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1.  Introduction
The airborne electromagnetic (AEM) method can play an important role in the study and management 
of groundwater systems, by providing a model of the subsurface that captures the large-scale variation in 
lithology or sediment type throughout a survey area. A typical workflow for the interpretation of AEM data 
involves the compilation and review of all relevant ancillary data from the survey area (e.g., driller's logs, 
geophysical logs, and geological cross-sections); the initial processing of the acquired data, to remove low 
quality data (Auken et al., 2018); the inversion of the data, to recover the electrical resistivity distribution 
in the subsurface and define a resistivity model (Farquharson & Oldenburg, 1993; Viezzoli et al., 2008); and 
the transformation of the electrical resistivity model into a three-dimensional (3D) model of lithology or 
sediment type with incorporation of available well data (Ball et al., 2020; Christensen et al., 2017; Foged 
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∼300 m. We developed a workflow designed to obtain, from the AEM data, information about the large-
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Plain Language Summary  In studying and managing groundwater systems, it can be very 
difficult to get the information needed about the subsurface. The airborne electromagnetic (AEM) method 
uses a helicopter to move a geophysical system over the land surface to collect this needed information. 
In this study we acquired ∼800 line-kilometers of high-quality AEM data in an area of Butte and Glenn 
Counties in the Central Valley of California, USA. Acquisition of these data allowed us to obtain three-
dimensional (3D) resistivity models covering the region from the ground surface to a depth of about 
300 m. Working with descriptions from wells, we were able to transform the 3D resistivity models into 3D 
sediment-type models. These models allowed us to map out the large-scale structure of the groundwater 
system and better understand the vertical connectivity within the system. Because of fundamental 
limitations in the AEM method, we obtained many different resistivity models and corresponding 
sediment-type models. Exploring these models allowed us to quantify the uncertainty in our interpretation 
of the data. This not only assisted in our interpretation, but it also communicated, to the local water 
agency, our confidence in our interpretation.
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et al., 2014; Gunnink & Siemon, 2015; He et al., 2014; Knight et al., 2018). The inversion step introduces sig-
nificant uncertainty into the workflow due to the non-uniqueness in AEM inverse problems (Christensen 
& Lawrie, 2012). Of interest in our research is finding a way to incorporate various forms of information 
into the inversion process, in an attempt to reduce uncertainty, and then quantify the uncertainty in the re-
covered resistivity models. Furthermore, we aim to investigate how this uncertainty propagates through to 
the derived 3D model of lithology or sediment type for addressing specific problems in groundwater science 
and management.

One well-established concept that accounts for a specific form of uncertainty is the depth-of-investigation 
(DOI) which has been adopted to refer to the depth below which the recovered resistivity model is presumed 
to be unreliable due to the decreasing resolution of AEM data with depth (Christiansen & Auken, 2012; 
Huang, 2005; Oldenburg & Li, 1999). Importantly, however, there is uncertainty in the portion of the model 
above the DOI, inherent to AEM inversion, which will impact this region; that is, there are many different 
resistivity models, and therefore lithology or sediment-type models, that can fit the data. Previous work on 
this topic has employed the gradient-based and stochastic inversion approaches. For the gradient-based ap-
proaches fixed spatial discretization of the subsurface model was used, and uncertainty at each discretized 
cell was estimated by calculating standard deviation factor (Christensen & Lawrie, 2012) or by obtaining 
several recovered resistivity models by modifying inversion parameters and using different inversion codes 
(King et al., 2018; Ley-Cooper et al., 2015). In contrast, the stochastic approaches varied the spatial discreti-
zation, and obtained many resistivity models (Brodie & Sambridge, 2009; Minsley et al., 2021). These prior 
applications of both the gradient-based and stochastic approach used the minimal prior information in the 
AEM inversion process, which neglects a potential improvement in the obtained resistivity models that 
could have been made by incorporating various forms of available information (e.g., resistivity logs).

The study area is located in Butte and Glenn Counties in the Central Valley of California, USA. Rather than 
developing a general methodology that can reduce and quantify uncertainty in AEM inverse problems, we 
focused on a specific issue identified by the local water agency, Butte County Department of Water & Re-
source Conservation—the need for an improved understanding of aquifer dynamics. The defined objective 
was to use the AEM data to improve the delineation of the large-scale structure and heterogeneity of the 
aquifer system so as to better understand the extent of vertical connectivity. Understanding vertical connec-
tivity can provide important information about the groundwater system's dynamics, for example, the impact 
of pumping at various depths and the vulnerability of the aquifer systems to cross-contamination.

In contrast to previous approaches, we employed a gradient-based approach that incorporated various 
forms of available information (including resistivity logs and driller's logs) to inform the recovery of the 
resistivity models; the result was an ensemble of resistivity models. From these recovered resistivity mod-
els, we derived many models displaying information about sediment type. With this ensemble of models 
representing the model space of the AEM data, we explored the similarities and variability in the models to 
first define the large-scale structure and heterogeneity in the aquifer system and then extract information 
relevant to vertical connectivity. Of critical importance, we accounted for the dominant sources of uncer-
tainty, captured in the model space in the inversion of the AEM data, and carried that uncertainty through 
to communicate the uncertainty in the obtained information. This provided the local agency with useful 
information, accompanied by an indication of the level of confidence they could place in the information. 
Designing an AEM interpretation workflow, tailored to address a specific issue, improves the way in which 
AEM data can be used to support both groundwater science and management.

2.  Background
2.1.  Groundwater Management and Hydrogeologic Framework in Study Area

The study area spans portions of Butte and Glenn Counties in the Northern Sacramento Valley portion of 
the Central Valley in California. Land use in the area is dominated by irrigated agriculture supported by 
surface water diversions and groundwater pumping. The existing groundwater model in the area, developed 
using well data, lacks sufficient detail to understand the connection between various depths within the aq-
uifer system since stratigraphic units represented in the model include both aquifer and aquitard materials 
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(Butte County, 2008). Vertical head data from multi-completion wells provide useful information about the 
vertical connectivity of the aquifer system, but are only available at a limited number of locations.

Locally, as in many parts of the world with significant groundwater use, vertical connectivity (or lack there-
of) has important implications for groundwater management. For example, important questions surround 
the issue of how pumping from deeper portions might impact existing shallow wells. If groundwater con-
ditions in shallow zones of the aquifer system are sufficiently connected to deeper zones, then high-volume 
pumping by deep wells may impact users of groundwater in the shallower zones and may impact ground-
water dependent ecosystems which are sensitive to conditions in the shallowest portions of the aquifer. 
Moreover, vulnerability of aquifer systems to cross-contamination depends strongly on connectivity. Under-
standing this component of aquifer dynamics will support better development of policies and strategies to 
manage groundwater sustainably for a diversity of water users and environmental needs. This could include 
informing, as examples, policies considering well permitting requirements for well construction, assess-
ment of recharge projects, assessment of the vulnerability of groundwater dependent ecosystems, assess-
ment of the vulnerability to contamination, or assessment of the impacts of pumping on stream-ground-
water interaction.

Understanding the geologic framework and origins of the studied aquifer system is foundational to inter-
pretation of any geophysical data. The Central Valley basin fill began in mid-Mesozoic time as a classic 
marine forearc basin adjacent to the west-facing Sierra/Cascades and Klamaths continental arc to the east 
and north, respectively, and the accretionary prism that would later become the uplifted Coast Ranges to the 
west (Dickinson & Rich, 1972; Mansfield, 1979). As forearc-related subsidence was replaced by San Andreas 
Fault transform tectonics (Atwater,  1970), the Central Valley filled with progressively more non-marine 
deposits sourced from both the dissected Sierra/Cascades arc in the east, the Klamaths to the north, and 
the uplifted metamorphic sources in the Coast Ranges in the west (Ingersoll & Dickinson, 1981; Sharman 
et al., 2015; Wakabayashi, 2015).

The Sacramento Valley groundwater basin is an alluvial basin characterized by a heterogeneous, multi-lay-
ered aquifer system with alluvial fans on the eastern and western perimeters of the valley and a major 
north-south trending meandering river and flood plain system (Sacramento River) toward the center of the 
valley sourced from the Klamaths. The main aquifer units of the latest non-marine basin fill in the Sacra-
mento Valley consist of Pliocene and younger deposits. Recognizing two main stratigraphic units will help 
delineate hydrogeologic units: (a) Pliocene-aged units and (b) overlying Quaternary-aged units (California 
Department of Water Resources [CDWR], 2014). Two Pliocene-aged units interfinger in the center of the 
study area: the Tuscan Formation in the east, and the Tehama Formation in the west (Ingersoll et al., 2016), 
as illustrated by a geologic section: B–B′ shown in Figure 1. The Tuscan formation is a series of volcanic 
mudflow and streamflow deposits sourced from the ancestral volcanoes in the Sierra/Cascades that pro-
duced a complex network of westward flowing channels containing reworked volcanic sand and gravel 
sediments (Lydon, 1968). Although detailed outcrop work documents the vertical heterogeneity of the Tus-
can formation, the lateral dimensions of the mudflows and interbedded stream channels are much more 
difficult to obtain due to later incision and vegetative cover (Gonzalez et al., 2018). The Tehama formation 
is composed of generally eastward-flowing coalescing alluvial fans sourced from the Coast Ranges to the 
west (CDWR, 2014). The lateral dimensions of channels and overbank deposits are also largely unknown 
due to the paucity of detailed outcrop studies and misidentified units. These two Pliocene units also contain 
informal lower and upper members that are more easily defined in the subsurface.

During the Quaternary, pulses of accelerated uplift in both the Coast Ranges and Sierra/Cascades created 
multiple incisions in the foothills with successive fluvial fills that transitioned to more alluvial environ-
ments along the valley floor where they interfinger with the Sacramento River system in the center of the 
basin and the northwest to southeast trending Stony Creek River system in the western portion of the basin. 
These overlying Quaternary-aged units exist throughout most of the study area though they stratigraphi-
cally pinch-out in the far eastern portion; they consist of the Red Bluff, Riverbank, and Modesto formations 
(Helley & Hardwood, 1985).

