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Abstract: This review introduces several areas of importance in acoustic emission (AE) technology, 

starting from signal attenuation. Signal loss is a critical issue in any large-scale AE monitoring, but 

few systematic studies have appeared. Information on damping and attenuation has been gathered 

from metal, polymer, and composite fields to provide a useful method for AE monitoring. This is 

followed by discussion on source location, bridge monitoring, sensing and signal processing, and 

pressure vessels and tanks, then special applications are briefly covered. Here, useful information 

and valuable sources are identified with short comments indicating their significance. It is hoped 

that readers note developments in areas outside of their own specialty for possible cross-

fertilization. 

Keywords: acoustic emission; structural diagnosis; attenuation; source location; sensing; signal 

processing 

 

1. Introduction 

Nondestructive evaluation (NDE) of various structures, large and small, has been the primary 

target of acoustic emission (AE) technology along with its uses in materials research. The first success 

of AE technology was achieved at Aerojet for the inspection of Polaris missile chambers in the 1960s 

[1]. Further works continued for nuclear and chemical pressure vessels and tanks [2,3]. For industrial 

AE applications to fiber reinforced plastics (FRP) vessels, the Committee on Acoustic Emission for 

Reinforced Plastics (CARP) was instrumental in code development, culminating in ASME Boiler and 

Pressure Vessels Codes and ASTM standards. See Fowler et al. [4] and four following articles in the 

special issue of Journal of AE in 1989. A wide range of AE applications have been compiled in the AE 

volume of the Nondestructive Testing Handbook [5], while many articles appeared in conference 

proceedings and in Journal of AE [6]. Shiotani [7] and Bohse [8] reviewed various applications of AE 

to infrastructures and to structural diagnosis, respectively. Two recent review articles [9,10] on bridge 

and pressure-vessel inspection are noteworthy in connection to the topic of this introduction. Another 

review was published as a Sandia report, comparing AE with other methods for structural health 

monitoring (SHM) in evaluating damages to a full-scale wind turbine blade, and demonstrating the 

advantages of AE over others [11]. The present author also prepared survey papers on structural 

diagnosis [12] and on composites [13]. A comprehensive monograph by Giurgiutiu [14] on SHM of 

aerospace composites appeared recently and AE monitoring for SHM was covered in depth. AE uses 

in SHM have fully integrated acousto-ultrasonic methods, taking advantage of piezoelectric wafer 

active sensors (PWAS). A review paper by Mitra [15] covering the roles of guided waves in SHM is 

also useful. With the wealth of these available resources, this article will focus on those topics not 

addressed adequately elsewhere. 
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2. Signal Attenuation 

An important issue during any structural inspection using AE methods is the decrease in signal 

intensity or attenuation. On the AE side, signal-to-noise ratio is important in signal detection. In SHM 

applications, quantitative system modeling is often desired and attenuation behavior needs to be a 

part of successful SHM system design [16]. The same phenomena at lower frequencies are referred 

to as structural damping and a recent review relative to composite materials [17] provides useful 

backgrounds. This topic is also indirectly related to the mechanical properties of polymers since most 

polymers exhibit viscoelastic behavior and strong acoustic damping [18,19]. 

2.1. Guided Wave Attenuation 

In using AE to examine structures, we typically deal with two-dimensional wave propagation 

since thick-walled structures—like nuclear pressure vessels and concrete dams—are exceptional 

cases. For theoretical developments and early experimental results, see Viktorov’s book from 1967 

[20] or numerous other books that followed dealing with wave propagation, e.g., Rose [21]. In most 

instances, AE signals propagate along the surface as Rayleigh waves or through thin-walled 

structures as Lamb waves. These waves are collectively known as guided waves. When they spread 

on two-dimensional structures, signal loss occurs from geometrical spreading (with inverse square 

root dependence on travel distance, x, or 1/√x dependence). Additionally, attenuation is caused from 

material absorption and scattering with exponential decay, or exp(−𝑎x) with attenuation coefficient 

𝑎. Combined, signal amplitude decreases following (1/√x)·exp(−𝑎x). For dispersive Lamb waves, 

signal loss also arises from dispersion or frequency-dependent wave speed, which spreads vibration 

energy over a longer period, reducing signal amplitude [13,20]. When the surfaces are covered with 

liquids or other damping matters, attenuation occurs from vibration energy leakage. These appear as 

additional 𝑎 values. Mal et al. [22] gave an extension of wave propagation theory to anisotropic 

plates with dissipation given in terms of quality factors, Q. They presented several examples of 

attenuation in fiber reinforced composite plates. 

Press and Healy [23] in 1957 gave theory and experimental confirmation for Rayleigh wave 

attenuation. Measured Rayleigh attenuation coefficients (𝑎R) for PMMA were nearly linear with 

frequency and was 55 dB/m at 100 kHz. Viktorov [20] provided a parametric equation for 𝑎R and 

listed three more 𝑎R values for aluminum (Dural or 2017 alloy), glass and polystyrene (15.4, 73.7, 422 

dB/m at 1 MHz, respectively). In 1964, Zhukov et al. [24] derived theoretical expressions for Lamb 

wave attenuation coefficients, 𝑎L. These guided wave attenuation coefficients, 𝑎R and 𝑎L, depend on 

the attenuation coefficients of longitudinal and transverse bulk waves, or 𝑎p and 𝑎t. Zhukov et al. 

[24] also measured 𝑎L values for the 0th and 1st symmetric and asymmetric modes, or S0, S1, A0, and 

A1 modes on low carbon steel plates (C = 0.15%). The measured 𝑎L values ranged from 3.8 to 5.7 dB/m 

at 1.3 MHz and were comparable to their longitudinal and shear wave attenuation coefficients, 𝑎p = 

3.7 and 𝑎t = 3.9 dB/m. At zero thickness limit for S0, 𝑎L = √2 𝑎t. Pressure-vessel and pipeline steels are 

known for their low bulk wave attenuation of 𝑎 p = 1 to 10 dB/m at 2 MHz as tabulated in 

Krautkramer’s book [25], which are reduced further at lower frequencies. Such low attenuation 

values for Al and steels below 10 dB/m were reported by Mason and McSkimin [26], Roderick and 

Truell [27], Kamigaki [28], and Papadakis [29,30] among others at frequencies up to 20 MHz. These 

data were obtained using directly bonded, low-loss quartz transducers. Some of these tests also 

included 𝑎 t measurements. Thus, guided waves are expected to propagate with low loss when 

materials possess low 𝑎p values. 

Wave attenuation is characterized using several different parameters. In the ultrasonic and AE 

fields, attenuation coefficient 𝑎 is commonly used to represent an exponential decay. We use two 

units for 𝑎; One is dB/m and the other Np/m with 8.686 dB = 1 Np. Np stands for Nepers, a non-

dimensional unit, and is useful in numerical computation. This 𝑎 is also related to damping (or loss) 

factor η by η = 𝑎λ/π, where λ is the wave length. Here, η is the ratio of energy dissipated per cycle 

to maximum energy stored per cycle, and is also equal to loss tangent, tan δ. This tan δ is defined as 

the ratio of imaginary part (E”) to real part (E’) of a complex modulus, E* = E’ − iE” with i2 = −1. The 

damping factor (or loss tangent) is often used in dealing with vibration damping at lower frequencies. 
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Another parameter is quality factor Q, defined as the inverse of η (or tan δ). See e.g., Kinsler et al. [31] 

and Cai et al. [32]. 

2.2. Attenuation Measurements on Large Metallic Structures 

Graham and Alers [33] reported in 1975 the first quantitative study of AE signal attenuation on 

pressure vessels, showing that signal amplitude (expressed in dB scale) decreased linearly with 

distance of propagation, except near the signal source where the slope of the decrease was steeper. 

The frequency they examined was 100 to 850 kHz and the wall thickness of the pressure vessels was 

100–130 mm. Thus, the signals examined were Rayleigh waves. Selected data was replotted against 

distance (in the logarithmic scale) as shown in Figure 1. Of the five plots, the data at 100 and 200 kHz 

followed the inverse square root distance dependence, indicating absorption loss was negligible. For 

the two higher frequency cases at 400 and 600 kHz, additional attenuation term of 1.7 or 2.1 dB/m 

accounted for the observed deviation from the 1/√x dependence. Data at 850 kHz was inadequate, 

but it seems to show even higher attenuation. For a given plate thickness, a limiting frequency exists, 

below which Rayleigh waves do not exist. For the 100-mm thick steel, it is 82 kHz, as shown in the 

Appendix A. 

Pollock [34] reported AE signal attenuation for 30-kHz signals on a pipeline of nearly 300-m 

length. A replot of this data (with blue + symbols) in Figure 2a exhibits the same 1/√x behavior 

(indicated by a black line) with small additional attenuation of 0.17 dB/m. Data points for the 1/√x 

plus 0.17-dB/m attenuation are shown by red circles. Here, Lamb waves propagated on a relatively 

thin pipe wall (of a few cm thickness). Blackburn [35] reported attenuation data for large gas 

cylinders. These cylinders were 12-m length, 0.6-m diameter, and 14.3-mm wall thickness and made 

of heat-treated 4130 steel (quenched and tempered after fabrication). His data for a 3AAX tube at 150 

kHz is plotted in Figure 2b. Most data points fit the 1/√x behavior except a few points deviated lower, 

suggesting possible effects of signal absorption at large distances. In these two studies, dispersion 

loss was minimal. 

