
UCLA
UCLA Electronic Theses and Dissertations

Title
Regime Based Clustering for the Modeling of Two-Dimensional Vector Fields

Permalink
https://escholarship.org/uc/item/9d74q7nj

Author
Nakamura, Mark Hiroshi

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9d74q7nj
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Regime Based Clustering for the Modeling of

Two-Dimensional Vector Fields

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Mark Hiroshi Nakamura

2014



c© Copyright by

Mark Hiroshi Nakamura

2014



Abstract of the Dissertation

Regime Based Clustering for the Modeling of

Two-Dimensional Vector Fields

by

Mark Hiroshi Nakamura

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2014

Professor Mark Handcock, Chair

A two-dimensional dynamic vector field is any system in which spatially sepa-

rated values move over or through a diverse terrain. Examples of this include

wind fields, ocean currents, gaseous systems, and the movement of people. With

the exponential growth of these dynamic data sets, via environmental sensing

satellites, smart cameras, and GPS enabled cell phones, there is an immediate

need for new techniques.

Modeling dynamic vector fields not only entails measuring the spatial depen-

dence between locations and variables, but also capturing the independent markers

that signal directional flow changes. In order to capture this, the objective of this

new technique was to break down the modeling process into several steps. Given

that spatial dependence changes with directional flow, it is the first objective to

cluster the training data set of vectors into several distinct flow regimes. The

following step is to then build separate spatially dependent models for predicting

the value’s strength and direction within each regime. By first grouping the data

into clusters, we achieve subsets of data with spatial dependence structures that

are more homogenous, reducing overall variance or mixed signals in our modeling

training.
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The process and interpretation of regime based cluster modeling will be demon-

strated in the statistical downscaling of two-dimensional ten meter wind fields over

the diverse coastal and mountainous terrain of Southern California. Southern Cal-

ifornia’s coastal mountains provide the perfect example of topography changing

spatial dependencies with the change of the overall wind direction. This statis-

tical downscaling process helps local regions prepare for and understand possible

climate changes and leverages the growing number and importance of Global Cli-

mate Models.
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CHAPTER 1

Introduction

1.1 Statement of the Problem

The objective of this research is to build a predictive spatial model for two-

dimensional dynamical systems. I will use the words dynamical and flow to rep-

resent spatial systems that move throughout time. This implies that predictions

will be made not only for a specific value (e.g. strength, intensity, etc.) but also

for the value’s direction in movement. This natural movement is not only caused

by the relationships between several variables but they are also heavily influenced

by the physical setting, or topographic information. The covariates can give us

the source and strength of the push, but topographic barriers redirect and channel

these forces. These systems are more often than not deterministic but are still

very complex processes and can be represented as vector fields.

Studying and modeling environmental systems provides researchers with a

unique opportunity. Environmental systems can have well known processes, but

the complexity of the inter-relationships and the physical setting makes the pre-

dictions difficult. In these studies, it is in my opinion that the objective of the

statistician is to balance the simplification of the system while still capturing the

natural properties of the relationships, so the models can be understandable and

informative. In addition, these two-dimensional flows also provide statisticians

the opportunity to further develop the relationship between spatial statistics and

directional statistics.
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Modeling dynamic vector fields not only entails measuring the dependence

between locations and variables, but also capturing the independent markers

that signal directional flow changes. The objective of this new technique is to

break down the modeling process into several steps. Given that spatial depen-

dence structure changes with directional flow, it is the first objective to cluster

the training vector data set into several distinct flow regimes. With these flow

regimes established, the subsequent vector groupings or regimes contain more ho-

mogenous spatial dependence structures. With these smaller homogenous data

sets, or regimes, you are then able to build separate models for predicting value’s

strength and direction. These models are capable of explaining more system vari-

ance because they are no longer receiving mixed signals about spatial dependence

structures. For example, in southern California cool winds that are generated

over the ocean and come onshore, southwesterly, are much different from dry

winds generated over the high desert that channel through the mountain passes

towards the ocean, northeasterly.

In the model building process, previous approaches aimed to avoid circular

statistics and represent each flow vector as two numerical responses. Each vector

was projected onto both the x and y axis proving two lengths on constant di-

rections. Subsequently two models are created separately, one for the projection

onto the x axis and the other for the y axis projection. It is my belief that this

technique does not optimally leverage the spatially dependent information. My

approach is to treat the vector as polar coordinates. Creating one model to predict

the direction of the vector and a separate model to predict the size or magnitude

of the vector. I believe treating vectors as polar coordinates will better leverage

the regime clustering data separation. For example, if we were to predict the wind

speed at the campus of UCLA, once we determine that the day belongs in the

offshore Santa Ana regime, we know the source of the wind is generated to the

east and the strength of that wind should be highly related to the strength of the

2



covariates over the high desert.

In the model building process, a regime clustering technique was developed

that is an adaptation to hierarchical clustering for vectors. After optimal clus-

tering was performed, several model types were tried in the process of finding an

accurate and robust fit for both magnitude and directional predictions. In the

end, a transformed linear model performed best for magnitude predictions and a

kernel based circular regression fit best for directional predictions.

1.2 Motivation

One obvious example of a dynamic vector flows is two-dimensional wind fields.

Winds plays a major roll in southern California wildfires, energy sustainability,

and pollution diffusion. Obtaining more informed predictions of future winds

allows communities and businesses to be able to evolve and adapt to new envi-

ronmental challenges.

A main motivation for the need of new vector models has come with the

rise of climate modeling and prediction. This major subdivision of climatology

has grown along with the strength and ability of computing. For a long time

climatologists have studied the physical equations that govern our atmosphere

and ocean, but only till recently have our computers gotten to the point to be able

to accurately model our earth’s vast atmosphere and oceans with these equations.

These “dynamical” computer models are called Global Climate Models (GCMs),

or they are also known as General Circulation Models (see figure 1.1). There is a

loosely estimated number of twenty current GCMs and growing. By having several

models from different research groups predict future climates, we end up with a

distribution of predictions, which in turn helps us understand the probabilities

and variance in our predictions of possible future climate.

Not only do these “dynamical” programs allow us to get a multitude, or distri-
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bution, of predictions but they also allow us to control or experiment with different

possible levels of future carbon emission, known as Representative Concentration

Pathways (RCP) scenarios. This allows climate researchers to understand the

different impacts of changing environmental policy. These global climate models

can give us a important predictions of future climates on a macro global level, but

fail to give predictions at high enough resolutions to inform local governments on

a micro level. This is main driver for the motivation of this modeling scheme. The

resolution and intricacy of the predictions are held back by the expensive compu-

tational costs associated with modeling these enormously complex systems. Even

though the GCM projections cannot give us the information interpretable at a

local level they still remain the main driver for predictions made at the higher

local resolution. Statistical models allow us to leverage our knowledge of local

dynamics and perturb or fill in the blanks of these global predictions.

Figure 1.1: NOAA’s rendering of a Global Climate Model

The statistical models used to obtain higher resolution predictions of the local
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climate dynamics are known as statistical downscaling techniques in climatology.

“Statistical downscaling is based on the view that the regional climate is condi-

tioned by two factors: the large scale climate state, and the regional/local physi-

ological features... From this perspective, regional or local climate information is

derived by first determining a statistical model which relates large-scale climate

variables (or ‘predictors’) to regional and local variables (or ‘predictands’)” Wilby

et al. (2004) [29]. Once you have an adequate statistical model of the local cli-

mate’s spatial and temporal correlations, predictions can be made by interpolating

GCM future climate predictions. These statistical models have an advantage of

being accessible and much less computationally expensive. In addition, since the

computation cost is relatively low, we can use several GCMs output to get a local

distribution of predictions for future climate.

The methods of regime cluster modeling for two-dimensional vector flows can

be used as a new statistical downscaling approach that is simple, but based in

climate dynamics. The hopes are that this technique can make high-resolution

long term climate predictions accessible to all local governments and businesses. In

addition, once models are fit, you can easily downscale several different GCMs as

well as different RCP scenarios to get a distribution of high resolution predictions.

1.3 Notation

The data that will be used in this thesis will be observations evenly distributed

in lattice structures in the two-dimensional space. These two-dimensional lattices

occur at evenly spaced time intervals, more specifically I will be working with daily

averages. This modeling technique does not need an evenly spaced structure of

observations and can be applied with uneven or random spatial distribution. Wind

vectors will be represented by ψ = (φ, x) with φ representing the direction of the
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vector and x representing the magnitude of the vector. In addition, we will use:

Ψt = {ψt1, ψt2, ..., ψtn} (1.1)

to represent a vector of wind observations, one lattice, of size n at time t. We can

also represent one location’s wind directions, say location a across times 1 to t by:

φa = {φ1
a, φ

2
a, ..., φ

t
a} (1.2)

The wind speed magnitude can also be represented by itself for one location, say

the same location a across times 1 to t by:

xa = {x1a, x2a, ..., xta} (1.3)

Similarly, a non-directional vector of nobservations (e.g. temperature, pres-

sure, etc) at time t will be represented by:

Γt = {γt1, γt2, ..., γtn} (1.4)
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CHAPTER 2

Literature Review

Statistical downscaling has been a major tool for climatologists to understand and

estimate local impacts of possible future climate changes. The statistical down-

scaling of near-surface winds is a relatively new area of research. The downscaling

techniques of precipitation and temperature are more developed and talked about

in this area of research.

For my literature review I am going to first introduce some circular statistics

and regression models that predict circular responses, which are needed for the

understanding of directional research. Then I will introduce the general statis-

tical downscaling techniques commonly applied to more common variables such

as temperature. Followed by statistical downscaling techniques specific for wind

angle, wind magnitude, or both angle and magnitude.

2.1 Circular Statistics

To be able to review literature concerning wind predictions, we must first be able

to understand and talk about circular statistics. Well known measures of center

(median, mean, etc.) and spread (variance, standard deviation, etc.) can not be

directly applied to circular variables, such as wind direction. Even more complex

are circular regression methods, models in which the response variable is a direc-

tional observation. I will start by reviewing some common statistics surrounding

circular variables then move on to describing some of the most common circular

7



regression models.

2.1.1 Measures of Center and Spread

Since we will be using directional observations, we will be referring to a mean

direction for many calculations. Given a vector of directions at a location a, φa =

{φ1
a, φ

2
a, ..., φ

t
a}, we will use the Jammalamadaka and SenGupta (2001) [14] mean

direction formula. This is calculated for a vector of directions, φa, by treating

each directional observation as a unit vector. Then the unit vectors are added

component wise and the resultant direction is the mean direction, φ̄a. This is

found can be found by defining

R =

(
n∑
i=1

cos(φia),
n∑
i=1

sin(φia)

)
= (C, S) (2.1)

and we will also define R to be some measure of resultant length

R = ||R|| =
√
C2 + S2 (2.2)

Now the mean direction φ̄a is given by the quadrant-specific inverse of the tangent

φ̄a = arctan∗(S/C) =



arctan(S/C) if C > 0, S ≥ 0

π/2 if C = 0, S > 0

arctan(S/C) + π if C < 0

arctan(S/C) + 2π if C ≥ 0, S < 0

undefined if C = 0, S = 0

(2.3)

We can also use R to find our measure of spread or dispersion for unimodal

data. The resultant length R conveys to us how concentrated the angles are

towards the mean direction. For example, if all n vectors point in the same

direction, then R should be the same size as n. Therefore (n−R) cab be thought

of as one equivalent to sample variance for angles.

Jammalamadaka and SenGupta (2001) [14] also define two useful measures for

distance between two angles. The distance between any two angles φα and φβ can

8



be found by selecting the smaller of the two arc lengths between φα and φβ:

dφ(φα, φβ) = min(|φα − φβ|, 2π − |φα − φβ|) (2.4)

In addition to looking at the smallest arc between two angles, the authors go on

to define another measure of circular distance as:

dφ2(φα, φβ) = 1− cos(φα − φβ) (2.5)

This method gives the largest separation, an arc of π, a distance score of 2 and the

smallest score, for two directions at the same angle, a score of 0. Both methods

of distance between two angles will be used in this dissertation.

The mean direction of a circular response will be handled differently from

finding the average of a set of vectors, or vector averaging. For some methods

in this paper, vectors will be averaged and we will want the average vector to be

weighted by the length of input vectors. Figure 2.1 visually displays the vector

averaging method. Vector averaging takes all vectors and adds them together

component wise. The resulting vector angle is the average angle and the resultant

length divided by n is the magnitude of the average vector. As a note, finding the

resultant angle, θ1 is quadrant specific.

