SENT:

.40 IFTRUE OUTPUT REMOVEVOWEL OF :SENT:

- 37 -

The problem described in this. way may appear to be one of

‘the useless problems which computer scientists invent. To

avoid this we <could alsoc describe the problem in the

following way:

"A linguist came up with the following conjecture: if wel
remove all vowels from a sentence which contains ten
words or more people are still able to recognize the

sentence. Write some LOGO précedures to test whether

this conjecture is true!™

The students could show the results to each other and find

some evidence for or against the conjecture. A few more

questions may be asked:

1) Are there certain wor&s 'which. are difficuit to
recognize?

ﬁa found fhat the words which start with Aa vowel are
usually hard to guess., . o A

2) Are the languages English, French and Gefman different
with respect to the averagernumber and the information
content of their vowels?

3) What happens, if we ©remove all the consonants from &

sentence? Can we still recognize some words?

S

Here are some examples (the original text is given in

-

the appendix): ' .

- R At N e TR TPV

JITATIITE S s o e e e R SR e

|
P RCAM sENHGLISH: ; .
TH MMLE WR ZHCKD ZWVHD MZR T LRM THT VM sMWELL CLD B OGLTY F 2CH M CTH .
THF‘ WE CREY F MDGHTH « MO YEYH '”1“ THHEME T WYE F CTCHMG SHUMELL F H SHLD
VR OCM BCK . LMET MMOITLY TH FTF‘F.‘F:'{TE FRG WE DICYRD M TH GESE T LTTL DSTHE
FRM TH BMLL . THY CLD MLY B TRCHD FR FW YRDIT « BT PFRT T LD T HL M TH HTG
- MRFLM EZMFFLD DFLY T THM MD FRMMCD THM T B SMWELL"S . H &% T 5 HT FMNM
THT 3SMWELL HD FREELY CIM FEM TH DRCTH F FYWD . FRM . :

F RCAN GERMAM:

. BLD SLLT CH JM BLM BEISR KNMWLRNM.. 5 ATT F IM FLHTH % ELNHN FRHZMH Mh&

SCHM BLMMN GGEM » ZHR MFCH s 3 MM NZGM KRNI %M ELTHMELTTRM SFREMT 3 = SPLTH
KM GRES FELL HD STRTH MMMOM . % LCHTTH ME MRSHT M GRS F ND BLICHH M EMT
ER JH H HTT ME TGZ WRZL SICHLGM « 5 MM SMH s WTI GTT WHRE » MO DR ELH
FRNZ HTT LEM ZFRIT s DR DB MORM SPRITLHGH HCHT GLOCH » SHR 5M ERWCHT . 09
KNNT Mt BT FFHERTEM 3M . BR DR STRCH HRT.ELD F 2 WCHSM MD EGHM » # BLT
_“-.,.\TLH - .

an gy T L .) s . . .) a- . e,
e Al T A N e e e e f R et A bt ey i arian o 1 st R i R L LR - PP PR S AP T VIR S0 S A

P SCAN :FREMCH: -
FOST DMNCH, @ DRER LS DCKS L LH5 D L MR « PRZ T L GR X MRCHHDSS » TT TR
h ¥ DI HMERES ¥DS T D3 MCHNE MMBLI DMS L MR . DMS TTT LS MINT O3

HF'IN'“ ‘:.-. RJHT DEER LRZ FHTRI & L3 MT L TT RHYRI « L3 FHMT THTT LE MRR T
THTT L ©L FRLI FR ZMR Z°L FR E . L3 ERDLI %RMT LRI FRMRIZ CLNTS . DT
CMPGMRDE T DE ZLETE o DHI LS BL3IES » L CLRT U3 CRGI « M HMM ET D WM DWHT®
oz FF’IH'J BMe o IME TZ L3 FERGS s MTR LS MRS NTRMNELS D2 3M3 » D LMGT FLS
HRE Z .>HT MES H MRCH » LLS VHCMT LNTMHT 2R L CHTR o L YLL .

€ T ST Srews w e a L S e e e

PP ORPTRCI I SR SR TCC RN TR S

- 39 -

T0O
i
20

-3a
40
50
50
L83
B85

To count the vowels is a trividl problem and can be done

as follows:

TO VOWELCOUNT :SENT:
10 OUTPUT DIFFERENCE ALLCOUNT :SENT:

ALLCOUNT (SCAN :SENT:)

. END

Assume we did not have all of the above routines

“available, we could write a routine directly:

. E— R A R i RIS e T T

COUNMTYDOMEL $ZEMT:
TEZT EMPTWYP 13ZENT:
IFTREUE OUTFUT "o o~
TEET EZEMTEMCER ZEMT: ' , |
IFTREUE OUTFUT ADDE COUNTVYOWEL FIRET fZENT: COUNTVOWEL BUTFIRIT :ZEMT:
TEZT MEMEERFP FIREZT :ZERT: "REIOUT '

IFTRUE OUTFUT AID2 "1 9" AND COUMTYOWEL BUTFIRST :ZEMT:

TEST MEMBERF FIRST :SENT: “8°.s35¢07F
IFTRUE OUTFUT ADDE "0 0" AMD COUMTYOWEL BUTFIRST :ZEMT:

70 OUTFUT AODE "0 1" ARD COUMTVOWEL BUTFIRST :3ENT:

EMD : : '

TO ROD2 iz Y ,

10 OUTPUT ZEMTEMCE SUM FIRST :x: FIRST =¥: 3SUM LAST :X: LAST :v:

EMD :

If we add a small statisties program, we would get the

results below for our three text examples, It was

STy

J

\

interesting to find out that in all three text examples

- (which were chosen arbitrarily from books),

the number

of vowels to the number of consonants has the ratio 2:3.

The word length in German turns out to be

in French and English.

TETATIZTICE IFREMCH:
HERE ARE =0OME DRTH REOUT OUR TEXT:
THERE MEEE
~—— 573 ———FIGHE
——= 222 ~——-YOWELE
——— 331 ———-CONEANANTE
= { ———TPEIIHL ZIGHE

P B T T T T R I T B S LR Tt v

THEPE WERE —-—— 1240 ——WORDE IN THiE TET

ETATIETICE :EMGLIZH:

-HERE RARE ZOME IATA REOUT OUR TEXT:
THERE WERE =2

——— G473 ——=35IGHE

- 173 ——-OhELX

== 292 --—-DONEONANTE

——— 3 —-—==3IPECIAL ZIGMT

THERE WERE ——- 104 ——-WOrRDE IN THIS TERT

CETATIZTICE sERMAM: 7
HERE ARE Z0OME DRTA REOUT OUR TEAT:
'THERE WERE : '
——= 530 ——=ZIGHE

- 203 ——=YOWELE

——— 312 ——-COMZOHAMTS

~~— 15 ===3PECIAL ZIGHE

THERE WERFE ——- 37 ———WORDS IM THIZ TEXT

+~

- 41 -

)
Bl s o i Sl e sl oo e AT I e e ittt ot

greater than

B L

3.2 THE WIZARD'S PROBLEMS

This problem is an example of the question of whether a
computer can be used to%settle a4 mathematical conjecthre
(it is similar to the cgnjecture aﬁéut symmetric numbers
in 113, except for thg wizard's conjecture we have a
mathematical proof).

When we gavé the students in SS 15 this problem they had
a difficult time unaerstanding it. .Therefore We wWrote a
handout for them which describes the problem and its

solution by embedding it in more general ideas about

problem scolving. The handout appears in the appendix.

- 42 -

3.3 A QUESTION ANSWERER SYSTEHM

y————ces

L]

The basic problem to start off with would be to ask the
students to write a program which can do the following:

1) we can give some information to the system like

- MY is/fare YW

eg.
"Sophie is dog"
"Students are humans"
2) we can ask questions like
"What is/are X"
eg

“"What is Sophie?"

3) . we can delete information
"Forget x"

eg

"Forget Sophie"

In connection with this problem, we introduced the MAKE
command, and the THING and REQUEST operation. We could
also mention the standard LOGO conventions to

ﬂdistinguish different classes of boxes:

1) an operation is a built-in procedure which takes a

fixed number of things (possibly none) as inpﬁts,
and produces a new thing as an output (eg FIRST,
- WORD, REQUEST) | |
2) a gcommand is a built-in procedure which has inputs
but no output (eg PEINT, MAKE),
§
For the most basic version of this program, -we could
store the information "dogs are animals" in the form:
MAKE "DOGS" "“ANIMALSM
Even in this most basic version quite a few students
found it difficult to understand what they should do.

Some of the problems were:

1) to wunderstand the MAKE command and the thing
operation; eg, if we would have the following

procedure to add information to our data base:

TO ADDINFO :NA: :TH:
10 MAKE :NA: :TH:

END’

1

" and a question routine like

TO QUESTION :NA:
10 OUTPUT THING OF :NA:

END . o T

The confusion was based on the fact that LOGO uses
colons for "placeholders“ (see page [16] and Appendix;
and for names. Most students didn't see that the colons
around a string have the same function as the THING
operation, ie line 20 in ADDINFO should be read: make

the entity which is denoted by the placeholder :NA: the
i
name of the entity which is denoted by the placeholder

tTH:.
Another difficult idea seemed to be that the thing

represented by a name' could be 1itself +the name of

another thing, eg

"freshmen are students"

“gtudents are humans"

would vresult in. that "student"™ is the thing of

"freshmen" and the name of "humans",
2) How to use the REQUEST operation to keep on requesting

information from the teletype, but also having the

ability to stop.