It is helpful, in planning for the interpretation of AEM data, to consider how sediment type differs through-
out the study area. A review of cross-sections developed using well data suggests three main zones in the 
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aquifer system in the western part, which we here refer to as: lower, middle, and upper. However, there is 
limited understanding of the lateral and vertical extent of these zones. The lower zone contains a coarse-
grained and laterally continuous sand/gravel unit within the lower Tuscan Formation which abruptly tran-
sitions in the western part of the study area to the finer-grained and discontinuous channels of the lower 
Tehama Formation as shown in Figure 1 (Greene & Hoover, 2014). The middle zone is a mostly fine-grained 
unit containing upper Tehama/Tuscan deposits with discontinuous channelized sand bodies. The upper 
zone is mostly coarse-grained laterally continuous sand/gravel bodies of the upper Tuscan/Tehama as well 
as the Quaternary units (Ingersoll et al., 2016). The eastern portion of the study area contains the combined 
lower and upper Tuscan Formation overlain by sand/gravel bodies within the Quaternary units. The Tus-
can deposits contain heterolithic units of sand/gravel channels interbedded with clay/silt zones as well as 
volcaniclastic debris-flow deposits (CDWR, 2014).

The AEM method produces 3D models of electrical resistivity in the subsurface which can be transformed 
to sediment type (e.g., sand, gravel, clay, and silt) due to the resistivity contrasts between the various sedi-
ment types. In general, coarse-grained materials (e.g., sand and gravel) are expected to have greater resistiv-
ity than fine-grained materials (e.g., clay) primarily due to smaller clay content. The AEM method therefore 
cannot distinguish between geologic formations if there are similarities in sediment type. The geologic for-
mations in the study area have common alluvial/fluvial depositional environments resulting in similarities 
in sediment type. Therefore, the AEM method cannot distinguish the geologic formations. Fortunately, it 
is the differences in sediment type within and between formations (that are effectively highlighted by the 
AEM method) which best define the key hydrogeologic units in the study area.

The salinity of the water is another factor that will influence subsurface resistivity and must be taken into 
account in regions with variable water quality. The report describing water quality in the study area indicate 
that this was not an issue in the study area (Peterson, 2018).

2.2.  Introduction to the AEM Method

2.2.1.  Acquisition of Data

The AEM method uses the electromagnetic induction phenomenon to obtain information about the elec-
trical resistivity of the subsurface. Time-varying electric currents are injected through a transmitter loop 
attached to a helicopter (or small plane) to generate induced currents in the subsurface. These induced cur-
rents will depend upon the resistivity of the subsurface and generate an induced voltage that can be meas-
ured at a receiver loop. The link between electrical resistivity and sediment type is what was utilized in this 

Figure 1.  A geologic cross section: B–B′ illustrating geology of Butte and Glenn Counties, California, USA. Modified from CDWR (2014). An inset map shows 
the location of the cross section: B–B′.
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study. The AEM method has been used in previous studies to map the large-scale architecture of an aquifer 
system (Knight et al., 2018; Meier et al., 2014; Podgorski et al., 2013; Sattel & Kgotlhang, 2004; Wynn, 2002).

In our study, we used two time-domain AEM systems: SkyTEM 312 and 304 (Sorensen et al., 2018). These 
systems have different resolution, but how they are used in conducting surveys is very similar. Both are a 
dual-moment type system, which includes the low moment (LM) and the high moment (HM). The LM 
system can turn off the current in the transmitter loop much more rapidly than the HM system, so can 
obtain measurements at earlier time channels which contain more information in the near-surface region. 
The HM system uses a much higher current amplitude than the LM system, so can image to greater depths. 
Thus, by using both the LM and HM systems, we image near-surface structures as well as the deeper struc-
tures. System specifications of the two SkyTEM systems are summarized in Table 1. The SkyTEM 304 uses 
a shorter ramp-off time than the SkyTEM 312 resulting in a greater sensitivity to the near-surface structure, 
whereas the SkyTEM 312 uses a greater amplitude of the source current than that of the SkyTEM 304 result-
ing in an increased DOI. Use of the greater amplitude does not make a significant difference in a relatively 
low resistivity environment due to a large signal-to-noise ratio while it can make a considerable difference 
in a resistive environment where a low signal-to-noise ratio is expected. Given the relatively low resistivity 
nature of the Central Valley due to a large amount of interbedded clays (Faunt, 2010), we do not expect to 
see much difference between the DOI of the two systems.

The resolution of the AEM measurement depends upon various factors including the specific form of meas-
urement given the AEM system, the resistivity of the subsurface, the noise level, and, in general, degrades 
with depth. With the SkyTEM systems used in our study area, where the AEM measurement was capable 
of resolving features to a depth of ∼270–300 m, the horizontal resolution at the surface was about 40 m and 
the vertical resolution at the surface was about 1–3 m.

When measuring induced voltage from the subsurface at the receiver loop, a helicopter moves continuously 
along planned flight lines, and the raw voltages are stacked and referred to as the AEM sounding or AEM 
response at a specific location; all AEM soundings from the AEM survey are referred to collectively as the 
observed AEM data.

2.2.2.  Inversion of AEM Data

To obtain a resistivity model of the subsurface from the observed AEM data, a spatially (or laterally) con-
strained inversion approach (Brodie & Sambridge,  2009; Viezzoli et  al.,  2008) has been widely used for 
hydrogeologic applications. This inversion takes into account the 3D nature of diffusive EM wave propaga-
tion but assumes the resulting model should display the layered structure of the subsurface. For each AEM 

SkyTEM 312 SkyTEM 304

LM HM LM HM

Transmitter area (m2) 342 342 342 342

Base frequency (Hz) 30 210 30 210

Pulse width (ms) 0.8 4 0.8 4

Ramp-off time (µs) 15 310 5 41

Time range (from the peak input current) 26 µs–1.4 ms 376 µs–10.7 ms 26 µs–1.4 ms 86 µs–10.4 ms

Peak current (A) 6 110 9 111

Number of coil turns (for transmitter) 2 12 1 4

Depth-of-investigation ∼300 m ∼270 m

Horizontal resolution ∼40 m at ground surface ∼40 m at ground surface

Vertical resolution ∼3 m at ground surface ∼1 m at ground surface

Note. The dual moment system includes the low moment (LM) and high moment (HM). The depth-of-investigation, horizontal resolution, and vertical 
resolution provided in the table depends upon the resistivity structure of the subsurface, so values provided here is specific to the study area. The horizontal 
and vertical resolution generally degrade with depth.

Table 1 
Specifications of the Dual Moment SkyTEM 312 and 304 Systems
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sounding location, a 1D layered-resistivity model fitting the observed AEM response is sought. The spatial 
constraint, favoring a smooth transition of resistivity values between adjacent sounding locations, is imple-
mented in the inversion through a regularization function. The laterally constrained inversion only takes 
into account adjacent soundings along a single flight light, whereas the spatially constrained inversion takes 
into account the adjacent soundings well as nearest soundings within other flight lines (Auken et al., 2005; 
Viezzoli et al., 2008). Given the relatively small spacing of ∼500 m between the flight lines used in the AEM 
surveys, the spatially constrained inversion was used in this study. The regularization function also includ-
ed a reference model that integrated prior information constraining the inversion using ancillary data (e.g., 
well data), or an understanding of the expected variation of electrical resistivity in survey area (e.g., the 
average resistivity). The regularization function including both the spatial constraint and reference model is 
commonly referred to as the prior model for the inversion. The recovered resistivity model is composed of 
multiple vertical cells (e.g., 20–40) at each sounding location.

2.3.  The Source of the Uncertainty in the Recovered Resistivity Model

The AEM inverse problem, used to extract resistivity information from AEM data, is non-unique meaning 
that there are numerous resistivity models that can fit the observed AEM data (Christensen & Lawrie, 2012; 
Minsley, 2011). These numerous models define one component of the model space of the AEM data, the 
other components being the subsurface models derived from the resistivity models; it is adequately explor-
ing this model space that is an essential component of our workflow.

There are three well-known sources of the non-uniqueness, closely related to the physics of the AEM meth-
od. The first is due to the fact that the AEM data are not sensitive to changes in resistivity after a certain limit 
(Christensen & Lawrie, 2012). So, it is highly likely that an AEM inversion will underestimate the resistivity 
values corresponding to relatively resistive materials such as sand and gravel. This is related to the high 
sensitivity of the AEM method to relatively conductive materials (e.g., clay). We need to consider this when 
comparing a resistivity model from AEM data with other resistivity data (e.g., resistivity logs) and when 
transforming a recovered resistivity model from AEM data into sediment type.

The second is a limitation in the ability to detect a layer, be it resistive or conductive. This is related to the 
diffusive nature of EM wave propagation. We refer to the required thickness of a layer, in order for it to be 
detected at a given depth, as the critical thickness. This critical thickness will depend upon the signal-to-
noise ratio and the resistivity values of the layer and background. The critical thickness will increase with 
depth, but this thickness will be larger when the resistive layer (e.g., sand and gravel) is embedded in the 
conductive background (clay) than in the opposite case. This limitation in resolving layers in the subsurface 
must be acknowledged in the interpretation of the AEM data.

The third source of uncertainty is due to the fact that the AEM response is sensitive to neither thickness nor 
resistivity of a layer independently, but to the conductance of the layer, which is the product of the thickness 
and the inverse of the resistivity of the layer (Geowissenschaften et al., 2007). This shows the limitation of 
the AEM method for obtaining the correct thickness or resistivity value of a layer without relevant ancillary 
data. However, if the resistivity values of each sediment type can be estimated with the other ancillary data 
(e.g., driller's logs), then the AEM method is expected to be highly sensitive to the percentage of each sedi-
ment type in a relatively thick vertical interval. This information about the percentage of the sediment-type 
can be useful in assessing the vertical connectivity of an aquifer system.

2.4.  Rock Physics Transform

The recovered resistivity model can be transformed to sediment type by constructing a relationship between 
sediment type and resistivity, with the information about sediment type obtained from the well data (Barfod 
et al., 2018; Foged et al., 2014; Knight et al., 2018). We adopted the approach of Knight et al. (2018) which 
begins with data pairs each composed of the resistivity value from a cell in the recovered AEM resistivity 
model and, from a nearby well, the corresponding section in a driller's log where the descriptions of layers 
have been classified into a few discrete classes of sediment type appropriate for the study area. A linear 
equation is set up with the known resistivity value from the AEM resistivity model, known thicknesses of 
the AEM resistivity cell and each of the vertical intervals of sediments, and with unknown resistivity values 
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for the sediment types. When setting up the linear equation, the physics of the AEM method is accounted 
for in a way that compensates for the resistivity saturation which underestimates the resistivity value of the 
more resistive materials. By repeating this process at all locations where there are data pairs, many linear 
equations are constructed. Solving this least-squares problem with bootstrapping generates the distribu-
tions of resistivity values that correspond to the defined sediment types. This approach was used to trans-
form the recovered resistivity models from the AEM data to the sediment-type models.