Figure 2.1: Vector Averaging Methods
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2.1.2 Strength of Relationship

While using circular variables in your analysis it is also important to define the

correlation between one circular variable and another and to also define the cor-

relation of one circular variable to one linear variable.

Jammalamadaka and SenGupta (2001) [14] define circular-circular correlation,

between to vectors a and b as:

rφa,b =

∑t
i=1 sin(φia − φ̄a) sin(φib − φ̄b)√∑t

i=1 sin2(φia − φ̄a)
√∑t

i=1 sin2(φib − φ̄b)
(2.6)

This is an adaptation of Pearson’s correlation coefficient and returns values be-

tween 0 and 1.

Mardia (1976) [19] defines a correlational coefficient for a linear variable, x,

and a circular variable, φ. The idea is to find multiple correlations between x and

the components (sinφ, cosφ) corresponding to the variable φ.

r2x,φ =
r2xc + r2xs − 2rxcrxsrcs

1− r2cs
(2.7)

where

rxc = corr(x, cosφ),

rxs = corr(x, sinφ),

rcs = corr(cosφ, sinφ)

(2.8)

If x is normally distributed and independent of φ then it can be shown that

(n− 3)r2

1− r2
∼ F2,n−3 (2.9)

2.2 Circular Response Prediction Models

Circular statistics is a relatively new research field. Large gains in the predic-

tive modeling of a circular response were made in the early 1990’s. The only
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downside was that those early models only allowed for one type of independent

predictor, linear or circular. Sarma and Jammalamadaka (1993) [25] created a

circular prediction model for circular independent variables. On the other hand,

Fisher and Lee (1992) created a model that predicted circular responses for a set

of linear predictors. Later attempts were made by Lund (1999) [17] to model

circular responses with a set of linear covariates along side one circular covariate.

Later, Lund (2002) [18] suggests a new form of model that allows for both multiple

linear and circular covariates. In this section we will review all three methods:

circular-circular, circular-linear, circular-circular/linear.

2.2.1 One Circular Covariate (Circular-Circular)

Sarma and Jammalamadaka (1993) [25] propose a model to predict a circular

response, φβ, using one circular predictor, φα. The idea of this model is to fit a

trigonometric polynomial of φα against the sine and cosine of φβ. Fitted values of

φβ are then obtained by taking the inverse tangent of the predicted values of the

sin(φβ) divided by the predicted values of the cos(φβ).

To be more specific, the vector corresponding to φβ is predicted by the condi-

tional expectation of eiφβ given φα:

E(cosφβ|φα) = g1(φα)

E(sinφβ|φα) = g2(φα)
(2.10)

from which φβ will be predicted as:

µ(φα) = φ̂β =


tan−1(g2(α)

g1(α)
) if g1(α) ≥ 0

π + tan−1(g2(α)
g1(α)

) if g1(α) ≤ 0

undefined if g1 = g2 = 0

(2.11)

Where µ(φα) represents the conditional mean direction of φβ given φα. Ap-

proximations of g1 and g2 can be computed by trigonometric polynomials of degree
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m and random errors ε, with mean zero. The idea is to fit two trigonometric poly-

nomials that predict the sin and cos of the response variable.

ĝ1(φα) = cosφβ =
m∑
k=0

(Ak cos(kφα) +Bk sin(kφα)) + ε1

ĝ2(φα) = sinφβ =
m∑
k=0

(Ck cos(kφα) +Dk sin(kφα)) + ε2

(2.12)

The order m of the trigonometric polynomial is determined by testing the

significance of the m+ 1 terms in both regression models. If neither model needs

the m + 1 terms, then an order of m is used. Estimation of the parameters,

(Ak, Bk, Ck, Dk), is done so in a least squares method. In addition to B0 = D0 = 0,

the LS estimates of the parameters are written below

Â0 =
1

n

n∑
i=1

cosφiβ

Âj =
1

n

n∑
i=1

cosφiβ cos jφiα

B̂j =
1

n

n∑
i=1

cosφiβ sin jφiα

Ĉ0 =
1

n

n∑
i=1

sinφiβ

Ĉj =
1

n

n∑
i=1

sinφiβ cos jφiα

D̂j =
1

n

n∑
i=1

sinφiβ sin jφiα

(2.13)

An example of this regression model can be seen with some real wind angle

data. Figure 2.2 plots the training data of the independent angle against the

dependent angle in black and the model predictions in red.
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Figure 2.2: An Example Circ-Circ Sarma and Jammalamadaka Model

Another circular prediction model using just one circular response was pro-

posed by DiMarzio et al. (2012) [4]. Specifically they propose a non-parametric

smoothing solution that aims to estimate, by local averaging, a conditional mean

response. This process is somewhat similar to Sarma and Jammalamadaka’s [25]

in that they want to solve for the arc-tangent of the ratio between the first trigono-

metric moments of the response variable.

To preform the process of smoothing they introduce similar statistics to the

previous paper [25]. Given the vectors of the response φβ and predictor φA, we

are trying to find a function m such that

E[1− cos(φβ −m(φA)] (2.14)

is minimized. For any φα ∈ the domain of φA, let m1(φα) = E[sin(φβ)|φA = φα]
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and m2(φα) = E[cos(φβ)|φA = φα]. Then the sample statistics become

ĝ1(φα) =
1

n

n∑
t=1

(sin(φtβ)W (φtA − φα))

ĝ2(φα) =
1

n

n∑
t=1

(cos(φtβ)W (φtA − φα))

(2.15)

where W being a local kernel weight, is derived so that the ratio ĝ1(φα)
ĝ2(φα)

is asymptot-

ically unbiased for g1(φα)
g2(φα)

. Therefore then making the estimator for the regression

function at φα is

m̂(φα) = tan−1(
ĝ1(φα)

ĝ2(φα)
) (2.16)

The same data used in figure 2.2 was used to visually show the DiMarzio et al.

method. This smoothed model can be seen in figure 2.3 and contrasted to figure

2.2.
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Figure 2.3: An Example Circ-Circ DiMarzio et al. Model
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2.2.2 Linear Covariates (Circular-Linear)

Another sub-genre of circular models aim to predict the mean direction of a cir-

cular response with a link function of a linear independent variable. The most

commonly used model was derived by Fisher and Lee (1992) [6]. It is of impor-

tance to note that the dependent circular response is assumed to be from a von

Mises VM(µi, κ) distribution of n observations. The von Mises distribution can

be thought of as the normal distribution extended to circular responses. The dis-

tributions are unimodal and symmetric with µ and 1
κ

analogous to µ and σ2, the

center and spread.

To specify the model, we assume that the mean direction µi is related to the

explanatory variable Xi by the regression equation

µi = µ+ g(β
′
Xi) ≡ µ+ g(β1X1 + · · ·+ βkXk) (2.17)

The function g is our link function which is going to map the real line to the circle.

The vector β = (β1, β2, . . . , βk) contains all the regression coefficients that need

to be estimated. Fisher and Lee go through several options for the link function,

but we shall use the one most common to our other methods

g(u) = 2tan−1(u) (2.18)

The next step is to iteratively solve for the parameters µ,β, κ. Defining the

following quantities

µi = sin(θi − µ− g(βixi)) (2.19)

u
′
= (u1, . . . , un) (2.20)

X =


x

′
1

. . .

x
′
n

 (2.21)

G = diag(g
′
(β

′
x1), . . . , g(β

′
xn)) (2.22)
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S =
n∑
i=1

sin(θi − g(β
′
xi))/n (2.23)

C =
n∑
i=1

cos(θi − g(β
′
xi))/n (2.24)

R =
√
S2 + C2 (2.25)

The log likelihood used to estimate the parameters is

−nlogI0(κ) + κ
n∑
i=1

cos(θi − µ− g(βixi)) (2.26)

Where I0(κ) is the modified Bessel function of the first kind and order p. The

solutions to the equations are then

X
′
Gu = 0 (2.27)

Rsinµ̂ = S (2.28)

Rcosµ̂ = C (2.29)

A1(κ̂) = R (2.30)

where A1(κ̂) = I1(κ)/I0(κ). To iterate, start with an initial β̂ and solve for

S,C, and R. We then use these in an iteratively reweighed least squares method

to solve for an updated β̂∗. With the updating equations

X
′
G2X(β̂∗ − β̂) = X

′
G2y (2.31)

where y = (y1, . . . , yn) and yi = ui/A1(κ)g
′
(β̂′xi).

Large sample variances and covariances of the regression coefficient estimates

can be found in the paper [6].

2.2.3 Linear and Circular Covariates (Circular-Cir/Lin)

In his paper, Lund (2002) [18], forgoes a traditional regression function and instead

uses a tree-based regression method. This allows for both the use of circular
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and linear covariates. In addition, the structure of the tree is interpretable and

provides insight into the relationship between the circular response and the varied

independent variables. Lund’s methods aims to partition the training data set of

circular responses into a tree of binary splits. Let us define L to be the set of all

training circular observations. For the independent variables, we will define Φ be

the set of circular responses and X be the set of linear and categorical responses.

And let us define Ψ = (Φ,X) to be the set of all predictors.

“Construction of the tree begins by including all observations of L in the root

node, the top of the tree. The data points in the root node are separated into two

groups, the left and right daughter nodes, according to a binary split on one of

the predictors in Φ. Roughly, the split is selected so that the two daughter nodes

are as homogeneous as possible with respect to the response variable, This process

is repeated for subsequent nodes in the tree until there is sufficient homogeneity,

or a minimum number of observations is obtained in a node. Nodes that do not

undergo a split are called terminal nodes. All observations falling into the same

terminal node are assigned the same predicted value for the response variable”

Lund (2002) [18].

To be more specific we will use the sample mean direction of the observed

circular values in a terminal node to be the assigned predicted value of landing

in that node. In the determination of node homogeneity, we will use the angular

distance function d(φα, φβ) = 1 − cos(φα − φβ) to measure the distance between

two angles.

“In particular, suppose the learning sample consists of N observations, and

denote the sample mean direction of observations in node t by θ̄(t). If node t is

non-terminal, let the left and right daughter nodes of t be denoted by tL and tR.

Finally, let S be the set of all possible splits of node t, and s be an element of S.

The decrease in node homogeneity given by split s can be measured by

∆R(s, t) = R(t)−R(tL)−R(tR) (2.32)
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where

R(t) =
1

N

∑
θi∈t

[1− cos(θi − θ̄(t))] (2.33)

Using the above definitions, the best split s∗ of node t is taken such that” Lund

(2002) [18]

∆R(s∗, t) = max
s∈S

∆R(s, t) (2.34)

This means that the best split has two daughter nodes with the smallest

summed homogeneity. To split based on a linear variable, x, we could say one

daughter has all x ≤ a and the other daughter node has all x > a for some

real number a. For a independent circular variable α, a way to think of splitting

would be to say that one daughter node has values in the arc (α1, α2) and the

other daughter has all values outside that arc.

All other ideas of regression trees apply to this method too. For example, we

want to ensure that the tree is not overly sensitive to the training data set. To do

this several methods like bootstrapping and cross-validation can be employed.

2.3 General Statistical Downscaling Models

Now that we have established a background in circular statistics, we can review

popular statistical downscaling methods as well as specific statistical downscaling

methods of wind fields. In regards to general statistical downscaling methods, the

simplest and one of the earliest ways researchers obtained regional climate pro-

jections is called the Change Factor Method. It works by trying to “apply coarse-

scale climate change projections to a high resolution observed climate baseline

(Wilby et al. [29]).” For example, you could take a historical high resolution data

set for your area of prediction and then add on to all observed values the mean

climatological change observed in a GCM.

In more recent research, I noticed there were two different approaches or
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schools of thought to general statistical downscaling methods that were currently

being employed in the climate research field. One of the statistical downscaling’s

main focus is to model temporal relationships for each specific prediction point

while the other approach’s main focus is to model the entire prediction area’s

spatial relationships as a whole one, one time step at a time.

2.3.1 Temporal Methods

2.3.1.1 Regression Methods

The first general approach I will review are temporal methods. The temporal

approach takes advantage of the fact that GCMs, RCMs and weather stations

provide more than adequate amounts of data over time, at time steps as low

as every hour. The simplest models in this area are called Regression Methods.

They build a linear regression model for every high resolution prediction point

using the closest local neighbors, or the highest correlated neighbors, from the

coarser resolution.

