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Dynamic Visualizations and the 
Randomization Test 

 
 

1. INTRODUCTION 
 

For many years, the backbone of statistical inference in most undergraduate introductory 
statistics courses has comprised the normal distribution, the Central Limit Theorem, and 
sampling distributions of estimators. However, research evidence suggests that the 
theoretical and mathematical procedures involved in the inferential process have created a 
barrier to student understanding. It has long been noted that students have difficulty in 
following the unfamiliar logic associated with statistical inference – logic that is rooted in 
normal-based theory. The majority of students who come through traditional introductory 
courses in statistics fail to gain a true understanding of statistical inference (Jones, 
Lipson, & Phillips, 1994; delMas, Garfield, & Chance, 1999; Saldanha & Thompson, 
2002). In fact, many who teach these courses struggle themselves to understand fully the 
intricacies involved in the process of statistical inference (Thompson, Liu, & Saldanha, 
2007). In today’s world, with advances in computing power, we no longer need to rely on 
normal-based theory to develop students’ understanding of statistical inference. With this 
in mind, many statistics education researchers (e.g., Cobb, 2007) believe that the way 
forward is to change the way in which the statistical reasoning process is taught. 
 
Motivated by Cobb’s (2007) challenge to place the logic of inference at the center of the 
introductory statistics curriculum, and aligned with recent moves in statistical practice 
(Hesterberg, Moore, Monaghan, Clipson, & Epstein, 2009), we have taken steps to 
introduce the randomization and bootstrapping methods as core parts of our curriculum 
and to develop new visual thinking tools for students (Pfannkuch, et al., 2011). The 
appeal of both the randomization and the bootstrapping methods is that they are logical, 
accessible, and conveniently lend themselves to visual processes, which we conjecture 
may assist students with their understanding of statistical inference. They also do away 
with the need for distributional assumptions, and can be applied to many different 
situations. In this paper, we focus on our learning trajectory for the randomization method 
and we present pilot study findings about student learning outcomes.  
 

 
2. LITERATURE REVIEW 

 
Statistical inference is the term given to procedures that are used to draw conclusions 
about the world based on data. The three philosophies that underlie statistical inference 
are Bayesian, Neyman-Pearson and Fisherian. The Bayesian approach has as its core the 
concept of subjective probabilities and personal decision-making, and will not be dealt 
with in this paper since it is outside the scope of our curriculum and discussion. Both the 
Neyman-Pearson and the Fisherian approaches utilise objective measures of probability 
in order to come to conclusions. In simple terms, the Fisherian framework involves the 
setting up of a null hypothesis, usually one of no effect, with evidence being gathered 
against this null model. The Neyman-Pearson decision theoretic framework involves the 
setting up of competing hypotheses; the null hypothesis, and the research (or alternative) 
hypothesis. A decision is then made, based on the observed data, as to which hypothesis 



 

to accept (Rossman, 2008). One consequence of this difference is that there is only one 
type of error defined in the Fisherian approach; rejecting the null hypothesis when it is 
true (i.e. a Type I error), while there are two errors associated with the Neyman-Pearson 
approach: a Type I error, and rejecting the alternative hypothesis when it is true (i.e. a 
Type II error) (Gigerenzer, 1993). For many, having two approaches to hypothesis testing 
introduces problems in deciding which method to adopt (Lenhard, 2006). One result is 
that many researchers “most commonly adopt a hybrid approach, combining aspects of 
both Fisherian inference and Neyman-Pearson decision-making to statistical hypothesis 
testing” (Quinn & Keough, 2001, p. 39). 
 
Hypothesis testing, regardless of whether it is set within the confines of the Fisherian 
framework or the Neyman-Pearson decision theoretic framework or a combination of the 
two, is one of the most difficult topics for students and researchers to understand (Jones, 
Lipson, & Phillips, 1994). Many researchers (e.g., Carver, 1978; Cohen, 1994; Daniel, 
1997; Falk & Greenbaum, 1995; Haller & Krauss, 2002; Hurlbert & Lombardi, 2009; 
Johnson, 1999; Mulaik, Raju, & Harshman, 1997;  Nickerson, 2004; Schmidt, 1996) have 
documented persistent misconceptions related to hypothesis testing. These 
misconceptions include, but are not limited to: 
 

• regarding a p-value as the probability that the research results are due to 
chance; 

• considering a p-value as the probability that the null hypothesis is true (given 
the data) rather than the probability of the data (assuming that the null 
hypothesis is true); 

• believing that the size of a p-value is an indicator of the size of any difference 
or relationship; 

• concluding that ruling out a null hypothesis at a particular level of 
significance, say α, means that the research hypothesis has a probability of 1-
 α of being true; 

• interpreting a statistically significant result as practically important; 
• accepting the null hypothesis if the p-value is considered to be ‘large’. 

Acceptance of the null hypothesis on the basis of a large p-value is a logical 
misconception, and arises from a misapplication of deductive syllogistic reasoning 
(Cohen, 1994). Most people are not attuned to thinking and reasoning probabilistically, 
and therefore apply a deterministic form of reasoning to such situations (Pfannkuch, et 
al., 2011). Liu and Thompson (2009, p. 127), through an analysis of some teachers’ 
thought processes, believed that the conceptual obstacles were “rooted in their non-
stochastic conceptions of probability and in their lack of understanding of the logic of 
indirect argument.” That is, the teachers did not have a conception of distribution from 
which they could determine the unusualness of an observation, and they had a hidden 
belief that “rejecting a null hypothesis means to prove it wrong” (p. 142). Other 
researchers have also noted the difficulties associated with the indirect argument used in 
hypothesis testing (e.g., Nickerson, 2004; Rossman, 2008). In addition to these 
misconceptions is the fact that classical presentation and handling of statistical inference 
in the undergraduate curriculum relies on mathematical theory. Concepts associated with 
the development of a sampling distribution for any test statistic create obstacles in the 
path of understanding for all but the most mathematically inclined students (Chance, 
delMas, & Garfield, 2005; Rubin, Bruce, & Tenney, 1990). 