The above approach to constructing the resistivity-to-sediment-type transform maps each resistivity cell in 
the recovered resistivity model to one sediment type. There is an alternate way to transform the resistivity 
model to obtain information about the composition of the subsurface, and that is to capture information 
about the percentage of each sediment type that is present. Such an approach was recently taken in the in-
terpretation of ground-based transient EM data (Goebel & Knight, 2021) and is directly applicable to AEM 
data. In this approach, it is assumed that there is finer-scale layering of sediment type, below the scale of 
the AEM resistivity cell. This fine-scale variation is represented as the percentage of each sediment type. 
Random sampling of the resistivity distributions for various sediment types (determined using the above 
approach) is used to develop a relationship between resistivity and the percentage of one or more of the sed-
iment types present. In this study, this approach provided a way to estimate the percentage of sand/gravel in 
a thick vertical interval, information relevant for assessing vertical connectivity within the aquifer system.

3.  Available Data
Two AEM surveys were flown in parts of Butte and Glenn Counties in December 2018, using the SkyTEM 
312 and 304 systems. Figure 2 shows the flight lines of the two AEM surveys. The SkyTEM 312 survey cov-
ered the western part of the study area, which includes the boundary between Butte and Glenn Counties, 
and the SkyTEM 304 covered the eastern part of the study area within Butte County. The total length of 

Figure 2.  Location map of Butte and Glenn Counties in Central Valley of California showing available data. Light 
green and orange lines indicate two AEM surveys flown with SkyTEM 312 and 304 systems, respectively. Black lines 
show the county boundaries. Red circles show 152 resistivity logs; 21 of them also having drillers logs are denoted as 
yellow circles. Open triangles show 55 well locations containing lithology logs within 100 m separation distance from 
AEM soundings; these well locations were treated as co-located with AEM soundings. Cyan circles show the location of 
71 wells with measured water levels during the same week of the AEM survey. Cross marks indicate the location of 12 
multi-completion wells. Blue polygon indicates the Sacramento River. The red line indicates an AEM flight line (lineID: 
L710601). A–A′ shown as a black dashed line indicates horizontal location of a vertical section shown in Figures 9c and 
 11. An empty rectangle shows a well location (wellID: 21N01W11A001M) including both resistivity and lithology logs.
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the flight lines is ∼800 km, and the spacing between lines is ∼500 m. The acquisition of the AEM data was 
managed by Aqua Geo Frameworks (Asch et al., 2019) who also processed the data used in this study.

Resistivity logs were available at 152 well locations; there are also driller's logs at 21 of these locations 
(Figure 2). There were several types of resistivity logs (e.g., 16″ normal, 64″ normal). The 16″ normal was 
the most common type from the 152 wells, so we only used this type of resistivity log. The harmonic and 
arithmetic average of resistivity values from the resistivity logs are 10 and 30  ΩE m , respectively; these aver-
ages were taken to be the upper and lower limits of the average resistivity of the study area. The depth of 
these resistivity logs from the ground surface was, on average 590 m, ranging from 300 to 700 m. The vertical 
interval of the resistivity logs was about 30 cm. Given that the vertical resolution of the AEM is greater than 
30 cm, we upscaled the resistivity logs onto the vertical cells used for the AEM inversion. For this upscaling, 
we used harmonic averaging to take into account the orientation of the electric fields generated during the 
AEM measurement, which can be treated as parallel to the horizontal layering of the hydrogeologic units.

The AEM surveys were designed to fly as close as possible to accurately located wells with driller's logs 
so as to construct an accurate resistivity-to-sediment-type transform (Kang et al., 2021). The result was a 
total of 55 wells with drillers' logs within 100 m of AEM sounding locations, 6 of which were wells with 
resistivity logs; the locations of these wells, treated as co-located with the AEM soundings, are presented in 
Figure 2. The depth of these co-located wells from the ground surface was, on average 160 m, ranging from 
34 to 450 m. We also had available in the study area 12 multi-completion wells, each composed of 2 wells 
with head measurements made in 2 screened intervals over the time period of 2013–2018. We included 
these head measurements when assessing what information could be derived from the AEM data about the 
vertical connectivity of the aquifer system. A similar approach was taken by Korus (2018) to investigate the 
lateral connectivity of an aquifer system using the AEM method and head measurements.

During the week of the AEM surveys (December 2018), water level measurements were made in 71 wells. 
The top of the saturated zone (TSZ) in the study area was estimated by Dewar and Knight  (2020) from 
the AEM data, first calibrating the TSZ estimation method using water level measurements close to AEM 
soundings in the study area and then applying the calibrated method to all AEM soundings. This estimated 
TSZ was used in the process of transforming a resistivity model to a sediment-type model. In the study area, 
the TSZ was on average at a depth of 10 m, ranging from 3 to 22 m.

For the classification of sediment type used in our study, the original descriptions in the driller's logs from 
the 55 wells were grouped into two units: sand/gravel and clay/silt, to create what are referred to as the 
lithology logs. Both sand and gravel are aquifer materials, so they are combined into a single unit. The com-
bining of clay and silt is due to the ambiguity in the original descriptions in the driller's logs as well as in 
the resistivity logs, where distinguishing between silt and clay is difficult, resulting in generalized categories 
that lump together the fines-dominated textures. In addition, there is often little motivation for the driller in 
accurately distinguishing between silt and clay, as they are both several orders of magnitude less permeable 
than sand and gravel, the primary materials of interest when drilling a well. Silts could have a higher resis-
tivity value than clays. In our study area, however, given that it is expected that clays and silts are often de-
posited together and interbedded at a fine-scale (<1 m) beyond the vertical resolution of the AEM method, 
it is unlikely that we can distinguish these fine-scale variations of clays and silts. A few of the logs describe 
materials related to a volcaniclastic debris-flow (lahar). While these materials make up an important facies, 
they are a minor portion of the lithologic logs (<8%) and, because of their resistivity values, we are not able 
to distinguish them in the AEM data from the moderately resistive sand/gravel. We therefore excluded these 
materials from our classification system. When comparing the resistivity and lithology logs, we found a 
good correspondence in the logs between resistivity and sediment type, with sand/gravel corresponding to 
high resistivity values and clay/silt corresponding to low resistivity values.

4.  AEM Interpretation Workflow
Our workflow, developed to obtain and interpret an ensemble of sediment-type models from AEM data and 
well data, included two main steps: the inversion of the AEM data and the rock physics transform. Figure 3 
shows the workflow. In the AEM inversion step, by repeating the inversion with a variable prior model, 
we obtained many resistivity models fitting the data. In the second step, we constructed a rock physics 
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relationship between resistivity and sediment type to transform all of the 
resistivity models into models containing information about sediment 
type, and the percentage of sediment type. The co-located lithology logs 
and water level data were used for this rock physics transform. Addition-
ally, based upon the obtained resistivity values of each sediment type, we 
calculated the critical thickness of each sediment type providing useful 
information for interpreting the fine-scale structure in the obtained sub-
surface models.

4.1.  AEM Inversion

The first step in our workflow is the inversion of the AEM data by using 
a spatially constrained inversion (Kang et al., 2019; Viezzoli et al., 2008) 
to find a recovered resistivity model which fits the observed AEM data 
for a given prior model, then applying the subsequent posterior sampling 
to obtain multiple resistivity models. This procedure was repeated with 
a variable prior model. We conducted six types of inversion, changing 
various parameters defining the prior model of the inversion algorithm 
so as to obtain six different recovered resistivity models. These inversions 
are listed in Table 2 and discussed in more detail below.

We used no reference model in Inversion 1. Given the upper and lower 
limits of the average resistivity in the study area of 10 and 30  ΩE m , respec-
tively, we set the reference model equal to a homogeneous model with 
resistivity equal to 10  ΩE m in Inversion 2, 20  ΩE m in Inversion 3, and 30  ΩE m 
in Inversion 4. In Inversions 5 and 6 we used the available resistivity logs 
to generate a reference model. In all inversions we assumed that there 
is a smooth transition between adjacent AEM soundings and the initial 
guess, 0,E m  was set to a homogeneous model with resistivity equal to 10  
ΩE m . The Delaunay triangulation was used to find adjacent AEM sound-
ings, as was done by Viezzoli et al. (2008). Adjacent soundings separated 
by a radial distance, r, greater than 1  km were neglected. For each of 
the AEM soundings from both SkyTEM 312 and 304 surveys, the same 
layering was used for the recovered resistivity model: 39 layers with a 
thickness starting at 3 m at the surface and then increasing by a constant 
factor of 1.07. The AEM data from both surveys were jointly inverted to 
make sure consistent resistivity values at the spatially overlapping parts 
of the two surveys were obtained. The total number of sounding, soundingE n  , 
was equal to 21,845, resulting in an inversion model, m, of the size 21,845  
E   39 = 851,955 resistivity values; this size of m was referred to as M. The 
data fits of all six inversions were almost the same.

Our regularization function,  mE m  , can be written as

       
   

         
   

2 22
m s s ref r z

dm dmm w m m dV dV dV
dr dz

� (1)

The first term (called smallness) is used to find a model close to the ref-
erence model, refE m  . The parameter, w x y z

s
( , , ) , by default set to 1, is a 

cell-based weighting function that allows the weighting of the reference 
model to vary throughout the survey area. This parameter was used to 
account for the distance between a cell in the resistivity model and the re-
sistivity logs, which were used to define the reference model. The second 
and third terms quantify the variation in the radial direction ( dm dr/  ) and 
the depth direction ( dm dz/  ); these terms are often referred to as smooth-
ness. Note these are all soft constraints with the alpha values   , , ,s r zE  

Figure 3.  Flow chart for the estimating ensemble of sediment-type and 
coarse-fraction models from AEM data and other ancillary data sets 
including resistivity logs, co-located lithologic logs, and water level data.

