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ABSTRACT OF THE DISSERTATION

Electronic Properties of Low-Dimensional Systems

by

Aleksandr Rodin

Doctor of Philosophy in Physics
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Professor Michael Fogler, Chair

This work deals with transport and general electronic phenomena in low-

dimensional systems. The first chapter is dedicated to Variable Range Hopping. It

starts with a brief review of the general hopping formalism, based on previous work.

Next, new methods and results are presented and discussed. In particular, studies

of both Ohmic and non-Ohmic regime are performed and the stark differences

between the two are elucidated. In addition, apparent power law dependence of

current on voltage in disordered one-dimensional materials is analyzed. The results

obtained compare favorably with the experiments. Finally, the behavior of the

conducting network in d dimensions is discussed using the percolation approach.

The second chapter deals with plasmonic effects in graphene. After giving a

short introduction to graphene and plasmonic behavior, current work is presented.
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Charge oscillations in graphene half-plane are discussed and compared with ex-

perimental results obtained from near-field microscopy. In addition, plasmonic

oscillations in a “narrow-flake” geometry are analyzed analytically and numeri-

cally, showing good agreement between the two methods.
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Chapter 1

Introduction

For somebody living in a three-dimensional world, it may be hard to imagine

what it is like for a physical system to have less than three dimensions. At the first

glance, solving low-dimensional problems might seem like an interesting exercise

with little connection to reality. Nevertheless, the discussion of low-dimensional

systems if far from purely academic. It is true that every physical structure that

we encounter possesses a full set of dimensions, even if the aspect ratio makes some

more apparent than others. Luckily, such an aspect ratio can also deem some di-

mensions more important than others, effectively reducing the dimensionality of

the system. Such is the case for, say, nanowires, where the radius is dwarfed by

the length. This results in the free motion of charge carriers along the wire and

the confinement in the transverse direction. Even more dramatic is the case of

nanoribbons and nanotubes. In the first case, the boundary conditions impose

certain requirements on the transverse momentum, turning the system into a col-

lection of one-dimensional channels labeled by the transverse momentum quantum

number. Similarly, for the case of the nanotubes, the angular periodicity also

introduces independent one-dimensional channels.

It is not only quasi-one-dimensional systems that are important. With the

discovery of graphene—a carbon allotrope initially considered unstable—we have

been introduced to a truly two-dimensional system. The novel and exciting prop-

erties of this system make it a promising candidate for a number of applications,

ranging from chemical sensors, to touch screens, all the way to transistors.

1
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The world of low-dimensional systems is very diverse and full of phenomena

specific to a particular dimensionality. This, coupled with the plethora of potential

applications warrants a detailed study of these systems. This work is divided

into two chapters: the first one explores hopping transport with emphasis on one

dimension; the second one provides an introduction to the current work being done

on graphene.



Chapter 2

Hopping Transport in Disordered

Systems

2.1 General Hopping Formalism

2.1.1 Introduction

Mesoscopic systems occupy a position that is between the “common” macro-

scopic systems on one side and the “exotic” nanoscopic ones on the other. It is

precisely this middle-ground position between the two worlds that makes such

systems both very exciting and notoriously difficult to analyze. Unlike nanostruc-

tures, composed of a few to a few hundreds of atoms, mesoscopic structures are too

large to be solved using traditional quantum mechanical techniques which involve

writing down Schrödinger equation and using a computer to obtain the result. On

the other hand, these mesoscopic systems are still too small compared to macro-

systems to rely on the self-averaging that comes with size. Indeed, the presence of

mesoscopic fluctuations is one of the key traits of the micron-size systems. These

fluctuations arise primarily due to disorder that is practically unavoidable in these

systems. Aside from ultra-pure crystals, all mesoscale structures possess a certain

degree of disorder which arises primarily due to structural defects and impurities

that are found inside the system.

The types of mesoscopic are too numerous to list completely, but some

3
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broader classes are nanowires, thin films, nanoribbons, and, very importantly,

polymer structures. Despite the prefix nano-, nanowires and nanoribbons are

mesoscopic objects, described by a nanodimension only in the transverse direction.

Mesoscopic systems are ubiquitous and, with organic polymers rapidly developing

in the field of relatively cheap electronics, understanding of disordered systems is as

important as ever. The first chapter of this work is dedicated to hopping transport

in disordered materials. We begin by introducing the fundamentals of the hopping

transport that have been developed over the years. [45, 17, 84, 50, 83, 77, 87]

2.1.2 Variable Range Hopping

As we have already mentioned, mesoscopic systems are typically disordered.

The consequences of this disorder are far reaching. However, the most basic one,

at least at the first glance, is the fact that it impedes electronic transport even

in otherwise conducting materials. Unlike perfect crystals, where Bloch waves

propagate freely, defects act as scattering centers for electrons, preventing the

ballistic transport. Ultimately, the disorder localizes electrons, resulting in the so-

called Anderson insulator. Instead of moving freely through the system, electrons

are bound to a localized state (LS) with an exponentially decaying wavefunction.

Despite its generally negative effect on conductivity, disorder can actually

facilitate electronic transport. Consider an insulator with the Fermi level inside

the gap. Assuming that the gap is large enough to prevent thermal activation,

the system will not conduct. The presence of disorder, however, creates LS at

various energies throughout the sample. Therefore, if these LS are located close

to the Fermi level, they can be utilized by the charge carriers for moving through

the sample. Due to the exponentially decaying nature of the wavefunctions, the

charges have to tunnel (“hop”) between the individual LS. In addition, since LS

have different energies, charges require phonons to be excited to move to higher

energy levels and emit a phonon when they hop down.

It is natural to assume that LS are distributed randomly throughout the

system. This means that tunneling lengths for different hops vary, which gives rise

to the term Variable Range Hopping (VRH).
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ε

x
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Figure 2.1: Phonon-assisted transport between localized states. Filled circles
represent occupied LS; empty circles are unoccupied.

Since tunneling between all LS is allowed, the system can be regarded as a

network of interconnected LS where the current from one LS (i) to another (j) is

given by

Iij = q (Γi→j − Γj→i) , (2.1)

where Γi→j is the transition (hopping) rate from i to j and q is the charge. Equa-

tion (2.1) is the foundation of all the machinery that will be introduced in the later

sections.

2.1.3 Transition Rate

Having defined the current between two localized states, we now turn to the

transition rate. First and foremost, the transition rate depends on the presence of

a charge carrier in the initial state i. In addition, the final state has to be vacant

for the transition to take place. This means that the number of transitions per

unit time is given by

Γij = 〈γijni(1− nj)〉 , (2.2)

where ni and nj are the occupation factors of the respective LS and the average is

performed over time. All the quantities inside the brackets vary with time, which

complicates the problem greatly. At this point, a key approximation is made:

all the quantities inside the brackets are set to their average values instead of
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fluctuating in time. For the occupation numbers it means that they are now given

by Fermi-Dirac distribution

fi =
1

e(εi−ηi)/T + 1
. (2.3)

Note that the energy of the LS and the local electrostatic potential are

εi = ε0
i + qΦi , (2.4)

ηi = µi + qΦi , (2.5)

where ε0
i and µi are the bare energy and chemical potential of the state, respec-

tively, and Φi is the electrostatic potential shift.

Recall that the hopping transport is phonon-assisted. This means that the

transition rate depends on the availability of phonons of the correct energy, given

by the Bose-Einstein distribution. Depending whether εi is greater or less than εj,

a phonon will be either emitted or absorbed. This allows us to write down

Γi→j = Γijfi(1− fj)×

{
N(∆ε) , ∆ε > 0 ,

N(|∆ε|) + 1 , ∆ε ≤ 0 ,
(2.6)

where ∆ε is the energy difference in the hop:

∆ε = εj − εi . (2.7)

The final part that needs to be determined is the prefactor Γij. First, one

expects the transition rate to be suppressed due to localization. This introduces

the tunneling term exp (−2xij/a) to the transition rate expression, where xij is

the distance between the LS and a is the localization length. In addition, the

prefactor contains algebraic dependence on the energy difference to counteract the

divergence of N(|∆ε|) at ∆ε→ 0. This means that the prefactor is

Γij = Γji = G0|∆ε|e−
2xij
a , (2.8)

where the parameter G0 of dimension of conductance is related to electron-phonon

coupling.
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Assuming that εi < εj, we can now write down the expression for the

current between the two LS from Eq. (2.1) with q = 1:

Iij = Γij {fi(1− fj)N(|∆ε|)− fj(1− fi)[N(|∆ε|) + 1]} =

= Γij [N(|∆ε|)(fi − fj)− fj(1− fi)] =

= Γij

[
e−|∆ε|/2T

2 sinh
∣∣∆ε

2T

∣∣
(

e−(εi−ηi)/2T

2 cosh
(
εi−ηi

2T

) − e−(εj−ηj)/2T

2 cosh
( εj−ηj

2T

))−
− e−(εj−ηj)/2T

2 cosh
( εj−ηj

2T

) e(εi−ηi)/2T

2 cosh
(
εi−ηi

2T

)] =

=
Γij
[
e−|∆ε|/2T sinh

( εj−ηj−εi+ηi
2T

)
− exp

(
− εj−ηj−εi+ηi

2T

)
sinh

∣∣∆ε
2T

∣∣]
4 sinh

∣∣∆ε
2T

∣∣ cosh
( εj−ηj

2T

)
cosh

(
εi−ηi

2T

) =

=
G0|∆ε|e−2xij/a sinh

(ηi−ηj
2T

)
4 sinh

∣∣∆ε
2T

∣∣ cosh
( εj−ηj

2T

)
cosh

(
εi−ηi

2T

) . (2.9)

It is possible to absorb the numerical factor of 4 from the denominator into G0

to avoid extraneous terms and define δη = ηi − ηj. In the expression above, the

direction of the current is determined by the applied voltage through the sinh term

in the numerator, whereas the magnitude depends also on the temperature and

the energies of the LS.

Note that the current has a nonlinear dependence on the voltage δη. If,

however, the applied voltage tends to zero, one ends up with the Ohmic regime.

In this case, it is possible to expand the hyperbolic sine in the numerator. Ad-

ditionally, one can also measure all the energies in the system from the common

electrochemical potential η0, which yields

Iij = G0
|∆ε|
2T

e−
2xij
a

cosh
( εj

2T

)
cosh

(
εi
2T

)
sinh

∣∣ εi−εj
2T

∣∣δη =
δη

Rij

, (2.10)

where we have defined the resistance between i and j in accordance with Ohm’s

law. For sufficiently low temperatures, it is possible to approximate the resistance

as

Rij ≈ R0e
uij , uij =

2xij
a

+
|εi|+ |εj|+ |εi − εj|

2T
, (2.11)

with a constant R0. In the Ohmic regime, all the LS of the system for a so-

called Miller-Abrahams resistor network. [60] The conductivity of such a network

is typically described by Mott law, discussed in the next section.
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Before we conclude this section, recall that we need a formula for the elec-

trostatic potential Φi. It is determined by charges on the source and drain leads,

and the perturbation of the electron density inside the sample (given by the oc-

cupation factors fi). The relative importance of these contributions depends on

the exact geometry of the device. We consider a typical situation where there is

a metallic gate positioned parallel to the wire, with C denoting the capacitance

to the gate per unit length of the wire. We further assume that the capacitive

coupling to the leads is much smaller and can be neglected. In this case, we find

Φ(x) =
qn(x)

C
, (2.12)

where n(x) is the deviation of the local density from equilibrium. Neglecting

fluctuations in the local density of states and any correlation effects, we can directly

relate n(x) to the local chemical potential using the density of states g, n(x) =

gµ(x), which implies

qΦi =
q2g

C
µi = (ε− 1)µi = ηi

(
1− 1

ε

)
, (2.13)

where ε is the dielectric constant, given by

ε = 1 + (q2g/C) . (2.14)

In comparison, in previous literature it was common to approximate Φi

simply by −Fxi, i.e., to assume that the electric field in the system is uniform.

Although this may be reasonable for a sample of dimension d > 1 with bulk leads,

it is inappropriate for a 1D geometry, as will be discussed later. In this work,

we concentrate on the case of weak electron interactions. This means that we set

ε = 1, which allows us to replace all the energies in Eq. (2.9) by their bare values.

2.1.4 Mott Law

If one wanted to compute the Ohmic conductivity of a disordered system

described by the Miller-Abrahams network, the first impulse might be to use the

standard Kirchoff rules and solve the resistor problem. Very quickly, however, it

becomes apparent that this is not a practical way of approaching the problem since
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each LS is connected to N − 1� 1 other states and the total number of resistors

is N !. Instead, we adopt a different approach.

As one can see from Eq. (2.11), the resistances of the links in the Miller-

Abrahams network vary exponentially. Because of this, if one were to drive the

current from one end of the system to another, not all links would contribute

equally as the current will prefer the path of the least resistance. In a sense, there

is a competition in the system: while highly resistive links are common, they are

disfavored by the current; on the other hand, “easy” hops are preferred, but they

are rare. Therefore, we are looking for the smallest u which will form a connected

subnetwork.

Usually, one employs the percolation theory [87] to find this subnetwork.

Following the percolation formalism for bond problems, [87] one can designate all

links in the resistor network with uij ≤ u as open bonds and those with uij > u

as closed, where uij is given by Eq. (2.11). Varying u is similar to changing the

fraction of open bonds in a traditional percolation problem.

From Eq. (2.11) one can see that only sites with energies between −uT and

uT can participate in the transport.

εi

ua
2

(
1− εi

uT

)

uT ε

x

Figure 2.2: Energy-position space for a 1D system. Upper, lower, and right sides
of the quadrilateral represent the contour where site j has to be found for uij = u.
The red line is the Fermi level.

It is important for this argument that uTgad � 1, where g is assumed to be

constant. This requirement means that the available network is dense enough for

the percolation approach to work. The opposite situation will be discussed later.

In the percolation theory, disordered systems are typically characterized
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by their open bond density and here we compute its dependence on u. For a

d-dimensional system it is given by

B(u) =

∫ uT
−uT dεj

[
g(εj)

∫
dd~r dεi g(εi)Θ(u− uij)

]∫ uT
−uT dε g(ε)

. (2.15)

Keeping the density of states g constant, this yields

B(u) = βd

(
u

uM

)d+1

, (2.16)

where βd = 1/2 for 1D, π/8 for 2D, and π/20 for 3D and

uM =

√
2T0

T
, T0 =

1

gad
, (2.17)

a measure of a typical resistor. Since critical bond density Bc is a number that

depends on the dimensionality of the system, Eq. (2.16) shows that the percolating

resistance is

RP ∝ euc , uc =

(
2T0Bc

Tβd

) 1
d+1

. (2.18)

As was explained ealier, it is the percolating network that gives the main contri-

bution to the conductivity of the system. Therefore, the resistance is expected

to exhibit the stretched-exponential dependence on temperature. This behavior is

the celebrated Mott law.

2.2 Hopping in One Dimension

2.2.1 The Basics

Following the discussion from Sec. 2.1, it might seem that we are on rather

solid footing when it comes to understanding hopping transport. While it is true

that Mott law is extremely useful for describing the conductivity of disordered

systems, it does not provide a complete picture. The first issue that we will adress

is its potential inapplicability to 1D systems.

It is well known that low-temperature transport in disordered 1D structures

is distinguished by large mesoscopic fluctuations. Such fluctuations have been
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measured [29, 98, 47, 3, 31] even in samples of considerable length. They arise from

the interplay of localization and rigid geometrical constraints on possible current

paths. The total resistance tends to be dominated by a few strong obstacles —

“breaks” — which occur at random due to disorder in the sample. [45, 17, 84,

50, 83, 77] These breaks are the regions in energy-position space that contain no

LS. In order for the current to go through, charge carriers are forced to perform

long hops, which increases the resistance via the tunneling term exp [2xij/a]. This

unusual behavior can be contrasted with a more familiar case of dimensions d > 1.

There, the current can go around the breaks, so that the mesoscopic fluctuations

of transport properties are usually small and self-averaging.

The basis of Mott law lies in the percolation theory. It is known that there is

no percolation threshold for 1D systems and this might render Mott law completely

irrelevant for d = 1. However, the presence of energy dimension complicates the

problem. While it is true that energy takes the dimensionality of the system to

d + 1, the energy dimension is not equivalent to the physical dimension: links

farther from Fermi level have higher resistance. For this reason, Mott law in 1D is

rather special and we investigate its onset.

In this study, we consider 1D systems that are not too short, so that the

coherent tunneling of electrons through their entire length [8, 91] is extremely im-

probable. Instead, electrons traverse each sample via VRH. By studying the VRH

transport [87] one aims to extract information about the nature of electron local-

ization and disorder in the system. However, this task is far from trivial. Despite

the seemingly simple expressions defining VRH in 1D, experimental studies of the

hopping are typically done in a narrow parameter range where usual theoretical

approximations are still rather crude. Here, we demonstrate that large corrections

appear when the transport properties of a standard VRH model are calculated

numerically, which means, with fewer approximations.

Since one cannot rely on Mott law for accurate description of conductivity

in 1D systems, the next best option would be to obtain an ensemble-averaged

current-voltage characteristic curve. This curve would certainly depend on the

temperature and the localization length, among other parameters. Our task is to
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determine the functional dependence of conductivity on these various parameters.

2.2.2 Optimal Path Algorithm

When trying to solve a transpont problem, one approach is to utilize current

conservation (the so-called Master eqution),∑
j

Iij = 0, (2.19)

supplemented by suitable boundary conditions at the source and drain electrodes

with the current Iij given by Eq. (2.1). Unfortunately, these equations are nonlinear

and involve an exponentially large spread of the values of the filling factor fi,

which makes the solution difficult to obtain. It can be done numerically, using

some clever iterative techniques [52, 104, 59], however, the rate of convergence is

slow. We proceed in a different direction, which enables us to map the problem

to a resistor network even in the non-Ohmic regime. As a result, we can achieve

practically the same speed of simulations in the non-Ohmic regime as in the Ohmic

one.

As was already mentioned before, the conductance of a Miller-Abrahams

resistor network is dominated by an optimal subnetwork with all other components

giving subleading contributions. In 1D, this approximation means that the current

does not branch, i.e., Iij = I in each link of the path.

