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A B S T R A C T

Introduction: Machine learning (ML) is a field in computer science that demonstrated to effectively integrate
clinical and imaging data for the creation of prognostic scores. The current study investigated whether a ML
score, incorporating only the 16 segment coronary tree information derived from coronary computed tomo-
graphy angiography (CCTA), provides enhanced risk stratification compared with current CCTA based risk
scores.
Methods: From the multi-center CONFIRM registry, patients were included with complete CCTA risk score in-
formation and ≥3 year follow-up for myocardial infarction and death (primary endpoint). Patients with prior
coronary artery disease were excluded. Conventional CCTA risk scores (conventional CCTA approach, segment
involvement score, duke prognostic index, segment stenosis score, and the Leaman risk score) and a score
created using ML were compared with the C-statistic. Only 16 segment based coronary stenosis (0%, 1–24%,
25–49%, 50–69%, 70–99% and 100%) and composition (calcified, mixed and non-calcified plaque) were pro-
vided to the ML model. A boosted ensemble algorithm (extreme gradient boosting; XGBoost) was used and the
entire data was randomly split into a training set (80%) on which 5-fold internal cross validation was done to
tune the model. The performance of this model was independently tested using the test set (20%).
Results: In total, 8844 patients (mean age 58.0 ± 11.5 years, 57.7% male) were included. During a mean
follow-up time of 4.6 ± 1.5 years, 609 events occurred (6.9%). No CAD was observed in 48.7% (3.5% event),
non-obstructive CAD in 31.8% (6.8% event), and obstructive CAD in 19.5% (15.6% event). Discrimination of
events as expressed by C-statistic was significantly better for the ML based approach (0.771) vs the other scores
(ranging from 0.685 to 0.701), P < 0.001. Net reclassification improvement analysis showed that the improved
risk stratification was the result of down-classification of risk among patients that did not experience events
(non-events).
Conclusion: A risk score created by a ML based algorithm, that utilizes standard 16 coronary segment stenosis
and composition information derived from detailed CCTA reading, has greater prognostic accuracy than current
CCTA integrated risk scores. These findings indicate that a ML based algorithm can improve the integration of
CCTA derived plaque information to improve risk stratification.

1. Introduction

Coronary computed tomography angiography (CCTA) is a non-in-
vasive technique that provides direct visualization of the coronary ar-
teries. Due to its high negative predictive value, CCTA is especially
suited to rule out hemodynamically significant coronary artery disease
(CAD).1 Among symptomatic patients with suspected CAD, the presence
or absence of CAD helps to classify chest pain into angina or chest pain
not related to CAD.2 Besides the diagnostic role, CCTA can risk stratify
patients with suspected CAD for future major cardiovascular events.3,4

Patient without evidence of CAD have an excellent prognosis and in-
creasing severity of CAD relates to worsening outcome.5 The great
ability of CCTA to classify patients at low and high risk has translated
into alterations of subsequent medical treatment (e.g. initiation of statin
or aspirin therapy) according to abnormalities observed on CCTA.6

Recently, these changes in preventive medical therapy prescription
have resulted in significant reductions in fatal and non-fatal myocardial
infarctions (MI).7

Current CCTA risk scores classify the severity of CAD mainly using
the presence, extent and severity of CAD.3,8,9 Plaque information de-
rived during CCTA acquisition and subsequently classified according to
the 16-segment coronary tree model is typically integrated into a single
score, assuming linear relationships between CAD extent and risk.10

Machine learning (ML) is a field in computer science that uses algo-
rithms to combine a big data in order to optimize prediction. Previous
studies have demonstrated that ML can increase predictive value for
death and myocardial ischemia compared to conventional scores.11,12

ML can integrate an unlimited number of input variables, does not have
prior assumptions about causative factors, and does not overlook in-
teractions between prognostically weaker variables. Therefore, ML has
the potential to maximize the information that can be extracted from
CCTA. The current study investigated whether a ML score, using only
plaque stenosis and composition information from the 16 coronary
segments, has better predictive accuracy compared to the traditional
CCTA based risk scores.

2. Methods

The CONFIRM (COronary CT Angiography EvaluatioN For Clinical
Outcomes: An InteRnational Multicenter) registry is a dynamic, inter-
national, multicenter, observational cohort that prospectively collects
clinical, procedural and follow-up data from patients who underwent
≥64 slice CCTA for clinically suspected coronary artery disease (CAD),
as previously described.13 The current study included 8844 patients
without known CAD (defined as previous MI, percutaneous coronary
intervention or coronary artery bypass grafting), at least 3-year follow-
up duration for myocardial infarction (MI) and death and complete
information for all CCTA risk scores (described below). Institutional
review board approval was obtained at each site and patients provided
informed consent.