The top level routine of this problem could be written as .

foliows:

- 45 -

"TO TALK

10 PRINT "PLEASE TELL ME YOUR NEXT SENTENCE"
20 TEST SPLITUPP REQUEST

30 IFFALSE%QTOP

40 TALK P

END

and SPLITUPP wou%ﬁ be the routine which classifies the
information typed -iﬁ‘from the user at the teletype and
passes back the value false Ef_fhe user wanfs to stop.

SPLITUPP can be written in many different ways according to
the formats of the input. A slightly more complex Q/A

system would allow inputs like "everything" and “forgetall"

and‘simple LOGO procedure would handle this:

TO EVERYTHING
10 LIST ALL NAMES

END

TC FORGETALL

' ERASE ALL NAMES

END

" A predicate could determine whether we have a "WH" question

(eg Who’ whiCh, what,Why’ .o.ooocuoo')'

- 46 =

TO WHP :W:

10 OUTPUT IS (WORD OF FIRST :W: SECOND :W:) "“WH"

END

Another exteﬁbi?n would be that more than one piece of.
information could be attached to a néme, eg that we could
assert: "stﬁdents are ﬁumans" and "students are dummies",
some of 'the students did not see that the thing of a name
could be a sentence -.d% well as a word. The required
modification shows that it @qyé off if the students program

functionally. We only have to change ADDINFO:

TO ADDINFO :NA: :TH:
;;10 TEST EMPTYP OF Thlns OF :NA:
'20 IFTRUE MAKE :NA: :TH:
30 IFFALSE MAKE :NA: SENTBNCElfHING tHN: :TH:

END

We could also add small routines which would
a) check whether the information is already known
b) handle a more English type of synfax, ég

| *A freshman is a studéntﬂ

¢) print comments (eg "I UNDERSTAND")

- This little system could handle a dialogue as shown:

- 47 -

SRR e ' ‘ |,
THLEK : ' - ' §

FLEAZE TELL ME YOUR NEAT ZENTENCE

+S0OFHIE IZ A DOG

I UMDERETAMD T

I RLGDED T THE DRTA BRYEI-—m——— LOFHIE T35 LGG

PLERZE TELL ME “NOUR MEST SENTEMEE
+5DFHIE 1E ELACK: :
I UMDEREZTAND

1 ADDED TO THE DATA EBRIE:—————- SGFHIE 1& BLACK
FLEAZE TELL ME ¥OUR MEXT SENTEMIE : -

+IMGRID IT> B GIRL]

I KHOW ARLREADY s THAT———=IHGRID I3 SIRL o ' '
. . MY

FPLEARZE TELL ME vOULR MEXT ZEMTEMCE

«UCI I3 A UMIVERIZIITY -

I LUNDERZTAND : T

I ARODED TO THE DATA BRIZE:-————-LCI IX UNHIVEREITY

PLEAZE TELL ME %DOUR MERXT SEMTEMNCE
«WHO I3 ZOFHIE
SDPHIE'IS ———————————— 05 ARD ELACK

. PLERSE TELL ME %OUR MEXT SENTEMCE - . .
© eFDREET SOFHIE L - o
I FORGOT--~ 3OFHIE : o L

. . . N
FLERSE TELL ME YOWLR NEXT SEMTENCE
+WHO Ix ZO0FPHIE . <
SDPHIE 13--———==————-lHKNOWH TO ME.BUT ¥OU CAN TELL ME SOMETHIMNG
PLEATE TELL ME YOUR MEXT ZENTENLE
*TELL EYERYTHING
#FRE3HMAM: I3 “ITUDENT”
PEOPHIE: IS 7
sIMGRID: I35 "BIRLT
(GERMANMT: 1T “"BEERTRIMKERST
tNIKOM: IS “"PREZTDEMT®
ICI: IS “UNIVERSITYT
PLEASE TELL ME YOUR NEXT IERTEMLE)
) "'ETDP PR TR Y L '_w-\l- - -a - s - T RV | s Be ks orae v n

There are two nontrivial extensions to.this problém which
‘can be persued at this point or later, if'tﬁe students seem
to have difficulties with the previous form of the problem.
The first one makes use of the DO command: SPLITUPP could be

!

changed in the following wa&:

i
TO SPLITUPP :INPUT:

10 DO SENTENCES OUTPUT FIRST OF :INPUT:

"BUTFIRST QOF :INPUT:

_ END

.

ie the first word of the input would determine, which

routine gets invoked.

The second extension is to provide the Q/A system with some
routines, which could deduce the answers to some qﬁestions
.from the data base (an example for this would be t3]). The
first thing that we woﬁld like to do may be to store

subset/superset relations, eg from

"A setter is a dog"
“A dog is an anpimal"
we probably would like to answer the questions

"is a setter an animal?" with "yes"

L. HY -

e,

by following superset chains and

1

"Is an animal a setter?" with "sometimes" k

by following subset chains. This may be combined with

member/element relations, eg
“John is a student"

would result in combining with John the property thét he is
a member of the set of all students and with the set of all
sﬁudents that it contains John as an element. For a system
which handles many more of these extensioas (eg.adjectives,
prepositional phrases, generic subclasses, transitive
relations), see [4]J. This second extension (which can lead
behind the scope of an introductory LOGO course) contains
some ideas, which are important and not difficult to
uﬁderstaﬂd: |
1) with respect to the implemeﬁtation: if we want to
" retrieve more rinformationz we have to .store more
informapion than in our basic version of thevprogram, ie
wWe have to attach to the name “studentﬁ the
attribute/value pairs: element/John, supersét/human;
subset/freshman and so on, A good way to do this is to
_introduce a property list structure (like in LISP). In

LOGO, this can be done by synthesizing new names from

- 50 -

‘the name and the property. The following two procedures -

\

. store and retrieve information:

TO PUTPROP :NAME: :PROP: :VALUE:
40 MAKE (WORD OF :NAME: (WORD OF "“g" :PROP:)) :VALUE:

END

TO GETPROP :NAME: -sPROP:

10 OUTPUT THING OF (WORDv OF :NAME: (WORD OF "$" :PROP:))

END

‘The "g" sign 1is inserted to identify these names as
.property 1list structure mnames and we can separate the

two parts of it. Defined like this,
PUTPROP "STUDENT" “SUBSET" "FRESHMENY

would result in the LOGO name V"STUDENTSSUBSET" which

would have the thing "freshman”. - A call

GETPROP "STUDENT"™ "SUBSET"

-

would return the value "freshman". Having these two
functions available, we do not have to worry any more

“about how the structure is implemented.

-'51 -

2)

The second idea is to show +the students that this

. representation of knowledge has a lot of advantages. If

| . . , . 3
we later assert some information about “students",\ye

know that these facts also hold for all sets on the

.-

subset chain of "students" and for all elements of these

sets. In -a large éystem this feature gives us the

option of not having to store a large amount of

information explicétly (it seems also that this

hierarchical structure is not too different from the way
: . ’ .
humans store information)-.

‘3.4 PIGEY AND UNPIGGY

The first part of this problem is to translate english
jnto pig latin by wusing the procedure PIGGY which

‘contains the following rules:

1) ‘if.the word begins with a vowel add NAY to the end
of the word -
- 2) if the word begins»with a consonant then take all

.the consonants off the front of the word up to the

4

first vowel, stick them on the end of the word and

add AY to the end.

An example is:

Wgranslate english into piglatin"

becomes

"anslatetray englishnay intonay igpay ationlay"

"This is not too difficult to do. Tﬁe_probiem Secomes
- ﬁofe' interesting if We add an UNPIéGY procedure which
translates pig latin back into English. The préblem is
fthat-PIGGY is not a one-to-one mapping, so UNPIGGY of

PIGGY gives us in general more than the original version

_‘53 -

of the English sentence. This brings up a few
- interesting questions:

4

1) how can;ywe resolve the ambiguities, eg witﬁ/help'
from thg user or by generating all possible UNPIGGY
translations and comparing it with the original

sentence (if given)

2) -this is a goow® peint to talk about .certain
ﬁroperties of fuan}on# (eg whenrwe like +to have
one-to-~one functioné;' like the function which maps
pecple to driver's license numbers or phone
numbers). It'can be shown by a more obvious example
(eg by mapping the integers into even and ;odd) that

we cannot retrieve x from f(x).

- 54 -

3,5 THE POETRY PROBLEM

Most students liked this problem very much. The basic.
version is not as demanding as a programming task, but

1
it can be extended in iFteresting ways. It also has the

desirable feature tha% the students could use their
previously defined pfocedures.
The basic form only requires the following procedures:

1) a procedure POEM which determines the number of

sentence to generate

TO POEM :NUM:

10 TEST ZEROP :NUM:
20 IFTRUE STOP

30 PRINT SENT

40 POEM (SUB1 :NUM:)

ERD

2) a procedure SENT which generates one sentence

TO SENT

10 OUTPUT SENTENCES OF
RANDOMSELECT :ART:
RANDOMSELECT :ADJ:

) !
-, RANDOMSELECT :NOUN:

tt.t..o-ooooooTo

END ! - k\

!

