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Gene co‑expression network 
analysis in human spinal cord 
highlights mechanisms underlying 
amyotrophic lateral sclerosis 
susceptibility
Jerry C. Wang1, Gokul Ramaswami1 & Daniel H. Geschwind1,2,3,4*

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease defined by motor neuron (MN) 
loss. Multiple genetic risk factors have been identified, implicating RNA and protein metabolism and 
intracellular transport, among other biological mechanisms. To achieve a systems‑level understanding 
of the mechanisms governing ALS pathophysiology, we built gene co‑expression networks using 
RNA‑sequencing data from control human spinal cord samples, identifying 13 gene co‑expression 
modules, each of which represents a distinct biological process or cell type. Analysis of four RNA‑seq 
datasets from a range of ALS disease‑associated contexts reveal dysregulation in numerous modules 
related to ribosomal function, wound response, and leukocyte activation, implicating astrocytes, 
oligodendrocytes, endothelia, and microglia in ALS pathophysiology. To identify potentially causal 
processes, we partitioned heritability across the genome, finding that ALS common genetic risk is 
enriched within two specific modules, SC.M4, representing genes related to RNA processing and 
gene regulation, and SC.M2, representing genes related to intracellular transport and autophagy and 
enriched in oligodendrocyte markers. Top hub genes of this latter module include ALS‑implicated 
risk genes such as KPNA3, TMED2, and NCOA4, the latter of which regulates ferritin autophagy, 
implicating this process in ALS pathophysiology. These unbiased, genome‑wide analyses confirm the 
utility of a systems approach to understanding the causes and drivers of ALS.

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease defined by motor neuron (MN) 
loss and results in paralysis and eventually death 3–5 years following initial disease  presentation1. In 5–10% of 
cases, patients exhibit a Mendelian pattern of inheritance and the disease segregates within multigenerational 
affected families (familial ALS)2. However, in 90% of cases, the underlying cause of ALS is unknown and disease 
occurrence is classified as sporadic (sporadic ALS)2. Most genetic risk in ALS is polygenic, indicating a complex 
genetic  architecture3. Given this complex genetic architecture with contributions of rare and common alleles, we 
took a systems level approach to understand the gene expression signatures associated with ALS pathophysiology.

Weighted gene co-expression network analysis (WGCNA)4 has been a powerful method for organizing and 
interpreting wide-ranging transcriptional alterations in neurodegenerative diseases. In Alzheimer’s disease 
(AD), transcriptomic and proteomic studies have revealed a pattern of dysregulation implicating immune- 
and microglia-specific  processes5,6. More broadly across tauopathies including AD, frontotemporal dementia 
(FTD) and progressive supranuclear palsy (PSP), molecular network analyses have identified gene modules and 
microRNAs mediating neurodegeneration, highlighting its utility in prioritizing molecular targets for therapeutic 
 interventions7–10. In ALS, previous studies have studied the transcriptional landscape in sporadic and C9orf72 
(familial) ALS post-mortem brain tissues, finding a pattern of dysregulation in gene expression, alternative 
splicing, and alternative polyadenylation that disrupted RNA processing, neuronal functioning, and cellular 
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 trafficking11. However, the generalizability of these findings is limited due to relatively small sample sizes (n = 26). 
Numerous studies have previously examined the transcriptional landscape of the spinal cord, which hosts axons 
from the upper motor neurons (UMN) and some of the lower motor neuron (LMN) and is the location of LMN 
degeneration in  ALS12–17. However, a rigorous interrogation of gene co-expression networks in the spinal cord 
has not yet been fully explored.

To investigate gene expression signatures associated with ALS in the spinal cord, we generated gene co-expres-
sion networks using RNA-sequencing of 62 neurotypical human cervical spinal cord samples from the GTEx 
 consortium18. We characterized these co-expression modules through gene ontology (GO) enrichment analysis, 
which reveals that the modules represent a diverse range of biological processes. To identify modules enriched 
with ALS genetic risk factors, we queried enrichment of rare, large effect risk mutations previously described 
in the literature, as well as common genetic  variation19,20. The second approach is genome-wide and therefore 
unbiased, which focuses on the enrichment of small effect common risk variants identified from a Genome Wide 
Association Study (GWAS) of  ALS21. By partitioning SNP-based heritability and performing enrichment test-
ing for genes with rare mutations, we find significant overlap of genes harboring rare and common variation in 
SC.M4, which represents genes involved in RNA processing and epigenetic regulation. We also find enrichment of 
ALS common genetic risk variants in SC.M2, which represents genes involved in intracellular transport, protein 
modification, and cellular catabolic processes. We extend these results by demonstrating the dysregulation of 
these modules in data from multiple published human ALS patient and animal model  tissues12,13,22,23. We identify 
modules related to ribosomal function, wound response, and leukocyte activation that are dysregulated across 
this diverse set of ALS-related datasets. The set of genes underlying these modules provides a rich set of targets 
for exploring new mechanisms for therapeutic development.

Results
Co‑expression network analysis as a strategic framework for elucidating ALS susceptibil‑
ity. We reasoned that because ALS preferentially affects spinal cord and upper motor neurons, co-expression 
networks from spinal cords of control subjects would provide an unbiased context for understanding potential 
convergence of ALS risk genes. We used the Genotype-Tissue Expression (GTEx)  Project18 control cervical spi-
nal cord samples to generate a co-expression network as a starting point for a genome wide analysis to identify 
specific pathways or cell types affected by ALS genetic risk. First, we identified gene co-expression modules and 
assigned each module a biological as well as cell-type  identity24,25. Next, we leveraged multiple datasets identify-
ing ALS genetic risk  factors19–21,26–28 to comprehensively assess which pathways and cell-types are susceptible to 
ALS genetic risk. Finally, we compared these predictions with human ALS and animal model  datasets12,13,22,23 to 
develop a mechanistic understanding of ALS etiology and progression (Fig. 1).