2.1. Image acquisition and analysis

CCTA images were acquired using ≥64 detector row scanners from
multiple vendors and acquisition protocols at each site were in ad-
herence with the Society of Cardiovascular Computed Tomography
guidelines.14 Level III-trained experts in CCTA reading interpreted the
images uniformly using the 16-segment coronary artery tree model. In
each coronary artery segment, the presence of plaque was reported with
corresponding stenosis severity. Plaque was defined as a tissue struc-
ture> 1mm2 within or adjacent to the coronary artery lumen that
could be distinguished from surrounding pericardial tissue, epicardial
fat, or the vessel lumen itself.3 Coronary plaques were classified as non-
calcified, mixed and calcified plaques. Subsequently, the corresponding
stenosis severity of the plaques was classified as 0%, 1–24%, 25–49%,
50–69%, 70–99% and 100%, as previously described.3

2.2. Outcome

The primary outcome was a composite endpoint of all-cause death
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and non-fatal MI. Detailed follow-up methodology has been previously
described.13 The Social Security Index was reviewed for assessment of
mortality within the United States or determined through mail or tel-
ephone contact with the patients, family or physician or review of
medical records for the other countries. MI events were collected
through a combination of direct interviewing of patients using scripted
interview with confirmation of event by reviewing the patient's medical
files.13

2.3. Conventional CCTA scores

Conventional CCTA scores included only information on coronary
plaque severity and plaque composition from the 16-segment coronary
tree: (1) the modified Duke prognostic index, (2) CCTA Leaman score,
(3) segment stenosis score (SSS), (4) segment involvement score (SIS)
and (5) traditional CAD classification. The modified Duke prognostic
index3 was defined as follows: (0)= normal CCTA; (1)= 1–24% ste-
nosis or at most lesion with 25–49% stenosis; (2)=≥2 lesions with
25–49% stenosis; (3)= 1 vessel with 50–69% stenosis; (4)= 2 lesions
with 50–69% stenosis or 1 lesion with ≥70% stenosis; (5)= 3 lesions
with 50–69% stenosis or 2 vessels with ≥70% stenosis or a lesion with
≥70% stenosis in the proximal LAD; (6)= 3 vessels with ≥70% ste-
nosis or 2 vessels with ≥70% stenosis including the proximal LAD;
(7)= left main stenosis ≥50% stenosis. The CCTA Leaman score pro-
vides different weights for plaque composition, stenosis severity and
location and combines them into a continuous score (0–33).8 The SSS
scores coronary segments based on stenosis severity (0–3) and sums the
scores for the values for the individual segments into a total score
(0–48).3 The SIS is equal to the number of coronary segments exhibiting
plaque (0–16).3 The traditional CAD classification is defined as
(0)= normal CCTA; (1)=≤50% stenosis; (2)= 1 vessel with ≥50%
stenosis, (3)= 2 vessels with ≥50% stenosis; (4)= 3 vessels or left
main with ≥50% stenosis.

2.4. Machine learning score

In total, 35 CCTA variables (stenosis severity and plaque composi-
tion considering the 16 coronary segments, 2 variables for poster-
olateral branch when dominance was unknown and coronary artery
dominance) were incorporated in the machine learning score. Machine
learning involved both model building and feature selection using
XGBoost algorithm15 (Extreme Gradient Boosting), an implementation
of gradient-boosted decision trees (GBDT), which is an open source
scalable machine learning system for tree boosting. Feature importance
score was evaluated using a functionality from XGBoost library by
summing up how many times each feature is split on; analogous to the
Frequency Metric in R16. All machine learning analysis was done using
scikit-learn17 python library in Python 3.5.0. The data was randomly
split such that 80% was used for both training and internal validation,
and the true model performance was tested on the remaining 20% of
data. The XGBoost hyperparameters namely-maximum depth of trees,
minimum child weight, gamma, subsample size and number of esti-
mators were optimized (using area under the receiver operating char-
acteristics curve [AUC] as a metric) based on grid search technique and
performing 5-fold stratified cross validation on the training set. The 5-

fold stratified cross validation involved splitting the training dataset
into 5 equal folds in which 4 folds were used for training the model and
the remaining fold is used for internal validation. The optimized model
whose hyperparameter-permutation yielded the highest mean AUC was
used as the trained model. This trained model was then used to generate
the prediction probabilities (ML score) on the independent validation
test set (20% of data). While comparing with the conventional CCTA
scores, the performance of the ML model is derived from this in-
dependent test set.

