
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Heterogeneous Treatment Effect Estimation Using Machine Learning

Permalink
https://escholarship.org/uc/item/9d34m0wz

Author
Kuenzel, Soeren Reinhold

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9d34m0wz
https://escholarship.org
http://www.cdlib.org/

Heterogeneous Treatment E↵ect Estimation Using Machine Learning

by

Soeren R Kuenzel

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jasjeet Singh Sekhon, Co-chair
Professor Bin Yu, Co-chair
Professor Peter John Bickel

Professor Avi Feller

Summer 2019

Heterogeneous Treatment E↵ect Estimation Using Machine Learning

Copyright 2019
by

Soeren R Kuenzel

1

Abstract

Heterogeneous Treatment E↵ect Estimation Using Machine Learning

by

Soeren R Kuenzel

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Jasjeet Singh Sekhon, Co-chair

Professor Bin Yu, Co-chair

With the rise of large and fine-grained data sets, there is a desire for researchers, physi-
cians, businesses, and policymakers to estimate the treatment e↵ect heterogeneity across
individuals and contexts at an ever-greater precision to e↵ectively allocate resources, to ad-
equately assign treatments, and to understand the underlying causal mechanism. In this
thesis, we provide tools for estimating and understanding the treatment heterogeneity.

Chapter 1 introduces a unifying framework for many estimators of the Conditional Av-
erage Treatment E↵ect (CATE), a function that describes the treatment heterogeneity. We
introduce meta-learners as algorithms that can be combined with any machine learning/re-
gression method to estimate the CATE. We also propose a new meta-learner, the X-learner,
that can adapt to structural properties such as the smoothness and sparsity of the underlying
treatment e↵ect. We then present its desirable properties through simulations and theory
and apply it to two field experiments.

As part of this thesis, we created an R package, CausalToolbox, that implements eight
CATE estimators and several tools that are useful to estimate the CATE and understand
the underlying causal mechanism. Chapter 2 focuses on the CausalToolbox package and
explains how the package is structured and implemented. The package uses the same syntax
for all implemented CATE estimators. That makes it easy for appliers to switch between
estimators and compare di↵erent estimators on a given data set. We give examples of how it
can be used to find a well-performing estimator for a given data set, how confidence intervals
for the CATE can be computed, and how estimating the CATE for a unit with many CATE
estimators simultaneously can give practitioners a sense for which estimates are unstable
and depend heavily on the chosen estimator.

Chapter 3 is an application of the CausalToolbox package. It shows how useful it is
in a simulation study that has been set up for the Empirical Investigation of Methods for
Heterogeneity Workshop at the 2018 Atlantic Causal Inference Conference by Carlos Car-
valho, Jennifer Hill, Jared Murray, and Avi Feller, based on the National Study of Learning
Mindsets.

2

When implementing the CATE estimators, we noticed that there was a need for a vari-
ation of the Random Forests (RF) algorithm that works particularly well for statistical
inference. We designed an R package, forestry, that implements a new version of the RF
algorithm and several tools for statistical inference with it. In Chapter 4, we describe the
problem that confidence interval estimation with RF can perform poorly in areas where RF
are biased or in areas outside of the support of the training data. We then introduce a new
method that allows us to screen for points for which our confidence intervals methods should
not be used.

CATE estimates can be used to assign treatments to subjects, but in many studies, es-
timating the CATE is not the ultimate goal. Researchers often want to understand the
underlying causal mechanisms. In Chapter 5, we discuss a modification of the RF algorithm
that is particularly interpretable and allows practitioners to understand the underlying mech-
anism better. Usually, RF are based on deep regression trees that are di�cult to understand.
In this new version of the RF, we use linear response functions and very shallow trees to make
the results more easily understandable. The algorithm finds splits in quasi-linear time and
locally adapts to the smoothness of the underlying response functions. In an experimental
study, we show that it leads to shallow and interpretable trees that compare favorably to
other regression estimators on a broad range of real-world data sets.

i

To my family

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

I Heterogeneous Treatment E↵ects 1

1 Meta-learners for Estimating Heterogeneous Treatment E↵ects using
Machine Learning 2
1.1 Introduction . 2
1.2 Meta-algorithms . 6
1.3 Simulation Results . 10
1.4 Comparison of Convergence Rates . 11
1.5 Applications . 17
1.6 Conclusion . 23

2 CausalToolbox Package 25
2.1 CATE Estimators . 25
2.2 Evaluating the Performance of CATE Estimators 27
2.3 Version Two . 29

3 Causaltoolbox—Estimator Stability for Heterogeneous Treatment E↵ects 32
3.1 Introduction . 32
3.2 Methods . 33
3.3 Workshop Results . 38
3.4 Postworkshop results . 40
3.5 Discussion . 40

iii

II Statistical Inference based on Random Forests 43

4 Detachment Index for Evaluating Trustworthiness of Confidence Inter-
vals and Predictons in Random Forests 44
4.1 Introduction . 44
4.2 The RF-detachment Index . 47
4.3 Applications . 54
4.4 Conclusion . 59

5 Linear Aggregation in Tree-based Estimators 61
5.1 Introduction . 61
5.2 The Splitting Algorithm . 65
5.3 Predictive Performance . 71
5.4 Interpretability . 77
5.5 Conclusion . 82

Bibliography 84

A Supporting Information for Meta-learners for Estimating Heterogeneous
Treatment E↵ects using Machine Learning 90
A.1 Simulation Studies . 90
A.2 Notes on the ITE . 97
A.3 Confidence Intervals for the Social Pressure Analysis 98
A.4 Stability of the Social Pressure Analysis across Meta-learners 103
A.5 The Bias of the S-learner in the Reducing Transphobia Study 104
A.6 Adaptivity to Di↵erent Settings and Tuning 104
A.7 Conditioning on the Number of Treated Units 106
A.8 Convergence Rate Results for the T-learner 109
A.9 Convergence Rate Results for the X-learner 112
A.10 Pseudocode . 126

B CausalToolbox Documentation 132

C Supporting Information for the Detachment Index 147
C.1 Example A . 148
C.2 Example B . 149

D Supporting Information for Linear Aggregation in Tree-based Estimators 150
D.1 Splitting on a Categorical Feature . 150
D.2 Tuned Simulation Hyperparameters . 153
D.3 Generating Random Step Function . 154

E forestry Documentation 155

iv

List of Figures

1.1 Intuition behind the X-learner with an unbalanced design. 8
1.2 Social pressure and voter turnout. 18
1.3 RMSE, bias, and variance for a simulation based on the social pressure and voter

turnout experiment. 20
1.4 Histograms for the distribution of the CATE estimates in the Reducing Trans-

phobia study. 22

2.1 Package Structure of the main classes . 27

3.1 CATE estimation for ten units. For each unit, the CATE is estimated using 28
di↵erent estimators. 35

3.2 Marginal CATE and Partial Dependence Plot (PDP) of the CATE as a function
of school-level pre-existing mindset norms and school achiemvent level. 39

3.3 Marginal CATE and PDP of Urbanicity and self-reported expectations. 41

4.1 Histogram of the price distirbution in the cars data set. 46
4.2 Projection of the support of the cars data set onto two covariates colored by error

magnitude. 47
4.3 Scatterplot and RF-weights for the four points in the cars data set. 48
4.4 RMSE vs proportion of excluded units for a given threshold. 50
4.5 Error Distribution of detached and trustworthy test points. 52
4.6 Detachment indices of four points compared to its neighbors. 53
4.7 Confidence interval coverage and length of X RF and X BART for Simulation 1

and 2. 57
4.8 Confidence interval coverage and length of X RF and X BART for the trustworthy

points in Simulations 1 and 2. 57
4.9 CI estimation with RF outside the support of the training data. 59
4.10 CI estimation with RF outside the support of the training data on trustworthy

points. 59

5.1 Comparison of the classical CART and LRT. 63
5.2 Comparison of estimators with di↵erent levels of smoothness. 75
5.3 Four Trees in a linear RF for the GOTV data set. 83

v

A.1 Illustration of the structural form of the trees in T–RF, S–RF, and CF. 91
A.2 Comparison of S–, T–, and X–BART (left) and S–, T–, and X–RF and CF (right)

for Simulation 1. 93
A.3 Comparison of the S-, T-, and X-learners with BART (left) and RF (right) as

base learners for Simulation 2 (top) and Simulation 3 (bottom). 95
A.4 Comparison of S-, T-, and X-learners with BART (left) and RF (right) as base

learners for Simulation 4 (top) and Simulation 5 (bottom). 96
A.5 Comparison of S–, T–, and X–BART (left) and S–, T–, and X–RF (right) for