Figure 1.  Overview of spinal cord co-expression network analysis. Flow diagram of analyses in this study. 
A co-expression network was generated using the GTEx cervical spinal cord expression data and Weighted 
Gene Co-Expression Network Analysis (WGCNA). Modules were annotated by their associated biological 
processes, hub genes, and cell-type identities. Modules were then assessed for their enrichment of ALS genetic 
risk factors and analyzed for differential expression in RNA-seq data from human ALS tissues and model system 
 studies12,13,22,23.
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Generation of human spinal cord gene co‑expression network. We utilized RNA-sequencing data 
from the GTEx consortium to generate a co-expression network of human spinal cord (“Methods”). Co-expres-
sion networks are highly sensitive to biological and technical  confounders25, which we controlled for by calcu-
lating the correlation of biological and technical covariates with the top expression principal components (PCs) 
(“Methods”, Supplementary Fig. S1a–c). We identified 11 technical and biological covariates: seqPC1-5, RNA 
integrity number (RIN), Hardy’s death classification scale, age, sampling center, ethnicity, and ischemic time as 
significant drivers of expression (Supplementary Fig. S1a). We regressed out the effect of these covariates using 
a linear model (“Methods”) and verified that the regressed expression dataset was no longer correlated with 
technical and biological covariates (Supplementary Fig. S1b).

We applied WGCNA to construct a co-expression network (Fig. 2A, Supplementary Fig. S2; Supplemen-
tary Data 1; “Methods”) identifying 13 modules. To verify that the modules were not driven by confounding 
covariates, we confirmed that the module eigengenes were not correlated with the major technical and biological 
covariates (Supplementary Fig. S1d). We also found that randomly sampled genes from within each module were 
significantly more inter-correlated when compared to a background set, verifying the co-expression of genes 
within each module (Supplementary Fig. S1e). To biologically annotate our co-expression modules, we performed 
gene ontology (GO) term enrichment and identified the top hubs (Figs. 2C–G, 3C,D, Supplementary Fig. S3). 
GO analysis revealed that co-expression modules represented coherent biological processes that we categorized 
into five distinct groupings (Fig. 2B), encompassing morphogenesis and development, epigenetics and gene 
regulation, neuronal signaling, immune activation, and intracellular transport, metabolism, and sensing func-
tions. Most modules were significantly enriched for markers of specific cell types, suggesting that they represent 
gene co-expression within major cell classes, including SC.M1 (astrocytes), SC.M2 (oligodendrocytes), SC.M3 
(endothelial cells), SC.M9 and SC.M11 (neurons), SC.M10 (ependymal), and SC.M12 and SC.M13 (microglia) 
(Supplementary Fig. S4). These groupings, both with regards to cell type and molecular pathways, represent 
diverse biological functions that play key roles in human spinal cord biology.

Enrichment of ALS genetic risk in intracellular transport/autophagy module SC.M2 and RNA 
processing/gene regulation module SC.M4. To address how these modules fit within the context of 
known ALS susceptibility factors, we assessed whether a literature-curated set of well-known, large effect size, 
familial ALS risk  genes19,20 were enriched within our co-expression modules (Fig. 3A). We found a nominally 
significant enrichment with SC.M4 (OR = 2.52, P = 0.0124). However, the FDR adjusted p-value was not sig-
nificant (FDR = 0.174), likely due to the small number of familial ALS risk genes identified to date. SC.M4 was 
highly enriched with GO terms related to RNA processing and epigenetic regulation (Fig. 3C), consistent with 
the known role of several ALS risk genes in RNA metabolism and function. To prioritize interacting partners 
to ALS risk genes found in SC.M4, we leveraged a direct protein–protein interaction (PPI) network using the 
top 300 hub genes of SC.M4, finding a significant network that includes ALS risk genes such as TARDBP and 
EWSR1 (Fig. 3E, “Methods”, p = 0.001).

The small number (~ 50) of large effect size risk genes identified to date in ALS makes the detection of 
strong enrichments difficult. To complement the rare risk gene enrichment analyses, we performed an unbi-
ased genome-wide analysis, partitioning the common SNP-based heritability across the co-expression modules 
using stratified LD score-regression29 based on summary statistics from the most recent GWAS of ALS (ALS 
n = 20,806; CTL n = 59,804)21 (Fig. 3B). We found significant enrichment of ALS common risk variants in the 
SC.M2 (FDR = 0.047) and SC.M4 modules (FDR = 0.041). SC.M2 was enriched with GO terms related to intra-
cellular transport, protein modification, and cellular catabolic processes (Fig. 3D). Additionally, SC.M2 was sig-
nificantly enriched with oligodendrocyte markers (Supplementary Fig. S4, Oligodendrocytes_mature: OR = 5.3, 
FDR < 10e−5; Oligodendrocytes_myelinating: OR = 2.9, FDR < 0.05), while SC.M4 showed no specific cell type 
enrichment. Generation of a direct protein–protein interaction (PPI) network using the top 300 hub genes of 
SC.M2 reveals a significant network that highlights SC.M2 hub genes that interact with known ALS risk genes 
such as TMED2 and  KPNA327 (Fig. 3F, “Methods”, p = 0.018).