 



 

After 20 years of attempting to improve students’ hypothesis testing reasoning with little 
progress (Meletiou-Mavrotheris, Lee, & Fouladi, 2007) there appears to be a consensus 
that a new paradigm should be considered. The new learning emphasis should be on the 
reasoning and logic underpinning inference or hypothesis testing and that the 
mathematical procedures and manipulation of symbols of normal-based hypothesis 
testing should be replaced with the randomization method, which seems to be more 
conceptually accessible both visually and verbally (Cobb, 2007; Gould, Davis, Patel, & 
Esfandiari, 2010; Rossman, Chance, Cobb, & Holcomb, 2008; Tintle, VandenStoep, 
Holmes, Quisenberry, & Swanson, 2011). 
 
Randomization (or permutation) tests have a long history, largely attributable to works by 
Fisher (1925) and Pitman (1937).  The main premise of the randomization method is that 
the exact distribution of any test statistic specified under a null hypothesis can be 
obtained by reshuffling the original data many times. This is in contrast to the majority of 
other statistical tests which rely on asymptotic approximations which tend towards an 
exact solution only when sample sizes grow infinitely large. Fisher’s exact test, used 
when analysing categorical data in contingency tables, is an example of a randomization 
(or exact) test, since the distribution of the test statistic is exactly hypergeometric if the 
marginal counts of the contingency table are fixed (Agresti, 1992). Karl Pearson’s chi-
square test provides an approximation to Fisher’s exact test, although it will be 
inadequate if the sample size is small, or if cell counts under the null hypothesis are low. 
The beauty of Fisher’s exact test is that it can be performed quite easily when dealing 
with a two-by-two table, with computer algorithms capable of dealing with data having 
more than two categories. Pitman demonstrated that randomization tests could be 
extended beyond the categorical data example originally described by Fisher, with other 
statisticians following his lead (Ludbrook & Dudley, 1998). 
 
Recent exploratory research has used the randomization method to teach about both 
comparative observational and experimental studies. Preliminary results show promise, 
with Tintle et al. (2011) and Tintle, Topliff, Vanderstoep, Holmes, & Swanson (2012) 
reporting that students learned and retained significantly more about statistical inference 
using the randomization method while Gould et al. (2010) cautioned that new reasoning 
misconceptions could appear such as students believing the re-randomization distribution 
was the observed data distribution. 
 
The randomization method, moreover, can be mediated through visual representations, 
which allow concepts to become more accessible to students. According to Clark and 
Paivio (1991), student understanding can be enhanced by the addition of visual 
representations and that encouraging students to generate mental images improves their 
learning. The Guidelines for Assessment and Instruction in Statistics Education (GAISE) 
include the role of technology as an important tool to develop conceptual understanding 
(Aliaga, Cuff, Garfield, Gould, Lock, Moore, Rossman, Stephenson, Utts, Velleman & 
Witmer, 2005). A central contribution of technology to student learning is that it enables 
students to link multiple representations − visual, symbolic, and numeric − and it 
facilitates understanding through promoting a visualization approach to learning 
(Sacristan, Calder, Rojano, Santos-Trigo, Friedlander, & Meissner, 2010). Several 
researchers have found that the introduction of technology, through computer simulation 
activities, has enhanced students’ understanding, although the improvement was modest 
(Hodgson, 1996; delMas, Garfield, & Chance, 1999). Dynamic software can allow 
students to analyze directly the behavior of a phenomenon, to visualize statistical 



 

processes in ways that were not previously possible such as viewing a process as it 
develops rather than analyzing it from the end result. Exposure to such processes “can 
help develop the abilities and intuitive thinking that can enhance powerful mental 
conceptualizations” (Sacristan et al., 2010). Such representational infrastructure allows 
access to statistical concepts previously considered too advanced for students, as mastery 
of algebraic representations is not a prerequisite. The computer is able to take on the 
lower level tasks, such as performing many calculations, whilst the student can attend to 
the higher level tasks of applying the logic of statistical inference to the problem at hand 
(Jones, Lipson, & Phillips, 1994). Hence to obtain the full potential for learning 
inferential reasoning via the randomization method the teaching approach should 
incorporate dynamic visualizations. The role of hands-on activities as a tool to assist in 
the development of the inferential argument is also a major consideration. Some 
researchers argue that technology-driven simulations are more effective when presented 
in conjunction with appropriate hands-on activities (delMas, Garfield, & Chance, 1999; 
Lunsford, Rowell, & Goodson-Espy, 2006; Hesterberg, 2006; Pfaff & Weinberg, 2009; 
Seier, 2010). 
 
 

3. OUR RESEARCH 
 
Reflecting on the research literature and the requirements and constraints of our curricula 
we have chosen a different learning pathway from other researchers for beginning 
students. Unlike others (Tintle et al. (2011),  (Tintle, Topliff, Vanderstoep, Holmes, & 
Swanson, (2012)), we decided not to use hypothesis testing structures and language; 
instead we generated a more natural form of argumentation based on the Fisherian 
framework. We limited the learning situations to comparative experiments in order to link 
how the randomization method mimics the data production process, which in turn 
determines the type of inference that can be drawn, that is, causal (Cobb, 2007). We are 
not using sample and population ideas for experiments, as is the case in traditional 
normal-based methods, and a matter which Cobb (2007) described as sleight of hand 
because in reality experiments do not take random samples from populations. We 
developed novel free dynamic visualization software for the randomization method to use 
as both a teaching and analysis tool. Our learning pathway is premised on the fact that for 
Year 13 (final school year) students it is sufficient for the analyses they are required to 
perform and that our undergraduate introductory statistics students, because of client 
department demands, still need to do normal-based inference. In time at the university 
level we hope to develop a fully-fledged randomization and bootstrapping curriculum. 
Our research question for the pilot study, the focus of this paper, is: what problems are 
inherent in the randomization method and our learning trajectories based on an analysis 
of students’ learning and reasoning? 
 