Simulation 6. 97
A.6 Comparison of normal approximated CI (Algorithm 10) and smoothed CI (Algo-

rithm 11). The blue line is the identity function. 99
A.7 Coverage and average confidence interval length of the three meta-learners. . . . 101
A.8 Approximated bias using Algorithm 12 versus estimated bias using Algorithm 13

and X–RF. 102
A.9 Results for the S-learner and the T-learner for the get-out-the-vote experiment. 104
A.10 Histogram for how often S-RF ignores the treatment e↵ect. 105
A.11 Adaptivity of the S-, T-, and X-Learner. 106

C.1 Confidence intervals and confidence interval lengths for Simulations 1 and 2 seper-
ated by the Overlap regions. 149

vi

List of Tables

2.1 Simulation of 40 RCTs to evaluate the eight implemented CATE estimators. . . 31

4.1 Continuous features of the Cars data set. 45
4.2 Discrete features of the Cars data set. 46
4.3 Summary of the OOB detachment indices for the continuous covariates. 51
4.4 Best five thresholds out of a sample of 100,000. 52
4.5 Number of “trustworthy” units in the overlap area and the area without overlap. 58

5.1 Summary of real data sets. 74
5.2 Estimator RMSE compared across real data sets 76

C.1 Best 40 thresholds out of a sample of 100,000. The numbers in the brackets are
the corresponding percentiles. 148

D.1 Selected hyperparameters. 153

vii

Acknowledgments

I would like to start by acknowledging Peter J. Bickel, who has been one of my three advisors.
He has supported me from the first day I arrived in Berkeley. And when we learned that
it was impossible to have three co-chairs for my dissertation committee, he helped me even
then by selflessly stepping down. Nonetheless, he has been as involved with this work as my
other advisors and deserves the credit of a co-chair.

Throughout my life, so many people have contributed to my growth that it would be
impossible to thank every one of them. Nevertheless, I would like to recognize a few of these
people who have made the most significant impacts on the culmination of this thesis.

First and foremost, I would like to express my deepest gratitude to my academic and
thesis advisers, Peter J. Bickel, Jasjeet S. Sekhon, and Bin Yu, without whom none of this
work would have been possible. To work with and learn from these renowned professors
has truly been my honor and privilege. Their guidance during my Ph.D. studies has been
invaluable for my intellectual growths and success. Peter J. Bickel, with his encyclopedic
knowledge, patience, and kindness, has been always available to me. He gave me the freedom
to explore my own ideas while always guiding me in the right direction when I strayed. He
has become a wonderful role model for me to follow, and he has taught me many essential
skills that will guide me in my future endeavors. I am also extremely grateful for the support
and advice of Jasjeet S. Sekhon, whom I thank for being not only my mentor, but also my
friend. The encouragement and opportunities he provided during these past five years have
been invaluable. His knowledge of machine learning, statistics, causal inference, and political
science was one of the driving factors in our joint work. Furthermore, his intuition has been
the core idea of the two software packages, forestry and CausalToolbox. His door was
always open for me, and I cannot imagine a more supportive and engaged advocate. Finally,
I would like to thank Bin Yu for holding me to the highest of standards and always pushing
me to become a better scientist and person. Her persistence, critical feedback, and wealth
of knowledge have greatly enhanced the quality of my work and prepared me for my future.
From her, I did not merely learn about statistics, but also about the importance of friendship,
a strong community, and an honest and direct conversation culture. Even after knowing her
for five years, I am still amazed by the energy and commitment she has for research, the
future of her students, and the field of statistics.

In addition to my thesis advisers, I am deeply indebted to Peter L. Bartlett, Peter
Bühlmann, Peng Ding, Avi Feller, Lisa R. Goldberg, Adityanand Guntuboyina, Michael I.
Jordan, and Nicolai Meinshausen who have shaped my academic career by challenging my
thinking, leading me to new ideas, and giving me advice on the best course of action.

I would also like to thank my collaborators without whom this dissertation would not
have been possible: Dominik Rothenhäusler has been my collaborator and close friend since
our first year at the University of Bonn. He has been a source of inspiration and critical
feedback for most topics in this dissertation, and we have worked closely on Chapter 4. I
am also extremely grateful for having had the opportunity to work with Simon Walter. He

viii

has been one of my closest friends here at Berkeley, and we have collaborated extensively on
Chapter 3. Finally, I would like to thank Rowan Cassius, Edward W. Liu, Theo Saarinen,
and Allen Tang. They have collaborated with me as undergraduate researchers, and without
them, Chapter 4 and 5 would not have been possible.

Before my time in Berkeley, I spent one year at Yale, where I was fortunate enough to
have many exceptional teachers and collaborators. From this time, I would like to thank, in
particular, John W. Emerson and David Pollard for showing me my passion and inspiring
me to pursue a career in statistics.

In addition, I would like to thank the undergraduate researchers, Rowan Cassius, Olivia
Koshy, Edward W. Liu, Varsha Ramakrishnan, Theo Saarinen, Allen Tang, Nikita Vemuri,
Dannver Y. Wu, and Ling Xie, for their commitment to our projects. Despite asking much
of them, they always impress me with their perseverance and desire to learn. It has been a
pleasure watching them grow as researchers, and I will miss working with them.

During my time as a Ph.D. student, I also had the fantastic opportunity to work with
exceptionally driven and hard-working researchers who applied their knowledge in industry.
Of the many people I interacted with, I would like to mention Ethan Bashky, Brad Mann,
Valerie R. Yakich, and James Yeh, who have shown me how to do impactful research in
di↵erent industries.

Next, I would like to thank my friends and collaborators whose expertise and dedication
greatly benefited my research and who have made my time at Berkeley exponentially more
enjoyable. Working with this group of brilliant people has inspired me to raise my standards
of work ethnicity. It has served as a wealth of friendships, helpful advice, and collabora-
tion. I could not have asked for a better group of people to have spent these past few years
with. Thank you to Reza Abbasi-Asl, Taejoo Ahn, Nicholas Altieri, Sivaraman Balakrish-
nan, Rebecca L. Barter, Zsolt Bartha, Sumanta Basu, Merle Behr, Eli Ben-Michael, Adam
Bloniarz, Yuansi Chen, Raaz Dwivedi, Arturo Fernandez, Ryan Giordano, Geno Guerra,
Wooseok Ha, Steve Howard, Christine Kuang, Karl Kumbier, Lihua Lei, Hongwei Li, Xiao
Li, Hanzhong Liu, Jamie Murdoch, Kellie Ottoboni, Yannik Pitcan, Dominik Rothenhäusler,
Sujayam Saha, Florian Schäfer, Chandan Singh, Jake Solo↵, Bradly Stadie, Simon Walter,
Yu Wang, and Siqi Wu. I wish you all the best in your future endeavors.

I would also like to thank my gymnastics coach and life mentor, Manfred Thumser, for
instilling in me from a young age the value of hard work and discipline. He taught me what it
meant to push myself and to always strive for improvement. His wisdom and encouragement
have guided me through my time in Berkeley. Without him, I would not be where I am
today.

Lastly, I would like to thank my sister, my brother, and my parents for always encouraging
my curiosity of the world, for investing in my education, and for their unconditional love
and support, even from half a world away.