As a comparison, we tested for the enrichment of common risk variants from Inflammatory Bowel Disorder 
(IBD)30 (N = 86,640) across modules (Fig. 3B). We found a significant enrichment of IBD common risk variants 
(FDR = 0.047) in module, SC.12, which is a microglial/immune module, consistent with the known disease biol-
ogy of  IBD31. As a negative control, we performed enrichments of common risk variants from Autism Spectrum 
Disorder (ASD)32,33 (N = 15,954) and found no enrichment in any module. Further, when we compared with 
Alzheimer’s Disease (AD)34 (N = 455,258), Frontotemporal Dementia (FTD)35 (N = 12,928), and Progressive 
Supranuclear Palsy (PSP)36 (N = 12,308) (Fig. 3B), we also found no significant enrichments for these diseases’ 
common risk variants, demonstrating the specificity of the ALS GWAS enrichment for modules SC.M2 and 
SC.M4. Overall, these genetic enrichment analyses implicate dysfunction in RNA processing and intracellular 
transport, including in oligodendrocytes, as putative drivers of ALS pathophysiology in the human spinal cord.

Enrichment of ALS genetic modifiers in ribosomal‑associated module SC.M6. As an orthogonal 
approach to assess which genes and pathways are mediators of ALS pathophysiology, we leveraged genetic screen 
datasets from three studies of modifiers of C9orf72 and FUS toxicity in  yeast26–28. We assessed our human spinal 
cord modules for enrichment with modifiers of C9orf72 and FUS toxicity identified from these screens. We 
found significant enrichment of C9orf72 and FUS toxicity suppressors in SC.M6 (Fig. 4A), a module represent-
ing genes involved in ribosomal function (Fig. 2E), but without any cell type specific enrichment (Supplemen-
tary Fig. S4). This finding is consistent with previous observations that modifiers of Glycine-Arginine100  (GR100) 
DPR and FUS toxicity are enriched with gene ontology terms related to ribosomal  biogenesis26,28.
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Figure 2.  Construction of co-expression network in control cervical spinal cord. (A) Dendrogram of the 
topological overlap matrix for gene co-expression dissimilarity. Co-expression module assignments are shown 
in the “Merged Colors” track (See Supplementary Fig. S2 for optimization of tree-cutting parameters). Genes 
that failed to be clustered into a co-expression module were grouped within the grey module. (B) Thirteen 
co-expression modules were categorized into five broad molecular themes based on Gene Ontology (GO) term 
enrichment and assigned a unique module identifier (SC.M1-13). (C–G) Top 30 hub genes and 300 connections 
for SC.M3, SC.M9, SC.M6, SC.M12, and SC.M5 respectively (left panels). Top 5 enriched GO terms for each of 
the respective modules (right panels). Red lines mark an FDR corrected p-value threshold of 0.05.
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We reasoned that SC.M6 could be leveraged to prioritize highly interconnected hub genes within the module 
that may warrant additional scrutiny as points of convergence for C9orf72 and FUS pathology. To address this, we 
first identified the interacting partners for the top 100 SC.M6 hub genes by generating an indirect protein–protein 
interaction (PPI) network (“Methods”). We identified 30 modifiers of C9orf72 and FUS toxicity that were pre-
sent in this indirect PPI network, either as hubs or as interacting partners (Fig. 4B)26–28. These modifiers include 
ribosomal proteins (RPL and RPS-related genes), intracellular transporters of ribosomal components (TNPO1), 
ribosomal assembly proteins (NOB1), and RNA-binding proteins (HABP4) (Fig. 4B), indicating specific aspects 
of ribosomal dysfunction shared between C9orf72 and FUS toxicity. Indeed, previous  studies26 have suggested 
that the overlap in modifiers of C9orf72 and FUS toxicity could be due to the sequence similarity between the 
arginine/glycine/glycine (RGG) domain in FUS and the  GR100 sequence expressed by  C9orf7237,38.

Dysregulation of immune‑related modules in postmortem ALS spinal cord. Until this point, 
we had assessed co-expression modules for their relevance to ALS based on enrichment of genetic risk factors. 
To assess whether the co-expression modules identified using the GTEx dataset were directly dysregulated in 
ALS patients, we processed bulk RNA-sequencing data from a previous study of postmortem control and ALS 
cervical spinal  cord13. We corrected the data for potential confounders such as age, ethnicity, sex, and sequenc-
ing variability and assessed module preservation (Supplementary Fig. S5a,b, “Methods”). We identified 10 of 
the 13 modules generated from GTEx as preserved in the postmortem control and ALS cervical spinal cord 
 (Zsummary > 2) with four (SC.M2, SC.M4, SC.M5, and SC.M8) strongly preserved  (Zsummary > 10). The remaining 
three modules (SC.M9, SC.M11, and SC.M10) were not preserved  (Zsummary < 2) (Supplementary Fig. S5c).

We adopted two approaches to assess which modules were dysregulated in ALS in the human spinal cord. The 
first assessed enrichments of differentially expressed genes (DEGs) between postmortem control and ALS cervical 
spinal cord  samples13 (“Methods”). We found a significant enrichment of DEGs upregulated in cervical spinal 
cord from ALS patients in SC.M12 (FDR = 5.92e−39) and of downregulated DEGs in SC.M3 (FDR = 0.00152) 
(Fig. 5A). SC.12 is highly enriched with microglial markers and GO terms related to immune response (Fig. 2F, 
Supplementary Fig. S4a), whereas SC.M3 is highly enriched with endothelial markers and GO terms related to 
inflammation and morphogenesis (Fig. 2C, Supplementary S4a).