This method has been used to predict mean rainfall and temperature over

Oregon (Kim et al., 1984 [15]), the continental United States (T. Hoar and N.

Nychka, 2008 [11]), and the mean daily temperatures over central Europe (R.

Huth, 1999 [13]). This type of modeling shows how a high-resolution local point’s

climate relates over time, daily or seasonally to its low resolution area averaged

local neighbors. If your dependent data set is inherently linked to your dependent

data set, as in our case, then this creates techniques that preform well because they

create a unique model for each prediction point. This can be very powerful because

climate states are very anisotropic. Contrastly these models have limitations in

that they ignore the spatial correlation of the area of interest and how that spatial

correlation may change with time. This would affect the change in weighting of

neighbors’ cells with the overall climate state. This may come most into play
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when trying to predict wind fields or precipitation.

2.3.1.2 Weather Pattern Approaches

Other more advanced regression methods attempt to leverage spatial informa-

tion by making relationships conditional on the current weather state or pat-

tern. These regression methods are Weather Pattern approaches and Stochastic

Weather Generators. Weather Pattern classification approaches group days into a

discrete number of weather states. The grouping can either be done by applying

a cluster analysis (B.C. Hewitson and R.G. Crane, 2002 [9]), principal component

analysis (D. White et al., 1991[27]), canonical correlation analyses (D. Gyalistras

et al., 1994 [8]) or can also be done subjectively. “Having selected a classification

scheme it is then necessary to condition the local surface variables, such as precip-

itation, on the corresponding (daily) weather patterns. This is accomplished by

deriving conditional probability distributions for the observed data” (R.L. Wilby

and T.M.L. Wigley, 1994 [30]). These models are similar in the sense that they

create a unique linear regression model for every point but they remain open to

the fact that those local relationships depend on the overall weather state.

2.3.1.3 Constructed Analogues Method

The Constructed Analogues method is similar to Weather Pattern approaches in

the sense that it attempts to make current time predictions based on a linear

regression of historical days with a similar spatial distribution. However it is very

different in the sense that it does not create a model for each prediction point, but

creates a single model for all points in each time slice. Constructed Analogues was

produced by H. G. Hidalgo et al. (2008) [10] to predict daily precipitation and av-

erage temperature patterns for the contiguous United States. Hidalgo et al. states

their method is“based on the premise that an analogue for a given coarse-scale
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daily weather (target) pattern (for example, from a general circulation model sim-

ulation) can be constructed by combining the weather patterns for several days

(predictors) from a library of previously observed patterns. In this application

the analogue pattern is constructed at coarse scale, but a similar construction can

be made using a companion library of high-resolution patterns using the same

days as the coarse-scale predictors. Thus, a fine resolution downscaled estimate

is created for the given pattern for that particular day.” To preform this method

procedurally, you need a collection of corresponding high and low resolution his-

torical data sets. Then the historical low-resolution times with the most similarity

in climate pattern to your coarse-resolution data set are linearly regressed upon

the GCM coarse-resolution current prediction time. This regression will give the

highest weights to days most similar in distribution to you current time. Then you

use the same linear combination of weights on their corresponding high resolution

times to make a constructed high-resolution climate analogue. This method’s

strengths are that the weather patterns produced are dynamically consistent with

the high-resolution topography. However, its drawback is assuming that future

climate distributions are the exact same as past historical distributions. The sec-

ond drawback is that a historical time slice may be very similar to you current

time in a specific area, like the mountains, but be very different in another, like

the desert, but that all points within that one analogue receive the same weight.

2.3.1.4 Stochastic Weather Generators

The second group of models that condition local probabilities on overall weather

states are Stochastic Weather Generators. “Richardson’s (1981) WGEN model is

the most commonly used for climate impact studies: this was originally designed

to simulate daily time-series of precipitation amount, maximum and minimum

temperature, and solar radiation for the present climate. Rather than being con-

ditioned by circulation patterns, all variables in the Richardson model are sim-
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ulated on precipitation occurrence. At the heart of all such models are first- or

multiple-order Markov renewal processes in which, for each successive day, the

precipitation occurrence (and possibly amount) is governed by outcomes on pre-

vious days (R.L. Wilby and T.M.L. Wigley, 1994 [30])”. One way this method

has been applied in the literature is as a nonhomogeneous hidden Markov model

(NHMM). B. C. Bates et al. (1998) [1] used the NHMM to predict atmospheric

and precipitation variables over South-West Western Australia with success. This

Richardson model can be written out for daily precipitation occurrence as a two-

state Markov chain:

p01 = Pr{precipitation on day t|no precipitation on day t− 1} (2.35)

p11 = Pr{precipitation on day t|precipitation on day t− 1} (2.36)

Then the unconditional wet day probablitites (πw) and the lag-1 autocorrelation

(r) are:

πw =
p01

1 + p01 − p11
(2.37)

r = p11 − p01 (2.38)

When stochastic weather generators were used in R.L. Wilby et al. (1998) [31],

daily precipitation amounts were modeled as independent gamma variates, with

probability density:

f(x) = (x/β)a−1
e−x/β

βΓ(a)
(2.39)

All these temporal regression methods perform well in predicting mean climate

states in the literature. This is expected since linear regression methods aim to

keep residuals low by predicting the mean state. This has its drawbacks though.

This implies, and has been seen in the literature (R.L. Wilby et al. (2004) [29]),

to miss extreme events or daily highs and lows. This is somewhat troubling since

the overall aim of GCMs and downscaling in general is to predict unnaturally high

or low climatological events that will occur in the near future.
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2.3.2 Spatial Methods

2.3.2.1 Inverse Distance Weighting

The second general approach makes spatial correlation the key model building

relationship, but these models rely much less on the availability of temporal rela-

tionships. These techniques are rooted in the Geostatistical framework of statis-

tics and hold the key theory that points closer to the prediction area will be more

correlated than points further away. The techniques in this family look at the

spatial correlation of all the points in one time slice and interpolate the climatic

variable as a weighted average of surrounding points. Assigning weights to each

point based on the relationship of distance and correlation. The simplest and first

methods of these types were Inverse Distance Weighting methods (IDW). These

IDW methods are simple and assign the highest weights to the closest neighbors

in a linear manner ignoring anisotropy. The most commonly used form of IDW is

Inverse Distance Squared Weighting (IDSW).

Another offshoot of IDSW is the Gradient Plus Inverse Distance Squared

method (GIDS). This method combines multiple linear regression with IDSW.

First, a multiple linear regression of your prediction variable is fit to latitude,

longitude, and elevation to remove first order trends. Then you can use this first

order gradient to help weight the point’s neighbors. GIDS was developed by I.

Nalder and R. Wein (1998) [23] and it and IDSW were used to predict monthly

averages of temperature and precipitation over the western Canadian forest. IDW

was also use by G. Tabios and J. Salas (1985) [26] to predict annual precipitation

over Nebraska and Kansas. Similar to the GIDS method are Spline methods.

These Spline methods fit polynomials to the set of observed values to provide a

smooth surface that passes through all observed points with as little curvature as

possible. Then high resolution points can be predicted by using the value pre-

dicted by the spline at that location. These techniques have the obvious problem
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of over smoothing. This is especially exacerbated by the fact that GCM values

represent area averages. Therefore using a GCM prediction at a specific point to

create a smooth surface not only smoothes over the highly topographical varied

land of southern California, but it also smoothes again by using averages as point

predictions.

2.3.2.2 Kriging Methods

Kriging methods are considered in the spatial prediction methods but are more

sophisticated in their estimation of anisotropy and their estimates of error at

prediction points. Kriging methods hinge on the estimation of the variogram 2γ(.)

or semivariogram γ(.). The variogram attempts to model the spatial variance

between two points dependent only on the distance separating the two points.

Kriging is a linear least squares estimation with all points in one time being

used to estimate and model the variogram. Then the variogram is used to assign

weights to observed values to predict high resolution un-observed values through

linear combination:

Ẑ =
Nv∑
i=1

wiX (2.40)

Where the weights W = {w1, w2, ..., wNv , λ} are found by solving the system:

W = Γ−1γ (2.41)

Where λ is the Lagrange multiplier and γ = (γ(s0−s1), γ(s0−s2), ..., γ(s0−sNv), 1)′

and

Γ =



γ(si − sj) i = 1, 2, ..., n, j = 1, 2, ..., n

1 i = n+ 1, j = 1, .., n

1 j = n+ 1, i = 1, .., n

0 i = n+ 1, j = n+ 1

(2.42)

Since kriging methods were developed first for ore mining, these method assume

first order stationarity, which is almost never a good assumption for dynamic
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climatic variables. However, more advanced methods of kriging (e.g. universal

kriging and de-trended kriging) have been developed to help with this assump-

tion. These methods are similar to Spline methods in that they first model the

first order trend and then model the remaining residuals. Co-kriging is another

method in the kriging family, but it uses the relationships with additional cor-

related climatic variables to help improve predictions. For example N. Diodato

(2005) [5] uses terrain elevation data and a topographic index to help predict an-

nual and season precipitation for a complex mountainous region in southern Italy

(Benevento province). One major advantage of using kriging techniques is the

availability of off the shelf computer packages ready to compute all the different

forms of kriging in a quick and efficient manner. Papers like I. Nalder and R.

Wein (1998) [23] and G. Tabios and J. Salas (1985) [26] were able to try several

kriging methods for the same area to find the most consistent model.

In order to help with the over smoothing problem associated with kriging,

Area-to-Point Kriging methods have recently been developed to handle the fact

that GCM products are not points but instead area averages. P. Kyriakidis (2004)

[16] developed this method and is closely related to the idea of block or point-to-

area kriging.

Given these two very different approaches, the spatial and temporal, I be-

lieve the temporal approach will be more applicable to wind fields. The overall

complexity of topographic area and changing direction of influence leads spatial

methods to be inadequate. In addition to building models for each specific point,

we will allow the spatial dependence structure to change with wind regime change,

similar to weather pattern approaches.
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2.4 Wind Specific Downscaling Models

Wind models are a specific sub-division of climatological downscaling methods

because of their inherent circular nature. Most statistical downscaling methods

found have sought to avoid circular statistics all together and instead treat each

wind vector as a projection onto both the x and y axis. Then separate models

are built to predict the resulting x projection length and y projection length.

Other methods in which wind vectors are represented as polar coordinates are less

investigated. In this section we will start with the review methods which predict

just wind magnitudes, avoiding direction all together. Followed by reviewing

models which predict magnitude and angle through projection based methods.

Finally, we will review papers which predict the angle of the wind direction alone.

2.4.1 Wind Speed Magnitude Prediction Methods

Some papers are only interested in the prediction of wind speeds. These mod-

els may be helpful to understand overall turbulence, but fail to detect Santa Ana

winds or correct orientation for wind farms. The dependent variable in their mod-

els is the length of the wind vector at the high-resolution location. In W. de Rooy

and K Kok (2004) [3] they aim to apply a regression based technique to wind

speeds at several weather stations in the Netherlands. The idea of their method is

to decompose the total error of the predictions into two parts: representation mis-

match (RM) and a large-scale model error (M̄E). The hopes of this decomposition

is to first address the physical differences in the topography of the low-resolution

GCMs and the prediction locations with the representation mismatch and sec-

ondly to account for the large-scale model error by linearly regressing the new

RM local estimates on the corresponding observations. Specifically to address the

physical differences in low-resolution and high-resolution topography, the authors

take the low-resolution wind speed estimates from higher in the atmosphere and
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then use high-resolution land roughness estimates to account for local speed dis-

turbances. They then use this new local estimate as a independent variable in the

regression to predict the high-resolution location.

This method has the benefit of adding actual local based topography which

improves covariates strength of relationship to the high-resolution winds. But, this

method does not account for the change in spacial dependence with the change in

regime. The new independent variable, created by RM is the same for all times

and wind regimes. In addition the location of the independent variable is always

assigned to the closest local estimate, which may not be best related.

2.4.2 Projection Based Methods

Projection based downscaling aims to predict both wind direction and magnitude

but in an indirect way. The model does this by taking the high resolution wind

vector at ten meters and projecting it onto the x-axis (u10) and y-axis (v10). Then

modeling the relationship between the linear covariates and u10 and v10 separately.

Projection based methods typically do not think of prediction error as the sum of

direction and magnitude error, but as the error coming from the x-axis projection

and error coming from the y-axis projection. This makes model performance

analysis less directly interpretable.