3) a procedure RANDOMSELECT which selects at random an

element from a list (eg noun, verb, etc)

TO RANDOMSELECT :LIST:
~10 OUTPUT NTH (ADD1 RANDOM) :LIST:

END

The interesting points up to here are:

a) to design the structure of the program and the idea
that we can use NTH in RANDOMSELECT
- b) the creation of interesting lists of nouns, verbs

etc

We have to pay attention that we call NTH with the
_appropriate first argument (otherwise we may go into an

infinite recursion). in the above version, our lists

- 56 -

had to be‘of‘length 10.

The first exfension may be to .eliminate this
restriction; we wWill .télk' about this more in the
following section, Thg next step would be to allow a
more flexible sentencegétructure,‘ eg We can determine
with another random numéer hcw.many adjectives (possibly

none) and adverbs our sentence should contain. That

would allow us to generate sentences like follows:

“The old wise beautiful horse swims slowly"

"a rainbow cries a big cat™

A prepositional phrase could be a preposition+
article+noun or a relative plause would be 'thé same as
the original sentence where the Sﬁbject gets substitutgd
by a pronoun (this may show the students some .of the
recursive features of English).

Another extension may ‘be to' use the DO command. We
" could write procedures SENT1,SENT2,+..... (Where SENTn
may con§ist of the concatenation' of SENTm- and SEka)
which return sentences or part of_sentences of different
syntactic structures. The only change would be line 30
in POEM:

30 PRINT DO SENTENCE "SENT" (ADJUST RANDOM)

"3,6 RANDOM NUMBERS

This problém’ came up in connection with the poetfy
program whéfe we were faced with the following
.questions:
- a) How can we write a procedure which returns a random
‘number within a certéin range (eg between 1 and 25)
b) How can we finé.wout how "random" our random numbers
really are? h

The second question could be embedded in the following

story:

"A casine has a roulette table with numbers between
0 and 18, It determines the numbers, which will

., occur by the following LOGO procedure:

TO METHOD1

10 OUTPUT SUM OF RANDOM AND RANDOM

END

If you would play at this table which numbers would

you bet?®"

Obviously we get a normal distribution and not an

upniform one in this case (eg 0=0+0 and 18=9+9% can be
generated only in one way, whereas 9 (0+9, 1+8,....) can
be generated in many different ways).

The "correct” LOGO procedure would be (in the sense that

every number'appeags with the same probability):

TO METHOD2

OF RANDOM AND RANDOH

10 QUTPUT WORD
' »

’

END
N

-

(that thisrversionh works is based on the assumption,
" that the operatfion RANDOM in LOGO gives a uniform
distribution) |

‘This causes the problem again that .we gét numbers
between 0 and 99, when we want them to be between 0.and
18, The easiest way to solve this problem would be to

generate random numbers and throw away all the ones
which are greater fhan— i8. It may be worthwhile to
write a few LOGO procedures which adjust a random number
to a certain range (the lower limit can be taken zero;
otherwise we just have to add or fo. subtract something
fo the generated numbers). The pfﬁcedures are based on

“the following ideas (19 is chosen as a concrete

examﬁle):

- 59 =

1) determine how many digits the number n (=the upper

limit of the range) contains {(eg COUNT 19=2)

2) géneratg a 'random number, say ©r, with the same.
numbebxd? digits (method2)

3) take n aﬁd compute the highest multiple of it (minus
1) which is smaller than 999,..9 (5%19-1=94 99)

4) if r is greater than h, throw it away and generate

another randoe. number, otherwise output the

remainder of r and n.
.

et TROMMT M AT st eemrs aeapat, 5 14 ey e e B R Semmar .
2 T L o i R

T0 METHODL :
10 OUTFUT SUM OF RAMDOM AMD FAMDON
END - :

TO ALIIZT shpi: ' :

10 MAKE "HUMEBER™ METHODZ COUMT :HUM:

20 TEZT SREATERF :sMUMEER: MULTIFLE BEISGEIT COUNT sNUM: :HUM:
30 IFFALSE OUTFUT REMAINDER :MUMEER i M :
F0 OUTPUT ADJUST. ks

END

TO METHODZ :LEM:

L0 TEET ZEROP :LEN:

20 IFTEUE OUTPUT "

20 OUTPUT WORD RAMDOM METHODE DIFFEREMCE SLEM: |
EMD :

TO MULTIFPLE :JFFER: :MLIM: . o _
10 OUTPUT DIFFEREMCE ¢ FRODUCT MUM: FIRST OF DIVISIOM UPFER: sHUM: » |
EMND . |

TQ BISGEST :LEN:
10 TEET ZFEROP :LEH:

S0 IFTRUE QUTFILT ¢ . '
30 OUTFUT WORD '3 BIGGEST LIFFEREMCE LEM: {
END ' :

a1 i e st il ARG e el faahe ke Geie e[L R O R R R A 0 S L

'‘By adding a few more procedures, we could show the

difference betwean the two methods (the number of the

generated number was too 'small to have a very good

distribution, but the basic difference shows up
clearly): L
{_ e S R © L g P R T L e e At T SRR T AL B L W S5V _
+TEST1 San . '
183 === 444ve. .
17 ——— 444042064904 .
B ——— t4bHt 4 bbb o p b
i LS METHODI
I5 ——— 4442400294040 000404
4 ——— d4ec4vooeieei0s o
13 ——— #4429 74004000+ 30 000 b0t
2 ——— 4492200042224 ETHHLL AL VGRS ORLLRELL Y
1] ——— +44 % 4462040046922 G PR ERLILHP L LR BLLHOP0SS2RP
10 == 494244400 4L 40200 tEL ISP ELS 4P SIILPPEBPIIRSGPHPRLBEboD4G44%
I S T Py e e By S e e L e R R

B A T L L L T L e T e

T —m—— 000204 E 04 LRILSLILEIHLETLOOLEP
FoER T o e P e S Y
e — SR FE LA PR L R PR G UL RIS LGS
] ——m— 440 SEFH LR CT R LV LB ER LI RO IR
D e 2SR EERRC bR I e
D e PR EESPLSER S LR O
] ———— #eeded
B ———— +444409e
(.
-
«N0I7T 500
B e RSP PRE PR L LI R E IO
i; e R REEE ISP ERO PR L LRSS th.Tr*OJ>Z'
1B e 3600434239080 5 4P b9 2300204459
IS5 = #4509+ 9299034054250 00249200908
| 1 S A e Y T 2 X 2 T R TR TR T A '
13 ——n 245024 L PP LS REE P LR PSS
12 == P+ P44 424D L 0P EHFPFIILH I 40 Y
11 ——— 4244446224ttt + 22444044404 .
10 ——= 4444044460004 0Ot bbbt betbrtd
R R T e T P R Y

s P PSP LSS R PG by

I T R B

B Y L T T TSP R TS

B P T T T

R 2 2 LR TP S e R

B T T T Ry Y

e SGPEPPPLGROREL S ELE PP RSO R E '
R L L L T R

L T T T T LA PR S Y

(P e B i B e ¢ 4

o Tl T~ 0D

R T R A e

3.7 THE ANIMAL PROGRAM

The sample run below should give an idea, what the
i d to do.
program 18 sugpose !
|
N o TOT T e R T N T e g
BUEZRANIMAL o T e

WOULD %0U LIKE TO FLAY “GUESE THE AMIMALS WITH MET
+VES - ‘ _
FLERZE THIME OF AM AMIMAL 1§ »

HAYE wOU THOWSHT OF OME YETT “MU° GIVES YOU A CHANCE TO OO0 SOMETHING
ELEZE?Y

+5ER

DOE= IT HAYE & THRILT

+HWED

I3 IT A HORSE 7

+HO ')

TOO BALGY I LIDH- T BET THAET OME!

WOULL YO PLEASE TYFE IM THE MAME OF THE RMIMAL?

+CAT : :

LCOULD vOU PLEAZE GIYE ME & QUESTION THAT DISTINGUISHS YOUR AMIMSL FEDM
HORSE 7 .

+00 FEOFLE RIDE OM=-M~M ITT .

AMD WHAT WOULD EE THE AMIWER IN THE CRIE OF & HORSE 7
+7ES

THAME *OU FOR SIVIMG ME THIZ IMFORMATIOM---~-1 WILL REMEMEER IT!?

FLERZE THIME OF RN AMIMAL 1

HAYE vOU THOWSHT OF OHE YET? “NO- GIVES YOU A CHANCE TO IO SOMETHING
ELZE! : - ~ ' '

+vEL ,

DOES IT HAYE B TAIL?T

«MO* '

IS5 IT R ZNARAKE T+

«HMO

TOG BRDE! I DIDM'T SET THARAT ONE!?

WOULD %OU PLEAZE TYPE IM THE MRME OF THE AMIMRARL®Y

+MOMEEY

COULD vOUY PLEAZE IYE ME A GUESTION THAT DISTIMNGUISHS YOUR RMIMSL FROM
EHAKE T : . _ ‘
- +00EZ IT CRAKWL OM THE GROUMDT

AMD WHAT WOULD EE THE AMIMER IN THE CARYE OF A INAKE ¢

+YES : ’)

THAME vOU FOR GIVING ME THIS INFORMATION-=--—1 WILL REMEMEER IT!

