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Learning Type-Based Compositional Causal Rules
Feng Cheng (fc1367@NYU.edu)

Department of Psychology, 6 Washington Pl
New York, NY 10003 USA

Bob Rehder (bob.rehder@nyu.edu)
Department of Psychology, 6 Washington Pl

New York, NY 10003 USA

Abstract

Humans possess knowledge of causal systems with deep com-
positional structures. For example, we know that a good soc-
cer team needs players to fill different roles, with each role
demanding a configuration of skills from the player. These
causal systems operate on multiple object types (player roles)
that are defined by features within objects (skills). This study
explores how human learners perform on novel causal learn-
ing problems in which they need to infer multiple object types
in a bottom-up manner, using empirical information as a cue
for their existence. We model subjects’ learning process with
Bayesian models, drawing hypotheses from different spaces of
logical expressions. We found that although subjects exhib-
ited partial success on tasks that required learning one object
type, they mostly failed at those that required learning mul-
tiple types. Our result identifies the learning of object types
as a major obstacle for human acquisition of complex causal
systems.

Keywords: causal cognition, causal learning, rule learning,
language of thought

Introduction
Imagine you are a billionaire with a recently acquired pas-
sion for soccer. You pour your wealth into a soccer team but
you know nothing about soccer. Your manager sends you
profiles of potential players, each characterized by a number
of skills (e.g., speed, stamina, shooting, passing, etc.). You
pick players haphazardly—some are good at shooting and de-
fending but slow, some are good at passing and dribbling but
lack stamina—and jumble them into a team. Your team loses
hopelessly. But this experience teaches you that rather than
being independent, skills combine in useful ways to produce
different types of players. For example, you realize that play-
ers that are fast and shoot accurately make for good attackers,
those with stamina and that pass accurately make for good
midfielders, and so forth. Moreover, you realize that success
requires a mix of the right type of players. With this knowl-
edge, you now create a winning soccer team.

The soccer team example a complex causal system that ex-
hibits compositional structure at two levels. At the object
level, objects are organized into types defined by multiple
features (e.g., in soccer, any player with the right skills can
be an attacker, etc.). At the set level, multiple object types
interact to produce to a particular effect (e.g., a winning soc-
cer team). Such systems—which we refer to as typed com-
positional causal systems, are ubiquitous in our knowledge
systems. For example, the functioning of a mammal’s body

relies on the cooperation of several types of organs, each de-
fined by their cell functions and organizations. The products
of complex chemical processes are generally determined by
the types of compounds involved, which are defined by the
substructures of basic chemical elements. We argue that these
systems underlie many of the complex reasoning processes
that characterize human cognition.

Despite their prevalence, typed compositional causal sys-
tems have received little attention in the literature. A typi-
cal causal learning experiment investigates how subjects infer
a single univariate cause from an outcome, such as whether
a drug eliminates a headache or whether a block placed on
a machine causes it to light up (e.g., Buehner et al. 2003;
Sobel et al. 2004). Whereas such paradigms of course in-
volve ”types” (taking the drug is a type of event), here we
focus on multivariate object types as the primitive compo-
nent of causal rules. The influence of (and potential inter-
actions between) multiple causes has been investigated (e.g.,
how plant growth is influenced by both light and fertilizer;
Kemp et al. 2010, Expt 4; Lucas & Griffiths 2010; Novick &
Cheng 2004; Spellman 1996; Waldmann 2007; Lucas et al.
2014), but again with univariate causes. Research has investi-
gated causal learning that involves inducing new categories of
causes, either when the new category is univariate (e.g., Lien
& Cheng 2000; Marsh & Ahn 2009) or multivariate (e.g.,
Bramley et al. 2018; Kemp et al. 2010, Expt 3; Gopnik & So-
bel 2000; Waldmann & Hagmayer 2006; Zhao et al. 2022),
but subjects in these studies need only learn one new causal
type. Finally, the study of Bye et al. (2023) may be most simi-
lar to ours as they considered how multiple variables could be
treated as ”whole causes,” which in turn might be combined
to yield an effect. However, in their study (a) the constituents
of whole causes are not properties of objects and thus do not
define object types, (b) whole causes were only assumed to
combine disjunctively whereas we consider interacting object
types (a soccer team needs attackers and midfielders), and (c)
subjects only predicted how whole causes combine during a
generalization phase, not learning itself. Thus, typed compo-
sitional causal systems as we’ve defined them are a largely
unexplored learning problem.