Projection based methods were found to be the most common form of the

statistical downscaling of winds for future climate change studies. I will review

several papers that use this method, but differ in the modeling types and covariate

selection. This projection based method is used to predict sea-surface winds in

the subarctic northeast Pacific Ocean (A. Monahan 2011 [22]), wind fields over

southern France (T. Salameh et al. 2008 [24]), sea-surface winds off of Peru (K.

Goubanova et al. 2011 [7]), and tropical ocean surface winds (C. Wikle et al. 2001

[28]).
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A. Monahan (2011) [22] is an example of the simplest projection based method.

The aim of the paper is to predict sea surface winds in the subarctic northeast

Pacific off the coast of Canada. Monahan keeps his model fairly simple by predict-

ing wind components u, v, and magnitude for high-resolution buoys from linear

regressions of principal components from the low-resolution u, v, magnitude, and

temperature variables at different pressure levels.

T. Salameh et al. (2008) [24] use a similar projection based method to predict

near-surface winds over southern France but add some complexity in the model

selection. The prediction area of this paper is similar to southern California in

that it contains coastal regions and mountainous areas making it quite complex.

To account for the spatial complexity, they first look into subsetting their data

into weather regimes. To do this they group daily geopotential height anomalies

at 500 hPa (Z500) from the ERA40 re-analysis data set , over a domain covering

the north east Atlantic ocean. They then take the Z500 observations and perform

principal component analysis on the re-analysis data. They end up retaining the

first ten eignenvectors, which explain 85% of the variance, and then perform k-

means clustering upon them to get the final four regimes. After some investigation

they decide that the weather regime clustering is not helpful and will not use it

for their model.

The model they decide upon to make predictions for u10 and v10 are Gener-

alized Additive Models (GAM) that take the sum of spline functions applied to

different covariates Xj

ui =

p∑
j=1

fui,j(Xj) + εui

vi =

p∑
j=1

f vi,j(Xj) + εvi

(2.43)

where i corresponds to the high-resolution location, j indicates an independent

variable, p is the number of independent variables, u10 and v10 are the wind
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components at location i, fui,j and f vi,j are spline functions, and εui and εvi are the

respective model errors. For the spline functions, they choose piecewise third-order

polynomial functions. The covariates used in the modeling process are: surface

pressure gradient, 500 hPa relative voracity, near-surface pressure gradient, low-

level winds at 925 and 850 hPa, and geostrophic wind at 700 hPa.

The results of their technique show that the model can explain one component

accurately, while the other is much lower. The component which is well explained

switches from location to location. It is hard to say if the lack of performance

in one component was due to not clustering or separately modeling the u and v

components. The paper also does not say how the location of the covariates was

chosen. For some covariates it does not matter because they are gradients, which

are a combination of several locations.

The third example of projection based methods is by K. Goubanova et al. 2011

[7]. They use a principal component based linear regression to predict sea-surface

winds over the Peru-Chile upwelling region. To be more specific the want to pre-

dict the projections of the wind anomalies, which is the wind vectors components

with the seasonal mean subtracted from them. The model is based on multiple

linear regression (MLR) and uses low-resolution 10m wind components and sea

level pressure as covariates.

In this paper the predictor-predictand relationship is made in the principal

component space. Both independent and dependent variables will be eigen vectors.

A covariance matrix form the the high-resolution dependent wind components, u

and v, has PCA performed on it and the first ten eigen vectors are retained, PCQi

for i = 1, . . . , 10. The independent covariates are represented by the first twenty

eigen vectors resulting from the correlation matrix containing sea level pressure,

and u and v components from a re-analysis data set. The resulting model is

PCQi =
20∑
j=1

αi,jPCNj + ε (2.44)
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where αi,j are the regression coefficients, PCNj are the PCs of the low-resolution

variables, and ε is the model error.

In this paper they also add some complexity, by allowing the location range of

the low-resolution variables to change with prediction location. But, they do not

allow the location of the domain to change with regime change.

In a somewhat related projection based method, C. Wikle et al. (2001) [28]

predict tropical ocean surface winds. This paper is a little different in that they are

looking to combine two disparate wind data sources to make one more complete

wind data set. What is common to our problem is the structure and nature of these

data sets. One of the data sets comes from high-resolution satellite observations.

While the second wind data set comes from a low-resolution re-analysis data set.

Wikle et al. aim to combine these two data sources by performing a hierarchical

Bayesian spatiotemporal model on the u and v wind components.

This model takes the form of three stages. Stage 1 is the “Data Model”,

[data|process, θ1]. The purpose of stage 1 is to model the measurement error.

Stage 2 is the “Process Model”, [process|θ2]. The purpose of stage 2 is to formulate

a joint probability model for the wind processes of u and v. They do this by

decomposing the wind process into three physically interpretable components.

ut = µu + uEt + ǔt

vt = µv + vEt + v̌t

(2.45)

where µu and µv are spatial means, uEt and vEt are component contributions from

the thin-fluid approximation, and ǔt and v̌t represent small scale motions. Stage

3 is the estimate of the “Prior on Parameters”, [θ1, θ2] To estimate the posterior

distribution of all the unknowns in this process, Wikle et al. use the MCMC

method of a Gibbs sampler to estimate them.

Even though this paper’s aims are different from ours, we can see some simi-

larities and can learn from their diversity of thought.
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2.4.3 Wind Angle Prediction Methods

In a new approach U. Lund (2006) [18] aims to predict wind angles, but with

both linear and angular variables as covariates. The methods of this tree-based

regression are reviewed in section 2.3.3. In his paper Lund aims to predict wind

directions at PointSan Luis from covariates measured at Point Conception. Both

locations are buoys off the central coast of California. The mixture of linear and

circular covariates used are: wind direction, wind speed, barometric pressure,

temperature, and time of day. Time of day is treated as a circular response.

Lund’s method has the advantage of being able to utilize both linear and

circular variables. Which may be a big advantage depending on the relationship

on the high-resolution wind angle and the covariates. It also somewhat mimics

segmenting the data into regimes. When the tree splits the data, it does so by

selecting more homogeneous daughter nodes. The drawbacks of this method may

be over fitting and over simplification. Also, decisions in tree splits need to be

done so binomially, which may not actually be the case, when a more linear or

non-linear relationship may be present.
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CHAPTER 3

Data: Source and Motivation

The modeling process explained in this research uses observations at low resolution

as the covariates for prediction, these observations can either be evenly spaced as a

lattice or unevenly distributed in space. For the example in this work, observations

come from a reanalysis data set. A reanalysis data set is a data set created by

taking physically observed climate data and then interpolating it onto a system of

grids. These grids of data are then used to drive a three-dimensional dynamical

model in order to obtain the remaining unobservable climate variables.

Models can be built with covariates that are only observations by using the

methods in these paper, but the motivation for the application calls for the use of

a reanalysis data set.

The dependent data set used in this research is also latticed and comes from the

dynamical downscaling of the independent reanalysis data set. By modeling the

dynamical downscaling process, we ensure the climate dynamics of our statistical

model is representative of true local dynamics.

Dynamical downscaling is the other approach to obtaining high-resolution local

climate predictions. Dynamical downscaling, relative to statistical downscaling, is

computationally expensive and technical. Dynamical downscaling works by nest-

ing multiple dynamical models, this somewhat keeps the overall computational

costs down by restricting the inner dynamical model to the confines of a local

prediction range, this process is also known by the name limited-area Regional

Climate Models (RCM). Then the inner nested model is initialized and main-
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tained by forcing its local boundaries with predictions from the lower resolution

GCM. Typically you will nest up to three dynamical models, each inner model

having a higher resolution and a smaller prediction range. After the largest nested

dynamical model is initialized at its boundaries with the predicted GCM data,

its resulting predictions are then used to force the boundaries of the next inner

most model and so on. Figure 3.1 is an example of dynamical nesting over the

Sierra Nevada Mountain Range. The outer most resolution is 36 kilometers (km)

followed by 12 km for the middle model, and then 4 km for the inner most model.

You could see how this process consumes a lot of computing power, dynamically

downscaling the climate three times consecutively.

Figure 3.1: Dynamical Model Nesting

The dynamical downscaling process we will be trying to statistically model is

a complex process. As you may recall the overall process starts by forcing the

boundaries of the local outer-most nested dynamical model with the data from a

global climate model. We first start with a data set that we believe accurately

represents the southern California weather variability. This data set is the NCEP

North American Regional Reanalysis (NARR) [20]. Once we obtain twenty years

of NARR data, 1981-2000, which can be downloaded from NCEP’s website, we can
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use these predictions to drive the dynamical Weather Research and Forecasting

(WRF) [21] model to get three levels of a higher-resolution representation of past

climate.

The last layer of complexity is the presence of three forcing events on dynam-

ical models before we get our final high resolution product (see figure 3.2). To

get the future predictions the initial forcing is done with the NARR perturbed

data set, as explained above, and this is a transition from 32 km to 18 km resolu-

tion. Then, only the the data created by the initial dynamical downscaling that

surrounds the boundaries of the next model will be used to force the next nested

dynamical model, this is a transition from 18 km to 6 km. This is done one more

time to achieve the highest resolution and smallest prediction area over southern

California, this is a final transition from 6 km to 2 km resolution.

In the creation of my statistical downscaling technique for this research, I

will not attempt to model all three transitions from lower resolution to a higher

resolution. Instead I will try to estimate this process by looking only at the

very first and last data sets created by this process. I will train my model by

looking at the relationship between the historical NARR data set and the resulting

WRF domain 3 (2 km) historical representation. We will test the performance of

model by training our model using the first ten years of data, 1981-1990, and then

compare our predictions with the last WRF future predictions made at a resolution

of 2 km, from 1991-2000. You may be able to explain more variance by modeling

every transition, but this may defeat the purpose of statistical downscaling to

reduce computation and complexity.
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Figure 3.2: Dynamical Model Forcing Example
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CHAPTER 4

Methods

The motivation for this new modeling technique was to simulate the physical

process of local wind dynamics. Therefore the backbone of this new technique

is the adaptation to changes in influence. I feel adaptation needs to be at the

forefront because each individual prediction location is unique. The prediction

of each location is not only unique when compared to other points in the two-

dimensional space, but each location is different even within itself. Because of local

climate dynamics and topography, within one location, dependence structures

change with time and the direction of the major flow. This is especially true for

coastal and mountainous regions, both of which make up the southern California

landscape.

In order for this technique to properly adapt to each changing wind regime,

we must first be able to accurately group days into distinct wind regimes. After

we group or cluster the training period into several distinct wind regimes, then

distinct models can be trained within each regime. These distinct models allow

the locations and the strength of influence of each of the independent variables

to change from regime to regime. This allows the model to adapt to the physical

influences that channel and redirect winds from different directions.

We will use a transformed linear models to predict the wind’s magnitude within

each regime and we will use a circular kernel smoothing regressions to model

the wind’s direction within each regime. Therefore, to predict the wind speed

and direction for one location there will be a total of six models. Three models
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for predicting magnitude and three models for predicting direction. The three

models represent the three different wind regimes of southern California (Conil

and Hall, 2006 [2]). See figure 4.2 for visualizations of these three regimes. In these

figures, the red vectors represent the low resolution predictor covariate vectors and

the black vectors represent the corresponding high resolution predictand wind

field. Figure 4.1a represents the typical cool onshore breezes, figure 4.1b displays

mild wind days, the most common wind regime in southern California, and 4.1c

represents offshore hot winds created by highly dense air over the high desert.

By changing the time period of your training data set, you can determine how

specific your models are. For example, you can create one regime based cluster

modeling group for the entire year, capturing all seasons. On the opposite end

of the spectrum, you can do stepwise cluster modeling for each specific month of

the year. Tuning each model set to the specifics of the particular month. For

this paper, the methods are built upon the data from the month of October. I

chose to use October data because it is within the Santa Ana wind season and

has daily averages that resemble all three distinct regimes of southern California,

hence giving us a diverse and rich data set.

4.1 Step 1: Vector Clustering

As stated above, the first step of this vector prediction technique is to be able to

group similar days together to represent the major flow regimes. The process starts

by collecting the model training data vectors that represents the daily general

conditions surrounding the prediction location. We will then cluster these days,

or representative vectors, into three groups. This is because in southern California

there are three major wind regimes, with two major directional flows [2]. The

two-directional flows are an onshore wind and an offshore wind referred to as

Santa Ana winds. These Santa Ana winds represent one regime (fig 4.1c) and the
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(a) Onshore Wind Regime (b) Mild Wind Regime

(c) Santa Ana Wind Regime

Figure 4.1: Southern California’s Three Wind Regimes
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onshore flow is broken into two regimes, one for strong days (fig 4.1a) and another

for mild days (figure 4.1b). This method can be applied to locations or scenarios

with more or less than three wind regimes. To do so this method can be adapted

by changing the cut off point in the hierarchical clustering tree, creating more or

less clustered groups/regimes.