More attenuation measurements have been published recently. The data of Baran et al. [36] for 

30-kHz signals on a pipeline up to 100-m length are shown in Figure 2c. Their results are similar to 

the Pollock case with a slightly higher attenuation of 0.34 dB/m. Sofer et al. [37] tested 150-kHz signals 

from pencil-lead breaks on steel sheet and plate, getting only the 1/√x behavior since the maximum 

distance was 2 m. Their cylindrical block did exhibit attenuation of 17 dB/m in addition to the 1/√x 

behavior. Thus, these observations fit with the theory and early experiments [20,24]. 

 

Figure 1. Attenuation data (amplitude in dB vs. distance in m) on steel pressure vessels at five 

frequencies from Graham-Alers [33]. From top to bottom: 100 kHz (blue), 200 kHz (red), 400 kHz 

(purple), 600 kHz (orange), and 850 kHz (green). Signal source was a white noise generator. Lines 

drawn represent 1/√x dependence. 
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Two other works were outside the above framework. CETIM group [38] examined large 

penstocks in a hydropower plant covering the length of 40 m. Their low and medium frequency 

attenuation studies resulted in the inverse-distance behavior. This may be due to many thick flanges 

for these particular penstocks that appear different from the common design of long pipe sections. 

El-Shaib [39] reported Lamb wave attenuation on a steel plate, but his signal energy values decreased 

with 1/√x, implying negative amplitude attenuation. It is likely that his energy data was already 

converted to amplitude values. 

 

Figure 2. Attenuation data (amplitude in dB vs. distance in m) on steel structures. (a) Signal 

attenuation on a pipeline at 30 kHz by Pollock [34]; (b) Signal attenuation on a gas cylinder at 150 kHz 

by Blackburn [35]; (c) Signal attenuation on a pipeline at 30 kHz by Baran et al. [36]. Lines drawn 

represent 1/√x dependence. Measured data points are shown by + (blue) and modeled points are in 

filled circles (red) in (a,c). 

2.3. Laboratory Attenuation Measurements 

As a part of guided-wave sensor studies at UCLA [40,41], Lamb wave attenuation was measured 

for large aluminum (Al) plates (6.4-mm thick 1100 Al and 12.7-mm thick 6061 Al), steel (3.2-mm thick 

410 stainless), soda-lime glass (4.7-mm thickness), PMMA (6.4-mm thickness), and polyvinyl chloride 

(PVC, 4.6-mm thickness). For the three metal and glass plates, the inverse-square root distance 

behavior prevailed with a few exceptions (when combined modes started to split at larger travel 

distances at some frequencies). The maximum travel distance was 500 mm and the frequency range 

was from 100 to 1500 kHz. The result of the 1/√x behavior for 410 stainless steel (SS) was surprising 
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because this steel (along with pure Fe and pure Ni) was expected to show high bulk wave attenuation 

due to its magnetic properties [42]. However, Papadakis [43] reported only moderate attenuation for 

a comparable 416 stainless steel (𝑎p = 20 dB/m at 4 MHz). Papadakis [43] did find Ni to have a high 

𝑎 p of 120 dB/m at 2 MHz. Drinkwater [44] calculated Lamb wave attenuation curves for glass, 

showing less than 0.1 dB/m attenuation below 0.5 MHz for a plate (3.9-mm thickness). Thus, the 1/√x 

behavior found here for glass confirms the calculation. In highly attenuating polymeric plates, signal 

levels were strongly reduced as shown in Figure 3. At 75 kHz on 6.4-mm thick PMMA (Figure 3a), 

S0-mode waves propagated with symmetric excitation and showed the 1/√x behavior plus 𝑎L of 25 

dB/m. At 380 kHz on PMMA (Figure 3b), seven Lamb modes are expected with the group velocity of 

0.8 to 1.1 mm/µs according to dispersion curve calculation. Since the duration of excited signals was 

about 50 µs, mode separation was not observed and the entire wave packets were analyzed. 

Attenuation 𝑎L beyond the geometrical spreading was higher at 121 dB/m. A 4.6-mm thick PVC plate 

exhibited even higher attenuation, reflecting its higher bulk wave attenuation [45]. As shown in 

Figure 3c, 130-dB/m attenuation was observed beyond the geometrical spreading at 75 kHz. For 

PMMA, the values of 𝑎p and 𝑎t below 100 kHz were available from resonant ultrasonic spectroscopy 

[46,47]. Assuming that the damping factor (η) values of 0.035 and 0.025 reported for 50 and 60 kHz, 

respectively, hold at 75 kHz, 𝑎p and 𝑎t are found as 27.3 and 52.0 dB/m for PMMA at 75 kHz. Using 

the Zhukov theory for 𝑎L and calculated coefficients given, the attenuation of S0-mode waves was 

obtained as 33.7 dB/m for the frequency-thickness product of 0.48 MHz-mm for PMMA thickness of 

6.4 mm. The observed 𝑎L value for S0-mode is 25 dB/m, so 𝑎L matching is good between theory and 

experiment. Castaings and Hosten [48,49] obtained complex elastic moduli for PMMA and predicted 

Lamb wave attenuation for five lowest modes. At 75 kHz, 𝑎L for S0 was 21.5 dB/m, while 𝑎L values 

ranged from 145 to 300 dB/m at 380 kHz. Thus, theory and experiment agree reasonably well also. 

When the observed 𝑎p and 𝑎t values are inserted to the Viktorov equation [20] for Rayleigh wave 

attenuation, 𝑎R = A 𝑎p + (1 − A) 𝑎t = 51.0 dB/m as A = 0.05 with Poisson’s ratio of 0.37 for PMMA. This 

is in good agreement with 47 dB/m at 75 kHz, obtained by Press and Healy [23]. 
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Figure 3. Lamb wave attenuation curves with amplitude in dB and distance in mm. Data symbols are 

identical to those in Figure 2. (a) S0-mode propagation at 75 kHz on 6.4-mm thick PMMA. Red points 

are for the 1/√x behavior plus 𝑎L of 25 dB/m; (b) mixed mode propagation at 380-kHz, fitting the 1/√x 

behavior plus 𝑎L of 121 dB/m; (c) S0-mode propagation at 75 kHz on 4.6-mm thick PVC matched the 

1/√x behavior plus 𝑎L of 130 dB/m. 

2.4. Complex Elastic Moduli Measurements 

Castaings et al. [50] developed an elegant ultrasonic method that is capable of determining the 

complex elastic moduli of PMMA discussed above. This method utilized iterative numerical 

inversion techniques and transmitted ultrasonic fields obtained for multiple incident angles on a plate 

sample. Either immersion or air-coupling technique can be used. This method yielded complex 

viscoelastic stiffness coefficients. The complex elastic moduli for PMMA were given in Castaings and 

Hosten [49], showing η1 = 0.023, η2 = 0.056, η66 = 0.026, and η12 = 0.046. These were measured at 0.3 

MHz. The η data is tabulated in Table 1. 

For PMMA, many tests have been reported for η and for 𝑎p. Figure 4 shows a plot of damping 

factor vs. frequency data from [47,51–56]. The value of η starts to rise at 0.001 Hz and the peak η of 

0.09 is reached at 3 Hz, then decreasing at higher frequencies. These low frequency tests were in 

torsional mode (corresponding to η66 or η12) and yielded 40 to 60% higher values than Thakur’s data 

[53], conducted in tension mode (equivalent to η1), corresponding to 𝑎t and 𝑎p values, respectively, 

in terms of ultrasonic attenuation. Also plotted are η values converted from 𝑎p measurements at 

higher ultrasonic frequencies between 0.5 to 6.4 MHz [54–56]. The η values from ultrasonic 

attenuation are relatively unchanged at approximately 0.01 and match Thakur’s data near 1 MHz 

within 25%. In fact, Hartman’s early η value of 0.089 is valid from 0.29 to 30 MHz [57]. If the trend at 

lower frequencies continues to the MHz range, it can be expected that 𝑎t is 50% higher than 𝑎p in the 

low MHz region. When all these η values are compared among them, it is evident that the 

transmission field inversion method [49] produced at least a factor of two larger results. Independent 

evaluation of this method seems advisable as their other complex elastic moduli data have been 

utilized by several other research groups as will be discussed below. Note also that η values for 

PMMA decrease by a factor of two from 10 kHz to 30 MHz. Given ultrasonic attenuation coefficient 

𝑎 = ηπ/λ, 𝑎 values increase with frequency with their frequency dependence decreasing gradually. 

This behavior is expected in other engineering polymers. 