For our second approach, we assessed if the spinal cord modules were themselves differentially expressed 
between ALS and control samples by looking at the relationship between the eigengenes (first principle compo-
nent; “Methods”) of each module and disease status (Supplementary Fig. S5d). We found that the SC.M1 eigen-
gene was significantly upregulated in ALS samples. SC.M1 was enriched with astrocyte markers and GO terms 
related to wound response (Supplementary Figs. S3a, S4a). Overall, our analyses identify a marked upregulation 
of neuro-immune cells in the human post-mortem spinal cord, including astrocytes and microglia, similar to 
previous  reports13,22. However, we note that genes differentially expressed in postmortem ALS spinal cord are 
not enriched in causal genetic risk, suggesting that these changes are not causal drivers.

Dysregulation of immune and neuronal related modules in dissected human motor neurons 
primed for degeneration. A major disadvantage of utilizing postmortem human tissues is that the 
molecular pathology is indicative of late-stage disease. In particular, immune hyperactivation and infiltration 
is consistently seen in neurodegenerative disorders including ALS. However, it is unclear if these processes are 
disease causing or merely a reaction to neurodegenerative cell  death39. To identify early-stage differences in 
human spinal cord potentially representative of causal factors, we leveraged a previously published dataset of 
laser capture micro-dissected motor neurons deemed to be primed for  degeneration22. In this study, the authors 
isolated motor neurons from ALS patients’ postmortem spinal cord, but in regions that did not exhibit any signs 
of degeneration at the time of death. We processed and corrected the data for potential confounders such as 
age, gender, postmortem interval, RNA integrity, and sequencing  variability22 (Supplementary Fig. S6a,b). We 
identified 9 of the 13 modules generated from GTEx as preserved in the micro-dissected motor neuron dataset 
 (Zsummary > 2) with two (SC.M3 and SC.M6) strongly preserved  (Zsummary > 10). The remaining four modules (SC.
M2, SC.M4, SC.M8, and SC.M10) were not preserved  (Zsummary < 2) (Supplementary Fig. S6c).

We assessed the enrichment of DEGs between ALS and control micro-dissected motor neurons in our mod-
ules. We found enrichment of up-regulated DEGs within SC.M1, SC.M3, SC.M6, SC. M12, and SC.M13, modules 
related to astrocyte, endothelial, and microglial functions (Supplementary Fig. S4a). We found enrichment of 
down-regulated DEGs within SC.M7 and SC.M9 (Fig. 5B), two modules related to synaptic signaling (Fig. 2D, 
Supplementary Fig. S3b), possibly marking degeneration at early stages of ALS. We also assessed the relation-
ship between the module eigengene and disease status, finding significant up-regulation of SC.M1, SC.M3, 
SC.M5, SC.M6, SC.12, and SC.M13 in the ALS samples (Supplementary Fig. S6d). Despite performing laser-
capture micro-dissection of motor neurons, our results indicate that the predominant signal from this dataset 
highlights the infiltration of neuro-immune cells, including astrocytes and microglia in the progression of ALS 
pathophysiology.

Dysregulation of a ribosome‑related module in iPSC‑derived motor neurons from ALS8 
patients. To gain further insights into processes dysregulated in motor neurons and avoid the pro-immune 
phenotypes observed in previous postmortem  studies13,22, we leveraged a RNA-seq dataset generated from iPSC-
derived motor neurons from ALS8  patients23. In this study, iPSC-derived motor neurons were differentiated 
from five patients carrying pathogenic variants in the VAPB gene and three unaffected control individuals. We 
processed and corrected this dataset for potential confounders such as age, sex, sampled tissue, and sequenc-
ing variability (Supplementary Fig. S7a,b). We identified 10 of the 13 modules generated from GTEx as pre-
served in the iPSC-derived motor neuron dataset  (Zsummary > 2) with two (SC.M7 and SC.M9) strongly preserved 
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 (Zsummary > 10). The remaining three modules (SC.M5, SC.M12, and SC.M13) were not preserved  (Zsummary < 2) 
(Supplementary Fig. S7c).

We assessed the enrichment of DEGs between iPSC-derived MNs from severe ALS versus control individu-
als in our modules. We found modest enrichment of up-regulated DEGs within SC.M1, SC.M7, SC.M9, and 
SC.M11 (OR = 1.77, 1.76, 2.09, 3.84 respectively), modules related to astrocyte and neuronal functions (Fig. 5C, 
Supplementary Fig. S4). We found a strong and pronounced enrichment of down-regulated DEGs within SC.M6 
(OR = 27.28), a ribosomal-related module (Figs. 2E, 5C). We also assessed the relationship of module eigengene 
to disease status, revealing up-regulation of SC.M2 and SC.M7 and down-regulation of SC.M1 (Supplementary 
Fig. S7d). By analyzing gene expression in iPSC-derived motor neurons from ALS patients, we identified strik-
ing downregulation of ribosomal function, represented by SC.M6, as a prominent dysregulated feature specific 
to MNs.