Thank you!

1

Part I

Heterogeneous Treatment E↵ects

2

Chapter 1

Meta-learners for Estimating
Heterogeneous Treatment E↵ects
using Machine Learning

1.1 Introduction

With the rise of large data sets containing fine-grained information about humans and their
behavior, researchers, businesses, and policymakers are increasingly interested in how treat-
ment e↵ects vary across individuals and contexts. They wish to go beyond the information
provided by estimating the Average Treatment E↵ect (ATE) in randomized experiments
and observational studies. Instead, they often seek to estimate the Conditional Average
Treatment E↵ect (CATE) to personalize treatment regimes and to better understand causal
mechanisms. We introduce a new estimator called the X-learner, and we characterize it
and many other CATE estimators within a unified meta-learner framework. Their perfor-
mance is compared using broad simulations, theory, and two data sets from randomized field
experiments in political science.

In the first randomized experiment, we estimate the e↵ect of a mailer on voter turnout
[27] and, in the second, we measure the e↵ect of door-to-door conversations on prejudice
against gender-nonconforming individuals [9]. In both experiments, the treatment e↵ect is
found to be non-constant, and we quantify this heterogeneity by estimating the CATE. We
obtain insights into the underlying mechanisms, and the results allow us to better target the
treatment.

To estimate the CATE, we build on regression or supervised learning methods in statistics
and machine learning, which are successfully used in a wide range of applications. Specifi-
cally, we study meta-algorithms (or meta-learners) for estimating the CATE in a binary treat-
ment setting. Meta-algorithms decompose estimating the CATE into several sub-regression
problems that can be solved with any regression or supervised learning method.

The most common meta-algorithm for estimating heterogeneous treatment e↵ects takes

CHAPTER 1. META-LEARNERS 3

two steps. First, it uses so-called base learners to estimate the conditional expectations of
the outcomes separately for units under control and those under treatment. Second, it takes
the di↵erence between these estimates. This approach has been analyzed when the base
learners are linear regression [22] or tree-based methods [2]. When used with trees, this has
been called the Two-Tree estimator and we will therefore refer to the general mechanism of
estimating the response functions separately as the T-learner, “T” being short for “two.”

Closely related to the T-learner is the idea of estimating the outcome using all of the
features and the treatment indicator, without giving the treatment indicator a special role.
The predicted CATE for an individual unit is then the di↵erence between the predicted
values when the treatment assignment indicator is changed from control to treatment, with
all other features held fixed. This meta-algorithm has been studied with BART [35, 29] and
regression trees [2] as the base learners. We refer to this meta-algorithm as the S-learner,
since it uses a “single” estimator.

Not all methods that aim to capture the heterogeneity of treatment e↵ects fall in the
class of meta-algorithms. For example, some researchers analyze heterogeneity by estimating
average treatment e↵ects for meaningful subgroups [32]. Another example is causal forests
[80]. Since causal forests are RF-based estimators, they can be compared to meta-learners
with RFs in simulation studies. We will see that causal forests and the meta-learners used
with RFs perform comparably well, but the meta-learners with other base learners can
significantly outperform causal forests.

The main contribution of this paper is the introduction of a new meta-algorithm: the
X-learner, which builds on the T-learner and uses each observation in the training set in an
“X”–like shape. Suppose that we could observe the individual treatment e↵ects directly. We
could then estimate the CATE function by regressing the di↵erence of individual treatment
e↵ects on the covariates. Structural knowledge about the CATE function (e.g., linearity,
sparsity, or smoothness) could be taken into account by either picking a particular regression
estimator for CATE or using an adaptive estimator that could learn these structural features.
Obviously, we do not observe individual treatment e↵ects because we observe the outcome
either under control or under treatment, but never both. The X-learner uses the observed
outcomes to estimate the unobserved individual treatment e↵ects. It then estimates the
CATE function in a second step as if the individual treatment e↵ects were observed.

The X-learner has two key advantages over other estimators of the CATE. First, it can
provably adapt to structural properties such as the sparsity or smoothness of the CATE. This
is particularly useful since the CATE is often zero or approximately linear [38, 70]. Secondly,
it is particularly e↵ective when the number of units in one treatment group (usually the
control group) is much larger than in the other. This occurs because (control) outcomes
and covariates are easy to obtain using data collected by administrative agencies, electronic
medical record systems, or online platforms. This is the case in our first data example, where
election turnout decisions in the U.S. are recorded by local election administrators for all
registered individuals.

The rest of the paper is organized as follows. We start with a formal introduction of
the meta-learners and provide intuitions for why we can expect the X-learner to perform

CHAPTER 1. META-LEARNERS 4

well when the CATE is smoother than the response outcome functions and when the sample
sizes between treatment and control are unequal. We then present the results of an extensive
simulation study and provide advice for practitioners before we present theoretical results on
the convergence rate for di↵erent meta-learners. Finally, we examine two field experiments
using several meta-algorithms and illustrate how the X-learner can find useful heterogeneity
with fewer observations.

Framework and Definitions

We employ the Neyman–Rubin potential outcome framework [66, 71], and assume a super-
population or distribution P from which a realization of N independent random variables
is given as the training data. That is, (Yi(0), Yi(1), Xi,Wi) ⇠ P , where Xi 2 Rd is a d-
dimensional covariate or feature vector, Wi 2 {0, 1} is the treatment assignment indicator
(to be defined precisely later), Yi(0) 2 R is the potential outcome of unit i when i is assigned
to the control group, and Yi(1) is the potential outcome when i is assigned to the treatment
group. With this definition, the Average Treatment E↵ect is defined as

ATE := E[Y (1)� Y (0)].

It is also useful to define the response under control, µ0, and the response under treatment,
µ1, as

µ0(x) := E[Y (0)|X = x] and µ1(x) := E[Y (1)|X = x].

Furthermore, we use the following representation of P :

X ⇠ ⇤,

W ⇠ Bern(e(X)),

Y (0) = µ0(X) + "(0),

Y (1) = µ1(X) + "(1),

(1.1)

where ⇤ is the marginal distribution of X, "(0) and "(1) are zero-mean random variables
and independent of X and W , and e(x) = P(W = 1|X = x) is the propensity score.

The fundamental problem of causal inference is that for each unit in the training data set,
we observe either the potential outcome under control (Wi = 0), or the potential outcome
under treatment (Wi = 1) but never both. Hence we denote the observed data as

D = (Yi, Xi,Wi)1iN ,

with Yi = Yi(Wi). Note that the distribution of D is specified by P . To avoid the problem
that with a small but non-zero probability all units are under control or under treatment, we
will analyze the behavior of di↵erent estimators conditional on the number of treated units.
That is, for a fixed n with 0 < n < N , we condition on the event that

NX

i=1

Wi = n.

CHAPTER 1. META-LEARNERS 5

This will enable us to state the performance of an estimator in terms of the number of treated
units n and the number of control units m = N � n.

For a new unit i with covariate vector xi, in order to decide whether to give the unit the
treatment, we wish to estimate the Individual Treatment E↵ect (ITE) of unit i, Di, which
is defined as

Di := Yi(1)� Yi(0).

However, we do not observe Di for any unit, and Di is not identifiable without strong
additional assumptions in the sense that one can construct data-generating processes with
the same distribution of the observed data, but a di↵erent Di (Example 3). Instead, we will
estimate the CATE function, which is defined as

⌧(x) := E
h
D
���X = x

i
= E

h
Y (1)� Y (0)

���X = x
i
,

and we note that the best estimator for the CATE is also the best estimator for the ITE in
terms of the MSE. To see that, let ⌧̂i be an estimator for Di and decompose the MSE at xi

E
⇥
(Di � ⌧̂i)

2
|Xi = xi

⇤

=E
⇥
(Di � ⌧(xi))

2
|Xi = xi

⇤
+ E

⇥
(⌧(xi)� ⌧̂i)

2
⇤
.