From the above survey and results, we can estimate the attenuation of guided waves when we 

have bulk wave attenuation data. Unfortunately, values of 𝑎p and 𝑎t are unavailable at typical AE 

frequencies under 1 MHz for most engineering materials because large samples are needed for 

attenuation measurements. Even in usual ultrasonic frequencies above 1 MHz, it is difficult to find 

even 𝑎p values for many materials. Still, high strength steels and Al alloys are qualitatively known 

to be good transmitters of ultrasounds. Thus, we can reasonably assume that AE signal attenuation 

follows the geometrical spreading and shows the 1/√x behavior. This assumption cannot be used 

when excess damping conditions exist from inside or outside contact with liquids or other lossy 

matters [58,59]. Then, we need to assess signal attenuation by traditional methods.  
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Table 1. Damping factors from complex elastic moduli measurements 

Ref. No. 1 Material Axis 2 η11 η22 η33 η44 η55 η66 Η12 η13 η23 Freq (MHz) 

[60] Epoxy  0.01 0.01    0.011     

[49] PMMA  0.023 0.056    0.026 0.046   0.3 

[49] GFRP-UD 3 0.047 0.043 0.033  0.050 0.038 0.033 0.036  0.3 

[61] GFRP-UD 3 0.051 0.038 0.056 0.100 0.070 0.091 0.014 0.106  0.05–0.2  

[61] CFRP-UD 3 0.027 0.05 0.075 0.06 0.063 0.11 0.037 0.1  0.05–0.2  

[62] CFRP-UD 1 0.061 0.024 0.046 0.084 0.062 0.055 0.114 0.105 0.029  

[63] CFRP-UD 1 0.086 0.045    0.06 0.037 0.033  0.005–0.2 

[64] CFRP-UD 1 0.024 0.043 0.041 0.032 0.056 0.093 0.143 0.074  0.2–0.93  

[64] CFRP-QI 1 0.041 0.067 0.034 0.045 0.044 0.068 0.071 0.016  0.2–0.93  

[65,66] CFRP XP 1 0.020 0.018 0.001 0.010 0.017 0.026 0.018 0.016 0.001 0.01–1 

[65,66] CFRP-UD 1 0.015 0.099 0.099 0.010 0.045 0.045 0.015 0.015 0.261 0.01–1 
1: Ref. No. refers to reference number. 2: Axis indicates the coordinate direction along fiber direction (0° orientation in QI-quasi-isotropic or XP-cross-ply). 

 

Figure 4. Damping factor of PMMA over 11 decades of frequency, peaking at 3 Hz, from the literature. Torsional damping: blue X [47], blue circle [51], green circle 

[52]; longitudinal damping: green + [53], red circle [54], purple square [55], purple diamond [56]. 
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2.5. Survey of Ultrasonic Attenuation of Metallic Alloys 

Table 2 lists ultrasonic attenuation of engineering alloys, noting material parameters given in 

the original articles. This list attempted to cover all the attenuation data available for engineering 

alloys, but some data were omitted for obvious errors in methods used. Large variations are 

sometimes seen for similar alloys, but detailed reevaluation of measurement methods is needed to 

explore their causes [67]. For example, Klinman et al. [68] obtained 𝑎p of 60 dB/m at 5 MHz for an 

annealed 0.15%C steel with 20 µm grain size, but later Klinman et al. [69] reported for a similar 

sample 𝑎p of 670 dB/m at 10 MHz. Papers from Harwell [70,71] also reported 500 to 1350 dB/m 

attenuation for annealed low C steels at 8–10 MHz. Such large differences in 𝑎p at 5 and 10 MHz may 

arise from the frequency dependence of 𝑎p. However, these appear to be strange, since Papadakis 

[29,72] obtained 𝑎p = 12 dB/m for annealed 4150 steel and below 10 dB/m for a tempered martensitic 

bearing steel (52100 steel) over 1 to 10 MHz. Serious evaluation of these diverging results has not 

been conducted so far, but Papadakis’ data are more reliable as he used directly bonded quartz disc 

transducers, while later studies used damped ultrasonic transducers and water immersion [68–71]. 

Magnetic effects could be a factor, but are less than 10 dB/m at 1 MHz and not large enough [73,74]. 

Most of the references dealt with the longitudinal wave attenuation. Recently, Hirao, Ogi, and Ohtani 

[75–79] have measured shear wave attenuation using non-contact electromagnetic sensors. For 

example, they found 𝑎t = 116 dB/m at 5 MHz for 0.15%C steel with 49 µm grain size, almost doubling 

Klinman’s 𝑎p data at 5 MHz cited above [68]. Their 𝑎 t results in combination with longitudinal 

attenuation data allow one to estimate guided wave attenuation using the theories discussed in 

Viktorov [20]. The number of engineering alloys examined for 𝑎t, however, is still limited. 

In contrast to polymers, in which hysteretic effects due to molecular rearrangements are 

dominant [18], ultrasonic attenuation of crystalline metals and ceramics mainly comes from 

absorption, Rayleigh scattering, and stochastic scattering [26,80]. Absorption effect is similar to 

polymers with linear frequency dependence, though mechanisms are different. Both of the scattering 

contributions depend on frequency with a power law and the exponents are 4 and 2. Rayleigh 

scattering varies most with grain size. In Table 2, attenuation measurements that used low-loss quartz 

discs directly bonded to samples are marked with Q while non-contact electromagnetic 

measurements are marked with E. The rest utilized immersion, buffer rod, or direct contact methods. 

The unmarked group needs assumptions regarding signal loss at sample interfaces, where errors may 

be generated. Generazio [81] examined ultrasonic reflection coefficients and showed large variations 

and dependence on interface thickness and contact pressure. In view of low attenuation found in 

guided wave propagation dominated by the 1/√x dependence, it is likely that most structural steels 

used in pressure vessels, tanks, and pipelines have low values of 𝑎p and 𝑎t. Thus, high bulk wave 

attenuation of ultrasonic waves must be reexamined since high attenuation reports have mostly 

originated from immersion test procedures that included a plane-wave assumption in the analysis. 

This last point also needs further study because the sound fields ahead of a commonly used piston 

transducer suffer from divergence and diffraction [31,72]. 
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Table 2. Ultrasonic attenuation of engineering alloys 

Material Type α-p 1 α-t 1 Method 2 Condition 3 Reference Ref. No. 

Al 1100 (2S) 0.16 (5), 1(10)  Q  Hikata (1957) [82] 

Al Al (99.99%)  28 (6.3) E Anneal 200 °C 1 h  Hirao (2003) [76] 
 2017 (17ST) 5.6 (5) 13.1 (4) Q GS: 0.23 mm Mason (1947) [26] 
 2017 (17ST) 2.6 (5) 7.9 (5) Q GS: 0.13 mm Mason (1947) [26] 

Cu Cu (99.99%)  88 (2.3) E GS: 35 µm Hirao (2003) [76] 
 Brass (360) 45.7 (10) 286 (5) Q GS: 49 µm Papadakis (1965) [43] 

Mg -- 32.3 (10)  Q GS: 0.2 mm Mason (1948) [83] 
 AZ31 (FS1) 6.9 (10) 4.1 (10) Q GS: 0.12 mm Mason (1948) [83] 

Nb Nb 280–510 (5)   GS: 43–124 µm Zeng (2010) [84] 

Ni Grade A 115 (3.5) 240 (2) Q GS: 55 µm Papadakis (1965) [43] 
 Waspaloy  51 (4.5) E solution + aged Ohtani (2004) [75] 

Fe Fe-0.004%C  339 (8.2)   GS: 50 µm Ahn (2000) [85] 
 Fe-0.02%C  300–1350 (10)   GS: 18–137 µm Smith (1981) [70] 
 Fe-0.06%C 46–101 (5)   GS: 22–30 µm Klinman (1980) [68] 