Dysregulation of immune and neuronal‑related modules in SOD1‑G93A (ALS) mice. Finally, 
as an orthogonal approach to identify temporal differences in ALS, we leveraged a spatial transcriptomics dataset 
from spinal cord of SOD1-G93A mice over four time points during disease  progression12,40,41. To assess which 
modules were dysregulated over the progression of disease, we performed an enrichment analysis between the 
human spinal cord modules and mouse DEGs stratified by time point (“Methods”). Consistent with our findings 
in postmortem tissues (Fig. 5A,B), immune response modules (SC.M12 and SC.M13) were highly enriched with 
up-regulated DEGs as early as postnatal day 70, which is the time of clinical disease onset in this model (Figs. 2F, 
5D, Supplementary Fig. S3f). We also noted a strong enrichment of down-regulated DEGs in neuronal signaling 
modules (SC.M7, SC.M9, and SC.M11) (Figs. 2D, 5D,  Supplementary Fig. S3b,e) by postnatal day 120 (p120—
end-stage ALS), which is consistent with motor neuron degeneration. Interestingly, we found enrichment of 
down-regulated DEGs in SC.M2 at p100 (symptomatic ALS), providing evidence that SC.M2 is dysregulated at 
symptomatic stages of ALS in this model system (Fig. 5D, Supplementary Fig. S9). We also noted an enrichment 
of up-regulated DEGs in SC.M6 at p120 (end-stage ALS), suggesting dysregulation of SC.M6 in the end-stages 
of ALS in this model system (Fig. 5D, Supplementary Fig. S8). Overall, enrichment analyses in SOD1-G93A 
(ALS) mice highlight immune and neuronal-related modules as key disrupted pathways in the spinal cord and 
implicates the dysregulation of SC.M2, a module enriched with ALS genetic risk, and SC.M6, a module enriched 
with ALS genetic modifiers, in later stages of disease progression (Fig. 5E).

Discussion
To help elucidate the biological mechanisms underlying ALS pathophysiology in an unbiased genome-wide 
manner, we generated co-expression networks using RNA-sequencing of control human cervical spinal cord 
samples from the GTEx Consortium. We identified 13 total co-expression modules each representing distinct 
aspects of biology in the control spinal cord including inflammation, neurotransmission, RNA processing, and 
cellular metabolism, as well as major cell classes. We find that ALS genetic risk factors are enriched in SC.M4, 
a co-expression module representing genes involved in RNA processing and epigenetics and SC.M2, which is 
enriched in oligodendrocyte markers and genes involved in intracellular transport, protein modification, and 
cellular catabolic processes.

It is notable that genes within both SC.M2 and SC.M4 have previously been shown to cause rare Mendelian 
forms of ALS or have been strongly linked with risk. For example, SC.M4, which is enriched in RNA processing, 
harbors RNA binding proteins mutated in ALS including TDP-43 and FUS/TLS, which are abnormally aggregated 
and mis-localized in ALS affected neurons, leading to the loss of normal RNA binding function with incitement of 
 neurotoxicity42. One of the top hubs of the SC.M4 module is PTPN23, a non-receptor-type tyrosine phosphatase 
that is a key regulator of the survival motor neuron (SMN) complex, which helps assemble small ribonucleo-
proteins particles (snRNPs) and mediates pre-mRNA processing in motor  neurons43. Furthermore, two other 
top hubs in SC.M2, KPNA3 and TMED2, are nucleocytoplasmic transporters that act as modifiers of dipeptide 
repeat (DPR) toxicity in cases of C9orf72  mutations27. NCOA4, another top hub in SC.M2, is a key mediator of 
ferritinophagy and has been implicated in  neurodegeneration44,45. Taken together, the presence of ALS-linked 
risk genes as hubs in SC.M2 and SC.M4 further underscores the importance of aberrant RNA  processing42 and 
intracellular  transport46 as processes likely driving ALS pathophysiology.

We also find enrichment of genetic modifiers of ALS in SC.M6, indicating the importance of ribosomal pro-
teins and elongation factors (Fig. 4B) in mitigating ALS pathophysiology. These factors have been suggested to 

Figure 3.  Enrichment of ALS genetic risk factors in intracellular transport/autophagy module SC.M2 and RNA 
processing/gene regulation module SC.M4. (A) Enrichment of literature curated large-effect ALS risk  genes19,20 
within co-expression modules (left panel). Red line marks a baseline odds ratio of 1. SC.M4 is marked with an 
asterisk as having a nominal enrichment p-value < 0.05. Literature-curated large-effect ALS risk genes within the 
SC.M4 module (right panel). (B) Partitioned heritability enrichments of common risk variants for  ALS21,  IBD30, 
 ASD32, 33,  AD34,  FTD35, and  PSP36 within co-expression modules. Text values of enrichments with FDR corrected 
p-value < 0.05 are shown. (C,D) Top 30 hub genes and 300 connections for SC.M4 and SC.M2 respectively 
(left panels). Highlighted in red are genes that have been previously implicated in ALS  pathophysiology27,43–45. 
Top 5 enriched GO terms for each of the respective modules (right panels). Red lines mark an FDR corrected 
p-value threshold of 0.05. (E,F) Direct protein–protein interaction (PPI) network of the top 300 hub genes from 
modules SC.M4 and SC.M2 respectively. Gene vertices are color coded according to their Gene Ontology terms 
as  shown63. P-value of the PPI network is derived from 1000 permutations. Highlighted in pink are genes that 
have been previously implicated in ALS  pathophysiology27,43–45.