 

4. METHOD 
 
A collaborative research project team of 33 members is involved in the development of 
these innovative approaches to teaching statistical inference. The team consists of two 
education researchers, two resource developers, a statistical software conceptual 
developer, eight university lecturers, fourteen secondary school teachers, five 
professional development facilitators, and one international advisor. Using design 



 

research principles (Hjalmarson & Lesh, 2008), the development process involves two 
research cycles with four phases: (1) from an identified problematic situation, understand 
and define the conceptual foundations of inference; (2) development of new resource 
materials and dynamic visualizations; (3) implementation with Year 13 and university 
introductory statistics students; and (4) retrospective analysis followed by modification of 
teaching materials. The focus of design research is to support and engineer new types of 
reasoning and thinking in response to problematic situations. As well as being pragmatic 
through producing an educational product that can be used by teachers, design research 
can also lead to new educational theories and areas of research (Bakker, 2004). 
 
In the first research cycle a pilot study was conducted with ten students, five from year 13 
and five from university. All of the year 13 students had good grades at this level. Of the 
five university undergraduates, one student had studied a variety of third-year statistics 
papers and two had taken our traditional introductory statistics course. The remaining two 
undergraduate pilot study students had not taken any statistics papers while at university. 
One had good grades at the year 13 school level and one had minimal passes at the year 
13 school level. A one-day teaching session was conducted with half of the day devoted 
to the randomization method, and the other half to the bootstrapping method. Using a 
mixed-methods approach, data collected for this pilot study were: student pre- and post-
tests and interviews, student post-task interviews, video of teaching implementation, and 
reflections and observations of the project team. A thematic qualitative data analysis 
using NVivo 9 software (QSR International, 2010) was conducted on the student 
interviews (Braun & Clarke, 2006), while numbers of students who responded to multi-
choice and true/false questions were recorded. In the second research cycle data will be 
collected from about 3000 students. 
 
 

5. PILOT STUDY DESCRIPTION AND RESULTS 
 
The purpose of the pilot study was to detect problems in the pre- and post-tests, learning 
trajectories and software. We will describe some of the issues that arose in the pilot study 
pre-test, during the implementation of the teaching unit, and in the post-test and post-task. 
For the implementation of the teaching unit we will elaborate on some of the learning 
experiences and language we used. 
 
5.1. Pilot Study Pre-Test 
 
Prior to the teaching session, the students completed the pre-test and were then 
interviewed in order to probe their reasoning behind their responses. The randomization 
section of the pre-test described a Fish Oil and Blood Pressure study (Knapp & 
FitzGerald, 1989) investigating whether a fish oil diet produced greater reductions in 
blood pressure than a regular oil diet. The Fish Oil and Blood Pressure study participants, 
14 male volunteers with high blood pressure, were randomly assigned to the treatment 
group (fish oil diet) and the control group (regular oil diet). Data were provided 
numerically and graphically with two questions, one probing the students’ understanding 
of random assignment and another aimed at eliciting the students’ initial response in 
providing two main possible explanations for the observed difference in blood pressure 
reductions between the two groups (Figure 1). 

 



 

 

 
 

Figure 1. Part of one pilot study pre-test question, Question 8 
 
Question 8 in Figure 1 was adapted from the Comprehensive Assessment of Outcomes in 
a First Statistics Course (CAOS) (delMas, Garfield, Ooms, & Chance, 2007). In a large 
scale pre- and post-test situation, delMas et al. observed poor performance in 
understanding the purpose of random assignment with 8.5% and 12.3% answering 
correctly in the pre- and post-tests respectively. In our pilot study pre-test, three students 
selected the correct response, namely to produce treatment groups with similar 
characteristics. Another three selected the response to increase the accuracy of the 
research results. However, upon questioning in the interview session, all of these 
students talked about avoiding bias and wanting comparisons to be fair. Even though they 
selected an incorrect response, they used words and reasoning that indicated an 
appreciation behind the reason for random allocation to groups with statements such as: 

S1: … so you didn’t take the seven youngest to do the fish oil or … seven of 
the same ethnic group 

 

Therefore the problem seems to be their interpretation of the language of the multi-choice 
options rather than their reasoning. Several students, however, were confused between 
random assignment and random selection. Three selected the option to ensure that all 
male participants with high blood pressure had an equal chance of being selected for the 
study with one student stating:  

S2: … when they have all the people who volunteered with high blood 
pressure, they chose a random 14 

 
Such a statement could be true but again it seems that knowing and understanding the 
language of statisticians is very important.  
 

The next question asked for two main possible explanations for the observed difference in 
blood pressure reduction between the two groups. All but two of the pilot study students 
were able to state that one possible explanation for the observed difference in blood 
pressure reduction was that the fish oil treatment was effective. We were particularly 



 

interested to find out if the students would suggest chance as another possible 
explanation. Attempts at formulating a second explanation ranged from statements about 
the fish oil study participants knowing they were being treated with fish oil and therefore 
eating more healthily, to psychological effects or biological properties having an impact 
on blood pressure, and some partial chance ideas about who just happened to be in which 
group. For example: 

S3: 
 
 

The participants in the fish oil group had a lifestyle better suited to 
reducing blood pressure than the regular oil group 

 
Results from the pre-test heightened our awareness that we would need to think carefully 
about the terminology that we used when employing the randomization method. In 
addition, we would need to be mindful with the development of the chance-alone 
explanation since none of the students articulated this as a possible explanation for the 
observed difference.  
 
