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ABSTRACT OF THE DISSERTATION

Hardware-Assisted Software Testing and Debugging for Heterogeneous Computing

by

Jiyuan Wang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2025

Professor Miryung Kim, Chair

There is a growing interest in the computer architecture community to incorporate het-

erogeneity and specialization to improve performance. Developers can write heterogeneous

applications that consist of host code and kernel code, where compute-intensive kernels can

be offloaded from CPU to GPU, FPGA, or quantum computer. However, the high com-

plexity of these systems can pose challenges to developer productivity, particularly when it

comes to understanding performance or ensuring correctness. Testing and debugging such

heterogeneous applications and software stacks are also extremely challenging because the

characteristics of the hardware in heterogeneous computing can vary from a traditional CPU.

For example, the output of a quantum computer is completely different from a CPU.

By leveraging hardware accelerator capability and by accounting for hard-

ware accelerator behavior, this thesis presents efficient debugging and testing

techniques for heterogeneous computing. My first work QDiff is a differential testing

framework for quantum software stacks to find unexpected behavior, such as crashes or un-

expected divergences. By accounting for unique characteristics of quantum circuit execution

and measurement, QDiff automatically finds abnormalities in quantum software stacks by
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detecting quantum circuit result divergence. QDiff proposes an input generation approach

that applies gate-level equivalent transformation and explores the backends and compiler

setting options to generate semantic equivalent quantum circuits. We then compare the

measurement results of circuits with K-S distance and report unexpected results. For Cirq,

Pyquil, and Qiskit, we found four new bugs in their simulators and two possible root causes

for hardware execution divergence.

While QDiff targets the correctness of quantum software stacks, bugs in heterogeneous

applications are another concern in this domain. My second work HFuzz designs a fuzz

testing technique for heterogeneous applications. By designing hardware-level probes and

offloading input mutations to hardware accelerators, HFuzz leverages in-kernel probes to

retrieve hardware execution feedback, including channel usage and in-kernel variable’s value

range. HFuzz also uses FPGA to accelerate input mutations during fuzzing process. We con-

duct detailed experiments on seven benchmarks and demonstrate that HFuzz significantly

improves the fuzzing efficiency and reveals 25 unique and unexpected behavior symptoms

that could not be found by state-of-the-art testing techniques.

QDiff and HFuzz together provide automated testing approaches for heterogeneous

computing. However, developers must be able to diagnose the detected errors. Compilation

for heterogeneous applications is inherently complex. For example, CIRCT, an MLIR-based

heterogeneous compiler, requires 13 compilation layers to translate high-level Python code

into low-level RTL. Identifying which layers and which parts of the intermediate representa-

tion (IR) contribute to bugs is difficult. To tackle this issue, my third work, DuoReduce,

introduces a novel dual-dimensional error localization approach. DuoReduce systemati-

cally analyzes errors across both IR code dimension and compilation path dimension within

the compilation process. By combining delta debugging techniques with dependency-aware

compilation path reduction, DuoReduce identifies the minimal subset of IR code and

compilation passes responsible for triggering an error. Through evaluation on real-world

scenarios, DuoReduce demonstrated significant improvements in debugging accuracy and
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efficiency, accelerating error localization by 901x compared to traditional techniques.
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CHAPTER 1

Introduction

Specialized hardware accelerators like GPUs, FPGAs, and quantum computers have become

a prominent part of the current computing landscape. As a result, an increasing number

of applications and software stacks are constructed to leverage heterogeneous architectures.

Developers can write heterogeneous applications that consist of host code and kernel code,

where compute-intensive kernels can be offloaded from CPU to GPU, FPGA, or quantum

computer. Similar to other software development scenarios, developers often deal with soft-

ware underlying errors, such as divergent results produced by different hardware accelerators

or crashes in compilers for heterogeneous computing. Heterogeneous computing systems pro-

vide increased computing ability and expressiveness through pragma and optimizations that

specially designed for hardware accelerators. This consequently increases the complexity of

testing and debugging heterogeneous applications and underlying software stacks.

Therefore, testing and debugging heterogeneous applications and software stacks can be

an expensive and time-consuming process. For example, ensuring the correctness of FPGA

programs, even seemingly-simple kernels, could take a substantial amount of time in terms

of months [140]. Moreover, most software developers treat hardware accelerators as a black

box, and failures in hardware accelerators like FPGAs occur silently without any raised

exception. For example, when a divide-by-0 is generated in FPGA, there is no signal but

only returned wrong values. In order to test software in the heterogeneous domain, we need

to account for hardware execution behavior and leverage hardware accelerators to produce

feedback.
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Traditional software testing and debugging approaches do not work for heterogeneous

applications, because they do not consider the hardware accelerators’ characteristics. For

example, it can takes AFL days and hours to trigger the bugs in heterogeneous applica-

tions [182, 13].

1.1 Thesis Statement

We synthesize ideas from software engineering and heterogeneous computing and answer the

following research questions in the context of heterogeneous computing:

• What kinds of hardware accelerator characteristics can be leveraged to filter out hard-

ware noise and accurately identify software bugs?

• How can we utilize hardware accelerators to generate execution feedback and accelerate

test input generation?

• How can we systematically localize compilation layers and code segments responsible

for bugs in heterogeneous computing?

Our hypothesis is that by leveraging hardware accelerator capabilities and accounting for

execution behavior, we can develop efficient testing and debugging techniques that enhance

the accessibility and reliability of heterogeneous computing.

To address the first research question, we introduce QDiff, a differential testing frame-

work for quantum software stacks. QDiff enhances testing efficiency by filtering out noise

circuits and leveraging quantum-specific properties such as qubit decay time (T1) and two-

qubit error rates to optimize test case selection. Additionally, QDiff employs a Kolmogorov-

Smirnov (K-S) based statistical comparison to detect quantum software bugs by analyzing

deviations in measurement results.

For the second question, we design HFuzz, an automated fuzz testing framework for

heterogeneous applications. HFuzz enhances test case generation by monitoring execution
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behavior across both software host code and hardware kernel code. Additionally, HFuzz

offloads input mutation tasks directly to FPGAs, and accelerates mutation with FPGA-

specific optimization, including loop unrolling, shannonization, and data preloading.

To further advance debugging for heterogeneous compilation, we focus on MLIR (Multi-

Level Intermediate Representation), a flexible compiler infrastructure designed to unify and

optimize compilation across diverse hardware backends. MLIR introduces a structured, ex-

tensible IR that enables progressive lowering from high-level domain-specific abstractions

to hardware-specific representations. It serves as the foundation for several heterogeneous

and ML compilation frameworks, including CIRCT, which provides specialized dialects for

FPGA design. We introduce DuoReduce, a debugging methodology for heterogeneous

compilation. Our third hypothesis is that by analyzing relationships between IR-level de-

bugging and compilation-layer debugging, we can systematically identify which compilation

layers contribute to a given bug. This approach enables more precise error localization within

complex compilation pipelines, improving debugging efficiency and reliability.

1.2 Automated test generation by understanding hardware char-

acteristics and leveraging hardware

The existing testing approach, including fuzz testing and differential testing, has been proved

successful for traditional software. Google’s OSS-Fuzz project alone has detected over 10,000

security vulnerabilities and 36,000 functional bugs across open-source projects since its in-

ception [1]. Most fuzzing techniques, such as AFL [13], start from a seed input, generate new

inputs by mutating the previous input, and add new inputs to the queue if they improve a

given guidance metric, such as branch coverage.

However, applying these traditional testing approaches to specialized domains presents

unique challenges, necessitating tailored solutions [185, 182, 28, 119]. Traditional software

testing methods, including symbolic execution, fuzz testing, and differential testing, rely
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on assumptions that do not hold in heterogeneous computing. Symbolic execution, for

example, struggles with the complexity of hardware-accelerated code due to its reliance on

constrained symbolic reasoning, making it infeasible for analyzing optimized code running on

GPUs, FPGAs, or quantum processors. Fuzz testing, which typically relies on random input

mutation and branch coverage as a feedback metric, also faces fundamental limitations in

heterogeneous environments. In traditional software, branch coverage is an effective measure

of code exploration, but in hardware-accelerated computation, it often becomes meaningless.

For example, in quantum computing, quantum circuits do not follow conventional branching

logic—every operation in a quantum circuit executes simultaneously due to the inherent

parallelism of quantum gates. This means that traditional branch coverage cannot provide

useful feedback on test effectiveness, rendering conventional fuzzing techniques ineffective

for exploring diverse execution behaviors in quantum and other heterogeneous systems.

Differential testing, which compares the outputs of multiple implementations to detect

discrepancies, faces fundamental challenges in hardware-accelerated systems. Unlike tra-

ditional software, where execution is deterministic, heterogeneous computing involves non-

deterministic factors such as hardware noise (e.g., quantum gate errors) and precision loss

(e.g., floating-point rounding differences across CPUs and FPGAs). These factors introduce

noise into differential outputs, making it difficult to distinguish true bugs from hardware-

induced variations.

To address the above challenges, we investigate the following hypothesis:

Sub-hypothesis 1: By understanding the quantum hardware characteristics, we

can build efficient differential testing for quantum software stacks. We redesign

differential testing approach for quantum software stacks (QSSes) with three major innova-

tions: (1) We generate input programs to be tested via semantics-preserving transformation

to explore program variants. (2) We speed up differential testing by filtering out quantum

circuits that are unnecessary to execute on quantum hardware by analyzing static charac-

4



teristics such as the circuit depth, gate error rates, and T1 relaxation time. (3) We design

an extensible equivalence-checking mechanism via distribution comparison functions such as

Kolmogorov–Smirnov test.

We evaluate QDiff with three widely-used open-source QSSes: Qiskit from IBM, Cirq

from Google, and Pyquil from Rigetti. Our hypothesis is that by accounting for unique

characteristics of quantum circuit execution and measurement, QDiff can improve the

efficiency of automated test input generation and the effectiveness of differential testing.

By running QDiff on both real hardware and quantum simulators, we found several critical

bugs revealing potential instabilities in these platforms. QDiff’s source transformation is

effective in producing semantically equivalent yet not-identical circuits (i.e., 34% of trials),

and its filtering mechanism can speed up differential testing by 66%.

Understanding hardware accelerators is the first step toward enhancing the effectiveness

of traditional testing approaches. Our work on QDiff demonstrated that leveraging domain-

specific hardware characteristics—such as quantum noise, circuit depth, and measurement

fidelity—can significantly improve the efficiency of test input generation and bug detection in

quantum software stacks. However, the challenges posed by hardware-accelerated computing

extend beyond quantum processors to other specialized architectures, including FPGAs,

GPUs, and TPUs.

Similar to quantum circuits, FPGA-based computations follow a fundamentally different

execution model from traditional CPUs. FPGA kernels operate as dataflow-driven accel-

erators, where execution is dictated by hardware-encoded pipelines rather than sequential

software instructions. This hardware specialization introduces two major challenges for tra-

ditional software testing methods. First, limited observability: unlike conventional programs,

FPGA kernels lack internal execution visibility, making it difficult to detect silent failures,

hangs, or incorrect outputs. Second, inefficient test generation: fuzzing for FPGA applica-

tions is constrained by slow host-device communication and the highly inefficient mutation

that modifies input data at the bit level.
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We extended our focus to FPGA-based heterogeneous application testing, investigating

the following hypothesis:

Sub-hypothesis 2: By understanding and leveraging the FPGA accelerators, we

can build efficient fuzz testing for heterogeneous applications. Testing heteroge-

neous applications is extremely challenging: FPGA kernels are black boxes, revealing no

information about the kernels’ internal execution to help diagnose when the kernels silently

hang or produce unexpected results. We propose HFuzz to leverage hardware probes and

acceleration for testing heterogeneous applications. The essence of HFuzz is to introduce

observability to FPGA kernels by combining host-side software monitors and device-side

in-kernel hardware probes. Furthermore, HFuzz speeds up iterative test generation with

hardware acceleration by offloading input mutation from the host-side to the kernel-side.

Our hypothesis is that by designing hardware-level probes and offloading input mutations

to hardware accelerators, HFuzz can improve the efficiency and effectiveness of fuzz testing.

We evaluate HFuzz on seven real-world heterogeneous applications. HFuzz speeds up fuzz

testing by 4.7× times with HW accelerated mutations. By incorporating HW probes in

tandem with SW monitors, HFuzz finds 33 kernel defects on the seven benchmarks within

24 hours and reveals 25 unique and unexpected behavior symptoms that could not be found

by SW-based monitoring.

1.3 A bug isolation approach by considering multi-layer, extensi-

ble heterogeneous compilation

Exposing a bug is not the last step. Our collaboration with Intel partners revealed that

merely triggering a bug is not enough—developers need more context to debug effectively.

Heterogeneous compilers are specialized compilers designed to support diverse hardware

architectures, such as CPUs, GPUs, FPGAs, and quantum accelerators. Unlike traditional
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compilers, which follow a linear pipeline to generate machine code for a single instruction

set, heterogeneous compilers perform multiple layers of transformation and optimization,

progressively lowering high-level abstractions to hardware-specific representations [88, 63].

MLIR (Multi-Level Intermediate Representation) [23] plays a crucial role in enabling

this complexity by providing a flexible and extensible framework for heterogeneous compi-

lation. MLIR structures compilation as a progressive lowering process, where code is trans-

formed across multiple abstraction levels, from high-level domain-specific dialects to low-level

hardware-specific IRs. This approach allows heterogeneous compilers to modularize trans-

formations and optimizations, making it easier to support new hardware architectures. Such

examples include Triton [155], CIRCT [63], and ONNX-MLIR [96]. Take CIRCT as an ex-

ample; it offers domain-specific dialects for FPGA development, enabling high-performance

hardware synthesis through structured transformations.

However, while MLIR improves the modularity and scalability of heterogeneous com-

pilers, it also introduces new debugging challenges. The layered compilation flow makes it

difficult to trace how a high-level operation is transformed through various IR stages, leading

to bugs that are hard to localize. When a failure occurs in the low-level code, developers

often lack visibility into which transformation, optimization pass, or lowering step intro-

duced the issue. Manually inspecting the entire compiler stack—spanning multiple dialects,

transformations, and hardware-specific optimizations—is impractical and time-consuming.

A systematic approach is needed to localize the root cause at both the code dimension and

the compilation dimension.

While existing delta debugging techniques can be used to identify a minimum subset

of IR code that reproduces a given bug symptom, their naive application to MLIR is time-

consuming, because real-world MLIR compilers usually involve a large number of compilation

passes and compiler developers must also identify a minimized set of relevant compilation

passes simultaneously, in order to reduce the footprint of MLIR compiler code to be inspected

for a bug fix.
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To address this challenge, we investigate the following hypothesis:

Sub-hypothesis 3: By understanding the relation between the IR code and multi-

layer heterogeneous compilers, we can build efficient debugging tool. We propose

DuoReduce, a dual-dimensional reduction approach for MLIR bug localization. DuoRe-

duce leverages three key ideas in tandem to design an efficient MLIR debugger. First,

DuoReduce reduces the bug-irrelevant compilation passes by identifying ordering depen-

dencies among different compilation passes. Second, DuoReduce uses MLIR-semantics

aware transformations to expedite IR code reduction. Finally, DuoReduce leverages cross-

dependence between the IR code dimension and the compilation pass dimension by account-

ing for which IR code segments are related to which compilation passes to reduce the unused

passes.

Experiments with three large-scale MLIR compiler projects find that DuoReduce out-

performs syntax-aware reducers such as Perses and Vulcan in terms of IR code reduction by

31.6% and 21.5%, respectively. If one uses these reducers by enumerating all possible compi-

lation passes (on average 18 passes), it could take up to 145 hours. By identifying ordering

dependencies among compilation passes, DuoReduce reduces this time to 9.5 minutes. By

identifying which compilation passes are unused for compiling reduced IR code, DuoRe-

duce reduces the number of passes by 14.6%. This translates to not needing to examine 281

lines of MLIR compiler code on average to fix the bugs. DuoReduce has the potential to

significantly reduce debugging effort in multi-layer extensible compilers, which serves as an

important basis for the current landscape of machine learning and hardware accelerators.

1.4 Outline

The structure of this dissertation is outlined as follows. Chapter 2 introduces several related

basic concepts. In Chapters 3 and 4, we delve into two testing methods for heterogeneous
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computing: QDiff for quantum software stacks, and HFuzz for heterogeneous applications,

Chapter 5 presents DuoReduce, the dual-dimensional bug isolation method for multi-layer

compilers. Finally, we conclude and discuss future directions in Chapter 6.
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CHAPTER 2

Background

There has been a growing interest in developing specializable hardware accelerators for

domain-specific workloads for various performance and energy benefits [55, 59, 62]. As

an example, FPGA can be easily customized to accelerate applications across a wide va-

riety of domains [48, 60] at lower power and higher performance than general-purpose

CPUs [49, 136, 79]. Major hardware vendors are offering or plan to offer packages that

include both CPUs and FPGAs [67, 30]. Such hardware packages have also been made into

all major clouds to accelerate various analytic and learning tasks.

FPGAs, for instance, can be easily customized to accelerate applications across diverse

domains [48, 60], delivering higher performance and lower power consumption compared to

general-purpose CPUs [49, 136, 79]. Recognizing these advantages, major hardware vendors

have begun integrating CPUs and FPGAs into unified packages [67, 30]. These hybrid

architectures are now widely available in all major cloud platforms to accelerate analytics

and machine learning tasks.

In this section, I will introduce the traditional testing and debugging approach, and

illustrate why they cannot work for heterogeneous domains.

2.1 Heterogeneous Computing: Context and Challenge

With the slowdown of Moore’s Law—the observation that transistor density doubles approx-

imately every two years—traditional CPU performance scaling has become increasingly diffi-
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cult [129, 71]. There has been a growing interest in developing specializable hardware acceler-

ators for domain-specific workloads for various performance and energy benefits [55, 59, 62].

As an example, FPGA can be easily customized to accelerate applications across a wide

variety of domains [48, 60] at lower power and higher performance than general-purpose

CPUs [49, 136, 79, 67, 30]

Heterogeneous architectures are now widely adopted across various computing domains:

• Machine Learning and AI: GPUs accelerate deep learning training and inference [97,

53].

• Scientific Computing: Supercomputers leverage GPUs and FPGAs for high-performance

simulations, molecular dynamics, and climate modeling [70].

• Embedded & Edge Computing: FPGAs and custom ASICs (Application-Specific In-

tegrated Circuits) are used in low-power, high-throughput applications such as au-

tonomous vehicles, IoT devices, and robotics [122, 157].

• Quantum Computing: Quantum accelerators, such as IBM’s Q System and Google’s

Sycamore, are emerging as promising alternatives for problems involving cryptography,

optimization, and quantum chemistry [34, 135].

Despite their advantages, heterogeneous architectures pose several challenges, particu-

larly in software testing and debugging. Traditional testing and debugging techniques strug-

gle to handle the complexity of heterogeneous computing because hardware characteristics

are not considered. For example, Symbolic testing, a widely used program analysis technique

that systematically explores all possible execution paths by treating inputs as symbolic vari-

ables instead of concrete values [99, 37] cannot work because it struggles to model parallel,

event-driven, and hardware-level execution effectively.
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2.2 Quantum Computing & Quantum Software Stack

Quantum Computing. Quantum computing emerges as a promising technology for many

domains where quantum computers have been demonstrated to outperform classical com-

puters by a large margin. For example, Grover’s algorithm [77] can find a given item in an

unsorted database with a
√
N -times speedup when running on a quantum computer, com-

pared to a classical computer. Similar to programs executed on heterogeneous devices such

as FPGAs, a quantum application is comprised of host code that runs on CPU and quantum

code that runs on quantum hardware. Generally, quantum computers work as accelerators

to execute the compute-intensive parts of the original application. For example, the Shor

algorithm [145] can achieve an exponential speedup by decomposing integer factorization

into a reduction to be executed on a classical computer and an order finding problem to be

executed on quantum hardware.

Quantum Software Stack. A quantum software stack (QSS) includes (1) APIs and lan-

guage constructs to express quantum algorithms, (2) a compiler that transforms and op-

timizes a given input quantum algorithm at the circuit level, and (3) a backend executor

that either simulates the resulting gates on classical devices or executes directly on quantum

hardware. Currently, three most widely used QSSes are Qiskit, Cirq, and Pyquil [104].

• Qiskit [31] is an open-source framework developed by IBM. Qiskit provides a software

stack that is easy to use quantum computers and facilitates quantum computing re-

search. Qiskit consists of Qiskit Terra (compiler), Qiskit Aer (several quantum sim-

ulators), Qiskit Ignis (which supports error correction and noise characterization),

and Qiskit Aqua (APIs to help developers write applications).

• Cirq [6] is an open-source Python framework from Google. It enables a developer to

create and simulate Noisy Intermediate-Scale Quantum (NISQ) circuits. Cirq consists

of an optimization component to compile and transform circuits, a simulator compo-
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nent for emulating quantum computation on classical devices, and other development

libraries for application development.

• Pyquil [58] is an open-source Python framework developed by Rigetti. It builds on

Quil, an open quantum instruction language for near-term quantum computers, and

uses a combined classical/quantum memory model. PyQuil is the main component of

Forest, the overarching platform for Rigetti’s quantum software. Pyquil consists of:

quilc (compiler), qvm (quantum virtual machine with several kinds of simulators), and

pyquil (a library to help users write and run quantum applications).

All three QSSes are similar to one another in that each includes a quantum programming

language, an optimizing compiler that outputs quantum gate instructions, a quantum sim-

ulator that emulates these instructions on a classical device, and a software controller that

executes gate instructions on quantum hardware.

As with any compiler framework, a QSS could be error-prone. Developers and users

often report bugs on popular QSSes [7, 8, 31], and a simple search on StackOverflow with

the keyword “quantum error” would bring up over 500 posts on various QSS components,

ranging from compiler settings, simulation, and the actual hardware [14]. These posts often

reveal deeper confusion that developers face due to the inherent probabilistic nature of

quantum measurements—if a program produces a result that looks different from what is

expected, is it due to a bug or the non-determinism inherent in quantum programs? Is there

divergence beyond expected noise coming from an input program, a compiler, a simulator,

and/or hardware?