In order to classify individual days as Santa Ana’s, strong onshore winds, or

mild onshore winds there was a need to create a new vector clustering method.

This vector clustering method was adapted from the fundamentals of the bottom

up hierarchical clustering methods with complete linkage. A bottom up hierarchi-

cal clustering method, starts with each observation being its own unique cluster

of size one. Then the first two closest clusters and grouped into a new higher level

cluster. This clustering continues up the tree until we have a complete structure

with one group of all points at the top. Distance between two clusters will be

measured with the complete linkage method. This means that the distance be-

tween two clusters is measured by the maximum distance between any two points

within both clusters.

In order to adapt a hierarchical clustering method for vectors we must adjust

how distance is measured between vectors. Since vectors have a direction and

magnitude, ψ = (φ, x), you can not apply typical methods of measuring distance,

like Euclidean distance (4.1), which are typically used for hierarchical modeling.

d =
√

(x2 − x1)2 + (y2 − y1)2 (4.1)

To help understand how we will measure distance between vectors it will help

first to be able to plot them. Vectors can be plotted in two ways. One way is with

the standard Cartisian coordinate system, displaying the vector’s magnitude on

the x-axis and the vector’s direction on the y-axis (fig 4.2a). The other way is to

display the vectors circularly with magnitude displayed as distance from the center

of the diagram and direction of the vector is displayed as the circular placement
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(a) Cartisian Vector Plotting (b) Circular Vector Plotting

Figure 4.2: Plotting Southern California’s Wind Regimes

of the observation (fig 4.2b). Cartisian plotting helps distinguish regimes, but it

is misleading in displaying distance on the y-axis. As the points on the bottom

of the graph, around zero radians, are close to the points on the top of the graph,

around 2π.

Now that we can visualize these distinct regimes, we still need a way of measur-

ing the distance between vectors, let us call them ψ1 = (φ1, x1) and ψ2 = (φ2, x2),

in order to cluster them properly. To adjust for the circular nature of the vector’s

direction we will use dφ to represent angular distance between any two directions

φ1 and φ2:

dφ = min(|φ1 − φ2|, 2π − |φ1 − φ2|) (4.2)

We can measure the difference or distance between any two magnitudes, dx,

by subtraction:

dx = (x2 − x1) (4.3)

After establishing a way to measure the angular and magnitude distances

between vectors, we can adapt the common Euclidean distance formula 4.1 to fit

our needs. Using the distance between the angles of two vectors instead of the
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distance between y projections, (y1 − y2). We then get a formula to measure the

distance between vectors ψ1 = (φ1, x1) and ψ2 = (φ2, x2) to be:

dv =
√

(x1 − x2)2 + min(|φ1 − φ2|, 2π − |φ1 − φ2|)2

=
√
d2x + d2φ

(4.4)

The last thing to consider is scale. Since magnitude and angle are measured on

completely different scales, it would be unfair to leave values as is in our distance

formula 4.4. For example, if we were to measure angles in degrees, from 0 to

360, these angular distances would overshadow the distances between magnitudes,

in which a large wind magnitude is 10 units. Magnitude and angular distance

would not be contributing equally to the distance formula. Therefore, we will first

standardize both variables magnitude and direction. Let xstd and φstd represent

standardize values or magnitudes and directions respectively. In future sections

it will be assumed that magnitude and angle vectors are standardized before

clustering, leaving off the sub notation of ”std”.

xstd =
(x− x̄)

σx
, φstd =

(φ− φ̄)

σφ
(4.5)

Now that are magnitudes and angles are standardized we can assign weights

to each distance in our formula 4.4. Assigning weights gives us one more tool to

further tune clustering for model performance. Assigning a larger weight to angle

(wφ) emphasizes grouping wind regimes on direction, while placing a larger weight

on magnitude (wx) separates winds into mild, med, and strong wind clusters no

dependent on their direction. We will address finding the optimal weighting ratio

in the coming sections. This gives us our final vector distance measure, dψ,

formula:

dψ =
√
wx(x2 − x1)2 + wφ[min(|φ1 − φ2|, 2π − |φ1 − φ2|)2]

=
√
wxd2x + wφd2φ

(4.6)
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There are several points to address and think of when creating the optimal

cluster groupings. Because in theory, the better the cluster assignment represents

the different regimes, the more homogenous the individual spatial dependence

structures are. Reducing the noise in the spatial dependence structure results in

stronger prediction models that are more physically based on the influences of ge-

ography on wind. Now that we have established a method for clustering vectors,

the three explorations we will undertake in this chapter to improve cluster pre-

dictions are: “What vector should we use to represent each average daily flow?”,

“What weighting scheme should be used when determining distance between two

vectors?”, and “Does one weighting ratio fit all?”.

4.1.1 Point Representation or Neighbor Schemes

Each point in the plots above, figures 4.2a and 4.2b, represent a daily average.

But where did that data come from. How do we find a vector that represents

the specific wind regime or flow direction around our prediction point? It would

be optimal to use the actual high-resolution wind vectors, for the point you want

to predict, to cluster days. But if clustering is done upon these high-resolution

predicted winds, then when you want to predict future winds, what are you going

to use to assign the day into a regime? You can’t use the high-resolution wind

vector because that is exactly what you want to predict.

Therefore, we are to use low-resolution independent vectors as a representa-

tions of what wind regime is occurring at and around the prediction location. The

question then we must answer are: Does the closest low-resolution wind vector

best represent the local point? What about an average wind vector of nearest

neighbors? Can one location cluster days for all prediction points?

To answer these questions, in this section we will try several of the possible

representations and choose the most robust method. The different daily vector
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representations for a point we will try are: using the closest low-resolution wind

vector (NARR 1), averaging the two closest low-resolution wind vectors (Flow

2), averaging the three closest vectors (Flow 3), up to averaging the five closest

wind vectors (Flow 5) to your prediction point. Figure 4.3 illustrates how differ-

ent clustering assignment can play out depending on representation choice. The

graphics within 4.3 are attempts to represents the daily average 10m winds for a

point in coastal Malibu. The top left figure is the actual daily averages for the

high-resolution location. The following figures represent the 6 different schemes

tried. The 310 points shown in each graphic are 10 years of October data (31x10)

spanning from 1981 to 1990.

Figure 4.3: Different Malibu Clustering Outcomes for changing Neighbor Schemes

In order to find a robust method, five high-resolution local points were chosen

to represent the varying southern California landscape. These points not only

vary in spatial location, but also in elevation, terrain, proximity to the coast, and
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mountainous surroundings. The first location chosen, Malibu, is a coastal point

which lies in a main channel for the Santa Ana winds. The second location, Big

Bear Mountain, is the highest peak in our prediction window. The third location,

a point in the High Desert near Edwards Air Force base outside of Palmdale, is

a desert landscape with little change in topography but a source of Santa Ana

winds. The fourth location, Palm Springs, is also a desert landscape but it lies

in a valley behind the San Jacinto Mountains and is in the south eastern corner

of our prediction window. The last location, was a point in the Central Valley, it

is the closest to the edge of the prediction boundary and lies below Bakersfield.

These locations are seen in figure 4.4 along with some addition points that will

be used in future analysis (note: county outlines are slightly shifted north of real

locations).

Figure 4.4: Representative Locations shown on High Resolution Elevation Map

For each of the locations, a Pearson’s correlation coefficient was calculated
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between the high-resolution wind speed magnitude and each of the low-resolution

wind speed magnitudes in the observed area. The way in which clustering methods

were judged was based on a weighted average of squared correlation values, or r-

squared values. Each location was given an individual score for each clustering

method. More specifically, within each cluster, the three best correlations were

found between the high-resolution location’s magnitude and the low-resolution

covariates’ magnitudes. Then, these top three location’s R2 were averaged, giving

us one r-squared value for each cluster. Since each cluster is made of a different

amount of days, when we average the three clusters’ values to get one value, we

will weight each cluster’s R2 directly depending on the number of days that are

in each cluster. The more days, the higher the weight it receives.

To demonstrate this process, we will choose the Malibu location as an example.

Figure 4.5 shows plotting of theR2 values for Malibu and it’s covariates for the

three clustered regimes under the NARR1 neighbor scheme. This figure displays

how strong these spacial dependencies change with wind regime and labels the

three largest R2 values. Table 4.1 displays the correlations squared as well as

the final overall weighted score for the NARR1 scheme. We can then repeat this

process for the other four neighbor representation methods: Flow2, Flow3, Flow4,

and Flow5.

NARR1 R2[1] R2[2] R2[3] Avg.

Cluster 1 0.705 0.703 0.689 0.699

Cluster 2 0.595 0.591 0.591 0.592

Cluster 3 0.684 0.650 0.650 0.661

Weighted Avg. 0.627

Table 4.1: Correlational summary table for Malibu using NARR1 neighbor rep-

resentation
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(a) Santa Ana Regime (b) Strong Onshore Regime

(c) Mild Onshore Regime

Figure 4.5: R-Squared values between Low-Res Magnitudes and Local Malibu

Magnitudes
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In the end, each of the five high-resolution locations will get five weighted

scores representing each of the five neighboring representation schemes. Table 4.2

displays these results. You can see that the weighted average result from table

4.1 of (0.627) is the bottom left entry in table 4.2.

Malibu Big Bear High Desert Palm Springs Central Valley Avg.

Flow 5 0.618 0.627 0.600 0.570 0.440 0.571

Flow 4 0.620 0.650 0.601 0.586 0.456 0.583

Flow 3 0.604 0.630 0.601 0.579 0.431 0.569

Flow 2 0.630 0.631 0.599 0.620 0.430 0.582

NARR1 0.627 0.632 0.599 0.671 0.425 0.591

Table 4.2: Weighted Summary Scores For All Five Locations and Neighboring

Schemes

Table 4.2 shows us that all five methods perform well but we see a trend of de-

creasing returns as we average more neighbors to represent the local point. In the

end, the NARR1 neighboring scheme, using the closest low resolution neighbor,

is the most robust measure. This could be due to it’s high performance across

the board, including Palm Springs location which is relatively low for the other

methods. We can plot the spatial correlation maps for the remaining locations:

Big Bear (figure 4.6), High Desert (figure 4.7), Palm Springs (figure 4.8), and the

Central Valley (figure 4.9). These maps display the spatial complexity as well as

reinforce the differences in dependence structures with directional regime change.

As a reminder, each box is colored by the correlation between the high-resolution

magnitude, marked with an “x”, and the low-resolution location of the box.
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(a) Mild Onshore Regime (b) Strong Onshore Regime

(c) Santa Ana Regime

Figure 4.6: R-Squared values between Low-Res Magnitudes and Local Big Bear

Mountain Magnitudes
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(a) Santa Ana Regime (b) Strong Onshore Regime

(c) Mild Onshore Regime

Figure 4.7: R-Squared values between Low-Res Magnitudes and Local High Desert

Magnitudes
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(a) Mild Onshore Regime
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(b) Strong Onshore Regime
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(c) Santa Ana Regime

Figure 4.8: R-Squared values between Low-Res Magnitudes and Local Palm

Springs Magnitudes
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(a) Santa Ana Regime (b) Strong Onshore Regime

(c) Mild Onshore Regime

Figure 4.9: R-Squared values between Low-Res Magnitudes and Local Central

Valley Magnitudes
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4.1.2 Distinguishing the Optimum Clustering Ratio

Now that we have determined that the closest low-resolution neighboring vector

(NARR1) does the optimal job in representing the daily averages of the high-

resolution location, the next problem of scale/weighting needs to be addressed.

Circular distance and magnitude are measured on different scales. Therefore, to

combine both of these measures in a Euclidean fashion we will standardize both

variables first, direction and magnitude. Then, we will apply a weight to each

distance measurement. As a reminder, this gives us our final vector distance

formula:

dψ =
√
w1(x2 − x1)2 + w2 ∗min(|φ1 − φ2|, 2π − |φ1 − φ2|)2 (4.7)

Assigning a higher weight to angle measurements (w2) places a higher importance

on clustering winds together that share the same direction (fig 4.2b). While

assigning a higher weight to magnitude (w1) clusters vectors together by strength.