Current Study
This study is a preliminary investigation of how human learn-
ers acquire typed compositional causal systems from experi-
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Table 1: A list of rule families for the Bayesian model

Names Description Example Rule

Type-1 Rules with 1 object type that specifies 2-3 features. ∃ox[Cl(ox) = r∧Sh(ox) = c∧Sz(o) = l]

Type-2 Rules with 2 distinct object types that each specify 2-3
features.

∃ox[Cl(ox) = r]∧∃oy[Sh(oy) = c∧Sz(oy) = l]∧
ox ̸= oy

Feature Rules that specify exactly 1 feature. ∃o[Cl(o) = r]

Conjunct* Rules that specify a conjunction of (up to 6) features. ∃o[Cl(o) = r]∧∃o[Sh(o) = c]

Disjunct* Rules that specify a disjunction of (up to 6) features. ∃o[Cl(o) = r]∨∃o[Sh(o) = c]

Counting
conjunct*

Rules that specify a conjunction of exact feature counts
(up to 6).

∃o=1[Cl(o) = r]∧∃o=1[Sh(o) = c]

Prototype* Probabilistic versions of the counting conjunct rules. Prob(∃o=1[Cl(o) = r])

*Unlike Type-1 and Type-2, these rule families are insensitive to whether the features appear in the same or different objects.

ence. Our first question is whether subjects can learn a typed
compositional causal rule at all. Assuming they can, our sec-
ond question concerns the factors determining their acquisi-
tion difficulty. One obvious possibility is that difficulty will
increase with the number of to-be-learned object types. This
is so because the two-level compositional hierarchy (object
types, and then how they combine) exponentiates the space of
possible rules. We also ask whether learning difficulty varies
with a rule’s number of feature specifications, regardless of
whether they are associated with the same or different objects.
More feature specifications might hurt learning because they
result in rules that are more complex and so less likely to be
sampled (Feldman 2003).

To this end, we presented subjects with stimuli con-
sisting of two objects, each with three binary dimensions:
Cl(Color) = {red, blue}, Sh(Shape) = {circle, square},
Sz(Size) = {large, small}. Given these stimuli, we defined
two families of typed causal rules, one that requires learning
one object type (Type-1) and another that requires learning
two (Type-2). To return to our soccer team example, Type-1
and Type-2 rules are analogous to constructing a team in a
sport with one or two types of players, respectively.

For example, a rule in the Type-1 family is:

ERC ≡ ∃ox[Cl(ox) = red ∧ Sh(ox) = circle] (1)

Here we use ”ERC” as a compact label for a rule that states
that the effect occurs if within the stimulus there exists an
object that is a red circle. A rule in the Type-2 family is:

ERˆEC ≡ ∃ox[Cl(ox) = red]∧∃oy[Sh(oy) = circle] ∧
ox ̸= oy

(2)
ERˆEC states that the effect occurs if there exists an object

that is red and there exists a different object that is a circle.
Importantly, whereas ERC stipulates that the features red and

circle must appear in the same object, ERˆEC stipulates that
they must appear in different objects.

We also tested a pair of rules ERLC and ERˆELC that, like
ERC and ERˆEC, differ on how the features are distributed over
the objects but that specified three rather than two features:

ERLC ≡ ∃ox[Cl(ox) = red ∧ Sh(ox) = circle ∧
Sz(ox) = large]

ERˆELC ≡ ∃ox[Cl(ox) = red] ∧
∃oy[Sh(oy) = circle∧Sz(oy) = large] ∧
ox ̸= oy

(3)
ERLC states that the effect occurs if there exists a large red
circle and ERˆELC states it does so if one object is red and the
other is a large circle.

Together, these four experimental conditions, which were
manipulated between subjects, allow us to test the effect of
needing to learn one versus two object types (conditions ERC
and ERLC vs. ERˆEC and ERˆELC) and two versus three feature
specifications (ERC and ERˆEC vs. ERLC and ERˆELC). Sub-
jects were asked to infer the ground-truth rule by predicting
the effects of a series of two-object combinations as stimuli.