2.3 MLIR in Heterogeneous Computing

LLVM [74] and the Multi-Level Intermediate Representation (MLIR) [64] framework are

gaining significant traction across a wide array of compilers for machine learning and hetero-
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geneous computing. They have revolutionized modern compiler architectures with layered

and extensible compiler development, by enabling custom extension of IRs. For example, Tri-

ton [155], a cutting-edge language and compiler for machine learning developed by OpenAI,

leverages the MLIR framework to translate Python kernels into Triton’s IR representation.

This IR is then optimized through various transformation passes before being lowered to

PTX assembly, which is then fed to the CUDA compiler. The increasing adoption of MLIR

compiler projects such as Triton underscores the importance of extensible compiler design,

particularly in the domain of machine learning and hardware accelerators, where the under-

lying IRs and key optimization strategies are rapidly evolving.

The CIRCT project [63] is an effort to apply MLIR and the LLVM development method-

ology to the domain of hardware design tools. They aim to have reusable infrastructure that

is modular, uses library-based design techniques, is more consistent, and builds on the best

practices in compiler infrastructure and compiler design techniques.

The multi-layer nature of MLIR-based compilers, where high-level representations are

progressively lowered through multiple IR transformations, brings significant challenges to

testing and debugging. Existing fuzzing techniques such as MLIRSmith [160], HirGen [121],

CLSmith [113], NNSmith [116], Neuri [117], and Tzer [118] have made strides in compiler

testing and validation.

2.4 Automated Testing Techniques for Heterogeneous Applica-

tion

In software engineering, symbolic execution is a program analysis technique that systemat-

ically explores program paths by treating inputs as symbolic variables [37]. For example,

KLEE [46] is an open-source symbolic execution engine designed for automatically gener-

ating test cases and detecting bugs in programs written in C and C++. GKLEE [109]

extends symbolic execution to CUDA programs, enabling the analysis of GPU kernels for
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correctness and performance issues. SmarTest leverages symbolic execution for smart con-

tract testing [147]. However, symbolic execution’s applicability to heterogeneous computing

is limited due to differences in execution models, memory architectures, and programming

paradigms. Alternative approaches, such as fuzz testing, have gained more traction for

validating software on GPUs, FPGAs, and quantum processors.

Traditional fuzzing starts from a seed input, runs the program on the selected input,

generates new inputs by mutating the previous input, and adds new inputs to the queue if

they improve a given guidance metric such as branch coverage. Instead of using coverage

as guidance, several techniques use custom guidance mechanisms. UAFL [161] incorporates

typestate properties and information flow analysis to detect the use-after-free vulnerabili-

ties. BigFuzz [181] monitors dataflow operator coverage in tandem with branch coverage for

dataflow-based analytics. For example, MemLock [166] employs both coverage and memory

consumption metrics. AFLgo [41] extends AFL to direct fuzzing toward user-specified target

sites. SiliFuzz [142] finds CPU defects by fuzzing software proxies, like CPU simulators or

disassemblers, and then executing the accumulated test inputs (known as the corpus) on

actual CPUs on a large scale. PerfFuzz [107] uses the execution counts of exercised instruc-

tions together with branch coverage to identify inputs revealing pathological performance.

HeteroFuzz [182] generates concrete test inputs for heterogeneous applications to perform dif-

ferential testing between CPU vs. CPU+FPGA. However, Although these techniques work

effectively in their domains, none of them leverage hardware to speed up their approach with

parallelism. In other words, they overlook the opportunities for hardware optimizations, as

the mutations often consist of independent tasks that can be parallelized efficiently when

offloaded to the hardware accelerator.

A fuzzing loop consists of multiple invocations of a target program with different inputs in

an independent manner; thus, it provides a natural opportunity for parallelism. AFL++ [73]

injects a fork server, which tells the target to fork itself to run, and thus realizes parallel

fuzzing across multiple CPU cores or across a fleet of systems. For example, P-Fuzz [148]
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distributes unique seeds to run fuzzing in parallel, and PAFL [112] maintains global and local

guiding information for synchronizing parallel fuzzing jobs. While these techniques accelerate

fuzz testing through distributed computation on CPUs, their underlying principles can be

adapted to hardware accelerators like FPGAs to design a more efficient and scalable fuzzing

approach.

Coverage-guided greybox fuzzing adds test cases into the set of seeds if they exercise the

new path or new behavior. However, most seeds exercise the same “high-frequency” paths.

To explore more paths with the same number of tests, researchers develop strategies to select

seeds wisely. AFLFast [42] models coverage-based greybox fuzzing as a Markov chain, and

assigns different selection probabilities for different seeds. EcoFuzz [174] improves AFLFast’s

Markov chain model and presents a variant of the Adversarial Multi-Armed Bandit model.

EcoFuzz sets three states of the seeds set and develops a unique adaptive scheduling al-

gorithm. However, these traditional coverage-feedback techniques do not translate well to

heterogeneous computing. Unlike conventional software, heterogeneous kernels execute at

the hardware level, where all branches are typically exercised, providing no meaningful code

coverage signal. Furthermore, kernel code running on accelerators (e.g., GPUs, FPGAs)

is often treated as a black box, offering no direct execution feedback that fuzzers can use

for guidance. To enable effective fuzzing for heterogeneous computing, a new approach is

required—one that extracts meaningful execution feedback from kernel code and provides

guidance for exploring diverse execution behaviors beyond simple control-flow coverage.

2.5 Testing and Verification for Quantum

Zhao [184] introduces a quantum software life cycle and lists the challenges and opportu-

nities we face. Long et al. [120] introduce quantum-specific testing principles and criteria

for quantum program testing. Ying et al. [173] formally reason about quantum circuits by

representing qubits and gates using matrix-valued Boolean expressions, and verify them us-
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ing a combination of classical logical reasoning and complex matrix operations. Huang et

al. [86] introduce quantum program assertions, allowing programmers to decide if a quantum

state matches its expected value. They define a logic to provides ϵ-robustness to character-

ize the possible distance between an ideal program and an erroneous one. Proq [111] is a

runtime assertion framework for testing and debugging quantum programs. It transforms

hardware constraints to executable versions for measurement-restricted quantum comput-

ers. QPMC [72] applies classical model checking on quantum programs based on Quantum

Markov Chain. Ali et al. [32] propose a new testing metric called quantum input-output

coverage, a test generation strategy, and two new test oracles for testing quantum programs.

Two test oracles include wrong output oracle, which checks whether a wrong output has been

returned, and output probability oracle which checks whether the quantum program returns

an expected output with its corresponding expected probability. However, their work targets

at quantum program testing, and the measurement they used might not be sufficient.

Verified quantum compilers guarantee gate transformation and circuit optimization is

correct by construction. CertiQ [144] is a verified Qiskit compiler by introducing a cal-

culus of quantum circuit equivalence to check the correctness of compiler transformation.

VOQC [82] provides a verified optimizer for quantum circuits by adapting CompCert [108]

to the quantum setting. Smith and Thornton [146] present a compiler with built-in trans-

lation validation via QMDD equivalence checking. However, verifying large-scale quantum

circuits remains a major challenge. However, verifying large-scale quantum compilers re-

mains a major challenge. As quantum circuits grow in size, their unitary representations

expand exponentially, making equivalence checking computationally infeasible [186]. With-

out scalable verification techniques, ensuring correctness for real-world, large-scale quantum

compilers and applications remains an open problem.

Given the scalability limitations of traditional verification techniques for quantum com-

pilers, differential testing emerges as a superior alternative due to its ability to validate

compiler correctness without requiring full formal verification or exponential equivalence
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checking [124, 151]. It has been used to test large software systems and to find bugs in

various domains such as SSL/TLS [45, 134], machine learning applications [78], JVM [54],

and clones [183], etc. Equivalence modulo inputs (EMI) [105] is such an example that tests

compilers by generating equivalent variants. Many random program generators are used

for compiler testing [52]. Csmith [172] randomly generates C programs and checks for in-

consistent behaviors via differential testing. Quest [115] focuses on argument passing and

value returning, while testing with randomly generated programs. Different from Csimth-like

tools, refactoring-based testing systematically modifies input programs with refactorings, as

opposed to random program generation. Orion [105] adapts EMI to test GCC and LLVM

compilers. Christopher et al. [113] combine random differential testing and EMI-based test-

ing to test OpenCL compilers. Orison [106] uses a guided mutation strategy for the same

purpose. Mucerts [51] applies differential testing to check the correctness of certificate val-

idation in SSL/TLS. It uses a stochastic sampling algorithm to drive its input generation

while tracking the program coverage. DLFuzz [78] does fuzz testing of Deep Learning sys-

tems to expose incorrect behaviors. Chen et al. [54] perform differential testing of JVM with

input generated from Markov Chain Monte Carlo sampling with domain-specific mutations

with the knowledge of Java class file formats.

Such classical compiler testing is not directly applicable to quantum software stacks due to

the three challenges: (1) how to generate variants, (2) how to test simulators and hardware

together with compilers, and (3) how to interpret quantum measurements for differential

testing.

Based on my work QDiff [164], MorphQ [133] leverages equivalent quantum gate trans-

formations to detect bugs in quantum compilers such as Qiskit [29], demonstrating the ef-

fectiveness of differential testing in identifying miscompilations in quantum software stacks.
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2.6 Automated Debugging in Heterogeneous Domains

To ease the development of heterogeneous applications, HLS tools automatically generate

RTL descriptions from C/C++ programs. To help debugging HLS-generated circuits, In-

spect [47] introduces software debugger-like capabilities, including gdb-like breakpoints, step,

and data inspection. It tracks file names and line numbers in HLS code, so that HW probes

at the level of wires and registers could be linked to specific lines in the HLS code. A user

can monitor each variable for its data width and the number of elements in an array. Monson

and Hutchings [128] design a debugger for HLS-generated FPGA-based circuits via source

instrumentation by connecting C expressions to top-level ports that serve as debug signals.

HLScope [56] is a performance debugger that traces the cause of stalls for HLS-generated cir-

cuits. Curreri et al. realize in-circuit assertions for timing analysis and stall-relate bugs [66].

In traditional software engineering, taint analysis and program slicing are widely used in

automated debugging [130, 156, 40, 168]. For example, Wang et al. [165] used taint analysis

to localize bugs in configuration options. Soremekun et al. [149] did an empirical study on

how program slicing can be applied on locating real-world faults. Badihi et al. [36] developed

a program slicing based debugger for java. While program slicing and taint analysis are effec-

tive in traditional debugging, they fail in multi-layer heterogeneous compilation debugging,

whereas delta debugging succeeds. Taint tracking assumes a direct mapping between in-

put and output variables, but heterogeneous compiler optimizations break this assumption.

Constant propagation, register allocation, and strengthening reduction may directly rewrite

expressions with hardware resource specification. Program slicing works best when explicit

control-flow dependencies exist. However, many compiler passes eliminate, reorder, or re-

place control structures, making it impossible to extract an accurate slice. Delta debugging,

however, instead of following control/data dependencies, simply removes pieces of the input

program until the bug disappears.

Delta debugging is a seminal work for input reduction to identify the minimal failure-
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inducing changes between two program versions [178, 176]. Based on ddmin, Ghassan et al.

developed Hierarchical Delta Debugging (HDD) [127]. It applies delta debugging at each level

of a program’s input, working from the coarsest to the finest levels. Recent work proposed

several enhancements on HDD [83, 84, 100]. ProbDD [159] is a probabilistic DD algorithm

that learns from testing history to select elements based on probabilities. RCC [153] uses ZIP

and SHA to compress the generated variants to speed up program reduction. Perses [150]

ensures that each reduction step considers only syntactically valid variants to avoid futile

effort on syntactically invalid variants and was later extended to specific domains [180, 154].

None of these reducers can handle bug isolation across two dimensions: code and compilation

pass. Existing DD is inefficient for today’s extensible multi-layer compilation and can take

up to 145 hours to isolate culprit compilation passes along with the minimized IR program.

Many delta debugging tools consider the underlying language feature and apply vari-

ous program transformations to decompose an input program into fine-granular units [69].

Vulcan [171] applies general code program transformations including identifier and sub-

tree replacement. LPR [179] combines LLMs and language-generic reduction tools to re-

fine the results of program reduction. C-Reduce [137] tackles this problem by leveraging

domain-specific program transformations to reduce C/C++ programs. J-Reduce [98] and

ddSMT [132] serve as the domain-specific reducers for Java and SMT-LIBv2. CHISEL [81]

uses reinforcement learning in the C programming to select steps in ddmin that are more

likely to satisfy the target oracle.

MLIR is widely adopted in heterogeneous compilation because it provides a modular IR

infrastructure that spans multiple abstraction levels, from high-level computational graphs

to low-level hardware instructions. However, debugging MLIR-based compilers poses unique

challenges.

• Multi-Layer Transformations: MLIR enables a layered compilation flow where high-

level representations progressively transform into low-level IRs, making it difficult to

trace how errors propagate across different passes.
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• Interaction Between Passes: Compiler bugs often emerge due to unintended interac-

tions between optimization passes, making it essential to consider dependencies be-

tween transformations rather than debugging individual passes in isolation.

The MLIR and CIRCT projects also develop their own debugger utilities [63, 64]. They

provide useful mechanisms for isolating faults but lack dependency-aware debugging ap-

proaches that account for the interactions between compilation passes and their effect on

program correctness.

Given these challenges, a new debugging approach is needed—one that explicitly con-

siders the dependency relationships between compilation passes and between compiled code

and its transformations.
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CHAPTER 3

QDiff: Redesign Differential Testing for Quantum

Computing

As a first step toward building software support for heterogeneous systems, we focus on

providing compiler testing support for quantum software stacks. A quantum software stack

(QSS) includes (1) APIs and language constructs to express quantum algorithms, (2) a

compiler that transforms and optimizes a given input quantum algorithm at the circuit level,

and (3) a backend executor that either simulates the resulting gates on classical devices

or executes directly on quantum hardware. Quantum computing, as an emerging field,

currently lacks robust compiler and system testing frameworks. However, testing quantum

software stacks poses significant challenges. The probabilistic nature of quantum computing

results makes it difficult to determine whether unexpected outputs are due to the inherent

quantum randomness or actual bugs in the software stack. Furthermore, the noisy nature of

contemporary quantum hardware complicates the detection of software bugs from hardware-

induced errors.

In this chapter, we address the following research question: What kinds of hardware

accelerator characteristics can be leveraged to filter out hardware noise and accurately identify

software bugs? To address this problem, we investigate the sub-hypothesis: By understanding

the quantum hardware characteristics, we can build efficient differential testing for quantum

software stacks. Building on the insights discussed in Section 3.4, we redesign differential

testing frameworks to account for T1 time and 2-qubit gate number, which are the main

sources of the quantum hardware noise, enabling more effective identification of software
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bugs while mitigating the impact of hardware noise.

3.1 Introduction

As with any heterogeneous compiler framework, a Quantum Software Stack could be error-

prone. Developers and users often report bugs on popular QSSes [7, 8, 31]. A bug in a QSS

can be just as severe as a miscompilation in a traditional compiler, potentially leading to

incorrect quantum computations or silent failures. For example, In Qiskit, the transpile

function is used to transform quantum circuits into a form that is compatible with a specific

quantum backend. However, a bug was identified where the transpilation process fails when

handling parameterized delay instructions [16].

We evaluated QDiff with the latest versions of three widely-used QSSes: Qiskit, Cirq,

and Pyquil. With six seed quantum algorithms, QDiff generates 730 variant algorithms

through semantics-modifying mutations. Starting from the generated algorithms, it gener-

ates a total of 14799 program variants using semantics-preserving source transformations.

This generation process took QDiff 14 hours. With the filtering mechanism, QDiff reduces

its testing time by 66%. Using QDiff, we determined total 6 sources of instabilities. These

include 4 software crash bugs in Pyquil and Cirq simulation, and 2 potential root causes that

may explain 25 out of 29 cases of divergence beyond expected noise on IBM hardware.

3.2 Background

Quantum Bit. A quantum bit, or qubit for short, is the basic unit of quantum computation.

Unlike a classical bit that is either 0 or 1, a qubit’s state is a probabilistic function of |0⟩

and |1⟩, represented as:

|ψ⟩ = α|0⟩+ β|1⟩,where |α|2 + |β|2 = 1 (3.1)
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The state of a qubit is unknown until a measurement is completed, resulting in |α|2 to be

0 and |β|2 to be 1. Naturally, the sum of the probabilities (i.e., the modulus squared of

amplitudes) is 1: |α|2 + |β|2 = 1.

Quantum Gate. Classical computers use logic gates to transform signals from input wires.

For example, a NOT gate, also known as an inverter, takes a single signal as input and

outputs the opposite value. The quantum gate analogous to NOT is an X gate, which

transforms a qubit α|0⟩+ β|1⟩ to β|0⟩+ α|1⟩.

An X gate has the following matrix-based representation:

X =

0 1

1 0

 (3.2)

Using a vector to represent the quantum state α|0⟩ + β|1⟩, applying an X gate has the

following effect:

X

α
β

 =

β
α

 =

α′

β′

 (3.3)

Other commonly-used quantum gates include H, T , CNOT , Z, CZ , S , U1 , and U3 ; a full

explanation of these gates is elsewhere [131].

Since all quantum gates can be represented as matrices, we can transform a sequence of

gates to another logically equivalent sequence without altering its outcome, as long as the

multiplication of the matrices for gates in each sequence produces the same result. As an

example, a SWAP gate, a two-qubit gate that swaps the two qubits’ states, is semantically

equivalent to a sequence of three CNOT gates.

SWAP(q1, q2) = CNOT(q1, q2)CNOT(q2, q1)CNOT(q1, q2) (3.4)

This observation forms the foundation of QDiff’s program variant generation procedure,

detailed in Section 3.4.
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1 def make_circuit() -> QuantumCircuit:

2 qubit = QuantumRegister(2,"qc")

3 bit = ClassicalRegister(2, "qm")

4 prog = QuantumCircuit(qubit, bit)

5 prog.h(qubit[0])

6 prog.x(qubit[1])

7 for i in range(2):

8 prog.measure(qubit[i], bit[i])

9 return prog

(a) A quantum circuit with an H gate and an X gate.

1 prog = make_circuit()

2 backend = BasicAer.get_backend(’qasm_simulator’)

3 info = execute(prog, backend=backend, shots=1000).result().get_counts()

(b) The host code using the circuit in (a).

Figure 3.1: An example Qiskit program.

Quantum Circuit. A quantum circuit consists of a set of connected quantum gates. Since

quantum gates can be represented as unitary matrices, a quantum circuit is essentially the

multiplication of the matrices.

Figure 3.1a shows a program in IBM’s Qiskit [31]. It first registers two qubits and

initializes them to |0⟩. Next, an H gate sets the first qubit into state 1√
2
|0⟩+ 1√

2
|1⟩ and an X

gate flips the second qubit from |0⟩ to |1⟩. Finally, a measurement is performed and stored

in a classical array. The function returns this circuit as a function-type value.

Figure 3.1b shows host code that calls this quantum circuit. Users can execute this

circuit on different backends such as real quantum hardware or simulators. The circuit is

executed on qasm simulator for a thousand times (shots=1000). Since the first qubit state

is 1√
2
|0⟩ + 1√

2
|1⟩ and the second qubit state is |1⟩, each run produces a result of either |01⟩

or |11⟩ with the equal probability of 0.5 = ( 1√
2
)2.
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Table 3.1: Different layers that bugs appear

Layers Percentage Example

Compiler (optimizations 53.9% MergeInteractions() returns different

& settings) results for the same circuit [9].

Backend (simulators 19.7% Simulators change a global random

& hardware) state on Cirq [2].

API and quantum gate 11.8% PhasedXPowGate raised to a symbol power

fails the is_parameterized protocol [3].

T1 relaxation time. In quantum computing, a qubit can retain data for only a limited

amount of time, referred to as relaxation Time because a qubit in a high-energy state (state

|1⟩) naturally decays to a low-energy state (state |0⟩). The time span for this decay is referred

to as T1 Relaxation Time. For a physical circuit, its measurement results are unreliable if

its execution time is longer than T1.

3.3 Motivation

To understand real-world QSS bugs, we collected 76 latest issues reported on Github Pyquil,

Cirq, and Qiskit. After excluding 11 issues related to installation and other tools, we cate-

gorized the remaining 65 issues by the layer where each issue appears: compilers, backends,

and APIs.

Table 3.1 summarizes the percentage of the corresponding layer and a representative

example. Most bugs appear at the compiler level—compiler optimizations and settings.

For example, Cirq produces incorrect circuits when using MergeInteractions() [9]. The

second most common bugs appear at the backend level—simulators and hardware execution,

e.g., the initial state is unexpectedly modified by the Cirq simulator in [2]. The other

issues are with respect to the API implementation of high-level gates. For example, in
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Figure 3.2: QDiff overview

Cirq, when cirq.PhasedXPowGate is invoked with an input argument exponent, invoking

is_parameterized on the resulting gate should return true but returns false due to a bug

in cirq.PhasedXPowGate.

The aforementioned bugs are hard to find due to quantum indeterminacy. The following

excerpt illustrates a concrete example of how one google tutorial user is confused whether a

problem is a bug or due to inherent non-determinism. Cirq’s VQE (Variational-Quantum-

Eigensolver) tutorial had a mistake—the orders of mix layer and cost layer were described

in a wrong order. The tutorial user D (shortened) posted a question on StackExchange [4]

with the embedded code from Cirq’s VQE tutorial. A Cirq developer C (shortened) noticed

that “The strange thing is the example output shows the output probabilities varying with

gamma (the CZ parameter)”, where gamma should not have any effect on the measurement

results.” D actually believed the disagreement is due to quantum indeterminacy, until C

explicitly labeled it as a compiler bug.
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Table 3.2: Explored Compiler Configurations

Framework Options Description

BasicSwap, Specify how swaps should be inserted to

make the circuit LookaheadSwap, compatible with the coupling map.