Inversion number 0E m  ( ΩE m ) refE m sE zE rE sE w

1 10 N/A N/A 1 5 1

2 10 10  ΩE m 1 1 5 1

3 10 20  ΩE m 1 1 5 1

4 10 30  ΩE m 1 1 5 1

5 10  log
intE 0.1 1 5 IDWE w

6 10  log
intE 1 1 5 IDWE w

Note. Explanation of inversion parameters are described in Section 4.1. 
For inversion numbers 5 and 6, we generated an interpolated resistivity 
model using 152 resistivity logs,  log

intE  , and this was used as a reference 
model. The inverse distance weight, IDWE w  , used for the interpolation was 
used as a cell-based weighting for the smallness term, sE w  , to compensate 
AEM soundings far way from the resistivity logs.

Table 2 
Six Different Sets of Inversion Parameters
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determining the relative importance of each of the three terms. Values of rE  and zE  were fixed to 5 and 1 to 
indicate our preference to identify horizontally continuous zones in the aquifer system. The value of sE  was 
varied to adjust the confidence we wish to place on the reference model. The alpha values used for all six 
inversions are given in Table 2. To generate the reference model used in Inversion 5 and 6, we interpolated 
the vertically upscaled resistivity logs onto AEM cells using an inverse distance weighting; this resistivity 
model is referred to as  log

intE  . The inverse distance weights calculated for the interpolation, ,IDWE w  was used as a 
cell-based weighting in Inversion 5 and 6; this effectively assigns higher confidence to cells of the reference 
model closer to the resistivity logs. In Figure 4 we visualize this process of generating the reference model 
from the resistivity logs.

To find an inversion model, E m , which fit the observed AEM data and favored prior knowledge in the reg-
ularization function,  mE m  , we used SimPEG, a Python-based open-source geophysics software package 
(Cockett et al., 2015; Heagy et al., 2017) to minimize the following objective function,  E m  :

        d mm m m�

 subject to d d� (2)

Here dE  indicates data misfit, E m is an inversion model, E  is a trade-off parameter, and 
dE  is a target misfit. The 

inversion iteration was started with the initial guess, 0E m  , and repeated until a good fit of the data was found 
(  d dE  ). The initial E  value, 0E  , was estimated by a power method, then decreased with a constant factor 
(0.5) within the iteration to reduce the importance of the regularization term. For further information about 
the inversion method see Cockett et al., (2015) and Oldenburg and Li (2005).

Given the large range of resistivity values in the survey area, the distribution was best represented in loga-
rithmic form; so, the inversion model was defined as:

      1log log , Mm m � (3)

where E  is electrical conductivity ( S /m ). The data misfit function was defined as


d

i i

obs

ii

N

m
F m d  
  














2

1

,� (4)

where F[ ]  is a Maxwell's operator predicting AEM data for a given model, obs NE d   is the observed AEM 
data; E N is the number of data. The standard deviation (or data error) of the i -th datum, iE   , is defined as

Figure 4.  Interpolation of resistivity logs. (a) Vertically upscaled resistivity logs at 152 well locations. (b) 3D interpolated volume of the resistivity displaying 
result of the interpolation. The vertically upscaled resistivity logs were interpolated to the discretized layers at all sounding locations resulting in  log

intE  . For a 
visualization purpose, we interpolated the  log

intE  to the 3D grid as shown in Figure 6b.
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   relative error % 0.01 obs
i id� (5)

The relative error was set to 3%, and the target misfit, 
dE  , was set to E N . The target misfit was set assuming the 

data error followed the chi-square distribution (Oldenburg & Li, 2005).

The DOI was estimated, following Oldenburg and Li (1999), with a DOI threshold of 0.9. Two inversion 
models (Inversion 2 and 4 in Table 2) were used to calculate the DOI. The choice of the DOI threshold 
was based on the results of 1D AEM inversions shown in Appendix A. A relatively high threshold was set 
resulting in a relatively deep DOI. This was due to our confidence in the resistivity logs and integration of 
these logs into some of our AEM inversions. The estimated DOI was only used qualitatively as supporting 
information for exploring the model space. The calculated DOI was, on average, ∼270 m for soundings 
from the SkyTEM 304 survey and ∼300 m for those from the SkyTEM 312 as shown in Table 1. This minor 
difference in the DOI between the two surveys was attributed to the relatively high signal-to-noise ratio in 
both surveys due to the study area being a relatively low resistivity environment.

We obtained a recovered model, E m  by solving the inverse problem shown in Equation  4 then followed 
the approach of Rue  (2001) and Fang et  al.  (2018) and drew samples from the posterior distribution, 

 
 

1,E m H  . Here,  
 

1,E m H  , indicates a multivariate Gaussian distribution with mean: E m  and covari-
ance: 


1E H  ; the linearized approximation was used for calculating the covariance (Tarantola & Valette, 1982). 

The Hessian matrix, 
 

M ME H   can be written as

     ,T T
m mH J J W W� (6)

where 
 

N ME J   is a sensitivity matrix: 




   
d

F m
E J W

m
 and mE W  is a regularization matrix, which discretiz-

es Equation 2; 
 

   
 

1
d

i
E W diag


 . Similar to Fang et al. (2018), E  was set to  00.01E  to evaluate E H  .

Drawing a sample, sE m  , from the distribution,  
 

1,E m H  can be written as

   
1s Tm m L x� (7)

Here, the lower triangular matrix, E L  , is obtained by the Cholesky factorization of    TE H L L  , and  ME x   is 
a random vector drawn from  0,E I  ;  M ME I   is an identity matrix. By repeating Equation 8, sampleE n  times, 

we can obtain multiple samples, that can be readily transformed to resistivity models ( 
s

s

m exp( )) . For 

our application, we found that sampleE n  1,000 was sufficient to approximate 



1

1 nsample
s
k

ksample
E m m

n
 . This pos-

terior sampling was repeated for each of six recovered resistivity models found with a variable prior model 
resulting in a total of 6,006 resistivity models.

The data misfits of the six recovered resistivity models were about the same as the target misfit. However, 
the data misfits of the 6,000 sampled resistivity models were not the same as the target misfit due to the lin-
earized approximation as well as the assumed Gaussian posterior distribution. The data misfits of the sam-
pled resistivity models were, on average, two times greater than the target misfit, ranging from one to four 
times greater than the target misfit. Given the initial misfit could be several orders of magnitude larger than 
the target misfit, this level of misfit is relatively low. Still, compared to the stochastic inversion approach, 
which can find models with the same level of data fit to the target misfit, this is the limitation of our gradi-
ent-based approach. The computational cost of our approach, however, is much less (a few hundred evalu-
ations of Equation 4) compared to the stochastic approach (a few million evaluations of Equation 4). Fur-
thermore, our approach is structured in a way that can incorporate various forms of available information.

The spatially constrained AEM inversion algorithm and the posterior sampling method described in this 
section were implemented in a SimPEG-EM1D module (Kang et al.,  2019). The SimPEG-EM1D code is 
publicly available through a github repository: https://github.com/simpeg/simpegEM1D.

When displaying the subsurface models in 3D, we interpolated them onto a 3D grid using an inverse dis-
tance weighting method, which is composed of uniform cells each with a dimension of 200 m  E   200 m  

https://github.com/simpeg/simpegEM1D
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E   5 m in easting, northing, and depth direction, respectively. Our choice of the dimension was based upon 
spacing of the AEM flight lines, on average, ∼500 m, and the smallest thickness of the resistivity cells, 3 m, 
at the surface.

4.2.  Rock Physics Transform

We developed and applied two forms of the transforms to obtain information about sediment type from the 
resistivity models. One form was used to map each resistivity value to sediment type, defined as either sand/
gravel or clay/silt. The other form was used to map resistivity to the percentage of sand/gravel.

4.2.1.  Transform of Resistivity Cells to Sediment Type

Using the 55 pairs of co-located 1D layered-resistivity models and lithology logs (shown in Figure 2), we 
used the method of Knight et  al.  (2018) to obtain the resistivity distributions corresponding to the two 
sediment types, sand/gravel and clay/silt. Given that water saturation will have a significant impact on the 
resistivity of lithologic units, we developed separate distributions for the sediment types above and below 
the top of saturated zone (TSZ), using the estimates of TSZ throughout the study area obtained by Dewar 
and Knight (2020).

Using the resistivity distribution for each sediment type above/below the TSZ, we chose the most likely 
sediment type for a given AEM resistivity value,  AEM

x y z( , , ) . This transform function, Fsediment
[ ]  , can be 

written as

F orAEMsediment    0 1,� (8)

where, 0 and one indicate two sediment types: clay/silt and sand/gravel, respectively.

Applying the rock physics transform to all 6,006 resistivity models obtained from the previous step resulted 
in an ensemble of sediment-type models. Using them, we computed the probability of each sediment type:

P

F

L

k

L

k

AEM

sand/gravel

sediment


  1 

,� (9)

P Pclay/silt clay/silt 1 ,� (10)

where, E L is the number of the sediment-type models and subscript k means the kth resistivity model. Note 
that the obtained probabilities varied in 3D space (e.g., P x y zsand/gravel ( , , ) ). We define the level of uncertainty 

sedimentE UC  as reaching a minimum at the two extreme values of sand/gravelE P   = 0 and clay/siltE P   = 1 as expressed 
below:

    sediment sand/gravel1 0.5 2 .UC P� (11)

This uncertainty level in sediment type ranges from 0 to 1. The sediment-type models, along with calculated 
probabilities and uncertainty, were interpreted to obtain information about the large-scale structure of the 
aquifer system.