Although subjects’ overall prediction accuracy will serve
as one dependent variable, we note that high accuracy does
not necessarily imply that the ground truth rule was learned.
This is because learners might settle for suboptimal yet high-
performing rules that approximate the ground truth. Thus,
in addition to the Type-1 and Type-2 families we considered
a variety of simpler rule families that do not contain object
types (see Table 1). In particular, the Feature, Conjunct, and
Disjunct families are rule spaces that are known to be easily
accessible to human learners (Feldman 2000; Goodman et al.
2008; Haygood & Bourne Jr 1965; Piantadosi et al. 2016).
The Counting Conjunct family accounts for the possibility
that subjects may form a rule based on the exact number
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of features (e.g., there is exactly one red object and exactly
one circle; Kemp et al. 2008). Finally, the Prototype fam-
ily is a probabilistic version of the Counting Conjunct family
that treats a counting conjunct rule as an ideal or prototypical
cause; the probability of the effect occurring is a linear func-
tion of the number of count mismatches. We will compare
the performance of these rule families with that of the hu-
man subjects to help identify which rule they induced during
training.

Methods
Participants
148 New York University undergraduates participated for
course credit or monetary compensation.

Materials & Design
As mentioned, our stimuli are pairs of objects characterized
by three binary dimensions. Because we allow object repeti-
tion within a stimulus, there are eight unique objects and 36
unique two-object combinations (ignoring order). Aside from
ERC, ERLC, ERˆEC, and ERˆELC, as a control we also tested a
simple single feature rule to verify that subjects understood
the task and were learning during the experiment:

R ≡ ∃o[Cl(o) = red] (4)

Prior research suggests that R, which state that the effect oc-
curs if at least one of the objects is red, should be very easy
to learn (Haygood & Bourne Jr 1965; Shepard et al. 1961).
To ascertain that subjects’ performance cannot be attributed
to the salience of particular features, we also flip the feature
specification of the ground-truth rules for half of the subjects
(e.g., the R rule became ∃o[Cl(o) = blue]). (Despite this coun-
terbalancing of features, we will continue to refer to the rules
as R, ERC, etc.) This results in five between-subject conditions
presented in two stimuli lists.

Procedure
Subjects were randomly assigned to one of the five rule con-
ditions presented in one of the two stimuli lists. Each trial,
presented two objects and subjects predicted whether the ef-
fect (an explosion) would occur. During training, subjects
made predictions for 160 trials and received immediate feed-
back after each. The base rate of the effect was constant under
all conditions (40%), with each unique stimulus (i.e., pair of
objects) presented at least twice. In the testing phase, subjects
made predictions for all 36 unique stimuli without feedback.
The presentation order of trials was randomized for each sub-
ject. Subjects were also tested with 15 generalization trials in
which three objects are presented as stimuli; their confidence
ratings and verbal descriptions of the learned rule were also
collected. Due to space limitations we omit presentation of
these additional measures.

At the start of the experiment subjects were told that the
effect is a deterministic function of the object pairs and that
the order of the objects is irrelevant. They were also informed

that the ground truth rule will remain constant. Subjects were
not allowed to take notes and were instructed not to rely on
memorization to solve the task.

Results
Model-Free Results
There were no significant effects of the stimuli lists so the
results are collapsed over this factor. Subjects’ average accu-
racy at predicting the outcome in the test phase is presented
in Fig. 1 for each condition. Performance was above chance
(.50) on all rules, ps < 10−4. Moreover, accuracy on rule R
was greater than the other four rules combined, p < 10−7, a
result that was expected given its simplicity.
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Figure 1: Mean test accuracy in the five rule conditions. Error
bars are standard errors.

Focusing on the remaining four conditions, to ask whether
accuracy varied with the type of rule we ran a mixed effect
generalized linear model with a binomial (logit) link function
and per-subject intercepts. We found effects of the number
of both object types, F(1,144) = 14.8, p < 10−4, and feature
specifications, F(1,144) = 4.23, p= .034, and no interaction.
Although we expected the finding that the rules with more ob-
ject types (ERˆEC and ERˆELC) would be harder to learn, it is
notable that the rules with more feature specifications (ERLC
and ERˆELC) were easier to learn, contrary to our hypothesis.