(1.2)

Since we cannot influence the first term in the last expression, the estimator that minimizes
the MSE for the ITE of i also minimizes the MSE for the CATE at xi.

In this paper, we are interested in estimators with a small Expected Mean Squared Error
(EMSE) for estimating the CATE,

EMSE(P , ⌧̂) = E
⇥
(⌧(X)� ⌧̂(X))2

⇤
.

The expectation is here taken over ⌧̂ and X ⇠ ⇤, where X is independent of ⌧̂ .
To aid our ability to estimate ⌧ , we need to assume that there are no hidden confounders

[64]:

Condition 1
("(0), "(1)) ? W |X.

This assumption is, however, not su�cient to identify the CATE. One additional assumption
that is often made to obtain identifiability of the CATE in the support of X is to assume
that the propensity score is bounded away from 0 and 1:

Condition 2 There exists emin and emax such that for all x in the support of X,

0 < emin < e(x) < emax < 1.

CHAPTER 1. META-LEARNERS 6

1.2 Meta-algorithms

In this section, we formally define a meta-algorithm (or meta-learner) for the CATE as
the result of combining supervised learning or regression estimators (i.e., base learners) in
a specific manner while allowing the base learners to take any form. Meta-algorithms thus
have the flexibility to appropriately leverage di↵erent sources of prior information in separate
sub-problems of the CATE estimation problem: they can be chosen to fit a particular type
of data, and they can directly take advantage of existing data analysis pipelines.

We first review both S- and T-learners, and we then propose the X-learner, which is a
new meta-algorithm that can take advantage of unbalanced designs (i.e., the control or the
treated group is much larger than the other group) and existing structures of the CATE
(e.g., smoothness or sparsity). Obviously, flexibility is a gain only if the base learners in the
meta-algorithm match the features of the data and the underlying model well.

The T-learner takes two steps. First, the control response function,

µ0(x) = E[Y (0)|X = x],

is estimated by a base learner, which could be any supervised learning or regression estimator
using the observations in the control group, {(Xi, Yi)}Wi=0. We denote the estimated function
as µ̂0. Second, we estimate the treatment response function,

µ1(x) = E[Y (1)|X = x],

with a potentially di↵erent base learner, using the treated observations and denoting the
estimator by µ̂1. A T-learner is then obtained as

⌧̂T (x) = µ̂1(x)� µ̂0(x). (1.3)

Pseudocode for this T-learner can be found in Algorithm 5.
In the S-learner, the treatment indicator is included as a feature similar to all the other

features without the indicator being given any special role. We thus estimate the combined
response function,

µ(x, w) := E[Y obs
|X = x,W = w],

using any base learner (supervised machine learning or regression algorithm) on the entire
data set. We denote the estimator as µ̂. The CATE estimator is then given by

⌧̂S(x) = µ̂(x, 1)� µ̂(x, 0), (1.4)

and pseudocode is provided in Algorithm 6.
There are other meta-algorithms in the literature, but we do not discuss them here in

detail because of limited space. For example, one may transform the outcomes so that
any regression method can estimate the CATE directly (Algorithm 8) [2, 76, 59]. In our
simulations, this algorithm performs poorly, and we do not discuss it further, but it may do
well in other settings.

CHAPTER 1. META-LEARNERS 7

X-learner

We propose the X-learner, and provide an illustrative example to highlight its motivations.
The basic idea of the X-learner can be described in three stages:

1. Estimate the response functions

µ0(x) = E[Y (0)|X = x], and (1.5)

µ1(x) = E[Y (1)|X = x], (1.6)

using any supervised learning or regression algorithm and denote the estimated func-
tions µ̂0 and µ̂1. The algorithms used are referred to as the base learners for the first
stage.

2. Impute the treatment e↵ects for the individuals in the treated group, based on the
control outcome estimator, and the treatment e↵ects for the individuals in the control
group, based on the treatment outcome estimator, that is,

D̃1

i := Y 1

i � µ̂0(X
1

i), and (1.7)

D̃0

i := µ̂1(X
0

i)� Y 0

i , (1.8)

and call these the imputed treatment e↵ects. Note that if µ̂0 = µ0 and µ̂1 = µ1, then
⌧(x) = E[D̃1

|X = x] = E[D̃0
|X = x].

Employ any supervised learning or regression method(s) to estimate ⌧(x) in two ways:
using the imputed treatment e↵ects as the response variable in the treatment group to
obtain ⌧̂1(x), and similarly in the control group to obtain ⌧̂0(x). Call the supervised
learning or regression algorithms base learners of the second stage.

3. Define the CATE estimate by a weighted average of the two estimates in Stage 2:

⌧̂(x) = g(x)⌧̂0(x) + (1� g(x))⌧̂1(x), (1.9)

where g 2 [0, 1] is a weight function.

See Algorithm 7 for pseudocode.

Remark 1 ⌧̂0 and ⌧̂1 are both estimators for ⌧ , while g is chosen to combine these estimators
to one improved estimator ⌧̂ . Based on our experience, we observe that it is good to use an
estimate of the propensity score for g, so that g = ê, but it also makes sense to choose g = 1
or 0, if the number of treated units is very large or small compared to the number of control
units. For some estimators, it might even be possible to estimate the covariance matrix of ⌧̂1
and ⌧̂0. One may then wish to choose g to minimize the variance of ⌧̂ .

CHAPTER 1. META-LEARNERS 8

●

●

●

● ●

●

●

●
● ●

0.5

1.0

1.5

2.0

2.5

µ̂0

µ̂1

W

●

0

1

(a) Observed Outcome & First Stage Base Learners

●

●

●

● ●

●

●
●

● ●

0.5

1.0

1.5

τ̂1

τ̂0

(b) Imputed Treatment Effects & Second Stage Base Learners

●

●

●

●

●

●

●

●

●

●

0.4

0.8

1.2

1.6

−1.0 −0.5 0.0 0.5 1.0

τ̂
T

τ̂
X

(c) Individual Treatment Effects & CATE Estimators

Figure 1.1: Intuition behind the X-learner with an unbalanced design.

CHAPTER 1. META-LEARNERS 9

Intuition behind the meta-learners

The X-learner can use information from the control group to derive better estimators for the
treatment group and vice versa. We will illustrate this using a simple example. Suppose that
we want to study a treatment, and we are interested in estimating the CATE as a function
of one covariate x. We observe, however, very few units in the treatment group and many
units in the control group. This situation often arises with the growth of administrative and
online data sources: data on control units is often far more plentiful than data on treated
units. Figure 1.1(a) shows the outcome for units in the treatment group (circles) and the
outcome of unit in the untreated group (crosses). In this example, the CATE is constant
and equal to one.

For the moment, let us look only at the treated outcome. When we estimate µ1(x) =
E[Y (1)|X = x], we must be careful not to overfit the data since we observe only 10 data
points. We might decide to use a linear model, µ̂1(x) (dashed line), to estimate µ1. For
the control group, we notice that observations with x 2 [0, 0.5] seem to be di↵erent, and
we end up modeling µ0(x) = E[Y (0)|X = x] with a piecewise linear function with jumps at
0 and 0.5 (solid line). This is a relatively complex function, but we are not worried about
overfitting since we observe many data points.

The T-learner would now use estimator ⌧̂T (x) = µ̂1(x) � µ̂0(x) (see Figure 1.1(c), solid
line), which is a relatively complicated function with jumps at 0 and 0.5, while the true ⌧(x)
is a constant. This is, however, problematic because we are estimating a complex CATE
function, based on ten observations in the treated group.

When choosing an estimator for the treatment group, we correctly avoided overfitting,
and we found a good estimator for the treatment response function and, as a result, we chose
a relatively complex estimator for the CATE, namely, the quantity of interest. We could
have selected a piecewise linear function with jumps at 0 and 0.5, but this, of course, would
have been unreasonable when looking only at the treated group. If, however, we were to also
take the control group into account, this function would be a natural choice. In other words,
we should change our objective for µ̂1 and µ̂0. We want to estimate µ̂1 and µ̂0 in such a way
that their di↵erence is a good estimator for ⌧ .