5.2. Pilot Study Teaching Session  

 
Since seven of the students had not previously been exposed to designing comparative 
experiments, the first activity in the teaching session began with the instructor stating that 
she believed that some types of words were easier to recall than other types of words. By 
being careful to state that she was using a convenience sample of volunteers, that is, the 
pilot study students, she then explained that in order to investigate her hunch she wished 
to carry out a memory test. Her plan was that each person in the room (which included 
the students and the researchers) would be allocated to one of two groups, one of which 
would be given a list of words of one type to memorize, and the other to be given a list of 
words of another type to memorize. She then suggested that everyone over the age of 18 
would be put into the first group, while everyone under the age of 18 would be put into 
the second group. At the outset nobody disputed this suggestion, which surprised us.   
Once challenged by the instructor as to whether or not there were any problems with her 
plan, a few suggestions were made such as “… the groups are not representative of the 
population…”, “… not enough people…”, and “… the numbers won’t be even…”. 
Having dealt with these suggestions, and with no comments on bias forthcoming, the 
instructor then continued by asking the students to consider males being given a list of 
words of one type to memorize, and females being given a list of words of the other type 
to memorize. Very quickly, someone mentioned that there would be bias, and that a 
comparison between the number of words recalled between each group would not be fair. 
Finally one student stated that there would need to be random assignment to each group 
so that a fair comparison could be made. A link was then made to the original approach 
of allocating students to each group on the basis of their age, and students appeared to 
realize that it would not be reasonable. We were surprised that nobody was critical of the 
original plan given their responses to the pre-test. 
 
The second activity involved an example designed to demonstrate statistical 
argumentation in action in everyday life (Vickers, 2010). We conjectured that by using an 
everyday example as the basis for our argumentation, and by encouraging the students to 
link future examples back to a readily identifiable context, students might find the 
statistical reasoning process and in particular the nature of the indirect argument more 
logical. The everyday activity described a situation involving a father and his daughter, 
and their daily battles with tooth brushing. Alice is told to go and brush her teeth. She 



 

disappears into the bathroom, the tap runs, and she returns several minutes later stating 
that she has brushed her teeth. The plausibility of Alice’s claim is tested by her father 
retrieving and examining her toothbrush. The following scenarios are then considered: (1) 
the toothbrush is dry and (2) the toothbrush is wet. The processes of argumentation 
aligned with each of these scenarios are shown in Figure 2. 
 
 Scenario One Scenario Two 

1. Statement to test. She has brushed her teeth. She has brushed her teeth. 

2. Collect data 
(information). 

The toothbrush is dry. The toothbrush is wet. 

3. Consider 1. and the 
data: 
If 1. is true, then what are 
the chances of getting data 
like that in 2.? 

The toothbrush-is-dry would 
be highly unlikely if she had 
brushed her teeth. 

The toothbrush-is-wet would 
NOT be surprising if she had 
brushed her teeth. 

4. Review the statement 
in 1.  in light of 3. together 
with the data in 2. 

 

Therefore, it’s a fairly safe bet 
she has not brushed her teeth.  
I have evidence that she has 
not brushed her teeth. 

Therefore, she could have 
brushed her teeth. Or she 
could have just run the brush 
under the tap. 
I have no evidence that she 
has NOT brushed her teeth. 

 
Figure 2. Development of everyday argumentation 

 
A widely-held misconception, that no evidence against the null model (i.e. the statement 
being tested, that Alice did brush her teeth) provides evidence in favor of the null model, 
has been widely documented (Cohen, 1994; Falk & Greenbaum, 1995; Haller & Krauss, 
2002). However, when Scenario Two was described to the pilot study students, they were 
quick to suggest that a wet toothbrush was not definitive evidence of Alice having 
brushed her teeth. We conjectured that use of this everyday example, the intuitive line of 
reasoning, and the readiness with which students were able to think of alternative 
explanations for a wet toothbrush, might allay some common misconceptions. 
 
The argumentation process was then considered in a more probabilistic situation, the third 
activity, although one to which students could easily relate (Eckert, 1994). With a pack of 
cards in hand, the instructor asked “What are the chances of drawing a red card from this 
pack?” Assuming a fair pack of cards, the students were certain that the chances of 
drawing a red card were ½, that in 10 draws (with replacement) they would expect to get 
approximately five red cards, but that they were not guaranteed to get exactly five red 
cards in every draw of ten cards. Their assumption that it was a fair pack of cards, that is, 
the chances of drawing a red card from the pack was 0.5, was then tested. One volunteer 
chose ten cards at random, with replacement, from the pack of cards and it was noted that 
each card drawn was black. When the seventh and eighth black cards were drawn, the 
students started asking if there were any red cards in the pack at all, a sign that they were 
skeptical of their initial assumption that it was a fair pack of cards (p = 0.5). After all ten 
cards were drawn, all of which were black, the students were asked if they thought that 
pack was fair. They emphatically stated no, the pack of cards was not fair. They 



 

acknowledged that one could draw ten black cards from a fair pack, but that it was highly 
improbable. When asked for how many red cards they would want to see in order to 
accept that the pack was fair, one student answered “… at least one…”, while another 
answered “… three to six…”. Discussion then turned to the distribution of outcomes that 
one might expect if the process of drawing ten cards from the pack, with replacement, 
was carried out many times. The students acknowledged that possible outcomes (i.e. the 
number of red cards in ten draws with replacement) would range from zero to ten, that 
five would be the most likely outcome, and that outcomes on either side of five would 
become less likely as they moved away from five. An image of the distribution of 
outcomes was co-constructed with the students. When the observed outcome of zero red 
cards was marked on the distribution of outcomes, students could see that although not 
impossible, it was a highly unlikely result.  They also noted that one red card was “…kind 
of unusual…”, but appreciated that it was less unusual than no red cards, and that 
anything between three and seven red cards would not be unusual. We hoped that this 
intuitive argument with an unusual result displayed within a distribution would assist 
students when faced with drawing a conclusion from the re-randomization distribution. 
But, as Rossman (2008) observed, students seem to have no difficulty following the 
argument with a direct probability situation but do when encountering hypothesis testing. 
 