4.2.2.  Transform of Resistivity Cells to Coarse Fraction

In order to obtain information about sediment type, below the scale resolved in the resistivity models, we 
used the approach of Goebel and Knight (2021). This allowed us to develop a transform between resistivity 
and the percentage of sand/gravel within the volume represented by a cell in the resistivity model; we refer 
to the percentage of the sand/gravel as the coarse fraction. Using the obtained resistivity distributions for 
the two sediment types we sampled from them with variable coarse fraction to construct a second transform 
function, Ffraction[ ]  , which can be written as:

F fAEM AEM
fraction coarse   ,

� (12)

where coarse
AEME f  (x, y, z) is the resulting value of coarse fraction. Applying this rock physics transform to all 6,006 

resistivity models generated an ensemble of coarse-fraction models.
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4.3.  Calculation of the Critical Thickness

It was important, in the interpretation of the AEM data, to determine the ability to detect layers at depth. 
To calculate the critical thickness, we defined a layer as being detectable if the addition of the layer to a 
homogeneous background resulted in a predicted change in the AEM response that was greater than 1%; 
we referred to this predicted change as the layer response. Given the typically assumed noise level of 3% in 
AEM data, this is a conservative estimate, likely to underestimate the thickness that a layer must be in order 
to be resolved at a given depth. The layer response was calculated as follows:

Layerresponse
background layer

% |   
   

100
1

1
n

F F

ch

i

nch
  

 F background

| ,2� (13)

where F   is a Maxwell operator which predicts the AEM response for a given 1D layered-resistivity model; 
layerE  is the 1D layered-resistivity model including the resistive layer; chE n  is the number of time channels in 
an AEM response. Resistivity values of clay/silt and sand/gravel were assigned based upon the obtained 
rock physics relationship in the previous step. The critical thickness was calculated for both the SkyTEM 
312 and 304 systems.

5.  Results and Discussion
5.1.  Interpretation of Sediment Type Models to Obtain Large-Scale Structure

Our interpretation workflow generated a model space that included 6,006 resistivity models (6 recovered 
resistivity models and 6,000 resistivity models from posterior sampling), and a corresponding 6,006 models 
displaying sediment type and 6,006 models displaying coarse fraction. In contrast to the approach typically 
taken in the interpretation of geophysical data (a single resistivity model with a single interpretation), this 
is an enormous model space that can be explored to address the issue that defined this study: an improved 
delineation of the large-scale structure and heterogeneity of the aquifer system so as to better understand 
the extent of vertical connectivity.

The six resistivity models, recovered using the parameters for the six inversions described in Table 2, all 
captured very similar large-scale structure, but varied significantly in areas where the AEM data were less 
sensitive. Given the high quality of the resistivity logs from the survey area, we felt that incorporating infor-
mation from the logs in Inversion 6 significantly improved the accuracy of the recovered model. We show a 
3D view of the recovered resistivity model from Inversion 6 in Figure 5, displaying the subsurface variation 

Figure 5.  Three-dimensional display of subsurface variation in electrical resistivity in Butte and Glenn Counties in 
the Central Valley of California, USA., obtained through the processing and inversion of AEM data. The inverted 1D 
resistivity models imaging the top ∼400 m of the subsurface in the study area are displayed at AEM sounding locations. 
This resistivity model corresponds to Inversion 6 in Table 2.
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in electrical resistivity in the study area. Given our level of confidence in this model, it was used to construct 
the rock physics transform.

When constructing the transform, we used all available resistivity cells that overlapped spatially with the 
vertical intervals of all co-located lithology logs. A small portion (<10%) of the resistivity cells were be-
low the DOI, but were included due to good agreement with the resistivity logs. In Figures 6a and 6b, we 
show the resistivity distributions for clay/silt and sand/gravel, above and below the TSZ, respectively. The 
distributions clearly reveal the impact of water content on the resistivity distributions and emphasize the 
need to treat the regions above and below the TSZ separately. Higher values of resistivity values are found 

above the TSZ than below the TSZ due to the reduced water content. Be-
low the TSZ, the resistivity distributions of the two units are well-sep-
arated, whereas above the TSZ significant portions of the distributions 
are overlapping, due to the impact of the variable water content. Using 
these distributions, we transformed all 6,006 of the resistivity models into 
sediment-type models. The threshold values of 23 and 18  ΩE m were used 
to separate resistivity values above and below the TSZ, respectively, into 
the two sediment types. The resistivity values in the recovered resistivity 
models ranged from 4 to 80  ΩE m . The presence of values that fell outside 
of the distributions in Figure 6 was evidence that our transform did not 
sample all of the resistivity values in the study area. In order to address 
this, any resistivity value greater than those in the sand/gravel distri-
bution was transformed to sand/gravel, and any resistivity value below 
those in the clay/silt distribution was transformed to clay/silt.

For calculation of the critical thickness, the mean resistivity values of 
the clay/silt-dominated and the sand/gravel-dominated below the TSZ, 
16 and 22   ΩE m , respectively, were used (Figure  6b). Shown in Figure  7 
is the critical thickness as a function of depth for a layer of sand/gravel 
in a clay/silt background and a layer of clay/silt layer in a sand/gravel 
background. Given that the critical thickness calculated for the SkyTEM 
312 and 304 systems were almost equivalent, we have only provided the 
results obtained for SkyTEM 312. As expected, the critical thickness, re-
gardless of composition, increases with depth, but the critical thickness 
of the sand/gravel layer is greater at all depths than that of the clay/silt 
layer, indicating the higher sensitivity of the AEM data to a more con-
ductive layer. This critical thickness shows the increasing possibility of 

Figure 6.  Resistivity distributions of clay/silt and sand/gravel obtained from the rock physics transform. (a) Above 
the top of the saturated zone (TSZ). (b) Below the TSZ. Gray and yellow colors indicate clay/silt and sand/gravel, 
respectively. Vertical dashed lines denote threshold values of resistivity used to transform resistivity values from AEM 
to the two sediment types; these threshold values above and below the TSZ are 23 and 18  ΩE m , respectively. Mean 
resistivity values of the clay/silt and sand/gravel above the TSZ are 21 and 26  ΩE m , respectively, and those below the TSZ 
are 16 and 22  ΩE m , respectively.

Figure 7.  The critical thickness of a layer as a function of depth. The 
critical thickness is the required thickness of a layer, embedded in a 
homogenous background, in order for the layer to be detected by AEM 
data. Blue curve: a sand/gravel layer in clay/silt background. Orange curve: 
a clay/silt layer in a sand/gravel background. The resistivity values used for 
clay/silt and sand/gravel were 16 and 22  Ω ,E m  respectively.
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missing a layer (either conductive or resistive) with increasing depth as well as the need to incorporate other 
available information to inform the recovery of the resistivity model. The model space that we obtained 
from the workflow is the result of incorporating various forms of the available information into the inver-
sion process, which informed the recovery of the resistivity models.

As representative of our model space, we show in Figure 8 vertical sections, along the flight line L710601 
(the red line in Figure 2), through the four resistivity models recovered from Inversion 1, 2, 4, and 6 in the 
left panel and the corresponding four sediment-type models derived from the recovered resistivity models 
in the right panel. The region below the DOI is shaded with a transparent white color. For comparison, in 
the left panel are shown 11 resistivity logs and in the right panel 2 lithology logs, all located within 200 m of 
the flight line. During the analysis of the lithology logs, and the development of the rock physics transform, 
we defined the units as sand/gravel and clay/silt. However, given the limited resolution of the AEM method, 
there is very likely clay/silt within the unit we would map as sand/gravel and vice versa. We also knew that 
there was significant spatial heterogeneity within the aquifer system in this area, making it highly unlikely 

Figure 8.  Vertical sections of resistivity and sediment-type models at a flight line: L710601 shown as the red line in Figure 2. The left and right panels 
distinguish resistivity and sediment-type models. Four recovered resistivity models from Inversion 1, 2, 4, 6 (Table 2) and corresponding sediment-type models 
derived from them are shown in (a–d), respectively. A total of 11 resistivity logs and two lithology logs within 200 m from this flight line were shown within 
black rectangles in the left and right panels, respectively. Shaded areas with white transparent color show the region below the depth-of-investigation (DOI).
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that thick homogeneous packages of sand/gravel or clay/silt would be present. We therefore, in interpreting 
sediment type models, referred to the two units as “sand/gravel-dominated” and “clay/silt-dominated.”

In reviewing the four sediment-type models we observe similarities in the large-scale structure. On the 
western side there is a layer dominated by sand/gravel in the top ∼100 m; this layer thins to the east and 
is absent on the eastern side of the models. The next layer is dominated by clay/silt, underlain (in three of 
the models) by a layer dominated by sand/gravel, shallowing toward the east. A comparison with the two 
lithology logs shows the ability of the AEM method to image large-scale packages but not the finer-scale 
variation as discussed in Section 2.3. Despite the similarities in the models, we can see in Figure 8 how the 
variation in the regularization function, used in the inversion, caused differences in the resistivity models 
and derived sediment-type models.

In Figure 8a we see a smooth layered structure in the resistivity model, and therefore in the derived sedi-
ment-type model. This reflects the emphasis put on the smoothness constraint in the regularization func-
tion and the lack of a reference model. In Figure 8b we see that adding a reference model of 10  ΩE m , which 
corresponds to clay/silt in our rock physics transform, to the regularization function results in more re-
sistivity values close to 10  ΩE m , at depths below ∼200 m from the ground surface. In this region, the AEM 
data have low sensitivity, so the inversion heavily weights the information contained in the regularization 
function. The impact of this is to increase, relative to Figure 8a, the amount of clay/silt-dominated material 
that is shown in the sediment-type model at depths below ∼150 m. Similarly, in Figure 8c (Inversion 4), 
changing the reference model to 30  ΩE m , which corresponds to sand/gravel-dominated in our rock physics 
transform, results in more resistivity values close to 30  ΩE m below ∼200 m; this increases the amount of the 
sand/gravel-dominated material below ∼200  m. The fact that adding a reference model can completely 
change the sediment type is a good illustration of the high level of uncertainty that we face, and the impor-
tance of characterizing it, when deriving and interpreting a sediment-type model from AEM data.

While it is important to capture the uncertainty, it is equally important to recognize that adding relevant 
information to the inversion can improve the accuracy of the sediment-type model of the subsurface. This 
was demonstrated in conducting Inversion 6, where we used the interpolated resistivity logs as a reference 
model, with cell-based weighting. This constrained the inversion to find a resistivity model that not only fit 
the observed data, but also provided a good match with the resistivity logs. The result, as would be expected, 
was a much better match between this recovered resistivity model and the resistivity logs than was seen 
with the other resistivity models. More importantly, this model achieved improved agreement with the 
lithology logs. In particular, as shown in the right panel of Figure 8d, we see good agreement between the 
sediment type model and the lithology logs at the base of the top sand/gravel-dominated layer as well as 
at the top and base of the thick sand/gravel-dominated package underlying the clay/silt-dominated layer.