For instance, this clusters mild, medium, and strong wind days together, regardless

of direction. Therefore a brief a priori study needs to be conducted to assess which

weighting ratio will provide optimal dependence structures. Figure 4.10 goes

through displaying several different weighting ratios and their effect on clustering

outcomes. In these figures and future figures we will refer to the weights as

weighting ratios with the ratio comprised of [w1:w2].

Predictions for a wind’s magnitude have a different optimal weighting ratio

than predictions made for a wind’s direction. The reason for this is that we want

there to be variance in the dependent variable while still maintaining consistent

signals from the independent variable group. In essence, if we want to predict

magnitude, we would think to cluster winds belonging in the same regime, i.e. go-

ing in the same direction. This insures that the low-resolution covariate locations

are correctly identified as well as providing a wide range of magnitudes within

that direction for prediction. While for predicting direction, we would think we
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Figure 4.10: Vector Clustering with Varying Weighting Ratios

may want to cluster daily wind averages with more emphasis on magnitude. This

groups mild winds, medium winds, and strong winds together regardless of direc-

tion (as seen in [10:1] in figure 4.10). Therefore we will perform this empirical

exercise twice, once for the optimal magnitude weighting ratio and once for the

optimal directional weighting ratio.

What will be common across both is the empirical ratio selection process.

First, I had randomly selected 500 prediction locations to test various weighting

ratios. Then for each location I will cluster regimes by five different ratio levels.

Within each weighting ratio, we will find the three highest correlated values for

each cluster. Using these top three relationships, we will find a single weighted

correlation squared, R2, value for each point and weighting ratio. The process of

solving for the weighted R2 value is similar to the process we performed in optimal

neighbor representation section. But, instead of changing the vectors we cluster

upon, we will change the weights that go into formula (4.7).
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4.1.2.1 Magnitude Clustering Ratio

The five different weighting ratios, [wmag:wangle], that were chosen to sample were:

[15:1], [10:1], [1:1], [1:10], and [1:15]. These ratios were selected to test on a larger

sample of points from a previous quicker glance at performances from 15 different

weighting ratios.

When we plot the weighted correlation squared value for each locations, figures

4.11, we get to see an obvious pattern which validates are original hypothesis. In

these figures relationships between high-resolution prediction magnitudes and low-

resolution independent magnitudes improve as weights start to move away from

favoring magnitudes to even weighting ratios and improve even more when ratios

start favor angles. The returns appear to remain constant after the [1:10] ratio.

Figure 4.11: Weighted R2 Values for 500 Randomly Sampled Locations

Since returns seem to remain constant after the [1:10] ratio, simplicity leads

us to choose this for our magnitude prediction modeling process.

We can also plot the weighted R2 values for each point under the [1:10] ratio

to see if there is any locational problems. We can see in figure 4.12 that there does
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seem to be some spatial pattern to success of the [1:10] weighting ratio. Coastal

points and central valley points seem to not perform as well as high desert and

ocean locations. A possible future improvement for this method would be to

find the optimal weighting ratio for each prediction location, instead of using one

general weighting ratio for all magnitude predictions.

Figure 4.12: Spatial Plotting of Weighted R2 Values

4.1.2.2 Directional Clustering Ratio

We will repeat the same process for directional prediction. The only difference

will be the way we measure the strength of a relationship between vectors of

angles/directions. To measure the strength of a relationship between two vectors
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of angles we can not use the typical Pearson’s Correlation Coefficient as we have

done with vectors of magnitudes. This is because the directional value 359 ◦ is

close to 2 ◦ but linear methods interpret them as far apart. Therefore, we will

use Jammalamadaka and Sarma’s (2001) [14] circular correlation coefficient (rφ)

to measure the strength of relationship between two angular vectors a and b for a

time 1 to t:

rφa,b =

∑t
i=1 sin(φia − φ̄a) sin(φib − φ̄b)√∑t

i=1 sin(φia − φ̄a)2
√∑t

i=1 sin(φib − φ̄b)2
(4.8)

When we apply the circular correlation coefficient to the high-resolution wind

directions for our 500 random locations and the low-resolution independent wind

directions we see a similar patter, but in reverse.

Figure 4.13: Weighted R2 Values for 500 Randomly Sampled Locations

Figure 4.13 shows us that relationships become stronger as we move towards

ratios that favor weighting magnitude over direction. Again, we also see diminish-

ing returns after the [10:1] ratio. This again reinforces are idea that clustering days

in mild, medium, and strong magnitude days, regardless or direction, provides us
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with dependent variable sets with more variation for directional prediction. There-

fore, we will choose [10:1] as are optimal clustering ratio for directional prediction

modeling.

4.1.3 Vector Clustering Conclusions

In conclusion, the vector clustering process will be the first step before the model

building process for both magnitude and directional predictions. The aim of

the clustering process is to provide the models with increased variance in the

dependent variable while sub-setting the training data into more homogeneous

spatial dependent structures.

For each prediction location, we will cluster days into three regimes using

the hierarchical clustering method, with complete linkage, and the distance for-

mula adaptation (dψ). The vectors which we will cluster, will be the closest low-

resolution observations because they have been observed to best represent the

daily averages across multiple prediction location types. For magnitude predic-

tions, the weights that go into the calculation of dψ will be: w1 = 1 and w1 = 10.

For directional predictions, the weights that go into the calculation of dψ will be

the inverse of the magnitude’s ratio: w1 = 10 and w1 = 1.

Improvements on these clustering methods can be unique neighbor representa-

tion schemes for different locations and unique weighting ratios for each prediction

location. A simpler improvement could be to create vector outlines of locations

that receive different ratios (i.e. the central valley).

One more clustering decision needs to be made. After the modeling process

has been completed and we need to predict a wind angle or magnitude for a

location; the new daily average vector, (NARR1future), needs to be assigned to a

cluster in order to apply the correct regime prediction model. Future points, or

days, will be assigned to the closest cluster. Distance between a new point and
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clusters will be determined in the complete-linkage method, where the distance

assigned is the maximum distance between the new point and all points within

the cluster. Therefore, the assigned cluster will be the one with the minimum

maximum distance.

4.2 Step 2: Model Building

Once we have completed our vector clustering we can build our prediction mod-

els. A model is built for each regime allowing the covariates to change with

each cluster. Specifically, covariates can move spatially and independent variables

can change across regimes or clusters. For instance, when predicting winds over

UCLA, sea level pressure over the ocean may be most influential for onshore winds

but air density over the desert may be most influential for Santa Ana wind days.

Now that we have optimized the segmentation of the data in the previous

sections; unique models need to be built with each segment of the data. In order to

build the best predictive models we need to ask: What are the differences between

models that best predict magnitudes and directions? And after we decide which

model type best represents our response variables in both distribution and nature,

we can then ask ourselves: What covariates are the most influential for both

direction and magnitude prediction? Through conversation with climatologists, I

came up with a list of eight major independent variables that would effect or be

related to high-resolution wind vectors. We can investigate the statistical strength

of these independent variables for both high-resolution magnitude and directional

prediction. These low-resolution independent variables are:

• Mag - Wind Magnitude

• Ang - Wind Direction

• Rho - Air Density
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• Dpt - Dew Point

• Hpbl - Planetary Boundary Layer Height

• Lhtfl - Latent Heat Flux

• Prmsl - Pressure Reduced to Mean Sea Level

• Shtfl - Sensible Heat Flux

Because of the difference in nature between magnitude and direction dependent

variables, we will perform both steps, model and covariate selection, separately in

the following subsections.

4.2.1 Magnitude Model Exploration

To select the best model for the prediction of wind speed magnitude, we must first

think of what a distribution of wind speed magnitudes would typically look like.

In the example data set and in general, wind speeds can not be smaller than zero

and a large wind speeds are above ten. This creates distributions that are right

skewed and capped at zero. Because of the non-normal nature of the response

variable, we will try two different approaches and choose the more robust method.

The two model types we will test are: transformed linear models (with different

transformation functions) and a generalized linear model. The transformed linear

model allows us to apply a function to the response variable in hopes to make the

right skewed distribution more normal.

The transformation that was found to be most effective in a random sample

of dependent wind speed magnitude vectors was a fourth root. Therefore, instead

of the response variable being a vector of magnitudes at location a for a time

t: xa = {x1a, x2a, . . . , xta} it will now be 4
√
xa = { 4

√
x1a,

4
√
x2a, ....,

4
√
xta}. Since

the model is built to predict fourth roots of wind speeds, we must remember to

back transform to get our final prediction. For a fourth root transformation, by

59



using the raw fourth moment of the Gaussian distribution the back transform

for a predicted x̂ is (x̂4 + 6x̂σ2 + 3σ4). This formula is based on a Taylor series

expansion of the expected value of a fourth root. The only concern for this model

is that it may make negative wind speed predictions. To correct for this, we will

replace any negative wind speed prediction with a prediction of zero.

Another way to correct for the negative predictions is to avoid them all to-

gether. This can be done with a generalized linear model with an inverse gamma

link. The reason we chose the gamma link is because the gamma distribution

visually represents the distribution of wind speeds best.

Given both modeling types, we will apply both to a random set of locations

and choose the most robust model.

Next, we want to explore the selection of the covariates that we will enter into

our magnitude prediction models. Since there is a total of eight possible covariates,

with many possible locations, using all eight covariates with three locations each

would overpower some of the smaller regimes training data sets. Therefore we will

perform some covariate strength exploration with the representative locations we

had chosen in our neighboring scheme tests, plus some new additional locations

(figure 4.4). This covariate filtering stage will help reduce the number of testing

covariates.

For each of the eight locations in figure 4.4 clustering of 310 days was performed

by the methods selected in previous sections and then correlations between the

response wind magnitude and the possible low-resolution covariates were found

and summarized again with a weighted R2 value. Then for each location the three

strongest covariates were selected and plotted within each regime, with the size of

the plotting point representing the strength of correlations. In addition to plotting

the strength with size, the actual weighted R2 values is also printed on top of the

plotting point. Results can be seen in figure 4.19 below.
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We can see in figure 4.19 that within one location, covariates change across

regimes. We can also make observations across all points but within regimes.

It appears that specific regimes are better suited to specific covariates. Table

4.3 summarizes these relationships, seen in figure 4.19, across regime by three

categorizations of location.

Santa Ana Mild Onshore Strong Onshore

Coastal Mag,Rho,Dpt Mag,Hpbl,Dpt Mag,Hpbl

Inland Mag,Rho,Hpbl Mag,Hpbl,Ltfl Mag,Hpbl,Prmsl

Mountain Mag,Hpbl,Ltfl Mag,Hpbl,Ltfl Mag,Hpbl,Rho

Table 4.3: Covariate Strength Across Regime and Location Type

From the figure and table we can limit our initial set of eight covariates down

to four. The four we will use for model testing are: Wind Speed Magnitude

(Mag), Planetary Boundary Layer Height (Hpbl), Air Density (Rho), and Dew

Point (Dpt). Some obvious improvements to the model would be to find the best

fitting covariates for each individual prediction point. Another possible improve-

ment would be to reduce the initial set of covariates with principal component

analysis and then regress high-resolution magnitudes on the first couple principal

components that explain the most variance.
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(a) Santa Ana Regime (b) Strong Onshore Regime

(c) Mild Onshore Regime

Figure 4.14: Magnitude Covariate Search
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4.2.2 Magnitude Model Selection

Now that we have decided upon models and covariates to test, we can set up a

factorial type experiment to find the most robust method. To perform the model

selection process we will use ten years of training data, 1981-1990, and tens years

of testing data, 1991-2000. This data only spans the month October, which has

31 days, so their will be 310 observations in each set for each prediction point. We

will also randomly choose one fourth of the total WRF high-resolution locations

to test all models on. This gives us a total of 4288 prediction locations to test all

model types on.

For each of these models, when a covariate is chosen to be placed in the model,

we will use the three best locations for that specific variable. For instance, if we

use Hpbl to predict wind magnitude over UCLA within the Santa Ana regime, we

will find the three strongest low-resolution relationship locations and use those as

three covariates within the model.

Since we looked at all the covariates individually in the selection process,

we will also want to test if multiple covaritates add any new information or is a

simple model the preferred model. Therefore we try both models, transformed and

generalized linear models, and vary the amount of covariates within the models.