BV RN PRI P

T - 62 -

FLERZE THIMK OF AM AHIMAL 3
HEYE 50U THOWSHT OF OME WETY ‘MO GBIVES vOU A CHANCE TO L0 SOMETHING
ELIE! :
+VES .
DOES IT HRVE & THILY
’ $YEE :
L0 PEOFLE RIDE OM ITY
M0 .
2 IT A AT 7
+TER .
I SUESSED ITY I &AM A SMART MACHIMET1--AT LEAET SOMETIMEZI!E
PLEASE THIME OF A ARlRL
HEYE wDU THOUGHT OF OhE YETT MO GINEE YOU H CHEMCE TO DO SOMETHING
ELZE? § S :
+MH0 ' 'l

IF Y0OU HARYE EHDUEH TELL ME -5O00DEYE”! :
IF vwOU wanT TO ZEE MHHI ELZE I CHM DO»TwPE IM “MORE"!?
+MORE

HERE ARE SOME OTHER BUEZTIONZ WHICH 1 LHH AMESWERCTYRFE IM THE QUESTIGNSE

LIKE ZHOWM» 2
WHAT AMIMALS DD YOU EROWT--TYPE 1 FOR THAT!

WHAT PUEITIONE ﬁﬂ YOu KHDWT--TYPE & FOR THHT!

EDMHHT AMIMALS DO YBYJ EMDW.WHICH HAVE A YEZ Or WO AMZWER TO A CEETHIH
GUEEZTIONY ;

THE FORMAT FOR 3 SHOULD ZE:

: 3 “THE SUESTIONS -~wES-OR-MHO" .

FLERZE TYPE IM wOUR QUEETION. NMO7 BETS vwOU BACK!

+1 ‘ ’

HORSE CAT SHAKE MOMKEY

+3 DOEZ IT HAWE A TAILY ¥ES
HORZE CAT -

*M0 |

PLEH'E THIME OF AN AMIMAL ! _
“HAVE YO THOULGHT OF OME YETT “nHOr BIVEZ ¥OU A CHEMCE TOD DO ZOMETHING
EL=E ! - ' . :

0

IF ¥Ou HAYE EHDUbH TELL ME “BO0ODEYES

IF YOuU wANT 70 EE WHAT ELEE 1 CAN ﬂﬂ TYFE IH ‘MORE" Y
OHDUDBeE

-_THHHB YO FOE PLH.[HH MITH ME ! COME EACE AMY INE"

0 YOU WAHT TO EAYE MHHT WO DI FDF Y OUR HtrT ZECTION?
+ED:

ZEE vOU HES T TIME! HHF WICDERS EHEH"

€ . . i . e et .- - o R et T T

T = B3 -

Before we'talked about the animal ﬁrogram, we discussed
. the procedure to.walk a binary tree (sée (11, Appendig
2), so the students had seen how to use a binary tfee to
fepresent a certain problem. |

The animal problem waszinteresting' with regard to fhe

following features:

a): it is required' t; write programs to manipulate a
binary tres¢

b) we could talk about the abstract concept of&g node
in a tree (and how information can be attached to a
node)

¢) the program shows some kind of.learning behavior in
the sense that it "knows more" after we played for a
while, We hoped that this feature " would be of

"; special interest .to Social Science students, After
they had solved the problem, we gave them a copy of
[2] to gather some evidence <as to- whether they got
more out reading a paper like this after having
pfogrammed the gnimal problem,

We used our previous defined property list functiops to

attach information te a node in our tfee, ég a node

consisted of four things:

‘a) a YESBRANCH (a pointer to the yes-subtree)

b) a NOBRANCH (a pointer to the no-subtree)

. B4 -

¢} a QUESTION

d) an ANIMAL

A3 an example we maj have ‘the following tree (E stands

for empty):

Y Q@ ‘A N
] E < NODE
i vl \
/ v o
,'/ POES M WAVE \\
. 2
/// A TRIL = \\\
/ N
/ \
Y g ya N Y gy & N
3 e 2 NODE 2 E| E E — NOBE3
r ' !
v v
HORSE : _) SNAKE

If we play the program and we don't guess the -animal, we

nodes to

ha#e to add new

our tree (lets say, the new

animal is a dog and the question is: "does it bark?")

Y @ » N
_ | B = e— WODE L -
] 1 {
e A O e |
- MESV\T WAVE \\
P - - - - . A TRIL N
Y Q S “‘/ e ‘ £ I&—Nma .\\
¥ / oy ' Y_eyw W™
-y AL E|E| |
\ 2 : J r
\"-. — \ : S\(Rt{("ﬁ a
— R.Y & W * NODE 3
e B \ E .é—_—-—-' NOdE D . '
.) ,
- 85 - D06

There is an alternative way to. update the tree by

. echanging the content of nodes and leéving the linkage-

between the nodes. This method would have the advantage

fhat we could work moreilocally on the tree, ie.we don't

have to look back t% the previous node. The way
|

described has the advéntage that existing nodes are

never changed,

!

The following procedures would traverse the tree and

handle the case when we find an animal:

LIST TRAVERSE

TO TRAWERZE tHMODES FN: FLRAG:

10 TEET ANIMALFE HODE: ; .

20 IFTRUE HRANDLEAMIMAL :HGDE: :FM: IFLAG:

30 IFTRUE =TOF

40 PRINT QUEISTION HODE:

20 TERT 1% REQUEST "WEE"

&0 IFTRUE TRAYERZIE o YESEBERAMCH snODE: > :MODE: "YERT
70 IFTRUE =TOP

20 TEAVERZE « HMOBRAMCH :NODE: » spODE: "HO

. END ~ '

«LIET HANDLEAHIMAL

TO HAHDLERMIMAL (MGDE: :FM: IFLAG:

10 FRIMT ZEMTEMCES I3 IT A" ¢ GETFROP :HODE: "ANIMAL™ > "7"

‘=0 TEST I3 REGUEIT “YEZ"

20 IFTRUE FOUNDIT

40 IFTRUE =TOP

S0 BATHERINFO :MOLE: :PM: tFLAG:
| EMD

- BB -

E T T - N IS e e L e v mgeeae e e B et RS e A

GATHERINFO is the procedure which gathers information
from the user and then calls UPDATETREE which gets new

nodes from GENNAME, fills in the information and updates

the tree.

Extensions to this problem could be to provide answers
| .
E :

to the questions shown in the test rum (ie "What animals
|

do you know?" or "Which animals have a tail?"),.

3.8 THE TOWER OF HANOI

A short description of the problem would be:

the

i _
"There are three Eegs A, B, C.and N disks of
different size. %he disks ‘have holes in fheir
centers sco that they can be stacked on the pegs.
Initially the disks are all on peg A, ordered by

size with the largest one at the bottom.

He have to move all the disks to peg C by moving one

disk at a time. Only the top disk on a peg can be

moved, but it can never be ©placed on a smaller

- disk." ' ' >

figure below shows the initial and goal

configurations:

4

1

77, 7.7 : 1 s - . 3 1
. S Wzzzzzza) VZIRZERR Vi VL7770 P v
) . I - .
: -
D ~—

The solution in LOGO and a sample test run for N=3:

TO HAHOI H: =z 313 D3

1G TEET ZEROF :rf: j |
20 IFTREUE ZTDP ; g '

20 HANOI © DIFFERENMCE shit & > 230 01 1@z

44 PRIWT ZEMTEHCEER "MOVE FIECE MUMBER®™ i “FROM®" ::: "TO"
S0 HAMOT ¢ DIFFEREMCE sM: 1 » 1z 5@ :D:

END ' f

£HAMOI "3" "RA" "B "0

MOVE PIECE MUMEBER 1 FROM & 70 C
MOYE FIECE MUMEER & FROM. A TO F
MOVE PIECE MUMEER 1 FROM C TO B
MOWE FIECE MUMEER 2 FROM & TO C
MOVE FIECE MUMEER 1 FROM L5 TO H
MOVE PIECE MUMEER 2 FROM B TO £

B TO €

MOVE FIECE NUMEBER 1 FROM

*

The solution is remarkébly short, if we see the pright
way to approach the problem. A computer scientist who

wants to design a data structure for the. problem.may
 have a difficult time solving the problem, whereas if we

see the problem as follows:

“"to solve the problem for N disks, lets assume we
would know how to move N-1 disks from peg A to peg

B, Then we could move the largest disk from A to C

- 69 -

wotaITL e R e e et e Sl e e e i lmi T e T e e e g e K

and then the N-1 disks from B to C."

+the solution in LOGO is then an exact translation from

this description into LOGO code.

An extension of the proﬁlem would be to ask the students

to think about how m%ny moves we need to solve the
puzzle for n diéks (thL proof is a nice example for a
simple mathematical proﬁf by induction}. It may be also
.interesting to let them calculate how long the output
would be for 30,40,50 disks!! (One line per move, 300

lines per yard)

- 70 -

3.9 THE LOGO INIT FILE

Every LOGO- user will find that he would like to have-
available“éil the time some of his own procedures {eg
‘'SUB1, ADD1, NTH;. the property list functions). To
achieve this, we Ereate‘ a special file, called INIT
which contains . some of these procedures. It is up to

the pefsonal taste “OT every user which procedures he

wants to keep in his INLT file, A possible set is shown

-

below:

£ o R
Bt i s LY T .

TO MEMEERFP :tELEMENT: :1ZET:

10 TEZT EMFTYP 1ZET:

20 IFTRUE DUTFUT “FRLEE™ ,

20 TEST I3 ELEMEMT: « FIRAST OF :SETz o

40 IFTRUE DUTFUT “TrRUE"

Sf OUTPUT MEMEERF GF :ELEMEMT: BMD BRTFIRZT OF :SET:
END :

TO ZUE1 :lk:
10 OUTPUT DIFFERENCE e g
EMI

TO ADD1 =
10 OUTPUT ZUM OF ki3 AND |
EMD

TO ZPACIMG M2
10 TEET ZEROF :tH:
20 IFTRUE =TOPR

0 PRIMT e o : |
40 TPACIMNG SUEL M3 | ?
EMD '

i

TO PLAMKS M: i
10 TEST TEROP HM: _ _
20 IFTRUE OUTPUT EMFTY:
gf OUTFUT WORD :BLAMK: BLEMKS SUEL iM:

10 : .