The X-learner enables us to do exactly that. It allows us to use structural information
about the CATE to make e�cient use of an unbalanced design. The first stage of the X-
learner is the same as the first stage of the T-learner, but in its second stage, the estimator
for the controls is subtracted from the observed treated outcomes and similarly the observed
control outcomes are subtracted from estimated treatment outcomes to obtain the imputed
treatment e↵ects,

D̃1

i := Y 1

i � µ̂0(X
1

i),

D̃0

i := µ̂1(X
0

i)� Y 0

i .

Here we use the notation that Y 0

i and Y 1

i are the ith observed outcome of the control and
the treated group, respectively. X1

i , X
0

i are the corresponding feature vectors. Figure 1.1(b)
shows the imputed treatment e↵ects, D̃. By choosing a simple—here linear—function to

CHAPTER 1. META-LEARNERS 10

estimate ⌧1(x) = E[D̃1
|X1 = x] we e↵ectively estimate a model for µ1(x) = E[Y 1

|X1 = x],
which has a similar shape to µ̂0. By choosing a relatively poor model for µ1(x), D̃0 (the
red crosses in Figure 1.1(b)) are relatively far away from ⌧(x), which is constant and equal
to 1. The model for ⌧0(x) = E[D̃0

|X = x] will thus be relatively poor. However, our final
estimator combines these two estimators according to

⌧̂(x) = g(x)⌧̂0(x) + (1� g(x))⌧̂1(x).

If we choose g(x) = ê(x), an estimator for the propensity score, ⌧̂ will be very similar to
⌧̂1(x), since we have many more observations in the control group; i.e., ê(x) is small. Figure
1.1(c) shows the T-learner and the X-learner.

It is di�cult to assess the general behavior of the S-learner in this example because we
must choose a base learner. For example, when we use RF as the base learner for this
data set, the S-learner’s first split is on the treatment indicator in 97.5% of all trees in our
simulations because the treatment assignment is very predictive of the observed outcome, Y
(see also Figure A.10). From there on, the S-learner and the T-learner are the same, and we
observe them to perform similarly poorly in this example.

1.3 Simulation Results

In this section, we conduct a broad simulation study to compare the di↵erent meta-learners.
In particular, we summarize our findings and provide general remarks on the strengths
and weaknesses of the S-, T-, and X-learners, while deferring the details to the Supporting
Information (SI). The simulations are key to providing an understanding of the performance
of the methods we consider for model classes that are not covered by our theoretical results.

Our simulation study is designed to consider a range of situations. We include conditions
under which the S-learner or the T-learner is likely to perform the best, as well as simulation
setups proposed by previous researchers [80]. We consider cases where the treatment e↵ect
is zero for all units (and so pooling the treatment and control groups would be beneficial),
and cases where the treatment and control response functions are completely di↵erent (and
so pooling would be harmful). We consider cases with and without confounding,1 and cases
with equal and unequal sample sizes across treatment conditions. All simulations discussed
in this section are based on synthetic data. For details, please see Section A.1. We provide
additional simulations based on actual data when we discuss our applications.

We compare the S-, T-, and X-learners with RF and BART as base learners. We im-
plement a version of RF for which the tree structure is independent of the leaf prediction
given the observed features, the so-called honest RF in an R package called hte [42]. This
version of RF is particularly accessible from a theoretical point of view, it performs well in
noisy settings, and it is better suited for inference [68, 80]. For BART, our software uses the
dbarts [15] implementation for the base learner.

1Confounding here refers to the existence of an unobserved covariate that influences both the treatment
variable, W , and at least one of the portential outcomes Y (0), Y (1).

CHAPTER 1. META-LEARNERS 11

Comparing di↵erent base learners enables us to demonstrate two things. On the one
hand, it shows that the conclusions we draw about the S-, T-, and X-learner are not specific
to a particular base learner and, on the other hand, it demonstrates that the choice of base
learners can make a large di↵erence in prediction accuracy. The latter is an important
advantage of meta-learners since subject knowledge can be used to choose base learners that
perform well. For example, in Simulations 2 and 4 the response functions are globally linear,
and we observe that estimators that act globally such as BART have a significant advantage
in these situations or when the data set is small. If, however, there is no global structure or
when the data set is large, then more local estimators such as RF seem to have an advantage
(Simulations 3 and 5).

We observe that the choice of meta-learner can make a large di↵erence, and for each
meta-learner there exist cases where it is the best-performing estimator.

The S-learner treats the treatment indicator like any other predictor. For some base
learners such as k-nearest neighbors it is not a sensible estimator, but for others it can
perform well. Since the treatment indicator is given no special role, algorithms such as the
lasso and RFs can completely ignore the treatment assignment by not choosing/splitting on
it. This is beneficial if the CATE is in many places 0 (Simulations 4 and 5), but—as we will
see in our second data example—the S-learner can be biased toward 0.

The T-learner, on the other hand, does not combine the treated and control groups. This
can be a disadvantage when the treatment e↵ect is simple because by not pooling the data,
it is more di�cult for the T-learner to mimic a behavior that appears in both the control
and treatment response functions (e.g., Simulation 4). If, however, the treatment e↵ect is
very complicated, and there are no common trends in µ0 and µ1, then the T-learner performs
especially well (Simulations 2 and 3).

The X-learner performs particularly well when there are structural assumptions on the
CATE or when one of the treatment groups is much larger than the other (Simulation 1 and
3). In the case where the CATE is 0, it usually does not perform as well as the S-learner,
but it is significantly better than the T-learner (Simulations 4, 5, and 6), and in the case
of a very complex CATE, it performs better than the S-learner and it often outperforms
even the T-learner (Simulations 2 and 3). These simulation results lead us to the conclusion
that unless one has a strong belief that the CATE is mostly 0, then, as a rule of thumb,
one should use the X-learner with BART for small data sets and RF for bigger ones. In the
sequel, we will further support these claims with additional theoretical results and empirical
evidence from real data and data-inspired simulations.

1.4 Comparison of Convergence Rates

In this section, we provide conditions under which the X-learner can be proven to outper-
form the T-learner in terms of pointwise estimation rate. These results can be viewed as
attempts to rigorously formulate intuitions regarding when the X-learner is desirable. They
corroborate our intuition that the X-learner outperforms the T-learner when one group is

CHAPTER 1. META-LEARNERS 12

much larger than the other group and when the CATE function has a simpler form than
those of the underlying response functions themselves.

Let us start by reviewing some of the basic results in the field of minimax nonparametric
regression estimation [30]. In the standard regression problem, one observes N independent
and identically distributed tuples (Xi, Yi)i 2 Rd⇥N

⇥RN generated from some distribution P

and one is interested in estimating the conditional expectation of Y given some feature vector
x, µ(x) = E[Y |X = x]. The error of an estimator µ̂N can be evaluated by the Expected
Mean Squared Error (EMSE),

EMSE(P , µ̂N) = E[(µ̂N(X)� µ(X))2].

For a fixed P , there are always estimators that have a very small EMSE. For example,
choosing µ̂N ⌘ µ would have no error. However, P and thus µ would be unknown. Instead,
one usually wants to find an estimator that achieves a small EMSE for a relevant set of
distributions (such a set is relevant if it captures domain knowledge or prior information
about the problem). To make this problem feasible, a typical approach is the minimax
approach where one analyzes the worst performance of an estimator over a family, F , of
distributions [79]. The goal is to find an estimator that has a small EMSE for all distributions
in this family. For example, if F0 is the family of distributions P such that X ⇠ Unif[0, 1],
Y = �X + ", " ⇠ N(0, 1), and � 2 R, then it is well known that the OLS estimator achieves
the optimal parametric rate. That is, there exists a constant C 2 R such that for all P 2 F0,

EMSE(P , µ̂OLS

N)  CN�1.