This exploration of the model space of the AEM data, positioned us to obtain information about the large-
scale structure and heterogeneity in the aquifer system. Because of the high quality of the resistivity logs in 
the area, we selected the resistivity and sediment-type models derived from Inversion 6 to be the primary re-
sistivity and sediment-type models. We interpolated the resistivity model onto the 3D grid using an inverse 
distance weighting and transformed all cells to sediment type. We then used the models in our model space, 
that is, the 6,006 resistivity models and derived/corresponding sediment type models, to quantify probabil-
ities and uncertainty; the probability of sand/gravel-dominated and the uncertainty of sediment type were 
interpolated onto the 3D grid as well.

In Figure 9a we show the 3D primary sediment-type model displaying only those regions classified, through 
use of the transform, as being sand/gravel dominated; the DOI is presented as a blue transparent interface. 
In Figure 9b we show the same regions, displaying the probability of sand/gravel-dominated calculated 
using the other 6,005 sediment type models, where the probability in a cell is equivalent to the percentage 
of models having the same sediment-type mapped in that cell. We see that the probability ranges from 30% 
to 100%, with the histogram of values shown in Figure 10. Recalling that this is a binary system in terms of 
sediment type, the sum of the probability of sand/gravel-dominated and the probability of clay/silt-domi-
nated is equal to 100%. Some sand/gravel-dominated cells in the primary sediment-type model have prob-
ability values less than 50%. This was caused by our choice of the primary sediment-type model being the 
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sediment-type model transformed from the primary resistivity model (Inversion 6 in Table 2), rather than 
the most-likely model.

The results derived from our AEM data were used to obtain information about the large-scale structure and 
heterogeneity within the aquifer systems. In Figure 9c, we show a vertical section through the model in Fig-
ure 9b with our interpretation. The model extends from the vertical section A–A′, the location of which is 
shown in Figure 2 and extends to the north. Seen in this section is the large-scale structure that we observed 
in the other sediment-type models shown in the right panel of Figure 8. As seen in the histogram (Fig-
ure 10), most of the probability values in the displayed regions are above 50% indicating that this structure 
is present in the majority of models. In the eastern part of the study area, there appears to be a continuous 
package of fit sand/gravel-dominated starting at the East-to-West (E–W) boundary and extending to the 

Figure 9.  The results of the AEM interpretation workflow in a 3D view. (a) A display of sand/gravel-dominated 
(yellow color). (b) The regions shown in (a) but shaded with the probability of sand/gravel-dominated, /sand gravelE P  . (c) 
Overlain interpretation. The model shown in (c) extends from the vertical section A–A′ the location of which is shown 
in Figure 2, and extends to the north. Blue dashed lines indicate the location the A–A′ vertical section in the 3D view. 
The E–W boundary shown as a black line separates the eastern and western part of the regions. In the western part of 
the region, the upper, middle, and lower zones are delineated by the three surfaces—the base of the upper zone (blue), 
the base of the middle zone (red), the base of the lower zone (yellow). In the eastern part of the region, a single sand/
gravel-dominated zone is identified, which is denoted as the eastern zone; the red and blue surfaces in this region 
correspond to the top and base of the eastern zone.
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eastern limit of the study area; this E-W boundary separates eastern and 
western part of the region as shown in Figure 9c. We refer to this package 
of sand/gravel-dominated as the eastern zone; top and base of the eastern 
zone are mapped with red and yellow surfaces, respectively, in Figure 9c. 
In the western part of the study area, which corresponds to the westside 
of the E–W boundary, we identified three zones: an upper zone which is 
primarily sand/gravel-dominated, a middle zone which is primarily clay/
silt-dominated, and lower zone which is primarily sand/gravel-dominat-
ed. The extent of these zones is shown in Figure 9c using three surfaces: 
the base of the upper, middle, and lower zones correspondingly repre-
sented as blue, red, yellow surfaces.

The information about probability extracted from our model space was 
used to quantify the uncertainty of sediment type in each cell. When a 
cell has a probability of 100%, in terms of corresponding to one of the 
sediment types (sand/gravel or clay/silt), the uncertainty is defined as 

0. As the probability, for either sediment type, moves toward 50%, the uncertainty increases, reaching a 
maximum of 1 when the probability of both sediment types equals 50%. This uncertainty is displayed in 
Figure 11. The dominant factor determining uncertainty is an inability to resolve the variation in resis-
tivity; that is, we cannot accurately determine the resistivity value in each cell. The ability to resolve the 
resistivity decreases with depth. It is important to note that above the DOI there can be significant levels of 
uncertainty in areas where there is high spatial complexity so that resistivity is changing rapidly vertically 
and/or laterally. At the boundaries between the two sediment types, the smoothness constraint used in the 
inversion will result in recovered resistivity values close to the threshold resistivity value separating the 
two sediment types. Thus, small variations in recovered resistivity can easily change the resulting sediment 
type, determined from the transformation. This results in a high level of uncertainty in sediment type at any 
interface between the two sediment types.

The image of uncertainty in Figure 11 displays higher uncertainty with increasing depth but also maps sur-
faces displaying high uncertainty at shallower depths. The average uncertainty level of the lower zone, 0.6, 
was the highest of all the zones. This is an expected result because of the decreasing resolution of the AEM 
method with depth. Throughout the rest of the image, the changes and patterns we found in uncertainty 
indicate that the loss of resolution with depth was not the only control on the observed uncertainty. At the 
large scale, we found high uncertainty coincident with the surfaces defined as separating zones in the aq-
uifer system. These surfaces separate zones dominated by different sediment types so, as described above, 
are expected to be surfaces of high uncertainty. At the smaller scale, within the zones, there are differences 
in both the average level and in the variability of the uncertainty which we also interpret as related to the 
presence of interfaces across which there are changes in sediment type. We found a moderate level of un-
certainty in both the upper zone, 0.4, and the middle zone, 0.38. The fact that these uncertainty levels are 

Figure 10.  Histogram of the probability of sand/gravel-dominated shown 
in Figure 9b.

Figure 11.  The estimated uncertainty in sediment type from AEM data in a 3D view. The 3D uncertainty extends 
from the vertical section A–A′ the location of which is shown in Figure 2, and extends to the north. Blue dashed lines 
indicate the location the A–A′ vertical section in the 3D view.
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very similar, not higher in the middle zone as would result from the degradation in resolution with depth, 
we attribute this to the presence of greater fine-scale variability in sediment type in the upper zone as well 
as a higher sensitivity of the AEM data to the conductive zones than to the resistive zones. The middle 
zone generally has a lower resistivity than the upper zone as most of the middle zone was classified as clay/
silt-dominated (Figure 9c). The observed patterns in uncertainty within the upper zone indicate a complex 
interlayering of sand/gravel and clay/silt. A zone of high uncertainty within the lower aquifer, as shown in 
Figure 11, is due to the presence of the conductive zone above, an effect related to high level of dissipation 
of the AEM signal in the conductive zone (Blatter et al., 2018). The eastern zone has an average uncertainty 
value of 0.24 and shows a low level of uncertainty throughout the zone, suggesting less fine-scale spatial 
variability in sediment type compared to the other zones and the absence of thick packages of conductive 
clay/silt-dominated unit. The image of uncertainty in Figure 11 reveals numerous areas where we cannot 
interpret, with certainty, sediment type but we can interpret—with certainty—the presence of changes in 
sediment type, over short vertical distances (e.g., vertical intervals close to the surfaces shown in Figure 11).

5.2.  Interpretation of Coarse-Fraction Map to Obtain Information About Vertical Connectivity

Our assessment of vertical conductivity transformed the 6,006 resistivity models in the model space to mod-
els containing estimates of the percentage of the sand/gravel, referred to as the coarse fraction, using the 
second form of the rock physics transform; working with all of the resistivity models allowed us to quantify 
the uncertainty in our estimates of coarse fraction.

The second transform was constructed using the primary resistivity model (from Inversion 6). Figures 12a 
and 12b show the constructed transforms between resistivity values and coarse fraction above and below 
the top of the saturated zone (TSZ), respectively. The gray shaded region shows the standard deviation (i.e., 
68% confidence interval), taken as the uncertainty of the transformed coarse fraction caused by variation 
in the resistivity distributions of the sediment types. The average standard deviation below the TSZ is 5%, 
which was interpreted as small enough to be negligible given the variations in the resistivity models. The 
average standard deviation is higher above the TSZ, 24%, which is to be expected; there will be greater varia-
tion in the resistivity distributions due to the variable water content. Given that our interest is in the aquifer 
system defined below the TSZ, where the standard deviation was negligible, this uncertainty in the rock 
physics relationship was not taken into account when transforming resistivity values to coarse fractions.

There are resistivity values beyond the range of the transform (e.g., 16–22  ΩE m below the TSZ). To address 
this, any resistivity value less than the lower limit was set to 0% coarse fraction and any resistivity value 
greater than the upper limit was set to 100% coarse fraction. The fact that there are resistivity values beyond 
the range of the transform shows the limitation of our approach. Thus, it is important not to interpret the 
absolute values displayed in the coarse-fraction model, but to use the model in conjunction with available 
hydrological data (e.g., head data) to assess spatial heterogeneity in the area.