PR e

- 71 -

- TO MYERRIE I:
14 TEET EMPTYR 23
20 IFTEUE =70F

20 DO ZENTERCE "ERRTE" FIRET GF i:

40 MYERRIZE EBUTFIRIZT %3
END

TO MYTRARCE 38
10 TEEZT EMFTYVE ki
S0 IFTRUE =TOF

o TEST IE FIRIT OF =%: “MYTRACE®
20 . IFFALZE D0 ZEMTEMEE "TRACE" FIRET OF 35:

40 MYTRACE BUTFIRST :i:
END :

TO MYLIST s3EMY)
10 TEZT EMPTYFR tZEM:
&0 IFTREUE =T7TOF o e

X
30 DO ZEMTEMCE “LIST” FIRST OF .:3EM:

G0 MYLIET BUTFIRET :ZER:
EHT

SPACING: to print N empty
BLANKS: to print N blanks
MYERASE: to erase a izﬁt o

MYTRACE: to trace a list

CONTENTS which returns

names 1in workspace can

procedures

HYLIST: to list a number of

lines

f procedures

of procedures.

a sentence of

be used as input

procedures

-'.72 -

The

LOGO name

all procedures

to

trace all

4. ERRORS

This chapter will'give some examples of typical errors which
occured in the -students programs. The examples may give

somé hints) ' ' ,
1) to see where the students had difficulties to understand

gomething -

2) to -improve the error messages and the error handling
*-

-

v

If turned out that it was important to explain the meaning
of the error messages to the students. if they followed our
advice to write -short procedures, traced their procedures
aﬁd‘ understood fhe error messages they .developed good
abilities to debug théir programs (we mentioned earlier that
we-believe that this ability is important).

A list of the most common errors ‘appears below (this list is

not ordered; in most cases the problems, where the error

- occured, are mentioned).

1)

HWrong number of inputs:

a)-=P WORD "THE CAT" "IN THE HAT™

WORD OF "THE-CAT"™ AND "IN THE HAT"

INPUTS TO WORD CANNOT BE SENTENCES

b)—=PRINT SUM 4 5 6

9

"g¥ IS EXTRA

2) wrong kinds of inputs
a) from the vowel problem:

‘TO ALLCOUNT :SENT:

10 TEST EMPTYP :SENT:
: ya
20 IFT OUTPUT :SENT:

30 OUTPUT SUM COUNT FIRST :SENT:

ALLCOUNT BUTFIRST :S5ENT:

- END

—»=P ALLCOUNT "I HATE TO WORK"

'SUM OF "un AND "
INPUTS MUST BE NUMBERS

"I WAS IN LINE 30 IN ALLCOUNT

This error is a little bit more-

- T4 -

settled,

but

if the

B)

c)

students turn on a tface,lit should not be too difficult
to find out where the error occured.
It would be helpful in a case 1like this, if LOGO would

Erint out the line in which the error cccured.

TO ONEP :NUM:
10 OUTPUT IS :NUM: 1 | |

END

TO REVERSE :W:

10 TEST ONEP :W:

20 IFTRUE OUTPUT :W:

' 30 OUTPUT WORD OF (LAST OF :W:)

S

(REVERSE BUTLAST OF :W:)

REVERSE goes into an infinite recursion, because we

END

should have tested COUNT :W: equal to 1., If we fix this

error, there is still a small procblem with this version

of REVERSE(in contrast with the version in 2.2): when we

call REVERSE "", we still go into an infinite recursion,.

another example would be that the inputs to the TEST box

"have another value besides "TRUE"™ or "FALSE"., See page

i8 where we talked about this.

3)

a)

B)

-The students had a hard time to understand the

difference between PRINT (whose only function is to spew
out its input to the teletype), STOP (which terminates a
procedure) and OUTPUT (which terminates a procedure and

passes its input back to the procedure which called the

current procedure):

from the wizard‘problem:
* _p,-

TO DIV3P .

10 -UTPUT IS O REMAINDERLADDIG sNUM: 3

20 QUTPUT IS 0 REMAINDER :NUM: 3

END

This error is probably difficult to detect, because the

student won't get an//error message; line 20 will just

never be executed.

from the Q/A problem:

"TO ADDINFO :NA: :TH:

"10 TEST EMPTYP OF TQING OF :NA:

20 IFTRUE MAKE :NA: :TH:

' 30 MAKE :NA: SENTENCE THING OF :NA: :TH:

END

- 76 =

c)

40 SPACING SUB1I :N:

‘This bug has the consequence that when the thing of :NA:

. is empty, the first element will be inserted twice.

4

from the INIT file

TO SPACING :N:

10 TEST ZEROP :N:
20 IFTRUE STOP -

30 PRINT "“

END

P SPACING 4

SPACING CAN'T BE USED AS AN INPUT. IT DOES NOT OUTPUT

4

_This is a good example for discussing the question of

where during execution an error occurs., SPACING prints

the five empty lines and the error occurs when the PRINT

~ box outside discovers that it doesn't get an input

because SPACING doesn't output.

S) Problems with recursive procedures:'

We noticed that some students wused pattern matching

'aj

b) -

‘methods to write their recursive procedures (ie, they

tried to make the appropriate changes in the procedures
which we showed them in class). This method didn't

succeed tod. often and the students were generally

confused if something went wrong

an example for the above .behaviour:

r_.h_.'

TO VOWELP :L:
10 TEST IS :L: FIRST OF‘“AEIOU"

20 IFTRUE OUTPUT "“TRUE"™

© 30 OUTPUT VOWELP :L: BUTFIRST OF "AEIQU"

END

This procedure was written early in the course and it is.
obviously modeled after MEMBERP. - It contains several
mistakes. LOGO doesn't discover that VOWELP is used

with the wrong number of inputs in line 30, because

" before it comes to the second argument , it will go imto

an infipnite recursion.

7

Terminating the recursion at the wrong level:

PO STARS :N:
10 TEST IS :HN: 1
20 IFTRUE OUTPUT "¢

30 OUTPUT WORD OF ws" AND STARS SUB1 :N:

END

—e= P STARS "5

‘5, THE HIGH SCHOOL PROJECT

The project "wds planned hastily because ﬁe'did not know-
until théz‘ﬁeginning of the first week of the Spring
‘quarter that we wanted to do the project. John Brown
brought up the idea and the ICS Department provided the
moﬁey. There were less than ten weeks left to finq some
interested students from the ICS senior seminaf and some
“high school students who were willing to participate.
Because of this time pr;séure we (ie the six students
. from ICS 190 and myself) did not have very much time to
find a group of high school students who could have been
.selected along certain criteria (eg age, no previous
programming experience, strong or weak interest in

mathematics). Nevertheless the project worked out well

~ for all participating groups.

o

- 80 =

.51 THE "TEACHERS"

At the beginning of the project none of the six students
had very muéﬁ teaching experience and none of them had
-programmed in LO60 very much (some of the students had
implemented‘ LOGO at‘ a ‘SIGMA 7 computer the quarter
before; but it turned out that this was a different task
as compared with pho¥ramming in LOGO).

We spent the first fem,ﬂeéks to study the work that
other peoﬁle did in thié"area (eg at BBN and the LOGO
_group at MIT). The most difficult task in our opinion
was to come up #ith good problems and good projects.
.E;ery student was asked to prepare a lecture and a.
handout (because we did not give a LOGO manual to the
high school students) abouf-la. certain toﬁic. ﬁost
students regarded the 'prepération of a lecture: and the
speaking in front of a group of. students as a very
important experience. fhey noticed to some extent the

‘teaching effect ("you never learn something, until you

"have to teach it") and they became aware that it was

A mofe'difficult to talk to the high schocl students about

_certain concepts and ideas because they didn't know the

"computer science vocabulary".

- 81 =

5,2 THE HIGH SCHOOL STUDENTS

We were rwopried at the beginning that we may get
students whgiwould show some initial interest but that
‘this interest woild soon disappear when they reélized
that programming reﬁuires a lot of time and effort if
you want to do more than just the most trivial things.
Moreover the studénts could come out to the Computing
Center only after their wegular schocl hours,

We were totally surpriséd' when we realized that more
~than half of them spent almost all their spare time at a
terminal during the time period of our project.

As mentioned earlier, we did not have too much choice in
- selecting the group . It turned out that several
students had previous prOgQ;mmfng experience (moétly
BASIC and FORTRAN)}. They also showed a great deal of
interest learning something about the operating system.
Unfortunately they did not wuse their knowledge only to
do constructive things so that within a few weeks they
" had lost the sympathy of the Computing'Cépter staff. We
| diﬂ not anticipate thgse problems, because we assumed
. that we would get mostly Dbeginners, and we werae
=there-fore partly responsibie for the problems by

answering their questions about the coperating system.