If, however, F1 is the family of all distributions P such that X ⇠ Unif[0, 1], Y ⇠ µ(X) + ",
and µ is a Lipschitz continuous function with a bounded Lipschitz constant, then there exists
no estimator that achieves the parametric rate uniformly for all possible distributions in F1.
To be precise, we can at most expect to find an estimator that achieves a rate of N�2/3 and
that there exists a constant C 0, such that

lim inf
N!1

inf
µ̂N

sup
P2F1

EMSE(P , µ̂N)

N�2/3
> C 0 > 0.

The Nadaraya–Watson and the k-nearest neighbors estimators can achieve this optimal rate
[4, 30].

Crucially, the fastest rate of convergence that holds uniformly for a family F is a property
of the family to which the underlying data-generating distribution belongs. It will be useful
for us to define sets of families for which particular rates are achieved.

Definition 1 (Families with bounded minimax rate) For a 2 (0, 1], we define S(a) to
be the set of all families, F , with a minimax rate of at most N�a.

Note that for any family F 2 S(a) there exists an estimator µ̂ and a constant C such that
for all N � 1,

sup
P2F

EMSE(P , µ̂N)  CN�a.

CHAPTER 1. META-LEARNERS 13

From the examples above, it is clear that F0 2 S(1) and F1 2 S(2/3).
Even though the minimax rate of the EMSE is not very practical since one rarely knows

that the true data-generating process is in some reasonable family of distributions, it is
nevertheless one of the very few useful theoretical tools to compare di↵erent nonparametric
estimators. If for a big class of distributions, the worst EMSE of an estimator µ̂A is smaller
than the worst EMSE of an estimator µ̂B, then one might prefer estimator µ̂A over estimator
µ̂B. Furthermore, if the estimator of choice does not have a small error for a family that we
believe based on domain information could be relevant in practice, then we might expect µ̂
to have a large EMSE in real data.

Implication for CATE estimation

Let us now apply the minimax approach to the problem of estimating the CATE. Recall
that we assume a superpopulation, P , of random variables (Y (0), Y (1), X,W) according to
1.1 and we observe N outcomes, (Xi,Wi, Y obs

i)Ni=1
. To avoid the problem that with a small

but non-zero probability all units are treated or untreated, we analyze the expected mean
squared error of an estimator given that there are 0 < n < N treated units,

EMSE(P , ⌧̂mn) = E
"
(⌧(X)� ⌧̂mn(X))2

�����

NX

i=1

Wi = n

#
.

The expectation is taken over the observed data,2 (Xi,Wi, Yi)Ni=1
, given that we observe n

treated units, and over X , which is distributed according to P .
As in Definition 1, we characterize families of superpopulations by the rates at which the

response functions and the CATE function can be estimated.

Definition 2 (Superpopulations with given rates) For aµ, a⌧ 2 (0, 1], we define S(aµ, a⌧)
to be the set of all families of distributions P of (Y (0), Y (1), X,W) such that ignorability
holds (Condition 1), the overlab condition (Condition 2) is satisfied, and the following con-
ditions hold:

1. The distribution of (X, Y (0)) given W = 0 is in a family F0 2 S(aµ),

2. The distribution of (X, Y (1)) given W = 1 is in a family F1 2 S(aµ),

3. The distribution of (X,µ1(X)� Y (0)) given W = 0 is in a family F⌧0 2 S(a⌧), and

4. The distribution of (X, Y (1)� µ0(X)) given W = 1 is in a family F⌧1 2 S(a⌧).

A simple example of a family in S(2/3, 1) is the set of distributions P for which X ⇠

Unif([0, 1]), W ⇠ Bern(1/2), µ0 is any Lipschitz continuous function, ⌧ is linear, and
"(0), "(1) are independent and standard normal-distributed.

We can also build on existing results from the literature to characterize many families in
terms of smoothness conditions on the CATE and on the response functions.

2Refer to Section A.7 for a careful treatment of the distributions involved.

CHAPTER 1. META-LEARNERS 14

Example 1 Let C > 0 be an arbitrary constant and consider the family, F2, of distributions
for which X has compact support in Rd, the propensity score e is bounded away from 0 and
1 (Condition 2), µ0, µ1 are C Lipschitz continuous, and the variance of " is bounded. Then
it follows [30] that

F2 2 S

✓
2d

2 + d
,

2d

2 + d

◆
.

Note that we don’t have any assumptions on X apart from its support being bounded. If
we are willing to make assumptions on the density (e.g., X is uniformly distributed), then
we can characterize many distributions by the smoothness conditions of µ0, µ1, and ⌧ .

Definition 3 ((p,C)-smooth functions [30]) Let p = k + � for some k 2 N and 0 <
�  1, and let C > 0. A function f : Rd

�! R is called (p, C)-smooth if for every

↵ = (↵1, . . . ,↵d), ↵i 2 N,
Pd

j=1
↵j = k, the partial derivative @kf

@x
↵1
1 ...@x

↵d
d

exists and satisfies

����
@kf

@x↵1
1

. . . @x↵d
d

(x)�
@kf

@x↵1
1

. . . @x↵d
d

(z)

����  Ckx� zk�.

Example 2 Let C1, C2 be arbitrary constants and consider the family, F3, of distributions
for which X ⇠ Unif([0, 1]d), e ⌘ c 2 (0, 1), " is two-dimensional normally distributed, µ0

and µ1 are (pµ, C1)-smooth, and ⌧ is (p⌧ , C2)-smooth.3 Then it follows [73, 30] that

F3 2 S

✓
2d

2pµ + d
,

2d

2p⌧ + d

◆
.

Let us intuitively understand the di↵erence between the T- and X-learners. The T-learner
splits the problem of estimating the CATE into the two subproblems of estimating µ0 and
µ1 separately. By appropriately choosing the base learners, we can expect to achieve the
minimax optimal rates of m�aµ and n�aµ , respectively,

sup
P02F0

EMSE(P0, µ̂
m
0
)  Cm�aµ , and

sup
P12F1

EMSE(P1, µ̂
n
1
)  Cn�aµ ,

(1.10)

where C is some constant. Those rates translate immediately to rates for estimating ⌧ ,

sup
P2F

EMSE(P , ⌧̂nmT)  C⌧

�
m�aµ + n�aµ

�
.

In general, we cannot expect to do better than this when using an estimation strategy
that falls in the class of T-learners, because the subproblems in Equation 1.10 are treated

3The assumption that X is uniformly distributed and the propensity score is constant can be generalized
if one uses a slightly di↵erent risk [31, 47, 73].

CHAPTER 1. META-LEARNERS 15

completely independently and there is nothing to be learned from the treatment group about
the control group and vice versa.

In Section A.8, we present a careful analysis of this result and we prove the following
theorem.

Theorem 1 (Minimax rates of the T-learner) For a family of superpopulations, F 2
S(aµ, a⌧), there exist base learners to be used in the T-learner so that the corresponding
T-learner estimates the CATE at a rate

O(m�aµ + n�aµ). (1.11)

The X-learner, on the other hand, can be seen as a locally weighted average of the two
estimators, ⌧̂0 and ⌧̂1 (Eq. 1.9). Take for the moment, ⌧̂1. It consists of an estimator for the
outcome under control, which achieves a rate of m�aµ , and an estimator for the imputed
treatment e↵ects, which should intuitively achieve a rate of n�a⌧ . We therefore expect that
under some conditions on F 2 S(aµ, a⌧), there exist base learners such that ⌧̂0 and ⌧̂1 in the
X-learner achieve the rates

O(m�a⌧ + n�aµ) and O(m�aµ + n�a⌧), (1.12)

respectively.
Even though it is theoretically possible that a⌧ is similar to aµ, our experience with real

data suggests that it is often larger (i.e., the treatment e↵ect is simpler to estimate than the
potential outcomes), because the CATE function is often smoother or sparsely related to the
feature vector. In this case, the X-learner converges at a faster rate than the T-learner.