Figure 2.3: An optimal path through the Miller-Abrahams resistor network
(blue). Red circles are localized states, green lines are other existing links, and the
red line is Fermi level.
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In an experimental situation, one would typically apply a voltage across

a system and measure the current that flows in response to it. By varying the

voltage, one obtains the I-V curve for the system. Here, we approach the problem

from the opposite direction. Since the current does not branch as it flows through

the sample, the total voltage drop V across the sample is the sum of voltage drops

ηi − ηj on the links. One can determine the optimal path by finding the sequence

of the sites that gives the smallest V for a given I.

To facilitate the analysis, let us first define auxiliary variables

uI ≡ ln

(
TG0

I

)
(2.20)

and

S ≡ T

|∆ε|
exp

(
2xij
a

)
cosh

(
εi − ηi

2T

)
sinh

∣∣∣∣εi − εj2T

∣∣∣∣ ≡ QeuI cosh

(
εi − ηi

2T

)
.

(2.21)

Combining Eqs. (2.20) and (2.21) with Eq. (2.9) results in

e−uI =
sinh

(ηi−ηj
2T

)
S cosh

( εj−ηj
2T

) , (2.22)

which can be solved for ηj:

ηj = T ln

(
eηi/2T − Se−uI+εj/2T

e−ηi/2T + Se−uI−εj/2T

)
. (2.23)

Note that the numerator of Eq. (2.23) must be positive so that the voltage

difference is a real number. This sets a limit on the maximum current that can

flow between sites i and j.

Unlike the internal hops, transitions between the source electrode and the

first site inside the sample (as well as the last site and the drain) do not require

phonons. This is due to the fact that the electrodes are metallic, which means that

they possess a continuum of energy levels. We can account for this by using

Sc =
2G0

Gc

exp

(
2xij
a

)
cosh

(
ε− ηi

2T

)
(2.24)

in lieu of S. Here Gc is determined by the tunneling transparency of the contact

between the sample and the electrode. We choose a representative value Gc = 4G0.
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Now that we can relate the voltage different between the sites to the site

parameters, as well as the drawn current, it is possible to use the above equations

to find the optimal path through the sample. To do so we use the well-known

Dijkstra’s algorithm [24] to calculate the minimum “cost” of getting from the

source to the drain.

Dijkstra’s Algrithm

We take a brief detour to describe the basis of Dijkstra algorithm. This

algorithm was proposed by Edsger Dijkstra in 1956. It is a graph search algorithm

designed to find the shortest path between two nodes of the graph given non-

negative edge path costs.

The problem is initialized by computing a cost matrix of dimension N ×N ,

where N is the number of nodes on the graph. Each matrix element Mij is the

cost of moving from node i to node j. In addition, three arrays of length N are

created. We label them as Cost (C), Parent (P), and Visited (V). The Cost array

contains the cost of reaching each of the N nodes. The Visited array keeps track of

the nodes that have been visited. Finally, the Parent array is used to reconstruct

the lowest-cost path.

Here, we assume that we start at the node i = 1. In the beginning, all

elements in the C array are set to infinity, except the first one, which is set to zero.

All the elements in the P array are also set to zero, as are the elements in the V

array.

At the start, we pick the node with the lowest Cost entry. Of course, it

is site i = 1, since all other Cost elements are infinite. We mark i = 1 node as

“visited” (Visited(1) = 1), which means it will not be reached by any other path

again. Next, we proceed to recompute the Cost array for all other sites:

C(j) = C(1) +M1j . (2.25)

If this newly-computed C(j) is smaller than the original C(j), we replace

the old value with the new one. In addition, we change the Parent entry

P(j) = 1 . (2.26)
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This concludes the first iteration of the algorithm. During the following

iterations, we again pick out the yet-unvisited node with the lowest Cost and mark

it at visited and update the Cost of all other nodes:

i = index {min [C (V = 0)]} , (2.27)

V(i) = 1 , (2.28)

C(j) = min [C(j) ,C(i) +Mij] , (2.29)

if C(i) +Mij < C(j)

P(j) = i . (2.30)

The algorithm runs until i is the index of the final node at which point the

iteration ceases. The next step is to reconstruct the path iteratively in reverse

order. Denoting the final node by index f , we have

Path = [P(f); P (P(f)) ; P (P (P(f))) . . . 1] . (2.31)

Finally, it is also possible to obtain the array of costs that contributed to

the final path:

Costs(i) = MPath(i+1),Path(i) . (2.32)

Using the Costs array, one can obtain the distribution of the costs of the

links that participate in connecting the initial and final nodes.

Dijskra’s Algorithm for Hopping

As we have already discussed, our primary problem is finding the optimal

path that connects the source and drain electrodes. In the Ohmic regime, where

the system can be represented by a network of resistors, we are free to use the

original form of Dijkstra’s algorithm. Actually, the shortest-path algorithm has

already been used in the Ohmic VRH problem [37]. Here, each node corresponds

to a LS and the cost is the resistance between two LS.

The problems appear when we try to tackle the non-Ohmic case. There, the

resistance is a non-linear function of voltage and this prevents us from using the

Miller-Abrahams network. All is not lost, however. Instead of trying to minimize
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the total resistance of the path, we will instead try to minimize the total voltage

V that is required to drive a current I. Thus, the cost ci of getting to site i on the

optimal path is

ci = −ηi . (2.33)

There is, however, one issue still. Typically, evaluation of the cost matrix

is the first thing that one does when using Dijkstra’s algorithm. Unfortunately,

according to Eq. (2.23), the cost of reaching node j is a function of the cost of the

earlier sites in the path. This means that one has to recompute the cost matrix

at every iteration. Other than this minor issue, which results basically in a slower

performance of the algorithm, the rule for updating the costs is unchanged:

c
(n+1)
j = min

(
c

(n)
i + δη, c

(n)
j

)
. (2.34)

Here, c
(n)
i is the cost of site i at n th iteration. The cost increment δη = ηi − ηj

is computed using Eq. (2.23). The process terminates when the drain electrode is

reached.

There one final, but extremely important point that we still need to discuss.

In the non-Ohmic regime, we are using Dijkstra’s algorithm in an unconventional

fashion where the cost δη = δη(ci) depends non-linearly on the cost of reaching

the previous node. For a fixed cost matrix, it is guaranteed that the algorithm

finds a globally-optimal path. However, it would appear that we are running a

risk of finding a local optimum that will prevent us from obtaining the true best

path. That is, in the course of iterations we retain only the lowest cost so far. We

effectively assume that for any i and j

min(cj) = min(ci + δη(ci)) = min(ci) + δη(min(ci)) . (2.35)

Let us show that this equation is satisfied, which implies that our algorithm

works correctly even for the non-constant cost matrix. First of all, by our earlier

assumption the current does not branch, and so the current through any link of

the optimal path must be exactly I. Second, a sufficient condition for validity of

Eq. (2.35) is ∂cj/∂ci ≥ 0. That is, increasing ci by taking a less optimal path to

the i th site would not help to decrease cj. In view of Eq. (2.33), the last condition
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can be written as

∂cj
∂ci

= T
∂

∂ci
ln

(
eci/2T +Q cosh

(
εi+ci

2T

)
e−εj/2T

e−ci/2T −Q cosh
(
εi+ci

2T

)
eεj/2T

)
. (2.36)

Taking the derivative yields

1

2

[
eci/2T +Q sinh

(
εi+ci

2T

)
e−εj/2T

eci/2T +Q cosh
(
εi+ci

2T

)
e−εj/2T

+
e−ci/2T +Q sinh

(
εi+ci

2T

)
eεj/2T

e−ci/2T −Q cosh
(
εi+ci

2T

)
eεj/2T

]
. (2.37)

Both denominators have to be positive: the left one is composed only of positive

terms and the right one must be positive so that the logarithm in Eq. (2.36) is

real. Therefore, the only way that the derivative could be potentially negative is

if Q is large enough and the hyperbolic sine in the numerator is negative. We now

show that this actually never happens. From Eq. (2.36), it is clear that

Q <
e−ci/2T

cosh
(
εi+ci

2T

)
eεj/2T

≡ A . (2.38)

Plugging in Q = A+ ζ into the derivative expression and linearizing with respect

to ζ < 0, one gets

e−(εi+εj)/2T

8ζ

(
−
∑
n=i,j

4δn,iζ2δn,je
εn
T

cosh2
(
ci+εn

2T

) +
2ζe

εj
T

cosh
(
ci+εi

2T

)
cosh

( ci+εj
2T

)) > 0 , (2.39)

as required.

In this section, we have successfully demonstrated that it is possible to

use a modified Dijkstra’s algorithm in order to find the optimal, non-branching

path through a disordered 1D system. Not only are we able to obtain the total

resistance/voltage cost for the total path, but we also can get this information for

individual links in the path. This will be very useful later in our discussion. For

now, however, we spend some time building up the analytical formalism of the

problem at hand.

2.2.3 Analytic Approach

It is possible to use our newly-developed optimal path algorithm to ob-

tain the distribution of resistances of individual links belonging to the optimal

path. First, however, we determine the form of this distribution using analytical

arguments.
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Ohmic Regime

We start by discussing the Ohmic case: uI → ∞. According to previous

theoretical studies, notably Refs. [50], [83], and [77], the logarithm of the average

resistance of a link is on the order of the Mott value uM , see Eq. (2.17). While

links with u � uM are exponentially rare, they act as bottlenecks and the total

resistance depends on them. In order for such high-resistance links to exist, the

optimal path has to encounter regions in the energy-position (x-ε) space that are

empty of LS.

In the Ohmic regime, the resistance between individual LS is given by

Eq. (2.11). To guarantee the presence of a link with resistance u of greater, one

needs to ensure that a certain region in the energy-position space, referred to

as a “break”, contains no LS. From Eq. (2.11), on can determine that a break

of resistance u is diamond-shaped with diagonals 2uT and ua/2 and is centered

around Fermi level, see Fig. 2.4.

ua
2

uT

Figure 2.4: An Ohmic break in energy-position space. The blue lines bound the
break, the red line is the Fermi level, and the red dots are LS.

Any hop across such a void will have the resistance of at least u. Actually,

the horizontal diagonal can be moved by up to ua/4 left or right without changing

the resistance of the break. This, of course, does not change the area of the void,

given by

A =
u2Ta

2
. (2.40)

For a constant density of states g, the probability of the break formation



19

with resistance u or smaller can be given by

CDF(u) = 1− e−gA(u) = 1− exp

(
− u2

u2
M

)
, (2.41)

in accordance with the Poisson distribution. Here, CDF stands for Cumulative

Distribution Function. To get the PDF (Probability Distribution Function), we

differentiate the CDF to get

P (u) = − d

du
exp[−gA(u)] , (2.42)

where A(u) is the smallest possible area of a break with given u in the x-ε space.

This formula was initially proposed by the authors of Ref. [77].

Of course, it is clear that the voids will never be perfect diamonds. Due

to the discreteness of the LS, if one were to draw a contour connecting the LS

nearest to the blue line in Fig. 2.4, the resulting shape would be far from a dia-

mond. Therefore, as a method of refining P (u) by taking into account the shape

fluctuations of the break along its perimeter, Ruzin [80] proposed a refined formula

P (u) = C0 exp(2Bu/uM)× gA′(u) exp[−gA(u)]. (2.43)

While C0 is determined essentially by the normalization of P , analytical calculation

of the coefficient B is challenging. Ruzin gave a rough estimate B ≈
√

2/3 ≈ 0.5.

In this study, we calculate B numerically.

Non-Ohmic Regime

Determining the shape of the optimal break in the non-Ohmic regime is a

bit more difficult due to the nonlinearity of the problem. Nonetheless, it is possible

to do so, following the approach given in Ref. [26]. The first assumption that we

make is that the temperature of the system is low. By that we mean that it is

lower than other energies involved in the current expression, Eq. (2.9). This allows

us to approximate the expression for the current as

I =
2T

R0

sinh

(
δη

2T

)
exp

(
−2xij

a
− |εi − ηi|

2T
− |εj − ηj|

2T
− |εi − εj|

2T

)
, (2.44)
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where R0 is a constant. In this simplified formula, we have gotten rid of the |∆ε|
prefactor since it has a subleading contribution compared to the exponential term.

To determine the shape of the break, we define

uij = ln
Rij

R0

= uI + ln
δη

T
, uI = ln

(
T

R0I

)
, β =

δη

T
= eu−uI . (2.45)

First,

uI = − ln 2− ln

[
sinh

β

2

]
+

2x

a
+
|εi − ηi|+ |εj − ηj|+ |εi − εj|

2T

=
2x

a
− ln

[
eβ/2 − e−β/2

]
+
|εi − ηi|+ |εj − ηj|+ |εi − εj|

2T

=
2x

a
− ln

[
1− e−β

]
+
|εi − ηi|+ |εj − ηj|+ |εi − εj| − βT

2T
. (2.46)

Using the fact that ηj = ηi−βT and measuring all the energies from ηi, we

write

uI =
2x

a
− ln

[
1− e−β

]
+
|εi|+ |εj + βT |+ |εi − εj| − βT

2T
. (2.47)

The width of the break is maximum when εi = 0, which yields

x =
a

2

[
w − |εj + βT |+ |εj| − βT

2T

]
, (2.48)

where w = uI + ln
(
1− e−β

)
.

From Eq. (2.48), we can determine the shape of the non-Ohmic break.

Unlike the Ohmic break which is a (deformable) diamond, the non-Ohmic break

has a hexagonal shape, see Fig. 2.5. The combination βT , which is equal to

the electrochemical potential drop across the break, gives the the height of the

middle part of the break in the x-ε space. Similarly to the Ohmic case, the central

rectangular region can be moved left or right up to wa/4. To check for consistency,

we allow uI →∞, β → 0:

w = uI + ln
(
1− e−β

)
≈ uI + ln β = u , (2.49)

as expected. Thus, as the current flowing through the system goes to zero, we

return to the Ohmic regime.
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wa
2

wT
βT

Figure 2.5: A non-Ohmic break. The red line is the electrochemical of the initial
site i.

To get the area of the break, we integrate along εj:

gA = g

∫
x(εj) Θ [x(εj)] dεj

=
ga

2

{∫ wT

0

w − εj
T
dεj +

∫ 0

−βT
w dεj +

∫ −βT
−wT−βT

w +
εj + βT

T
dεj

}
=
gTa

2

{
w (2w + β)− w2

2
+ wβ +

β2

2
− (w + β)2

2

}
=
w2 + βw

u2
M

. (2.50)

In order to account for the possible perimeter corrections to P (u), we con-

sider the following trial form:

P (u) = C0 exp

[
2B

w

uM
+ C

(
β

uM

)D]
× gA′(u) exp [−gA(u)] . (2.51)

Here the contribution of the top and bottom parts of the perimeter is modeled after

Eq. (2.43). It is proportional to the length of such parts ∼ w and the coefficient B.

The contribution of the side walls of the break, of length βT , is written differently.

Indeed, Ruzin’s argument [80] suggests that they give no contribution at all. In

fact, we found it necessary to include a correction albeit with a smaller exponent

D = 0.5. We have no other justification for this exponent except that it provides a

good fit to the numerical P (u), see below. Equation (2.51) applies for u− uI � 1

and uI � uM . It refines the corresponding expression for P (u) in Ref. [26] where

the first (subleading) exponential term was not included. The Ohmic and non-

Ohmic formulas, Eqs. (2.43) and (2.51), match at u− uI ∼ 1.
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2.2.4 Link Resistance Distribution

Having established the basic formalism for the probability distribution of

the link resistances in an optimal path, we now move to numerical methods to

both check our predictions and determine the coefficients.

In order to conduct our simulations, we generate a number of LS in the

x-ε space and then use the modified Dijkstra’s algorithm to find the optimal path

through the system and obtain the link resistances. Repeating this process for a

large number of systems allows us to build the probability distribution of u, P (u).

For each disorder realization, the LS are positioned randomly within the

allotted area in x-ε space. The number of the LS is determined by multiplying

the area by the density of states. Here is how we determine the energy range

to be included in the simulations. Recall that in the Ohmic approximation the

resistance between two LS is given by Eq. (2.11). This means that the tunneling

resistance is uT = 2L/a, where L is the length of the system. The height of such

an Ohmic break would then be uTT , see Fig. 2.4. This means that the optimal

path would never go through energies above uTT and below −uTT as it would

be more favorable to simply tunnel through the entire length of the sample. In

the non-Ohmic regime, on the other hand, one needs to extend the range of the

negative energies. It is clear from Eq. (2.23) that the path cascades down the

energy coordinate, trying to keep the energy of the LS close to the local η.

At each L, the functional form of the P (u) is expected to depend only on the

dimensional ratio u/uM . By running simulations at different combinations of a, g,

and T , we convinced ourselves that this is indeed correct, for the exception of very

small u where the discreteness of the system starts to matter. Fortunately, such

u are irrelevant for the macroscopic transport properties as they do not determine

the resistance. Thereafter we fixed a = 4, g = 1/3, and T = 0.01, which yields

the characteristic temperature T0 = 3/4 and the Mott parameter uM = 12.247,

cf. Eq. (2.17).
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Ohmic Regime

To ensure we are in the Ohmic regime uI = 200 � uM was used. The

simulations were conducted for several different values of L: L = 100, 200, 400, 500,

and 1000. For each L in the set we generated many realizations of 1D wires,

respectively, 20000, 10000, 5000, 4000, and 2000. We found optimal paths through

the samples and created the PDFs of the link resistances, following the process

described earlier. Finally, we fitted such PDFs to Eq. (2.43) using B as a single

adjustable parameter. The quality of the fits was rather good, see an example in

Fig. 2.6. Furthermore, even though Eq. (2.43) is meant to apply at u� uM , it fits

our numerical results for u . uM as well.
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Figure 2.6: Numerical results for P (u) in the Ohmic regime shown on (a) linear
and (b) logarithmic scale. The small fluctuations are of statistical origin. Equa-
tion (2.43) with B = 0.9 is represented by the smooth thick line.

Interestingly, we found that B slowly but systematically increases with L.