Steel Fe-0.15%C 33–60 (5)   GS: 14–40 µm Klinman (1980) [68] 
 Fe-0.15%C  116 (5) E GS: 49 µm Hirao (2003) [76] 
 Fe-0.2%C 220–340 (5)   GS: 120–290 µm Ahn (2000) [85] 
 Fe-0.25%C 45–91 (5)   GS: 12–29 µm Klinman (1980) [68] 
 Fe-low C 83–237 (5)   GS: 50–120 µm Klinman (1980) [68] 
 Fe-0.4%C 53 (5)   GS: 12–20 µm Klinman (1980) [68] 
 Fe-0.4%C 86–127 (5)   GS: 50–65 µm Klinman (1980) [68] 
 4150 78.7 (10)   RHC: 14 Roederick (1952) [27] 
 4150 19.7 (20)   RHC: 61 Roederick (1952) [27] 
 4145 14.5 (5)  Q VHN: 746 Kamigaki (1957) [28] 
 4145 22.5 (5)  Q VHN: 265 Kamigaki (1957) [28] 
 3140 21.2 (10)  Q RHC: 45 Papadakis (1960) [30] 
 4150 21.2 (10)  Q RHC: 54 Papadakis (1960) [30] 
 4150 12.2 (10)  Q pearlie-bainite Papadakis (1964) [29] 
 4150 6.4 (20)  Q martensite (M) Papadakis (1964) [29] 
 4150 11.0 (20)  Q tempered M Papadakis (1964) [29] 
 1Cr-Mo-V  33 (5) E tempered M Ohtani (2002) [77] 
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 2.25Cr-1Mo  25.6 (3.9) E annealed Ohtani (2006) [78] 
 1075 10 (5)  Q GSc: 27 µm Kamigaki (1957) [28] 
 1075 35 (5)  Q GSc: 38 µm Kamigaki (1957) [28] 
 1075 68 (5)  Q GSc: 68 µm Kamigaki (1957) [28] 
 1075 174 (5)  Q GSc: 174 µm Kamigaki (1957) [28] 
 1075 73.5 (10)  Q VHN: 696 Kamigaki (1957) [28] 
 1075 90 (10)  Q VHN: 274 Kamigaki (1957) [28] 
 1075 174 (10)  Q VHN: 270 Kamigaki (1957) [28] 
 1080 19.2–33.9 (10)  Q spheroidized Latiff (1974) [83] 
 1080 230–290 (5)   normalized Ahn (2000) [85] 
 Rail steel 26–150 (10)   Quenched Du (2014) [86] 
 52100 2.4–22 (10) 6.8–44 (10) Q RHC: 55–61 Papadakis (1970) [72] 
 Plain C 150–1000 (15)   GS: 15–33 µm Smith (1983) [71] 
 Plain C 150–1690 (10)   GS: 10–31 µm Klinman (1981) [69] 
 316L SS 230 (5), 360 (10)   GS: 37 µm Wan (2017) [87] 
 316L SS  5.0 (5) E GS: 19.5 µm Ohtani (2005) [79] 
 403 SS 26 (10)  Q GSc: 25 µm Nadeau (1985) [88] 
 416 SS 27.8 (5) 159 (5) Q GS: 30 µm Papadakis (1965) [43] 
 416 SS 348 (10)  Q GS: 30 µm Papadakis (1965) [43] 
 440C austenitic SS 313 (5) 814 (5) Q GS: 50 µm Papadakis (1965) [43] 
 Cast austenitic SS 192 (0.5), 174 (1)   columnar 2.5 mm Ramuhalli (2009) [89] 
 Cast austenitic SS 264 (0.5), 272 (1)   equiaxed 2.3 mm Ramuhalli (2009) [89] 

1 Attenuation coefficient is given in dB/m, followed by frequency in MHz in the parentheses. In many cases, results for additional frequencies are given as well. 2 Q 

refers to measurement method using quartz discs and E using electromagnetic transducer. 3 GS: grain size, GSc: pearlite colony size or prior austenite grain size, 

VHN: Vickers hardness number, RHC: Rockwell hardness-C-scale, M: martensite. 
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2.6. Guided Wave Attenuation on Fiber-Reinforced Composites 

Lamb wave experiments were also conducted at UCLA using fiber reinforced plastics (FRP). 

Figure 5a,b show two cases for an FRP with woven glass-fiber rovings and epoxy matrix (2.2 mm 

thickness, density 1.9 g/cm3, 0.38 fiber fraction). Attenuation data for S0 mode along the fiber direction 

at 60 and 100 kHz are plotted against (log) distance. The observed data can be attributed entirely to 

the 1/√x dependence at 60 kHz, while 100-kHz data matches the 1/√x dependence plus 10.8 dB/m 

attenuation. These attenuation coefficients are similar to 𝑎 p of 4.4 dB/m at 100 kHz for a 

unidirectional GFRP along the fiber (converted from η of 0.007) [90]. The above findings implies glass-

fiber reinforced plastics (GFRP) behave similarly to common structural metallic alloys below 100 kHz. 

The same attenuation data can also be described conventionally with an attenuation coefficient of 

21.2 dB/m (60 kHz) or 33.1 dB/m (100 kHz) including the geometrical spreading as shown in Figure 

5c. These conventional attenuation coefficients are lower than 𝑎p of 135 dB/m for another GFRP (with 

random mat) at 100 kHz, with its 𝑎p increasing to 400 dB/m at 2 MHz [91]. However, this data was 

in the direction normal to fibers and not directly comparable. When attenuation due to absorption is 

high, it is convenient to include signal spreading in attenuation parameters in NDE applications. 

 

Figure 5. Lamb wave attenuation data for S0 mode along the fiber direction of an FRP. (a) Data at 60 

kHz match with 1/√x dependence; (b) data (blue +) at 100 kHz fit to the 1/√x dependence plus 10.8 

dB/m attenuation, shown by red circles; (c) the same attenuation data (in dB) plotted against linear 

distance. Blue points: 60 kHz with the slope of 21.2 dB/m. Red points: 100 kHz with 33.1 dB/m. This 

FRP was used in an AE study [92]. 
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Castaings and Hosten [48] used complex elastic moduli from [49] and predicted Lamb wave 

attenuation for unidirectional GFRP, giving S0-mode 𝑎L value at 100 kHz of 17 dB/m. For this case, 

Castaings and Hosten [49] reported η11 = 0.047, η22 = 0.043, η33 = 0.033, η55 = 0.05, η66 = 0.038, η12 = 0.033, 

and η13 = 0.036 (fiber direction is the 3-direction and fiber volume 0.6). Neau et al. [61] reported 

another set of ηij for a GFRP, measured by the Castaings method. This set showed the values of η33 

and η66 to be 70 and 240% higher. These η values by the Castaings method (listed in Table 1) are 

higher than other published values of η, determined from conventional vibration damping methods 

at lower frequencies. Crane [93] thoroughly reviewed test methods and results. He also gave 

additional results on damping of composite materials. See also [60], which listed η values from the 

1980s as in [93]. For unidirectional GFRP with 0.6-fiber volume fraction, longitudinal damping factor 

η in the fiber direction was 0.004–0.006, about six-times smaller than the ultrasonic data above [49,61]. 

Crane [93] also noted that epoxy matrix has η of 0.022. Vantomme [94] obtained even lower damping 

factor values, e.g., η1 = 0.002 (or 0.0013 from [60]) and noted η for a single glass fiber to be 0.0015. Data 

in [60] gave η2 of 0.008 and η12 of 0.011 for E-glass/DX210 epoxy. These GFRP data are mostly lower 

than the epoxy data in Table 1 [60]. These damping data were all taken under 1 kHz and increasing 

trends with frequency were reported. If the main contribution to damping comes from the matrix, as 

existing theories postulated [91], the increase with frequency is likely to be insignificant considering 

the decreasing trend of damping factor noted on PMMA [42]. In fact, the data of 𝑎p = 400 dB/m at 2 

MHz cited earlier [91] correspond to the damping factor of 0.02. Thus, the Castaings–Hosten 

determination of GFRP damping factors that averaged to 0.043 apparently suffers from 

overestimation of a factor of two or more. 

Attenuation and damping studies for carbon-fiber reinforced plastics (CFRP) have been 

conducted since the 1970s. In his exhaustive review, Crane [93] showed that longitudinal damping 

factor in the fiber direction (η1) was 0.001–0.005 for unidirectional CFRP with 0.6-fiber volume 

fraction. Transverse damping factor normal to the fiber direction (η2) was approximately 0.01. CFRP 

data from [60] were similar to GFRP values given above and match with the Crane values. A newer 

study confirmed these results [95]. These damping studies were made at low frequencies below 20 

kHz using flexural bending of long beam samples. A recent work also verified η1 of ~0.001 using a 

longitudinal resonance technique with pultruded 0° samples [96]. At 2 MHz, η1 or η2 of 0.01 

corresponds to ultrasonic attenuation coefficient (𝑎p) of 50 or 182 dB/m in the direction parallel or 

normal to fibers. Using quartz disc transducers, Kim [97] evaluated 𝑎p and 𝑎t of UD-CFRP (XA-

S/1138) including those along the fiber direction over 1.8 to 9 MHz. At a fiber fraction of 0.6 and 2 

MHz, p was 55 and 450 dB/m, parallel and normal to fibers, while t exceeded 1050 dB/m. Biwa et 

al. [98] made theoretical and experimental studies of attenuation for UD-CFRP (TR30/340) with epoxy 

matrix varying fiber volume fractions up to 0.6. At 2 MHz, 𝑎p was 430 dB/m normal to fibers, about 

10% higher than their theory. In both studies [97,98], the values of 𝑎t were much higher than those of 

𝑎p. When the observed 𝑎p of 450 dB/m is converted to η2, we get η2 of 0.025, about twice the low 

frequency data. An earlier work by Williams et al. [99] obtained η1 and η2 values of 0.014 and 0.049 

along and normal to fibers at 2 MHz for a CFRP (AS/3501-6). They used multiple samples of square 

cross section (9.5 × 9.5 or 12.7 × 12.7 mm2) and 3.8- to 127-mm length to get their η1 and η2 values. 

Even ignoring a diffraction correction [100,101], p along fibers at 2 MHz is 70 dB/m and is only 27% 

higher than Kim [97]. For 𝑎p normal to fibers, it is 892 dB/m without diffraction correction and is 

about twice those of Kim [97] and Biwa et al. [98]. We also conducted an ultrasonic attenuation 

measurement at 2.25 MHz using an immersion method and obtained p normal to fibers of 704 dB/m 

for CFRP (G50/F584) in a cross-ply layup, corresponding to η2 of 0.034. Along the fiber direction, the same 

CFRP yielded η1 of 0.02 at 0.5 MHz. This CFRP sample was from our earlier AE study [102]. The 

differences in attenuation among CFRP are partly due to fibers and resins used, but may also be from 

methods used. Thus, we expect η1 = 0.01~0.02 and η2 = 0.02~0.05 for UD-CFRP at low-MHz ultrasonic 

frequencies. 