Remark 2 (Unbalanced groups) In many real-world applications, we observe that the
number of control units is much larger than the number of treated units, m � n. This
happens, for example, if we test a new treatment and we have a large number of previous
(untreated) observations that can be used as the control group. In that case, the bound on the
EMSE of the T-learner will be dominated by the regression problem for the treated response
function,

sup
P2F

EMSE(P , ⌧̂nmT)  C1n
�aµ . (1.13)

The EMSE of the X-learner, however, will be dominated by the regression problem for the
imputed treatment e↵ects and it will achieve a faster rate of n�a⌧ ,

sup
P2F

EMSE(P , ⌧̂nmX)  C2n
�a⌧ . (1.14)

This is a substantial improvement on 1.13 when a⌧ > aµ, and it demonstrates that in contrast
to the T-learner, the X-learner can exploit structural conditions on the treatment e↵ect. We
therefore expect the X-learner to perform particularly well when one of the treatment groups
is larger than the other. This can also be seen in our extensive simulation study presented
in Section A.1 and in the field experiment on social pressure on voter turnout presented in
the Applications section of this paper.

CHAPTER 1. META-LEARNERS 16

Example when the CATE is linear

It turns out to be mathematically very challenging to give a satisfying statement of the extra
conditions needed on F in 1.12. However, they are satisfied under weak conditions when
the CATE is Lipschitz continuous (cf. Section A.9) and, as we discuss in the rest of this
section, when the CATE is linear. We emphasize that we believe that this result holds in
much greater generality.

Let us discuss the result in the following families of distributions with a linear CATE,
but without assumptions on the response functions other than that they can be estimated
at some rate a.

Condition 3 The treatment e↵ect is linear, ⌧(x) = xT�, with � 2 Rd.

Condition 4 There exists an estimator µ̂m
0

and constants C0, a > 0 with

EMSE(P , µ̂m
0
) = E[(µ0(X)� µ̂m

0
(X))2|W = 0]  C0m

�a.

To help our analysis, we also assume that the noise terms are independent given X and
that the feature values are well behaved.

Condition 5 The error terms "i are independent given X, with E["i|X = x] = 0 and
Var["i|X = x]  �2.

Condition 6 X has finite second moments,

E[kXk2
2
]  CX ,

and the eigenvalues of the sample covariance matrix of X1 are well conditioned, in the sense
that there exists an n0 2 N and a constant C⌃ 2 R such that for all n > n0,

P
⇣
��1

min(⌃̂n)  C⌃

⌘
= 1. (1.15)

Under these conditions, we can prove that the X-learner achieves a rate of O(m�a+n�1).

Theorem 2 Assume that we observe m control units and n treated units from a superpop-
ulation that satisfies Conditions 1–6; then ⌧̂1 of the X-learner with µ̂m

0
in the first stage and

OLS in the second stage achieves a rate of O(m�a+n�1). Specifically, for all n > n0,m > 1,

EMSE(P , ⌧̂mn
1

)  C(m�a + n�1),

with C = max
⇣

emax�emaxemin
emin�emaxemin

C0, �2d
⌘
CXC⌃.

CHAPTER 1. META-LEARNERS 17

We note that an equivalent statement also holds for the pointwise MSE (Theorem 4) and
for ⌧̂0.

This example also suppports Remark 2, because if there are many control units,m � n1/a,
then the X-learner achieves the parametric rate in n,

EMSE(P , ⌧̂mn
1

)  Cn�1.

In fact, as Theorem 5 shows, even if the number of control units is of the same order as the
number of treated units, we can often achieve the parametric rate.

1.5 Applications

In this section, we consider two data examples. In the first example, we consider a large Get-
Out-The-Vote (GOTV) experiment that explored if social pressure can be used to increase
voter turnout in elections in the United States [27]. In the second example, we consider an ex-
periment that explored if door-to-door canvassing can be used to durably reduce transphobia
in Miami [9]. In both examples, the original authors failed to find evidence of heterogeneous
treatment e↵ects when using simple linear models without basis expansion, and subsequent
researchers and policy makers have been acutely interested in treatment e↵ect heterogeneity
that could be used to better target the interventions. We use our honest random forest im-
plementation [42] because of the importance of obtaining useful confidence intervals in these
applications. Confidence intervals are obtained using a bootstrap procedure (Algorithm 10).
We have evaluated several bootstrap procedures, and we have found that the results for all
of them were very similar. We explain this particular bootstrap choice in detail in SI.3.

Social pressure and voter turnout

In a large field experiment, Gerber et al. show that substantially higher turnout was observed
among registered voters who received a mailing promising to publicize their turnout to
their neighbors [27]. In the United States, whether someone is registered to vote and their
past voting turnout are a matter of public record. Of course, how individuals voted is
private. The experiment has been highly influential both in the scholarly literature and
in political practice. In our reanalysis, we focus on two treatment conditions: the control
group, which was assigned to 191,243 individuals, and the “neighbor’s” treatment group,
which was assigned to 38,218 individuals. Note the unequal sample sizes. The experiment
was conducted in Michigan before the August 2006 primary election, which was a statewide
election with a wide range of o�ces and proposals on the ballot. The authors randomly
assigned households with registered voters to receive mailers. The outcome, whether someone
voted, was observed in the primary election. The “neighbors” mailing opens with a message
that states “DO YOUR CIVIC DUTY—VOTE!” It then continues by not only listing the
household’s voting records but also the voting records of those living nearby. The mailer
informed individuals that “we intend to mail an updated chart” after the primary.

CHAPTER 1. META-LEARNERS 18

0%

25%

50%

Vo
te

r P
ro

po
rti

on

−5%

0%

5%

10%

15%

20%

0 1 2 3 4 5
Cumulative Voting History

C
AT

E

Figure 1.2: Social pressure and voter turnout. Potential voters are grouped by the number of
elections they participated in, ranging from 0 (potential voters who did not vote during the
past five elections) to 5 (voters who participated in all five past elections). The width of each
group is proportional to the size of the group. Positive values in the first plot correspond
to the percentage of voters for which the predicted CATE is significantly positive, while
negative values correspond to the percentage of voters for which the predicted CATE is
significantly negative. The second plot shows the CATE estimate distribution for each bin.

The study consists of seven key individual-level covariates, most of which are discrete:
gender, age, and whether the registered individual voted in the primary elections in 2000,
2002, and 2004 or the general election in 2000 and 2002. The sample was restricted to
voters who had voted in the 2004 general election. The outcome of interest is turnout in the
2006 primary election, which is an indicator variable. Because compliance is not observed, all
estimates are of the Intention-to-Treat (ITT) e↵ect, which is identified by the randomization.
The average treatment e↵ect estimated by the authors is 0.081 with a standard error of
(0.003). Increasing voter turnout by 8.1% using a simple mailer is a substantive e↵ect,
especially considering that many individuals may never have seen the mailer.

Figure 1.2 presents the estimated treatment e↵ects, using X–RF where the potential
voters are grouped by their voting history. The upper panel of the figure shows the proportion

CHAPTER 1. META-LEARNERS 19

of voters with a significant positive (blue) and a significant negative (red) CATE estimate.
We can see that there is evidence of a negative backlash among a small number of people
who voted only once in the past five elections prior to the general election in 2004. Applied
researchers have observed a backlash from these mailers; e.g., some recipients called their
Secretary of States o�ce or local election registrar to complain [53, 55]. The lower panel
shows the distribution of CATE estimates for each of the subgroups. Having estimates of
the heterogeneity enables campaigns to better target the mailers in the future. For example,
if the number of mailers is limited, one should target potential voters who voted three times
during the past five elections, since this group has the highest average treatment e↵ect and
it is a very big group of potential voters.4

S–RF, T–RF, and X–RF all provide similar CATE estimates. This is unsurprising given
the very large sample size, the small number of covariates, and their distributions. For
example, the correlation between the CATE estimates of S–RF and T–RF is 0.99 (results
for S–RF and T–RF can be found in Figure A.9).