First using all four covariates: Mag, Hpbl, Rho, and Dpt. Then trying both

models with only two covariates: Mag and Hpbl. Then lastly trying both model

types with only one covariate: Mag. As a reminder, each covariate entails three

independent variables from different spatial locations. Therefore, the first set of

models will have a total of twelve covariates, the next a total of six, and the last

a total of three. This will give us a total of six different models to test:

To measure the ability of the model to predict we will look at two factors.

The first will be the correlation between the prediction and the actual wind speed

magnitude. The second will be the root mean square deviation, RMSD, of the
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Mag,Hpbl,Rho,Dpt Mag,Hpbl Mag

Generalized Linear Model GLM2 GLM3 GLM4

Transformed Linear Model RLM2 RLM3 RLM4

Table 4.4: Naming Conventions of Testing Models

prediction and the actual. For high-resolution location a with predictions spanning

from time 1 to t, RMSDa will be calculated as:

RMSDa =

√∑t
i=1(x

i
a − x̂ia)2
t

(4.9)

The results for the 4288 random locations can be seen in figures 4.15 through

4.18. There are two overall trends we can see in these graphics. First, is that

overall the transformed linear model perfumes better than the generalized linear

model counterpart with the same exact covariates. Secondly, the simpler the

model gets in regards to covariates, the better the predictions get. This can be

seen as you scan from left to right in the figures, the overall performance increases.

Combining these two findings together we can conclude that the transformed linear

model, with a fourth root transformation, using only magnitude as a covariate

type, will provide the most robust model. In the bottom right hand panel of

figure 4.16 we can see the typical correlation between the actual magnitude and

the predicted magnitude for these 4288 points is around 0.70. We can also see

that for the most robust model, RLM4, in the bottom right panel of figure 4.18,

that the typical RMSD is around 2.

Even though RLM4 does a good job across the board, there does appear to be

some spatial structure to the error. We can see that the Central Valley, eastern Los

Angeles County, and off the coast of Orange County contain the most prediction

error. This may be due to the one model fits all mentality.
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Figure 4.15: Spatial Plotting of the Cor(Actual,Prediction) across Model Types
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Figure 4.16: Histograms of the Cor(Actual,Prediction) across Model Types
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Figure 4.17: Spatial Plotting of the RMSD(Actual,Prediction) across Model Types
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Figure 4.18: Histograms of the RMSD(Actual,Prediction) across Model Types

Another important aspect of model validity is the ability to predict Santa Ana

wind magnitudes. Santa Ana winds create a large problem in southern California

in regards to wildfires. For this statistical downscaling model to be useful, it
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should be able to give accurate future projections of Santa Ana events and their

respective magnitudes.

For this, I have chosen two random points that are within strong Santa Ana

areas to investigate the differences in the models’ ability to predict these uncom-

mon events. We have seen in the investigations above that the simple models,

with only three low-resolution magnitude covariates, perform best. Therefore we

will compare predictions from the GLM4 and RLM4 models for these two Santa

Ana investigation points. Figure 4.19b plots the locations of these two points and

its accompanying figure 4.19a shows where they lie in a strong Santa Ana day.

(a) Santa Ana Wind Regime (b) Location of Investigation Points

Figure 4.19: Santa Ana Magnitude Model Verification

The first point, numbered 1701, is located in the ocean outside of the mountain

range that channels the Santa Ana winds. The second point, numbered 2509, is

located in the high desert. This is the location of the source of the Santa Ana

winds. For both of these points, we will plot the clustering of the testing data set

to display wind regimes and wind strength. Alongside the clustering, we will plot

the actual wind magnitude against the predicted wind magnitude colored by the

respective wind regime for both models.
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(a) GLM4 Predictions Vs. Actual (b) RLM4 Predictions Vs. Actual

(c) Point 1701Testing Data

Figure 4.20: Point 1701 Santa Ana Investigation
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(a) GLM4 Predictions Vs. Actual (b) RLM4 Predictions Vs. Actual

(c) Point 2509Testing Data

Figure 4.21: Point 2509 Santa Ana Investigation

We can see that for both points, number 1701 and 2509, the transformed

linear model RLM4 outperforms the generalized linear model GLM4. In both
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figures 4.20a and 4.21a the generalized linear model, with a Gamma link function,

under predicts strong winds and overs predicts mild winds. This creates an overall

flat looking plot. The blue line in these plots represents perfect predictions, x = x̂,

or the line y = x. While in the figures 4.20b and 4.21b we can see the points are

more appropriately scattered around the “perfect” blue line.

When looking at specific Santa Ana performance, we can see that for point

2509 in figure 4.21c that the green plotting points represent the Santa Ana regime.

When we compare the performance of green prediction points in figures 4.21a and

4.21b we see again that the transformed model outperforms the generalized model.

In conclusion, we have seen through experimentation that the transformed

linear model is the best and most robust model for magnitude predictions. After

clustering is performed on each prediction location’s training data set, a RLM4

model will be built for each corresponding subset of data. In these transformed

linear models, the three low-resolution magnitude locations with the strongest

relationship will be chosen as the covariates within the model. This allows the

locations of influence to change with overall wind pattern or regime.

4.2.3 Directional Model Exploration

Given the circular nature of wind directions, normal linear modeling techniques are

not sufficient. We will look at three different circular dependent model types that

were discussed in the literature review for possible usage. These three models

will vary in model class as well as accepted independent variables, circular or

linear. The first model we will explore is a regression tree-based method by Lund

[18] which allows for multiple linear and circular independent variables. The

second model we will explore is the classical circular-circular model by Sarma

and Jammalamadaka [25]. This model allows for only one circular independent

variable. The third model we will explore is also a circular-circular model, one
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circular independent variable, and is the DiMarzio et al. [4] non-parametric kernel

smoothing method.

Similar to the magnitude model exploration process, we will want to find a

paired down list of possible covariates to try inside of our prediction models. We

will use the same list of representative locations (figure 4.4) to observe the strength

of the covariates as well as how these might change accross regimes.

For each of the eight locations in figure 4.4 clustering of 310 days was performed

by the methods selected in previous sections and then correlations between the

response wind angle and the possible low-resolution covariates were found and

summarized again with a weighted R2 value. Both a circular-linear and circular-

circular correlation coefficients were used when appropriate (Section 2.2.2). Then

for each location the three strongest covariates were selected and plotted within

each regime, with the size of the plotting point representing the strength of cor-

relations. In addition, the actual weighted R2 values is also printed on top of the

plotting point. The results can be seen in figure 4.22 as well as summarized in

table 4.5.

Remember that for wind angle prediction an opposite weighting scheme is

used in the regime clustering process. This heavy weighting of magnitude cre-

ates regimes that represent mild winds (magnitudes ≈ 1-3), medium wind speeds

(magnitudes ≈ 3-6), and strong winds (magnitudes > 6).

Mild Winds Medium Winds Strong Winds

Coastal Angle,Hpbl Angle,Mag,Hpbl Angle,Mag

Inland Angle,Mag,Hpbl Angle,Dpt Angle

Mountain Angle,Hpbl,Mag Angle,Dpt,Hpbl Angle,Mag,Dpt

Table 4.5: Angle Covariate Strength Across Regime and Location Type
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(a) Mild Wind Regime (b) Medium Wind Regime

(c) Strong Wind Regime

Figure 4.22: Directional Covariate Search

Figure 4.23 displays how a a more prominent directional covariate, Hpbl, spa-

tial structure changes with regime change. Each plot within figure 4.23 displays
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the strength of circular-linear correlation between Hpbl and high-resolution wind

angles at the specified central valley location.

(a) Cluster 1 (b) Cluster 2

(c) Mild Onshore Regime

Figure 4.23: Cluster 3
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From figure 4.22 and table 4.5 we can see that low-resolution wind angle is the

most robust of the independent variables. Other prominent independent variables

that were discovered are Planetary Boundary Layer Height (Hpbl), Wind Speed

Magnitutde (Mag), and Dew Point(Dpt).

4.2.4 Directional Model Selection

From the three models types chosen to explore, circular-regression trees, are the

only model that allows for linear covariate use. In the process of coding this model,

I used a few test locations to measure the progress and came back with similar

findings. It seems as though the problem of over-fitting was reoccurring from

point to point. The first binary split usually does a good job in separating Santa

Ana winds from onshore winds. But, subsequent splits seem to only separate one

or two points at a time. An example of this can be seen in figure 4.24. We can

see from this example, that every subsequent split that occurs after the first, only

separates one to two points at a time.

These results were not surprising, as this is a common complaint about regres-

sion trees. This leads me to contemplating not using this model across the 4288

testing locations. In additional defense of dropping this possible model type, we

observed in the magnitude model selection, that magnitude was the best indepen-

dent covariate and simplicity was preferred. These two conclusions together lead

me to only pursue more intensive model testing on the two circular-circular model

types.

Therefore we will make predictions for the same 4288 randomly sampled loca-

tions used in the magnitude model selection process using both circular-circular

regression models and compare results. In the end, choosing the more robust

circular prediction method.
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Figure 4.24: An Example of Circular Tree-Based Regression
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The first model, which we will call Model 1, is Sarma and Jammalamadaka’s

classic model. The second model, which we will call Model 2, is the DiMarzio et

al. kernel regression smoothing model. Both models only allow for the use of one

circular covariate. To recall from the previous magnitude model selection process,

the best performing prediction model used only three low-resolution magnitude

locations as covariates. This conclusion led me to want to test an additional

idea. In addition to using the best correlated location to make predictions using

Model 1 and Model 2. I will also make predictions with the second and third

best related low-resolution wind directions. Then, I will make a final weighted

prediction, averaging these three separate models, weighting them based on their

strength of circular-circular correlation. The first getting the largest weight and

so on. For example the weight of prediction one, w1, will be fraction of the sum

of the top three correlational coefficients squared and summed.

w1 =
r21

r21 + r22 + r23
(4.10)

The upside to this weighted prediction is that we can have three separate location’s

wind angle influence the prediction location. The downside to this idea is that it

does not account for covariance between the three models’ respective covariates.

These predictions we will call Weighted Model 1 and Weighted Model 2.

This will give us a total four angular prediction methods to compare results from.

One Circular Covariate Top 3 Weighted Average

Sarma and Jammalamadaka Model 1 Model 1 Weighted

DiMarzio et al. Model 2 Model 2 Weighted

Table 4.6: Naming Conventions of Wind Angle Prediction Models

To measure the ability of the model we will look at the actual wind angle and

compare it to the predicted wind angle. For each prediction location, there will

be 310 predictions coming from ten years of October data, 1991-2000. The first
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statistic we will compare is the absolute prediction error, eφ. We compare the

models predicted wind angle, φ̂, to actual wind angle, φ, across all locations and

times.

eφ = min(|φ− φ̂|, 2π − |φ− φ̂|) (4.11)

Figure 4.25 shows histograms of all 1,329,280 errors for each model (4288 locations

x 310 predictions). While table 4.7 shows the summary statistics for each of the

four distributions.
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Figure 4.25: Histograms of Model Error

There are a few obvious observations that can be made by looking at figure

4.25 and table 4.7. First, the four models are not that different in their ability to

predict wind angle, at least not as much difference as there was in the magnitude

prediction models. Given that the distribution of errors our highly right skewed,
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Min 1st Qt. Median Mean 3rd Qt. Max NA

Model1 0 0.149 0.370 0.642 0.869 π 3640

Model1 Weighted 0 0.150 0.377 0.652 0.894 π 3640

Model2 0 0.143 0.363 0.640 0.865 π 1976

Model2 Weighted 0 0.146 0.373 0.665 0.912 π 1976

Table 4.7: Summary Statistics of Absolute Error for Each Model

the typical value will be measured with the median of the distribution. Comparing

all four distributions, we can see they all have a typical error of around 0.37

radians, which is about 21 degrees. The second observation is that the weighted

prediction does worse than it’s singular counterpart. Again, simplicity wins. The

third observation is that there were about half the errors in the kernel smoothing

models compared to the classical Model 1 types. This should be taken into account

when comparing future statistics.

Next, we will look at the absolute prediction errors by prediction location.

This allows us to see if there are specific spatial areas that suffer or do specifically

well under each model. The statistics we will use to compare prediction locations

are the circular correlation between the actual wind angle and the predicted angle,

the median absolute prediction error, and the root mean squared error (rmseφ).