Using a torsion pendulum method, Adams [103] evaluated the damping η for single carbon 

fibers. For polyacrylonitrile (PAN)-based fibers, η was 0.0013, while pitch-based fibers (after 

stretching) had η of 0.0028. Ishikawa et al. [104] examined η for single carbon fibers of 13 different 
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combinations of tensile strength and elastic modulus. These were newer fibers with improved 

properties and both PAN- and pitch-based fibers were tested for torsional damping. For the low η 

group, the values of η were about 0.025 for low strength fibers (under 2 GPa tensile strength). The 

middle η group had η = 0.035 ± 0.003 and the tensile strength varied from 2.5 to 6 GPa, including both 

high strength PAN fibers and high modulus meso-phase pitch fibers. The last group, or the high η 

group, showed high damping with η = 0.05 to 0.08 and possessed high strength of 3.8–6.3 GPa. This 

high damping in the newer high-performance carbon fibers is surprising since these η values are 

three to four times larger than epoxy matrix and nearing those of some elastomers. Earlier damping 

results from the 1980s were on CFRP with fibers of low to medium strength in today’s classification. 

Thus, these fibers had values of η under 0.04 and in combination with epoxy (η = 0.022), resultant η2 

is consistent with the observed η2 of 0.02~0.05. Another check can be made by measuring ultrasonic 

attenuation. If the high damping values of 0.05 to 0.08 persist at low MHz frequencies, we should 

expect p of 900–1500 dB/m at 2 MHz (2300–3600 dB/m at 5 MHz) of ultrasonic attenuation. This level 

of p was reported on CFRP with T700 fiber. Olivier et al. [105] measured p of 3300 dB/m at 5 MHz 

for 8-ply unidirectional CFRP, but with 1.7% porosity. Our recent preliminary measurement on a 

CFRP with T700 fiber (2–10 mm thickness, made from Toray 2501 prepregs; fiber fraction of 0.4) 

showed p = 72 or 600 dB/m at 0.45 MHz in the fiber direction or normal to fiber direction. These p 

values correspond to η1 and η2 of 0.05 and 0.13, respectively, and indeed imply that newer high-

performance fibers have higher intrinsic damping in comparison to fibers made before the mid-1990s. 

The high damping behavior is beneficial for many engineering applications, but poses a challenge for 

SHM. Ishikawa et al. [104] related high torsional damping to amorphous carbon phase. Yet there 

seems to be no clear reason why newer high-performance carbon fibers possess high acoustic 

damping. Note that amorphous fused silica has very low damping. These ultrasonic studies should 

be repeated including the evaluation of neat resin and further research is needed for the origin of 

damping. 

Complex elastic moduli of CFRP plates have been measured with the Castaings method. Four 

sets of ηij values are tabulated in Table 1. Note that fibers are oriented along the 3-axis for Neau et al. 

[61], but along the 1-axis for Matt [62] and Calomfirescu [63,64]. In three cases for CFRP-UD samples, 

damping along the fiber axis averaged to 0.069 while shear damping normal to fibers 0.098. These 

damping values are again two or more times higher than η2 values of comparable CFRP-UD samples. 

The complex elastic moduli were then used with higher order plate theory to calculate attenuation 

coefficients for S0 and A0 modes. Calomfirescu [63] obtained for a UD plate along the fibers (0°) L of 

27 and 150 dB/m at 300 kHz (45 and 250 dB/m at 500 kHz) for S0 and A0 modes, respectively. Along 

the fiber normal (90°) direction, corresponding values were 75 and 108 dB/m at 300 kHz. These 

attenuation values are beyond geometrical spreading. A few other calculations resulted in much 

higher attenuation values [16,61,62] than Calomfirescu results. 

The S0 value along 0° of Calomfirescu [63] was much higher than our measurements on 

AS4/3506-1 CFRP plates [106]. In our CFRP study, three types of lay-ups (unidirectional, cross-ply, 

and quasi-isotropic) were used and complex attenuation behavior was found when the wave 

propagation direction shifted from the fiber orientations. For the UD plate, S0-mode attenuation value 

along the fiber direction (0°) at 300 kHz was 4.8 dB/m, which was slightly less than that of Al plate 

(5.8 dB/m). Since geometrical spreading was not separated and receiver size was 8 mm, the same test 

was repeated using a KRN sensor of 1 mm size. Figure 6a gives attenuation data for S0 and A0 modes 

at 100 kHz, which are represented by attenuation coefficients of 20 dB/m for S0 and 38 dB/m for A0 

mode. When the same data is plotted in a log-log graph, only geometrical spreading effect or 1/√x 

behavior is found without additional attenuation. No signal loss was observed for S0-mode at 300 or 

500 kHz, as shown in Figure 6b. This behavior appears to come from a sharp directivity for the UD 

plate observed previously [106]. In contrast, attenuation for A0-mode at 300 or 500 kHz was 

substantial. Values of 𝑎 L were 78 and 178 dB/m beyond geometrical spreading for A0-mode 

propagation along the fiber direction, as shown in Figure 7a,b. Thus, the 𝑎L values for A0 are within 

a factor of two with the Calomfirescu calculation [63]. However, 𝑎L for S0 at 0° vanished in our tests 

beyond geometrical spreading. 
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Figure 6. (a) UD-CFRP attenuation for S0 (blue) and A0 (red) modes at 100 kHz, amplitude in dB scale; 

(b) UD-CFRP attenuation for S0 mode at 300 kHz (blue) and at 500 kHz (red), amplitude was 

calculated using the square root of the wave packet energy. Information on the UD-CFRP plate was 

given in [106]. 

 

Figure 7. UD-CFRP attenuation for A0 modes vs. (log) distance. Observed data (blue +), modeled 

attenuation of geometrical spread plus attenuation (red circle), geometrical spread (gray circle). 

Amplitude in dB scale. (a) Attenuation of 78 dB/m for 300 kHz; (b) attenuation of 178 dB/m for 500 

kHz. Amplitude was calculated as in Figure 6. 



Appl. Sci. 2018, 8, 958 15 of 33 

Schmidt et al. [65] used another approach in characterizing CFRP properties. They measured 

Lamb wave propagation utilizing air-coupled ultrasonic techniques and deduced the dispersion 

curves and attenuation behavior. The data was then used to construct an analytic model. Their 

modeling relied on higher order plate theory and the attenuation utilized hysteretic model where the 

damping coefficients (ηij) are independent of frequency. The values of ηij were given in Schmidt et al. 

[66] and listed in Table 1. It appears that an UD plate is marked 45° considering Cij values. Assuming 

this to be the case and noting that their ηij stand for C”ij, some of these are two-to-five times smaller 

than the corresponding values from the Castaings method [49]. However, off-fiber parameters of η22, 

η33, and η23 are grossly overestimated with η23 = 0.26 being five-times higher than η12 of PMMA. In 

dealing with different composite layups used, lamination theory was incorporated. An example 

given shows calculated attenuation coefficients for S0 and A0 modes on a quasi-isotropic CFRP plate. 

At 122 kHz, they obtained attenuation coefficients for S0 and A0 modes to be 4.3 and 50.2 dB/m beyond 

geometrical spreading. Another set of attenuation coefficients for S0 and A0 modes were reported 

graphically (CFRP layup was not given, but it seems to be UD). At 300 kHz, these were 31 and 140 

dB/m, respectively. These L matched with their experimental values. These were higher than our 

data that included geometrical spreading effects [106], and our new test data discussed above 

showing no attenuation at 100 kHz. Only the A0 data at 300 kHz matched within a factor of two. 

Schmidt et al. [65] included geometrical spreading in their modeling. This needs to be probed, 

however, since properly modeled calculations should predict 1/√x behavior from the viscoelastic 

parameters for quasi-isotropic CFRP, and a directional behavior for unidirectional CFRP. More 

comparative studies are obviously needed to obtain representative CFRP wave propagation 

characteristics. 

2.7. Summaries 

Section 2 considered signal attenuation, which often limits the use of AE inspection in many 

SHM applications. Since waves in most structures move as guided waves, Section 2.1 collected 

available theories for attenuation in isotropic media and described a general behavior, citing early 

experiments. Section 2.2 reviewed published wave propagation experiments, showing that available 

results can be rationalized well using the theories from Section 2.1. Section 2.3 reported Lamb wave 

propagation experiments conducted in laboratory scale for confirmation using elastic and viscoelastic 

plates. Results matched theoretical predictions. Section 2.4 discussed a new approach for attenuation 

studies using complex elastic moduli, which were obtained by the Castaings method. All the 

available results were collected in Table 1. Results for PMMA were then compared with damping 

factor determination, which had been accumulated over many years. It was found that the Castaings 

method prediction appears to overestimate the damping factor by a factor of two, suggesting the 

need for independent verification. Section 2.5 covered the ultrasonic attenuation of metals. For 

metallic alloys, structural attenuation behavior can be predicted when their attenuation coefficients, 

both longitudinal and transverse, are known. However, the attenuation data is limited and all the 

accessible values were tabulated in Table 2. More studies are needed, especially for commonly used 

structural alloys and for transverse attenuation coefficients that require special instrumentation. 