The fourth activity, the randomization part of the teaching session, then followed, and 
involved a simplified version of an actual experiment that was designed to investigate 
whether a program of special exercises for infants for 12 minutes per day could speed up 
the process of learning to walk (Zelazo, Zelazo, & Kolb, 1972). Experimental data from 
two of the study groups, Exercise and Control, is displayed in Figure 3 with a red arrow 
indicating the difference between the measures of center for the Exercise group and the 
Control group. In this instance, the measure of center is taken as the median. However, it 
is also possible to use the mean as the measure of center. 

 

 

 
 

Figure 3. Plot of experimental data. X-axis is walking age in months 
 
Two possible explanations for the observed difference of 2.25 months in the medians of 
the walking ages were discussed with the students: chance alone factors and both chance 
factors and the treatment factor. The randomization method was presented to the students 
as a method that allows us to experience the nature and extent of the variability we might 
expect to see when chance is acting alone, which we can then compare with what we see 
in our observed data.  
 
A hands-on version of the randomization method was introduced at this stage. By giving 
students hands-on experience, Holcomb, Chance, Rossman, Tietjen, & Cobb (2010) 
suggest that students can progress to the next level of the inferential argument by having 
these hands-on scenarios repeated via software. In pairs, the students were presented with 



 

ten tickets representing the five babies in the Exercise group and the five babies in the 
Control group and manually plotted the data seen in Figure 3. Under chance alone, we 
were interested in experiencing what sorts of differences we might expect to see in the 
measures of center of walking age for the Exercise group and the Control group. This was 
achieved by randomly reassigning the babies to each group. The tickets were split, 
effectively breaking the link between group membership and walking age. The group 
membership tickets and the walking age tickets were then shuffled, and the first 
observation under chance-alone was obtained by randomly selecting one ticket from each 
pile. This process, which we call re-randomization, was repeated until all of the tickets 
were used up. The resulting data were then plotted, and the difference between the 
measures of center calculated. This was done several times by each pair of students, with 
students then collating their data as in Figure 4. 
 
 

 
 

Figure 4. Plot of 15 re-randomizations. X-axis is the difference in median walking ages in months 
 

The students were then presented with a software demonstration, which reiterated the 
hands-on process, but was able to repeat the re-randomization process many more times. 
Development of suitable specialized software was a crucial consideration. The software 
was designed as a teaching tool and an analysis tool, and was required to mimic the 
hands-on process to allow for an extension to the intuitive logic provided by the hands-on 
experience. Figure 5 shows an example of an early version of the dynamic visualization 
tools which were used in the pilot study (http://www.stat.auckland.ac.nz/~wild/VIT/). In 
the top section of the graphics panel, note the experimental data, with box plots 
demonstrating walking ages for both the Control group and the Exercise group. This is 
the same plot as in Figure 3 with the observed difference in medians of 2.25 months 
indicated by a red arrow. By choosing Run from within the Re-randomization (Idea) 
portion of the control panel, the data from both groups is combined, and then each 
walking age is re-allocated at random to a treatment group.  

 
This process of re-randomization mimics the hands-on ticket-tearing activity. Note the 
results from one re-randomization in the data panel and in the middle section of the 
graphics panel. Each re-randomization difference in the medians can be captured in the 
bottom section of the graphics panel, allowing a distribution of up to 1000 such 
differences to be built. The tail proportion, representing the fraction of these 1000 re-
randomizations producing a difference in group medians at least as big as the observed 
difference of 2.25 months, is indicated on this distribution.  
 
We then discussed with the students the conclusion they would make and related it to the 
Alice story framework Scenario One. Our choice to begin by introducing an example 
with a small tail proportion was in part due to the suggestion that starting with an 
example with a large tail proportion might “reinforce students’ natural inclinations to 



 

regard a non-small p-value as evidence in support of the null model, rather than a lack of 
evidence against the null model” (Holcomb, et al, 2010, p. 4). 
 
Control panel 

 
Data panel 

 
Graphics panel 

 

 
 

 

 

 
 

Figure 5. Software panels for performing re-randomization process 
 
The fifth activity involved data from the same walking age study, although this time a 
comparison was made between the Exercise group and another group. This comparison 
resulted in an observed difference of 1.4 months, corresponding to a tail proportion of 
approximately 15%. We discussed with the students how we would interpret this tail 
proportion including stating that: Chance could be acting alone, or the special exercise 
program could be effective. We cannot say, either way. Note a relatively large tail 
proportion does not lead us to accepting the chance-alone explanation as the only 
explanation. Our aim was to minimize the possibility of introducing this common 
misconception. We hoped that the Alice story framework, where tooth brushing was not 
the only explanation for a wet toothbrush, would provide further reinforcement to the 
concept that lack of evidence against the tested explanation does not confirm that 
explanation. 
 
Throughout the entire teaching session, great care was taken with the terminology used. 
Since the term randomization is often used to describe randomness in the data 
production, and therefore can indicate either random allocation to groups or random 
sampling from a population, re-randomization was the term given to the process of 
random re-assignment of units to one of the groups. Issues associated with the use of 
language when applying the randomization method have been published elsewhere 
(Pfannkuch, et al., 2011). 
 