Figure 12.  The relationship between resistivity and coarse fraction: (a) above and (b) below the top of the saturated 
zone (TSZ). Gray shaded region indicates the standard deviation of the coarse fraction illustrating the uncertainty of the 
transform when converting resistivity values to coarse fraction.
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We transformed all resistivity models resulting in 6,006 coarse-fraction models, then calculated the vertical 
average of the coarse fraction, between the TSZ and the base of the eastern zone in the eastern part of the 
study area, and between the TSZ and the base of the lower zone in the western part of the study area. When 
viewed in plan view, this provided vertically integrated coarse-fraction maps. The coarse-fraction map de-
rived from the primary resistivity model is shown in Figure 13a; red lines contour the 50% coarse-fraction 
values. The standard deviation, obtained from the 6,006 models, is shown in Figure 13b. We expected and 
observed a low level of uncertainty throughout most of the study area; white lines contour the 10% standard 
deviation values. The black dashed line marks the separation between the eastern and western part of the 

Figure 13.  Interpolated maps providing information about the vertical connectivity of the aquifer system and the 
uncertainty. (a) The coarse-fraction map with location of 12 multi-completion wells indicated by circles color coded 
with the maximum vertical hydraulic gradient. Letters A−L indicate names of the 12 multi-completion wells. Red 
contours indicate 50% coarse-fraction values. Black dashed line indicates the E−W boundary delineating the horizontal 
boundary between the lower and eastern zones. Blue polygon indicates the Sacramento River. (b) The standard-
deviation map representing the uncertainty; darker color indicates low uncertainty (i.e., low standard deviation); white 
contours indicate 10% standard-deviation values.
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study area, labeled as the E–W boundary in the figure; the Sacramento 
River is represented as the blue polygon. The center locations of the up-
per screened intervals in the multi-completion wells were, on average, 
46  m depth below the surface, ranging from 19 to 46  m. Those of the 
lower screened intervals were, on average 232 m depth below the surface, 
ranging from 134 to 232 m. We interpreted that these upper and lower 
screened intervals effectively captured the vertical head gradient of the 
aquifer system.

The open circles shown in Figure 13a are the locations of the 12 mul-
ti-completion wells in the study area; these wells are labeled A to L, 
going from east-to-west. Each well is composed of two wells with head 
measurements made in two screened intervals. As an indication of ver-
tical connectivity within the aquifer system, we calculated, for each 
multi-completion well, the minimum and maximum magnitude of the 
vertical head gradient, dh dz/  between 2013 and 2018. As demonstrated 
by (Fogg, 1986), in heterogeneous, clastic sedimentary complexes such 
as this one, values of dh dz/  vary strongly as a function of vertical con-
nectivity, or the effective vertical hydraulic conductivities. Good vertical 
connectivity produces lower values of dh dz/  , approaching the lower val-
ues that typify horizontal gradients ( dh dx/  ) that occur in the relatively 
well-connected, horizontally stratified packages of sedimentary facies, 
even when significant sources and sinks (e.g., recharge, pumping from 
wells) exist to drive vertical flow (Fogg, 1986). Poor vertical connectivity 
produces much higher values of dh dz/  that would not be explainable by 
sources and sinks alone.

The solid circles showing the well locations in Figure 13a are color-coded to display the maximum dh dz/  . 
The horizontal hydraulic gradients, dh dx/  , in the study area are on the order of ∼ 310E  , so we interpreted 
dh dz/  values close to this as indicative of good vertical connectivity, with connectivity decreasing as dh dz/  
increases (Fogg, 1986). In Figure 14 we plot the minimum and maximum | dh dz/ | versus the AEM-derived 
coarse fraction for the closest AEM sounding. The lateral separation distance between an AEM sounding 
and a multi-completion well ranged from 22 to 400 m. In both the map view in Figure 13a and the plot in 
Figure 14, we observe a correlation between the values of dh dz/  and coarse fraction from the AEM data, with 
the general trend of decreasing vertical hydraulic gradient with increasing coarse fraction; an exception is 
the one outlier marked with red open rectangle (Well C).

We found low dh dz/  values at monitoring wells A, B, and D in the eastern part of the study area. Figure 15 
shows the hydrographs from Well A. Also shown are the layered-resistivity and sediment-type models from 
the closest AEM sounding and the resistivity and lithology logs from one of the wells in the multi-comple-
tion well; the TSZ and the base of the eastern zone are shown as black dashed lines. The two hydrographs 
are almost coincident, indicating good connectivity between the two depth intervals tapped by those wells; 
max dh dz/  is  31.5 10E  . Sediment type from the AEM data show a thick package of sand/gravel-dominated 
unit between the TSZ and the base of the eastern zone. Figure 15a shows that coarse fraction within the aq-
uifer system is above 50% throughout most of the eastern area. This, combined with the well measurements, 
suggests that this is the region where we have the greatest vertical connectivity. The eastern area, interpret-
ed from the AEM data to be a thick package of sand/gravel-dominated material, represents volcaniclastic 
materials derived from sources to the northeast. These include sand and gravel-filled channels as well as 
debris flow deposits of the Tuscan and Quaternary formations.

In the western part of the aquifer system, we found coarse fraction values less than 50% in many areas 
and higher dh dz/  values in the data from monitoring wells (G–L) in those areas than found in the eastern 
part. Shown in Figure 16 are two hydrographs from the shallower and deeper screened intervals in Well G. 
The different trends, particularly between 2013 and 2014, and the max dh dz/  of  25.5 10E  indicate poor 
connectivity. Both the AEM-based information and the logs show the presence of multiple clay/silt layers 
between the TSZ and the base of the lower zone.

Figure 14.  A cross plot of coarse fractions from the AEM data and vertical 
hydraulic gradients from the head data. Solid and transparent green circles 
distinguish the maximum and minimum vertical hydraulic gradients, 
respectively. Letters A−L indicate names of the 12 multi-completion 
wells, and their locations are shown in Figure 13a. Black, red, and blue 
rectangles indicate the multi-completion wells labeled as A, C, and G, 
respectively. The hydrographs from the A, G, and C wells are presented in 
Figures 15–17, respectively.
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The western part is where we identified the thick, clay/silt-dominated middle zone. This results in low 
coarse-fraction values which dominate the map pattern allowing more isolated fluvial channels within 
the upper zone of the aquifer system to be highlighted. In particular, coarse fractions from the north-to-
south trending Sacramento River system exist on the east side of the Easting line: 585,000 m, while north-
west-to-southeast oriented features from the Tehama and Quaternary formations (Stony Creek system) are 
shown on the west side of this line (Figure 14).

Figure 17 shows the hydrographs and other data for Well C which, as seen in Figures 13a and 14, does not 
show the same correlation between dh dz/  and coarse fraction as seen for the other wells. The magnitude of 
max dh dz/  is 0.18, which indicates low connectivity. However, the layered-resistivity and sediment type 
models show the presence of a thick sand/gravel-dominated package between the TSZ and the base of the 
eastern zone. In the lithology log, however, there is a 5-m-thick clay/silt layer described at ∼75 m depth. 
This clay/silt layer likely acts as a hydraulic barrier between the two screened intervals but was not resolved 
by the AEM method. As shown in Figure 7, the critical thickness of the clay/silt at 75 m depth is 5.5 m 
making it possible that the AEM method was unable to detect this layer.

There is not enough information available in the AEM data alone to make it possible to accurately quantify 
vertical connectivity within an aquifer system. We found, however, that deriving the coarse fraction from 

Figure 15.  Comparison of the AEM-based information with the head measurements from a multi-completion well (location A in Figures 13a and 14; 
wellpairID: 20N02E24C). (a) Two hydrographs from the shallower and deeper screen intervals shown as blue and orange curves, respectively; a value of 
maximum vertical hydraulic gradient is denoted in the title. (b) 1D layered-resistivity and sediment type models from the closest AEM sounding location. (c) 
Resistivity and lithology logs from a well included in the multi-completion well. The shallower and deeper screened intervals are shown as blue and orange 
boxes, respectively, in (b and c); the TSZ and the base of the eastern zone are shown as black dashed lines in (b and c). The DOI is shown as a blue dashed line 
in (b).
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the AEM data provided an indicator of connectivity that could be used, in conjunction with well data, to 
assess the variability in connectivity throughout our study area.

6.  Conclusions
We developed a methodology for the interpretation of AEM data that involved the use of multiple inver-
sions of the acquired AEM data, with the incorporation of various forms of available information, and the 
development of derived models of sediment type and coarse fraction. Exploring this large model space 
allowed us to use the quantified uncertainty as an integral part of our interpretation of the derived models, 
and to communicate our level of confidence in the interpretation.

In the inversion of the data, we benefitted in the study area by having high quality resistivity logs available. 
The range of average resistivity from the resistivity logs was used to set a homogeneous reference model. We 
found that simply changing a resistivity value of a homogeneous reference model effectively changed the 
resulting resistivity values in the recovered resistivity model and transformed sediment type. This demon-
strated the relatively high level of uncertainty present in the inversion step of the workflow. Using the 
interpolated resistivity logs as a reference model improved the accuracy of the sediment-type model, thus 

Figure 16.  Comparison of the AEM-based information with the head measurements from a multi-completion well (location G in Figures 13a and 14; 
wellpairID: 22N01W29N). (a) Two hydrographs from the shallower and deeper screen intervals shown as blue and orange curves, respectively; a value of 
maximum vertical hydraulic gradient is denoted in the title. (b) 1D layered-resistivity and sediment type models from the closest AEM sounding location. (c) 
Resistivity and lithology logs from a well included in the multi-completion well. The shallower and deeper screened intervals are shown as blue and orange 
boxes, respectively, in (b and c); the TSZ and the base of the lower zone are shown as black dashed lines in (b and c). The DOI is shown as a blue dashed line in 
(b).
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demonstrating the value of incorporating high quality ancillary data in the inversion. The recovered resis-
tivity model from this inversion was used to develop our primary sediment-type model.

We first used the primary sediment-type model to interpret the large-scale structure of the aquifer system 
and used all of the models in the model space to quantify uncertainty. The observed uncertainty gave us 
confidence in our interpretation of the large-scale structure and also provided additional information about 
subsurface heterogeneity. Not surprisingly, regions below the DOI showed high levels of uncertainty. What 
our methodology revealed, however, were areas with high levels of uncertainty across the entire depth 
range of our models. The uncertainty was highest along surfaces where the resistivity values were very 
close to the cut-off between the resistivity ranges corresponding to the two sediment types. In this way, the 
sediment-type models displaying high levels of uncertainty over short vertical distances, displayed–with 
certainty–interfaces across which sediment type was changing. This is a new form of interpretation of AEM 
data that can be used to assist in the mapping of large-scale structure and to identify regions where there is 
significant finer scale interlayering of different sediment types.