Model-Based Results
The main goal of our model-based analysis is to determine if
subjects learned the ground-truth rule and, if not, to gain in-
sight into the kind of rules they learned instead. To this end,
we fit the rule families in Table 1 to each subjects’ predic-
tions using optimal Bayesian models. Each family defines a
hypothesis space of rules of the same form. As mentioned,
the Type-1 family includes all rules that have exactly one ob-
ject type and thus this family will fit the subjects in the ERC
and ERLC conditions well if they inferred the correct rule. The
same applies to the Type-2 family in the ERˆEC and ERˆELC
conditions, and the Feature family in the R conditions. Note
that for this reason these rule families have the ceiling accu-
racy of 1 in their corresponding conditions in Table 2. The
remaining families are fitted to the subjects’ predictions to
determine if they instead learned a conjunctive, disjunctive,
counting conjunctive, or prototype rule, even though doing
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so would result in suboptimal performance (in Table 2 the
ceiling accuracy of these models is always < 1). Although
not shown in Table 1, we also fit a baseline model that simply
matches the subjects’ preference for one response over the
other. This model will capture those subjects whose predic-
tions were insensitive to the which objects were presented.

All rules in family H start with a uniform prior P(h|H ).
For a stimulus on trial i, denoted si, its likelihood for any
h ∈ H is:

p(si,O(si)|h) =

{
1−m h matches si,O(si)

m otherwise
(5)

where O(si) indicates whether the effect occurs in trial i and
0<m< 0.5 is a free parameter that defines the penalization of
mismatch for a rule. Note that, as defined above, the match-
ing function of h in the Prototype family gives a probabilistic
response instead of 0 or 1. On trial i the model predicts that
the probability of an effect will be:

p(O(si) = 1|Si−1,O(Si−1),H )

= ∑
h∈H

p(si,O(si) = 1|h)p(h|Si−1,O(Si−1))

= α ∑
h∈H

p(si,O(si) = 1|h)× p(h|Si−1,O(Si−1))

+(1−α)×β

(6)

where 0 ≤ α,β ≤ 1 are free parameters and Si−1 is a vector of
all past stimuli up through trial i−1. α determines the prob-
ability that a response is made at random and β represents
the baseline preference for a positive prediction. In each trial,
the model first makes a prediction about the effect, then re-
ceives the feedback and updates its posterior. Each model is
ran on the same sequence of training stimuli that the subject
received. In the testing phase, the posteriors are fixed and
only the model’s prediction are recorded. The three free pa-
rameters are fitted using a simple grid search followed by op-
timization that maximized the log-likelihood of the subjects’
predictions given H .

The model fitting results are presented in Table 2, in which
each cell presents the ceiling accuracy, average BIC, test
phase model loss (the absolute difference between the pre-
dictions of the subjects and the model), and the number of
best-fitted subjects. Starting with the R rule, we found, unsur-
prisingly, that the Feature family was the best-fitting family
for almost all subjects. The small test phase model loss re-
flects that by the test phase these subjects’ judgments were
almost entirely consistent with the ground-truth R rule.

In the ERC and ERLC conditions, we also found that the
ground truth rule family (in this case, Type-1) achieved the
lowest loss and best fitted the majority of subjects, indi-
cating that subjects had considerable success learning these
rules. Moreover, subjects perform slightly better ERLC than
in ERC, consistent with their difference in accuracy (Fig. 1).
Nevertheless, the substantial average loss of the ground-truth
model, plus the fact that 14/30 of the ERC subjects and 7/30

ERLC subjects were best fit by an alternative model, indicates
that the Type-1 family was not a good description of the judg-
ments of many subjects. Those subjects either learned little
or nothing (5/30 subjects were best fit by the baseline model
in both conditions) or inferred a suboptimal rule (e.g., three
ERC subjects were best fit by a Conjunctive rule and two ERLC
subjects were best fit by a Feature rule).

Finally, in the ERˆEC and ERˆELC conditions we found that
the ground-truth rule family (Type-2) yielded the best fit for
only a small portion of the subjects (4/29 and 5/30, respec-
tively). More subjects were better fit by a Conjunctive rule
(8/29 and 9/30); specifically, the judgments of the 8 ERˆEC
subjects were best characterized by the rule RˆC (red and cir-
cle) and those of the 9 ERˆELC subjects were best character-
ized by LˆRˆC (large and red and circle). That is, instead of
learning two object types, these subjects induced a presum-
ably more familiar conjunctive rule at the cost of accuracy.
Note that the Type-2 family in the ERˆELC condition yielded
a slightly lower model loss than the ERˆEC condition, and a
slightly better BIC than the conjunctive family, results con-
sistent with our model-free analysis (Fig. 1) indicating better
performance on ERˆELC versus ERˆEC.