 
 
 
 



 

 
5.3. Pilot Study Post-Test  
 
One week after the teaching session, the pilot study students returned for a written post-
test, an interview and a task session. With regard to the randomization method, the same 
questions that were asked in the pre-test were asked in the post-test. However, there were 
some new questions in the post-test that we hoped would shed some insight into students’ 
understanding of the randomization process. 
 
There was no increase in the number of correct responses to the question concerning the 
purpose of randomly assigning the 14 male volunteers to one of the two groups, a finding 
similar to delMas et al. (2007), albeit with a very small sample. This would appear to 
confirm our belief that language is very important, and that confusion in the interpretation 
of random allocation to groups, random sampling from populations and randomization 
methods exists. However, our questioning of students upheld our original impression that 
most students who answered incorrectly still appreciated the motivation for random 
assignment.  
 
With regard to identifying two main possible explanations for the observed difference in 
blood pressure reduction between the regular oil group and the fish oil group, all students 
claimed that one explanation would be that the treatment was effective. Furthermore, 
seven students were able to articulate a chance-alone explanation to some extent. This is 
evident in both their written and verbal responses, with comments such as: 

S2: Chance may or may not be acting on the reduction in blood pressure 
S3: That the fish oil diet group was made up of people who were more likely 

to have their blood pressure reduced for whatever reason 
S4: Chance is acting alone. The observed data has resulted in the way it has by 

chance 
Hence a fundamental element of the inference argument seems to be included in these 
students’ reasoning. All but one of the students were able to state that the researchers in 
the Fish Oil and Blood Pressure study would have been surprised to see a result such as 
the observed difference in group medians if chance was acting alone. Most of these 
students made reference to the tail proportion as part of their argument. Compared to Liu 
and Thompson’s (2009) findings, these students seem to have a conception of 
unusualness in a distribution, which we attribute to the software always displaying the 
tail proportion as part of a distribution, never as a numerical value on its own. 
 
Figure 6 shows two additional questions asked in the post-test. Question 15 was aimed at 
finding out the scope of the conclusions that the students were prepared to accept. We, 
perhaps unrealistically, expected the students to break the claim down and restate it so 
that it was statistically correct. However, some students did not respond in the way we 
envisaged, and as a result this question has been modified for the main study. Seven 
students noted that the claim generalized the findings to people, commenting that only 
males, and/or only those with high blood pressure, were studied. For example: 

S5: The research was conducted on men and there is a possibility that women 
may react differently to fish oil consumption 

S6: ‘People’ is too general. As the participants were all male with high blood 
pressure only inference about this particular group can be made 



 

 

None considered stating on average as a way of dealing with the fact that not all males 
would lower their blood pressure. Students were generally uneasy accepting what they 
felt was the definitive aspect of the statement outlined in Question 15.  

 

Even after having taken into account the over-generalizing feature of the statement by 
acknowledging that inference can only be made about males with high blood pressure, 
students were still uncomfortable with the word can. We speculate that this may be 
attributed to the tendency to qualify all statements with a degree of ambiguity, which 
Biehler (2011, p. 3) suggested meant nothing in terms of learning about students’ 
statistical reasoning, since “all our knowledge is uncertain.” 

 

 
 

Figure 6. Pilot study post-test questions, Questions 15 and 16 
 
We were interested in the responses to Question 16 (Figure 6), particularly in light of the 
common misconception that a large p-value is taken as evidence in favor of the chance-
alone explanation. There was a range of responses such as: 

S1: Further investigation is required 
S7: The result is higher than 10%, showing that it is likely that chance is 

acting alone [incorrect] 
S8: They cannot conclude anything, it means that there’s no evidence against 

chance acting alone and that maybe some other factors could be acting 
along with chance [correct] 

 
During the teaching session, a guideline had been given for assessing chance acting 
alone. The guideline suggested that if the tail proportion was less than 10%, we had 
evidence against chance acting alone. Perhaps not surprisingly, students had the tendency 
to grab onto 10% and use it as a rigid cutpoint. One student had the idea that the tail 
proportion was a measure of how effective fish oil was, with a proportion in the region of 
50% indicating that fish oil was definitely not useful, a proportion of around 27% 
indicating that fish oil may or may not be useful, and that a tail of less than 10% 
indicating that fish oil was probably useful. Although not probed at the time, we 
anticipate that his answer to a tail proportion of 1% would be to state that the fish oil was 
definitely useful. Such a misconception has been consistently documented for hypothesis 
testing (Falk & Greenbaum, 1995). Their responses, however, were not surprising since 
the tail proportion idea has not changed through our visualizations, only an appreciation 
of how the tail area is obtained has changed, that is, it is not a numerical value, rather a 
part of an understandable distribution. Interpretation of a large tail proportion and the 
indirect nature of the logic of the argument seem to remain a problem with this method as 

I: How would you rewrite it? 
S1: It is possible… 



 

it was with normal-based inference (Falk & Greenbaum, 1995; Nickerson, 2004; Liu & 
Thompson, 2009). We attribute this problem partially to the fact students only had about 
two hours tuition and we did not successfully link in the Scenario Two everyday 
argumentation (Figure 2). Even though this type of argumentation is used in everyday 
life, we think the argumentation will continue to remain difficult as it appears to be an 
alien way of reasoning (Thompson, Liu, & Saldanha, 2007) particularly when overlaid 
with chance-alone, the re-randomization distribution of differences in means, and tail 
proportion ideas. 
 