QDiff checks if BasicSwap has the most

StochasticSwap SWAP gates.

Qiskit Optimization level=0,1,2,3 Specify the optimization level—the higher

the level, the simpler the resulting circuit.

QDiff checks if a higher-level optimization

generates a more complex circuit.

DropEmptyMoment() Remove empty moments from a circuit.

QDiff checks empty moments in the circuit.

Cirq MergeInteractions() Merge adjacent gates; QDiff checks

the applicability of G6 in Table 3.3.

PointOptimizationSummary() User-defined optimization.

PRAGMA INITIAL_REWIRING {"NAIVE" Change the optimization/mapping style

,"GREEDY", "PARITIAL"}

Pyquil PRAGMA {COMMUTING_BLOCKS Change the optimization style for

,PERSERVE_BLOCKS} certain part of the code.

Key Takeway. This study of Github issues shows that QSS bugs are not just traditional

compiler bugs and may come from various sources at different layers: API implementation of

high-level gates, backend simulators, or hardware execution. This problem of detecting QSS

bugs is further complicated by the probabilistic and noisy nature of quantum indeterminacy.

3.4 Approachh

QDiff contains three novel components to detect meaningful instabilities in QSSes. Fig-

ure 3.2 shows program variant generation using equivalent gate transformation and mutations
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(Section 3.4.1); backend exploration leveraging selective invocation of quantum simulators

and hardware (Section 3.4.2); and equivalence checking via distribution comparison (Sec-

tion 3.4.3). Starting from a seed program, QDiff iterates these steps until a time limit is

reached. Our key insight is that (1) we can generate semantically equivalent but syntactically

different circuits, and (2) we can speed-up the differential execution process by filtering out

certain circuits, because they will definitely lead to unreliable divergence and thus are not

worthwhile to run on hardware or noisy simulators.

3.4.1 Program Variant Generation

Prior work [105] finds that testing compilers with equivalent programs is highly effective.

QDiff adapts this idea to the domain of quantum compiler testing by creating logically

equivalent gate sequences. It then checks whether the corresponding equivalent circuits

produce the same results (in this case, a similar statistical distribution with some noise) on

quantum simulators or hardware. For this purpose, QDiff generates program variants by

repeating the two-fold process of applying semantics-preserving gate transformation to each

generated program in each iteration and applying semantics-modifying mutations to diversify

the pool of input programs in the next iteration.

Equivalent Gate Transformation (EGT). As discussed earlier in Section 3.2, one quan-

tum gate sequence is semantically equivalent to another sequence, if they both yield the same

unitary-matrix representation. In fact, complex quantum gates, without altering the out-

come, can be described as a combination of basic quantum gates. QDiff leverages seven

gate transformation rules to map complex gates into sequences of simple gates, as shown in

Table 3.3. In G7, a Toffoli gate (i.e. CCNOT ) can be replaced with 6 CNOT gates and 9

one-qubit gates. To explore the alternative representation of a given gate sequence, QDiff

finds the applicable transformation rules by matching the gate names. For an example cir-

cuit S(q2)Z(q1), QDiff identifies the complex gate Z(q1), applies rule G2 to construct gate

29



Table 3.3: QDiff generates program variants based on EGT rules G1-G7.

Rule ID Original Construct Equivalent Construct

CNOT(q1,q2)

G1 SWAP(q1,q2) CNOT(q2,q1)

CNOT(q1,q2)

G2 H(q1)H(q1) Merged to Identity Matrix

G3 X(q1) H(q1)S(q1)S(q1)H(q1)

G4 Z(q1) S(q1)S(q1)

G5 CZ(q1,q2) H(q2)CNOT(q1.q2)H(q2)

G6 CZ(q1,q2)CZ(q1,q2) Merged to Identity Matrix

G7 CCNOT(q1,q2,q3) 6 CNOT gates

with 9 one-qubit gates

Z(q1) as a sequence S(q1)S(q1), and generates a final variant S(q2)S(q1)S(q1). As opposed

to an optimizing compiler that applies transformation rules to reduce the number gates or

the total gate depth [82, 31], QDiff aims to diversify the pool of input programs through

source to source transformation.

Seed Diversification via Mutations. While generation of logically equivalent programs

can find bugs through observing disagreements, they are unlikely to exercise various program-

ming constructs. To diversify the seed input programs and to explore hard-to-reach corner

cases in quantum compilers. QDiff borrows the idea of mutation-based fuzz testing [13]

and designs a set of semantics-modifying mutations.

After generating multiple logically equivalent programs in each iteration, QDiff calcu-

lates the average distributions among the equivalent programs as the reference distribution,

then picks the variant that leads to the largest comparison distance (e.g., K-S distance)

from the reference distribution, and randomly applies one of the following four mutation

operations to the variant in order to generate a new algorithm. This is based on the insight
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Table 3.4: IBM quantum hardware’s gate-level error rates, gate time, and T1 relaxation

(decoherence) time.

IBM quantum 2-qubit gate

computer T1 time /µs Gate time /ns error rate tm δ2qubit

ibm santiago 155.19 408.89 1.79% 379 5

ibm yorktown 56.81 476.44 2.03% 119 5

ibm 16 melbourne 53.37 928.71 3.29% 57 3

ibm belem 74.45 552.89 1.07% 135 11

ibem quito 85.35 353.78 1.03% 241 11

that the program with the most deviating results has a higher chance to expose unseen

behavior [105, 113]. Please note that these mutations do not preserve semantics; instead,

the goal of mutations is to resume the next round of differential testing with a different

algorithm. We start with four mutation operators listed below, used in quantum mutant

generation [125, 32].

• Gate Insertion/ Deletion (M1)inserts/deletes random quantum gates: e.g., insert

prog.x(qubit[1]) ;

• Gate Change (M2) changes a quantum gate to another gate: e.g., from prog.x(qubit[1])

to prog.h(qubit[1]) ;

• Gate Swap (M3) swaps two quantum gates;

• Qubit Change (M4) changes the qubits: e.g., from prog.x(qubit[1]) to prog.x(qubit[2]) .

3.4.2 Quantum Simulation and Hardware Execution

Compiler Configuration Exploration. QDiff automatically explores different com-

piler configurations. In Qiskit, compiler settings can be specified by the arguments passed to
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Table 3.5: Explored Backends (Simulators and Hardware)

Framework Backends Description

statevector_simulator noiseless sim.

qasm_simulator noiseless sim.

Qiskit FakeSantiago

FakeYorktown noisy sim.

FakeMelbourne

ibmq_santiago

ibmq_yorktown quantum hardware

ibmq_16_melbourne

Simulator noiseless/noisy sim.

Cirq DensityMatrixSimulator noiseless/noisy sim.

Aspen-x-yQ-noisy-qvm noisy sim.

Pyquil WavefunctionSimulator noiseless sim.

Aspen-x-yQ-qvm,Pyqvm noiseless sim.

the backends e.g., users can apply optimization level=1 to collapse adjacent gates via light-

weight optimization, while optimization level=3 does heavy-weight optimization to resyn-

thesize two-qubit blocks in the circuit. In Cirq, compiler settings must be specified using API

invocations: e.g., users can write their own optimization with PointOptimizationSummary().

In Pyquil, compiler settings are specified using inlined pragmas similar to how FPGA devel-

opers specify high level synthesis options using pre-processor directives, e.g., a region denoted

by PRAGMA PRESERVE_BLOCK will not be modified by a compiler. There are in total 2, 3, and

2 configuration types for Qiskit, Cirq, and Pyquil respectively, as shown in Table 3.2. When

executing a variant with a specific compiler setting, QDiff records both thrown exceptions

and program timeouts.

Backend Exploration. Backend exploration runs the same input program on different

backends, shown in Table 3.5. In terms of real hardware execution, QDiff uses the free
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version of IBM hardware only, because other platforms are currently proprietary. QDiff is

extensible by specifying a different backend configuration. Noisy simulators and state-vector

simulators are both included in QDiff’s backend exploration.

Filtering and Selective Invocation on Hardware. QDiff is focused on isolating soft-

ware defects, not hardware defects. Because hardware imperfections such as decoherence is

present, it is important to filter out circuits that would invoke errors due to the inherent

hardware limitations. With the above observations, QDiff filters out unnecessary circuits

in two steps. First, QDiff examines the final gate sequences after all compiler optimiza-

tions and logical-to-physical mappings, filtering out exactly identical physical circuits by

moment-by-moment comparison. Second, QDiff analyzes the static characteristics of cir-

cuits to remove those that certainly produce unreliable executions (i.e. results dominated by

hardware-level noise such as gate errors and relaxation errors and hence unreliable), while

leaving those that may produce meaningful divergences using Definition IV.1.

As discussed in Section 3.2, for a physical circuit, its measurement results are unreliable

if its execution time is longer than T1, implying that the number of circuit moments nm (the

depth of the circuit) in any circuit should not exceed a threshold tm. Moreover, different

kinds of quantum gates have different inherent error rates. For publicly available IBM

quantum computers, error rates of single-qubit operations are in the order of 10−3, while

error rates of 2-qubit gate operations are in the order of 10−2. A typical quantum program

contains a significant number of 2-qubit gates, whose errors contribute the most to the

overall error rate because such gates are more error-prone than 1-qubit gates [152]. Taking

this into consideration, d2qubit (the difference in the number of 2-qubit gates from the original

circuit) should not exceed an application-specific threshold δ2qubit to avoid unreliable results.

Leveraging the above observations, we define the worthiness of invoking a quantum circuit.

Definition 3.4.1 A circuit is worth invoking on quantum hardware or noisy simulator, if it

satisfies the following condition: nm < tm and d2qubit < δ2qubit.
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Table 3.6: Cumulative probability of KS test

Measurement State Cumulative State

Distribution ‘0’ ‘1’ Probability ‘0’ ‘1’

A1 464 546 EDFA1 0.464 1

A2 500 500 EDFA2 0.500 1

The threshold tm is determined empirically by two factors: (1) IBM computers’ average

T1 time, and (2) the average gate execution time for all gates, as listed in Table 3.4. QDiff

computes tm by dividing T1 by the average gate execution time. It then filters out those

whose nm is greater than tm. Take ibm_16_melbourne as an example: with T1 = 53.57µs

and the average gate execution time = 928ns , tm is 53570/928=57. A circuit whose total

number of moments is above 57 is filtered out for ibm_16_melbourne.

The threshold δ2qubit is determined in the following way. Suppose a user is willing to

tolerate an addition error rate of t for the entire quantum program’s final measurements

(with 0.1 as the default). Using t, we compute δ2qubit as the maximum number of 2-qubit

gates to be added or deleted from the number of 2-qubit gates in the original circuit. Suppose

that CNOT’s error rate for this IBM computer is 1.07%. If CNOT is used d2qubit times in

a row additionally, its updated error rate would be by 1 − (1 − e)(1 − 0.0107)d2qubit , where

e is the original error rate. Since both e and (1 − 0.0107)d2qubit are relatively small, we can

regard the error rate change as 1 − (1 − 0.0107)d2qubit . Therefore |d2qubit − δ2qubit| should be

less than log(1−0.0107)(1− t). δ2qubit is 11 when t is 0.1. The above thresholds and filtering

condition in Definition 3.4.1 are customizable according to hardware’s published error rates,

supported gate types, and T1 relaxation time.

3.4.3 Equivalence Checking via Distribution Comparison

Nondeterministic nature of quantum programs makes it difficult for equivalence checking.

Developers usually reason about the output of a quantum circuit by executing it multiple
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times to obtain a distribution. While numerous distribution comparison methods are well

studied in statistics, one consequent yet over-looked question for quantum computing is that

how many measurements do we need for a reliable evaluation to ensure the relative error

between two distributions is within a given threshold t with confidence p? We design a novel

equivalence checking component, which consists of: (1) a particular distribution comparison

method C, and (2) an estimation of the required number of measurements for C, given a

threshold t and confidence p. QDiff is equipped with K-S test and Cross Entropy, but is also

extensible to other comparison methods by providing a new comparison-specific measurement

estimation.

K-S Test [102] has been used to check the equality of distributions by measuring the

largest vertical distance between empirical distribution functions (EDFs) in two steps. First,

it creates the EDF for a given distribution by calculating the cumulative probability of

different outcome states with respect to the total number of samples. In Table 3.6, A1 and A2

are two state distributions for 1000 samples. A1 has 464 samples in state ‘0’ while 546 samples

in state ‘1’. Thus, the consequent EDFA1 indicates that the cumulative probability of A1

samples in state ‘0’ and state ‘1’ are 0.464 (464/1000) and 1 ((464+546)/1000) respectively.

Next, K-S test calculates the largest distanceD of EDFs for each state, and uses such distance

to quantify the difference of the original distributions under comparison. In Table 3.6, the

largest distance is 0.06 (|0.464− 0.500|) for state ‘0’.

QDiff evaluates this K-S distance with a user-defined threshold t. If the K-S distance

of two results is less than t, QDiff regards them as similar results. QDiff provides a

statistical guarantee on this comparison by estimating the required number of samples. For

two distributions d1 and d2 over m outcome states, prior work [50] theoretically ensures that,

with n = Ω(m1/2 · t−2) samples, a sample-optimal tester can check if the relative error of

L1 distance is within a threshold t when using a default confidence level of p=2/3. QDiff

estimates n using Equation 3.5. This estimated number is directly applicable to QDiff
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1 backend = BasicAer.get_backend(’qasm_simulator’)

2 info = execute(prog, backend=backend, shots=1024).result().get_counts()

Result: {‘0’: 475, ‘1’: 549}

(a) Quantum simulator.

1 backend = BasicAer.get_backend(’statevector_simulator’)

2 info = execute(prog, backend=backend).result().get_statevector()

Result: [0.70710678+0.j, 0.70710678+0.j]

(b) State-Vector simulator.

Figure 3.3: A quantum circuit in Qiskit with two backends: quantum simulator and state-

vector simulator.

because K-S distance is bounded by L1 distance [102]. In other words, Equation 3.5 calculates

the number of measurements required, parameterized with respect to p. We empirically

set p as 2/3, as it is a commonly used default in quantum volume measurement [27, 65],

bioinformatics, and other statistics comparison.

n = A · 1√
1− p

·m1/2 · t−2 (3.5)

where A is a platform-related constant and m is the number of qubit states. In Figure 3.3,

2828 measurement samples are needed, when we empirically set t = 0.1, p = 2/3, and A = 12

for Qiskit. In our evaluation, we empirically measure the constant A for each platform by

repeatedly running the same programs and compare the results.

Cross Entropy measures the difference between distributions via the total entropy. It

represents the average number of bits needed to encode data coming from an underlying

distribution q1 when we use an estimated target distribution q2.
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H(q1, q2) = −
max∑
x=0

q1(x) log q2(x) (3.6)

Prior work ensures that, with n = Ω(m2/3 · t−4/3) samples, the expected cross entropy

of two similar distributions over m outcome states can be bounded with t [50, 143]. t is

the difference from H(q1, q1). Similar to K-S test, QDiff estimates the number of required

samples to reliably satisfy this bound, as shown in Equation 3.7.

n = A · 1√
1− p

·m2/3 · t−4/3 (3.7)

For Figure 3.3, we need 420 measurements with t = 0.1, p = 2/3, and A = 7 for Qiskit.

This measurement trials are different from K-S test, because we are using different distance

metrics.

Comparison with Reference Distribution. After generating a group of equivalent pro-

grams and filtering out worthless circuits, QDiff executes the remaining circuits and calcu-

lates the average distribution from their results. QDiff will regard this average distribution

as the reference distribution. With the distribution comparison methods (eg. K-S Test,

Cross-entropy, etc), QDiff compares this reference distribution with each result distribu-

tion and reports divergence when the distance is larger than the threshold t.

Reporting Divergence Explanation. QDiff reports the potential source of the diver-

gence in program P :

1. If P finds divergence when using different backends while keeping a frontend’s options

unchanged, QDiff reports this as a potential backend source;

2. If P finds divergence when using a specific backend while varying a frontend’s options,

QDiff reports this as a potential frontend source;

3. Otherwise, QDiff reports this as other sources, such as a potential bug in the API

gate implementation.

37



Table 3.7: Seed subject programs

ID Program # of Moments 2-qubit Description Iteration Measurement

Qubits gate Number trial with t = 0.1

P1 X gate 1 1 0 one-qubit X gate 46 2000∼2828

P2 Deutsch-Jozsa 4 39 33 check if a function is balanced 95 5293∼7998

P3 Bernstein-Vazira 4 41 32 find a and b for f(x) = ax+b 121 5293∼7998

P4 Grover 5 84 53 find a unique input in a database 129 8000∼11312

P5 VQE 4 36 28 approximate the lowest energy level 171 5293∼7998

P6 QAOA 5 29 19 QAOA algorithm 168 8000∼11312

3.5 Evaluation

We evaluate the following research questions:

RQ1 How many syntactically different programs can be generated by QDiff’s mutation

and equivalent gate transformation?

RQ2 How much speedup can we achieve via filtering and obviating the need of invoking a

quantum simulator or hardware?

RQ3 What has QDiff found via differential testing of the widely-used QSSes?

Benchmarks. QDiff starts differential testing with five well known quantum algorithms

as seed programs [77, 145, 39, 123, 68] (Deutsch-Jozsa, Berstein-Vazira, VQE–Variational-

Quantum-Eigensolver, Grover, and QAOA–Quantum Approximate Optimization Algorithm)

and one additional program X Gate listed in Table 3.7. We do not use the relatively large

algorithms like Shor’s[145] because IBM’s public access can support up to 16 qubits only.

Large algorithms also require many moments and 2-qubit gates, often producing unreliable

results on quantum hardware.

Experimental Environment. We evaluate QDiff with three widely-used QSSes: Pyquil

2.19.0 with Quilc 1.19.0, Qiksit 0.21.0, and Cirq 0.9.0.
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We run the circuits on five different hardware versions based on their availability, includ-

ing ibmq_santiago, ibmq_yorktown, ibmq_16_melbourne, ibmq_belem. and ibmq_quito. The

details of hardware can be found on IBM’s quantum computing website [31]. We use K-S

test with t = 0.1 as the distribution comparison method.

3.5.1 RQ1: Variant Generation via S2S transformation

As shown in Figure 3.4a, for all six seed algorithms together, QDiff generates 730 program

variants through semantics-modifying mutations and generates the total of 14799 circuits

with equivalent gate transformation to each generated variant. This total circuit generation

process takes around 14 hours.

Take P2 Deutsch-Jozsa algorithm as an example. 95 different program variants are gen-

erated through semantics-modifying mutations. For each variant program, QDiff generates

20 logically equivalent circuits. For P2, the total generation for 2103 circuits takes around

2 hours, while the rest of differential execution via simulation or hardware execution takes

around 2 days. This implies that the bottleneck of testing is not about input program gen-

eration but the execution of the generated programs, which justifies our approach to select

which circuits are worthwhile to run.

3.5.2 RQ2: Speed Up

As shown in Figure 3.4b, after filtering, only 19%-42% of the generated circuits are retained

for differential execution on quantum hardware, leading to a 66% reductions in quantum

hardware or noisy simulator invocations. QDiff finishes the entire testing process within

around 17 days by leveraging its circuit selection process, which means QDiff would have

saved an additional 30 days of testing time by filtering.

Take QAOA as an example, when running on IBM quantum hardware, the experiment

would take around 7 minutes to wait in line on average (as launching a quantum job uses
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Figure 3.4: Statistics of QDiff-generated circuits.

a shared web service for a few IBM computers in the world) and 10 seconds to execute on

hardware. If users run all 3546 circuits, the total clock time would be 17 days. With filtering,

QDiff removes 68% circuits that are not worthwhile to run and finishes the execution in 7

days.

3.5.3 RQ3: What has QDiff found?

From the 730 sets of semantically equivalent circuits, QDiff found 33 differing outcomes out

of 730. 4 out of 33 are crashes in simulators. The remaining 29 cases are divergence beyond

expected noise on IBM hardware. By inspecting all 33 cases carefully, we determined total

6 sources of instabilities: 4 simulator crashes and 2 potential root causes that may explain
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Table 3.8: Bugs found by QDiff when executing generated programs with simulation only

Platform Bugs Description Source of Bugs

Cirq Program runs endlessly with some compiler settings Compiler Setting

pyquil

Simulator register wrong number of qubits Simulator Backends

Crashes on control gates on certain backends Gate implementation

Simulator stuck into a bad state Simulator Backends

25 out of 29 cases of divergence on IBM hardware. For the remaining 4 divergence cases, we

could not easily determine their underlying root causes.

3.5.3.1 Crash bugs in simulators

QDiff reports four crashes during differential testing with both noiseless and noisy simula-

tors. All divergences involve clear failure signals. All are due to bugs in compiler or simulator

implementations, summarized in Table 3.8. 2 out of 4 crashes were already reported by de-

velopers [5, 10] and 2 out of 4 crashes were confirmed by developers, when we filed crash

reports [11, 12].

Compiler option error: Given an arbitrary program in Cirq, when the compiler option

clear_span is set to a negative number or clear_qubits is set to an unregistered qubit, the

execution does not terminate. Cirq does not check the boundary values of compiler options
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1 qc = get_qc(’Aspen-0-3Q-A-qvm’)

2 result_rm = qc.run_and_measure(p)

(a) run_and_measure measures all 16 qubits in

device Aspen-0 when a simulator allocates 3

qubits, resulting in an exception.

1 p = Program(X(0), X(1).controlled(0))

2 qvm = PyQVM(n_qubits=2)

3 qvm.execute(p)

(b) Controlled X gate raises an error when 2

qubits are allocated for simulation.