The motivating issue in this study was to develop an improved understanding of the vertical connectivity 
of the aquifer system. We used vertical head gradient data from 12 multi-completion wells to obtain inde-
pendent indicators of connectivity at 12 locations that helped to corroborate the results derived from the 

Figure 17.  Comparison of the AEM-based information with the head measurements from a multi-completion well (location C in Figures 13a and 14; 
wellpairID: 21N02E18C). (a) Two hydrographs from the shallower and deeper screen intervals shown as blue and orange curves, respectively; a value of 
maximum vertical hydraulic gradient is denoted in the title. (b) 1D layered-resistivity and sediment type models from the closest AEM sounding location. (c) 
Resistivity and lithology logs from a well included in the multi-completion well. The shallower and deeper screened intervals are shown as blue and orange 
boxes, respectively, in (b and c); the TSZ and the base of the eastern zone are shown as black dashed lines in (b and c). The DOI is shown as a blue dashed line 
in (b).
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geophysical data, and enrich our interpretation. We transformed the resistivity values from the primary re-
covered resistivity model to the percentage of sand/gravel, and from this obtained a plan view of integrated 
coarse fraction across the depth range of the imaged aquifer system. We found a correlation between coarse 
fraction and vertical head gradient, which suggests that the coarse-fraction maps, derived from AEM data, 
can be used to bridge the data gap between sparse multi-completion wells. When combined with the in-
terpreted large-scale structure, these maps could also be used to prioritize the locations of new monitoring 
wells to obtain a more complete understanding of the vertical connectivity within the aquifer system.

The AEM method can provide valuable information about aquifer systems and thereby benefit manage-
ment efforts. The focus of our research is to develop ways of maximizing the information about aquifer 
systems that can be obtained from AEM data while capturing and communicating the relevant uncertainty. 
We advocate an approach that works with an extensive model space, so that mapping of uncertainty can 
become the standard practice when interpreting AEM data. As we found in this study, quantifying uncer-
tainty can be used not only to communicate the level of confidence in the identification of sediment type, 
but can assist in identifying interfaces between sediment type, at both the large and fine scale. Continued 
research, focused on exploring the optimal way to interpret AEM data, and integrate these data with other 
forms of hydrologic data, will undoubtedly lead to the increased adoption of the AEM method as an integral 
component of subsurface characterization for groundwater science and management.

Appendix A

A 1 D.  AEM Inversions With a Single Sounding

In this appendix, we describe how we selected the inversion parameters presented in Table 2 with a 1D 
AEM inversion analysis. We used a single AEM sounding with the closest separation distance from a well 
location marked as open rectangle in Figure 5 (wellID: 21N01W11A001M); this separation distance is 24 m. 
Both lithology and resistivity logs are available at this well, and they are shown in Figure A1. We applied the 
workflow to the AEM response from a single sounding location. The first step is inverting AEM response. 
Prior information used for 1D AEM inversions is the following. First, a general conceptual model in the 
Central Valley where the study area is located is the presence of sand/gravel (resistive) channels embedded 
in a clay/silt (conductive) background (Faunt, 2010); this was used to determine the initial guess of the 
inversion. Second, the range of the average resistivity from the resistivity logs in the study area is: 10–30  ΩE m ; 
this was used to generate a homogenous reference model. Third, the closest resistivity log from the AEM 
sounding shown in Figure A1 was used to generate an inhomogeneous reference model.

We performed three stages of 1D AEM inversions by altering prior models. We started our first stage of 
AEM inversions with a minimal prior information only using the smoothness term in Equation 2. In the 
second stage, we added a homogenous reference model using the range of the average resistivity. As shown 
in Figure A1, the resistivity log was upscaled to the layer used for the AEM inversion, used as a reference 
model in the third stage.

For the first stage of inversions sE  and zE  were set to 0 and 1, respectively; sE   = 0 indicates there is no in-
fluence from a reference model. We ran three inversions with variable starting models   10, 20, and 30  ΩE m 
based upon the range of the average resistivity. Figure A2 shows recovered layered-resistivity models; the 
upscaled resistivity log is shown together for comparison with the recovered models. Overall, all three mod-
els are very similar indicating that inversions are insensitive to an initial model. Based upon that we fixed 
the initial model, 0E m  , as 10  ΩE m for following inversions. Given that the clay/silt is the background materials, 
the lower limit of the average resistivity, 10  ΩE m , was chosen as the initial model.

In the second stage, we added a homogeneous reference model. For this, sE  value was increased from 0 to 
1; zE  was kept as one indicating relative importance of the smoothness and the smallness terms are about 
the same. We ran three inversions with variable reference models: 10, 20, and 30  ΩE m . Figures A3 and A4 
shows recovered layered-resistivity models. In top 200 m, three resistivity models are similar, whereas they 
show significant differences below 200 m. This indicates a high level of the uncertainty below 200 m. The 
recovered resistivity value gets closer to the reference model as the depth increases. This reflects decreasing 
sensitivity of AEM response with depth. For deep layers having a low sensitivity of AEM response, our in-
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version was constrained to put resistivity values close to the reference model. This was a fundamental idea 
for Oldenburg and Li (1999) to compute DOI, which indicates the depth at which we lose resolving ability. 
We followed this approach, and compared the calculated DOI with another well-known approach from 
Vest Christiansen and Auken (2012), which have been widely used in AEM inversions for hydrogeologic 
applications.

The DOI approach from Oldenburg and Li (1999) requires carrying out two inversions with different refer-
ence models: 1

refE m  and 2
refE m  ; resulting inversion outputs are 

1E m  and 
2E m  . Then DOI index can be computed as.

 




1 2

1 2
ref ref

m mDOI index
m m� (A1)

To calculate the DOI, we selected the two recovered layered-resistivity models, which used 10 and 20  ΩE m as 
the reference models; so, 1

refE m  and 2
refE m  are 10 and 20  ΩE m , respectively. To decide the DOI, a threshold value 

for the DOI index needs to be chosen, and this process is somewhat arbitrary; any value can be chosen be-
tween 0 and 1. DOI index of 0 means that the ability to resolve structure is high, whereas that of 1 means 
that the lack ability to resolve structure. We calculated the DOI with two threshold values: 0.4 and 0.9, and 
calculated DOI values were: 280 and 353 m, respectively. The DOI calculated from Vest Christiansen and 
Auken's (2012) approach was 271 m with their threshold value of 0.8; this value matches well with our DOI 
with threshold value of 0.4, 280 m. A threshold value of the DOI was determined later in this appendix after 
we finished the final stage of inversions.

For the final stage of inversions, we used the upscaled resistivity log shown in Figure A1 as a reference mod-
el. It is important to recognize that the supporting volume of the resistivity log is much smaller than that of 
the AEM data (see Figure 1a). Thus, the resistivity log is not a perfect representation of the true resistivity 
model that we seek in our AEM inversion. The reference model should be viewed as a soft constraint, which 
is the inversion is not forcing the recovered layered-resistivity model which is the same as the reference 

Figure A1.  Resistivity and lithology logs at a well location (wellID: 21N01W11A001M). Thin and thick black lines 
indicate measured resistivity values with half foot sampling rate and upscaled resistivity values into a layering used for 
the AEM inversion. Gray and yellow shaded layers display lithologic data classified as clay/silt (gray) and sand/gravel 
(yellow). Blue dashed line indicates the top of the saturation zone (TSZ). The location of the well is denoted as a cross 
mark in Figure 5.
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model. Our confidence of the reference model can be adjusted with sE  . We ran two inversions with different 
sE  values: 0.1 and 1, and show the results in Figure A5. Both of the recovered layered-resistivity models are 
much closer to the upscaled resistivity log compared to the models from the previous inversions. A higher 
sE  value reinforces the inversion to be closer to the reference model. Note that even when we set the sE  value 
to 1, the recovered layered-resistivity model is not exactly the same as the upscaled resistivity log, which in-
dicates the trade-off made in the inversion to fit the data while preserving structures in the reference model.

From a total of eight recovered layered-resistivity models, we removed two from the first stage which did not 
show major differences, resulting in a total of six recovered models; these two models correspond to Figures 
A2b and A2c. In Figure A6, we show the remaining six recovered layered-resistivity models. Red and blue 
lines distinguish whether the upscaled resistivity log was used as a reference model or not. The two DOI 
estimates with different threshold values are also shown as dashed lines. In the top 200 m, all six resistivity 
models are compatible except for a few minor features: underestimated resistivity values for a shallow re-
sistor in the top 30 m and the absence of a thin resistor at 60 m depth indicating a low level of uncertainty 
in the top 200 m. Below 200 m, the layered-resistivity models show large differences indicating a higher 
level of uncertainty. Imaging the thick resistor at 230 m depth was not possible without the resistivity log 
information, even though it's top boundary was located above the DOIs. However, with the resistivity log 
information, we were able to image this thick resistor. Given that we have successfully incorporated the 
resistivity log information, we selected 0.9 as our threshold value for calculating the DOI.

Figure A2.  Recovered layered-resistivity models from inversions with variable initial models: (a) 10  ΩE m , (b) 20  Ω ,E m  and (c) 30  ΩE m . Only the smoothness 
constraint is used for the regularization function.
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Figure A3.  Recovered layered-resistivity models from inversions with homogeneous reference models: (a) 10  ΩE m , (b) 20  Ω ,E m  and (c) 30  ΩE m . Both the 
smoothness constraint and reference model were used for the regularization function.

Figure A4.  Estimating depth of investigation (DOI) using Oldenburg and Li's (1999) approach. The two layered-
resistivity models recovered from inversions with different reference models: 10 and 20  ΩE m are distinguished as red 
and blue lines. Estimated DOI values with threshold values of 0.4 and 0.9 are shown as black and blue dashed lines, 
respectively. For comparison an estimated DOI value from Vest Christiansen and Auken's (2012) approach with a 
threshold value of 0.8 is shown as red dashed line. Black line shows the upscaled resistivity log.
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Figure A5.  Recovered layered-resistivity models from inversions by using the upscaled resistivity log as a reference 
model with variable sE  values: (a) 0.1 and (b) 1. Black line shows the upscaled resistivity log. Both the smoothness 
constraint and reference model were used for the regularization function.

Figure A6.  Six layered-resistivity models recovered from 1D AEM inversions with different prior models. Red and 
blue lines distinguish whether the upscaled resistivity log was used as a reference model or not. Black line shows the 
upscaled resistivity log. Black and blue dashed lines show the DOIs with threshold values of 0.4 and 0.9, respectively.
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Data Availability Statement
Data sets used in this research are publicly available through the open data portal of the California Depart-
ment of Water Resources: https://data.ca.gov/dataset/airborne-electromagnetic-aem-pilot-studies.
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