5.4. Pilot Study Post-Task  
 
The purpose of the post-task was to find out how the students handled the software, and 
whether they understood the dynamic visualization representations, the hands-on 
components of the activities, and the language used, and whether further issues could be 
identified in their reasoning. Pairs of students were given a written scenario to consider. 
The research question was “Does added calcium intake reduce blood pressure?” The 
scenario described data that had been obtained from a randomized experiment designed 
to establish whether or not an increase in calcium intake was associated with a reduction 
in blood pressure. The students were required to enter the data into a file, import it into 
the software package and to analyze it such that the research question would be answered. 
They were asked to describe each step of their analysis for the benefit of the interviewer 
who was to be considered a novice. 
 
All students were able to use the software competently. Of the five student-pairs, three 
had initial problems entering the data which was not a software problem rather a data 
structure problem. However, all were able to correct themselves with minimal input from 
the interviewers. All students correctly interpreted the red arrow (see Figure 3) as the 
difference between the measures of center for the two groups being compared and 
understood what the re-randomization distribution represented. The dominance of the 
visual distribution in students’ thinking was noted particularly in the bootstrap method 
scenario (not reported in this paper), which led us to refine the software to use a fainter 
color and fade option for the distribution so that visually students’ attention was drawn to 
the observed value, the tail proportion, and its relationship to the distribution. Noteworthy 
was a comment made by the student who had studied statistics at the third year level – 
“now I understand what a p-value is” –reinforcing our view that presenting the tail 
proportion as part of a distribution assists learning. 
 
When quizzed on the effectiveness of the hands-on activities that formed part of the 
randomization teaching sequence, one student noted: “… having something that you can 
do and something you can visually see with the graphs, I thought that was really useful”. 
One student-pair described the connection they made between ripping up the pieces of 
paper in the Walking Babies example with the automated reassignment of blood pressure 
reductions in the dynamic visualizations. Another student remarked: “the randomization 
experiment (mixing the various pieces of paper) was very straightforward and left no 
room for confusion.” 
 
Five students were asked if they considered the line of argumentation associated with the 
toothbrush story an effective analogy, that is, that the line of reasoning is the same as the 
intuitive reasoning underlying the toothbrush story. All five agreed, mentioning that it 
was a readily identifiable situation as everyone brushes their teeth. However one student 



 

noted that she was able to understand the story when the toothbrush was dry, but was 
confused by the conclusion when the toothbrush was wet. This reinforced our view that 
the concept of ‘no evidence against chance alone’ appears to be especially problematic 
for students. We conjecture that the double-negative in ‘no evidence against …’ is the 
source of the problem. This difficulty has been compounded in the conclusion of the 
Alice story when the toothbrush was wet by rephrasing ‘no evidence against the 
statement being tested’ as ‘no evidence for the negation of that statement’. To avoid 
potential obfuscation of the analogy, we conjecture that ‘I have no evidence that she has 
not brushed her teeth’ should be replaced with ‘I’m still not sure if she has brushed her 
teeth’.  
 
Again the language we used manifested itself as problematic in several areas. One area 
was students’ understanding of what chance is acting alone means. Several students were 
unable to articulate their understanding of what it means for chance to be acting alone. It 
may be that they have grasped the concept, but were unable to express their thoughts. 
One pair of students described chance as “…it just so happened…”, and then stated that 
randomization was used to “… confidently be able to say there is no chance that chance 
had any effect on the results”. When questioned on the hands-on activities that formed 
part of the randomization teaching sequence, another pair of students understood the 
ticket-tearing procedure as “…creating chance.” Since the idea that chance is acting 
alone is a central concept in the randomization method, we were concerned about the 
students’ difficulties with this notion. Consequently new software, designed to illustrate 
chance is acting alone unencumbered by experimental data, has been developed. 
 
Another problematic area was the reluctance to state a causal relationship between 
calcium intake and reduced blood pressure. One pair of students, in finding a tail 
proportion less than 10%, chose to say that there was “…likely…” a difference in blood 
pressure reduction between the calcium and control groups. It was unclear whether they 
said “…likely…” because they were hesitant to give a strong confirmatory response, or 
whether they felt that there was still a chance that what they observed in the data was not 
the truth. Such reasoning is understandable given that the observed difference could be 
that rare occurrence.  
 
Two further issues that arose in students’ reasoning in the post-test were also identified in 
the post-task. There was a general tendency for students to use the 10% guideline as a 
strict cut-off, with statements such as “The decrease in (the) calcium group was lower 
than the placebo, so …because it’s less than 10% … it doesn’t happen by chance.” Also 
interpreting a large tail proportion was difficult for students. Given a tail proportion of 
40%, one pair of students stated “…there’s a pretty good chance that … calcium doesn’t 
necessarily reduce blood pressure…”, while another pair, given a tail proportion of 27% 
concluded that “chance is acting”. Thus it would appear that misconceptions associated 
with interpreting a no evidence against chance alone explanation as if it were evidence in 
favor of a chance explanation is an issue that we need to address. 
 
 

6. CONCLUSION 
 
Experience from the pilot study has been invaluable. The purpose of the pilot study was 
to detect problems in the pre- and post-tests, learning trajectories and software before 
trialing the randomization method with over 3000 students. The wording in some pre- 



 

and post-test questions was changed, such as the wording in Question 15 (Figure 6), to 
better reflect the type of response we were anticipating.  
 
With respect to the dynamic visualizations for inference, students seemed to understand 
its components and what each was representing. In particular they were able to state what 
the re-randomization distribution represented with none thinking it was the data 
distribution (cf. Gould et al., 2010) although we did have a very small sample of students. 
We speculate that the vertical arrangement of the graphics panel within the dynamic 
visualization tool, a feature not present in other software such as Fathom (Finzer, 2006), 
facilitated this understanding. The vertical arrangement allows the students to view the 
observed data, notice representations of the differences in means after each re-
randomization, and subsequently watch these differences dropping down to form the re-
randomization distribution. Thus viewing development of the entire process within the 
same panel may lead to more of an understanding of what the re-randomization 
distribution represents.  
 