Figure 3.6: Bugs in Pyquil found by QDiff.

and attempts to reset non-existing qubits. This bug was detected during explorations of

compiler settings. When these compiler options are set to the aforementioned values, QDiff

notices that the execution does not finish in a reasonable time, indicating a potential infinite

loop. QDiff found this bug on the 74th iteration with P3.

Backend registers a wrong number of qubits: QDiff found that Pyquil’s measure-

ment crashed on Aspen-0-xQ-A-qvm. In Pyquil, users can specify the quantum simulator to

have the same topology as a real 16 qubit device Aspen-0-16Q-A by setting the backend to

be Aspen-0-16Q-A-qvm (16Q refers to using 16 qubits in simulation). However, QDiff found

that when a user allocates to use 3 qubits in simulation (line 1 in Figure 3.6a) but attempts

to conduct measurements at line 2 using run_and_measure, Pyquil simulator crashes due to a

wrong number of allocated qubits. This bug was found with QDiff’s backend exploration.

Another user reported the same issue on Pyquil’s Github [5].

Simulator is stuck into a bad state: Pyquil’s simulator raises an exception when taking

an empty circuit as input. Afterward, all subsequent invocations to the simulator crash even

when the input circuit is valid and not empty. QDiff detects this bug by mutating an input

program to an empty program and executing it on both pyqvm simulator and state-vector

simulator. While the state-vector simulator runs this empty circuit normally, pyqvm throws

an exception. Then, QDiff generates an arbitrary non-empty program. In the next few
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iterations, QDiff finds this bug because pyqvm crashes, while the state-vector simulator does

not.

Wrong type of the controlled gate: Figure 3.6b shows a scenario where Pyquil crashed

when a control X gate was used on pyqvm with 2 qubit allocation. The exception message

shows “ValueError: cannot reshape array of size 4 into shape (2,2,2,2)”. A control X gate

should be a 2-qubit gate (which is 4 × 4 matrix), but the gate was represented as 1 × 4 by

pyqvm, which is a bug. This bug was found in the 15th iteration with P1 as a seed.

3.5.3.2 Divergences on real hardware

Figure 3.5 reports the total numbers of circuits executed on quantum hardware and those

that exhibit behavioral divergence. The rate of latter is relatively low (0.3%-0.8%), which

demonstrates the robustness of the quantum software and hardware we tested—this is not

surprising since such software and hardware has been widely used and continuously improved

for a number of years. On the other hand, these results also highlight the need of a systematic

testing framework such as QDiff for quantum developers—since quantum bugs are rare and

hard-to-detect, developers should test their programs/tools exhaustively with a QDiff-like

approach before releasing them.

For 29 divergence cases on IBM hardware, we manually inspected the corresponding

circuits. We then determined 2 root causes that may explain 25 out of 29 cases. For the

remaining 4 cases, we could not easily determine underlying root causes. We discuss each

root cause with examples in this subsection.

Divergence due to 2 qubit gate errors We concluded that 1, 2, 6, and 7 divergences in

P1, P3, P5, and P6 respectively—55% of all divergences detected on hardware in total—can

be explained by placing many 2 qubit gates between so called couplers qubits. IBM released

the reliability of connection between each qubit pair on their hardware [31]. For example,
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Figure 3.7: Divergence on IBM ibmq_yorktown: no operation on qc4 for a long time.

in hardware santiago, mapping CX between physical qubits {2, 3} is less reliable than

mapping CX between qubits {1, 2} [31]. We found 16 out of 29 divergences could have the

same underlying cause of using CX between known, unreliable qubit connections. These

errors could be reduced through improved mapping to 2-qubit gates or using other strategies

such as randomized compilation [158, 80].

Consider the two equivalent circuits shown in Figure 3.8, generated from P6 QAOA.

These two circuits generated divergent measurements on santiago, although both circuits

have nearly the same moments and the same number of 2-qubit gates. This is because

the CX error rate of physical qubits 2 and 3 is much higher than qubits 1 and 2 (77%

higher according to published information from IBM [31]). It appears that Qiskit’s logical

to physical qubit mapping procedure does not always avoid the use of CX on qubits 2 and 3

in their compilation and qubit allocation steps. Thus, Figure 3.8a produces divergence from

Figure 3.8b.

Divergence due to qubit dephasing & decoherence: 9 of 29 divergences—2, 3, 2,

and 2 divergences in P2, P4, P5, and P6—could have the same underlying cause of qubit
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Figure 3.8: Divergence detected on IBM hardware: bad connection between qc 2 and qc 3.

dephasing & decoherence. Qubits that remain idle for long periods tend to dephase and

decohere [15]. Figure 3.7 shows a pair of circuits with a similar depth and a similar number

of 2-qubit gates. However, when run on hardware ibm_belem, the pair produces divergences

beyond expected noise. We speculate that, when no operation is applied to physical qubit 4

for 18 moments, it may increase dephasing and decoherence possibilities. This can by fixed

by adding two successive Pauli Y gates [131] on idle qubits during the compilation phase [15].

Others: For the other 4 divergences, we could not easily determine the underlying root

causes. Because the circuit moments and the number of CX gates are roughly the same with

their equivalent groups, stochastic errors in hardware can mostly be ruled out. The problem

could be low-level quantum control software bugs that emerge from different combinations

of gates, resulting in different control / coherent errors introduced at the pulse level.
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3.5.4 Threats to Validity

Lack of Error Correction: The number of divergences on quantum hardware found by

QDiff would depend on the reliability of hardware and its error correction capability. If it

were to run on an error-corrected quantum hardware, which does not exist yet, it may report

fewer divergences and it would be easier to disambiguate whether divergences are caused by

software-level defects as opposed to hardware-level defects.

Similarly, 2-qubit gate errors depend on which qubit connections that the gates are

applied to, Therefore, it may be necessary to adjust the divergence threshold t based on the

empirical 2 qubit error rates for each connection and how many times the 2 qubit gates are

used on that connection. Such impact of 2 qubit error rates must be investigated further.

Time Out: In fuzz testing, longer experimentation periods tend to expose more errors or

new program execution paths [101]. The total time taken for all our experiments was limited

to seven days.

Number of Qubits: The maximum number of qubits that we used for our experiment was

5 qubits, because the only publicly available hardware limits public access up to 16 qubits

and the waiting time tends to increase significantly, as you request more qubits. Running

experiments on Google’s sycamore processor with 53 qubits and 1000+ 2q gates may produce

different results [126].

3.6 Discussion

Quantum computing has emerged to be a promising computing paradigm with remarkable

advantages over classical computing. QDiff is the first to reinvent differential testing for

quantum software stacks. It adapts the notion of equivalence checking to the quantum

domain, redesigns underlying program generation and mutation methods, and optimizes
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differential testing to reduce compute-intensive simulation or expensive hardware invocation.

It is effective in generating variants, reduce 66% unnecessary quantum hardware or noisy

simulator invocations, and uses divergence to isolate errors in both the higher and lower

levels of the quantum software stack.

MorphQ [133] and QuteFuzz [95] have built upon the foundations laid by QDiff to en-

hance the reliability of quantum software stacks. MorphQ introduces a program generator

that produces a diverse set of valid quantum programs while leveraging the same equivalent

program transformation techniques as QDiff. QuteFuzz, on the other hand, focuses on gen-

erating random quantum programs with higher-level abstractions, such as subroutines and

complex control flows (e.g., if-else, switch statements). While QuteFuzz operates at a dif-

ferent level of abstraction, it shares the same test generation strategy as QDiff, reinforcing

the effectiveness of structured test generation in detecting quantum compilation issues.

Beyond testing quantum software stacks, I have also explored fuzz testing techniques

specifically targeting quantum programs [162]. Potential future directions for debugging

quantum software are discussed further in Section 6.2.

A key insight from QDiff is that a deep understanding of hardware enables more efficient

testing approaches. But can we go beyond merely understanding the hardware? Instead of

just optimizing for hardware constraints, can we actively leverage the hardware itself to ac-

celerate the testing process? Given the current resource limitations and access challenges

associated with quantum hardware, we shift our focus to FPGAs, which offer greater accessi-

bility, flexibility, and opportunities for hardware-accelerated testing. In the next chapter, we

introduce HFuzz, an approach that pushes this idea further—utilizing hardware acceleration

to enhance the efficiency of software testing.
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CHAPTER 4

HFuzz: Redesign Fuzz Testing for Heterogeneous

Computing

Testing methodologies like QDiff have demonstrated that a deep understanding of hardware

can significantly enhance software testing efficiency. By minimizing unnecessary hardware

invocations and strategically leveraging quantum-specific properties such as qubit decay

time (T1), error rates, and circuit depth, QDiff optimizes the testing process for quantum

software stacks. However, while these optimizations reduce overhead and improve efficiency,

they primarily focus on making better use of existing hardware constraints. A natural next

step is to move beyond passive optimizations and actively harness hardware acceleration to

improve the testing process itself.

Traditional software testing, particularly fuzz testing, often struggles with heterogeneous

architectures due to the complex interplay between software and hardware execution mod-

els. Many existing fuzzing techniques rely on iterative input mutation, which can be com-

putationally expensive and inefficient when applied to hardware-accelerated applications.

Furthermore, testing heterogeneous applications involves both host-side execution (CPU)

and kernel execution (accelerators like FPGAs and GPUs), creating a disconnect between

software-driven fuzzing strategies and hardware execution behavior. To bridge this gap, we

need a fuzzing approach that is hardware-aware and hardware-accelerated.

In this chapter, we address the following research question: How can we utilize hardware

accelerators to generate execution feedback and accelerate test input generation? To address

this problem, we investigate the sub-hypothesis: By understanding and leveraging the FPGA
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accelerators, we can build efficient fuzz testing for heterogeneous applications. We introduce

HFuzz, a novel approach that leverages FPGA hardware not only as a testing target but

also as a computational resource to accelerate the fuzzing process.

4.1 Introduction

Ensuring the correctness of heterogeneous applications, even seemingly simple kernels run

on FPGA, could take a substantial amount of time in terms of months [140]. As such,

FPGA programming can be done by only a small handful of hardware experts [103, 141, 35].

Automatic fuzz testing of heterogeneous applications, together with root cause analysis of

failures, can greatly simplify FPGA programming, thereby making FPGAs accessible to the

masses. However, testing these heterogeneous applications can remain a significant challenge

due to the following reasons:

Lack of Observability. FPGA is a device of massive parallelism. Little debugging support

exists to help high-level programmers. Kernels run on an FPGA device as black boxes, and

it often confuses programmers, e.g., when the kernels silently deadlock.

Costly Transfer of Data with High Redundancy. Traditional iterative fuzzing tech-

niques often mutate a small part of a seed input to generate new inputs. While this approach

works well for many CPU programs, it is extremely ineffective for applications that are run

on heterogeneous architectures. Figure 4.1 illustrates the latency breakdown of running ap-

plications on Intel’s heterogeneous architecture. On average, data transfer from CPU to

hardware kernels takes 60% of the execution time.

Overlooked Opportunities for FPGA-level Optimizations.

Fuzzing heterogeneous applications may be approached in a näıve manner by treating hard-

ware kernel invocations as analogous to software function calls and repeatedly invoking them

from an iterative input mutation loop. However, this approach ignores the potential opti-

mizing capability of FPGA, as the mutations often consist of independent tasks that can be
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Figure 4.1: Latency breakdown of running applications on heterogeneous archi-

tectures. On average, data transfer into kernels takes 60% of execution time,

highlighted in gray.

parallelized efficiently when offloaded to the FPGA side.

To address these challenges, we propose a novel fuzz testing technique, HFuzz, to enable

efficient testing on real heterogeneous architectures. HFuzz aims to increase both the observ-

ability of hardware kernels and testing efficiency through a three-pronged approach. First,

HFuzz automatically generates test guidance by inserting device-side in-kernel hardware

probes in addition to host-side software monitors. Second, it performs rapid input space

exploration by offloading compute-intensive input mutations to hardware kernels. Third,

HFuzz parallelizes fuzzing and enables fast on-chip memory access, by utilizing four FPGA-

level optimizations including loop unrolling, shannonization, data preloading, and dynamic

kernel sharing.

We evaluate HFuzz on seven open-source OneAPI subjects from Intel. HFuzz speeds
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up fuzz testing by 4.7× with HW-accelerated input space exploration. By incorporating HW

probes in tandem with SW monitors, HFuzz finds 33 defects within 4 hours and reveals 25

unique, unexpected behavior symptoms that could not be found by SW-based monitoring

alone. HFuzz is the first to design hardware optimizations to accelerate fuzz testing.

4.2 Background

1 for(int s = 1; s <= nsteps; ++s) {

2 ...

3 // Kernel: calculate velocity

4 h.parallel_for(n, [=](item<1> i){

5 acc0=0; acc1=0; acc2=0;

6 #pragma unroll factor=2

7 for(int j=0; j<n; j++) {

8 if (j==i) {continue};

9 int8 dx, dy, dz;

10 dx = p[j].pos[0]-p[i].pos[0];

11 dy = p[j].pos[1]-p[i].pos[1];

12 dz = p[j].pos[2]-p[i].pos[2];

13 int8 sqr=dx*dx+dy*dy+dz*dz;

14 acc0+=(kG*p[j].mass/sqr)*dx; //calculate acceleration

15 acc1+=(kG*p[j].mass/sqr)*dy;

16 acc2+=(kG*p[j].mass/sqr)*dz;}

17 p[i].vel[0]+=acc0*dt; //calculate velocity

18 p[i].vel[1]+=acc1*dt; p[i].vel[2]+=acc2*dt;});

19 });

Figure 4.2: Nbody-simulation: a heterogeneous version with DPC++ high-level

synthesis.
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4.2.1 Heterogeneous Applications with FPGA

Driven by performance and energy benefits, heterogeneous computing applications [43] con-

tain code that is executed on different kinds of processors such as CPU, GPU, and FPGA.

FPGAs are field programmable gate arrays. Modern FPGAs include millions of look-

up tables (LUTs), thousands of embedded block memories (BRAMs), thousands of digital

signal processing blocks (DSPs), and millions of flip-flop registers (FFs) [169]. Intel provides

CPU+FPGA multi-chip packages; with its recent acquisition of Altera, such integration is

expected to be even tighter in the future. FPGA has made its way into modern data centers,

including Microsoft’s Azure, Amazon F1, and Intel DevCloud [175, 33, 89].

A heterogeneous application typically consists of host code executed on the CPU and

kernel code to be synthesized and executed on FPGA or GPU. Host code initializes the

device, allocates the device memory, transfers data to the device, and invokes the compute-

intensive kernel on the device side. After the execution, it transfers the kernel output back

to the host and deallocates the memory.

To simplify kernel development, high-level-synthesis (HLS) [61, 75] lifts the abstraction of

hardware development by automatically generating register-transfer level (RTL) descriptions

from code written in C-like dialects. One example of HLS C/C++ dialects is Intel’s Data

Parallel C++ (DPC++), a cross-platform abstraction layer that enables code to be targeted

to different CPUs, GPUs, and FPGAs [139, 138]. With DPC++, users can specify which

hardware platform to implement a kernel on. For example, a user may use a compiler flag

-Xsboard=intel_s10sx_pac to select Intel’s FPGA S10. The user can develop a kernel

function f, calling h.parallel_for(n,f) with a job handler h. This handler executes f

with n degree parallelism on FPGA S10. Consider the example in section 4.2.2.
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4.2.2 An Illustrating Example: Nbody-simulation

Figure 4.2 illustrates the simulation of n particles moving over a sequence of nsteps. Lines

10-12 calculate the distance between particles, while Lines 14-16 calculate the acceleration.

In lines 17-19, the program subsequently updates the particles’ velocities based on the ac-

celeration. These computations are extracted as compute-intensive kernels and offloaded

to an FPGA. To enable parallelism and speed up the velocity calculation, the developer

uses h.parallel_for and loop unrolling #pragma unroll factor=2 (highlighted in red) at

Lines 4 and 6.

When writing a heterogeneous application, a user must conservatively estimate the limit

of hardware resources and specify bitwidths for custom types and the size of buffers and pipes

because all hardware resources are finite. Due to the need to finite hardware resources, a

heterogeneous application often contains defects that cannot be detected statically via static

analysis. This is a problem that universally exists with all HLS languages. To illustrate,

consider the real defects in the Nbody-simulation.

Divide By Zero in Nbody-Simulation. For code in Figure 4.2, with the input

p.pos=[(1,2,4),...,(1,2,4)] , the velocity calculation on an FPGA A10 device using Intel

DevCloud produces absurdly large numbers p.vel=[(-214748364,..),..] . This is because,

when the kernel inputs contain two particles with the same position, a divide-by-zero may

happen inside the kernel in Lines 16-18 due to sqr=0 at Line 15.

Overflow in Nbody-Simulation. When the kernel calculates the acceleration of two

particles in Figure 4.2, an in-kernel overflow could occur if two particles are close to each

other (i.e., sqr≈0 at Line 15). This is because when sqr is close to zero, acc becomes

large. When the inputs p.pos=[(81,0,0),(81,1,0),(81,0,1),...] are sent to the velocity

calculation kernel, it produces a small value for sqr=1, leading to overflow for the variables

acc1; finally, the wrong result is sent back to the host.

State-of-the-Art. Grey-box fuzzing [182] generates program inputs based on per-iteration
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execution feedback. Suppose that a user uses grey-box fuzzing to monitor the value range of

the inputs and outputs of kernels on the host-side (CPU) code. For the divide-by-zero bug

that could occur in Figure 4.2, because sqr is an in-kernel variable and does not appear in

the host code, software-side grey-box fuzzing [182] cannot easily reveal defects that originate

from the inside of the kernel.

HFuzz addresses the limitations of existing work by utilizing hardware probes to monitor

the intermediate states of kernels. HFuzz identifies the in-kernel local variable sqr at Line

13 and inserts hardware probes to track its value range. The input generation process is

then optimized by prioritizing inputs that result in new minimum or maximum values of

sqr. As a result, HFuzz is able to effectively detect overflow when sqr reaches the small

value sqr=1 and divide-by-zero defects when sqr reaches its minimum value 0.

4.3 Approach

HFuzz aims to find inputs that can trigger both in-kernel errors and host-side errors for

heterogeneous applications written in Intel’s DPC++ HLS [88]. HFuzz contains three novel

components that work in concert: (1) in tandem monitoring of software and hardware feed-

back by injecting software monitors and in-kernel probes (Section 4.3.1); (2) offloading input

mutations to hardware kernels (Section 4.3.2), and (3) FPGA-level optimizations to speed up

iterative input generation and kernel invocation (Section 4.3.3). HFuzz’s design builds on

two key insights. First, hardware-level parallelism can bring notable performance enhance-

ment for iterative fuzzing, which is often characterized by independent task-level parallelism.

Second, grey-box fuzzing’s effectiveness can be significantly improved by observing feedback

signals from both hardware and software.

The Fuzzing Process. The overall workflow of HFuzz is shown in Algorithm 1. HFuzz

takes as input a program p written in Intel’s DPC++ and produces concrete inputs that

trigger defects in p. HFuzz first applies a source-to-source transformation to p to produce
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Algorithm 1 Fuzzing Workflow

Require: Program p, Input Generator Set S, Mutation Operator Set O
1: procedure FuzzingLoop(p, S)
2: p′ ← instrument(p)
3: Feedback ← ∅
4: for i = 1 to max do
5: G← S.select input generator()
6: in′ ← random select(G)
7: FHW , FSW ← p′.host, in kernel mutate execute(in′, O)
8: for all F ∈ {FHW ∪ FSW } do
9: if F /∈ Feedback then
10: increase prob(S, G)
11: good input← regenerate(F.m, in′)
12: G← G ∪ {good input}
13: Feedback ← Feedback ∪ {F}
14: end if
15: end for
16: end for
17: end procedure

Require: Kernel Input ks, Mutation Operator Set O
Ensure: FHW : Queue of triples (f,m, out) where f is kernel feedback, m is mutation, and out is

kernel output
18: procedure In Kernel Mutate Execute(ks, O)
19: Inqueue ← ∅
20: for i = 1 to MAX do
21: o← select op(O)
22: s← random generate()
23: e← random generate()
24: m← {(o, s, e)}
25: Inqueue ← Inqueue ∪mutate input(o, s, e, ks)
26: end for
27: FHW ← ∅
28: for all in ∈ Inqueue do
29: (f,m, out)← ExecuteOnDevice(in)
30: FHW ← FHW ∪ (f,m, out)
31: end forreturn FHW

32: end procedure
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Table 4.1: Mutations accelerated by hardware.

Average

Category Description SW Mutations In-kernel Mutations Speedup

M1 Sparsity Replace non-zeros with zeros from for i in s..e do # pragma unroll 4.31×

Mutation index s to e, or do the opposite {vector[i]=0} for i in s..e{vector[i]=0});

M2 Copy Replace each element from index s to e for i in s..e do # pragma unroll 3.98×

Mutation with element at s {vector[i]=vector[s]} for i in s..e{vector[i]=vector[s]});

M3 Addition Add constant a to each element for i in s..e do # pragma unroll 3.21×

Mutation from index s to e {vector[i]+=a} for i in s..e{vector[i]+=a});

M4 Bit Mutate an element with binary XOR for i in s..e do # pragma unroll 4.42×

Mutation given a constant x {vector[i]^= (1<<x)} for i in s..e {vector[i]^= (1<<x)});

an instrumented version p′, by inserting in-kernel probes and software monitors that can

guide fuzz testing. HFuzz selects an input generator G from a set of generator S. It then

randomly offloads a random seed input in′ from G’s seed queue into the kernels. To generate

new inputs, HFuzz creates a new mutation kernel job in addition to the original kernel, and

utilizes parallelism within FPGAs to mutate the input locally. The target function directly

accesses the new input from local memory. In this process of input mutation and target

execution, HFuzz incorporated four FPGA level optimizations for performance efficiency.

As shown in Algorithm 1 at Lines 10-15, inputs that advance either software or hardware

feedback are saved to the input queue as good input for the next fuzzing iteration. If a

new input generated by generator G results in new feedback, G will be considered a favored

generator and its activation probability will be increased with INCREASE PROB(S,G)

at Line 11.