These analyses confirmed our first hypothesis that learning
two object types is harder than one, as indicated by the fact
subjects induced a non-optimal (usually conjunctive) rule in
the former conditions. And, similar to our model-free analy-
sis, we found that subjects performed better when the ground-
truth has more feature specifications (ERLC and ERˆELC better
than ERC and ERˆEC). We will return to these results in our
discussion.

Stochasticity in Rule Learning
Although the Bayesian model fits presented above provide
useful information regarding the rules induced by subjects,
we believe they make unrealistic assumptions regarding the
learning process. Such models assume that learners main-
tain a posterior probability distribution over all hypothe-
sized rules, which gets optimally updated after every learn-
ing trial. These assumptions imply that the posterior will
shift smoothly over time toward the hypothesis that is the
best account of the observed data. But as noted by many
(e.g., Bonawitz et al. 2014), maintaining a large number of
hypotheses is psychologically implausible, lending credence
to alternative models that assume that learners track a small
number of rules (often one) and stochastically switch to a new
rule when required by new evidence. Indeed, our subjects’
verbal reports indicated qualitative shifts in their favored hy-
pothesis during the course of learning.

As a preliminary investigation of the dynamics of learn-
ing, we carried out a sliding-time window analysis that asked
which rule best described a subject’s judgment during that
window. We took all 196 training and test trials and seg-
mented them into 12 overlapping time windows each consist-
ing of 80 trials where each subsequent window was advanced
by 10 trials, resulting in windows 1:80, 11:90, 21:100, ...,
111:196. (The last window consisted of 86 trials to cover
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Table 2: Fits of the Bayesian model to subject’s training and test data.

Rule Family
Rule Counting
Condition Measurement Type-1 Type-2 Feature Conjunction Disjunction Conjunction Prototype

ERC Ceiling Accuracy 1 0.806 0.694 0.889 0.500 0.694 0.579
Average BIC 209.1 252.5 261.1 243.6 290.9 283.6 288.9
Test Phase Model Loss 0.316 0.395 0.419 0.367 0.470 0.451 0.457
No. of Subjects 16/30 0/30 3/30 3/30 1/30 0/30 2/30

ERLC Ceiling Accuracy 1 0.882 0.500 0.833 0.306 0.756 0.556
Average BIC 172.5 236.9 267.0 233.0 290.7 283.6 293.6
Test Phase Model Loss 0.255 0.366 0.431 0.352 0.468 0.451 0.466
No. of Subjects 21/30 1/30 2/30 0/30 0/30 0/30 1/30

ERˆEC Ceiling Accuracy 0.778 1 0.694 0.889 0.500 0.694 0.580
Average BIC 275.4 274.3 272.3 270.2 294.1 291.8 292.8
Test Phase Model Loss 0.433 0.452 0.433 0.416 0.474 0.465 0.464
No. of Subjects 2/29 4/29 5/29 8/29 0/29 0/29 2/29

ERˆELC Ceiling Accuracy .806 1 0.500 0.833 0.306 0.756 0.556
Average BIC 254.9 257.8 269.2 257.9 291.3 286.8 291.4
Test Phase Model Loss 0.392 0.391 0.431 0.392 0.469 0.456 0.462
No. of Subjects 7/30 5/30 3/30 9/30 0/30 0/30 1/30

R Ceiling Accuracy 0.694 0.711 1 0.806 0.806 0.722 0.611
Average BIC 182.4 189.8 89.0 147.0 267.4 220.2 259.3
Test Phase Model Loss 0.274 0.286 0.102 0.203 0.440 0.332 0.396
No. of Subjects 0/29 0/29 28/29 0/29 0/29 0/29 0/29

Note. The rows are experimental conditions and the columns are Bayesian models representing different rule families. The best
fitting model is depicted with bold text. Text is blue if the best fit is achieved by the family with the ground truth rule and red
otherwise. Subject counts do not sum to the total because some are best fit by the Baseline model (not shown in the table).

all trials.) For every subject, window, and rule defined by
the families in Table 1, we computed a BIC score reflecting
how well that rule matched the subject’s judgments. We then
chose the best rule in each family and computed the posterior
model weights for those rules. Fig. 2 presents the results from
six example subjects, three each from the ERC and ERˆEC con-
ditions. Each condition includes a learner, who achieved per-
fect test accuracy, a non-optimal learner, whose test accuracy
was < 1 but > .80, and a non-learner whose test accuracy
was near chance. In each panel the lines reflect the posterior
model weights for the best rule in each family; the best rule
itself appears as floating text at the top of the panel.