From the students’ comments the prior hands-on activities, which were closely aligned to 
the dynamic visualizations, were a major element in helping them understand them. We 
believe that the hands-on component is a critical part of the conceptual understanding of 
the randomization test and that without it students will have difficulty in reconstructing 
the process when faced with a new scenario. Furthermore, showing the observed 
difference and consequent tail proportion as part of the re-randomization distribution 
seemed to help the students conceptualize the probability of obtaining the observed 
difference or greater under chance-alone (cf. Liu & Thompson, 2009). It is therefore 
plausible that the combination of technology and hands-on activities form a powerful tool 
for facilitating understanding of the randomization method. As outlined in the GAISE 
recommendations technology is a tool that, with appropriate implementation, can remove 
the distraction of computational minutiae from the path of student understanding and 
direct focus to the bigger picture, that is, the fundamental principles underlying statistical 
inference (Aliaga et al., 2005). 
 
The dynamic visualizations, however, need to be accompanied by verbalizations and 
language that help students to reason and argue from the simulated data. The students’ 
difficulties with drawing a conclusion from a large tail proportion, the same problems 
identified by other researchers (Nickerson, 2004; Liu & Thompson, 2009), challenges us 
to find a better way to assist students in this form of argumentation. In fact, after much 
reflection we have modified the learning trajectory so that two explanations for an 
observed difference are not seen to compete against one another, but rather evidence is 
gathered against the chance acting alone scenario. We realized we should break with this 
traditional way of thinking and present the whole argument in a more natural format. 
Also we intend to make better connections to the Alice story framework in order to 
reinforce students’ understanding of the logic of the indirect argument.  
 
The notion of what chance acting alone means is clearly a difficult one for students. 
Given that this concept lies at the core of the randomization test, it is important that we 
think carefully about how we might facilitate more of an understanding of what chance 
acting alone might look like. In response to the pilot study finding that emphasized this 
issue, a new dynamic visualization module has been developed with the aim of 
facilitating student understanding of chance acting alone. The module demonstrates, for 
example, weights of people being randomly allocated to one of two groups with the 



 

differences in mean weights of the two groups being recorded in the middle panel of the 
vertical screen and subsequently dropping down to the bottom panel where a re-
randomization distribution is built up. Students can then see that differences in mean 
weights between the two groups can range between -10kg and +10kg simply under 
chance alone. We anticipate that this module will help to elucidate the chance acting 
alone concept since it stands alone, unencumbered by experimental data or treatment 
variables. 
 
Causal argumentation remains a problematic area. We conjecture that the reluctance of 
students to state that “a fish oil results in (causes) blood pressure that tends to be lower in 
male volunteers with high blood pressure than a regular oil diet” may be in part 
attributable to the fact that “all our knowledge is uncertain” (cf. Biehler, 2011, p. 3). 
Another likely contributory factor is the fact that while sample to population inference is 
familiar, causal inference is new territory for these students. Despite the fact that the fish 
oil and regular oil treatments were randomly assigned to the study participants, the 
students were uncomfortable making a causal statement, wanting to use words such as “is 
likely to” and “may” rather than “results in” or “causes”. In order to complete the 
inferential process, the students are required to reflect on the scope of the inference. A 
sound understanding of the evidence obtained from the randomization test, which has 
difficulties due to the probabilistic reasoning required by students, needs to be cognitively 
integrated with experimental design, causal, and generalization ideas in order to 
understand how a conclusion is reached about the effectiveness of the experimental 
treatment. There are several sources of uncertainty at play in the inferential process. In 
the Fish Oil study, the randomization test produced a very small tail proportion. Thus the 
observed difference was highly unlikely if chance was acting alone. However, there is 
still the possibility, albeit small, that the observed difference was one of the rare 
occurrences that could be expected if chance was acting alone. Applying a deterministic 
form of reasoning to this situation may result in a hesitance to make a causal claim owing 
to the element of uncertainty that is present. Moreover, it is evident from the plots of the 
data (see Figure 1) that not all of the study participants randomized to the fish oil diet 
experienced a greater reduction in blood pressure than those randomized to the regular oil 
diet. Rather it is the tendency of the fish oil subjects as a group to experience a greater 
blood pressure reduction than the regular oil group that is being considered. Therefore 
there exists uncertainty about making a causal claim when it cannot be made for all of the 
study subjects. Finally, the fact that the study was carried out on male volunteers with 
high blood pressure introduces another source of uncertainty when it comes to 
generalizing the results to other people such as women, and those with normal blood 
pressure. The complexity of the language employed in the reasoning process may lead 
students to use words such as “is likely to” and “may” to soften what they feel is a 
definitive causal statement in order to deal with these different sources of uncertainty. 
There is much for the students to come to grips with, and it is perhaps not surprising that 
they are unable to assimilate all of these new concepts coherently. Thus we need to 
further explore the issues surrounding students’ reasoning in the presence of uncertainty.  
 
The randomization method and our dynamic visualizations are not a panacea for making 
inferential or hypothesis testing reasoning readily accessible to students. We believe, 
however, from this pilot study, that more underpinning concepts such as mimicking the 
data production process, chance is acting alone, the tail proportion, and the re-
randomization distribution are more accessible and transparent to students. In particular, 
the dynamic visualizations allowed students to view the process of re-randomization as it 



 

developed and grew into a distribution, giving students direct access to the behavior of 
the chance-alone phenomenon (Sacristan et al., 2010). Compared to the mathematical 
procedures of hypothesis testing, we believe the pilot study students did learn more about 
statistical inference using the randomization method (cf. Tintle et al., 2011). 
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