◂
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Figure 4.  Modifiers of C9orf72 and FUS toxicity converge on top hubs of ribosomal-associated module SC.M6. 
(A) Enrichment of genetic modifiers of C9orf72 and FUS  toxicity26–28 within co-expression modules. Odds 
ratios of enrichments with FDR corrected p-value < 0.05 are shown. FDR corrected p-values themselves are 
shown within parentheses. (B) Indirect protein–protein interaction (PPI) network of the top 100 hub genes 
from module SC.M6. Gene vertices are color coded as shown. P-value of the PPI network is derived from 1000 
permutations.
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Figure 5.  Validation of co-expression module dynamics in human ALS and model system datasets. (A) Enrichments of 112 
up-regulated and 70 down-regulated DEGs from bulk-tissue RNA-sequencing of postmortem ALS cervical spinal  cord13 within 
co-expression modules. Red line marks a baseline odds ratio of 1. * (FDR corrected p-value < 0.05). ** (FDR corrected p-value < 0.01). 
*** (FDR corrected p-value < 0.001). (B) Same as (A) except for using 1290 up-regulated and 310 down-regulated DEGs from 
RNA-sequencing of laser capture microdissections of motor neurons primed for  degeneration22. (C) Same as (A) except for using 
364 up-regulated and 289 down-regulated DEGs from RNA-sequencing of iPSC-derived motor neurons from ALS8  patients23. (D) 
Enrichment of DEGs within each disease stage of the SOD1-G93A  mouse12 within co-expression modules. p30, p70, p100, and 
p120 represent postnatal age in days at time of spatial transcriptomic sequencing. Odds ratios of enrichments with FDR corrected 
p-value < 0.05 are shown. * (FDR corrected p-value < 0.05). ** (FDR corrected p-value < 0.01). *** (FDR corrected p-value < 0.001). (E) 
Summary of the key findings from this study regarding modules relevant to ALS pathophysiology.
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act by reducing translation of toxic dipeptide repeat (DPRs) expressed off of the GGG GCC  hexanucleotide repeat 
expansion found in  C9orf7226. We found SC.M6 to be up-regulated with disease status in the SOD1-G93A mouse 
and dissected human motor neurons primed for neurodegeneration (Fig. 5B,D), datasets with predominant glial 
infiltration. Interestingly, we found a striking down-regulation of SC.M6 in iPSC-derived motor neurons from 
ALS8 patients (Fig. 5C), a dataset without contaminating glial signal. This suggests that role of this co-expression 
module is complex and cell-type dependent in ALS.

Across three of four ALS tissue and model datasets analyzed, we noted the presence of a strong pro-immune 
phenotype (Fig. 5). While immune dysregulation is a key molecular feature of the spinal cord by mid- to late-
stage ALS, it remains unclear whether this disease signature is primary or  secondary47,48. Our analyses focused 
on ALS genetic risk factors, which serve as causal anchors to identify, in an unbiased manner, specific modules 
that implicate processes involved at the early stages of ALS pathophysiology. Furthermore, immune dysregulation 
is a common feature in post-mortem tissue from other neurodegenerative and neuropsychiatric  disorders8,49,50; 
however, the enrichment of genetic risk within upregulated immune genes is complex. For neuropsychiatric 
disorders such as autism and schizophrenia, the strongest genetic enrichments are within neuronal  genes49. In 
contrast, the strongest genetic risk enrichments for Alzheimer’s disease are within  microglia51. For ALS, a recent 
assessment of genetic risk within different cell types implicates  oligodendrocytes51 which is consistent with our 
finding of risk enrichment within the oligodendrocyte-enriched module, SC.M2 (Fig. 3B).

A major question still remains concerning the specificity of MN degeneration in ALS. Our results support 
the hypothesis that ALS is a non-cell-autonomous  disease52, as evidenced by SC.M1, SC.M2, SC.M3, SC.12, and 
SC.M13 being enriched with astrocyte, oligodendrocyte, endothelia, and microglia markers (Supplementary 
Fig. S4). Oligodendrocytes have critical roles through the metabolic support of neurons and neurotransmission 
in the central nervous  system53. A previous study has shown that oligodendrocytes harboring familial and spo-
radic, but not C9orf72 variants of ALS, induce motor neuron death via a SOD1-dependent mechanism, but can 
be rescued via lactate  supplementation54. These previous observations corroborate our findings that highlight 
the potential deleterious effect of dysregulation in the intracellular transport and autophagy system on oligoden-
drocyte—MN dynamics in ALS. Furthermore, neuro-immune responses mediated by astrocytes and microglia 
also play a critical role in ALS  pathogenesis55,56 and disruptions of blood spinal cord barrier and damage to the 
endothelial cells have been observed in electron micrographs from  ALS57. Overall, our analyses support the 
notion that ALS is multifactorial disorder, implicating a number of cell-types and mitigating mechanisms, acting 
at different stages of disease. Invariably, understanding of cell-type specific mechanisms governing MN degen-
eration will involve future interrogation of the transcriptome and epigenome from ALS spinal cord at single-cell 
resolutions. Additionally, emerging RNA-sequencing datasets, including from the TargetALS foundation (http://
www.targe tals.org), contain larger sample sizes of ALS and control spinal cord that will help elucidate the cellular 
dynamics underlying ALS pathophysiology.

Methods
Initial processing of RNA‑sequencing datasets. The latest version of GTEx data (version 7) was 
obtained from the dbGaP accession number phs000424.v7.p2 on 10/10/2017 and pre-processed as previously 
 described18. Genes in the GTEx dataset containing fewer than 10 samples with a TPM > 1 were excluded from 
downstream analysis on the basis of unreliable quantification for very lowly expressed genes. We removed 4 out-
lier samples in the GTEx dataset that had sample-sample connectivity Z-scores of > 2 as previously  described58. 
Our starting GTEx dataset consisted of 62 samples and 14,577 genes.