Larger B means that the formation of highly resistive links becomes easier. When

plotted as a function of 1/L, it was seen to vary linearly, tending to a constant

for large L. The reason for this observed behavior has to do with the electrodes.

As was mentioned earlier, electrodes are metallic and, therefore, contain states at

all energies. Due to this, the hops from and to the electrodes are typically less

resistive than those inside the system. In shorter samples, where the total number

of hops through the sample Nu is about ten or so [see Eq. (2.56) below], these
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“easy” hops impact the PDF. As the samples get longer, Nu increases and these

two hops do not influence the overall PDF any more. To get the value of coefficient

B in the thermodynamic limit, we used linear extrapolation to L =∞. Our final

estimate is

B = 0.92± 0.02 , (2.52)

approximately twice larger than that of Ref. [80].

Two characteristic measures of the width of the distribution are its mode

and its average. For P (u) they are given by, respectively,

umax =
1

2

(
B +

√
B2 + 2

)
uM = (1.30± 0.02)uM , (2.53)

〈u〉 =

∞∫
0

uP (u)du = (1.39± 0.02)uM . (2.54)

As expected, both are the order of the Mott parameter uM . One more important

quantity is the average number Nu of links on the path. It determines the relation

between P (u) and the probability density of breaks per unit length of the wire

ρ(u):

ρ(u) =
Nu

L
P (u) . (2.55)

Since the width of each link is not smaller than (a/2)u, cf. Eq. (2.44), Nu can be

estimated from below as (2L/a)/〈u〉 ≈ 1.4L/auM . According to our simulations,

the actual Nu is approximately twice larger:

Nu = (3.04± 0.07)
L

uMa
. (2.56)

Besides RR [77] and Ruzin [80], the calculation of P (u) was previously attempted

by Ladieu and Bouchaud. [46] They reported umax and 〈u〉 that differ from our

Eqs. (2.53) and (2.54) by 30-40% In fact, we were unable to verify that statement

because the main equation of Ref. [46] has no solution. As written, that equation

does not conserve probabilty. Consequently, we believe that our results constitute

the first reliable calculation of function P (u).

Non-Ohmic Regime

Let us now move on to the non-Ohmic regime. Before discussing the sim-

ulation results, we devote a bit of time to talking about the optimal path in this
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Figure 2.7: An example of the optimal path in a modestly non-Ohmic regime,
uI = 25. The dots represent localized states.

regime. In particular, we want to know how the path in a given sample changes with

increasing current. As was established earlier, the optimal path is the sequence of

hops that requires the minimum applied voltage to conduct a set current.

Consider an optimal path that was found for a collection of LS at some

current uI . Using Eq. (2.9), for any two LS that belong to the path, we write

Rij ∝ euI (ηi − ηj) ∝ (ηi − ηj)
cosh

( εj−ηj
2T

)
cosh

(
εi−ηi

2T

)
sinh

∣∣∆ε
2T

∣∣
sinh

(ηi−ηj
2T

) . (2.57)

If the difference ηi − ηj is small, the hyperbolic sine can be expanded and the

resulting Rij behaves as an Ohmic resistor where the resistance does not depend

on the voltage. This is true for the “easy” hops, where the cost of hopping is low,

giving small δη. Therefore, to observe non-Ohmic behavior, we turn our attention

to the “difficult” hops—the hops that require significant voltage drops.

Typically, εj < εi:

exp [−uI ] ∝ exp [η̃i − η̃j − |ε̃i − η̃i| − |ε̃j − η̃j| − |∆ε̃|] , (2.58)

where we have expressed all quantities in units of 2T . Setting η̃i = ε̃i + ãi, one

obtains

exp [−uI ] ∝ exp [ãi − ãj − |ãi| − |ãj|] . (2.59)
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In the expression above, ai and aj can be either greater or less than zero. This

results in the following four combinations:

ãi > 0, ãj > 0 exp [−uI ] ∝ exp [−2ãj] , (2.60)

ãi > 0, ãj < 0 exp [−uI ] ∝ 1 , (2.61)

ãi < 0, ãj > 0 exp [−uI ] ∝ exp [2ãi − 2ãj] , (2.62)

ãi < 0, ãj < 0 exp [−uI ] ∝ exp [2ãi] . (2.63)

A way to visualize the above situations is to keep in mind that positive ãi means

that the local electrochemical potential is above the energy of the LS. This means

that the LS is typically occupied. On the other hand, negative ãi means that the

local ηi is below εi and the LS is generally empty.

From the expressions, one can see that for four pairs of LS given the same

∆ε and separation x, the maximum current is obtained when ãi > 0 and ãj < 0.

This, of course, makes sense as it is preferred that the initial LS is full and the final

one is empty. The worst case, on the other hand, is if the signs of ã are switched.

As one tries to increase the current through the system, all the ηi (and,

therefore, ãi) on the optimal path become more negative, see Eq. (2.23). If before

the attempted current increase the pair is described by either Eq. (2.61) or (2.63),

application of additional voltage does not increase the current flow. Moreover, in

the second case, decreasing ãi actually suppresses the current. These two config-

urations will be referred to as “hard” pairs. They are similar to reverse-biased

diodes where additional voltage application does not increase the current. Since

this given can no longer support the required current, the optimal path will change,

going to lower energies to avoid these hard pairs.

If, on the other hand, the pair is initially in the other two situations, addi-

tional voltage can increase the current flow. For both of these situations, increases

exponentially with additional voltage application. We refer to these pairs as “soft”

and they are similar to forward-biased diode because of their exponential depen-

dence of current on voltage. These pairs will remain on the optimal path until ãj

becomes less than zero, turning the pair into a hard one, which has a maximum

current that it can carry, as was described above.
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It is possible to drive a number of conclusions from the above discussion,

similar to the one found in Ref. [86] . First, within any optimal path, there is

a probability of Ohmic pairs. We expect the probability of the formation of the

Ohmic links not to vary too much with current since their behavior is current-

independent. Indeed, Eq. (2.51) predicts that P (u) transitions to the Ohmic form

for u < uI . In addition, hard links are typically avoided as they cannot maintain

the required current. It is the hard links that give the highest values of u, therefore,

we expect to see a sharp drop in P (u) for large u. Due to probability conservation,

the area under the curve has to be 1. Since the Ohmic regime does not change

much and high u’s are cut out, there is a feature that compensates. We find a

narrow peak of width δu ∼ ln(u2
M/uI) near the non-Ohmic threshold u = uI . This

narrow peak is due to the soft links that used to have resistances u & uI in the

Ohmic regime. Like for a forward-based diode, when a finite current is made to flow

across the wire, such links self-generate δη large enough to push their resistance

back to an immediate vicinity of the non-Ohmic threshold u ≈ uI .

For parameters chosen in Fig. 2.8 this peak is so pronounced that it already

dwarfs the “Ohmic” maximum at u = umax.
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Figure 2.8: Numerical results for P (u) uI = 20 shown on (a) linear and (b)
logarithmic scale (thin line). The small fluctuations are of statistical origin. The
fitting formula (2.51) with uM = 12.247, B = 0.9, C = 0.75, and D = 0.5 is
represented by the thick line.

The simulation procedure in the non-Ohmic regime is identical to the Ohmic
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case. The simulation was conducted at uI = 35, 30, 25, and 20. Two values of uM

are used: 12.247 (same as above) and 20 (obtained by adjusting the temperature

but keeping g = 1/3 the same). The fit of the numerical P (u) to Eq. (2.51) for

uM = 12.247 can be seen in Fig. 2.8 and it is quite good at all but very small u

(which are irrelevant).

2.2.5 Distribution of the Net Resistance

With the knowledge of P (u), one can obtain the distribution of the net resis-

tance. This quantity is, of course, more important since it is physically observable.

The resistance of the system is given by the sum over all links,

R = R0

Nu∑
i=1

eui . (2.64)

Certainly, the resistances of the links are not truly uncorrelated; however, since R

is dominated by the largest breaks, which are rare and well-separated, this should

be a good approximation. To obtain the analytical formula for the total resistance

distribution, we use the method of cumulants. A cumulant κm is given by

lnG(k) =
∞∑
m=1

(ik)m

m!
κm , (2.65)

G(k) =

∫
dxP (x)eikx . (2.66)

where G(k) is the characteristic function of the probability distribution P (x).

First, the total resistance R/R0 is a stochastic variable, given by

R

R0

=
∑
u

euN(u) , (2.67)

where N(u) is the number of links of resistance u, itself a random variable. It is

described by a Poisson distribution with the average N̄(u) = Lρ(u). Thus, for a

given u, the probability that it contributes euN to the total resistance is

P (euN) =
e−N̄N̄N

N !
. (2.68)
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Next, we obtain the characteristic function for the variable euN :

G(k) =
∑
N

e−N̄N̄N

N !
exp (ikeuN)

= e−N̄
∑
N

[
exp (ikeu) N̄

]N
N !

= exp
{
N̄ [exp (ikeu)− 1]

}
. (2.69)

From this, one gets the cumulants

lnG(k) =
∞∑
m=1

(ik)m

m!
emuN̄︸ ︷︷ ︸
κm

. (2.70)

The total cumulant is obtained by summing all the cumulants:

κTm =

∫
emuN̄(u)du , (2.71)

which allows one to reconstruct the total characteristic function

GT (k) = exp

{∫
N̄(u) [exp (ikeu)− 1]

}
. (2.72)

Finally, taking its Fourier transform and making the change of variable from

R to U ≡ ln(R/R0), we recover

PU(U) =
1

2π

∫
exp

(
U − ikeU

)
GT (k)dk , (2.73)

equivalent to the result given by Raikh and Ruzin(RR) in Refs. [76] and [77].

In their work, RR obtained an analytical formula for the PDF PU(U) in the

Ohmic limit without the subleading term:

PU(U) =
√
ν exp

[
−
√
ν δU − exp(−

√
ν δU)

]
, (2.74)

δU ≡U − (
√
ν T0/T ) , (2.75)

ν =
2T

T0

ln

(√
ν
L

a

)
. (2.76)

This curve is given alongside our result in Fig. 2.9.

Note that in Ref. [46] an attempt was made to include correlations between

adjacent links. As mentioned above, it does not compare well with our simulations.

In practice, even a numerical integration of the strongly oscillating func-

tions in Eqs. (2.72) and (2.73) is difficult. We found it easier to directly im-

plement Eq. (2.64) instead. To this end we draw ui from the distribution P (u)
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using a Monte-Carlo sampling (the usual acceptance-rejection algorithm). After

Nu [Eq. (2.56)] of such resistances are generated, the total resistance of the wire is

obtained by summing them. This procedure will be referred to as PDF-algorithm.

We first present our results for the Ohmic case in Fig. 2.9. The simulations

are done for system size L = 103, localization length a = 4, and uM = 12.247.

This Figure illustrates the importance of the subleading term that was introduced

into P (u) in Ref. [80]. Without this term, the resistance for the identical systems

is lower by about two orders of magnitude, despite the similar functional form.

This means that excluding the subleading correction leads to reduced resistance.

In addition, Fig. 2.9 demonstrates that our PDF-algorithm can successfully repli-

cate the results obtained by the shortest-path algorithm. Since PDF-algorithm is

considerably faster than the other one, it is preferred in the situations where one

needs to analyze a large number of disorder realizations.
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Figure 2.9: The PDF of the logarithm of the total resistance R in the Ohmic limit.
The smooth curve on the right is obtained using the PDF algorithm; the markers
correspond to the shortest-path simulation. The leftmost curve is obtained using
Ref. [77].

Next, we move on to the non-Ohmic case. In Fig. 2.10, we present a se-
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quence of four PDF’s obtained from our shortest-path and PDF-algorithm simu-

lations. From one curve to the next the current increases by the same factor of

exp(5). A qualitative difference from the PDF for the Ohmic case (Fig. 2.9) is

immediately apparent. The Ohmic PDF is skewed to the right, towards the large

resistances. In contrast, the non-Ohmic curves are skewed the opposite way. This

difference is due to the response of P (u) to the rise in current. In both Ohmic and

non-Ohmic regimes the net resistance of the system is determined by the largest

breaks. However, in the non-Ohmic case there is almost a hard cutoff ≈ uI on the

largest possible u (Fig. 2.8). In other words, breaks with u & uI are effectively

eliminated, [26] making the large-resistance side of the PDFs of ln(R/R0) � uI

drop sharply as well.
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Figure 2.10: The PDF of the logarithm of the total resistance R for different
uI . The simulation parameters are the same as in Fig. 2.9. The smooth curves
are obtained using the PDF algorithm, the markers are from the shortest-path
simulations.

Another result of removing the highly resistant links is the PDF’s approach

to the Gaussian shape. By reducing the spread of the link resistances, it brings the

system closer to the conditions at which the central-limit theorem is obeyed. This
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can be seen in Fig. 2.10, where the curves become narrower and more Gaussian at

lower uI .

Finally, Figure 2.10 illustrates that the PDFs obtained from the shortest-

path simulations and from the PDF-algorithm are in a good agreement. The curves

produced by the latter are much more smooth because we could apply it to a larger

number of disorder realizations: 105.

2.2.6 Conductance-Voltage Characteristics

In experiment, macroscopic transport properties are measured either as a

function of current or as a function of voltage. In the former case, the ensemble

averaging gives the average resistance 〈R〉; in the latter — the average conductance

〈G〉. If a large number of nominally identical wires is available simultaneously, this

can be done in a single measurement, connecting them, respectively, in series and

in parallel. [44] Otherwise, one can try to create the members of an ensemble one

by one by varying gate voltage or other parameters of a single wire. [41]

In the non-Ohmic regime, it has been customary [63, 38, 74, 49] to charac-

terize the field-dependence of the conductivity by means of the length parameter

Lc:

〈G〉(F, T ) = 〈G〉(0, T ) exp ( |F |Lc/ T ) . (2.77)

In experiment, this law typically describes the first decade of the conductivity rise.

Thereafter, deviations tend to occur. Indeed, in theory [86, 52, 90] Lc is expected

to be not a constant but a function of F and T .

At large enough F , Eq. (2.77) eventually becomes a poor approximation.

Theoretically, it should cross over to [26]

G ∼ a

2LR0

exp

(
−
√

8T0

Fa

)
. (2.78)

(At such fields mesoscopic conductance fluctuations are small, and so we denote

〈G〉 simply by G.) Note that it can be viewed as the 1D Mott law with the effective

temperature [85, 57] Teff ∼ Fa replacing the ambient temperature T .
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Figure 2.11 shows the dependence of the average Ohmic conductivity

〈G(0, T )〉 = G0 exp [−(∆/T )γ] (2.79)

on temperature in an ensemble of samples of length L = 250a. To test the expected

crossover behavior, we fit the low T data points using Eq. (2.79) with γ = 1/2,

corresponding to the 1D Mott law. We fit higher T using γ = 1, representing

activated transport. In the Mott regime we find ∆ = 8.4T0. For the activated

regime we get ∆ = 0.62T0. Note the large difference between these values. As far

as ∆ is concerned, our numerical results are in a good agreement with the analytical

theory of Raikh and Ruzin [77]. In the high-T regime it predicts ∆ = T0/2. Their

low-T formula reads

G = R−1
0 exp

(
−
√
ν
T0

T

)
, (2.80)

where ν is given by Eq. (2.76).
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Figure 2.11: 〈G〉 as a function of T : (a) High T ; the dashed line is the best fit
for γ = 1 with ∆ = 0.62T0 in Eq. (2.79). (b) Low T . The dashed line is a fit to the
1D Mott law, γ = 1/2 and ∆ = 8.4T0 in Eq. (2.79). The upper curve is Eq. (2.80).

Therefore, RR result for Mott’s ∆ is

∆(T ) = 2T0 ln

(√
ν
L

a

)
. (2.81)
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Figure 2.12: A sketch of V –I curves for an array of different wires. The continuity
equation (2.83) follows from the conservation of the number of curves piercing the
differential area element bounded by the dashed lines.

Strictly speaking, it is not a constant but a slow function of T . In the range of

T where the fit to the Mott law was done, it is indeed close to 8.4T0. The large

difference between the values of ∆ in the Mott and the activated regime is due to

the “large” logarithm ln(
√
ν L/a).

When the RR formula is plotted alongside our numerical results, it is seen

to exhibit a very similar shape yet a large difference in the absolute value, see

Fig. 2.11(b). Despite the fact that we study exactly the same model, RR’s pre-

dictions differ from our results by two orders of magnitude. We attribute this

discrepancy to the “subleading” terms not included in the asymptotic theory of

RR.

Since our shortest-path algorithm is formulated at a constant current (i.e.,

constant uI), one may naively think that it is able to provide only the distribution

of resistances. This is not so. Let us show that the PDFs of conductances and

resistances are uniquely related even in the non-Ohmic regime.

Denote the PDF of having a given total voltage V at a fixed current I by

PV (V |I) and the PDF of having a given current I at a fixed total V by PI(I|V ).

By inspecting the monotonically increasing V -I curves sketched in Fig. 2.12, we

can write down the following continuity equation:

PV (V0|I0)dV + PI(I0|V0)dI = PV (V0|I0 + dI)dV + PI(I0|V0 + dV )dI , (2.82)
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which simply states that the flow of the lines into the differential area from the left

and the bottom edges equals the outflow through the top and the right boundaries.

Expanding the right hand side for dV and dI, one obtains[
∂

∂I
PV (V |I) +

∂

∂V
PI(I|V )

]
dV dI = 0 . (2.83)

Integrating with respect to voltage, we get

PI(I|V ) = − ∂

∂I

∫ V

0

PV (V ′|I)dV ′ . (2.84)

As an application, let us show how the average conductance GV at a given fixed

voltage V ,

GV =

∫ ∞
0

PI(I|V )
dI

R
, R =

V

I
, (2.85)

can be calculated.