4.3.1 Injecting HW Probes in addition to SW Monitors

HFuzz, for the first time, directly introduces application-specific observability to hardware

kernels by inserting hardware probes. It leverages these kernel probes in tandem with

software-level monitors to form effective feedback signals to stretch heterogeneous appli-

cation behavior.
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1 //First kernel...

2 h.parallel_for(range(M, P), [=](auto index) {

3 int sum = 0;

4 #pragma unroll factor=2

5 for (int i = 0; i < num_element; i++) {

6 sum += a[index[0]][i] * b[i][index[1]];

7 if (min_sum>sum) min_sum=sum;

8 if (max_sum<sum) max_sum=sum;}

9 bool flag;

10 KToKPipe::write(sum, flag);

11 KToKPipeSize++;//Pipe usage Probe

12 DeviceToHostKToKPipe::write(KToKPipeSize);

13 DeviceToHostMax_sum::write(max_sum);//sum’s Value Range Probe

14 DeviceToHostMin_sum::write(min_sum);});});

15 //Second kernel...

16 h.single_task([=]() {

17 for (size_t i = 0; i < number_element; ++i) {

18 out[i] = KToKPipe::read();

19 KToKPipeSize--;//Pipe usage Probe

20 DeviceToHostKToKPipe::write(KToKPipeSize);

21 out[i] = reciprocalTransform(output[i]); }});});

22 for(int i=0; i<number_element; i++) {//SW monitor for kernel output

23 outmin=min(outmin, output[i]);

24 outmax=max(outmax, output[i]);}

Figure 4.3: Matrix transform: inserted Value Range Probes are in the green rectangle.

InsertedPipe Usage Probes are in the red rectangles. Inserted SW Monitors are in the

orange rectangle.

Hardware Probes. While OS virtualization could provide the appearance of unbounded

resources for the code executed on traditional CPUs, kernel functions are physically mapped

to resource-limited heterogeneous architectures. This distinction leads to unique failures that
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are often induced by resource limitations on the device-side, which are not easily detectable

when running software simulators. For example in Figure 4.2, a local variable sqr customizes

regular integers to 8-bit integers for resource efficiency. Overflow conditions can occur if

the variable’s value exceeds its customized bitwidth. As another example, pipe saturation

between two consecutive kernel functions can lead to read and write failures. In fact, such

incorrect intermediate computation states within hardware kernels have been identified as the

primary reason for hardware-originated bugs. HFuzz takes advantage of this observation,

identifies local variables within kernels that hold intermediate states, and injects hardware

probes to expose potential failures in kernel.

HFuzz automates the process of hardware probe insertion through source to source

transformation, creating an instrumented kernel. From such instrumented kernel, interme-

diate states in the HW device are sent directly to the host code using dedicated host-kernel

communication channels. The channels are implemented as global FIFO buffers and can

be accessed from both the host and the kernel. The kernel side writes hardware feedback

into the channels, while the host side reads information from the channels. Both read and

write operations are non-blocking, in order to minimize any additional overhead to the orig-

inal kernel logic. To expose intermediate computation states, HFuzz identifies in-kernel

local variables and pipe usage via a C/C++ AST analysis [38]. As shown in Figure 4.3,

in-kernel variable sum is highlighted in green, and pipe usage is highlighted in red. With

a focus on in-kernel local variable and pipe monitoring, HFuzz aims to uncover the two

most commonly seen errors in custom hardware accelerators: overflows resulting from the

resource and bitwidth finitization, as well as read/write failures caused by communication

pipe saturations.

• Value Range Probe: HFuzz creates a value range monitor that checks the maximum and

minimum value for each in-kernel variable. In Figure 4.3, HFuzz inserts probes on the

intermediate variable sum which saves the cumulative sum of the product

a[index[0]][i]*b[i][index[1]]. These probes monitor the minimum and maximum value
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of sum. HFuzz also constructs channels DeviceToHostMax_sum and DeviceToHostMin_sum

to send these captured values back to the host at Line 13-14.

• Pipe Usage Probe: HFuzz creates a pipe usage monitor for each communication pipe.

Consider the same example in Figure 4.3. HFuzz uses an AST analysis tool [38] to identify

the locations of two kernel functions: matrix_multiply at Line 1-14 and transformer

Line 16-21. We identify the variable name, KToKPipe used for pipe-based data transfer

between the two kernels. By using KToKPipe::write() and KToKPipe::read(), the first

kernel writes its result sum at Line 10 and the second kernel reads the value from this

pipe at Line 18 in Figure 4.3. HFuzz applies source to source transformation to inject

a counter-based usage monitor for this pipe and update the counter KToKPipeSize at

Line 11 and Line 19 in Figure 4.3. Then HFuzz sends this counter value to the host by

creating another direct communication channel, called DeviceToHostKToKPipe at Line 12

and Line 20.

Software Monitors. In addition to in-kernel probes, HFuzz inserts a set of software

monitors on the host side, specialized to the custom FPGA accelerator synthesized on the

device. We monitor: (1) the number of loop iterations, because it is related to pipelining

and loop unrolling, common optimizations for parallelization implementation on FPGA; (2)

the value range of each kernel input and output; (3) the kernel execution time, as hang or

unexpectedly slow execution could be an indicator of failures. HFuzz retrieves the time and

loop unrolling information from the HLS compilation report generated by DPC++. Besides,

to monitor the value range of each kernel input and output, HFuzz inserts a value range

monitor before and after each kernel, as shown in Lines 22-24 of Figure 4.3.

4.3.2 Offloading Input Mutations to Kernels

The traditional fuzzing process involves repeatedly mutating seed inputs and feeding them

into a target program. The implicit assumption underlying such mutations is that seed
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inputs can be mutated and sent to the target program fast. Unfortunately, this assumption

does not hold true for heterogeneous applications. Inputs to heterogeneous applications are

often large matrices, leading to significant data transfer overheads between CPU and FPGA.

We observe that local data transfer—data transfer within FPGAs, consumes less than 89%

of the time required for data transfer between the fuzzer and the kernel. Additionally, in

the process of fuzzing, a variety of independent mutation operations are frequently employed

on small segments of the same seeds with the aim of exploring the input space. Thus, we

can avoid repetitive data transfer by offloading the seed inputs to hardware kernels and

mutating them directly within FPGAs. To achieve this, HFuzz creates a dedicated kernel

for mutations in parallel to the original kernel, as well as a segment of on-chip memory for the

storage of seeds and newly generated inputs. The mutation kernel and the original kernel

function are both synthesized to the FPGA hardware concurrently. Table 4.1 shows four

supported mutation operators. Because mutation operators are all order-independent and

deterministic, HFuzz modifies all elements in the seed input at once. A resulting input can

be re-generated given the seed and a concrete instance of mutation.

Consider Figure 4.3 as an example. The first kernel code computes the matrix product

with two input matrices. We show how HFuzz tracks the feedback and mutates the input

step by step in Table 4.2. With the initial seed input offloaded to the kernel, HFuzz tracks

hardware feedback from the in-kernel variable sum at Line 2 by the inserted in-kernel probes

in the green rectangle (column Hardware Probes in Table 4.2). After we apply the M3

Addition Mutation with loop unrolling optimization, from the starting offset s=1 to the

ending offset e=4 on array a, a greybox fuzzer that only monitors the value range for the

kernel interface variables a and b would discard the input[-20,5,7,7,9,20]because it does not

achieve a new value spectra at the software level. However, HFuzz saves the corresponding

mutation information, since this input registers a new feedback at the hardware level for the

in-kernel variable sum.
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Table 4.2: Example execution of input generator G.

Mutation Kernel Hardware Probes Software Monitors New Value Over- Save Memorization

ID Operator Inputs Variable Min Max Min Max Range flow Input HW Range SW Range PG

Seed N/A sum -56 168 N/A No N/A [-56,168] 0.25

a[][1]=[-20, 2, 4, 4, 6, 20] a -20 20 N/A [-20, 20]

b[1][]=[1, -10, -4, -14, 28, 0] b -14 28 N/A [-14, 28]

1 M3 sum -202 54 Yes No Yes [-202, 168] 0.3

start s=1 a[][1]=[-20, 5, 7, 7, 9, 20] a -20 20 No [-20, 20]

end e=4 b[1][]=[1, -10, -4, -14, 28, 0] b -14 28 No [-14, 28]

2 M2 sum -70 140 No No No [-202, 168] 0.25

start s=1 a[][1]=[-20, 5, 5, 5, 5, 20] a -20 20 No [-20, 20]

end e=4 b[1][]=[1, -10, -4, -14, 28, 0] b -14 28 No [-14, 28]

3 M3 sum 20 -140 No Yes Yes [-202, 168] 0.3

start s=1 a[][1]=[-20, 8, 10, 10, 12, 20] a -20 20 No [-20, 20]

end e=4 b[1][]=[1, -10, -4, -14, 28, 0] b -11 28 No [-14, 28]

4.3.3 FPGA Optimizations for Fuzzing

Traditional fuzz testing can be näıvely applied to heterogeneous applications by treat-

ing hardware kernel invocations as equivalent to software function calls. However, such

straightforward application of software-style fuzzing results in severe performance inefficien-

cies. In heterogeneous applications, there is a distinct opportunity to utilize hardware micro-

architecture level optimizations to accelerate the traditional fuzzing process. Both iterative

matrix mutations and target executions involve independent tasks, enabling task-level par-

allelism.

HFuzz applies four FPGA optimizations to accelerate iterative matrix mutations and

target execution, including loop unrolling, shannonization, local memory access, and dynamic

kernel sharing. These optimizations are not specific to HFuzz or Intel’s heterogeneous ar-

chitecture, and thus also are applicable to other applications on other FPGAs. For instance,

loop unrolling is a technique that can be used to optimize iterative computations that do not

have significant data dependencies between iterations, and it can be applied independently

of the specific FPGA platform.

1. Dynamic Kernel Sharing. In traditional fuzzing, the difficulty of testing often arises

from the need to explore deep branches within the program. However, when testing het-
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1 for (int i = s; i < e; i++) {

2 if (A[i]==0) {A[i] = generate_number(seed);}}

(a) Original mutation

1 int local_A[e-s];

2 #pragma unroll factor=4

3 for (int i = 0; i < e-s; i++) {local_A[i] = A[i+s];}

4 int t = generate_number(seed);

5 for (int i = 0; i < e-s; i++) {

6 if (local_A[i]==0) {

7 local_A[i] = t;

8 t = generate_number(seed);}}

9 #pragma unroll factor=4

10 for (int i = 0; i < e-s; i++) {A[i+s] = local_A[i];}

(b) Optimized mutation in kernel

Figure 4.4: Sparsity mutation: replace the zero elements to non-zero elements from index s

to index e.

erogeneous applications, errors tend to occur due to variations in the range of values for

in-kernel variables and resource usage. This presents a significant challenge of rapid input

space exploration especially when inputs are large matrices.

We propose a dynamic, probabilistic kernel-sharing method to interleave the exploration

of input search space originating from multiple seeds in heterogeneous applications. To

implement this method, HFuzz employs four input generators that share the same target

kernel and each has its own seed queue. These input generators start with different seed

inputs and, during each iteration, one generator is chosen based on an activation probability

array. The selected generator then picks a seed input from its queue, mutates it within the

kernel, and sends the generated input to the target kernel function via on-chip memory on

the device. If the generated input results in new feedback, it is saved in the generator’s seed
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queue for use in future fuzzing iterations.

HFuzz utilizes an adaptive approach to input generation by selecting an input gener-

ator and its associated seed queue based on an activation probability array. The selection

process involves evaluating the performance of each generator and adjusting its probabilities

accordingly. For instance, if a new input generated by generator G results in new feedback,

it will be considered a favored generator and its activation probability will be increased.

Otherwise, it will be labeled as an inactive generator and its activation probability will be

decreased. This approach allows for efficient input space exploration and ensures that the

test generation is focused on areas that are likely to yield new feedback:

PG =



PG + α if G is chosen and HFuzz

gets new feedback

PG − α
l−1 if G is not chosen and HFuzz

gets new feedback

PG − α if G is chosen and HFuzz

gets no new feedback

PG + α
l−1 if G is not chosen and HFuzz

gets no new feedback

(4.1)

In our experiment, we set the number of generators l to be 4. The initial activation proba-

bility for each generator PG is set to 1/l = 0.25. The update factor α is predefined as 0.05.

In Table 4.2, in the second execution (ID 2), inputs generated by generator G increased the

hardware monitor range. As a result, HFuzz increases the activation probability of G from

0.25 to 0.25+α = 0.3.

2. Data Preloading [91]. Matrix mutation on large matrices requires a significant amount

of data read and write operations. To improve efficiency, it is crucial to minimize memory

access time for input vectors or matrices. Many heterogeneous computing systems, such as

Intel oneAPI, have both global memory that can be accessed by both kernel and host code,
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and on-chip local memory that is only accessible by kernel code. Accessing local memory

within the kernel typically has a shorter latency than accessing global memory. We thus

apply data preloading to transfer data from global memory to local memory.

In Figure 4.4b, HFuzz reduces memory access costs (highlighted in red) by transferring

data from array A to the local array local_A. This results in a reduction of memory access

cost as seen at Lines 6-7 in the optimized code, compared to the original code in Figure 4.4a

at Line 2. This optimization leads to a 1.31x speedup in the mutation process.

3. Shannonization [90]. Sparsity mutation replaces zero elements with non-zero elements.

It necessitates the implementation of a null check for each element in the matrix. As shown

in Line 2 of Figure 4.4a, an if statement is added to accomplish this. However, this if

statement induces extra hardware overhead, as it increases the delay in the critical path.

Each time the if condition is satisfied (i.e. A[i]==0), the operation generate_number

needs to be computed, which can slow down the overall performance.

Shannonization improves performance by precomputing operations within a loop and

removing them from the critical path. In this example, HFuzz applies shannonization

(highlighted in green in Figure 4.4b) by precomputing the operation generate_number at

Line 4, and removing it from the critical path inside the branch at Line 6. Then HFuzz

precomputes the next value of t = generate_number at Line 8 for a later iteration of the

loop to use when required (that is, the next time local_A[i]==0). This precomputation can

be done simultaneously within the loop, allowing for a reduction in the critical path delay

and leading to a 1.24x speedup in the sparsity mutation process.

4. Loop Unrolling [92]. Software-style mutations on large vectors and matrices are often

performed by modifying one or some particular elements. Line 2 in Figure 4.4a shows an

example mutation based on a for loop. Such direct application of loops on hardware neglects

the potential for hardware parallelism, resulting in inefficient use of hardware resources.

Loop unrolling improves performance by creating multiple copies of the loop body, thus
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Figure 4.5: Number of Defects

the required number of iterations is reduced. In the example shown in Figure 4.4b, the

#pragma unroll directive (highlighted in orange) causes the kernel to unroll the loop by a

factor of 4, as specified by the factor=4 argument. The compiler then expands the pipeline

by quadrupling the number of operations and loading three times more data. This results

in a 4x speedup of the loop process.

4.4 Evaluation

We evaluate the following research questions:

RQ1 How much improvement in defect detection capability is achieved by incorporating

both device-side feedback and host-side feedback in HFuzz?

RQ2 How much speed-up is achieved by in-kernel input mutations?

RQ3 How much speed-up is achieved by FPGA-level optimizations for fuzzing?

RQ4 How much overhead is incurred by injecting hardware probes in HFuzz?

To assess the improvement in defect detection and fuzzing acceleration, we compare

HFuzz against four baselines.
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1. Alternative 1 NaiveFuzz: This option uses branch-coverage guided fuzzing similar to

AFL and performs input mutations on CPU side.

2. Alternative 2 SWonly: This option is a replication of the state-of-art work SWonly [182]

for Intel DPC++. Compared to HFuzz, it does not have in-kernel probes on FPGA

devices and considers only software monitoring feedback.

3. Alternative 3 NoKernelMutation: This option disables in-kernel mutations and per-

forms input mutations on the CPU.

4. Alternative 4 NoHWoptimization: This option disables hardware optimizations and

only uses one input queue instead.

Benchmarks. We choose seven applications from Intel’s OneAPI GitHub repositories [87]:

(R1) Matrix-transform. It has two kernels—one for matrix multiplication M=A*B and the

other for reciprocal transformation on each element of M; (R2) Matrix-mul: multiplication

of two matrices; (R3) Complex-mul: multiplication of two vectors of complex numbers in

parallel; (R4) APSP: the Floyd-Warshall algorithm to find the shortest path between the

pairs of vertices in a graph; (R5) Nbody-sim: Simulation of a dynamical system of parti-

cles under the influence of gravity; (R6) Hidden-Markov-model: a statistical model using

a Markov process; (R7) Match-num: reading data from the host and sending the numbers

that match a set of pre-defined constants back to the host.

These benchmarks are widely used in hardware acceleration literature [140] and cover a

representative set of optimizations used in kernels (e.g., custom bitwidth, loop unrolling, etc.)

and exhibit different memory usage patterns (e.g., buffer memory and unified shared memory

for kernel input and output, kernel-to-kernel pipe and kernel-to-host pipe, local memory for

in-kernel variables, etc.). Testing difficulties for heterogeneous applications do not depend

on the code size; rather, it depends on how hardware resources are synthesized (e.g., in-

kernel variables, loop unrolling) and the communication channel details between software

and hardware and between hardware kernels. These benchmarks’ kernels are widely used
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and their code size is similar to commercial HLS benchmarks. They are complex in both

optimizations and memory arrangements and hard to get right.

Experimental Environment. All experiments were conducted on Intel DevCloud A10

nodes [89]. The automated kernel probe insertion was implemented using DPC++ compiler

and Pycparser [38]. The refactored programs were synthesized to RTL and targeted to Intel

Arria 10 GX FPGA [93]. We also tried HFuzz on other FPGAs like Intel Stratix 10 SoC

FPGA [94] and achieved similar results.

4.4.1 Defect Detection by HW and SW Feedback

We assess the effectiveness of HFuzz’s feedback guidance by comparing the number of defects

detected through combined hardware probes and software monitors to that of SWonly,

which relies solely on software monitors. For each benchmark, we generate test inputs using

HFuzz and SWonly for 4 hours. We tried longer time (24 hours) but no more defect is

found after 4 hours. Using the generated inputs, we then perform differential testing between

CPU-only executions and CPU+FPGA executions and measure the number of defects (i.e.,

diverging outcomes) found.

Figure 4.5 shows the average experimental results from ten runs. HFuzz is able to

detect 3.1× more defects than SWonly. For example, for R5 Nbody-simulation, without

monitoring in-kernel variable sqr, SWonly cannot find the divide-by-zero error we mentioned

in Section 4.2.2 at Lines 16-18 in Figure 4.2. When using SWonly, the value range of kernel

inputs does not reflect the change in the square of distance between particles sqr. HFuzz,

instead, directly monitors the value range of in-kernel variable sqr, and finds the defects when

sqr reaches its minimum value 0. In total, SWonly finds 8 unique defects in 16.5 hours,

while HFuzz finds the same defects in 1.6 hours—almost 90% reduction in the testing time.

Table 4.3 lists five defects found by HFuzz in R1 Matrix-transform.

First, S1 shows an overflow occurred in the FPGA execution due to the in-kernel variable
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Table 4.3: Example symptoms of kernel defects in R1.

ID Symptom Description SWonly Find

S1 Kernel The value of intermediate ✓

Runtime variables sum at line 2 of

Overflow Figure 4.3 exceeds its bitwidth

capacity, leading to a wrong result.

S2 Pipe Pipe write failure happens ×

Write when FPGA attempts to write

Failure into a pipe when the pipe is full.

S3 Pipe Pipe read hang happens ×

Read when FPGA attempts to read

Hang synchronously from an empty pipe.

S4 Division sum in line 5 of Figure 4.3 ×

by Zero equals 0, leading to divide

by zero at line 21.

S5 Incorrect CPU and FPGA produce different ✓

Loop results when the input array size

Unrolling num_element is not multiple of 2.

sum at Line 3 in Figure 4.3. It happens when the input vector a includes a large number

such as 2090401586. By monitoring in-kernel variable sum’s value range, HFuzz increases

the chance of generating a new vector with large numbers.

Second, two kernels in R1 use a 128-byte pipe to facilitate direct data transfer. As

mentioned in Section 4.1, when the first kernel produces results faster than the second kernel

can consume, the pipe may become saturated. Consequently, a pipe write failure occurs

silently and the newly written value is lost, shown as S2 in Table 4.3. This may further lead

to another defect S3: pipe read hang. The second kernel in Figure 4.3 reads values from
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the pipe for number_elements times. However, if the number of values successfully written

to the pipe is less than number_elements, the second kernel will hang at this pipe read.

Both defects cannot be detected by prior work SWonly because host-side software monitors

cannot detect the saturation of commutation pipes.

Third, S4 depicts a divide-by-zero error caused by the intermediate result sum in the sec-

ond kernel reciprocalTransform at Line 21 in Figure 4.3. It happens when both two input

matrices are sparse matrices. On CPU, this execution may raise a division-by-zero exception;

however, it silently returns an unexpected number on FPGA instead. By monitoring sum’s

value range, HFuzz triggers this defect by generating inputs using Sparsity Mutation.

Fourth, since R1 makes two copies of the loop body at Line 4 in Figure 4.3 by using

#pragma unroll factor=2, a wrong result happens if the number of loop iterations num_-

elements is not a multiple of the unroll factor 2.

HFuzz achieves 10.3× speed-up and finds 25 new defects compared to SWonly,

demonstrating the combined benefit of hardware probes and software monitors.

4.4.2 Speed-up from In-kernel Input Mutations
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Figure 4.6: Number of Input Trials

To assess speed-up enabled by offloading input mutations to FPGA devices, we compare

HFuzz with a downgraded version NoKernelMutation. We measure the number of gen-
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erated inputs and defects found within the same 4-hour budget.