- 82 =

Wg-felt very strongly that we should not suppress the
curiosity and interest tone' of the most encouraging
experiences about this experiment) of the high schoolr
students. Although even we would have preferred if they
would havé spent all their time with LOGO {the good
students did not have any difficulties with most of the
problems which we gave them, but'they did not work‘too
much on their final projects), we let them go ahead to
do some other things (eg some students liked to use the
" plotter; the two plots at +the first and last pagé of
this report are an example for this). But they also did
some additional work in LOGO:

fhe students who did not have any programming experience
enjoyed at the beginning to‘print funny messages, happy
faces, etc. The better students wrote game playing
programs (NIM, GUESS fHE' NUMBER €tc). One student got
hold of a LOGO manual and created a file which contained
the most .important- commands and copied it to the

accounts of the other students. They just had so manj

ideas!!

5.3 THE ORGANIZATION OF THE COURSE

It was an experience fof all of us and we believe that.
we .would avoid some mistakes if we would do it again.
It seemed to most of us that it is impoésible to have a
gstrict course outline for an ‘experimental class like we
haa. There were jusf too many unknown variables (eg how
much do the Studepts know, how much do they work, what
.ideas interest them, etc) that the only possibility was
fo choose an adaptive strategy. _This means that the
"teachers™" met before every c¢lass to discussl the
previous class and, based on how it went, what they
should do mnext. The last two weeks were the most
fruitful part of the course, because we split the
studeﬁts in small groups so that every "teacher" worked
together with one or two students on a project.
Unfortunately the time was too short to get too far with

the projects.

- rm—~———

APPENDIX A: THE LITTLE BROTHER THEORY

‘Since LOGO contains cnly a few primitive proceaures (we
use the term ‘“procedure" interchangeably with "function™),

o C S] : ' ,
it. was reasonable to ask students to create. some new ones ¢

. - T

!
.. Write'a preolcahe to be called e B3RP which is to nave
.77 two arguments and which checks to see LIf 1its first
' argument 1is <contained in its second. If it is, then
MEHBERP should output MTRLE"Y. Otherwise . it should
output "FALSE", - ' -

. -

C e

. " The -purpose of this assignment was twofold., First, it

~ ‘exposed the student to the simplest form of recursion.

Second, it called to their attention the possibility of

'adding new predlcate gs well as éyeratbrs, " to the
']1anguagé, We also establlshed the naming convention that

any procedure which is to behave as a predicate (i.e.

- outputs "TRUE" or ﬁFALSE") should have a “P" és the last

- letter in its name. This helped; the gtudents‘ to remember

ﬁwhlch functlons could follow a TEST command.

.70 MENBERP /ELENLNT/ /SET/ J/
40 TEST EMPTYP /SET/

A solutlon to this problen might be:

R CcKS . - PLIE T;,zm,,u,ar:mo COADITION CF THE
ene RECURSI AV

20 IF TPUD OUTPUT “FALSLDY L DF JSsar/ E£QuALs THE DeSIRED
30 TEST IS /ELEUDNT/ FIRET OF /°ET/_#// ELEmnT .
40 Ir TRUE oQUTPUT "TRUZM

50 QUTPUT MCHBEEP OT /ELEHEI“/ AND BUTFIPST OF /SET/f7

EMD
. RECLCSES Wit THE Curl €T

MINUS ITS FiEST ELEMEAST

GRECKS (F THE. CURREMT FI12ST Elgieds

'ﬁe consider the MR RPN vredicate
| to.ﬁer the name of .a "little brother" who has nﬁmerous
identical-twiﬁ brothers ~- all caiieé bv fhe same name,
MEMBﬁRP. This family of MEYBERP brothers works as follows

suppose we make a request of a MBMBEWP brother, i.e.

-

Figure 1 — A MEMBE?P Brother

@EMBERPA 10 NIRRT

';fﬁe firsfiHEvBEPD.brdéher ,exécufes -ﬁié définiﬁion by
._flrst testlnc if /SET/ has anv elements., .It‘is not emptv,
.so he tests .lf /ELEMENT/ ‘(i.e; "A"j'ié;first of "XYAZ".‘
-Since WA® is néf equal fb. "X";~ "IS" outputs "fALSEh to
“TEST“_ (line 30) Hcausing line 40 to fail " We are now at

line 50. But in‘oﬁder‘for fhis_ fifét llttlé brother to
‘.completé line 50, he nust call for assistance from one éf
 .his.twins.‘ He requests that his brother tell him the answer
"tq a slightly- simpler problemn; he dsks him teo compute'

MEHBLRP "A" “YAZ"™, 'This process contlnues Qlth each brotner

cailing on another brother to do a slightly sinpler task

~Appendix A-

‘until finally a bfdthcr-is called who can completé his

i S is last brother
simpler task (pOSSlb;y the null task}. .‘Thl_

‘then sends his answer back to the brotper thag called him

. . ' L . 3 Ld i 5 .
enabling that brother in turn to finish, (i.e. complete h

line 50), and so oﬁ;

Figﬁre 2 - A Chain of MEMBERP Brothers

T A n/ A"
ﬁlstrfﬁxmz” [(/SET= YR AT
o @Q | £ @
@mmm"mz‘\ & AP AN S o, A e A"“Az}»\ S
4 (5::) 5 (’o?
HB‘ERP G | ey EIBERE

> o 1,

et - Nz
N CSTRUEC T

g

The explanatloﬁ omits one very-:important constfuct
wﬁlch we dub "conceptual clouds." A'conceptual §loud is used
N to determlne the "world;view" ofra particular brother} That

is, it defines what he knows ér what meanlngs he ascribes to
the ﬂanes in his partlcular world.. Lach lNEMBERP brqther has
a conceptual cloud that looks like those above the men in
Figﬁre 2, So as far as the flPSt brother is concerned, ‘the
| meanlng of /SCT/ (what /“Em/ dcnotes, i.e, the THING OF
."SET") is the string "YY!"" His next bfother in line hés é
'dmffercnt world- vxev.‘lln his'éonceptual cloud /SET/ has the

meaning YAZY. '.‘-Apper“dl;.x_ﬂ' |

APPENDIX B: ROTE ABOUT NAMES AND PLACEHOLDERS

This is a sample of the handouts which we gave to the high

school students. It was written by David Walker.

o
| o

WAMES THINAS AND PLACE-HOLDERS

To begin with, let's not talll about LOGO, Instead,
we'll discuss a lansuage called 0OGOL. O0COL is verv similar
to LOGO; in fact, there is onlv one difference between the
two languases, .{There is no real lanpguage called 0GO0L; I
just made it up.,) :

0GOL has three wavs of specifving the value of
something, The first is simply. to tvpe ‘the value in double
quotes {a THING): :

"THIIS IS A SENTEHNCE"™ on,

"AVORD"
The second way is to type the NAME of the value:

P&

tAVERYLONGHAME ¢

These.first two wavs of "smecifving a value are verv similar
to the wav that we specifyv values in L0OGO, The third wav to
specify a value in 000L can alse be used in LNGO, but it
looks different., This method is called a PLACR-HOLDILR, See

if vou can puess what a PLACL~-HOLDER is from the following
060L procedure, S

TO GRELT <PERSNH>
10 PRINT SENTENCE OF "HI THERID," AND <PEPRPSON>
END ' -

(PLACE~HOLDETS are surrounded by angle brackets: <>)

Ap?endix B continued:

PLACE-HALDEPS are onlv used in nrocedures, When OCOL
encounters a BLACE-HOLDER, it looks at the line that started
‘the procedure fo find out uhat value is reallv wanted, So,
usmnp the 06CL procedure GREET from above, if someone tvped:

GREET "JoHu"
0GOL would type: HI THERE, JOHN

Perhaps vou can gseg how LOGO handles PLACE-HOLDERS,
LOGO uses colons {:) to surrocund MHAVNES and PLACE-HOLDERS,
Therefore, GREET would be written in LOGO as follows:

) v)
TO GREET :PERSON: -
10 PRINT STNTEICF OF "HI THERE,™ AND :PERSON:
END o ' '

GREET "GLORGE"

HI THERE, GEORGE

APPENDIX C: TEXTS FOR THL VOWEL PROBLEM

These are the original texts of the texts which appear on

page 39

F iFREMCH: ‘

DOEST DIMAMCHE ¢ JERRIERE LESY DOCKS » LE LOMG DE LA MER « FREX IE LA
GARE BUY MARCHAMDLISES « TGUT AUTOLR DE LA WILLE IL Y & DEE HARMGARZ YIDED
ET DEZ MACHIMEE IMMOEBILES IRMT LE. hOI& o DANE TOUTEEL LEZ MAIZONE SDEZ
HOMMES ZE RASEMT IERRIERE LEURT FEHETREZ & ILZ OHT LA TETE REMVERZIEE
ILE FIKEMT TRMTOT LEUR MIROLE. ET TARMTOT LE CIEL FROID FOUE TRYOIR Z7IL
FERA EEAL . LEZ BORDELE OUNVRENT A LEUR: FREMIERE: CLIEMTE « DES
CRMEAGHRRDS ET DEZ ZOLDATS . DAMY LER ESLIZES » A LA CLARTE DEL CIERGEZ
s UM HOMME BOIT DUOWIM DEVANT DER FEMMEZ A GEMDUS . DAME 70U LEE
FRUBOURGS « EHTRE LES MURT INTERMIMARELES DES UTIMEZ » DE LOMGUEZ FILEZ
MOIREZ SE TOMT MISES EM MARCRE » ELLES AVAMCIENT LEMTEMENT IZUR LE CENTRE
DE LA WwILLE . .

.