Section 2.6 dealt with the attenuation behavior of fiber composites. For these anisotropic media, only 

limited data sets are available and over short propagation distances. Calculations relied on higher 

order plate theory and complex elastic moduli from the Castaings method. This approach appears to 

be valid based on comparison with Lamb wave attenuation data and represents substantial advances 

in wave analysis. However, some of the damping factor data are apparently two or more times higher 

when compared to the corresponding values from ultrasonic attenuation measurements. Again, 

further studies are required to clarify the attenuation behavior of highly variable, anisotropic 

composite structures. Note that most available complex elastic moduli data sets lack manufacturing 

data on tested composite plates, making comparison difficult. Detailed material identification must 

accompany sophisticated mechanical characterization. 

The above discussion demonstrated that modeling of guided waves for CFRP plates has 

advanced substantially. However, more refinements are needed in calculation procedures and 
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validation of damping coefficients. While Rayleigh and hysteretic damping models produced 

realistic attenuation results that matched experiment [16,65], Kelvin–Voigt model as used in, e.g., 

[65], should be discarded for its physically unrealistic assumption. Additionally, the Kelvin–Voigt 

model introduces an arbitrary parameter (characteristic frequency) in damping calculation. Critical 

evaluation of the Castaings and Schmidt methods [49,66] for damping parameters is highly desirable 

to achieve a unified predictive method. As noted above, the Castaings method [49] gives damping 

factors twice higher than other methods and some ηij were also excessive in Schmidt et al. [66]. 

These basic studies point to difficulties in practical testing of FRP structures except at lower 

frequencies. As in the Sandia report [11], Weihnacht et al. [107] discussed testing of large FRP 

components. In one of their tests, they needed to place 64 sensors over a 38-m long blade at 3 to 5 m 

sensor spacing. Such a sensor count demonstrates tough challenges facing real time composite 

inspection. Thus, the strategy introduced by CARP [4] of using low (60 kHz) and high (150 kHz) 

frequency sensors in tandem remains valid for global and local AE source location. 

3. Source Location 

Methods of AE source location came from seismology and have been refined to meet demands 

for accuracy, speed, and robustness against false location [5,108–112]. Actually, the source location or 

localization problem is a general topic of interest to broad segments of science and engineering. See 

a comprehensive review in connection to signal processing [113]. The AE location methods also 

evolved with available computational capabilities, starting with table look-up and first-hit or zonal 

location, as described by Hutton in 1972 [114]. In 1991, Crostak [115] developed a directional sensing 

method with four-sensor arrays to simplify source location, allowing a source location using two sets 

of sensors. More recently, three-sensor arrays worked just as well, despite reducing the sensor count 

[116,117]. New localization methods are adapted to AE field as reported in, e.g., [112,118]. 

For typical AE applications, currently available 2-D and 3-D location algorithms satisfy their 

basic needs. The algorithms utilize time differences of arrival (TDOA) and seek the intersection of a 

set of hyperboloids assuming constant wave propagation speed, usually relying on iterative 

processes. However, there are more requirements developing in the SHM field for faster calculations 

and less sensor placements [14,119]. In particular, smaller sized PWAS have added a new dimension 

to source location strategy as these allow mode discrimination and provide directional information 

[14] and phased array concept is also a useful addition [120]. Automation of AE detection will enable 

broader uses of AE technology and Holford et al. [112] discussed some examples developed, focusing 

on fatigue problems that still menace critical structural elements. 

One of newer approaches relies on exact closed form solutions, which can reach the source 

position efficiently and accurately. This analytical method obtains the AE source as the intersection 

of spheres, the radii of which are related to TDOA [121–124]. Some are introducing artificial 

intelligence concepts for source location, including Gaussian process, support vector machine and 

deep learning [125–127]. Earlier, neural networks and genetic algorithm were also used [128]. For AE 

source location on thin plates, Gorman [129–131] introduced the Lamb wave velocity variation due 

to S0 and A0 modes, although the dispersion behavior was used in sensor frequency selection earlier 

[33,114]. Others followed his approach and showed that, for linear location, only a single sensor is 

needed [132,133]. For anisotropic plates, Kundu et al. [117] developed a method without solving a 

system of nonlinear equations. This method relies on three-sensor arrays, allowing simpler 

orientation detection. For 2-D location, this method can also find velocity values by itself with 

improvements [134]. Other methods can also be used for anisotropic plates [135]. In some composite 

layups, complex velocity patterns develop and a generic method was devised for such cases [118]. In 

this best-matched point search method, a structure is represented by points defined relative to sensor 

network. TDOA values of an AE event are matched with those of the previously defined points, 

quickly yielding the position of the AE event. Another method with TDOA, named delta-T, has also 

been advanced since its inception and now incorporate several signal-processing methods, becoming 

more reliable in dealing with complex geometries [136]. These methods have a root, tracing back to 

the table look-up methods [114], but now are highly refined for today’s AE applications. 
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Another new approach utilizes time reversal methods. This concept originated from the need to 

focus on the origin through inhomogeneous media [137–139]. A time reversal method was applied to 

the analysis of a ribbed composite plate where Lamb wave mode conversion occurs adding an extra 

mode to the initial two-mode propagation [140]. Here, a matched filter is created that maximizes the 

ratio of output amplitude to the square root of the input energy. For source location, a number of 

waveforms recorded by a single sensor containing the impulse response of the medium are used, 

aided by scattering, mode conversions, and boundary reflections of the medium. As it uses a virtual 

focusing procedure, no iterative algorithms are used and no prior knowledge of the properties or 

anisotropic wave speed is needed. See also Douma et al. [141] and Robert et al. [142]. 

Other special topics are of interest. Liu et al. [143] examined source location errors when thick-

walled vessels are tested. Traditionally, the accuracy limit of source location was empirically thought 

to be the thickness of a structure [5]. They defined errors in three different ways and conducted 

experiments using large concrete blocks with the thickness of 150 to 600 mm and sensor spacing of 4 

to 5.5 m. Errors were found to be 2% to 10%, while the absolute errors were 5% to 30% of the thickness. 

Thus, results indicate that empirical estimates were realistic considering errors coming from the 

uncertainties in TDOA. A related report is on the inspection of heavy wall radioactive waste 

containers [144]. This does show we have to deal with thick-walled containers. Ozevin et al. [145] 

presented a source location method for open structures, like trussed towers or beams. Each element 

is modeled in 1-D and these elements are combined for complex spaced structures. A 2-D truss was 

modeled and compared to a laboratory scale bridge, confirming their approach to be valid. However, 

the practicality of such an approach depends on the attenuation of flaw AE signals and noise 

generated at joints inevitably present in large truss structures. 

Section 3 covered various approaches to locate the origin of an AE signal, often referred to as an 

AE event. Basic location method developed from concepts used in seismology about 50 years ago, 

and was adapted to available instrumentation over the years. With advances in data processing 

capacity, newer approaches have sprung up in the past 20 years or so. Representative works were 

collected with brief description in this section. 

4. Bridge Monitoring 

AE monitoring on large bridges has a long history of successful outcome [5,9,12,146–148]. Initial 

emphasis was on steel truss structures as these contain many fatigue-prone joints in difficult to 

inspect locations. Fatigue damage of bridges has always presented technical challenge and remote 

monitoring capability with AE has become a viable solution [149]. Well-known fatigue damage in 

recent years was at the San Francisco–Oakland Bay Bridge, which led to a large-scale AE monitoring 

of the affected bridge segments following a successful demonstration of AE’s capability [150,151]. For 

this project, 640 sensors of 60-kHz resonance frequency were used to monitor 384 eyebars covering 

over 6-km distance. The main aim was to detect cracks of 2.5-mm size. By the turn of the 21st century, 

bridge engineers’ interests in acoustic (emission) monitoring of long-span suspension bridges finally 

reached the level for its practical implementation as shown by Hovhanessian [152]. Initial impetus 

came from the realization that a protection scheme of cable wire galvanizing (zinc coating) plus red 

lead (Pb3O4) paste was found inadequate on the Brooklyn Bridge and Williamsburg Bridge after 

nearly a century of continuous use. After 90–100 years, zinc coating was gone and many broken wires 

due to corrosion were found [153]. While these broken wires were repaired, more broken wires were 

also found in many newer bridges. On the Forth Road Bridge in the UK (a main span of 1006 m, 

opened in 1964), Colford [154] reported 8 out of 11618 wires were broken at one of test locations in 

2004. However, about 90% of the wires inspected exhibited Stage 3 (heavy) and 4 (severe) corrosion 

(Stage 5 being broken wire, according to NCHRP534 2004 [155]). After rehabilitation of the 

suspension cables along with the installation of a cable dehumidification system, fortified AE sensors 

were installed on the Forth Road Bridge in 2006 at 15 stations on each main cable (with about 140 m 

spacing over 2000 m span between anchorages). AE signals have been remotely monitored according 

to Hovhanessian [152], who earlier installed a similar AE monitoring system on the Bronx Whitestone 

Bridge (New York) in 1997 and Ancenis Bridge (France) in 2003. Additionally, M48 Severn Bridge 
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(UK), Humber Bridge (UK), Quincy Bayview Bridge (cable-stayed, US), Lane Memorial Bay Bridges 

(US), and a dozen others suspension bridges have AE monitoring systems installed [156]. 