In view of Eq. (2.84), the last relation can be written as

GV = −
∫ ∞

0

IdI

V

∂

∂I

∫ V

0

PV (V ′|I)dV ′ . (2.86)

Next, we integrate it by parts:

GV = −

���������
���:

0
I

V

∫ V

0

PV (V ′|I)dV ′
∣∣∣∣∞
0

− 1

V

∫ ∞
0

dI

∫ V

0

PV (V ′|I)dV ′

 . (2.87)

and change the notation for the measure in the second integral from PV (V ′|I)dV ′

to PR(R′|uI)dR′. We arrive at the formula

GV

R−1
0

=
T

V

∫ ∞
−∞

duI
euI

∫ ∞
0

Θ

(
V euI

T
− R′

R0

)
PR(R′|uI)dR′ (2.88)

for the desired average conductance at a fixed voltage. It is easy to see that in the

Ohmic limit, V → 0, Eq. (2.88) coincides with the average conductance at a fixed

current,
∫
PR(R′|∞)dR′/R′, as expected.

To evaluate GV as a function of V one needs to know PR(R′|uI). We

obtained it by the following procedure. First, an interval of interest in V is devided

into a number of bins. Next, we take an interval of uI from 5 to about uI = 3uM

and in turn divide it into equidistant steps uI(j), 1 ≤ j ≤ NI = 1000, spaced by
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∆uI . For each uI(j) we generate Nsam = 200 samples, i.e., sets of Nu individual

u’s, drawn from the distribution P (u) using the acceptance-rejection algorithm.

Finally, we convert the integrals in Eq. (2.88) into discrete sums,

GV

R−1
0

=
∆uI
V Nsam

NI∑
j=1

T

euI(j)

Nsam∑
i=1

Θ

(
V euI(j)

T
− Ri(j)

R0

)
, (2.89)

where Ri(j) is the total resistance of i th set for a given j, and then evaluate them

numerically.

Alternatively, GV can be reduced to a numerical quadrature, which this

time contains no oscillating integrals. This is possible because GV is dominated

by large conductances, for which the saddle-point approximation in Eq. (2.73) is

legitimate. After a straightforward derivation, one obtains

GV

R−1
0

=
T

V

∫ ∞
−∞

duI
euI

∫ ∞
0

Θ

(
V euI

T
− J1

)
×
√
J2

2π
exp

(
tJ1 + J0)dt , (2.90)

Jn = Nu

∫ ∞
0

P (u) [exp(nu− teu)− δn,0] du , (2.91)

where n = 0, 1, 2, and δij is the Kronecker symbol. All these integrals are rapidly

converging, so that their numerical evaluation should cause no difficulty. However,

we did not pursue this method.

The simulations were performed for uM = 5, 7.5, 10, 12.5, and 15. The

control parameter was T while all other values — a, g, L, and Nu — remained

the same. Later we realized that in the non-Ohmic regime the number of hops

Nu gradually increased with current. Equation (2.56) remains accurate only for

uI > uM . Therefore, only uI > uM points were included when plotting the five

curves in Fig. 2.13.

We see that Lc ≈ 1.9uMa, which is the average hop length. This implies

that the average conductance is dominated by rare samples that do not contain

large breaks, so that the total voltage is distributed roughly equally among all the

hops. In contrast, we know that the average resistance is determined by typical

samples where the breaks are present; the entire voltage is applied to the single

most resistive hop, and the size of the non-Ohmic effect is much larger, see Fig. 2.15.
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behavior as a function of temperature (dots). For comparison, the dashed curve
represents the relation Lc/a = 1.9uM , which corresponds to a typical hop length.
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is the inverse of the average resistance. Simulation parameters are the same as in
Fig. 2.9.

At large F the rise of the conductance becomes less rapid than exponential

and the curves in Fig. 2.13 tend to converge to a common T -independent envelope

of Eq. (2.78), confirming the analytical predictions of Fogler and Kelley. [26] At

such high electric fields F , high-resistance breaks are eliminated not only from rare

samples but from typical ones. This can be deduced from the fact that averaging of

the conductance G approaches the result of averaging of the resistance R (followed

by taking the inverse). As evident from Fig. 2.15, the two curves indeed approach

each other with increasing field.

2.2.7 Conclusion

At this point, let us recapitulate our findings. To the best of our knowledge

we presented the first reliable calculation of the statistics of resistances in 1D VRH

network, both in Ohmic and non-Ohmic regimes. Comparing with the previous

theoretical work, we showed the importance of the correction to the PDF P (u)
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proposed in Ref. [80]. We demonstrated that without this “subleading” term the

conductance could be significantly overestimated, see Fig. 2.11. Figure 2.7 further

illustrates the importance of such corrections by showing that there are no obvi-

ous diamond-like or hexagonal voids in the energy-position space invoked in the

derivations of the leading asymptotic behavior. [77, 26]

Next, our calculations have verified the earlier analytical predictions [26]

that large breaks are progressively eliminated at higher voltage, and that the PDF

of resistances becomes more narrow, see Fig. 2.10. This disappearance of highly

resistive hops equalizes different samples, making the averages of parallel and series

setups of the wires approach the same value.

Let us now turn to experiments. Unfortunately, we could not find a clear

evidence of the predicted behavior in published literature. A dedicated experiment

to probe mesoscopic conductance fluctuations in non-Ohmic regime is desired as

it was not on the agenda in previous studies of 1D VRH. At least two other

caveats must also be kept in mind. First, most of “1D” electron systems studied

experimentally were not truly one-dimensional. They either consisted of many

parallel chains [3, 5] or had multiple subbands [44, 33, 31] or were bulk samples

with a large aspect ratio. [70, 41] Such systems may behave as effectively 1D but

only at low enough T . Finally, our model of disorder where LS are treated as

points in the energy-position space may or may not be relevant for some of these

experiments (see more below).

Turning to some specific examples, we consider first the measurements done

on polydiacetylene single crystals, [5] which are quasi-1D materials. The Ohmic

transport is consistent with 1D VRH behavior, showing a crossover from a sim-

ple exponential at relatively high temperatures, lnG ≈ −∆h/2T , to a stretched

exponential lnG ≈ −(∆l/T )γ with γ = 0.5–0.75 at low T . As in our simula-

tions, there is a substantial difference between these energy scales, e.g., in sample

S1, ∆h = 320 K and ∆l = 2570 K ≈ 8∆h. In the same sample at high electric

fields Eq. (2.78) is observed, with 8T0/a = 0.049 eV/nm (in our notations). As-

suming that T0 ≈ ∆h, this gives a reasonable estimate of the localization length

a = 4.3 nm. At modest fields, the transport data were fitted to Eq. (2.77) and Lc
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was extracted. It was seen to have the same temperature dependence Lc ∝ T−0.5,

as in our simulations. Moreover, the numerical value of Lc is close to what we

find. For example, Lc = 32.5 nm at T = 25 K in the experiments, which can be

compared to Lc ∼ 1.9a
√

2T0/T = 40 nm that we find, cf. Fig. 2.14.

Next, let us consider another experiment, which was done on arrays of GaAs

quantum wires. [44] The dependence of G on F and T that we have calculated here

is in a reasonable agreement with some of those experimental results but some

strong deviations are also apparent. In the simulations, the range of activated

behavior in the Ohmic regime spans at best two decades in G. In the experiment,

it is much wider (three decades), and occupies most of the temperature range

studied.

The initial rise of G with F is again exponential over approximately one

decade, see Fig. 2.16. However the behavior of parameter Lc in this exponential law

was deemed to be surprising in Ref. [44]. Therefore, let us discuss it. Physically,

Lc is the distance between “critical hops” in a sample, i.e., those highly resistive

links that generate the dominant portion of the total voltage. In a typical sample,

length Lc has to be much larger than the average hop length uMa. In fact, at

low T one would naively expect Lc to be of the order of the sample length L.

This is because in a typical sample all the voltage drops on a single break. At

higher T , where the activated transport is observed, the voltage is shared by many

breaks, [77] and so Lc is supposed to decrease exponentially. However, this is not

what was observed. At low T , two out of three samples, measured in Ref. [44] had

Lc ≈ L/50, while the Lc of the third was about L/10. As T was increasing, Lc

was decreasing but rather slowly, perhaps, as T 1/2.

In light of our findings, this behavior of Lc is not surprising. The above

reasoning does not take into account that the measurements were done not on a

single wire but on several hundreds of them, connected in parallel. It is logical

to assume that some wires conducted much better than others because they hap-

pened to have no breaks. These wires could short out the wires which were poor

conductors, reducing the net Lc down to the typical hopping length.

We now demonstrate that Lc extracted from our model has numerical val-
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ues and functional behavior similar to what was measured experimentally. Our

Lc, which was found by fitting the low-voltage part of G(F ) curves in Fig. 2.13

to Eq. (2.77) is plotted in Fig. 2.14. The intervals of T0/T are different in our

simulation and the experiment; however, there is a small overlap. For our leftmost

point, T0/T = 12.5 we have L/Lc ≈ 30, similar to the numbers quoted above.

The problem arises when we consider the high-field behavior reported in

Ref. [44]. Experimental G(F, T ) curves tend to approach a common T -independent

limit, as in our calculations, Fig. 2.13. However, this limit is strongly underesti-

mated by our Eq. (2.78), see Fig. 2.16. While we do not know the origin of this

discrepancy, it is possible that the different behavior seen in the two experiments

is just another example of a dilemma, which has a long history in the VRH liter-

ature. Previously, it was discussed mostly in the context of bulk materials where

majority of experiments have been done so far. However, it is tempting to make a

comparison with our 1D case because the VRH exponent of the Efros-Shklovskii
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law in any dimension nominally coincides with the 1D Mott law exponent γ = 1/2.

The essence of the dilemma is as follows. There are a number of systems

where non-Ohmic behavior does follow Eqs. (2.77) and (2.78) that we have ob-

served in our simulations. However, this is usually the case when parameter ∆ in

Eq. (2.79) is large, say, tens or hundreds of K. Very different and still poorly un-

derstood behavior occurs when T0 is relatively small (according to one study, [107]

when
√
T0/T . 12). The high-field nonlinearities in this second group are much

stronger. In the extreme cases, the I–V characteristic was determined to be S-

shaped, [48, 89] which led to hysteretic conductivity jumps by orders of magni-

tude [48, 71] and circuit oscillations. [89] [Note that the negative differential con-

ductivity (NDC), which is also sometimes observed in the non-Ohmic regime, [2]

is a different effect. In that case the I–V characteristic is N -shaped. The magni-

tude of the nonlinearity is much weaker. According to the theory, [16, 67, 54, 64]

this NDC requires special conditions, e.g., narrow energy bands or low carrier

densities.] Interestingly, in systems that show conductivity jumps the Ohmic con-

ductance shows a simple activation rather than VRH behavior. [48, 71]

It has become common [97, 22, 89, 107, 33, 58, 51, 30, 71, 6] to attribute

strong nonlinearity and S-shaped I–V to electron overheating. It is assumed that

G is the function of the electron temperature Te, which can be much higher than

the ambient temperature T . A phenomenological equation is postulated,

Q̇ = GF 2 = α(T βe − T β) , (2.92)

where α and β are adjustable constants. (Usually, 4 < β < 8.) This equation is

supposed to represent the balance between the Joule heat delivered into electron

system from the external field and the heat transferred from electrons to phonons.

Surprisingly, this equation has been shown to provide an accurate description of

some VRH systems, including the the one we are trying to make comparison to. [44,

33]

By itself, the idea of hot electrons is not objectionable. Actually, our

Eq. (2.78) can be viewed as the 1D Mott law with the electron temperature Te ∼ Fa

(similar to Refs. [85] and [7]). The difficulty is that the required Te is unusually

large. Indeed, let us define the length Le-ph = Te/F . It has the physical meaning
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of a characteristic distance over which an electron must be accelerated by the ex-

ternal field to gain the extra energy Te � T . In our model, where LS are treated

as points, the largest achievable Le-ph is of the order of a. Electrons cannot prop-

agate farther without suffering an exponential decay. Yet to get a stronger I–V

nonlinearity than predicted by our Eq. (2.78), Le-ph must exceed a. For example,

to reproduce the high-field part of the data shown in Fig. 2.16, we need perhaps

Le-ph ∼ 10a.

In principle, Le-ph � a is possible if the disordered system is a granular

metal or equivalently, an array of random-sized quantum dots. In this case the

upper bound on Le-ph is presumably set by the size of metallic grains, while the

exponential decay length a is much smaller, being suppressed by weak tunneling

between the grains. The granular-metal model can also explain a wide range of the

activated Ohmic behavior as a manifestation of the Coulomb blockade. Finally,

it has been suggested [48] that the conductivity jumps may be related to lifting

of the Coulomb blockade by collective depinning. Transport in a 1D version of

this model was recently studied in Ref. [27] but the case of extremely strong fields

was not considered. It remains to be seen whether this model can yield a better

agreement with the experiments. [44]

It has been speculated that the overheating is driven by the electron in-

teractions, which we did not address here. The simplest way to introduce some

interaction effects into the existing formalism is to consider larger dielectric con-

stant ε > 1. The importance of such effects requires further study.

Finally, as mentioned above, most of electron systems studied should behave

as effectively 1D only at low enough T . The dimensional crossover as a function

of temperature in a strip geometry has been studied by RR in Ref. [78]. It would

be interesting to investigate the electric-field counterpart of this crossover.
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2.3 Apparent Power-Law Behavior in Quasi-1D

Systems

From the last section, it is clear that when measuring the conductance

G(V, T ) ≡ I(V, T )/V of a system characterized by variable range hopping, one

expects ot see a (stretched) exponential behavior. However, over the last decade,

observations of different laws,

I ∝ V Tα, V � (2π/γ)T, (2.93)

∝ V β+1, V � (2π/γ)T, (2.94)

have been reported in systems as diverse as carbon nanotubes [15, 102, 9, 42, 32, 62,

19, 21], InSb [106] and GaAs [18, 95] quantum wires, NiSe3 whiskers [88], polymer

nanofibers [4, 75], inorganic [96, 21] and organic nanowires [108], as well as polymer

films [105, 99]. The coefficients α, β, and γ vary among different materials and

different samples of the same material.

A five-parameter formula frequently used to fit the experimental data is

I = c0T
α+1 sinh

(
γ′V

2T

) ∣∣∣∣Γ(1 +
β

2
+ i

γV

2πT

)∣∣∣∣2 . (2.95)

For γ′ = γ the asymptotic behavior of I(V, T ) is given by Eqs. (2.93) and (2.94).

Agreement with Eq. (2.95) was advocated as evidence for tunneling into Luttinger

liquid (LL) [34] — a one-dimensional (1D) system with nonperturbative interaction

effects. (For strong interactions the LL can also be modeled as a 1D Wigner

crystal [23].) In this picture, the system contains a tunneling barrier, e.g., a poor

contact, but is otherwise clean and free of localization. The power-laws are due to

renormalization of this barrier by many-body effects. However, there is a problem

with this interpretation. The actual calculations [43, 81, 11, 61, 82] within the

LL model give α = β and γ = γ′ = 1, which is not always consistent with the

parameters of the empirical fits (a notable exception is Ref. [18]).

Another reason to doubt the relevance of the LL effects in some of these

experiments is the fact that the systems studied are neither perfectly clean nor

truly 1D. They are, typically, collections of many parallel 1D channels, whose
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total number ranges from several hundred to many thousands, each containing

multiple impurities.

In this section, we show that in such quasi-1D systems the conventional

mechanism of transport, which is the VRH, can also lead to Eqs. (2.93)–(2.95).

This is because at low enough T the hopping length is not much smaller than the

length L of the wires. In this case, the VRH conductance deviates from the usual

formula, Eq. (2.79). The hopping is dominated by hopping paths that consist of a

few approximately equidistant hops [92, 53, 35, 10]. Although rare, such configu-

rations can always be found in a sample if the number of channels is large enough.

Hence, despite mesoscopic fluctuations that accompany rare events, G(V, T ) can

be a smooth quasi-power-law function.

Following the procedure described in Sec. 2.2.6, we obtain a number of G-

V curves at different temperatures, from which we can get the I-V profiles. Our

results are illustrated in Fig. 2.17. In the inset of Fig. 2.17 we show a set of I-V

curves computed for a set of fixed T . In the main panel, we collapse them onto a

single “universal” curve described by Eq. (2.95).
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Let us compare the quality of the data collapse to those in the aforemen-

tioned experiments [96, 88, 4, 108, 75, 19, 105, 99]. The range of T shown in

Fig. 2.17 is a factor of 30. In the experiments, Eq. (2.93) rarely spans more than

one decade in T . The range of V , where the non-Ohmic conductance follows the

“universal” curve in the experiments, is usually less than a decade. In our case, it

is wider than one decade. Still, the dependences that we find numerically are not

true power-laws. If we look at wider ranges of V and T , the deviations are seen.

Therefore, our numerical results for the VRH transport, just like the experiments,

demonstrate only the apparent power-law behavior (APLB) restricted to a certain

parameter range.

In our calculations, this range is located near the inflection point of the

curve lnGΩ vs. lnT , see Fig. 2.18. Near the corresponding temperature Tinf the

curve can be approximated by a straight line with a certain slope α, in agreement

with Eq. (2.93). Further analysis, following Refs. [92, 53, 35], which is discussed

below, leads to analytical estimates

α = Ninf − 1− 2

Ninf

, Ninf = c1

√
L

a
, (2.96)

β + 1 = c2α , γ = c3
2πa

L
, (2.97)

Tinf = c4T0
a

L
, T0 ≡

1

ga
. (2.98)

Here g is the density of states and ci’s are coefficients of the order of unity. In

comparison, our simulations give α = 1.75, β = 1.1, and γ = 1 for L/a = 7.5. For

L/a = 12.5, we get α = 2.4, β = 1.7, and γ = 0.6. This implies c1 ≈ 1.1, c2 ≈ 0.85,

c3 ≈ 1.2, and c4 ≈ 0.4.

Our numerical results are comparable with typical experimental numbers.

They are also consistent with the observed trend that longer and more disordered

wires produce larger α and β but smaller γ. A more detailed comparison would

require taking into account particularities of a given set of samples beyond our

generic model. Due to individual variations in the nature of disorder and the pa-

rameters of electron-phonon coupling, α and β may acquire additional corrections

of the order of unity.