FoiEMGBLIEH:

THE AHIMALS WERE SHOCKED EBEYONLD MEAZURE TO LEARN THART EVEN SHOWEALL
COULD BE GRILTY OF SUCH AN ACTIDH o THERE WAT A CRY OF INDIGHATIOH s AHD
EYERYOME BEGAM THIMKIMG DUT WAvE OF CATCHING ZHOWERLL IF HE SHOULD EVER
COME BACK . ALMOST IMMEDISTELY THE FOOTFRINTE OF R/ PR WERE DIZCOVERED
IM THE GRAZZ AT A LITTLE DIZTAMCE FREOM THE EMOLL . THEY COULD OHLY zZE
TRACED FOR R FEM vARDEL ¢ SUT APFERRED TO LEAD TO A HOLE I THE HEIGE
HEFOLEDOM SMUFFLED LEEFLY AT THEM RBHD PROMCUNCED THEM TO BE SHOWEBARLLZ .
HE GAYE IT A3 HIS OFINION THAT ZHOWEALL HRI PROERELY COME FROM THE
DIRECTION OF FO=WDOD FREM

-

P :GERMAM:) :
BALT SOLLTE ICH JEME BLUME BEISIER KEMMNEMLERMEN . ETS HATTE AUF DEM
FLAMETEM DES KLEIMEN FRINZEM IMMER SCHOM BLLMEM GEGEEREM « ZEHE EINFACHE
v ALE EIMEM EINSIGEM ERAND %OH SLUTEMBELATTERMN SEFORMT ¢ SIE SFIELTER
EETHE GROSSE ROLLE UMD STORTEM HIEMAMDEN . TIE LEUCHTETEM EINEER MORGEMEZ
IM GRAZE AUF UNTD EFLOSCHER BM HEEND . AEER JEME EIHE HATTE EINEZ TRGE:
WURZEL GEZCHLAGEN « ALS EIMEM SAMEM » WEIST GOTT MOHER « UMD DER KLEINE
BPRIMT HATTE DIETEM SPROSS « LER DEM AMDEREM SPROSILIMGEM MTICHT GLICH
SEHR GEMAL UBERNMACHT o AT EORNTE EINE HEUE ART RFFEHZROTERLM ZEIM .
C BEER DEFR STRALBCH HORTE EBALD AUF ZH WACHZIEHN UND BEGAMM » EIME ELUTE
AHZHIETZEM o :

L

APPENDIX D: NOTES ABOUT THE WIZARD'S PROBLEM

This little handout tries to show some general ideas about solving a
‘problem with the help of LOGO and the computer. As an example, we choose
the _following conjecture: ! :

Last nlght (late at the computing center) a mad wizard appeared and propcs ed
a ridiculous problem: ; .

"John," he said, "How can you tell if a number is divisible by 37"

How absurd I thoﬁght, but the wizard claims he has some method to his madness:

He claimed: Take the number and add up all its digits. If the resulting number is

divisible by three then so was the original number.

ex.: 471 = 44741 = 12 and 12/3 = 4 so 471 must be divisible by 3 - or so
he claims: ' ' .

~ Dashing to a LOGO terminal, I thought I would quickly disprove him.
Assignment: Using LOGO try to determine if the wiz@rd is crazy.

Hint: Use the REMAINDER procedure in LOGO to build a predicate DIV3P and then
build a little man to add up the digits of a number and so on. Of course you

will also need a little man who simply vomits forth the integers starting at 3.

Extra credit: Can you prove it???

,Furtﬁér exampleé: (1) . (2) - (3
Number:) . 99 . 100 . 101 IR
Add up the digits: 8 ' RS 2

‘Sum of the digits _ .
divisible by 3: " yes no no

Step 1: Do We Understand the Problem?

This is certalnly the filrst question which we should ask, 1.e. what does the
wizard propose in our example. :

Given a certain number, e.g. 4738, we would like to know whether the number
is divisible by 3. We can determine this in the "normal way" by dividing
the number by 3:

1579
3/47 38
3
17
15
2 3)
21
28 : .
2 7 We are left w1th.a remainder of 1,
) ' i.e. the number is not divisible by 3.

The whole procedure is certainly not too difficult but the wizard has a

better idea. He claims that if we add up the digits, in our case - - . + = T
4+ 7+ 3+ 8= 22, the resulting number is (not) divisible by three if

the original number was (not) divisible by three. In our example, you

would say that 4738 and 22 have the same remainder when divided by three.
Adding up the digits is easy and can be done fairly quickly, and it is
dertainly easier to determine that 22 is not divisible by three than if we

had to figure the same for 4738,

‘The question arises: 1Is the wizard right, i.e. can we do this for any

number {(in our above example, he was right, because 4738 and 22 both leave
the remainder 1). '

‘For a correct solution, we also have to pay attention to the following fact:

The two procedures (i.e. the "wizard's" method and the "normal" method) have
to be equivalent (in mathematical terms: we have an "if and only if" con-
jecture) .

. Step 2: IMake a plan how to solve the problem.

If you make a plan, you probably start off with figuring out the overall or
global structure and ignoring the details at the beginning. Our problem is

to show whether the wizard is right or wropg. In LOGO terms, this problem may
be descrihed in the following way: :

‘We have to write a predicate COMPAREP, which compares the output of
the following predicates: :

a) DIV3P, which divides a numbexr by 3 in the "normal" way and
outputs true, if it is divisible by 3, otherwise false.
e.g., DIV3P "46" => TFALSE; DIV3P "48" == TRUE

b) STRANGEDIVP, which divides a number by 3 in the "wizard's" way

" and outputs true,if it is divisible.by 3 in this way, otherwise false.
e.g. STRANGEDIVP "46" =3 FALSE; STRANGEDIVP "48" => TRUE

¢ TO CUMPAREP :N: : _

1@ OUTPUT IS DIV3P 1N: STRANGEDIVP i3

COMPAREP returns tfue}ﬁif”fgﬁddonly if) the "normal" divisien and tlv
. "izard's" division end up with the same result, otherwise false.

Here is a version of COMPAREP in LOGO: i _“ﬂhﬂi

1

But we have not solved the problem so far, because we can't use COMPAREP
at this point, because it contains the two procedure-calls DIV3P and
STRANGEDIVP and we have not defined them.

‘But we reduced the original problem to two "smaller" problems, which we
have to solve next.

Remark: This approach to problem solving is asually called a "top-down"
approach, because we start with the most important problem first, and we
decompose or reduce it to subproblems.

We hope that all of the subproblems are "easier" to solve (that may not
necessarily be true). Can you see the similarity to the “little brother
theory", where the next little brother always had a sllghtly easier problem
to solve? ? .

Step 3: Solve the subproblems and fill in the little details.

LOGO contains a function REMAINDER, which has the obvious effect: it takes

two numbers as inputs and outputs the remainder. Therefore, we can write

DIV3P in the obvious way:
TO DIVBE siUing s e e 1
1@ VUTPUT IS (REMAINDER siUbiz 3) @

END _
PR e e Lt r s

%M kl.‘ 2

it wimabdad

STRANGEDIVP can now be written in two ways, if we observe that the number
which gets d1v1ded is in this case the sum of Lhe digits of the original

number.

RTINS A R T T

L T0 STRANGEDIVP i
10 CUTFUT ZERUP REMAINDER C ADDUP :N:

T3 oyt 3 g PR SRR LT T LA

JN =, AT P
Lu:;.u e o N et e ek ek L0 TRNPE EL R ok s \-ﬂ-’rx-s-ﬁ i i ;.m.,;;u A

In the second version, we use the procedure DIV3P just defined:

g s T T et g S g R N A R e .
[Bt s L

TU STRANGEDIVP. $i@ :
19 GUTPUT DIV3P (ADDUP ﬁN=,) :
END Mgﬁ##j

Bl i e i et b e ¥y o i o il S

oD

e =

You probably noticed that we did the same "trick" again; we didn't worry for
the moment how we would add up the digits. We generated a new subproblem,
which we have to solve next: to write a procedure which adds up the digits

of an arbitrary large number.

You probably realized immediately that this is a "little brother” prohlem

and you may come up with the following solution: .
- B T R Tt s st L gt
. 'ro ADIJUP ERVTE R S ‘ o AR :

1@ TEST ENPTYP si(:

o - IFTHUE QUTRFUT o ’ o
839 LUTHFUT S0m UE O FLRST Ok ¢NUM: Y ¢ ADDUP RUTFIRST GF :sNUM:
"OEND - o ' ' : J

» o
O NP I

. av s aioat PR "‘.‘n i - - E ’ N -
i i s B i s R U AT A s it bt M etincl, SR s o ATk it a8

it e i wgr ik bt e Y A

We didn't have to generate a new subproblem, so the first version of our
solution is found, assuming all our procedures will work,

Step 4: Débugging and testing of the LOGO-procedures.

This time, we probably start at the other end: we first make sure that

the small procedures work, before we try to debug the procedures, which
depend on many of the small ones (this method is in general called: "bottom-—
up debugging") So let us start w1th ADDUP

, T oy
_ “ADDUP "4374" 3
. SUx UF "g'" AnD " }
S INPUTS ®UST BE NUMBERS.
{ .. .1 wAS AT LINE 38 IN ADLUP ‘_L“ﬂj

The error message should tell us probably enough to see what we did wrong,
but we may turn on a TRACE to get even more insight why the procedure
blew up: ;

jr T

L ey A R AT -1.1:-~.- 4o, L T -_;- "’f‘
ADDUFP "“4378% . ,»!