The suspension-cable dehumidification system was invented for use on the Akashi Kaikyo 

Bridge (Japan) in 1998 and more than two dozen such systems have been installed globally for new 

bridges and for rehabilitated ones [156]. While it can keep wire corrosion to a minimum, perhaps 

eliminating the need for AE, suspension wires used with a conventional protection system will start 

to experience corrosion problems after 10–20 years. On such bridges, AE monitoring can detect 

serious deterioration on bridge elements. Hopefully, more AE installation can help reduce the 

number of structurally deficient bridges in the future. 

Section 4 dealt with bridge monitoring using AE. This topic is usually discussed only among 

project participants or covered in civil engineering circles, but some of the reports provided technical 

details presented above. 

5. Sensing and Signal Processing 

Conventional piezoceramic sensors still dominate AE applications to structures, although PWAS 

has started to become smaller and more functional for potential aerospace uses [14]. Recently, Ono 

[41,157,158] reexamined sensor calibration methods for different types of wave propagation. These 

new approaches incorporated laser interferometry as the basis for calibration and Vallen [159] took 

an initial step for their standardization. It was also demonstrated that the so-called reciprocity 

calibration methods [160–162] have fundamental flaws. It was also found that most AE sensors fail 

to satisfy required reciprocity conditions [157,158]. 

Attempts to develop practical AE sensors based on optical fibers have continued [163,164], but 

cost and directionality problems still are obstacles. Yu et al. [165] presented a novel use of a fiber 

Bragg grating (FBG) sensor, a version that relies on phase shifts. This FBG sensor, connected by an 

optical fiber to a CFRP plate, has a broad bandwidth and allowed Lamb wave mode separation. Using 

FBG sensors for multiple channel operation needed in practical AE monitoring remains a challenge. 

Source location with arrays of FBG sensors are reported; e.g., Shrestha et al. [166] and Innes et al. [167]. 

On AE specific signal processing, Barat et al. [168] and Elizarov et al. [169] successfully 

developed new techniques for AE hit detection without relying on threshold crossing. They used an 

optimized combination of filters to detect the arrival of AE hit. This is possible due to the differences 

between noise processes and AE signals, which produce short-time perturbations. Their algorithms 

have been implemented into hardware. This approach traces back to high-order statistics and the use 

of short-time average and long-time average as used by Lokajícek [170]. Another method of hit time 

of arrival based on wavelet transform was given by Pomponi [171]. This method is conceptually 

easier to understand than those of high-order filtering and is based on a constraint imposed on 

wavelet decomposition. This comes from the rise time limit arising from the frequency characteristics 

of AE sensor used and an efficient signal denoising was achieved. Other methods were also reported 

[172,173]. Sagista et al. [174] applied a slightly different use of wavelet transform to amplitude 

distribution analysis defining b-values in terms of bandpass-filtered signal energy. Another 

innovative approach for pattern recognition analysis was explored by Godin and coworkers [175]. 

This method is based on genetic algorithm, which is a relatively new optimization method, pioneered 

by Goldberg [176]. See also [128] for its earlier application in source location. This approach can provide 

an alternate scheme is data clustering, which has relied primarily on the k-means method [177,178]. 

Another front of signal processing was AE tomography. Katsuyama et al. [179] presented the 

principle of this method in 1992, which was independently developed in 2004 by Schubert [180]. This 

utilizes AE hits (natural or artificial) received by multiple sensors to interrogate the conditions of 

wave paths. This imaging strategy can use attenuation, wave speed, or impedance mismatch. 

Shiotani and coworkers have applied it for concrete inspection and reported successful outcomes 

relying on wave speed variation [7,181,182]. Since concrete quality affects its sound velocity, special 

consideration was needed, including Kalman filtering [183]. Nishida et al. [184,185] applied this 

method to concrete bridge decks subjected to fatigue loading in laboratory and field use. A good 
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correlation was demonstrated between fatigue cracking and wave speed loss. Takamine et al. [186] 

used a variation of this method in deck inspection. 

Section 5 discussed AE signal detection or sensing and signal processing other than signal 

location, which was covered in Section 3. In sensing part, piezoelectric ceramics are still dominant, 

even for PWAS devices. Yet, their calibration methods lagged behind till recently. Despite high hopes 

held earlier, optical fiber-based detectors have not reached a breaking point, mainly from high 

component cost and from the lack of revolutionary concepts. Still, FBG sensors are advancing as 

discussed. Several new approaches of signal processing appeared in the last ten years as noted. AE 

tomography, developed originally in 1992, has made a significant progress of late. 

6. Pressure Vessels and Tanks 

Three AE applications have evolved in recent years at industrial scales. One was the inspection 

of small size consumer liquefied petroleum gas (LPG) tanks in Europe and was discussed by 

Tscheliesnig and coworkers [187]. The key to the success of this application was appropriate selection 

of inspection threshold parameters along with optimized sensor placement. Subsequently, AE testing 

was extended to larger than 13-m3 tanks [188]. Next was the development of an examination method 

for high-pressure hydrogen tanks using AE, which led to the adaption of a special code case for ASME 

Boiler and Pressure Vessel Code, Section X [189,190]. Gorman [10] gave technical details of this 

approach, which was also discussed in [13]. The third AE application of significance is the life 

extension of self-contained breathing apparatus (SCBA), used by firemen and naval personnel. These 

are akin to SCUBA tanks, but have carbon-fiber wrapping over aluminum liners and are certified for 

the lifetime of 15 years. In April 2017, Gorman and coworkers at Digital Wave secured an exemption 

from the US Department of Transportation (DOT), allowing SCBA tanks to receive 15-year extension 

when these tanks pass AE inspection per DOT specifications. This permit was based on their studies 

conducted for US-DOT and for US Navy. DOT final report [191], which was completed in 2014, 

described technical details that led to evaluation criteria of SCBA tanks via AE testing. Anderson also 

provided the history of this inspection method and technical information that achieved the DOT 

approval [192]. The most critical aspect appears to be from fatigue and AE tests need to guarantee 

additional 15-year life. See [193,194] for a Navy report and recent specifications for SCBA testing from 

US DOT, issued 3 May 2018. 

Stress rupture of structural members, also known as static fatigue, is an important topic and is 

central to predicting the remaining life of any structures for long term uses. Yet, it is extremely time 

consuming to conduct meaningful tests. For example, Digital Wave [191,192] relied on residual 

strength tests on damaged SCBA tanks, rather than long-term stress rupture testing, for assuring the 

remaining lifetime in SCBA testing. This topic was discussed in [13] in connection to pressure vessels 

made of fiber composites and the only known stress rupture life curves from Chang [195] were given. 

From this data, reproduced as Figure 8, one can see that Digital Wave’s estimate was indeed within 

the life expectancy since they kept working pressure under 30% of rupture pressure for CFRP. The 

subject of lifetime prediction overlaps with the prediction of earthquakes and the underlying process 

is known as critical phenomenon. See [196] for discussion related to AE and earthquakes. For more than 

10 years, Godin’s group [197,198] has evaluated high temperature stress rupture response of SiCf/Si-B-C 

composites. By conducting tests at 450–600 °C for up to 4000 h, they were able to identify a power-law 

behavior for the lifetime and to define AE-based parameters that relate to microscopic fracture processes; 

interfacial changes and fiber cracking. Figure 9 shows the stress rupture curves of SiC fiber bundles and 

SiC composites at 500 °C (see also related reports on ceramic matrix composites) [199–201]. 

Section 6 introduced three successful AE inspection technologies for LPG tanks, high pressure 

hydrogen tanks and SCBA tanks. Also discussed was stress rupture testing of a ceramic matrix 

composite at high temperatures. Life prediction with AE, if more studies become available in the 

future, might make a ground-breaking contribution to earthquake prediction. 
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Figure 8. Applied stress vs. rupture time curves of composite-overwrapped pressure vessels with 

glass, carbon, and Kevlar fibers. Stress is expressed in percent of the short-time rupture pressure. 

Reproduced from [13], originally from Chang [195]. Reproduced with permission. 

 

Figure 9. Applied stress vs. rupture time curves of SiC fiber bundles (blue) and SiC composites (red) 

at 500 °C. Shaded zone denoted monotonic fracture is for the short-time fracture stress of the SiC 

composite (1.85–2.25 GPa). From Godin et al. [198]. Reproduced with permission. 

7. AE Inspection of Miscellaneous Processes 

Some reports have appeared covering various processes. Since these are rare, yet useful, we list 

them below. 

Tank-bottom inspection by AE has been widely practiced. For this testing, Papasalouros et al. 