Figure 4.6 reports the average number of input trials within 4 hours. For example, in R7,

NoKernelMutation generates 23225 inputs, while HFuzz generates 100918 inputs (5.3×

speed-up) by avoiding redundant data transfer and parallelizing input mutations. In R2,

NoKernelMutation and HFuzz enumerate 15824 and 112940 inputs respectively, leading

to 7.1× speed-up. R2 achieves higher speedup than R7 because its performance is more

dominated by data transfer as shown in Figure 4.1.

Figure 4.5 shows the number of defects found by NoKernelMutation. While NoKer-

nelMutation reports 14 unique defects in 24 hours, HFuzz detects the same defects in 5.1

hours, which translates to 4.7× speed-up in defect detection. These defects are not found by

NoKernelMutation, because it wastes time in sequentially mutating inputs in CPU and

sending the large data to the kernel.

HFuzz reduces the need for data transfer by offloading mutations into kernels and

thus speeds up fuzzing by 4.7×.

4.4.3 Speed-up from FPGA-level Optimizations

To evaluate the effectiveness of FPGA-level optimizations for input generation, we created

a downgraded version of our tool NoHWoptimization, which disables this feature. We

evaluated the time taken to find the same defects. The results are shown in Figure 4.5.

Compared to NoHWoptimization, HFuzz finds the same 33 bugs 3.4x faster, taking only

8.3 hours as opposed to 28 hours.

In R1 (e.g., Figure 4.3), the detected defects include (1) a divide-by-zero error when the

kernel takes as input two sparse matrices and (2) an overflow error when the kernel takes as

input two dense matrices with large elements. Because inputs leading to these defects are

distinct from each other, traditional mutational fuzzers with a single input queue may be

inefficient to find them. In fact, it takes 2 hours to mutate two sparse matrices into dense
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ones. HFuzz uses one hardware optimization technique, called dynamic kernel sharing, to

enable simultaneous exploration of input subspaces originating from different seeds. For

that, HFuzz utilizes multiple input generators. One generator A starts with dense matrices

and another generator B starts with sparse matrices. HFuzz can detect these two bugs by

interleaving generator A and generator B based on runtime feedback. For example, when

generator A reaches its maximum value and triggers an overflow, it can no longer provide

any new feedback. HFuzz will switch to generator B and detect the divided-by-zero error.

HFuzz reduces the detection time to 5 mins.

HFuzz achieves 3.4× speed-up in the detection of detects by implementing hardware

optimizations. Loop unrolling, shannaization, and fast memory access directly speed

up the mutation process. Dynamic kernel sharing enables efficient input space explo-

ration.

4.4.4 Probe Overhead

Inserting hardware probes into the original kernels may cause extra overhead on hardware

resources, as reported in Table 4.4. We measure four types of hardware resource, including

ALUT (a lookup table implementing the boolean function), FF (flip flops for storing tem-

porary data), RAM (random access memory blocks), and DSP (a digital signal processing

unit for common fixed-point and floating-point arithmetic). The inserted kernel probes in-

cur a relatively large overhead for a simple kernel because the inserted probes significantly

increase kernel logic complexity compared to the original kernel. In R2, compared to the

original kernel with 9592 ALUTs and 14466 FFs, inserted probes used 22% more ALUTs

and 33% more FFs. For a relatively complex kernel R4, the overhead is 6% ALUT and 10%

FFs. The extra resource usage mainly comes from (1) the probe computation including read

and write, and (2) the kernel dispatch logic establishes the communication between kernel

and host.
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Table 4.4: Resource overhead from injecting hardware probes.

ID/Program #LUT #FF #RAM #DSP Freq

/MHz

R1/ Orig 15932 25088 137 4.5 247

Matrix trans Probe 17905 34320 192 4.5 246

R2/ Orig 9592 14466 492 16 259

Matrix mul Probe 12032 19443 492 16 247

R3/ Orig 11545 18494 106 6 273

Complex mul Probe 11203 27117 106 6 253

R4/ Orig 60468 92249 555 195 221

APSP Probe 64327 101229 558 195 212

R5/ Orig 23642 44352 309 34 270

Nbody sim Probe 27612 50549 317 34 260

R6/ Orig 48706 64987 395 67 257

HMM Probe 56562 87392 491 67 247

R7/ Orig 2239 1357 67 12 279

Match num Probe 3828 2033 73 12 259

Such overhead could be further reduced by manual optimizations. For example, Cur-

reri [66] performs resource sharing by using the same FIFO probe for multiple feedback

signals.

Hardware probe insertion uses 24% extra LUT, 29% extra FF, and 8% extra RAM, and

reduces frequency by 5% on average. However, it enables an overall 10.3× speed-up

in defect detection by providing hardware feedback.
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4.5 Conclusion

HFuzz is the first grey-box testing approach leverages the capability of heterogeneous hard-

ware for testing heterogeneous applications. In particular, HFuzz injects hardware probes

in addition to injecting software monitors to better guide input generation and offloads it-

erative input generation to hardware accelerators. HFuzz speeds up fuzzing by offloading

input mutations to FPGAs by 4.7× without sacrificing any defect detection capability. It

speeds up testing 10.3× on average by gathering meaningful signals from hardware execution

directly by injecting in-kernel probes. This work fits the domain of software testing, as it

targets HLS C/C++ dialects and it has the potential to significantly improve correctness

in the new era of heterogeneous computing, where regular software developers write code in

HLS C/C++ to exploit custom hardware acceleration.

However, detecting a bug is only the beginning. While applying HFuzz, we identified

bugs in Intel’s DevCloud. Yet, our industry collaborator at Intel, Hongbo Rong, emphasized

the need for deeper insights. Heterogeneous compilers involve multiple compilation layers,

making it difficult for humans to pinpoint the root cause of bugs.

While HFuzz effectively uncovers heterogeneous application bugs, understanding why

these failures occur remains a significant challenge. Simply knowing that a bug ex-

ists is not enough—we need efficient techniques to isolate the exact sequence of

transformations responsible for the failure. The complexity of heterogeneous compi-

lation demands an automated debugging approach to reducing failing test cases and

compilation layers while preserving their failure-triggering behavior.

To address this challenge, my next work, DuoReduce, introduces dependency-aware

delta debugging to automate and refine bug isolation across complex compiler layers. By

leveraging structural dependencies in compilation, DuoReduce minimizes test cases and

compilation path while maintaining failure conditions, making root cause analysis signifi-

cantly more efficient.
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CHAPTER 5

DuoReduce: Redesign Delta Debugging for Multi-layer

Heterogeneous Compiler

While HFuzz efficiently exposes bugs in heterogeneous compilers, it leaves an important

question unanswered: how to isolate the root cause of these failures? Detecting a

bug is only the first step—understanding why it occurs is often more challenging, especially

in heterogeneous compilation pipelines where multiple transformations interact in complex

ways. We asked the following research question, How can we systematically localize com-

pilation layers and code segments responsible for bugs in heterogeneous computing? In this

chapter, we investigate the sub-hypothesis: By understanding the relation between the IR

code and multi-layer heterogeneous compilers, we can build an efficient debugging tool.

We introduce DuoReduce, a dependency-aware delta debugging framework designed

specifically for heterogeneous compilation. Unlike traditional delta debugging, which re-

duces test cases indiscriminately, DuoReduce leverages compilation dependencies to

systematically isolate the minimal sequence of transformations responsible for a failure. By

preserving structural integrity while reducing test cases, DuoReduce makes root cause

analysis significantly more efficient.

5.1 Introduction

Modern heterogeneous compilers need to support a diverse range of hardware platforms,

including CPUs, GPUs, FPGAs, and domain-specific accelerators. To address the com-
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plexity inherent in targeting multiple hardware backends, MLIR (Multi-Level Intermediate

Representation) has emerged as a powerful infrastructure, providing a unified and modular

framework that enables systematic compilation and optimization across heterogeneous ar-

chitectures. While MLIR’s layered design facilitates hardware-agnostic optimizations and

translation to platform-specific backends, the increasing complexity and multiple abstrac-

tion levels within MLIR compilation introduce new debugging challenges. Bugs or miscom-

pilations can arise at any of these abstraction layers. This motivates the critical need for

advanced debugging techniques and effective bug isolation methods explicitly tailored to

MLIR-based heterogeneous compilation flows.

Consider the Circuit IR Compilers and Tools (CIRCT) [63] project that leverages the

MLIR framework to build a compiler for heterogeneous hardware accelerator compilation.

As shown in Figure 5.1, CIRCT transforms high-level language code such as Python and

C into Verilog. It defines 30 different hardware-related custom dialects and 206 compila-

tion passes. Similarly, other MLIR-based compilers use a significant number of compilation

passes. For instance, GPU stencil optimization [44] has 27 compilation passes. This size

of available compilation passes introduces significant complexity in bug isolation. Suppose

that a developer attempts to reproduce the same compiler error by exhaustively testing all

227 combinations naively by turning on and off each compilation pass. It could take more

than 1000 days to complete. Take the CIRCT Python frontend, PyCDE [24] as another

example. It converts high-level Python constructs into optimized Verilog code by utilizing

15 distinct compilation passes. These optimization passes include crucial tasks like resource

sharing, pipelining, and clock domain management. A naive attempt would require testing

215 combinations, taking more than 18 hours to complete.

We propose DuoReduce, a dual-dimensional reduction approach for MLIR bug local-

ization. DuoReduce leverages three key ideas in tandem to design an efficient MLIR delta

debugger. First, DuoReduce reduces compiler passes that are irrelevant to the bug by

identifying ordering dependencies among the different compilation passes. Second, DuoRe-
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Figure 5.1: CIRCT’s multi-layer compilation involves 4 core dialects and 26 optimizing

dialects such as hwarith and sq. An MLIR input program goes through on average 13

transformation passes and produces the resulting Verilog code. The MLIR community is

growing and as of Sep. 2024, there are 30 MLIR-based compiler projects on GitHub.

duce uses MLIR-semantics-aware transformations to expedite IR code reduction. Finally,

DuoReduce leverages cross-dependence between the IR code dimension and the compila-

tion pass dimension by accounting for which IR code segments are related to which compi-

lation passes to reduce unused passes.

In terms of IR code reduction, DuoReduce outperforms Perses and Vulcan by 32%

and 22% respectively. In terms of reducing compilation passes, DuoReduce achieves 14%

pass reduction than DuoReduce without dual-dimensional reduction. This translates to

not needing to inspect 281 lines of MLIR compiler code per bug. Suppose that each IR

program goes through 18 compilation passes on average and each compilation trial takes 2

seconds to finish. Naively enumerating all pass combinations to find buggy passes needs 218

compilation attempts, taking 145 hours. By reasoning about compilation pass dependencies,

DuoReduce reduces the IR debugging time from 145 hours to 572.35 seconds.

In the current AI era, where companies such as AWS, Microsoft, and Google invest signif-

icant resources for in-house AI processor and hardware compiler development, DuoReduce
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has the significant potential to expedite the overall development time of extensible optimizing

compilers. The remainder of this paper is organized as follows. Section 5.2 introduces MLIR

and a motivating example. Section 5.3 presents the design of DuoReduce. Section 5.4

provides the design of our experiments and their results. Section ?? introduces the related

work. We draw the conclusions of our work in Section 5.5.
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5.2 Background

5.2.1 Multi-Level Intermediate Representation

1 hw.module

@Test(in %x :

i8, in

%clock: i1) {

2

3 %regvar =

sv.reg :

!hw.inout<i8>

4 sv.assign

%regvar, %x

: i8

5

6 %regwithinit =

sv.reg init

%x :

!hw.inout<i8>

7 }

(a)

Original MLIR code

1 module {

2 hw.module @Test(in

%x : i8, in

%clock : i1) {

3 %regvar = sv.reg

{hw.verilogName

= "regvar"} :

!hw.inout<i8>

4 sv.assign %regvar,

%x : i8

5 %regwithinit =

sv.reg init %x

{hw.verilogName

=

"regwithinit"}

: !hw.inout<i8>

6 hw.output}}

(b)

MLIR code after pass

“lower-hw-to-sv”

1 module Test( //

o.mlir:1:1

2 input [7:0] x, //

o.mlir:1:20

3 input clock //

o.mlir:1:32

4 );

5 reg [7:0] regvar; //

o.mlir:3:13

6 assign regvar = x;

// o.mlir:4:3

7 //correct: reg [7:0]

regvar = x;

8 reg [7:0]

regwithinit = x;

9 endmodule

(c)

Wrong verilog code after

pass “export-verilog”

Figure 5.2: The CIRCT bug # 6317 from GitHub [17] does not include which compilation

passes were used to detect this bug. If a user want to compile program (a) with pass

export-verilog only to reproduce the bug, the compiler will crash with message “Error:

Unsupported operation found in design” This shows the need of identifying a correct ordered

set of compilation passes to reproduce the same bug. The original MLIR code (a) in the

hw dialect must go through a first compilation pass lower-hw-to-sv to produce code (b)

and go through a second compilation pass export-verilog to produce the Verilog code (c).

There are 205 compilation passes available in CIRCT; thus, it is extremely challenging to

isolate 2 out of 205 passes.

MLIR [64] aims to offer a unified infrastructure that can represent code at multiple levels

of abstraction. Its core idea is to define extensible IRs that can be customized with domain-

78



specific dialects [64] using compilation passes specific to particular domains, such as machine

learning, high-performance computing, or embedded systems. All 30 MLIR projects listed on

this website [23] have a large number of compilation passes; Triton [155] from NVIDIA has

258 passes, CIRCT has 205 passes, and ONNX-mlir has 34 passes. As such, MLIR enables

code optimization and translation from high-level domain-specific abstractions to lower-level

architecture-specific machine code through multiple compilation passes. We use the term

compilation path P to refer to a sequence of compilation passes P = [Pi, 1 ≤ i ≤ n] For

each compilation path P , we define two relations.

• Execution Order Relation: we define a binary relation ≤ to indicate the execution

order, such that Pi ≤ Pj means Pi is executed before Pj in the compilation path P .

• Dependence Relation: A compilation pass Pj depends on another pass Pi ⇁ Pj if

executing Pj without executing Pi leads to a different compilation outcome in terms of

reproducing the same bug symptom. It is important to note executing Pj after Pi (i.e.,

Pi ≤ Pj) does not directly imply Pj depends on Pi (i.e., Pi ⇁ Pj). However, (Pi ⇁ Pj)

⇒ (Pi ≤ Pj).

DuoReduce finds the shortest sublist P ′ that can preserve the same bug as the original

compilation path P . For each pass Pi ∈ P ′, each Pk that Pi depends on (i.e., Pk ⇁ Pi)

must be included in P ′. For example, in the GitHub issue 82382 [21], the original post

contains P with 10 passes. DuoReduce finds an alternative shortest path P ′ with 2 passes:

affine-loop-tile ⇁ convert-parallel-loops-to-gpu.

CIRCT [63] has 196 passes to compile high-level Python or C code to custom hardware

expressed in low-level RTL. Figure 5.2 shows an example compilation process based on

two passes. The registers %regvar (line 3 in Figure 5.2a) and %regwithinit (line 6) are

assigned and initialized with value %x. The original MLIR code is first converted to dialect

sv in Figure 5.2b with pass lower-hw-to-sv and then lowered to System Verilog code

with pass export-verilog in Figure 5.2c: P1=lower-hw-to-sv and P2=export-verilog,

79



where P2 ⇁ P1. When a bug occurs in a compilation path with n passes, developers may

naively enumerate all 2n combinations of passes. Such a naive attempt can easily take up

to 100 hours when n is over 18. DuoReduce addresses this very problem by accounting

for dependencies among compilation passes and by applying IR code reduction in tandem,

reducing such time to less than 10 minutes.

5.2.2 Motivating Example

Figure 5.3a illustrates a real-world MLIR GitHub issue [18], which resulted in a segmen-

tation fault. The result of matrix multiplication @matmul at line 3 is stored in %2 and

checked at line 8. The original compilation path has 9 passes: convert-linalg-to-loops,

affine-loop-unroll, convert-scf-to-cf, convert-arith-to-llvm, convert-linalg-to

-llvm, convert-memref-to-llvm, convert-func-to-llvm, reconcile-unrealizedcasts,

and mlir-cpu-runner.

The crash message’s stack dump in Figure 5.3c indicates that the last used pass is

mlir-cpu-runner. However, the message does not display the preceding faulty pass convert

-func-to-llvm responsible for the issue.

For Figure 5.3a, no further IR reduction is possible with existing delta debuggers such

as Perses or Vulcan. However, this minimized IR presents ambiguity. Is the crash caused by

flawed implementation of @matmul called at line 4? Is the crash due to incorrect transfor-

mation of the nested for loop at lines 5-6?

DuoReduce performs dual-dimensional fault localization based on two insights:

1. MLIR compiler bugs are often caused by operation invocations rather than the val-

ues of operands. For example, in Figure 5.3, using cf.assert at line 9 with the

convert-func-to

-llvm pass causes the bug, and the value of operand %4 is irrelevant.

2. IR code reduction can eliminate unnecessary passes. For example, a loop optimization
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pass affine-loop-unroll becomes unnecessary when for loops are removed.

1 func.func @main() {

2 func.func @matmul(%arg0, %arg1,

%arg2)

3 ...

4 call @matmul(%2, %0,

%1):(memref<128x128xf32>,

memref<128x128xf32>,

memref<128x128xf32>) -> ()

5 scf.for %arg0 = %c0 to %c128 step

%c1 {

6 scf.for %arg1 = %c0 to %c128 step

%c1 {

7 %3 = memref.load %2[%arg0,

%arg1] : memref<128x128xf32>

8 %4 = arith.cmpf oeq, %3, %cst_0

: f32 -> i1

9 cf.assert %4, "Matmul does not

produce the right output"}}

10 ...

11 return}}

(a) A buggy IR code reported in the MLIR

GitHub issue 56914 [18]: compute matrix-

multiplication and verify.

1 func.func @main() {

2 - func.func matmul(%arg0, %arg1,
%arg2)

3 ...

4 - call matmul(%2, %0,
%1):(memref<128x128xf32>,
memref<128x128xf32>,
memref<128x128xf32>) -> ()

5 - scf.for %arg0 = %c0 to %c128 step
%c1 {

6 - scf.for %arg1 = %c0 to %c128 step
%c1 {

7 - %3 = memref.load %2[%arg0, %arg1] :
memref<128x128xf32>

8 - %4 = arith.cmpf oeq, %3, %cst_0 :
f32 -> i1

9 + %4 = arith.constant 1: i1

10 cf.assert %4, "Matmul does not

produce the right output"}

11 }

12 ...

13 return}}

(b) After applying constant replacement at lines

8-9, DuoReduce removes lines 2-7.

1 Stack dump:

2 0. Program arguments: mlir-cpu-runner -e main -entry-point-result=void

3 #0 0x000055d56f369ee0 PrintStackTraceSignalHandler(void*)

4 #1 0x000055d56f367904 SignalHandler(int)

5 ...

(c) LLVM’s crash message shows only the last pass mlir-cpu-runner, which is not the

root cause of the crash.

Figure 5.3: MLIR bug #56914 [18]: the original input IR code in Fig 5.3a and 9 compilation

passes to reproduce the crash in Fig 5.3c. If she compiles the input IR with all available

9 passes, 4480 lines of compiler code should be inspected. In Fig 5.3b, DuoReduce suc-

cessfully removed the @matmul with “constant replacement” transformation in Section 5.3.2.

DuoReduce removes 6 irrelevant compilation passes out of 9, leaving only 1245 lines of

compiler code to inspect.
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After performing syntax-aware IR reduction, DuoReduce applies constant replacement

and return operand rollback transformations, introduced in Section 5.3.2. For example,

replacing %4 in line 8 with the constant 0 retains the bug, allowing us to remove related IR

using %3 in line 7 and @matmul in line 4. By further removing IR constructs in the nested

for loop (lines 5-6), DuoReduce eliminates the associated affine-loop-unroll pass.

Figure 5.3b shows the minimized code, reproducing the same error reported in Fig-

ure 5.3a. This example shows that it is possible to exclude the @matmul function from

the culprit IR code and remove 6 out of 9 passes. It suggests that the underlying er-

ror is caused by 3 remaining passes: convert-arith-to-llvm, convert-func-to-llvm, or

mlir-cpu-runner.

5.3 Approach

DuoReduce takes the original IR code C, the compilation path P , and a separate oracle

O to check if the error message remains identical to the original. It outputs the minimized

IR code C ans and the reduced path P ′ for reproducing the bug.

At the heart of DuoReduce is a three-fold approach.

1. Compilation Path Reduction: It reduces unnecessary compilation passes by identifying

dependence among involved passes, described in Section 5.3.1.

2. IR Code Reduction: In the IR code dimension, it performs syntax-aware reduction in

conjunction with MLIR-specific transformation, described in Section 5.3.2.

3. Dual-Dimensional Reduction: As the IR code is reduced, DuoReduce’s dual-dimensional

reduction approach narrows down necessary compilation passes by analyzing the rela-

tion between IR code and passes, described in Section 5.3.3.

Algorithm 2 describes DuoReduce’s process. In lines 1-7, DuoReduce removes as many

unnecessary compilation passes as possible (Section 5.3.1). Once a minimized compilation
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Algorithm 2 DuoReduce takes as input the original IR program C, the original compi-
lation path P , and an oracle O. DuoReduce first gets the reduced compilation path P ′ by
identifying the dependency of each pass. Then DuoReduce applies delta debugging with
MLIR transformations on the IR code C. In the end, it applies dual-dimensional reduction
on the reduced path P ′ to get P ans.