The results for the Ohmic regime (Fig. 2.18) were obtained by choosing a
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Figure 2.18: The Ohmic conductance vs. temperature for L = 30 (upper curve)
and L = 50 (lower curve) with a = 4. The dashed lines serve to illustrate the
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very large uI = 40 to ensure V � T . We analyzed two different system lengths:

L = 30 = 7.5a and L = 50 = 12.5a. For L = 30 we generated an ensemble of

20, 000 samples and for L = 50 we used 10, 000 samples in order to average out

the mesoscopic fluctuations. (Actually, using 500 samples would give results of

comparable quality.) Figure 2.18 clearly demonstrates more than a decade of the

APLB of Eq. (2.93) near the inflection points of the curves. Note that this point

is located at a lower temperature for the longer sample.

Having determined the range of T where we get the Ohmic APLB, we

proceeded to analyzing the non-Ohmic behavior of the system in this range of

temperatures. To this end we fitted the results for higher V to Eq. (2.95). For

L = 30, Fig. 2.17, we found a good collapse in both the Ohmic and non-Ohmic

regimes. All curves in Fig. 2.17 were cut at V = 2, since at that point the curves

were beginning to saturate as they approached the maximum current possible in

the system. The collapse obtained for L = 50 (not shown) was equally good. The

quality of our data collapse matches or exceeds that in the experiments [4, 88, 96,
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108, 19, 75, 105, 99]. The values of the fitting parameters α, β, and γ have already

been discussed (see more below).

Let us now examine how the APLB we have found numerically can be

understood in the light of established theory of 1D VRH. According to this theory,

transport is characterized by several regimes. At low T , the conductance of the

ensemble is dominated by rare paths with nearly equidistant sites, see Fig. 2.19(b).

This regime was studied in Refs. [35, 10, 12] for two intermediate sites and in

Refs. [92, 53] for a chain of many sites (Ref. [92] is available online as Ref. [72]).

Adopting the derivation in Ref. [92] to the 1D case we can show that at a given T

the main contribution to GΩ comes from the chains of N =
√

2L/λa hops, where

λ is the solution of the equation λ ' ln(λ/LgT ). In addition, [35, 10, 101]

d lnGΩ

d lnT
' N − 1− 2

N
. (2.99)

At T = Tinf, we have λ ∼ 1, which yields Eq. (2.96).

For T > Tinf, the system enters the regime where the transport is limited

by rare highly resistive links — “breaks” — on the optimal path [45, 50, 77]. As a

result, the Ohmic conductance, which can be derived from the formulas of Ref. [77],

obeys Mott law. The concavity of the lnGΩ vs. lnT curve is opposite in the two

temperature ranges, which creates the inflection point, see Fig. 2.18.

The non-Ohmic transport is also characterized by an S-shaped curve of ln I

vs. lnV , with its own inflection point. For example, at T � Tinf, the theory [26]

predicts

ln
V

T0

= − u2
I

u2
M

+ ln

(
8L/a

u2
I

)
, uM ≡

√
2T0

T
. (2.100)

δx

δε

(b)(a)

εi
εj

ηi

ηj

I I

Figure 2.19: (a) A typical hopping path through the wire (thick line). The thin
line represents electrochemical potential η. (b) A rare path [92, 53, 35, 10] made of
equal-length hops. Here δε ∼ NT and δx ∼ Na, where N is the number of hops.
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By the argument similar to that used in the Ohmic regime, β + 1 in Eq. (2.94) is

determined by the maximum slope, i.e., the derivative of ln I with respect to lnV :

β + 1 = max

(
− duI
d lnV

)
=
uM
4

=

√
T0

8T
. (2.101)

We see that β + 1 ∝ T−1/2 is not a constant but decreases with T , in qualitative

agreement with experiments [108, 75, 19]. This explains why the data collapse

onto the universal curve of Eq. (2.95) can be achieved only in a limited range of

T .

At T = Tinf, Eq. (2.100) is at the border of its validity. Hence, Eq. (2.101)

gives only the order of magnitude estimate, β + 1 . α, which is the first part

of Eq. (2.97). Finally, to get γ we note that the crossover to the T -independent

behavior in Eq. (2.95) takes place at γV ∼ 2πT . On the other hand, according

to Eq. (2.100), this occurs at uI ∼ uM where V/T0 ∼ LT/aT0. Combining these

expressions, we recover the second part of Eq. (2.97).

Formulas (2.96)–(2.97) predict numerical values and relations among α, β,

and γ that are in agreement with most of the cited experiments [96, 88, 4, 108, 75,

19, 105, 99]. Additionally, they provide a way of estimating the localization length

a. For example, taking parameters α = 4.3, β = 2.1, γ = 0.25, L ∼ 1µm of a

representative MoSe2 nanowire from Ref. [96], we find a ∼ 40 nm for this sample

(W3). Other samples measured in that work showed α ∝ 1/
√
M scaling with the

number of transport channels M . In our model the same scaling occurs if a ∝M ,

as in a weakly disordered quasi-1D metal. In such a system a can be enlarged by

applying an external magnetic field [13]. This is one convenient way to further test

our model experimentally. Alternatively, it may be possible to vary the disorder

strength and therefore a by electrostatic gating, while monitoring the predicted

trends in α, β, and γ.

Another model we considered in search for the APLB was the interrupted-

strand model (ISM) [28, 27]. Therein a metallic wire is divided into segments by

randomly positioned impurities of tunneling transparency e−s � 1, which turn it

into a chain of weakly coupled quantum dots. In the simulations we studied wires

with Ni = 50 impurities of strength s = 4. While we did observe the APLB in
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such wires (α = 3.75, β = 1.6, γ = 0.15), the quality of the data collapse was not

as good as in Fig. 2.17. Otherwise, the results were similar.

Note that the VRH in the ISM is analogous to multi-dot cotunneling in

a granular metal. The latter also leads, in all spatial dimensions, to the power-

law conductance behavior with α = β = 2Nd − 4, Nd being the number of dots

involved in one cotunneling event [94]. Hence, the APLB is not uncommon in the

VRH regime.

2.4 Structure of the hopping network in finite-

size systems of arbitrary dimension d

2.4.1 Introduction

The previous two sections of this chapter dealt with hopping in quasi-one-

dimensional systems. To reiterate, usually, the Ohmic conductance as a function

of temperature T is described by the Mott law:

G ∼ exp

[
−
(
T0

T

) 1
d+1

]
, (2.102)

where we assume that g can be treated as a constant at all T of interest. 1 However,

sometimes systems do not follow the behavior predicted by Eq. (2.102) and instead

exhibit a different T dependence. In particular, for certain temperature ranges

power-law-like behavior

G ∼ Tα (2.103)

has been observed experimentally in a variety of quasi-1D materials. [106, 88, 96,

108] The value of α varies widely even between samples of the same material,

showing the dependence on the length of the system.

Following Ref. [92, 35] we also argued that the Mott law results from typ-

ical events of the dense resistor network, see Fig 2.20(b). On the other hand,

1In particular, we do not consider the physics of Coulomb gap and the Efros-Shklovskii law
of VRH [87].
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Figure 2.20: (a) Rare hopping paths that dominate the ensemble-averaged con-
ductance of 1D VRH transport at low T . (b) Typical hopping path at higher
T . The thick black line represents the dominant subnetwork, responsible for the
conductance.

quasi-power-law behavior originates from rare, approximately equidistant chains

of hopping sites like the one shown in Fig. 2.20(a).

In this section, we study how the transition between these seemingly distinct

mechanisms of transport occurs as a function of T . While we are mainly interested

in d = 1, where we can utilize both numerical simulations and analytical compu-

tations, we also study the case d > 1 using qualitative physical considerations.

This section is organized as follows. Section 2.4.2 discusses the approach

we take to analyze the problem. Sections 2.4.3 and 2.4.5 deal with 1D and higher-

dimensional systems, respectively. The discussion of prior treatment of the problem

is found in Sec. 2.4.6. Finally, the derivations are located in the Appendix.

2.4.2 Percolation Approach

We have already described the standard Miller-Abrahams resistor network[60]

in terms of percolation formalism in Sec. 2.1.4 when we introduced Mott law. Re-

call that Eq. (2.16) shows that the percolating resistance uc = [2T0Bc/(Tβd)]
1
d+1

scales with (1/T )
1
d+1 , as predicted by Mott law. However, this result neglects the

finite probability of rare paths that have higher conductivity than the percolating
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network. To account for the contribution from these paths, we define the cross-

ing probability PL(u) as the probability that there exists a path that traverses a

system of length L with all link resistances smaller than u. Thus, PL(u) is is a

cumulative distribution function (CDF) of the critical values of u.

In traditional bond problems, the crossing probability evolves smoothly

with the open bond fraction as the network becomes denser. Likewise, in our

problem PL(u) is expected to vary smoothly with changing u. This means that

the geometry of the network also undergoes a gradual development from isolated

clusters of open bonds to a dense network spanning the system, see Fig. 2.21.

It is clear that the form of PL(u) depends on the dimensionality of the

system and the details are left for the following sections where we treat 1D and

higher-dimensional systems separately. Here we give the motivation for determin-

ing the crossing probability.

Since the conductance of the system is approximately given by e−u, where u

is the measure of resistance of the most resistive link of the subnetwork, multiplying

e−u by PL(u) gives the probability distribution of the conductance. Disregarding

the details due to the dimensionality, for a finite-size system PL(u) is a sharply in-

creasing smooth step-like function. The product of a rapidly decaying exponential

with PL(u) results in a maximum which allows one to approximate the average

conductance as

G(T ) ∼ e−u∗ , (2.104)

where u∗ is the location of the maximum of the product e−uPL(u). Equation (2.104)

means that G(T ) is a smooth function unless there is a discontinuity in u∗(T ). Such

jumps may indeed occur in the presense of multiple local maxima because both

e−u and PL(u) are exponential functions of u.

In the following sections we discuss the form of the crossing probability and

determine the distribution of conductance for different dimensionalities.
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Figure 2.21: Evolution of a 2D network with increasing u. As the value of u
is raised from top to bottom panels, the network progresses from independent
conducting strands to an interconnected grid. The correlation length ξ decreases
as the network becomes denser.
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2.4.3 1D systems

Analytical approach

Although there is no simple way to compute the crossing probability ana-

lytically, it is possible to estimate its behavior at extremal values of u. One can

approximate the high-u behavior of PL(u) using the following geometrical argu-

ment. Recall that the area of a diamond break is equal to Tau2/2. Given the

density of states g, the probability that there are no sites found within the di-

amond is exp [−u2/u2
M ]. If the sample length is L, the number of breaks of the

above size that can fit in the sample is 2L/(ua). Finally, the probability that there

will be no breaks of resistance u or above is

ln [PL(u)] ∼ −2L

ua
exp

[
− u2

u2
M

]
. (2.105)

Applying Eq. (2.104) results in the following expression for u∗:

au2
M

2L
= e

− u2∗
u2
M

(
2 +

u2
M

u2
∗

)
. (2.106)

For sufficiently large values of u∗ we can drop the second term inside the paren-

theses. We, therefore, obtain the behavior of G as

G ∼ exp

[
−uM ln

1
2

(
4L

au2
M

)]
. (2.107)

Equation 2.107 reproduces the result obtained in Ref. [77]. There, the authors

integrated the resistance distribution using the resistance of the largest expected

break as the upper limit of the integral. This took into account the finite size of

the system, giving a result that agrees with ours.

We can also determine the behavior of PL(u) for u� 1.

To analyze the behavior of P (u) at low u, we introduce the function

ZN−1(u, L) = gN−1

∫ ∞
0

N∏
i=1

d~ri

∫ uT

−uT

N−1∏
i=1

dεiQi , (2.108)

Qi = δ(L−
N∑
i=1

xi)
N∏
i=1

Θ(u− ui,i−1) . (2.109)
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Summing over all N ’s yields the unnormalized probability of finding a path with

all link resistances ≤ u. For any path, the energies of the electrode sites, ε0 and

εN , are both 0. In addition, in higher dimensional systems, the first and the last

hops have no lateral displacement in order to reduce the resistance. Taking the

Laplace transform of Eq. (2.108) with respect to L changes the integrand into

Q̃(ui) =
N∏
i=1

e−sxiΘ(u− ui) . (2.110)

Introducing an auxilary variable

φi = u− |εi|+ |εi−1|+ |εi − εi−1|
2T

, (2.111)

results in

Z̃N−1(u, s) = gN−1

∫ u0T

−u0T

N−1∏
i=1

dεi

N∏
i=1

Ωi , (2.112)

Ωi =

∫ ∞
0

d~riΘ

(
φi −

2ri
a

)
e−sxi . (2.113)

In 1D, all Ωi’s have the same form:

Ωi =
1− e−

φias

2

s
. (2.114)

We introduce two changes of variables: ζ ≡ ε/(u0T ) and c = as/2. This turns

Eq. (2.112) into

Z̃N−1(u, c) = gN−1
(a

2

)N (uT )N−1

cN
fN−1(0) , (2.115)

where

fj(ζ) =

∫ 1+ζΘ(−ζ)

−1+ζΘ(ζ)

dη A(ζ, η)fj−1(η) , (2.116)

A(ζ, η) = 1− e−λ , (2.117)

λ(ζ, η) = uc

(
1− |ζ|+ |η|+ |ζ − η|

2

)
. (2.118)

f0(ζ) = Ω0(ζ) . (2.119)

Taking the inverse Laplace transform gives

ZN−1(u, L) =
1

2πi

∫ −i∞+γ

−i∞+γ

dc
2

a
Z̃N−1(u, c)e2Lc/a . (2.120)
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We approximate the result of the integral by Eq. (2.122) with c0 being the largest

pole, given by the solution to the equation

gN−1
(a

2

)N−1 (uT )N−1

cN−1
0

fN−1(0) = 1 . (2.121)

For N � 1 we expect fN−1(ζ) ' ακN−1
0 ψ(ζ), where κ0 = κ0(u, c) is the largest

eigenvalue of the integral operator A(ζ, η) and α(u, c) is the overlap of f0(ζ) with

the corresponding eigenfunction ψ(ζ). Substituting fN−1(0) ' ακN−1
0 ψ(0) into

Eq. (2.121) yields

ln[PL(u)] ∼ 2Lc0

a
, (2.122)

where c0 is the solution of
κ(uc0)

uc0

=
u2
M

u2
. (2.123)

Equation (2.122) provides the lower limit of the spanning probability since

it takes into account only the possibility of the nearest-neighbor hopping. This

approximation is, however, justified for sufficiently low uT . For u � uM , one

obtains

|c0| =
1

u
ln

(
u2
Mc

2
0

κ∗

)
=

2

u
W

(√
κ∗
2

u

uM

)
, (2.124)

where κ∗ ≈ 1.18 and W is the Lambert function. The value of κ∗ comes from

Ref. [92] where authors determined the largest eigenvalue for the operator A(η, ξ)

above for small u. Our Eq. 2.124 is similar to an equation in Ref. [73]. Unlike our

paper, however, the authors treated a 3D system using the number of hops N as

their main variable, in contrast to u which we employ. In addition, the correlation

between adjacent impedances was taken into account. Since our model is simpler,

it is possible to solve the equation for c0. In the case of small u, u∗ is given by the

solution of
4L

a
W

(√
κ

2

u∗
uM

)2

= u2
∗

[
1 +W

(√
κ

2

u∗
uM

)]
. (2.125)

One can see that the crossing probability for both large and small values

of u is concave down. It means that there are no discontinuities in the value of

u∗, signifying a smooth transition from power-law behavior to exponential depen-

dence. Indeed, this is the behavior that we observed for Ohmic conductance in our

previous work [79].
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To obtain PL(u) for intermediate values of u, we resort to numerical com-

putation discussed below.

2.4.4 Numerical results

The crossing probability PL(u) is a cumulative distribution function (CDF)

of the critical values of u. To obtain its form, we generate an ensemble of 105

systems at a particular L and T and find uc for each one of them. From this

array of uc’s we construct the crossing probability PL(u). We now explain how the

critical value of u is extracted from each disorder realization.

For any system of length L, PL(u > 2L/a) = 1, therefore we are only

interested in u < 2L/a. This means that, according to Eq. (2.11), only the sites

with |ε| < 2LT/a are necessary in our computation. Thus, for each individual

realization we generate n sites, where n is randomly extracted from the Poisson

distribution with the mean given by 4L2Tg/a. This mean corresponds to the

expected number of sites in the energy-position space for a system of length L

with density g. These sites are then positioned, at random, within the allowed

region in the energy-position space. At the ends of each sample we fix sites at

ε = 0 in order to simulate the electrodes since we are looking for a path that

connects them via localizes states inside the sample.

To determine uc, we first note that it has to be between umin = 0 and

umax = 2L/a. Next, we take a trial value of uc: utr = (umax + umin)/2 and check

whether there is a path at this utr. It is done by only considering the sites with

|ε| ≤ utrT to speed up the process and by constructing a resistance (cost) matrix

between the sites. Following Eq. (2.11), if uij between any two sites is less than utr,

make the resistance equal 1. Otherwise, make it infinite. We then use Dijkstra’s

algorithm to find the lowest-cost path between the electrodes. If the cost is finite,

i.e., all resistances are below utr, the trial value is too high. On the other hand,

infinite total cost implies that we underestimated uc. In the first case, we need to

look at lower values of u and redesignate umax = utr. In the other case we call

umin = utr. From the new values of the bounds, we obtain a new utr and repeat

the process fifteen times to estimate the uc at which the first finite-resistance path
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appears.
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Figure 2.22: The collapse of the numeric results onto a common curve. Circles
correspond to L = 100a; stars denote L = 30a. Different colors represent the
temperatures ranging from 5∗10−5 to 5∗10−3 for L = 100a and from 10−4 to 10−2

for L = 30a.

After we obtain all PL(u)’s, we plot xM ln(PL)/L versus u/uM , where xM =

uMa/2, as seen in Fig. 2.22. Plotting data in this set of coordinates results in the

collapse of data onto a common curve. We connect the low- and high-u behavior

by the following interpolation formula:

P = 1 +
km∑
k=1

(−1)k

k!
e−ρk[ρ(l − k)]k−1(k − kρ+ lρ) , (2.126)

where l = 2L
ua

, ρ = 1
1+1.8

uM
u

u2

2u2M
, and km = floor[l]. The deviation from the general

curve for higher values of u results from the fact that the number of hops is

not sufficiently large in our moderately long systems. The formula in Eq. 2.126

for different l and ρ comes from the crossing probabity of a 1D system without

the energy coordinate. Here we simply replace the two variables to provide the

interpolating fit.
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In order to obtain the formula that provides a general curve, we turn our

attention to a simplified toy model of the system in question. We consider a

1D system without energy of length L with radomly positioned localized states.