[202] presented the statistical distribution data of their many inspection results. Naturally, such 

outcomes depend on specific sets of tested tanks, but this information should be of value to other 

inspectors and tank owners. 

Kim et al. [203] monitored a blast furnace for steelmaking with AE for detecting cracks in its steel 

shell and leaks from hot air blower pipes. Burst and continuous signals were detected, respectively, 

providing a baseline data for devising an SHM system. 

Serreti et al. [204] monitored the cold forming of aircraft wing panels using AE and seeking 

optimized forming parameters. The final aim is to automate the operation to get resultant panels 

equivalent to those made by qualified manual processes. 

Zielke et al. [205] used AE to gain understanding of thermal spraying processes as AE signals 

are related to coating thickness achieved and to crack density of coatings. Different spray guns and 

their conditions must be selected properly and AE results provided guidelines to select the processes. 
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Manthei et al. [206] examined fracture of automobile windshields with AE and evaluated their 

fracture processes under static and dynamic loading together with finite element modeling. They 

identified the initiation point of fracture, which is crucial in proper modeling and support design. 

Ravnik et al. [207] correlated low frequency AE during quenching of steel components to 

quenching cracks. Reliability of hydrophone detector was established and the system is ready for real 

component tests. 

8. General Summary and Follow-Up Studies 

Signal attenuation considered in Sections 2.1 to 2.3 led to the confirmation of the guided wave 

theories through reexamination of data from large structures as well as from laboratory-scale plate 

experiments. These theories for attenuation in isotropic media can be applied to predict signal loss in 

real structures of metallic alloys. For the distance of 10 m or so, the inverse square root distance (or 

1/√x) behavior is enough, while at longer propagation distances material absorption effects need to 

be added in the form of (1/√x)·exp(–x). The guided wave attenuation coefficient can be calculated 

when reliable bulk wave attenuation coefficients are available. However, Section 2.5 revealed the lack 

of such data for most common alloys. For these cases, one needs to conduct attenuation tests as in 

[33–38]. It is hoped that more bulk wave attenuation data will be accumulated in the future, although 

shear wave attenuation tests are difficult. 

A new approach for attenuation studies using complex elastic moduli was reviewed in Section 

2.4. The damping factors for stiffness coefficients were obtained by the Castaings method. Since no 

direct verification is feasible, obtained damping factors for PMMA (in Section 2.4) and fiber-

reinforced composites (in Section 2.6) were compared with damping factor determination from 

dynamic mechanical analysis and ultrasonic attenuation studies. The comparison showed Castaings’ 

damping factors to typically be twice higher than those from other methods. Since the Castaings 

method was developed with sound theoretical foundation, some unaccounted factors appear to 

contribute to overestimation. A possible source is the common assumption made in most ultrasonic 

analysis, that is, the wave front to be planar. This was apparently a cause of higher bulk wave 

attenuation coefficients from immersion or buffer-rod methods as discussed in Section 2.5. In these 

ultrasonic methods, this point needs to be reevaluated. Clearly, the Castaings method is a valuable 

addition to viscoelastic analysis and making it verified will be beneficial to the field. Note that 

mechanical damping and ultrasonic attenuation studies are complementary, but these are usually 

separated. For example, Treviso’s review [17] mentioned no complex elastic moduli works, and 

Castaings and Hosten [48,49] ignored low frequency damping studies. Still, an identical physical 

mechanism governs vibration energy loss in polymers like PMMA and epoxy [18,19]. 

Attenuation studies for fiber-reinforced composites considered in Section 2.6 show significant 

advances made in the past 15 years. Yet, the fact remains that attenuation in composites is higher 

than in homogeneous metallic alloys. This is especially true at higher frequencies above a few 

hundred kHz, where signal analysis must be conducted to characterize microscopic fracture 

mechanisms, as discussed in detail by Sause [208]. Even from practical engineering approach of using 

pattern recognition analysis, the availability of high frequency components in AE signals is an 

important element for success. In composite plate design, ply lay-up sequences are crucial parameters 

and these also affect attenuation characteristics. This part has not entered into AE or SHM 

consideration, but will eventually become necessary to incorporate it in attenuation analysis. Initial 

steps were made in examining the directivity of attenuation behavior [102,104,209], but more future 

works are needed, accompanied by modeling studies to avoid experimentation. Some of the past 

attenuation studies used a common AE or ultrasonic sensors [104,209] and this must be avoided in 

future works. As shown in Figure 6 above, a small aperture sensor of 1-mm diameter gives different 

attenuation behavior. While sensor aperture effects can be partly corrected by analysis [210], the 

sensor aperture must be smaller than the wavelength to minimize displacement cancellation effects. 

From the materials research side, high damping in newer high-strength carbon fibers and their 

composites is an interesting subject since there is no obvious mechanism for such a behavior. While 

not touched in this review, NDE of sandwiched structures is an important field by itself. Attenuation 
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problems are far more serious issues and AE inspection has not progressed adequately. A general 

review [211] and a guided wave study [212] are cited as starters. 

Section 3 surveyed algorithm developments for AE source location. Various approaches have 

been added since Ge’s reviews [108,109] and each is expected to have strong and weak points. At this 

stage, it is hoped that some organizations or individuals formulate a signal generator software or a 

set of signal waveforms that can provide the basis for standard performance evaluation of an AE 

source location routine. It can start from a simple data set for testing location accuracy and speed. 

Eventually, an advanced data set should measure absolute/relative distance errors, robustness 

against noise and/or outliers, level of signal-to-noise ratio that can provide a certain level of location 

accuracy, as well as the minimum number of sensors needed for successful location. Without this 

type of standardized comparison, the objectivity of algorithm performance cannot be attained. 

Section 4 covered AE applications to large bridges, which have been relatively unknown among 

AE engineers. It is hoped that more open reporting of success and failure promotes further technical 

developments for this crucial part of infrastructures. 

Sensors and the rest of signal processing areas were discussed in Section 5. PWAS 

characterization is a logical next step in sensor calibration. Optical fiber sensor developments should 

be watched as a technical leap should come sooner or later. AE tomography has been applied 

primarily to concrete structures, but masonry can be another possible object for its application. 

Section 6 highlighted four AE applications to structures, with three gaining commercial success. 

High temperature stress rupture monitoring is just as noteworthy technical success. With increasing 

uses of compressed gas in public and private transport—i.e., buses, trucks, and cars—the life 

extension of gas tanks can be a logical next step in AE applications. 

Other AE applications worthy of mention were collected in Section 7. More applications of this 

type rarely appear in technical journals and one needs to peruse conference proceedings of AE and 

related fields. 

9. Concluding Remarks 

Limited aspects of AE uses have been reviewed, concentrating on the period of last several years. 

This review will hopefully provide an overview of various AE applications to large scale structures 

that will be discussed in this Special Issue on Structural Health Monitoring of Large Structures using 

Acoustic Emission Case Histories. However, many important issues were not covered here, 

especially on civil engineering side. On concrete issues, see a recent book edited by Ohtsu [213] and 

on SHM side, there are numerous books available. Another form of construction, masonry, has 

attracted increasing attention. Carpinteri et al. [214] examined historic masonry structures and 

identified internal crack distribution with AE source location methods. More recent reviews of AE 

studies of masonry structures were given by De Santis et al. [215] and Verstrynge et al. [216], again 

demonstrating the values of AE technology. 
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Appendix A. Limiting Frequency of Rayleigh Wave Propagation 

Wave motion of Rayleigh waves decreases rapidly as the depth increases [20,21]. When the 

thickness of a plate, h, becomes smaller than three to four times the wavelength, wave propagation 

gradually shifts to Lamb wave modes. Hamstad [217] examined by experiment and by finite element 

analysis the limiting frequency of the Rayleigh wave propagation. Since this is of practical 
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importance, some of his results are reproduced in Figure A1. He used a large steel plate (25.4-mm 

thick) in modeling Rayleigh wave propagation from a pencil-lead break. Wavelet transform 

spectrogram of calculated signal is shown in Figure A1a after 381-mm travel on the same side. 

Corresponding spectrogram for experimentally detected signal is given in Figure A1b. Both 

spectrograms show the strongest peak at the arrival time of Rayleigh waves (130 µs) and signal 

intensity diminishes below 250 kHz, shifting to Lamb wave S0 and A0 modes. His results of the low 

frequency limit of Rayleigh wave propagation, fL, (in MHz) can be described by fL = 8.2/h, as shown 

in Figure A1c. For a given thickness, h (in mm), Rayleigh waves exist only at frequencies above fL. At 

h = 100 mm, this fL is 82 kHz. This was the case for Graham–Alers attenuation study discussed in 

Section 2.2. 

 

Figure A1. (a) Wavelet transform of calculated signal waveform, received at 381 mm from a pencil-

lead break on the same surface of a steel plate of 25.4 mm thickness; (b) wavelet transform of 

experimentally received signal waveform, received at 381 mm from a pencil-lead break on the same 

surface of a steel plate of 24.4 mm thickness; (c) the low frequency limit of Rayleigh wave propagation 
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(in MHz) vs. steel plate thickness (in mm). These figures were rearranged from Figures 13a,b and 19 

by Hamstad [217]. Reproduced with permission. 
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