Require:
• C ← Original IR Program

• P ← Original Compilation Path

• O ← Oracle that checks whether the bug is preserved
Ensure:

• Di ← Shortest path ending with Pi that can reproduce the bugs with the original
C

• P ′ ← Shortest path that can reproduce the bugs with the original IR program C

• C ans← Reduced IR Program

• P ans← Shortest compilation path that can reproduce the bugs with C ans
1: for n = N downto 1 do
2: Dn = DEPEND GEN(P [1 : n]) // return the shortest path ending with Pn.
3: if Len(P ′) > Len(Dn) then
4: P ′ = Dn //Update P ′ with the shorter path if possible
5: end if
6: end for
7: C ans ← DD IR(P ′, C, O)
8: Flag ← True
9: while Flag do //Flag is used to check whether the reduction still happens
10: C cand ← IR Trans(C ans, O)
11: Flag ← False
12: if Len(DD IR(P ′, C cand, O)) < C ans then
13: C ans ← DD IR(P ′, C cand, O)
14: Flag ← True
15: end if
16: end while
17: P ans = DUO REDUCTION(P ′, C ans, O)//Applies dual-dim reduction to further

reduce P ′

18: return C ans, P ans
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path is established, DuoReduce applies IR code reduction at line 8 until no further re-

duction is possible. Next, DuoReduce applies MLIR-specific transformations at line 11

and applies IR code reduction again on the transformed code at line 14 (Section 5.3.2).

DuoReduce then performs dual-dimensional reduction on the compilation path in line 18

(Section 5.3.3).

5.3.1 Dependency-Aware Compilation Path Reduction

MLIR compilers have dependencies among compilation passes, as shown in Figure 5.2.

Naively, one may examine all possible pass combinations—2n combinations where n is the

number of passes. However, this approach may lead to a large number of invalid compi-

lation attempts, due to dependencies among passes. In fact, our evaluation showed that

exhaustively examining all 29 combinations resulted in 89% invalid compilation attempts for

a GitHub issue involving 9 passes [21]. Such exhaustive attempts are inefficient. Therefore

DuoReduce recognizes dependencies among passes to avoid invalid compilation attempts.

DuoReduce performs this (1) pass reduction phase before the (2) IR code reduction

phase and the (3) joint reduction in both dimensions. Our evaluation shows that, without

the initial path reduction (1), it takes 16.7% more time to reach the same IR code reduction

rate.

Problem Definition. Given a compilation path P = [Pi, 1 ≤ i ≤ n], DuoReduce

identifies the minimum sublist of P as P ′ = [Pi1 , .., Pim ], where 1 ≤ i1 < . . . < im ≤ n,

preserving the same bug, meaning (1) P ′ is a sublist of P ; (2) the number of passes included

in P ′ is minimal; and (3) for each pass Pi ∈ P ′, the passes that Pi depends on (i.e., Pk ⇁ Pi)

must also be included in P ′.

P ′ = argmin
P ′⊆P

|{Pi ∈ P ′|(Pk ⇁ Pi)⇒ (Pk ∈ P ′)}| (5.1)
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Algorithm 3 DEPEND_GEN: Dependency-Aware Reduction Algorithm

Require:
• Code← IR Program

• P ← A Compilation Path ends with Pn, where Pi is each compilation pass, and Pi

is execute sequentially after Pi−1 on this path P.

• O ← Oracle that checks whether the bug is preserved
Ensure:

• Dn ← A sequence of all the compilation passes that Pn depends on.

• Cshortest ← The shortest compilation path ends with Pn that can satisfy the oracle
O with Code.

1: Dn = []
2:

3: for i = n− 1 to 1 do
4: Ci = [P1, . . . , Pi−1]
5: C ′

i = Concat(Ci, Dn).add(Pn)
6: if O(C ′

i, Code)==false then
7: Dn.add(Pi)
8: end if
9: end for
10: return Cshortest = Dn.add(Pn)

Identifying Pass Dependencies. Given the original compilation path [P1, P2, . . . , PN ],

DuoReduce identifies the dependent passes for each pass in a backward order in lines

1-3 of Algorithm 2, in the decreasing order of PN to P1. We denote the dependencies of

Pn as Dn, which is initialized to an empty set. DuoReduce checks Pn’s preceding passes

(i.e., P1, ..., Pn−1) and adds the pass to Dn, if it is necessary for preserving the bug with

a compilation path ending with Pn. As shown in line 3 of Algorithm 3, DuoReduce first

constructs a set of compilation paths {C1, ..., Cn}, where each Ci is the path executing from

P1 up to Pi−1 (i.e., Ci = [P1, . . . , Pi−1]) and is later used to determine whether Pn depends

on Pi. For example, C3 = [P1, P2]. Next, DuoReduce tests whether Pn depends on Pi,

i < n, by constructing a modified path C ′
i. C ′

i concatenates Ci and current Dn and adds

Pn at the end, as shown in line 4 of Algorithm 3. In this way, C ′
i reserves all passes that

Pn depend on, except for Pi. If C ′
i fails to retain the same behavior, it indicates that Pn
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depends on Pi, and Pi is added to Dn, as shown in lines 5-7 of Algorithm 3. Otherwise, we

can safely remove the Pi.

Figure 5.4: Red edges indicate the current passes being tested, and the golden vertices
highlight dependent passes. DuoReduce finds the shortest path P from Start to P4.
P4=export-verilog does not depend on P3=-inline but depends on P1=lower-hw-to-sv

and P2=lower-calyx-to-hw.

Figure 5.4 shows a running example. We start with finding the dependency D4 for P4,

where D4 is initially an empty list []. For that, DuoReduce incrementally constructs this

list by testing the removal of preceding passes P3 to P1. First, DuoReduce checks if P4

depends on P3 by removing it from the compilation passes. Thus, DuoReduce executes

[P1, P2, P4]. [P1, P2, P4] is constructed by concatenating C3 = [P1, P2] and D4 = [], and

adding the target pass P4 together. Because it retains the same bug, P4 does not depend

on P3 and P3 can be safely removed. Next, DuoReduce checks if P4 depends on P2 by

executing [P1, P4], which is constructed by concatenating C2 = [P1] and D4 = [], and adding

the target pass P4. However, it does not reproduce the same bug; thus, DuoReduce adds P2

into D4. DuoReduce then checks the dependency against P1 by removing P1 and executing

[P2, P4], which is constructed by concatenating C1 = [] and D4 = [P2], and adding P4. If the

same bug is not reproduced, DuoReduce adds P1 to D4. Finally, DuoReduce identifies

the passes that P4 depends on as D4 = [P1, P2], and constructs the shortest path that ends
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with P4, [P1, P2, P4]. This algorithm has the time complexity of O(n2), where n is the total

number of compilation passes.

5.3.2 Transformation-Based Code Reduction

1 func.func @func1(%arg0:

tensor<5x5xf16>, %arg1:

tensor<?x12xi16>, %arg2:

vector<5x5xi1>) -> i1 {

2 %c91 = arith.constant 91 : index

3 %c911 = arith.constant 911 : index

4 %c912 = arith.constant 912 : index

5 %com1 = index.divs %c911, %c91

6 %com2 = index.divs %c912, %c91

7 %c1 = index.divs %com1, %com2

8 //Replace with "%c1 = arith.constant

42 : index" still trigger the

crash

9 %111 = vector.broadcast %c1 : index

to vector<21x12x12xindex>

10 %112 = vector.fma %111, %111, %111

: vector<21x12x12xf32>

11 //Insert "return %112 :

vector<21x12x12xf32>" + replace

the function return type to

"vector" still trigger the crash

12 vector.print %112 :

vector<21x12x12xf32>

13 %ans = arith.constant true

14 return %ans : i1}

(a) This IR code crashes LLVM due to
the invocation of vector.broadcast at line
9 and vector.fma at line 10, with pass
vector-unrolling.

%c91 %c911 %c912

%com1 %com2

%c1 %111 %112 ...

(b) Dataflow graph for (a): DuoReduce ap-
plies constant replacement for %c1 and return
operand rollback for %112. It then removes the
operands that %c1 depends on such as %com1,
and all the operands after %112 such as %ans.

1 func.func @func1(...) ->

vector<21x12x12xf32> {

2 %c1 = arith.constant 42 : index

3 %111 = vector.broadcast %c1 :

index to vector<21x12x12xindex>

4 %112 = vector.fma %111, %111, %111

: vector<21x12x12xf32>

5 return %112 : vector<21x12x12xf32>}

(c) Constant replacement on %c1 and return
operand rollback on %112 enabled removal of
lines 2-7 and lines 12-13 in (a).

Figure 5.5: Code example from MLIR GitHub issue 64074 [19]. DuoReduce applies pro-
gram transformation on the 1-minimal IR code and enables a further 75% reduction.

Prior work has found that applying program transformations can improve delta debug-

ging [171, 132, 98, 137]. In MLIR, we observe that compilation crashes are often caused

by operation invocations rather than the values of operands. We thus hypothesize that al-
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tering MLIR operands, can offer new opportunities to further IR code reduction. We design

two operand-specific transformations—constant replacement and return operand rollback. If

altering an operand successfully retains the bug behavior, we can eliminate all dependent

operands.

1. Constant Replacement. The Constant Replacement transformation substitutes operands

in the IR code with constants of the same type. In Figure 5.5a, a GitHub issue [19] causes a

compiler crash occurs due to the invocations of vector.broadcast for the operand %111 at

line 9 and vector.fma for the operand %112 at line 10. The data flow graph in Figure 5.5b

shows the code is already 1-minimal. DuoReduce replaces the operand %c1 at line 7 with

a random constant 42 of the same type index at line 8. Because the bug is induced by the

operation vector.broadcast rather than the specific value of %c1, replacing line 7 with line

8 triggers the same crash.

DuoReduce then begins another DD cycle. All precedent operands before %c1 are

eliminated because %c1 is a constant. DuoReduce safely removes all operands that lead

to the previous %c1 and that are not used later—operand %c91, %c911, %c912, %com1, and

%com2. This removes line 2 to line 6, in Figure 5.5c.

2. Return Operand Rollback. The Return Operand Rollback transformation returns

intermediate operands instead of the last operand. DuoReduce updates the return state-

ment and the function’s return type. In Figure 5.5, instead of returning %ans at line 14,

DuoReduce inserts a return statement after each operand to determine if the bug per-

sists. For example, DuoReduce produces a transformation to return at %112 and updates

the return type from i1 at line 1 to the type of operate %112, which is a vector. After

returning %112, DuoReduce safely remove all subsequent operands because they are no

longer invoked, removing lines 12-13.
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5.3.3 IR-Path Dual-Dimensional Reduction

...

//IR Dump Before AffineLoopUnroll(affine-loop-unroll)

module {

func.func @main() {

...

%4 = arith.constant false

cf.assert %4, "Matmul does not"}}

...

//IR Dump Before ArithToLLVMConversionPass(convert-arith-to-llvm)

module {

func.func @main() {

...

%4 = arith.constant false

cf.assert %4, "Matmul does not"}}

...

//IR Dump Before ConvertFuncToLLVMPass(convert-func-to-llvm)

module {

func.func @main() {

...

%4 = llvm.mlir.constant(false) : i1

cf.assert %4, "Matmul does not"}}

Figure 5.6: After removing @matmul in Figure 5.3, the pass affine-loop-unroll is no longer
relevant. DuoReduce removes 4 out of 7 passes, and reduces the inspection scope from
2279 to 1245 lines.

The existing MLIR framework provides the ability to display the impacts of each compilation

pass on the IR code by the option mlir-print-ir-before-all. When we compile Figure 5.6

with this option and (affine-loop-unroll, convert-arith-to-llvm, convert-func-to-

llvm), MLIR prints the IR code before each pass. By comparing the IR code before and after

each pass, DuoReduce identifies which passes are no longer necessary. In this example,

the IR remains unchanged after the affine-loop-unroll pass but is altered following the

convert-func-to-llvm pass. It indicates that the latter pass has an effect on the IR code,

while the former does not.

For example, in Figure 5.3a, the for loops in the original IR code necessitate the

affine-loop-unroll pass. However, after the IR code is reduced to Figure 5.3b which no

longer contains these loops, the loop-unrolling becomes useless. Similarly, this approach

effectively reduces the passes convert-linalg-to-loops, convert-scf-to-cf, convert-lin
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alg-to-llvm, convert-memref-to-llvm, and affine-loop-unroll, resulting in 63% pass

reduction by removing those unnecessary passes. This in turn reduces the inspection scope

from 2279 lines of compiler code to 1245 lines.

5.3.4 Overall Time Complexity

DuoReduce operates in three phases: Phase 1 performs compilation path reduction, Phase

2 focuses on IR code reduction, which involves IR code transformation, and Phase 3 applies

dual-dimension reduction on the compilation path.

Phase 1 has a time complexity of O(c2), where c represents the number of compilation

passes, as previously discussed.

Phase 2 consists of two key components: IR transformation and syntax-guided delta

debugging reduction. Let n denote the number of operands in the IR code. In the worst-case

scenario, delta debugging reaches 1-minimal n times, with each step the IR transformation

enabling further reduction. For IR transformation, Both constant replacement and return

operand rollback traverse each operand once, leading to a time complexity of O(n), where

n is the number of operands in code. Since IR transformation may be applied n times in

the worst case, the total cost accumulates to O(n2). For delta-debugging, since we reaches

1-minimal n times, it means we apply delta-debugging n times. While the time cost of each

delta-debugging is linear [177], the overall cost for syntax-guided delta debugging is O(n2).

Thus, the total time complexity for phase 2 is O(n2) + O(n2) = O(n2).

Phase 3 iterates over each compilation pass and checks the compilation results, leading

to a time complexity of O(c).

Summing the complexities of all three phases, the total time complexity for DuoReduce

is O(c2) + O(n2) + O(c) = O(n2) + O(c2), where c is the number of compilation passes and

n is the number of operands in code.
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5.4 Evaluation

DuoReduce has three main components: MLIR code transformation, dual-dimensional re-

duction, and dependency-aware pass reduction. We examine the following research questions

to answer the effectiveness of each component:

RQ1: How effective is DuoReduce in terms of IR code reduction? How much reduction can

be achieved by DuoReduce’s MLIR code transformation?

RQ2: How effective is DuoReduce in terms of compilation pass reduction? How much

reduction can be achieved by DuoReduce’s dual-dimensional reduction?

RQ3: How much speedup can DuoReduce achieve with dual-dimensional reduction?

5.4.1 Experiment Design

We select three large MLIR compiler projects, listed in Table 5.1. The systems used in

our evaluation, including MLIR [64], CIRCT [63], and ONNX-MLIR [96], are significant-

sized real-world projects (444k, 171k, and 96k LOC for MLIR, CIRCT, and ONNX-MLIR,

respectively). We examined all issues related to these systems and filtered out 62 out of

134 issues due to challenges in reproducing bugs, as these issues lacked MLIR code inputs

or corresponding compilation passes. The GitHub issues are chosen for the latest version

of each project. Out of the remaining 72 issues, we removed 41 issues because they were

too easy to debug: they involved less than 10 lines of IR code. In the end, we selected

31 reproducible issues for our evaluation. The detailed benchmarks are in the replication

package with the GitHub issue IDs and links.

For each IR input reported for a given compiler bug, we determined the super-set of

candidate passes based on two criteria: (1) the structure of the IR program, and (2) the

dialects used. For instance, if an IR program contains loops and vector operations, we

assume that vector unrolling passes such as -test-vector-unrolling-patterns=unroll-based-on-
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Table 5.1: The systems used in our evaluation are significant-sized real-world projects (444k,
171k, and 96k LOC for MLIR, CIRCT, and ONNX-MLIR, respectively). They suffer from
an overwhelming number of compilation passes: 234, 206, and 34 respectively. On the left,
BugLoC stands for lines of IR code and BugLoP stands for the number of compilation passes
for each bug on average.

# Compilation Commit # GitHub Bug Bug
Project LoC Pass Message Issues LoC LoP
MLIR [64] 444k 234 1730 23 132.3 17.9
CIRCT [63] 171k 206 2051 6 32.1 20.2
ONNX-mlir [96] 96k 34 2915 2 23.2 17

type should be included in the scope. Similarly, if the IR program uses the arith dialect,

lowering passes such as -convert-arith-to-llvm should be included. Column Bug LoP in

Table 5.1 shows the number of candidate passes for the reported bugs.

Evaluation metrics. The following metrics are typically used in previous work on DD [176,

83, 171].

• Average reduction: reduction in IR code size and the number of compilation passes.

It is calculated as |x|−|x′|
|x| , where |x| and |x′| are the original and reduced IR code size

or the length of the compilation path.

• Successful reduction: the number of cases in which buggy compilation passes and IR

code segments have been successfully localized by the debugging tool in a 4-hour time

limit.

• Time usage: time in seconds that each tool takes.

Baselines. To answer RQ1, we evaluate DuoReduce against Perses+ [25], Vulcan+ [171],

mlir-reduce+ (circt-reduce+ for the CIRCT bug issue), and DuoReduce NoTran

(DuoReduce without MLIR code transformations).

Perses is a syntax-aware delta debugger by leveraging the ANTLR grammar and prunes

the search space by avoiding generating syntactically invalid programs. We configured Perses

to use the base MLIR grammar [114]. We then construct Perses+ by adding DuoReduce’s
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compilation path reduction, since Perses does not account for the dimension of compilation

passes at all and it would be unfair to compare DuoReduce against Perses directly. In

short, Perses+ = Perses + DuoReduce’s dependency-aware compilation path reduction

+ DuoReduce’s dual-dimensional reduction.

Vulcan, an enhanced version of Perses, introduces additional code transformation rules,

such as identifier and subtree replacement, to achieve further reduction. These general

transformation rules are not designed for IR code transformations and are thus less effective

than DuoReduce. Similar to Perses+, we configured Vulcan with the base MLIR gram-

mar [114]. Vulcan+ is different from the original Vulcan by adding compilation path reduc-

tion: Vulcan+ = Vulcan + DuoReduce’s dependency-aware compilation path reduction

+ DuoReduce’s dual-dimensional reduction. In short, Vulcan+ replace DuoReduce’s

MLIR transformation with Vulcan’s general code transformations.

mlir-reduce is a utility provided by the MLIR compiler community to reduce the size of

the IR code, and circt-reduce [26] is built on top of mlir-reduce by considering CIRCT

dialects. These domain-specific reducers employ multiple strategies to minimize the in-

put: directly removing operations (akin to Perses), and applying optimization rewrites [64].

However, since the optimization rewrites are designed for compilation, not reduction, they

are conservative in terms of reducing IR inputs. Similarly, we construct mlir-reduce+ =

mlir-reduce + DuoReduce’s dependency-aware compilation path reduction + DuoRe-

duce’s dual-dimensional reduction.

To answer RQ2, we compare DuoReduce against its downgraded version DuoRe-

duce No2Dim without dual-dimension reduction. We demonstrate why the LLVM compiler

crash message cannot give correct information to help developers localize the buggy pass.

To answer RQ3, we evaluate DuoReduce against its downgraded version DuoReduce -

NoDep, DuoReduce without identifying compilation pass dependences. DuoReduce -

NoDep exhaustively tries all pass combinations, instead of considering the dependences

among passes.
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Table 5.2: Effectiveness and Efficiency for DuoReduce. DuoReduce achieves the highest
IR code reduction compared to Perses+ and Vulcan+. MLIR transformations enable 31.6%
additional IR size reduction. DuoReduce NoDep cannot finish the reduction for 29 out of
31 GitHub issues in the 4-hour time limit, since it requires 2n trials, where n is the number
of compilation passes.

IR Code Compilation Path
ID Tool Name Successes Average Successful Average Time

Reduction Reduction Reduction Reduction Usage
1 mlir-reduce+ 27 26.1% 27 84.2% 530.65s
2 Perses+ 31 47.2% 31 87.2% 414.37s
3 Vulcan+ 31 51.1% 31 89.3% 1336.55s
4 DuoReduce 31 47.2% 31 87.2% 397.45s

NoDEP
5 DuoReduce 2 / 2 / ∼ 145h

NoTRAN
6 DuoReduce 31 62.1% 31 77.1% 570.77s

No2DIM
7 Compiler / / 15 94.4% N/A

Crash Msg
8 DuoReduce 31 62.1% 31 91.7% 572.35s

Experimental environment. All experiments are performed on a machine with an AMD

Ryzen 2950X 16-Core Processor with 32 GB RAM running on Ubuntu 22.04.

5.4.2 RQ1: Effectiveness of MLIR Code Transformations

As shown in Table 5.2, mlir-reduce+ has the worst performance, since it applies the naive

ddmin [176] approach. DuoReduce outperforms mlir-reduce+, Perses+/DuoReduce -

NoTran, and Vulcan+ by 138%, 31.6%, and 21.5%, respectively, in terms of the IR reduc-

tion rate. Although DuoReduce shares the same compilation pass reduction with the above

baselines, the better IR code reduction leads to a better compilation pass reduction rate. As

shown in the column Compilation Path - Average Reduction, compared to mlir-reduce+,

Perses+/DuoReduce NoTran, and Vulcan+, DuoReduce achieves 7.5%, 4.5%, and

2.4% higher reduction rate respectively.
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1 module {

2 func.func @func2(...) {

3 %c11 = arith.constant 11 : index

4 %c12 = arith.constant 12 : index

5 %com1 = index.divs %c11, %c11

6 %com2 = index.divs %c12, %c12

7 %c2 = index.divs %com1, %com2

8 ...

9 %92 = affine.apply affine_map<(d0,

d1, d2, d3) -> (d0 - 16)>(%46,

%28, %c2, %43)

10 scf.index_switch %92

11 default {....}}

(a) The 1-minimal code example: the compila-
tion crash is due to scf.index_switch.

1 module {

2 func.func @func2(%arg0:

tensor<?x?x?xi1>, %arg1:

tensor<5x5xi32>) {

3 %c2 = arith.constant 2 : index

4 ...

5 %92 = affine.apply affine_map<(d0,

d1, d2, d3) -> (d0 - 16)>(%46,

%28, %c2, %43)

6 scf.index_switch %92

7 default {....}}

(b) DuoReduce applies constant replacement
for %c2, enabling further removal of all the
operands %c2 depends on.