The task is to compute the probability that the largest distance between any

two neighboring sites is less than or equal to R. For a system with N hops the

unnormalized probability is given by

ZN−1(R,L) = gN−1

∫ R

0

N∏
i=1

dxiδ(L−
N∑
j=1

xj) , (2.127)

where xi is the length of the ith hop. Taking the Laplace transform of Eq. (2.127)

and integrating over xi, one obtains

Z̃N−1(R, s) = gN−1

(
1− e−sR

s

)N
. (2.128)

Performing the inverse Laplace transform and summing over all N gives the total

Z(L):

Z(L) =
∞∑
N=1

N∑
k=0

N(−1)k[g(L− kR)]N−1

k!(N − k)!
Θ(L− kR) . (2.129)

To normalize the probability, we let R > L and Eq. (2.129) gives egL. Since we

expect the probability to be equal to unity at that point, we divide the expression

by the exponential. Next, we introduce a change a variables l = L/R and ρ = gR

to get:

P (l) =
∞∑
N=1

N∑
k=0

(
N

k

)
(−1)k[ρ(l − k)]N−1e−ρl

(N − 1)!
Θ(l − k) . (2.130)

According to the Heaviside functions, the maximum value that k can attain is

kmax ≡ km = floor[l]. All the terms with k = 0 add up to 1 which allows the total

sum can be rewritten as:

P (l) = 1 +
km∑
k=1

∞∑
N=k

(
N

k

)
(−1)k[ρ(l − k)]N−1e−ρl

(N − 1)!
(2.131)

Summing the inside terms over N results in Eq. (2.126).

One can also proceed by summing Eq. (2.128) for all N :

Z̃(R, s) =
(1−e−sR)

s

1− g(1−e−sR)
s

. (2.132)



60

This results in

P (R,L) =
e−ρl

2πi

∫ γ+i∞

γ−i∞
ds

(1−e−s)
s

1− ρ(1−e−s)
s

esl . (2.133)

Applying the residue theorem, we get

P (R,L) =
e−ρl

ρ

∞∑
j=−∞

esj l
[
− k(sj)

k′(sj)

]
, (2.134)

k(s) ≡ 1− e−s

s
, (2.135)

where sj are the roots of k(s) = 1/ρ. The contour if integration is shown in

Fig. 2.23.
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Figure 2.23: The contour used in Eq. (2.133). For ρ � 1, all the residues are
negative. When ρ becomes sufficiently large, however, the dominating residue
becomes positive and approaches ρ.

For large l the real root s0 dominates and is given by

s0 = ρ+Wn(−ρe−ρ) , (2.136)

where n = Θ(ρ− 1)− 1 and Wi is the Lambert function. Therefore

P (l) ' e−ρl

ρ
es0l
[
− k(s0)

k′(s0)

]
=

s0e
l
s0−ρ
ρ

ρ(1− ρ+ s0)
. (2.137)
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Figure 2.24: Dependence of G on T . The insets demonstrate the data individ-
ually in different axes to bring out the exponential and power-law natures of the
dependence.

Having obtained the interpolation formula, we now construct theG-T curve.

The average conductance is given by

〈G〉 =

∫
e−uP (u)du� e−2L/a , (2.138)

where the inequality represents the many-hop requirement. To illustrate the result,

we choose L = 100a and plot the G-T curve in Fig. 2.24. It shows a smooth

transition from a power-law-like behavior at high uM to a stretched exponential

at low ones. Thus, we have offered a plausible explanation for the seemingly

irreconcilable T dependences of G.

2.4.5 Higher Dimensions

Unlike 1D, higher dimensions possess a percolation threshold uc because of

the presense of transverse physical dimension. In this section we provide qualitative

analysis of the forms of PL(u) and G(T ).
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At low values of u, the behavior of PL(u) is similar for all dimensionalities

since the paths are rare and non-interacting. In effect, systems in higher dimen-

sions behave as ensembles of individual wires with independent paths. The only

difference in the computation arises from the presense of the transverse coordinates.

For a detailed treatment of a 3D system see Ref. [92].

For the behavior of the crossing probability around the percolation thresh-

old, we turn to earlier work. In particular, arguments for the stretched exponential

form of the crossing probability have been given [14, 40, 66]:

PL(u) ∼ exp(−L/ξ) , (2.139)

where ξ is the correlation length. We define the typical hopping length rM ≡ 1
4
auM .

The correlation length of the network for u . uc is then given by

ξ ∼ rM |ε|−ν , (2.140)

where ν is the critical exponent and the percolation parameter ε is

ε ≡ B −Bc

Bc

=

(
u

uc

)d+1

− 1 . (2.141)

Below the percolation threshold, ξ can be understood as a typical size of a con-

nected cluster. For u > uc, on the other hand, it is the typical size of a region

where bonds do not contribute to the network.

At very low values of u, only clusters consisting of single bonds are present

in the system. Increasing u causes individual bonds to coalesce, forming larger

clusters. Very rarely there appear collections of sites that span across the entire

film. These clusters are fairly straight and unbranched, since introducing kinks

and branching involves adding more bonds.

Going to higher values of u creates more conducting paths crossing the

system and more branching, see Fig. 2.21. Since the number of open bonds is now

higher, the paths are not necessarily straight. In addition, clusters within the bulk

become connected to the conducting backbones, forming dangling bonds. These

dangling bonds generally do not contribute to the conductance since they are not

long enough to connect individual crossing paths.
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Finally, at sufficiently high u’s, dangling bonds reach neighboring backbones

to allow transport between them. This results in the formation of a percolating

network that spans the system, Fig. 2.21, meaning that ξ � L. As even larger

values of u are considered, the network becomes denser as the percolating cluster

absorbs smaller clusters.

Since low-u crossing probability for higher dimensions is similar to that of

1D systems, the conductance has a similar form for all dimensionalities. At high

T , the conductance is determined by the percolation threshold and the details of

the dimensional behavior are discussed below. The regime that connects the low-

and high-T parts is described by

lnG ∼ uM

[
1−

(
u2
M

a

L

) 1
ν−1

]
. (2.142)

The difference in the high-T behavior stems from the distinct forms of PL(u)

in the vicinity of the percolation threshold. It results from the values of the critical

exponent ν in Eq. (2.140). Taking the derivative of Eq. (2.139) we get

dPL(u)

du
∼ PL(u)

L(d+ 1)ud

rMud+1
c

|ε|ν−1 . (2.143)

uucuT uuc
uT

(a) (b)
ln Pln P

Figure 2.25: PL(u) for 2D, (a), and 3D, (b). Low-u regime is defined by
Eq. (2.122); high-u part of the curve is given by Eq. (2.139). uT denotes the
resistance where the transition between the regimes occurs. A qualitative differ-
ence in the vicinity of uc is apparent.

As u → uc, ε → 0 and for ν > 1, as in 2D, the curve approaches unity

horizontally. In the case of ν < 1, as in 3D, the curve goes to 1 with infinite slope,
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Figure 2.26: G as a function of T for 2D, (a), and 3D, (b). 3D plot shows an
abrupt transition between the regimes, unlike 2D, where the transition is smooth.

see Fig. 2.25. This means that while in 2D ln[PL(u)] is always concave down, in

3D the curve changes concavity. This results in different transitions between low-

and high-T regimes depending on the dimensionality of the system.

Consider 2D first. Decreasing uM causes the curve to be compressed hor-

izontally, moving the maximum to the smaller values of u. For sufficiently high

T > Tp, the maximum of the product of e−u and PL(u) is at uc. At this point,

the conductance of the system is determined by the percolating network, per Mott

law, rather than by rare events and becomes ∼ e−uc . Since uc scales linearly

with uM , Eq. (2.16), the logarithm of G(T ) varies linearly with decreasing uM ,

see Fig 2.26(a). Since PL(u) is always concave down, the high-T regime smoothly

transitions into the 1D-like behavior observed for T < TT .

Similarly to 2D case, 3D also exhibits two distinct regimes: low-T behavior,

reminiscent of 1D, and high-T percolation. Unlike 2D, however, the transition

between the regimes is noticeably different due to the change of concavity of PL(u)

in 3D. Since the slope of PL(u) is greater than 1 in the vicinity of uc, when e−u

intersects it to the right of the inflection point, the maximum ends up at uc. This

means that there is an abrupt transition from the low-T regime to the high-T

behavior in contrast to the gradual change observed in 2D, see Fig. 2.26(b).
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2.4.6 Discussion and Conclusion

In our study we used the simplified formula for u and neglected prefactors.

An earlier work [35] treated a specific case of transport involving three hops. There

the authors took into account the lack of phonons in the transition between the

electrodes and the sample to obtain more accurate results. They demonstrated

a power-law dependence of Ohmic conductance on temperature with the power

of 4/3. This result indicates that the power-law behavior can indeed arise in

disordered systems usually treated according to Mott formalism.

As is obvious from Ref. [35], knowing the exact number of hops N in a

path permits one to determine the dependence of conductance on temperature.

Unfortunately, in reality it is impossible to guarantee that the transport through

a system involves a specific number of hops. Therefore, N is not the ideal variable

to be used to determine the G-T behavior of an ensemble. This led us to adopt

u as the principal variable in our approach since it bears a direct connection with

the resistance.

In this section, we have investigated the dependence of Ohmic conductivity

on temperature in disordered quasi-1D materials. In particular, we have demon-

strated that experimentally observed exponential and power-law dependences can

arise in this model. We also used numerical computations and theory of perco-

lation to probe into the region that lies between the two traditionally considered

regimes. The significance of our results is due to (1) showing the applicability of

percolation theory to the problem at hand and (2) resolving the question of two

seemingly incompaticle T dependences.

Our results provide a good explanation for the behavior observed in systems

with a large number of channels [106, 88, 96, 108]. However, individual wires [56]

and similar systems, like graphene nanoribbons [36], exhibit significant mesoscopic

fluctuations. Therefore, our method is not applicable for them and further theo-

retical analysis is required. Nonetheless, our results are not limited to ensembles

of 1D wires. What we have shown here can be extended to 2D ribbons (and lateral

junctions) and 3D thin films. This is because we have shown that systems regard-

less of their dimensionality undergo a similar network evolution with the variation
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of u.

Examples of 2D systems that can be studied using our method include

important structures such as GaAs devices [41] and bilayer graphene p-n junc-

tions [69]. Unfortunately the range of T and the sample width were too narrow in

Refs. [41, 69] to apply our analysis. Extending the parameter range would allow

one to assess the applicability of the theory better. Finally, in 3D our approach

describes thin films [103, 20]. Reference [103] indeed demonstrates the Mott be-

havior transitioning to a power-law-like dependence with decreasing temperature.

In applying our method to Ref. [20] one would needs to keep in mind that the

proper model would need to use exponential-like DOS. In addition, it should also

address changes in film morphology and doping level with thickness. However,

qualitatively there is an agreement as the thinnest films studied do display a sharp

change from strong to weak T -dependence below some T , which we predict.

Possible future work using our approach may involve Coulomb interaction

effects, non-constant density of states, and non-Ohmic transport.

This chapter includes parts of the following published works: “Hopping

transport in systems of finite thickness or length”(PRB, 2011); “Apparent Power-

Law Behavior of Conductance in Disordered Quasi-One-Dimensional Systems”

(PRL, 2010); “Numerical studies of variable-range hopping in one-dimensional

systems” (PRB 2009) by A. S. Rodin and M. M. Fogler.



Chapter 3

Plasmons in Graphene

This chapter deals with plasmonic effects in graphene. We begin by present-

ing a very brief overview of graphene. Latter sections are dedicated to elucidating

the plasmonic phenomena.

3.1 Graphene Fundamentals

Everyone who has ever held a pencil has encountered graphene. The lead

inside the pencil is made of graphite, which is an allotrope of carbon. Bulk graphite

is composed of individual, single-atom thick layers, held together by weak van

der Waals force. These layers are composed of covalently bound carbon atoms,

arranged in a hexagonal lattice. It is these individual sheets of carbon that we

refer to as graphene. When one moves graphite against paper, these layers are

shed off the lead, leaving a dark trail. As it turns out, there are applications for

graphene which extend beyond taking notes.

Even though graphite has been used for marking and writing for over four

hundred years, it was only in 2004 that graphene was isolated. [68] Immediately,

the attention of the scientific community was turned to this newly discovered exotic

material. There are a number of properties that make graphene very exciting. First

and foremost, it is a truly two-dimensional material. Prior to its discovery, it was

suspected that such a system would be unstable in three dimensions. Nevertheless,

it is stable enough to not only exist, but also be stretched and twisted without

67
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breaking. In addition, it is of great academic interest due to its peculiar linear

dispersion (which we will discuss shortly). Finally, graphene’s electronic properties

have stimulated a significant amount of research in applied science.

Graphene’s properties are strongly tied to its structure. Every carbon atom

in the 2D lattice is bound to three other carbons. The bonds are forms by the

hybridization of s and p orbitals. Since the bonds are coplanar, the resulting

hybridized orbital is sp2, which mixes the one s and two of the p orbitals. This

leads to the formation of a = 1.42 Åσ bonds between carbon atoms. The remaining

p orbital forms covalent bonds with the neighboring atoms, resulting in a π band.

Every carbon atom contributes four electrons, three of which participate in the σ

bonds, leaving one in the remaining p orbital. This results in half-filling of the π

band in a pure material.

a1

a2

y

x

Figure 3.1: The triangular lattice with two atoms A and B(red and blue) per
unit cell. The lattice vectors a1 and a2 are a(3,±

√
3)/2.

Hexagonal lattices are not Bravais lattices. Instead, one can visualize them

as triangular lattices with two atoms (A and B) per unit cell, see Fig. 3.1. Naturally,

the reciprocal lattice is also triangular, as is shown in Fig. 3.2.

The system is typically analyzed using the tight-binding model with the

Hamiltonian given by

H = −γ0

∑
n.n.

[
a†ibj + h.c.

]
+ µ

∑
i

[
a†iai + b†ibi

]
, (3.1)

where the summation is over the nearest neighbors and γ0 ≈ 2.8 eV. Note that

while we are including only the nearest neighbor hopping, it is possible to include
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b1

b2

ky

kx

Figure 3.2: Reciprocal lattice with unit cells shown. The lattive vectors are b1

and b2 = (2π/3a,±2π/
√

3a).

hopping terms for the next-nearest neighbor. The contribution from the other

term, however, is much smaller and we do not take it into account.

To obtain the dispersion relation of the system, we go to the Fourier space

and transform the operators as a†i =
∑

k e
−i~k·~ra†k. Now, notice that the nearest

neighbors for any point A (or B) are three sublattice B (or A) points. One of

them lies in the same unit cell as the original site and the other two are in the two

unit cells separated by the lattice vectors a(3,±
√

3)/2. From this we can write the

Hamiltonian as

H =
∑
k

(a†k b
†
k)

(
−µ fk

f ∗k −µ

)(
ak

bk

)
, (3.2)

fk =γ0

{
1 + exp

[
ia

(
3kx
2

+

√
3ky
2

)]
+ exp

[
ia

(
3kx
2
−
√

3ky
2

)]}

=γ0

{
1 + 2 cos

[√
3aky
2

]
exp

[
i
3akx

2

]}
. (3.3)
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Diagonalizing the Hamiltonian, we get the energies

ξbk =− µ+ b
√
fkf ∗k = −µ+ bεk

=− µ+ b|γ0|

√√√√1 + 4 cos

(
3akx

2

)
cos

(√
3aky
2

)
+ 4 cos2

(√
3aky
2

)
. (3.4)

−4
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2
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−4

−2
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4
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−2

0

2

4

Figure 3.3: The band structure of graphene.

Let us now investigate the dispersion relation close to ξbk = 0. We denote

kx = k cos θ and ky = k sin θ+ 4π/(3a
√

3) and expand to the first order in k. This

casts the dispersion relation into a radially symmetric form:

ξbk = −µ+ b |γ0|
3a

2︸ ︷︷ ︸
~vF

k , (3.5)

where we have introduced the Fermi velocity vF = 108cm/s. We have thus shown

that at low energies massive electrons follow the dispersion relation for massless

particles. The point k = 0 is referred to as the Dirac point.

Using the linear approximation, one writes down the Dirac Hamiltonian as

H =
∑
k

(a†k b
†
k)

(
−µ ~vFke−iθk

~vFkeiθk −µ

)(
ak

bk

)
. (3.6)

Going back to the first quantization, we find that the eigenstates of the

two-by-two matrix are

ψk =
1√
2

(
1

±eiθk

)
, (3.7)
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corresponding for conduction and valence bands, respectively.

Before we move on, there is something else worth mentioning. Since there

are two atoms inside each unit cell, there will be two inequivalent Dirac points

inside each Brilloin zone, see Fig. 3.2. The simplest consequence of this is the

introduction of a two-fold degeneracy. Therefore, whereas usually the degeneracy

of the system would be equal to two (due to the spins), here it is equal to four

(spins and the so-called valley degeneracy).

This concludes our very rudimentary overview of graphene basics. In the

next section, we will talk about collective excitations in graphene. Any additional

concepts will be introduced as needed. For an excellent review of graphene, see

Ref. [65].

3.2 Graphene Plasmonics

Plasma oscillation in materials is a well-known phenomenon. These os-

cillations arise in response to a perturbation of the equilibrium charge distribu-

tion. Coulomb interaction creates a restoring force that depends on the electronic

properties of the material. Therefore, the modes of the oscillation are intimately

connected to the band structure of the system.