RNA-sequencing  data13 from postmortem cervical spinal cord (Brohawn et al.) was downloaded using the SRP 
accession number SRP064478 on 5/24/2019. RNA-sequencing  data22 from laser capture microdissected (LCM) 
MNs primed for degeneration (Krach et al.) was downloaded using the SRP accession number SRP067645 on 
6/27/2019. RNA-sequencing  data23 from iPSC-derived motor neurons from ALS8 patients (Oliveira et al.) was 
downloaded using the SRP accession number SRP223674 on 10/18/2020. Reads were aligned to the reference 
genome GRCh37 using STAR (version 2.5.2b) and quantified using RSEM (version 1.3.0) with Gencode v19 
annotations. Genes in the Brohawn et al., Krach et al., and Oliveira et al. datasets with zero variance in expression 
were excluded from further analysis. All expression data was quantified in TPM (transcript per million reads) 
and TPM values + 1 were  log2 transformed to stabilize their variance. The starting Brohawn et al., Krach et al., 
and Oliveira et al. datasets consisted of 33,050, 37,138, and 14,171 genes respectively. Krach et al. metadata tables 
were transcribed from the manuscript and missing values for PMI (postmortem interval) were imputed as the 
mean of all available PMI values.

Identification and regression of biological and technical confounders from gene expression 
datasets. Gene expression values were subjected to dimensionality reduction using principal component 
analysis (PCA) with data centering and scaling. The top four components for the GTEx dataset, which collec-
tively captures 70.6% of the total variance, were assigned to be expression principal components (PCs) 1–4. The 
top five components for the Brohawn et al., Krach et al., and Oliveira et al. dataset, which collectively capture 
55.9%, 42.3%, and 56.3% of the total variance respectively, were assigned to be expression principal compo-
nents (PCs) 1–5. Sequencing Q/C metrics were calculated using PicardTools (version 2.5.0) and dimensionally 
reduced using PCA with centering and scaling. Sequencing Q/C metrics were aggregated manually for Brohawn 
et al. and Krach et al. datasets and aggregated using  MultiQC59 for the Oliveira et al. dataset (Supplementary 
Datas 2–4). The top five components of sequencing metrics for the GTEx, Brohawn et  al., Krach et  al., and 
Oliveira et al. datasets, which collectively capture 75.1%, 91%, 90.4%, and 89.0% of the total variance respec-
tively, were selected and assigned to be sequencing principal components (seqPCs) 1–5.

http://www.targetals.org
http://www.targetals.org
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Numerical covariates of technical or biological importance were correlated with the expression PCs using 
Spearman’s correlation. Binary covariates were numerically encoded and multi-level categorical covariates of 
technical or biological importance were binarized using dummy variables. The model fit  (R2) was used to assess 
correlations. We identified technical or biological covariates with a meaningful influence on gene expression if 
they were correlated with an R > 0.3 to any of the top expression PCs.

For the GTEx expression dataset, a linear model was fit for each gene as follows: GTEX.Expr ~ seqPC1 + se
qPC2 + seqPC3 + seqPC4 + seqPC5 + RIN + DTHHRDY + AGE + SMCENTER + TRISCHD and the effect of all 
covariates were regressed out. RIN indicates RNA integrity number, DTHHRDY represents the Hardy Scale, 
SMCENTER represents the center for sampling, and TRISCHD represents ischemic time. Ethnicity was not 
included in the linear model because it was collinear with SMCENTER (Supplementary Fig. S1c).

For the Brohawn et  al.  dataset,  a l inear model was f it  for each gene as fol lows: 
Expr ~ seqPC1 + seqPC2 + seqPC3 + seqPC4 + seqPC5 + Ethnicity + Sex + Age + Disease and the effect of all covari-
ates except disease were regressed out.

For the Krach et al. dataset, a linear model was fit for each gene as follows: Expr ~ Diagnosis + Age + Gen-
der + RIN + PMI + seqPC1 + seqPC2 + seqPC3 + seqPC4 + seqPC5 and the effect of all covariates except diagnosis 
were regressed out.

For the Oliveira et al. dataset, a linear model was fit for each gene as follows: Expr ~ Disease + Age + Sex + Tis-
sue + seqPC1 + seqPC2 + seqPC3 + seqPC4 + seqPC5 and the effect of all covariates except disease were regressed 
out.

Weighted gene co‑expression network analysis (WGCNA). We used  WGCNA4,58 to generate a gene 
co-expression network using the GTEx dataset. We chose a soft power of 10 using the function “pickSoftThresh-
old” in the WGCNA R package to achieve optimal scale free topology. The Topological Overlap Matrix (TOM) 
was generated using the function “TOMsimilarity” in the WGCNA R package. A hierarchical gene clustering 
dendrogram was constructed using the TOM-based dissimilarity and module selection was tested using mul-
tiple permutations of the tree cutting parameters: minimum module size, cut height, and deep split. Minimum 
module size (mms) was assessed at 50, 100, and 150. Module merging (dcor) was assessed at 0.1, 0.2, and 0.25. 
Deep split (DS) was assessed at 2 and 4. By visual inspection, we utilized the following parameters: minimum 
module size = 100, module merging = 0.1, and deep split = 2 to generate the network. We assigned unique mod-
ule identifiers (SC.M1-13) for each module color except the grey module which represents genes that were not 
co-expressed.