All six subjects exhibit distinct periods in which their judg-
ments were characterized by one rule followed by a transition
to another. For example, starting in window 21:100 the ERC
learner’s judgments were first best characterized by a con-
junctive rule (LˆRˆC: large and red and circle), which was the
followed by the correct ERC rule. And, the ERC non learner’s
judgments were first dominated by a disjunctive rule (L|B:
large or blue), then a conjunct (LˆR: large and red), then a sin-
gle feature (L: large), and finally ended with another conjunct

(LˆBˆC: large and blue and circle). In summary, the major-
ity of subjects exhibited evidence of testing specific rules and
switching to alternative hypotheses as needed. We return to
this point below.

Discussion
In this study, we asked subjects to learn various forms of
typed compositional causal systems to investigate how hu-
man learners acquire complex causal knowledge. First, we
found that whereas such systems are learnable, they are hard,
as revealed by the fact that both the model-free and the model-
based results indicated they are more difficult than a rule
based on a single feature (the R condition). We also found
that the number of object types in the system contributes to
its acquisition difficulty. While a majority of subjects could
learn rules with one object type, only a small minority could
learn rules with two. These rules were instead approximated
with simpler rules, such as conjunctions.

We also asked how learnability is impacted by the number
of feature specifications. Contrary to our expectation, the re-
sults suggest that the rules become easier as more features
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Figure 2: Example subjects in the sliding time window analysis, organized into two conditions (ERC and ER∧EC) and three
learner groups. The x-axis is the start:end of the time window (in terms of trial number) and the y-axis encodes the posterior
model weight of the best rule in each family. The floating texts denotes the best-fitting rule in each time window.

are specified. One possible explanation is that the sampling
probability of a given rule is sensitive to the starting loca-
tion (Bramley et al. 2018). That is, if subjects start from a
rule representing a positive instance and continuously mod-
ify parts of the rule until ground-truth is reached, then rules
with more feature specifications are more likely to be sam-
pled. However, more testing is needed to warrant this expla-
nation, which we intend to pursue in the future.

More generally, our intent is to pursue the ”Language of
Thought” (LOT) question as regards causal learning. That
is, we want to identify the primitive hypotheses that learn-
ers bring to bear in a causal learning situation (Bramley et al.
2018, Zhao et al. 2022). In our current modeling, we simply
predefined a set of plausible rule families to identify which of
the tested causal rules were learnable and which were approx-
imated by simpler rules. In contrast, state-of-the-art models
(e.g., Goodman et al. 2008; Piantadosi et al. 2016) typically
uses probabilistic context-free grammars (pCFG) to define
large hypothesis spaces. Since the probability of each pro-
duction rule can be manipulated independently, these models
have precise control over the prior probability of individual
rules in the hypothesis space. So, a pCFG that readily gener-
ates rules with one object type but not two or more may prove
to be one straightforward account of our empirical results. Of
course, a complete grammar will need to generate a far wider
variety of rules than we’ve considered here. For example,

in addition to conjunctions and disjunctions, people certainly
can learn relational rules such as ”the objects are the same
color,” ”one object is larger than the other”, and so forth.

In addition to the primitives that learners have available,
another question concerns the psychological validity of our
model. As we’ve explained, our ideal Bayesian model cannot
explain the stochasticity and sequential bias subjects demon-
strated in our study. In the future, we plan to develop a ra-
tional process model of causal rule learning with approxima-
tion methods such as a particle filters (Bonawitz et al. 2014;
Speekenbrink 2016) and instance-driven generators (Bramley
et al. 2018) to account for subjects’ learning patterns.

The major conclusion of this study is that subjects struggle
to bootstrap multiple object types at the same time, at least
in a single experimental setting. Perhaps this should not be
surprising: After all, there is a reason soccer coaches are paid
handsomely for their know-how of team building. Complex
compositional causal systems, despite their prevalence, are
not the low-hanging fruit of human learning experiences. Our
design might not be able to offer subjects the necessary depth
and width of experiences to fathom the ground-truth, and we
plan to modify our designs to facilitate better learning. We
believe that an understanding of the learning process behind
these systems is necessary for a more comprehensive theory
of human causal knowledge, and we anticipate more research
in this area in the future.
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