These charge oscillations are not only exciting from the academic point of

view, but also offer a range of potential applications. First and foremost, plas-

monics can be used in atomic and molecular sensors. Since the oscillation modes

depend on the electronic structure of a material, adsorption of foreign atoms or

molecules will alter the modes which results in the change of absorption and emis-

sion peaks. In addition, plasmonic materials are currently investigated for their

use in computer chips as they can work at higher frequencies compared to tradi-

tional electronics. Finally, photovoltaics can benefit from plasmon resonance that

can improve the absorption of solar cells.

Our current project deals with observing plasmonic behavior in graphene,

bringing together the exciting new material with the rapidly-growing field of plas-

monics. We start by giving a brief overview of particle-hole excitations in graphene
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ε

k

εF

kF

Figure 3.4: Electron-doped graphene. Shaded energies are filled, while the un-
shaded energy states are empty.

and then dedicating the rest of this section to plasmons in 2D in general and

graphene in particular.

3.2.1 Particle-Hole Excitations

Consider an electron-doped graphene system. In this system, all states

with negative energies are filled, while the positive states are filled up to a certain

energy, referred to as the Fermi energy, εF , see Fig. 3.4. The assumptions that are

made here are that γ0 � εF � kBT . This allows us to use the linearized version

of the problem and also to set the temperature of the system to zero.

In such a system, it is possible to create particle-hole excitations. These

excitations are formed when an electron from one of the filled states gets kicked

up to one of the empty states, which invariably lie in the conduction band. If

an electron comes from the conduction band, such a process is called intra-band;

otherwise, it is referred to as interband.

Let us start with the intra-band processes, see Fig. 3.5. The excitations are

created by a photon of energy εP and momentum ~q. Since the electron must always

remain on the energy-momentum cone, we have limits on the allowed values of ~q.

If an electron moves from energy ε = ~vFk to ε′ = ~vFk′, the minimum momentum

that can move it there is qmin = k′− k = εP/(~vF ), parallel to ~k. The largest q, on

the other hand, would come into play if we first reflected ~k → −~k and then moved



73

q < 2kF

q < 2kF

q > 2kF

Figure 3.5: Intra-band transitions

ε

k

εF

kF

Figure 3.6: Inter-band transitions

it up by εP/(~vF ). This means that

εP/(~vF ) ≤ |q| ≤ 2k + εP/(~vF ) . (3.8)

Since the largest possible momentum k is kF , we insert it on the right-hand side

of the above inequality.

Next, we look at the inter-band transitions, shown in Fig. 3.6. In this case,

the minimum εP = εF . However, for such a transition to take place, we need

q = kF . On the other hand, for q = 0 transitions, the minimum energy is 2εF .

Putting together what we know about inter- and intraband excitations, we obtain

a diagram that shows the allowed transitions, see Fig. 3.7.

Notice the empty triangle at the left part of the Figure. This is the region

where particle-hole excitations are forbidden due to energy and momentum con-

servation. Thus, only collective excitations can occur in this range of parameters.

These collective excitations appear in response to the external potential, which is
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2kF

2εF

εP

q

Figure 3.7: Particle-hole excitation. Green region corresponds to intra-band
processes; blue region is inter-band. The red line is the plasmon branch, discussed
below.

connected to the total potential by the equation

φext(q, ω) = ε(q, ω)φtot(q, ω) , (3.9)

where ε(q, ω) is the dielectric function. It is clear from this expression that if

ε(q, ω) → 0, then the total potential can oscillate in the absence of the external

potential. This is precisely what we mean by collective excitations. Therefore,

what one needs to obtain is the formula for the dielectric function.

Fortunately, this has already been done using the Random Phase Approx-

imation (RPA) formalism. [100] RPA is based on the creation and subsequent

annihilation of electron-hole pairs by a photon travelling through the system. The

important feature of RPA is that it neglects the interactions between charges which

would lead to energy renormalization and a finite lifetime of the excitations. Fol-

lowing every annihilation, the photon is re-emitted with the same momentum as

it started with. On its path, it can temporarily excite any number of electron-hole

pairs, but only one at a time. Summing up the contributions from all these possible

paths yields the RPA dielectric function

εRPA(q, ω) = 1− Ṽ (q)χ(q, ω) , (3.10)

where χ(q, ω) is the polarizability and Ṽ (q) is the Coulomb interaction. The po-

larizability function is typically computed using Feynman diagrams, however, it is

also possible to do so directly without invoking Green’s functions.



75

Consider a system with particle density ρ(r, t). At time t0 and external

perturbing potential φext(r, t) is switched on, leading to the perturbing Hamiltonian

H1I(t) =

∫
drρ(r, t)φext(r, t) . (3.11)

Note that we are working in the interaction picture. This means that, according

to Kubo formalism, for any operator A the thermal average at times t > t0 is

〈A(t)〉 = 〈A(t0)〉0 − i
∫ t

t0

dt′〈[AI(t), H1I(t
′)]〉0 . (3.12)

The averages on the right-hand side are performed over the eigenstates of the

original Hamiltonian without the perturbation.

〈δρ(r, t)〉 =〈ρ(r, t)〉 − 〈ρ(r)〉0

=

∫ t

t0

dt′
∫
dr′φext(r

′, t′)
{
i〈[ρ(r′, t′), ρ(r, t)]〉e−γ(t−t′)

}
︸ ︷︷ ︸

χ(r−r′;t−t′)

. (3.13)

The factor e−γ(t−t′) with γ > 0 is introduced to ensure convergence for

t � t′. Generally, one takes γ → 0+ at the end of the calculation; however, it is

possible to introduce damping by keeping γ finite. We assume that the material is

isotropic and, therefore χ(r′, r; t− t′) = χ(r − r′, ; t− t′).
We start the calculation by going to the Fourier space:

χ(q; t− t′) = i

∫
dr〈[ρ(r′, t′), ρ(r, t)]〉e−iq(r−r′)e−γ(t−t′)

=
i

V 2

∫
dr
∑
q1,q2

〈[ρ(q1, t
′), ρ(q2, t)]〉e−iq(r−r

′)eiq1r
′
eiq2re−γ(t−t′)

=
i

V 2

∫
dr
∑
q1,q2

〈[ρ(q1, t
′), ρ(q2, t)]〉eir(q2−q)e−ir

′(q1+q)e−γ(t−t′)

=
i

V
〈[ρ(−q, t′), ρ(q, t)]〉e−γ(t−t′) . (3.14)

The logic behind the last line is that the answer should not depend on r′, setting

q1 = −q. In addition, the oscillatory integral along r only gives a non-zero result

V when q2 = q.
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The density operator is defined as

ρ(r) = Ψ†(r)Ψ(r) =
1

2

∑
k1,k2

∑
s,s′=±

c†k1,sck2, s′
(
1, se−iθk1

)( 1

s′eiθk2

)
ei(

~k2−~k1)·~r . (3.15)

We introduce ~q = ~k2 − ~k1. Renaming k1 → k, one obtains

ρ(q) =
∑
k

∑
s,s′=±

c†~k,sc~k+~q,s′
1

2

(
1 + s s′ei(θ~k+~q−θ~k)

)
. (3.16)

The creation and annihilation operators evolve in time. This time evolution

only depends on the unperturbed Hamiltonian in our linear response theory. Since

the Hamiltonian is diagonal in momentum space, H0 =
∑

s

∑
k ξ

s
kc
†
k,sck,s (with

s = ± as the band index), this yields

ċq,s(t) = i
∑
s′

∑
k

[ξs
′

k c
†
k,s′ck,s′ , cq,s(t)]

= eiH0ti
∑
s′

∑
k

[ξs
′

k c
†
k,s′ck,s′ , cq,s]e

−iH0t = −iξsqcq,s(t) , (3.17)

cq,s(t) = cq,se
−iξsqt . (3.18)

Finally, we obtain the form of [ρ(−q, t′), ρ(q, t)]:

[ρ(−q, t′), ρ(q, t)] =
∑
k1,k2

∑
s1,s′1,s2,s

′
2=±

[c†k1,s1ck1−q,s′1 , c
†
k2,s2

ck2+q,s′2
]×

exp
[
i
(
ξs1k1 − ξ

s′1
k1−q)t

′
]

exp
[
i(ξs2k2 − ξ

s′2
k2+q

)
t
]
×

1

4

(
1 + s1 s

′
1e
i(θk1−q−θk1 )

) (
1 + s2 s

′
2e
i(θk2+q−θk2 )

)
. (3.19)

The commutator of the creation/annihilation operators gives

[c†k1,s1ck1−q,s′1 , c
†
k2,s2

ck2+q,s′2
] = c†k2+q,s1

ck2+q,s′2
δs′1,s2 − c

†
k2,s2

ck2,s′1δs1,s′2 . (3.20)

Since the commutator will be sandwitched between the eigenstates of H0,

the subindeces of the creation and annihilation operator pairs have to be identical

to give a non-zero contribution.

Plugging this result back into the expression above gives us

[ρ(−q, t′), ρ(q, t)] =
∑
k

∑
s1,s2=±

(c†k+q,s1
ck+q,s1 − c

†
k,s2

ck,s2)×

exp
[
i(ξs2k − ξ

s1
k+q)(t− t

′)
] 1 + s1s2 cos(θk − θk+q)

2
. (3.21)
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Taking the thermal average turns the creation-annihilation products into

Fermi-Dirac distributions. Finally, Fourier transfoming the result with respect to

time leaves us with the formula for polarizability:

χ(q, ω) =
g

V

∑
k

∑
s,s′=±

nF (ξs
′

k )− nF (ξs|k+q|)

ξs
′
k − ξs|k+q| + ω + iγ

1 + s′s cos(θk − θk+q)

2
, (3.22)

where we have added a factor g = 4 to account for the degeneracy. After all the

summations have been performed for T = 0, [100] the result is

χ(q, ω) = χ0(q, ω) + ∆χ(q, ω) , (3.23)

χ0(q, ω) = −iπF (q, ω)

~2v2
F

, (3.24)

∆χ(q, ω) = − gµ

2π~2v2
F

+
F (q, ω)

~2v2
F

[
G

(
ω + 2µ

q

)
−G

(
ω − 2µ

q

)]
, (3.25)

G(x) = i
[
x
√

1− x
√

1 + x− arccosx
]
, (3.26)

F (q, ω) =
g

16π
~v2

F q
2 −i√

vF q − ω
√
vF q + ω

, (3.27)

ω = < (ω) + iγ . (3.28)

From the expression above, it is possible to show that for vanishing γ, the

imaginary part of the dielectric function inside the triangle in Fig. 3.7 goes to zero.

In addition, there exists a branch where ε → 0. This means that not only there

exist collective excitations, but also that the dissipation in certain parameter range

is zero. This last conclusion is, of course, based on the RPA approximation used

here. In reality, to observe dissipation and, therefore, finite lifetime of excitations,

one needs to go beyond RPA.

Let us now use real numbers in order to demonstrate the theory in action.

For a plasmonic mode to exist, the reflecton coefficient β = 1− 2/[εRPA(εRPA + 1)]

must go to infinity. This occurs when εRPA → 0, as we already know. By plotting

the imaginary part of β one can see the plasmonic branch assuming that γ 6= 0.

Considering the chemical potential µ/hc = 900 cm−1, we plot the imaginary part

of β for a range of ω and q in Fig. 3.8.
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Figure 3.8: Imaginary part of the reflection coefficient for µ/hc = 900 cm−1

showing a plasmon branch.

Low-q limit

In our study, we are primarily interested in the long-wavelength behavior.

Therefore, we investigate the behavior of the polarizability and the dielectric con-

stant in the limit of low q. We begin by expanding the cosine to the leading order

in q:

χ(q, ω) ≈ g

V

∑
k

∑
s,s′=±

nF (ξs
′

k )− nF (ξs|k+q|)

ξs
′
k − ξs|k+q| + ω + iγ

1 + s′s− s′s q2 sin2 θk
2k2

2

≈ g

V

∑
k

[
nF (ξ−k )− nF (ξ+

k )

ξ−k − ξ
+
k + ω + iγ

+
nF (ξ+

k )− nF (ξ−k )

ξ+
k − ξ

−
k + ω + iγ

] q2 sin2 θk
2k2

2

+
g

V

∑
k

nF (ξ+
k )− nF (ξ+

|k+q|)

ξ+
k − ξ

+
|k+q| + ω + iγ

≈ gq2

V

∑
k

[
1− θ(µ− k)

−2k + ω
+
θ(µ− k)− 1

2k + ω

]
sin2 θk

4k2
+

cos2 θkδ(µ− k)

ω2

=
gq2

(2π)2

∫ 2π

0

dθk

∫ ∞
µ−0

dk

[
1

−2k + ω
− 1

2k + ω

]
sin2 θk

4k
+ k

cos2 θkδ(µ− k)

ω2

=
πgq2

(2π)2

[
µ

ω2
− 1

4ω
ln

2µ+ ω

2µ− ω

]
. (3.29)
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From the expression above, using the bare Coulomb interaction Ṽ (q) =

2πe2/κq we obtain the dielectric function:

εRPA(q, ω) ≈ 1− e2

κ

gq

2

µ

~2ω2
, (3.30)

where we have assumed that µ � ω and dropped the logarithmic term. Setting

the expression equal to zero gives the plasmonic dispersion:

ω2(q) =
2e2

κ~2
|µ|q , (3.31)

in agreement with the literature. [100, 65]

The conductivity σ(q, ω) of a 2D system such as graphene is related to its

polarization function χ, ω) by σ(q, ω) = ie2(ω/q2)χ(q, ω). In the low-q limit, the

RPA approximation gives the following formula for the conductivity:

σ(ω) =
i

π

e2

~

[
1

ω̄
− 1

4
ln

(
2 + ω̄

2− ω̄

)]
, ω̄ =

~ω
µ
. (3.32)

As one can easily see, in the q � ω/v limit, the conductivity becomes

independent of the momentum q. The disappearance of the q-dependence means

that quasiparticles perceive the perturbing electric field as locally uniform. This

is because the quasiparticle displacement 2πv/ω over the time period of the field

is much smaller than its wavelength 2π/q.

If, in addition to q � ω/v, the condition ~ω � µ is also met, so that ω̄ � 1,

Eq. (3.32) reduces to the Drude-like formula

σ(ω) =
e2

π~2

µτ

1− i<[ω]τ
, (3.33)

where τ = γ−1 is the scattering time.

3.2.2 General Plasmon Equation

As was shown, plasmons can be excited by an external time-varying elec-

tric potential. We have derived the long-wavelength plasmonic dispersion using

polarizability and charge-charge correlation. This section will focus on an alter-

native, more physically transparent derivation of long-wavelength plasmons. We
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demonstrate that oscillatory behavior can be obtained from continuity equation,

Ohm’s law, and Coulomb’s law in a straightforward fashion. Since this chapter

is dedicated to graphene, we will only discuss plasmons that are confined to two

dimensions. The total in-plane potential is the sum of the external and the induced

ones:

U = Uext + Uind . (3.34)

If the characteristic variations of the in-plane electric field ~E = −∇U occur

on length scales L longer than the Fermi wavelength and additionally vF/L� ω,

the conductivity of graphene can be treated as momentum-independent. In this

case we have the following relations:

∇~j = −ieωn , ~j = −σ∇U , (3.35)

−eUind(x, y, z) =

∫
V (x− x′, y − y′, z − z′)n(x′, y′, z′)dx′ dy′ dz′

≡ V̂ n(x, y, z) . (3.36)

Above, ~j is the two-dimensional (2D) current density, n is the 2D electron density,

V (x, y, z) is the interaction potential (either bare e2/r or screened Coulomb poten-

tial), and V̂ is the corresponding integral operator. Since all the charge variation

occurs in the x-y plane, we will drop the z component. This entails

Uext(x, y) = U − V̂
[
∇
(
iσ

e2ω
∇U

)]
, (3.37)

which is similar to a wave equation with the driving function Uext(x, y). Note

that if the static density n0 is a function of position, then so is the conductivity

σ. Hence, it cannot be moved to the left of the first gradient. However, it is

convenient to write σ in terms of the Drude weight, Eq. (3.32)

σ =
iD

ω
. (3.38)

The equation for U becomes

Uext(x, y) = U + V̂

[
∇
(

D

e2ω2
∇U

)]
, (3.39)
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Consider first this equation in the simplest case where D(x, y) = const, the system

is infinite, and Uext(x, y) vanishes. The solution is then a plane wave with the

wavenumber qp that satisfies the condition

q2
p =

e2ω2

DṼ (qp)
=
κqpω

2

2πD
. (3.40)

To make this result agree with Eq. 3.31, we set

D =
e2

π~2
|µ| , (3.41)

which is equivalent to Eq. (3.33).

Note that µ ∝ √n0, and so ω2(q) ∝ √n0q. Equation 3.30 can also be

inverted to obtain qp for a given ω. Hence, the plasmon wavelength is

λ =
2e2vF

√
π

κ~ω2

√
n0 . (3.42)

If n0 is a function of position, we can use Eq. (3.40) to formally define the

local plasmon wavelength λ(x, y) = 1/qp(x, y) which corresponds to the local Drude

weight. Therefore, one can determine the local conductivity from the observed

oscillation wavelength. In addition, λ(x, y) can be used to calculate the local

charge density from Eq. (3.42). Thus, we rewrite Eq. (3.39) as

Uext(x, y) = U +
κ

2πe2
V̂

[
∇
(

1

qp(x, y)
∇U(x, y)

)]
. (3.43)

The most important point of the above derivation is that the solution to

Eq. (3.37) is a plane wave with the wavelength that depends on the local charge

density in the manner described by Eq. (3.42).

3.3 SNOM

3.3.1 Basic Methodology

In traditional optical microscopy, the resolution of a device is ultimately

limited by Raleigh criterion. Typically, one cannot resolve two light scatterers

that are separated by less than a couple of hundred nanometers. It is, however,
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Figure 3.9: AFM tip used for scattering SNOM.

possible to use the near field signal to achieve much better resolution. The principal

idea of Scanning Near-field Optical Microscopy (SNOM) is the use of evanescent

waves instead of the propagating far-field signal. There are a number of near-field

setups that accomplish this. The main two classes are aperture and apertureless

modes. In the first case, the probe has an aperture that can be used to either

illuminate the sample, collect the light, or both. The apperture size is now the

limiting factor in the resolution of the device: smaller appertures focus the signal

on a smaller area. The downside of using very small apertures is that the signal

strength drops substantially.