Figure 5.7: MLIR GitHub issue 64071 [20]. DuoReduce achieves 4 more lines of code
reduction with the constant replacement compared to Perses+ and Vulcan+, and only takes
617.4 seconds compared to Vulcan+ which takes 2604 seconds, resulting in 3.87× speedup.

Figure 5.7 is an example of how DuoReduce outperforms Perses+ and Vulcan+. The

compilation crash is caused by the logic in scf.index_switch at line 10 in Figure 5.7a, which

works like the case statement in C/C++. Perses+ and mlir-reduce+ reach 1-minimal in

Figure 5.7a; however, the code can be further reduced if we replace the operand %c2 at line

7 with a constant, since the crash is due to the invocation of scf.index_switch instead of

the value of %c2. DuoReduce replaces the operands %c2 with a random constant 2 and

further reduces the IR code to Figure 5.7b.

Compared to Perses+, DuoReduce takes 38.1% more time to finish the entire DD

process on average, as shown in the Time Usage column of Table 5.2. It is because after

reaching the fixed point, DuoReduce applies IR program transformations and enables

further reduction that Perses+ cannot reach. However, by using these transformations,

DuoReduce achieves a 14.9% higher reduction rate and outperforms Perses+ by 31.6%.

Although Vulcan+ also applies code transformations, its general code transformations are

not suitable for MLIR and thus less effective. For example, in Figure 5.7a, Vulcan+ cannot

eliminate the logic dependency of the operand %c2, which prevents it from removing the code
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in lines 3-6. Vulcan+’s identifier replacement technique, which substitutes one identifier with

another, fails to break the logic dependency on the operand in line 7. Similarly, its subtree

replacement strategy, which shares the same logic as identifier replacement, cannot address

this dependency either. Additionally, the time complexity of Vulcan+’s transformations is

O(n2) [171], which is significantly higher than DuoReduce’s transformation complexity of

O(n), as discussed in Section 5.3. For instance, in Figure 5.7, Vulcan+ takes 2604 seconds

to complete the transformation, whereas DuoReduce only requires 617.4 seconds. As

indicated in the Time Usage column of Table 5.2, DuoReduce consistently outperforms

Vulcan+, reducing the time required from 1336.55 seconds to 572.35 seconds on average.

DuoReduce also achieves an 11.0% higher reduction rate and outperforms Vulcan+ by

21.5%.

With IR code transformations, DuoReduce outperforms the state-of-the-art DD

methods, Perses and Vulcan, in terms of IR code reduction by 31.6% and 21.5%,

respectively.
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5.4.3 RQ2: Effectiveness of Dual-Dimensional Reduction

1 func.func @main() {

2 %in_buf = memref.alloc() :

memref<16x230x230x3xf32>

3 %filter_buf = memref.alloc() :

memref<64x7x7x3xf32>

4 %out_buf = memref.alloc() :

memref<16x112x112x64xf32>

5 linalg.conv_2d_nhwc_fhwc {dilations

= dense<1> : tensor<2xi64>,

strides = dense<2> :

tensor<2xi64>}

6 ins (%in_buf, %filter_buf:

memref<16x230x230x3xf32>,

memref<64x7x7x3xf32>)

7 outs (%out_buf:

memref<16x112x112x64xf32>)

8 return}

(a) The above code example crashes because of
the loop tiling. It takes two tensors as input
and computes the 2d convolution.

1 Stack dump:

2 0. Program arguments: mlir-opt

--convert-linalg-to-affine-loops

--affine-loop-tile=tile-sizes=4,28,28,..

--affine-loop-unroll=unroll-factor=4

--canonicalize --affine-parallelize

--lower-affine --canonicalize

--gpu-map-parallel-loops

--convert-parallel-loops-to-gpu conv2d.mlir

3 ...

4 #22 0x00005c544cb547a3 processParallelLoop...

5 ...

6 #25 0x00005c544cb53b93 ... const

/home/mlir/lib/Conversion/SCFToGPU/

SCFToGPU.cpp:642:11

(b) Compiler crash message local-
izes the crash to the wrong pass
convert-parallel-loops-to-gpu.

Figure 5.8: MLIR GitHub issue 82382 [21]. DuoReduce finds the buggy pass
affine-loop-tile in the results while the compiler crash message doesn’t, which moti-
vates the need for DuoReduce.

We evaluate DuoReduce against its downgraded version DuoReduce No2Dim and

LLVM compiler crash message to show the benefit of dual-dimensional reduction.

As shown in Table 5.2, comparing row 6 and row 8 shows that DuoReduce achieved

14.6% higher pass reduction while only taking 1.58 seconds longer than DuoReduce -

No2Dim. LLVM compiler crash messages cannot handle non-crash bugs like wrong code

generated for CIRCT GitHub issue 6317 [17] in Figure 5.2. In total, LLVM fails to localize

correct buggy passes for 52% GitHub issues.

Take Figure 5.8 as an example. The original code in Figure 5.8a transforms a 2-

dimension tensor using linalg.conv_2d at line 5 and stores the result in out_buf at line

7. LLVM reports a crash in pass convert-parallel-loops-to-gpu, as shown at #22 in

Figure 5.8b. However, the crash is actually triggered by the parameter chosen in pass

97



1 module {

2 func.func @omp_target() {

3 %alloca = memref.alloca() :

memref<64x64xf64>

4 ...

5 %0 = omp.map_info var_ptr(%alloca

: memref<64x64xf64>,

tensor<?xi32>) map_clauses(to)

capture(ByRef) ->

memref<64x64xf64>

6 ...

7 omp.parallel {

8 ...

9 %2 = vector.load %arg0[%arg2,

%arg3] : memref<64x64xf64>,

vector<16xf64>

10 ...}}

11 return}}

(a) The code example that crashes with a com-
pilation path including 4 passes. This results in
the inspection of 2423 lines of MLIR compiler
code for debugging.

1 module {

2 func.func @omp_target() {

3 %alloca = memref.alloca() :

memref<64x64xf64>

4 %0 = omp.map_info var_ptr(%alloca

: memref<64x64xf64>,

tensor<?xi32>) map_clauses(to)

capture(ByRef) ->

memref<64x64xf64>

5 return}}

(b) This reduced IR code enables DuoReduce
reduce the compilation path from 4 passes:
convert-vector-to-llvm, finalize-memref
-to-llvm, convert-arith-to-llvm, and con

vert-openmp-to-llvm, to a single pass: conve
rt-openmp-to-llvm, and results in the inspec-
tion of 284 lines of MLIR compiler code for de-
bugging.

Figure 5.9: MLIR GitHub issue 76579 [22]. With dual-dimensional reduction, DuoReduce
removes 3 redundant passes and achieves better reduction than DuoReduce No2Dim,
which translates to not needing to inspect 2139 lines of MLIR compiler code.

affine-loop-tile. Unlike LLVM crash report, DuoReduce localizes all four buggy passes:

convert-linalg-to-affine-loops, affine-loop-tile=..., affine-loop-unroll, gpu

-map-parallel-loops.

Some compilation passes are not related to the crash but are essential for code compila-

tion, and with dual-dimensional reduction, DuoReduce may remove them after IR code re-

duction. For example, in Figure 5.9a, the vector at line 9 needs the pass convert-vector-to-llvm

to lower the vector to llvm dialect and make the code executable. However, after removing

line 9, which is unrelated to the crash, DuoReduce finds that the pass convert-vector-to-llvm

can be safely removed while the crash remains. In the end, compared to DuoReduce -

No2Dim, DuoReduce achieved an additional 75% reduction rate on compilation passes.

On average, DuoReduce achieved a 91.7% reduction rate compared to DuoReduce -

No2Dim with 77.1%.
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Compiler crash messages cannot correctly isolate culprit passes in 16 out of 31 GitHub

issues. DuoReduce outperforms DuoReduce No2Dim and achieves a higher pass

reduction of 14.6%, translating to not needing to examine 281 lines of MLIR compiler

code on average.

5.4.4 RQ3: Effectiveness of Compilation Pass Dependence-Aware Reduction

As shown in Table 5.2 row 5 and row 8, DuoReduce NoDep cannot finish the compilation

pass reduction for 29 out of 31 GitHub issues in the 4-hour time limit, while DuoReduce

finishes all the tasks with an average time of 572.35 seconds. In our evaluation, DuoRe-

duce NoDep cannot finish the reduction tasks in the 4-hour time limit when the number

of compilation passes reaches 14.
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Figure 5.10: Time usage for DuoReduce and DuoReduce NoDep. The x-axis represents
the number of passes, and the y-axis represents the average time usage. DuoReduce
achieves higher speedup when more compilation passes are involved. For example, for 13
compilation passes, DuoReduce takes 241.7s, while DuoReduce NoDep takes 6553.6s,
resulting in 27× speedup.

99



Take the compilation path from GitHub issues [21] in Figure 5.8 as an example. The orig-

inal compilation path has 9 passes, as listed in the stack dump after the Program arguments.

DuoReduce first figures out the dependency relation in the compilation path. For example,

affine-loop-unroll depends on covert-linalg-to-affine-loops and affine-loop-til

e=.... With DuoReduce’s dependency-aware reduction, DuoReduce achieves the same

reduction rate with 101 compilation trials, compared to DuoReduce NoDep with 29=512

compilation trails, resulting in a 5.1× speedup.

We compare DuoReduce against DuoReduce NoDep to examine DuoReduce’s

scalability as the number of compilation passes grows. Figure 5.10 shows that DuoReduce’s

efficiency escalates with the increase in the number of compilation passes. This improvement

is because more passes lead to a denser web of dependencies among the passes. With the

compilation pass dependency, DuoReduce effectively reduces the number of unnecessary

compilation trials. For example, for the GitHub issues with 4 passes like the example in

Figure 5.9, DuoReduce requires 14.7 seconds on average to complete the debugging, com-

pared to DuoReduce NoDep, which takes 36.4 seconds, resulting in a 2.47× speedup.

The efficiency gains are more pronounced with 13 passes, where DuoReduce averages

241.7 seconds, outperforming DuoReduce NoDep’s 6553.6 seconds, thereby achieving a

27× speedup. DuoReduce NoDep cannot finish the delta debugging process within the

time limit (4 hours) when the number of compilation passes reaches 14, while DuoReduce

finished its process for 18 compilation passes in 572.4 seconds.

DuoReduce finished the compilation path reduction with an average time of 572.35

seconds, while DuoReduce NoDep needs an estimated 145 hours, achieving a 901×

speedup. The result shows the effectiveness of compilation pass dependency aware

reduction.
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5.5 Conclusion

Multi-Level Intermediate Representation (MLIR) is increasingly gaining prominence in com-

piler development in the domain of machine learning, high-performance computing, and em-

bedded systems. By serving as a bridge between high-level languages and low-level machine

code, MLIR facilitates optimizations across multiple layers of abstraction. Some MLIR com-

pilers have over 200 compilation passes available. As of September 2024, the top 3 MLIR

projects Triton, CIRCT, and tensorflow-mlir have 258, 206, and 364 compilation passes

available. Due to the complexity of multi-pass compilation, debugging extensible compilers

is challenging.

We present DuoReduce, a novel dual-dimensional debugging approach designed for

such extensible compiler development. Its innovation centers around handling dependen-

cies among compilation passes to streamline the debugging search space and utilizing MLIR

program transformation to further decompose the IR code into fine-granular units. Demon-

strated through experiments on three large MLIR projects, DuoReduce significantly out-

performs all seven baselines. Compared to Perses and Vulcan, it improves the IR reduction

rate by 31.6% and 21.5% respectively. While none of the baselines isolate culprit passes,

DuoReduce achieves an estimated 901× speedup with dependency-aware compilation pass

reduction. The experiment results prove DuoReduce’s effectiveness in debugging multi-

layer extensible compilers, showing significant potential to reduce the development cost of

extensible optimizing compilers.
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CHAPTER 6

Conclusion and Future Direction

In this concluding chapter, we reflect on the key findings, discuss the broader implications

of our work, and identify potential directions for future research.

6.1 Conclusion

Moore’s law is reaching its limit, pushing modern computing systems toward heterogeneous

architectures that integrate FPGAs, GPUs, and quantum processors. As software increas-

ingly relies on these specialized hardware accelerators, ensuring its correctness and reliability

becomes a critical challenge. To bridge the gap between heterogeneous computing and soft-

ware developers, robust testing and debugging tools are essential.

However, traditional software testing and debugging approaches fall short in heteroge-

neous computing environments. These methods were designed with conventional CPU archi-

tectures in mind and fail to account for the unique execution behaviors and hardware char-

acteristics of accelerators. For example, quantum computers produce probabilistic outputs,

fundamentally differing from deterministic CPU execution. To address these challenges, my

research leverages hardware accelerator capabilities and integrates hardware-aware execution

behaviors into efficient testing and debugging methodologies for heterogeneous computing.

Chapter 3 introduces QDiff, a differential testing framework for quantum software stacks.

By considering the unique execution and measurement characteristics of quantum circuits,

QDiff automatically detects bugs in quantum software by identifying result divergence in

quantum circuit executions. Chapter 4 presents HFuzz, a fuzz testing technique designed

to enhance testing efficiency for heterogeneous applications running on FPGAs. HFuzz
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accelerates testing by inserting in-kernel probes to gather hardware execution feedback and

offloading input mutations to FPGA hardware, significantly improving testing throughput.

Moving beyond testing, Chapter 5 explores debugging heterogeneous compilers. DuoRe-

duce introduces a dual-dimensional error localization strategy that systematically analyzes

errors across both the IR code dimension and the compilation path dimension. By combining

delta debugging with dependency-aware compilation path reduction, DuoReduce identifies

the minimal subset of IR code and compilation passes responsible for triggering an error,

significantly reducing debugging effort and improving compiler reliability.

By incorporating hardware execution feedback, leveraging acceleration capabilities, and

redesigning traditional software approaches, these works effectively bridge the gap between

software development and specialized hardware architectures. This dissertation not only

addresses the fundamental challenge of ensuring software correctness in heterogeneous en-

vironments but also lays the foundation for more scalable, automated, and hardware-aware

software techniques in the future.

6.2 Discussion

Q1: Is it possible to apply delta-debugging to quantum circuit, to identify the

root cause of the hardware noise? Yes, delta debugging can be adapted for quantum

computing to identify the root cause of hardware noise by reducing quantum circuits while

preserving the observed noise-induced errors. However, applying delta debugging in this

domain presents unique challenges due to probabilistic measurement outcomes. Delta de-

bugging relies on reproducible failures, but quantum noise is inherently stochastic. We can

adopt QDiff [164]’s approach and define failure as a statistical deviation in output distribu-

tions rather than a single incorrect result.

Q2: If we want to redesign fuzzing like HFuzz [163], what kind of new work do

we need to target a new hardware accelerator? Fuzzing optimizations must be highly
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tailored to the target hardware architecture. The hardware-specific optimizations used in

HFuzz [163], such as Shannolization and loop unrolling, are commonly applied in FPGA com-

pilation to enhance parallelism and resource utilization. However, when redesigning fuzzing

for a different hardware accelerator, the fuzzing strategy must align with the accelerator’s

computational strengths. Take GPU as an example. maximizing parallelism is crucial. The

fuzzing framework should be designed to launch thousands of threads simultaneously, dis-

tributing test cases efficiently across CUDA warps or OpenCL workgroups. For TPUs, test

case generation should be transformed to align with tensor-based computation, as TPUs

excel at matrix operations.

Q3: You design software approach in a very specialized way. What about using

an OS abstraction that abstracts the given hardware accelerators and using a

general software tool?

Our goal is to test low-level hardware platforms that can be used to build OS abstractions.

Current OS abstractions do not expose low-level hardware behavior. Even if we have a

good OS, different hardware accelerators require different testing approaches. GPUs require

testing for warp divergence and shared memory conflicts. TPUs require testing for tensor

precision loss and under-utilized matrix units. FPGAs require testing for timing violations,

channel usage, and memory issues. A one-size-fits-all approach cannot efficiently cover these

hardware-specific issues.

6.3 Future Direction

My PhD research introduces a broad suite of software tools to support heterogeneous com-

puting, addressing key challenges in testing, debugging, and refactoring. However, despite

these advancements, developing heterogeneous applications remains a difficult task for de-

velopers. A significant source of this complexity lies in the compiler infrastructure, which

plays a crucial role in optimizing and transforming code for specialized hardware. To further
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ease the development of heterogeneous computing, this dissertation concludes with several

open questions and potential future directions inspired by our findings.

6.3.1 Challenges in Quantum Computing: Embracing Noise in Compilation

Quantum hardware is inherently noisy. For example, the error rate of a two-qubit gate

remains around 0.1%, posing a significant challenge for large-scale quantum programs, which

commonly involve 128 qubits or more [29]. Given these constraints, quantum compilers

primarily focus on reducing the number of two-qubit gates and optimizing circuit depth to

minimize the impact of noise. Significant research efforts have been devoted to quantum

compiler optimizations [57, 170, 76, 110].

While existing quantum compilers rely on strict mathematical matrix equivalence trans-

formations, the presence of heavy hardware noise calls this strictness into question. Exact

transformations may not always yield the highest fidelity when executing on real quan-

tum hardware. This insight parallels the concept of approximate compilation in traditional

scientific computing, where relaxing mathematical precision can lead to better overall perfor-

mance. By extending this principle to quantum compilation, relaxing matrix transformations

may actually improve execution fidelity on noisy quantum devices.

However, approximation should be both application-aware and hardware-aware. Different

applications and different quantum hardware favor different approximations. For example,

quantum error models vary significantly between superconducting quantum computers and

neutral-atom-based quantum computers. As shown in Figure 6.1, superconducting qubits

typically suffer from limited qubit connectivity and short coherence times, making gate

count reduction a primary optimization goal [85]. In contrast, neutral-atom-based quan-

tum systems have longer coherence times but different connectivity constraints, requiring

optimizations tailored to their unique hardware properties [167]. Understanding these dif-

ferences is critical for designing adaptive compilation strategies that select the most effective

approximations for a given hardware architecture and application domain.
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Figure 6.1: A quantum compiler should employ diverse compilation strategies, since different
quantum computers have different hardware constraints.

Integrating hardware-specific noise models and application-driven approximations into

quantum compilers will be essential for advancing the field and enabling scalable quantum

computation.

6.3.2 Challenges in Heterogeneous Application Development: Optimization

Optimizing heterogeneous applications is inherently complex due to the multiple compilation

paths available in heterogeneous compilers. Each path applies different optimizations and

transformations, and selecting the most efficient path depends on various factors such as

memory hierarchy, execution parallelism, and data movement [63]. However, developers

often lack visibility into which compilation path is best suited for their application, making

manual tuning both time-consuming and error-prone.

As shown in Figure 6.2, we propose a profiling-guided allocator where profiling and hard-

ware feedback dynamically influence the selection of compilation paths. Instead of relying

on static optimization heuristics, our approach continuously monitors runtime performance

metrics, such as memory utilization, cache efficiency, and computation bottlenecks. Based

on this feedback, the compiler can adaptively adjust optimizations to improve performance.
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Figure 6.2: Overview for a Profiling-Guided Allocator

For example, consider an application that initially follows a specific compilation path.

If hardware profiling detects low memory utilization, this suggests that the workload could

benefit from higher parallelism. In response, the compiler can enable more aggressive loop

unrolling or adjust data partitioning strategies to better utilize hardware resources. Similarly,

if the profiling reveals high register pressure or excessive memory stalls, the compiler can

choose an alternative path that prioritizes register reuse and optimized data movement.

By closing the loop between compilation and execution, our approach enables adaptive

optimization that tailors compilation decisions to the actual hardware behavior. This re-

duces manual tuning efforts and allows heterogeneous applications to achieve near-optimal

performance across diverse architectures without requiring extensive hardware expertise from

developers.

107



REFERENCES

[1] Google oss-fuzz. https://google.github.io/oss-fuzz/.

[2] https://github.com/quantumlib/Cirq/issues/2240, 2019.

[3] https://github.com/quantumlib/Cirq/issues/1713, 2019.

[4] https://quantumcomputing.stackexchange.com/questions/8694/

is-there-a-mistake-in-the-vqe-ansatz-in-cirqs-tutorial, 2019.

[5] https://github.com/rigetti/pyquil/issues/1050, 2019.

[6] Cirq: A python framework for creating, editing, and invoking noisy intermediate scale
quantum (nisq) circuits, 2019.

[7] https://github.com/rigetti/pyquil/issues, 2020.

[8] https://github.com/quantumlib/Cirq/issues, 2020.

[9] https://github.com/quantumlib/Cirq/issues/673, 2020.

[10] https://github.com/rigetti/pyquil/issues/1034, Nov,20 2020.

[11] https://github.com/quantumlib/Cirq/issues/3907, Nov,20 2020.

[12] https://github.com/rigetti/pyquil/issues/1259, Nov,20 2020.

[13] American fuzz loop. http://lcamtuf.coredump.cx/afl/, 2020.

[14] https://stackoverflow.com/search?q=quantum++error, April,20 2021.

[15] https://quantumai.google/cirq/google/best\_practices#keep\_qubits\

_busy, 2021.

[16] https://github.com/Qiskit/qiskit/issues/11010, Oct 2023.

[17] https://github.com/llvm/circt/issues/6317, 2024.

[18] https://github.com/llvm/llvm-project/issues/56914, 2024.

[19] https://github.com/llvm/llvm-project/issues/64074, 2024.

[20] https://github.com/llvm/llvm-project/issues/64071, 2024.

[21] https://github.com/llvm/llvm-project/issues/82382, 2024.

[22] https://github.com/llvm/llvm-project/issues/76579, 2024.

108



[23] https://mlir.llvm.org/, 2024.

[24] https://circt.llvm.org/docs/PyCDE/basics/, 2024.

[25] https://github.com/uw-pluverse/perses, 2024.

[26] https://github.com/llvm/circt/tree/main/test/circt-reduce, 2024.

[27] Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum
supremacy experiments. arXiv preprint arXiv:1612.05903, 2016.
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