ADDUP Ui "4378" !
ALLUF GF "376" 3
ADDUE UF uyg®

‘ ADDUP U g - =
: ALLUP CF mv ' ;
5 ADLUP GUTRUTS " .]
| SUl GF "g' AND T A
s INPUTS MUST BE NUmBEES. T
i I WAS AT LINE 30 IN ADDUP ¥
! : e T ' ' L
!;l‘ ST RS .—-'='-« Sonbiien¥. -K».,” A2 "“";-"‘—'&“;’¢’-' ' rAE };;;a,lxh'é;;:-14:‘ FECRUER T .-'j: "-.‘ e w-agé

Ve change line 20 of ADDUP and then our procedure works on several cases:

B e g e e ST e

? %O”ADmH3.mUm. . e Sttt aygrgere i 770 T
18 TEST ENPTYFE :iUike

i 2@ I1FTRUE OUTFUT @ _ PR

L 36 UUTPUT SUM UF (FIRST. OF :NUM:) ¢ ADDUP BUTFIRST OF :NUW: {g
. END : ~ ' : a ' '

A bR 2 T iz bt bt Eabaed S et I e e S B) T DA P i e

e

e i Rl ol bt 23 &

R I SRS SIS AL R TO. Y

Simllarly we test the other procedures:
. «p ADDUP "4378" ST
' 22 : ‘
«P DIV3F "4378"
! . FALSE
i <P STHANGEDIVP "4378"
i FALSE R
+P CUMPAREP "4378" .o e
TRUE : :
, . P ADDUP "567"
I 18
i R DIV3P "S6Y"
TRUE i
«P STRANGEDLUP “567"
TRUE
1~ «P CUNPAREP "“567" T
ok TRUE) NI OOy £ ,_ﬂqm.‘u,u,“,(i RTOISIRE: | .

‘?"Wv\'\r‘. R PR SR) wm‘r w—umz_.w_&--—

They all seem to work and our wizard seems to be right on the two examples
tested. .

You hopefully noticed, that it pays off well to structure your programs,
i.e. that we wrote several short procedures {whose task should be indicated’
by a mnemonic name). This approach (called "functional programming') shows
the structure of the problem and malkes debugging much easier.

Step 5: Have we solved all parts of the problem?

Our otriginal problem was to show that the wizard is right or wrong. If we
would have one couterexample, we could say for sure: "The wizard is wrong."
But so far, he is right, even though| evidence is based only on two numbers.
We would certainly feel much better if we could show that he is right on

hundreds or thousands of numbers.

For this purpose, let's write another procedure which generates the number
for us (hopefully, nobody would be willing to type a thousand times:
? COMPAREP”) A possible version may be:

LT L e e s
B . k VR

f TO TESTIT snuws R 3
18 TEST ZERUP :tNUM: ' . Q
2¢ IFTRUE UUTPFUT "CUNJECTURE SEE®S TG RE RIGHT i
30 TEST CUNPAREP :NUM: L 1
4p IFFALSE GUTFUT "CUNJECTURE 1S FALSE® %
50 GUTPUT TESTIT ¢ DIFFERENCE GF $NUN: AND 1) b
ti... END . , i o 4

i)&—— < . - AL I SFS PRSI 5 U EIORPRE DY PR) LR B o v Lo T . .. A
R e ST L AR

‘and maybe we run it for a thousand numbers

LUeP TESTIT Topp T g
: * CUNUECTURE SEEMS TO BE RIGHT é

B v n g ae e e T e e i
TN IRREIPEY

After having this result we are much more inclined to say the wizard is right.

Now, we can represent our solution by a problem-solving tree:

TEST IT.

COMPAREP
DIV3P STRANGEDIVP

ADDUP

("

i

Step 6: How can we extend the problem or improve our selution?

a) Let us assume for the moment that the wizard is right. Also let us
assume that we don't have a REMAINDER function in LOGO. Can we still test
whether a number is divisible by 37 i

There is an obvious extension of the wizard's idea:

Why should we stop after one step, i.e., after going in our example from
4738 to 22. We could apply the wizard's method again and again, till we
end up with a one digit number. And from a one digit number, we can decide
falrly easily whether it is divisible by 3 because it should be a member

of the set %9, 3, 6, 9}.

Using our previously constructed MEMBERP procedure, we can write the following
LOGO procedure: ‘

e
' TG DIVBYMEWBP $N: : o S
"16 TEST IS COUNT UF :Ni | ' B
20 IFTRUE GUTPUT MEMBERP $h: "3369"
39 GUTPUT DIVEBYME&BP ¢ ADDUP :iN:)
END

B R T L e e S, ??_,P_,Awu',,.bm;:“q‘n::vi!

T ST L A Y S S A SR~ A T o SRR T A s« D

and see how it works: o
=P DIVBYMENMBP "12345678998767876787 6664 "%
. DIVBYXEHBP GF "1234567899876 7876787666
g DIVBYMESBE OF ''143v i
. DIVBYNEWMBP CF 1y S
e DI -\}BYD‘AEI‘ABP DUTPUTS “FALSEH
DIVBY&EMBP GUTPUTS "FALSE"™
DIVBY®EMBF UUTPUTS “FALSE"™ . o
~ FALSE o . _ g
b) One question remains - what does it mean: Can ybuipggﬁé—it. Most of us
probably have proven a theorem in mathematics. So we may ask: Isn't it
good enough for a proof what we have done so far? We have fairly big evidence
(a thousand numbers), that the wizard is right. But what happens if somebody
comes along and says: 1 believe that the wizard is wrong, if we take really
large numbers (e.g. over one million, or over one billion). Then we are
still in trouble, because we all know that there are potentially infinite
many integers, i.e. somebody may give us an arbitrary large number and we
still can find a larger number by adding one to this number.

You may see now some evidence of why mathematicians try to prove theorems.
They are faced with the problem of saying something about infinite structures.

Here is an outline of a'mathematical proof:

Every number can be represenﬁed in the following way:

n n-1 n-2 . 1 . 0
{*) (an X 10)+(an—l X 10)f(an_z X 10 oo +(a1 X 10)+(a0 X 107

' (In our example: 4738 = (4 X 10%)+(7 x 10H+(3 x 101)+(8 x 10%))

;7

If we add up the digits, we just leave out the powers of 10 and we
get:

(%*) a_ +a 4 + a e . + ag (4-+7 4+ 3 + 8)

. Now we have to know a little bit about how to calculate with remainders:
First let us make the following abbreviation:

= 10 mod 3 means a is the remainder of 10 divided by 3. Then, the
following rules are valid.

(i) 10 mod 3 =
(11) (10 X 10) mod 3 = (10 mod 3) X (10 mod 3) = X 1=1

i.e. 10" mod 3 = (10mod 3) X . . . X {I0mod 3) =1 X ...X1=1
(iii) (a + b) mod 3 = (a mod 3) + (b mod 3)

Applying these rules to (*) gives us:

(a X w0+ ... + ay) wod 3 = (an X 10™) mod 34 . . . + (ay X 10%) mod 3

il

(an mod 3)(10n'mod D+ ... F (aO mod 3)(100 mod 3)

(anwmdd_B)(l) + .. .+ (ao mod 3) (1) (*#*)

And applying these rules to -(%%):

(an +-an_.1 + . . .+ aO) mod 3 = (an mod 3) + (an—l mod 3 + . . .+

(ao mod - 3) (&Kx%)

(*%%) ig the same as (%%%*), which proves the wizard's conjecture.

Step 7: Try to dnvent problems vourself!

After you've solved the wizard's original problem, play wizard and invent
problems for yourself. The wizard sﬁill has some ideas. Here is his next

problem: _ _ t

"iow can you tell whether a number is divisible by 97"
|
’ . |
I solved it in the following manner: |

a) Given any number, 2ross out all the nines. For example, 47398719
becomes 473871.

b) Add up the digitg. If the sum, y, is greater than or equal to 9

then reduce y -to the remainder of y ~ 9. For example, 4 <4 7 =y and

Y2 9; v~ 9=2sonowy =2, Continue adding up the digits;

2+ 3+ 8=13P 93 vy 1s reduced to y - 9 or now y = 4. Continuing,
44+ 7= 11, sonowy = 2 and 2 +.1 = 3,

If you reach the end of the number and you are left with y = 0, then the
original number was divisible by 9; if you end up with a number between
1 and 8, then the original number was not divisible by 9

Here's another example: 834174189
a) 83417418 (after.crossing out all the nines)

84 3=1192 4 4+14+7=1435+6=950+1+8 =930

b)
The number is divisible by nine because y = 0.

Once again, how can you determine whether the wizard is right or wrong?

Bgﬁerences H

[1} J. Brown and R.. Rubinstein:
"Recursive.ﬁfﬁnctional programming for students in the
Humanitiestaéd Social Sciences®
ICS Technical Repért_#27, 1973,

UC IRVINE
e
[2} E. Feigenbaum (in “Computefé and Thought'", p 297-310):
. *. . .
"The simulation of verbal learning behaviour®

N

- [3] B. Raphael (in Minsky: Semantic Information Processing,

p 33-145):

"SIR: A computer program for semantic information

vretrieval"

[4] K. Wales, D. Reidlinger, G. Fischep:
"Eliza question/answering system'

" .Final project for CS 522, april 1972, UBC, Vancouver

Note: The two plots at the first and last page were

produced by two-of the high school students