Aperturless setups use sharp metallic tips, positioned close to the sample

and illuminated by a laser beam. This results in the field enhancement, localized

around the tip. The resolution in this case depends on the diameter of the tip.

One often uses AFM tips for this purpose as they are sharp enough to achieve

required resolution, see Fig. 3.9.

A very important feature of SNOM is that the wavelength becomes decou-

pled from the frequency. This means that one is free to choose the frequency that

suits that particular system. Since plasmonic oscillations in graphene are in the

terahertz range, it is possible to use infrared radiation to create these excitations.

By moving the tip over the sample, it is possible to register the local response to

the tip polarization which should correspond to the plasmonic modes. This is pre-
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cisely the experiment performed by our collaborators from Dimitri Basov’s group

at UCSD where the material analyzed is graphene monolayer. In the following

section, we will go over the model used for analyzing this experiment and then we

will spend some time discussing two specific geometries.

3.3.2 Modeling

The goal of the modeling is to understand the imaging contrast, i.e., relative

variations of the scattering amplitude S measured by s-SNOM as a function the

in-plane tip position rd. Any quantities that do not depend on rd are considered

unimportant multiplicative constants and so were neglected. Our model is based

on three main assumptions: (i) the point-dipole approximation for the tip, (ii) the

quasi-static coupling between the tip and the sample and also among the charges

inside the sample, and (iii) the local-conductivity approximation for graphene.

The point-dipole approximation is certainly crude but it has a long tradition

in the literature. [39, 93, 1] One imagines that the AFM tip can be replaced by

a point dipole. The desired scattering amplitude S is then proportional to the

dipole moment pz = χEz of this dipole. Here Ez is the out-of-plane (z-direction)

electric field at the dipole position (excluding the dipole’s own field) and χ = a3 is

the polarizability. Neglecting the in-plane polarizability of the dipole compared to

the out-of-plane helps one to mimic properties of the actual tip, which is strongly

elongated. Typical choice of the adjustable parameter a is 20–30 nm, which is

somewhat larger than the curvature radius of the real tip.

Since the far-field infrared reflectivity of graphene is very small, [55] the

illumination of the sample area covered and uncovered by graphene is nearly the

same. Therefore, the imaging contrast is predominatly due to the variations in the

near-field coupling [39, 93, 1] between the dipole and the sample,

S(rd) =
1

1− χG(rd)
, (3.44)

where G(rd) is the electric field generated by the sample in response to a unit

dipole (see below).

In the experiment the AFM is used in the tapping mode and the tapping
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harmonics sme
iφm are recorded. We model this by considering the time-dependent

zd in the form

zd(t) = b+ ∆z (1− cos Ωt) , (3.45)

where b . a is another adjustable parameter. Computing s(t) for a suitably dense

grid of t-points and taking the discrete Fourier transform at frequency mΩ, the

desired demodulated amplitudes sme
iφm are obtained.

Calculating function G as a function of rd and zd is the main part of the

problem. This function is the sum of two terms:

G(rd) = Gs +Gg(rd) . (3.46)

The first term Gs is the position-independent contribution of the SiO2 substrate.

Within the quasi-static approximation, valid if the dipole-sample distance zd is

much shorter than the wavelength 2πc/ω, it is given by the usual formula for the

field of the image dipole,

Gs =
β

4z3
d

, β = 1− 1

κ
, (3.47)

where κ is the average of the dielectric constants above and below graphene. The

second term in Eq. (3.46) is due to electrons in graphene:

Gg(rd) = e
∂

∂zd
Uind(r, zd) , (3.48)

see Eq. 3.36. The induced potential arises in response to the external dipole po-

tential, given by

Uext(r) =
1

κ

zd
(|r− rd|2 + z2

d)
3/2

. (3.49)

One can solve for the total U(r) using Eq. (3.37) which leads to the induced

charge density and Gg(r).

3.3.3 Graphene Half-Plane

Numerical Approach

Consider now a more realistic situation, where graphene occupies x ≥ 0

half-plane. Equation (3.37) is still valid if we define σ(x < 0) ≡ 0 and also add a
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boundary condition ∂U/∂x = 0 at x = 0 to preserve the continuity relation. Let

us assume that σ = σ(x) is invariant along y but may be a function of x. Then,

without loss of generality, we can choose yd = 0. The x-coordinate of the tip is L.

Taking the one-dimensional Fourier transform in y of both sides of Eq. (3.37), we

obtain

Ũ(x) + 2K0(x|qy|) ∗ δρ̃(x, qy) = Ũext(x, qy) = −2

κ

zd
r
|qy|K1(r|qy|) , (3.50)

δρ̃(x, qy) = − 1

2π

[
d

dx

1

qp(x)

d

dx
−

q2
y

qp(x)

]
Ũ(x, qy) , (3.51)

where the convolution (∗) is now done along the x only, Kν(z) is the modified Bessel

function of the second kind, and r =
√

(x− L)2 + z2
d . In turn, the equation for

Gd becomes

Gg(xd) = −
∞∫

0

dx

∞∫
−∞

dqy
2π

Ũext(x, qy)δρ̃(x, qy) . (3.52)

For purposes of numerical solution, these equations can be converted to

linear equations of finite size. To this end instead of a semi-infinite plane, we

consider a strip of a large width. We discretize the x axis and replace all derivatives

by finite differences on the x-grid. The convolution integral has been replaced by

an integral sum. A special care has to be taken to regularize the divergence of

the Bessel functions at zero argument by requiring that the convolution gives the

same result for δρ̃ = const whether it is computed numerically or analytically at

all points of the x-grid. Similarly, we introduce a grid of qy extending up to a

suitably large value. Grid parameters are adjusted to ensure that the accuracy of

our solution is never less than 1%.

The sequence of steps involved in our numerical simulations is as follows.

Given the profile of qp(x) and the tip coordinates (L, zd), the matrices of the linear

systems are generated as discussed above. These linear equations are solved and

Gg is computed. Substituting this value into Eqs. (3.46) and then into Eq. (3.44),

one computes the scattering amplitude S. These calculations are repeated for a

grid of tip positions L and heights b ≤ zd ≤ b + 2∆z. Typically, we have six

to eight L points per distance π/|qp| in order to adequately describe the plasmon

interference pattern near the edge. We also use about twenty zd points to do the



86

demodulation reliably. Upon demodulation, we obtain the spatial profile of s3(L)

that can be compared with the experimental data.

Comparison with experiment

The experimental setup consisted of graphene positioned on a SiO2/Si

wafer. An AFM tip located above the system was illuminated by a CO2 892 cm−1

laser. The SNOM data was collected by measuring the response of the graphene

half-plane along a series of traces perpendicular to the edge. The signal was then

averaged to reduce the effect of disorder. The experiment has demonstrated that

the oscillation wavelength is larger closer to the edge and that the oscillations

decay away from the edge.

The input into our simulation consists of the tip modeling parameters a, b,

∆z, the value of κ, and also the profile of qp(x). We fixed a = 30 nm, b = 0.7a,

∆z = 40 nm. We set κ(ω = 892 cm−1) = 2.52 + 0.13i based on our ellipsomet-

ric measurements of SiO2/Si wafers. For qp(x) = q1(x) + iq2(x) we adopted the

following trial form:

λp(x) =
2π

q1(x)
= λ0 + c θ(l − x)|x|n , q2(x) = γpq1(x) . (3.53)

The starting values of the λ0, c, n, and l were determined by fitting λp(x) in

Eq. (3.53) to the observed plasmon wavelength. A relatively high value of n = 6

was necessary to account for the sharp rise of the measured λp(x) close to the

graphene edge. For simplicity, the damping parameter γp was taken to be position-

independent. Several representative γp have been considered. For each of them,

the values of all other fitting parameters were manually fine-tuned by repeatedly

running the simulations until the position and relative amplitude of the peaks in

s3(L) agreed as close as possible with the experimental data. The best-fitting γp

was determined to be 0.135± 0.1, see Fig. 3.10.

The result presented in Fig. 3.10 shows qualitative agreement with all salient

features of the data but also some quantitative discrepancy between the experiment

and the simulations. Such discrepancy could be in part due to the crudeness of the

point-dipole approximation and also the lack of perfect translational invariance of

the system along the edge.
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Figure 3.10: Experimental [25] (red) and numerical (black) curves showing agree-
ment of principal features in S3 signal.

It has been, therefore, demonstrated that our numerical approach can cap-

ture the most important features observed experimentally, even though further

refinements are necessary for a better agreement.

3.3.4 Plasmons in a Flake

Another interesting geometry that has been studied using SNOM is a nar-

row graphene flake, see Fig. 3.11. A fascinating feature that has been observed

is the presence of “bright spots”—locations inside the flake where the response is

very strong. This system is very different fromt the half-plane graphene as here,

due to the relative proximity of the two edges, the communication between them

is not completely suppressed by damping. This means that the plasmonic mode

actually couples to both edges. What makes this particular structure very exciting

is that we can solve a simplified plasmon equation for it.

For this case, we rewrite Eq. (3.37) by explicitly including the variable
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θ0

Figure 3.11: Graphene flake with the vertex angle θ0.

wavelength in the inhomogeneous wave equation:

Uext(x, y) = U(x, y) +∇
[
λ2(x, y)∇U(x, y)

]
. (3.54)

This is valid because narrow wires (flakes) behave as 1D systems. In the case of

ln(1/θ0) � 1, one may, with leading logarithmic accuracy, replace the Coulomb

interaction with a delta function of strength 2(e2/κ) ln(1/θ0). The benefit of using

the above expression is that while it retains the principal characteristics of the solu-

tion, it is considerably simpler as we have reduced the integro-differential equation

to a differential one. If the static charge density is constant, using the standard

Green’s function method, the solution can be given as a sum of eigenstates. The

result is given by

U(r, θ) =
∞∑
n=0

u(r) cos νnθ , (3.55)

u(r) = q2

∫ ∞
0

dr′r′Gn(r, r′)uext
n (r′) , (3.56)

Gn(r, r′) = −iπ
2
Jνn(qr<) [Jνn(qr>) + iYνn(qr>)] , (3.57)

uext
n =

2− δn,0
θ0

<
[∫ θ0

0

dθ′eiνnθ
′
Uext

]
, (3.58)

νn = n
π

θ0

, r< ≡ min(r, r′) , r> ≡ max(r, r′) . (3.59)

Each mode in the eigenmode expansion corresponds to the number of an-

gular oscillations. Similarly to the case of waveguides, every mode has a turning

point and modes with lower n penetrate closer to the tip. To illustrate the behavior

of the solution, we impose a local perturbing potential Uext = δ(~r−~rS). For every

position ~rS we determine the potential at the location of the perturbation and

generate a potential map over the flake. Finally, we the individual conributions of

the first four modes n = 0, 1, 2, 3, see Fig. 3.12.
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Figure 3.12: (Top row) n = 0, n = 1, (Bottom row) n = 2, n = 3. For every
figure, the top illustration is the absolute value of the potential and the bottom
one is the phase.
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We can also conduct numerical simulations to solve Eq. (3.54) without

resorting to the eigenmode expansion. To do so, we first generate a two-dimensional

mesh over which the equation will be solved. In this case, our external perturbation

is a dipole positioned at height z0 above the flake. By solving Eq. (3.54), we

determine the potential right under the dipole which corresponds to the charge

density at that point. Just like before, we move the perturbation over the flake to

generate a density map.

Here, we also treat a system with a constant charge density. Since, in reality,

we expect damping, an imaginary component is included in the wavelength. The

solution is shown in Fig. 3.13. Upon comparing our numerical simulations with

the prior analytical derivation, one can see that despite the different nature of

perturbation, there are qualitative similarities between the plots.

Let us now discuss the nature of the modes in the flake. The simplest

observable feature is the angular oscillation in potential. This is due to the cosine

term which takes on the value of 1 at the edges of the flake. One needs to keep in

mind that the edges of a narrow flake are not independent entities, instead carrying

the same mode together. Higher mode numbers have shorter cosine period which

results in more oscillations.

Another characteristic of the modes that can be seen from the plots is the

difference of how closely they come to the corner. A convenient analogy for our

situation is the case of waveguides. In a hollow rectangular waveguide we can

have modes whose allowed transverse momenta depend on the geometry of the

waveguide. For each particular mode, there is a cutoff frequency (itself dependent

on the geometry) below which the mode may not propagate. The wave number for

a wave of frequency ω is k‖ =
√
ω2 − ω2

cut/c =
√
q2 − k2

⊥. Clearly, if the frequency

is below the cutoff, the wave number is imaginary and the wave is attenuated. A

very similar situation can be seen in our case. Modes of higher number must have

a higher momentum in the angular direction. This momentum also increases as

the wave gets closer to the corner and the width of the flake gets smaller. One can

write the total wave number of the mode as

q =
√
k2
‖ + k2

⊥ =

√
k2
‖ +

(νn
r

)2

. (3.60)
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Figure 3.13: (Top Pair) Eigenvalue expansion. The absolute value is plotted
above the phase. (Bottom Pair) Solution by the standard finite-element method
with the dipole perturbation.

Far away from the corner, the mode is a plane wave with momentum q. However, as

it gets closer to the tip of the flake, the transverse momentum becomes important.

When k‖ becomes zero, the wave reaches its turning point and this occurs at

r =
νn
q
. (3.61)

For smaller r, the wave number k‖ is imaginary, which results in the attentuation

of the wave, as seen in waveguides. From this expression, we can see that only

n = 0 mode can actually reach the corner as all the others will be turned around

at larger r. This is precisely what we obtain with higher n modes beginning to get

attenuated farther from the corner.

As of now, we have explained the cutoff of the mode propagation. However,
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Figure 3.14: The maximum of |ψj(r)|2 is slightly to the right of the turning point.

we still need to rationalize the signal maximum that is observed around the cutoff

point. These are the bright spots observed experimentally. To do so, we perform

a substitution ψj(r) =
√
ruj(r). This allows us to rewrite Eq. (3.54) after a

separation of variables as a Schrödinger’s equation:

− ψ′′j (r) + Vj(r)ψ(r) = q2ψj(r) , (3.62)

Vj(r) =
4ν2

j − 1

4r2
. (3.63)

Solving the equation and plotting the solution along with the potential and q2 = 1

on the common axes shows that the maximum of |ψj(r)|2 lies just right of the

turning point of the solution, see Fig. 3.14 More precisely, it is located at qrj =

νj + (νj/2)1/3.

The complex potential pattern seen in Fig. 3.13 is the result of the inter-

ference of the modes as they propagate through the flake. It is important to note

that if one were to consider the flake only up to r = R0, one would only need

N = R0qθ0/π modes in the analysis as those with n > N do not penetrate into

the region under consideration.

These rigid mode cutoffs can function as filters for certain modes. Using

constrictions in the geometry allows one to control which modes are allowed to

propagate and which ones are reflected. This would permit one to use the flakes for

injecting plasmon modes into other structures in a controlled fashion by changing
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the point of contact between the two systems. A way to check this effect would

be to use two tips positioned over the two subsystems: one of the tips serves to

launch the plasmons in the flake and the other one picks up the modes that make

it to the other side of the constriction. In an ideal situations, the two subsystems

would be mirror images of each other which would allow one to see the different

mode profiles on both sides of the narrow point.

3.4 Future work

Currently, plasmonics in graphene is still the main focus of the research.

A major problem that needs to be investigated is the finite lifetime of plasmons.

As was seen in the SNOM experiments, they experience a significant damping

in amplitude along their path of propagation. This is the result of higher order

dissipative processes, not captured by the RPA. More specifically, this behavior

originates from the imaginary part of the quasi-particle self-energy. For now, this

problem remains unsolved due to its analytical intractability and high demand of

resources for a numerical approach. Nevertheless, understanding the finite lifetime

of plasmons is crucial for being able to control their propagation in the system.

Such tunable plasmonic structures can be utilized for signal transfer at frequencies

much higher than the traditional electronic ones.

The second major question that needs to be answered is the inhomogeneous

charge density in graphene. Experimental results consistently show the variation of

the plasmonic wavelength throughout the system which translates to non-constant

background charge. The reason behind this charge variation is not entirely clear.

Some possible explanations involve dopands and electronic traps. Clear under-

standing of the charge distribution in ungated graphene would help to explain

graphene’s dependence on these foreign elements. This would allow for a better

control of graphene plasmons by varying the local wavelength. From a more gen-

eral standpoint, understanding the origin of the intrinsic charge variation is crucial

in manufacturing of devices.
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[7] V. I. Arkhipov and H. Bässler. Field-dependent effective temperature of lo-
calized charge carriers in hopping systems with a random energy distribution.
Phil. Mag. Lett., 69(4):241–246, 1994.

[8] M. Y. Azbel and D. P. DiVincenzo. Finite-temperature conductance in one
dimension. Phys. Rev. B, 30(12):6877–6888, Dec 1984.

[9] A. Bachtold, M. de Jonge, K. Grove-Rasmussen, P. L. McEuen, M. Buite-
laar, and C. Schönenberger. Suppression of tunneling into multiwall carbon
nanotubes. Phys. Rev. Lett., 87(16):166801, 2001.

[10] H. Bahlouli, K. A. Matveev, D. Ephron, and M. R. Beasley. Coulomb cor-
relations in hopping through a thin layer. Phys. Rev. B, 49:14496–14503,
1994.

94



95

[11] L. Balents. Orthogonality catastrophes in carbon nanotubes. In D. C. Glattli
and M. Sanquer, editors, XVIII Moriond Les Arcs Conference Proceedings,
Paris, 1999. Edition Frontiers.

[12] A. D. Ballard and M. E. Raikh. Regimes of correlated hopping via a two-site
interacting chain. Phys. Rev. B, 74:035117, 2006.

[13] C. W. J. Beenakker. Random-matrix theory of quantum transport.
69(3):731–808, 1997.

[14] L. Berlyand and J. Wehr. The probability distribution of the percolation
threshold in a large system. J. Phys. A, 28:7127, 1995.

[15] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents,
and P. L. McEuen. Luttinger-liquid behaviour in carbon nanotubes. Nature,
397:598, 1999.
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