2.5. Statistical analysis

Continuous variables are presented as mean ± standard deviation
and categorical variables as counts (%). The performance of the ML
score to predict the primary outcome (MI and death) was compared to
conventional CCTA scores using C-statistic analysis. For comparisons
with the ML score, predicted probabilities were created for the com-
parator CCTA scores using logistic regression analysis. Calibration of
the ML model was assessed with the Brier score method (ranging from 0
to 1), which calculates the difference between the estimated risk and
the observed risk for occurrence of the primary outcome; and smaller
values mean better calibration.18 Additionally, isotonic regression19,20

was used to recalibrate the prediction probabilities from the XGBoost
model (test set). Continuous (category-free) net reclassification im-
provement (NRI) analysis was used to evaluate whether both patients
that will and not will experience future events received more appro-
priate risk stratification by the new ML score. A two-sided p-value<
0.05 was considered statistically significant.

3. Results

3.1. Patients

Table 1 describes the baseline characteristics of the study popula-
tion (N=8844). Mean age was 58.0 ± 11.5 years and 57.7% were
male. No CAD was observed in 48.7% of the CCTA examinations and
19.5% of the patients had obstructive CAD (≥50% stenosis). During a
mean follow-up of 4.6 ± 1.5 years, 609 events (350 death and 259
non-fatal MI) occurred.

Table 1
Baseline patient characteristics.

Characteristic Value (N=8844)

Age, years 58.0 ± 11.5
Sex, male 5106 (57.7)
BMI 26.7 ± 4.62

Symptoms
No chest pain 3108 (41.5)
Non-anginal 789 (10.5)
Atypical 2803 (37.4)
Typical 795 (10.6)

CAD risk factors
Diabetes 1282 (14.6)
Hypertension 4534 (51.7)
Dyslipidemia 4874 (55.4)
Familial history for CAD 2197 (25.0)
Currently smoking 1680 (19.0)

CCTA findings
No CAD 4306 (48.7)
Non-obstructive CAD 2816 (31.8)
1 vessel with ≥50%stenosis 992 (11.2)
2 vessels with ≥50%stenosis 421 (4.8)
3 vessels/left main with ≥50%stenosis 309 (3.5)

Values are mean ± SD or counts (%).
BMI, body mass index; CAD, coronary artery disease; CCTA, coronary computed
tomography angiography.

Abbreviations

CAD Coronary artery disease
CCTA Coronary computed tomography angiography
MI Myocardial infarction
ML Machine learning
SIS Segment involvement score
SSS Segment stenosis score
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3.2. Comparator CCTA and the ML score

As shown in Fig. 1, the C-statistic for prediction of the primary
outcome was 0.694 for the Duke prognostic index, 0.690 for the CCTA
Leaman score, 0.701 for the SSS, 0.694 for the SIS and 0.685 for the
traditional CAD classification. The curve for the ML score as shown in
Fig. 1 represents the performance in the validation cohort (20% of the
total cohort not used for model building). The C-statistic of the ML score
was 0.771; significantly higher than each of the conventional CCTA
scores (P < 0.001 compared with all). As shown in Fig. 2, the three
variables strongest correlated with the primary outcome were stenosis
severity in the proximal left ascending coronary artery, left main and
the proximal right coronary artery. The continuous NRI of the ML
model compared to the SSS (conventional CCTA score with highest C-
statistic) was 0.72 (95% CI 0.54–0.90, P < 0.001). The improved NRI
was driven by reclassification of patients that did not experience events
(NRI 0.82, 95% CI 0.79–0.84, P < 0.001) compared with reclassifica-
tion for patients that experienced events (NRI -0.10, 95% CI -0.28 –
0.078, P=0.275).

3.3. Machine learning score calibration

The Brier score for the ML model to predict the primary outcome
was 0.216 before calibration and 0.059 after calibrating, indicating a
good fit of the model21 and low difference between the predicted risk
and the actual observed risk for events.

4. Discussion

The main findings of the current analysis are that a ML score that
incorporates 16-segment coronary plaque stenosis and composition
information provides increased risk stratification compared with con-
ventional CCTA based risk scores. Reclassification analysis showed that
the improved prognostic value of the ML score is the result of more
correctly down classification of risk for patients that will not experience
events compared with the best performing CCTA score.