Pairwise Spearman’s correlations were calculated using 1000 randomly sampled genes within each module 
and a matched background set. If a module contained less than 1000 genes, all genes in the module were sampled.

Enrichment of gene sets in co‑expression modules. We analyzed a collection of gene sets generated 
by previous genetic studies of ALS. For large effect size ALS risk genes, we obtained 50 ALS literature curated ALS 
risk genes from two  studies19,20. For the determination of cell-type specificity, we obtained the top 50 differen-
tially expressed genes per cell-type by fold change from single-nuclei RNA sequencing of postnatal day 2 mouse 
spinal  cord24. For the human ALS spinal cord differentially expressed gene (DEG) enrichments, we obtained 
265 DEGs (172 up- and 93 down-regulated) at FDR < 0.10 using the union of DESeq2 and EdgeR  analyses13. 
For the dissected motor neurons primed for neurodegeneration, we obtained 1600 DEGs (1290 up- and 310 
down-regulated) at FDR < 0.05 from the  report22. For the iPSC-derived motor neurons from ALS patients, we 
chose to examine the severe ALS vs. control comparison and filtered gene biotype for protein-coding genes, 
obtaining 653 DEGs (364 up- and 289 down-regulated) at FDR < 0.01 from the  report23. For DEGs from SOD1-
G93A mice, we obtained genes with a Bayes Factor > 3 (corresponding to FDR = 0.1) identified through a spatial 
transcriptomics  study12.

Logistic regression was performed to calculate an odds ratio and p-value for enrichment of each co-expression 
module with a test gene set. The p-values were FDR-corrected for the number of modules analyzed.

Enrichment of common ALS genetic risk variants in co‑expression modules. Stratified LD 
score  regression29 was performed to evaluate the enrichment of common risk variants from GWAS studies of 
 ALS21 (N = 80,610), Inflammatory Bowel Disorder (IBD)30 (N = 86,640), Autism Spectrum Disorder (ASD)32,33 
(N = 15,954), Alzheimer’s Disease (AD)34 (N = 455,258), Frontotemporal Dementia (FTD)35 (N = 12,928), and 
Progressive Supranuclear Palsy (PSP)36 (N = 12,308) within each co-expression module. We used the full base-
line model of 53 functional categories per calculation of partitioned heritability (1000 Genomes Phase 3). We 
defined genomic regions of each co-expression module as their constituent gene bodies plus a flanking region 
of + /- 10 KB.

Gene ontology enrichments. Gene ontology enrichment analysis was performed using the gProfiler 
 package60 with hierarchical filtering set to “moderate”, domain size set to “annotated”, src filter set to “GO:BP” 
and ”GO:MF”, electronic annotations (IEAs) included, maximum p-value set to 0.05, correction method set to 
“FDR”, and a maximum set size of 1000. To reflect the weight of each gene within a co-expression module, genes 
were ordered by their module membership (kME) during the enrichment calculations.

Network visualization of module hub genes. For each module, an undirected and weighted network 
amongst the top 30 module hub genes (by kME) was visualized using the igraph package in  R61.
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Protein–protein interaction (PPI) networks. PPI networks were produced using the Disease Associa-
tion Protein–Protein Evaluator (DAPPLE)62. Two hundred and thirty eight of the top 300 SC.M4 hub genes, 
238 of the top 300 SC.M2 hub genes, 84 of top 100 SC.M6 hub genes as ranked by Module Membership (kME) 
were found in the DAPPLE database and seeded into the shown PPI network (Figs. 3E,F, 4B). All networks were 
produced from 1000 permutations (within-degree node-label permutation). SC.M6, SC.M4, and SC.M2 contain 
the following network properties respectively: direct edges count (p = 0.001, p = 0.001, p = 0.001), seed direct 
degrees mean (p = 0.001, p = 0.001, p = 0.018), seed indirect degrees mean (p = 0.001, p = 0.006, p = 0.006), and 
the CI degrees mean (p = 0.001, p = 0.132, p = 0.332).

Module preservation analyses. Module preservation for co-expression modules in the Brohawn et al., 
Krach et al., and Oliveira et al. datasets were performed as previously described using the modulePreservation 
function in the WGCNA R  package58. We performed 200 permutation tests using a randomSeed of 1.

Correlations of module eigengenes to biological and technical covariates. To evaluate the corre-
lations of module eigengenes to biological and technical covariates in the Brohawn et al. and Krach et al. datasets, 
a Student p-value was calculated using the function “corPvalueStudent” in the WGCNA R package. P-values 
were FDR corrected across the modules and plotted using the function “labeledHeatmap” in the WGCNA R 
package. To account for multiple biological replicates per patient in the Oliveira et al. dataset, a mixed effect 
linear model was fitted for each module eigengene and each of the following covariates: Disease, Age, Sex, Tis-
sue, seqPC1, seqPC2, seqPC3, seqPC4, and seqPC5. The covariate “Isolate”, which uniquely identifies each indi-
vidual, was used as the random effect.

Data availability
Module assignments are provided as Supplementary Data 1 and the full range of values underlying the barplots 
and heatmaps in Figs. 3A,B, 4A, 5A–D, and Supplementary Figures S4, S5d, S6d, S7d, S8, S9 are provided as a 
Source Data File.

Code availability
Underlying R code to run WGCNA is available at [https ://githu b.com/dhgla b/ALS-Gene-Netwo rk-Manus cript ].
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