Here the angular root mean square error will be defined as

RMSEφ =

√∑n
i=1[min(|φi − φ̂i|, 2π − |φi − φ̂i|)]2

n
(4.12)

Figure 4.26 shows us the spatial mapping of the median error for each of

the randomly chosen 4288 points. This gives us some idea of the typical error

we should expect at each location across all regimes. Figure 4.27 shows us the

histograms of the median error and table 4.8 displays the summary statistics of

the 4288 medians for each model.
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Figure 4.26: Median Angular Error by Prediction Location

81



Min 1st Qt. Median Mean 3rd Qt. Max N

Model1 0.131 0.283 0.364 0.397 0.485 1.127 4288

Model1 Weighted 0.127 0.285 0.376 0.406 0.499 1.351 4288

Model2 0.099 0.276 0.359 0.391 0.476 1.147 4288

Model2 Weighted 0.108 0.278 0.366 0.406 0.495 1.488 4288

Table 4.8: Summary Statistics for the Median Angular Error for Each Location

(Radians)
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Figure 4.27: Histograms of Median Angular Error

The next group of figures will show us the another statistic that will define

model performance across prediction points. Figure 4.28 shows us the spatial

mapping of the circular-circular correlation’s between the actual wind angle and
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the predicted wind angle for each of the randomly chosen 4288 points. While 4.29

shows us the histograms of the correlations and table 4.9 displays the summary

statistics of the correlations for each model.
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Figure 4.28: Correlations of Actual Wind Angle and Predictions
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Min 1st Qt. Median Mean 3rd Qt. Max N

Model1 -0.682 0.422 0.550 0.520 0.651 0.851 4288

Model1 Weighted -0.590 0.403 0.545 0.508 0.651 0.858 4288

Model2 -0.705 0.419 0.543 0.517 0.648 0.850 4288

Model2 Weighted -0.549 0.353 0.502 0.476 0.634 0.859 4288

Table 4.9: Summary Statistics for the Cor(Actual, Predicted) for Each Location

Model 1: Sarma & Jammalamadaka
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Figure 4.29: Histograms of Location Cor(Actual, Predicted)

Figure 4.30 shows us the spatial mapping of the circular root mean square

error between the actual wind angle and the predicted wind angle for each of the

4288 points. This statistic will also give us a look at the “typical” error but will

also give a higher weight to large prediction errors. Figure 4.31 shows us the
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histograms of the RMSE’s and table 4.10 displays the summary statistics of the

RMSE’s for each model.
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Figure 4.30: RMSE of Actual Wind Angle and Predictions
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Min 1st Qt. Median Mean 3rd Qt. Max N

Model1 0.460 0.790 0.921 0.929 1.057 1.589 4288

Model1 Weighted 0.4458 0.785 0.933 0.938 1.082 1.697 4288

Model2 0.462 0.793 0.923 0.933 1.063 1.572 4288

Model2 Weighted 0.469 0.812 0.955 0.966 1.103 1.665 4288

Table 4.10: Summary Statistics of the RMSE’s Across Locations

Model 1: Sarma & Jammalamadaka

Circular RMSD b/w Actual and Predicted Wind Angle

Fr
eq
ue
nc
y

0.6 0.8 1.0 1.2 1.4 1.6

0
10
0
20
0
30
0
40
0

Model 1 Weighted: 3 Sarma & Jammalamadaka

Circular RMSD b/w Actual and Predicted Wind Angle

Fr
eq
ue
nc
y

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0
10
0

20
0

30
0

40
0

Model 2: Kernal Smoothing

Circular RMSD b/w Actual and Predicted Wind Angle

Fr
eq
ue
nc
y

0.6 0.8 1.0 1.2 1.4 1.6

0
10
0

20
0

30
0

40
0

Model 2 Weighted: 3 Kernal Smoothing

Circular RMSD b/w Actual and Predicted Wind Angle

Fr
eq
ue
nc
y

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0
10
0

20
0

30
0

40
0

Figure 4.31: Histograms of Location’s RMSE’s

Several observations can be made by looking at the statistical breakdown of

each of these models. First, we again see that the weighted models do worse than

their simple counterpart across all statistics. Secondly, Model 1 and Model 2 again

perform similarly across all three statistics. When referring to the median error
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by location, Model 2 performs the best. But, when referring to the RMSE and

the Cor(Actual,Prediction), Model 1 outperforms Model 2. These differences are

not large though across all three statistics.

We can also make observations about locational performance. We can see in

figure 4.26 that the coastal points contain more error than others. This is some-

what expected because of the overall topographic complexity and larger variance

of observations. We can also see in figure 4.26 that similar errors are occurring

over the Central Valley. When looking at the correlations in figure 4.28 we can

see that lower correlations occur at low elevation land points. This includes Los

Angeles and the Central Valley, but not over the high desert.

Given the similarity in model performance and that there were almost twice

as many model errors in Model 1 compared to Model 2, we will choose Model 2

as our final angular prediction model.

4.2.5 Model Conclusions

After much experimentation it was found that using a transformed linear regres-

sion, with a fourth root transform and three unique magnitude covariate locations,

performs best for wind speed magnitude predictions. For each prediction location,

this gives us a transformed model for each of the three magnitude regimes: Santa

Ana, onshore, and mild.

For our second model type, it was also found that a kernel smoothing circular-

circular regression, with one low-resolution’s wind direction as a covariate, per-

formed best for wind angle predictions. For each prediction location, this gives us

a circular kernel model for each of three directional regimes: mild, medium, and

strong winds.

Taken together, this means that for each vector prediction, angle and magni-

tude, only four covariates will be used: three magnitude locations and only one

87



directional location. I believe that achieving high prediction performance with

such simplistic models attests to the strength of the unique regime clustering

process.
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CHAPTER 5

Predictions

Now that we have both wind speed magnitude and angle predictions for the Oc-

tobers of 1991-2000, we can look at measures of performance combining the two.

One important measure of a statistical downscaling method for wind fields is it’s

ability to capture rare and potentially damaging events, like Santa Ana winds.

5.1 Santa Ana Predictions

Santa Ana winds are of heightened importance to the southern California region

because of their possibility for aiding destruction. Southern California has been

experiencing a prolonged draught period and the Santa Ana wind’s dry conditions

and wind speeds are ideal for fanning wildfires.

In a paper by Hughes and Hall (2010) [12] they define a new metric, called

the Santa Ana Index, which captures when a Santa Ana event is occurring along

with the strength of the event. To create the index, they place a bounding box

in the largest gap which channels the Santa Ana flow towards the ocean. The

box boundaries are (33.8◦ < Latitude < 34.3◦N) and (−119.4◦ < Longitude <

−118.8◦E). This box can be seen highlighted in green in the figure 5.1. For each

day, all wind vectors within the box are projected onto the off-direction of 225◦,

the expected Santa Ana flow direction, and then averaged to get the final indexed

value. They define a “Santa Ana day” as any day where the index is greater than

five.
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Figure 5.1: Santa Ana Index Bounding Box
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Figure 5.2: Santa Ana Index: October 1991-2000
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Figure 5.2 plots all 310 Santa Ana indices against our predicted Santa Ana

index for this ten year time span. For these predictions, I used the top performing

transformed linear model to predict magnitudes and the kernel smoothing circular

regression for wind direction predictions. A Pearson’s correlation coefficient of

0.785 was calculated between the actual index and the predicted index. Figure

5.3 plots the overall ten year distributions of Santa Ana indices between the actual

and the predicted. By looking at both figures 5.2 and 5.3, we can see that the

model does a good job in predicting the overall distribution, but there remains a

slight overall trend of under-prediction by the model.
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Figure 5.3: Santa Ana Index: Actual vs. Predicted

Of the sixteen days with actual Santa Ana indexes greater than five, we can

compare the two-dimensional maps of the actual wind fields and the predicted

wind fields. The first comparison is of the strongest observed Santa Ana index

which occurred on October 26th of 1996, seen in figure 5.4. The left hand side

represents the actual wind field, with a Santa Ana index of 11.1, while the right
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hand side displays the models predicted wind field, with a Santa Ana index of 6.1.

(a) Actual Wind Field (b) Predicted

Figure 5.4: Strongest Observed Santa Ana

On the lower end, a mild Santa Ana event occurred on October 28th of 1991

that registered a Santa Ana index of 5.57. Figure 5.5 again shows the actual wind

field versus the predicted wind field.

(a) Actual Wind Field (b) Predicted

Figure 5.5: Mild Santa Ana Event
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These figures 5.4 and 5.5 show that the regime based cluster modeling is able

to predict the wind field to an accurate degree. The model is able to pick up the

local nuances created by high-resolution topography in a Santa Ana event. In the

strong Santa Ana event, figure 5.4 we can see the Santa Ana generates from the

High Desert and has large effects over the Central Valley and Orange County. The

model is able to detect and recreate that, but just not to the desired intensity.

In contrast, the more mild event, figure 5.5 has strong winds near the coast that

curve towards the southern direction over the open ocean. We can see the model

detects this along with the Orange County coastal winds, but just with a little

more intensity.

5.2 Onshore Predictions

We can do the same sort of spatial analysis for onshore winds. It can be assumed

that some onshore wind events will have a larger negative Santa Ana index num-

ber, indicating a reverse in flow direction. A typical strong onshore event occurred

on October 2nd in 1992 and is indicated in figure 5.6, with the actual Santa Ana

index of -3.66 and a predicted index of -3.04.

There are other onshore events where the wind generated over the ocean is not

as strong, but strong winds are still blown onto the high desert. This phenomenon

creates similar patterns over land but has a relatively small negative Santa Ana

index. One example of this event occurred on October 29th of the year 2000 and

can be seen in figure 5.7. The actual Santa Ana index is -1.32 and the predicted

index is -1.51.

By comparing figures 5.6 and 5.7 we can see that the model not only can

detect different wind regimes, but more subtle classifications within regimes. We

can even see that in both figures, the model detects the strong pocket of winds in

the small Palm Springs valley.
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(a) Actual Wind Field (b) Predicted

Figure 5.6: Strong Onshore Event

(a) Actual Wind Field (b) Predicted

Figure 5.7: Mild Onshore with Strong High Desert Event

5.3 Mild and Other Predictions

Events with a small Santa Ana index may fall under the mild wind regime, but

not all are “mild”. For example, on October 30th of 1998 an actual Santa Ana
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index was scored at -0.37, close to zero. But as we can see in figure 5.8, there is

stronger northwesterly wind over the ocean and pouring out of the Central Valley.

Although, the model is also adept at predicting actual mild wind events. An

actual mild wind regime along with the predicted can be seen in figure 5.9.

(a) Actual Wind Field (b) Predicted

Figure 5.8: “Mild” Event with Central Valley Pour

(a) Actual Wind Field (b) Predicted

Figure 5.9: Mild Event
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CHAPTER 6

Discussion

The main purpose of this dissertation was to provide a new technique for modeling

two-dimensional vector fields. It is important to note that even though the aim of

the example was to predict high-resolution latticed grids. The same techniques can

be used to predict just a few locations with historical data. The main strength of

this method was the ability to capture the regime change and subsequent spatial

dependent structure change. The models used to make predictions, after the

unique clustering method was performed, were not innovative and even simple

in their structure. I believe the simplicity of model type and limited number

of covariates per model attests to the power of the data segmentation by flow

direction and magnitude. Improvements to this method can be made in both

the clustering process and the modeling process, including the covariate selection

process and model selection type.

When performing the clustering process, we used the clustering ratio that

was most robust across all prediction locations. For magnitude predictions this

was a [1:10] ratio and for wind directional predictions this was a [10:1] ratio.

The optimal, but most expensive computationally, would be to find the optimal

clustering ratio for each individual prediction location. This may be preferred

and even possible if the prediction locations are few (e.g. ocean buoys or weather

stations). A more simple improvement would be to find optimal clustering ratios

for land types or location type (i.e. coastal, mountain, desert, etc.).

When selecting covariates for the model building process, no account for co-
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linearity between independent variables was considered (which is only applicable

to the magnitude predictions because the angular prediction models only use

one circular covariate). A simple improvement would be to perform principle

component analysis on the covariate field of low-resolution magnitudes and then

regress on a selected few principal components that account for the most variance

in the independent data set.

In consideration to the actual models selected, regression models with circular

response variables are still a relatively new statistical research topic. As time

progresses and improvements in these models occur, the new circular models can

easily be plugged into these methods and compared to previous model types.

Temporal changes in modeling can also be experimented with. For our model

testing we selected a specific month, October, and modeled daily averages across

ten years. Modeling can be month specific, like in this research, or even more

general, grouping Santa Ana months together. This would create only two model

processes to predict a whole year and would additionally significantly increase the

amount of training data available.
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