4.1. Risk stratification with CCTA

Risk stratification for future cardiovascular events is commonly
performed using demographical, clinical and laboratory patient indices
as for instance in the Atherosclerotic Cardiovascular Disease (ASCVD)
risk score.22 However, risk scores perform well on population level but
may be sub-optimal for individual patients. Moreover, it was recently
shown that ASCVD significantly overestimates the amount of risk
among multiple ethnic subpopulations.23 CCTA provides direct visua-
lization of the presence, extent, location and composition of CAD and
multiple studies have demonstrated that CCTA detected CAD improves
risk stratification above patient's clinical risk profile.24,25 Even in ab-
sence of modifiable cardiovascular risk factors, Cheruvu showed that
the severity of CAD is related to major cardiovascular events; 5.6% for
no CAD, 13.2% for non-obstructive CAD and 36.3% among 5.6 ± 1.3
years of follow-up.26 Besides maximal severity per patient, the number
of segments with plaque, location and composition improve risk as-
sessment.27 However, the prognosis of coronary atherosclerosis is de-
termined by a complex interplay between coronary anatomy, phy-
siology and plaque morphology.28 Furthermore, specific interactions
between CAD and clinical patient profile exist. For instance, Xie et al.
showed worse outcome of non-obstructive left main CAD in women
versus men.29 Conventional CCTA scores may not fully incorporate this
interplay between CAD presence, composition, severity, location and
outcome.

4.2. Machine learning to improve integration of coronary plaque and
stenosis

ML, a subset of artificial intelligence, does not have prior assump-
tions about which factors will be significant predictors while building
statistical models, is able to integrate a large number of input variables,
and explores all available data for non-linear relationships with out-
come.10 The feasibility of ML has been demonstrated previously in the
CAD risk stratification field. Motwani et al. showed that ML, using 25
clinical and 44 CCTA variables, significantly improved prediction of
death compared with the Framingham Risk Score, SSS, SIS and Duke
prognostic index.11 Moreover, Dey et al. demonstrated that a ML model
incorporating semi-automatically quantified measures of coronary
plaque (plaque volumes, stenosis severity, lesion length and contrast
density difference) identified vessels with hemodynamically significant
CAD (fractional flow reserve≤ 0.80) with very high accuracy (AUC
0.84). Specifically, the ML model showed higher diagnostic accuracy
than a conventional statistical model that utilized the exact same
data.12 These findings indicate that a complex ML algorithm improves
integration of the available data for prediction of a certain outcome.
Detailed reading of CCTA includes assessment of coronary stenosis and
plaque composition of the 16 coronary segments. The current study
showed that ML maximizes the utilization of this readily available in-
formation compared with prior CCTA scores (AUC 0.771 vs
0.684–0.701, P < 0.001 for all comparisons) for the prediction of MI
and death during approximately 5 years of follow-up. Recently, the
strong prognostic value of CCTA was shown to translate into changes in
medical therapy and improved patient outcome. Williams et al. showed
that CCTA findings significantly down- or upscaled preventive therapy
compared with standard care.7 Moreover, these alterations were asso-
ciated with reductions in occurrence of non-fatal MI's. Potentially, ML
can aid by translation of detailed 16-segent CCTA reads into an in-
dividualized risk report that help physicians to tailor preventive med-
ical therapy initiation (fitting the concept of precision medicine).

Although the ML model portended greater overall prediction of
outcome, reclassification analysis demonstrated that only patients that
will not develop events received more appropriate risk estimation.
Potentially, the inclusion of high risk plaque features as napkin ring
sign or low attenuation plaque may improve a ML model even further.30

Although the CONFIRM registry is the largest currently existing
CCTA registry with prospective long term follow up, the current study is
an observational analysis with all its inherent limitations including
selection bias. The ML model consisted of 16 segment CCTA data only
and demonstrated to increase integration of these data compared with
current CCTA scores. However, the current study did not investigate the

Fig. 1. Performance of ML and CCTA scores.
Area under receiver operating characteristics cure for prediction of a composite
endpoint of myocardial infarction and death. The Machine learning score shows
the highest predictive performance compared with the other coronary com-
puted tomography angiography scores.
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incremental prognostic value over risk scores including demographical
and clinical patient characteristic, which should be studied further.
Finally, although attempts to prevent over-fitting of the ML model were
applied by using the 5-fold cross validation (4 folds for training and the
remaining for validation) on 80% of the dataset and final validation in
the independent 20% of the dataset, ideally, the prognostic accuracy
will be tested in an external cohort.

5. Conclusion

The current analysis demonstrated that a ML model, that utilizes
coronary stenosis and plaque composition derived from detailed 16-
segment CCTA reading only, improves risk stratification for major
cardiovascular events compared with current CCTA risk scores. ML may
maximize utilization of plaque information from CCTA to further im-
prove risk assessment of patients with suspected CAD.
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