We conducted a data-inspired simulation study to see how these estimators would behave
in smaller samples. We take the CATE estimates produced by T–RF, and we assume that
they are the truth. We can then impute the potential outcomes under both treatment and
control for every observation. We then sample training data from the complete data and
predict the CATE estimates for the test data using, S–, T–, and X–RF. We keep the unequal
treatment proportion observed in the full data fixed, i.e., P(W = 1) = 0.167. Figure 1.3
presents the results of this simulation. They show that in small samples both X–RF and
S–RF outperform T–RF, with X–RF performing the best, as one may conjecture given the
unequal sample sizes.

Reducing transphobia: A field experiment on door-to-door
canvassing

In an experiment that received widespread media attention, Broockman et al. show that
brief (10 minutes) but high-quality door-to-door conversations can markedly reduce preju-
dice against gender-nonconforming individuals for at least three months [9, 10]. There are
important methodological di↵erences between this example and our previous one. The ex-
periment is a placebo-controlled experiment with a parallel survey that measures attitudes,
which are the outcomes of interest. The authors follow the design of [11]. The authors first
recruited registered voters (n = 68, 378) via mail for an unrelated online survey to measure
baseline outcomes. They then randomly assigned respondents of the baseline survey to either
the treatment group (n = 913) or the placebo group that was targeted with a conversation
about recycling (n = 912). Randomization was conducted at the household level (n = 1295),

4In praxis, it is not necessary to identify a particular subgroup. Instead, one can simply target units
for which the predicted CATE is large. If the goal of our analysis were to find subgroups with di↵erent
treatment e↵ects, one should validate those subgroup estimates. We suggest either splitting the data and
letting the X-learner use part of the data to find subgroups and the other part to validate the subgroup
estimates, or to use the suggested subgroups to conduct further experiments.

CHAPTER 1. META-LEARNERS 20

●
●

●

●

●

● ●

●

0.01

0.02

Av
er

ag
e

Va
ria

nc
e

●

●

●

●

●

●

●

●0.00

0.01

0.02

0.03

Av
er

ag
e

Bi
as

● S−learner

T−learner

X−learner

●●
●

●
● ●

●

●

0.01

0.02

0.03

0 20 40 60
Training Size (in 1000)

R
M

SE

Figure 1.3: RMSE, bias, and variance for a simulation based on the social pressure and voter
turnout experiment.

CHAPTER 1. META-LEARNERS 21

and because the design employs a placebo control, the estimand of interest is the complier-
average-treatment e↵ect. Outcomes were measured by the online survey three days, three
weeks, six weeks, and three months after the door-to-door conversations. We analyze results
for the first follow-up.

The final experimental sample consists of only 501 observations. The experiment was well
powered despite its small sample size because it includes a baseline survey of respondents
as well as post-treatment surveys. The survey questions were designed to have high over-
time stability. The R2 of regressing the outcomes of the placebo-control group on baseline
covariates using OLS is 0.77. Therefore, covariate adjustment greatly reduces sampling
variation. There are 26 baseline covariates that include basic demographics (gender, age,
ethnicity) and baseline measures of political and social attitudes and opinions about prejudice
in general and Miami’s nondiscrimination law in particular.

The authors find an average treatment e↵ect of 0.22 (SE: 0.072, t-stat: 3.1) on their
transgender tolerance scale.5 The scale is coded so that a larger number implies greater
tolerance. The variance of the scale is 1.14, with a minimum observed value of -2.3 and a
maximum of 2. This is a large e↵ect given the scale. For example, the estimated decrease
in transgender prejudice is greater than Americans’ average decrease in homophobia from
1998 to 2012, when both are measured as changes in standard deviations of their respective
scales.

The authors report finding no evidence of heterogeneity in the treatment e↵ect that can
be explained by the observed covariates. Their analysis is based on linear models (OLS, lasso,
and elastic net) without basis expansions.6 Figure 1.4(a) presents our results for estimating
the CATE, using X–RF. We find that there is strong evidence that the positive e↵ect that
the authors find is only found among a subset of respondents that can be targeted based on
observed covariates. The average of our CATE estimates is within half a standard deviation
of the ATE that the authors report.

Unlike in our previous data example, there are marked di↵erences in the treatment e↵ects
estimated by our three learners. Figure 1.4(b) presents the estimates from T–RF. These
estimates are similar to those of X–RF, but with a larger spread. Figure 1.4(c) presents
the estimates from S–RF. Note that the average CATE estimate of S–RF is much lower
than the ATE reported by the original authors and the average CATE estimates of the
other two learners. Almost none of the CATE estimates are significantly di↵erent from zero.
Recall that the ATE in the experiment was estimated with precision, and was large both
substantively and statistically (t-stat=3.1).

In this data, S–RF shrinks the treatment estimates toward zero. The ordering of the
estimates we see in this data application is what we have often observed in simulations: the
S-learner has the least spread around zero, the T-learner has the largest spread, and the X-
learner is somewhere in between. Unlike in the previous example, the covariates are strongly

5The authors’ transgender tolerance scale is the first principal component of combining five �3 to +3
Likert scales. See [9] for details.

6[9] estimates the CATE using Algorithm 8.

CHAPTER 1. META-LEARNERS 22

20

40

60

80 Effect significance
significant positive

(a) X−RF

20

40

60

80

N
um

be
r o

f o
bs

er
va

tio
ns (b) T−RF

20

40

60

80

−0.5 0.0 0.5
CATE estimate

(c) S−RF

Figure 1.4: Histograms for the distribution of the CATE estimates in the Reducing Trans-
phobia study. The horizontal line shows the position of the estimated ATE.

CHAPTER 1. META-LEARNERS 23

predictive of the outcomes, and the splits in the S–RF are mostly on the features rather than
the treatment indicator, because they are more predictive of the observed outcomes than the
treatment assignment (cf., Figure A.10).

1.6 Conclusion

This paper reviewed meta-algorithms for CATE estimation including the S- and T-learners.
It then introduced a new meta-algorithm, the X-learner, that can translate any supervised
learning or regression algorithm or a combination of such algorithms into a CATE estimator.
The X-learner is adaptive to various settings. For example, both theory and data examples
show that it performs particularly well when one of the treatment groups is much larger
than the other or when the separate parts of the X-learner are able to exploit the structural
properties of the response and treatment e↵ect functions. Specifically, if the CATE function
is linear, but the response functions in the treatment and control group satisfy only the
Lipschitz-continuity condition, the X-learner can still achieve the parametric rate if one of
the groups is much larger than the other (Theorem 2). If there are no regularity conditions
on the CATE function and the response functions are Lipschitz continuous, then both the X-
learner and the T-learner obtain the same minimax optimal rate (Theorem 7). We conjecture
that these results hold for more general model classes than those in our theorems.

We have presented a broad set of simulations to understand the finite sample behaviors of
di↵erent implementations of these learners, especially for model classes that are not covered
by our theoretical results. We have also examined two data applications. Although none
of the meta-algorithms is always the best, the X-learner performs well overall, especially
in the real-data examples. In practice, in finite samples, there will always be gains to be
had if one accurately judges the underlying data-generating process. For example, if the
treatment e↵ect is simple, or even zero, then pooling the data across treatment and control
conditions will be beneficial when estimating the response model (i.e., the S-learner will
perform well). However, if the treatment e↵ect is strongly heterogeneous and the response
surfaces of the outcomes under treatment and control are very di↵erent, pooling the data
will lead to worse finite sample performance (i.e., the T-learner will perform well). Other
situations are possible and lead to di↵erent preferred estimators. For example, one could
slightly change the S-learner so that it shrinks to the estimated ATE instead of zero, and
it would then be preferred when the treatment e↵ect is constant and non-zero. One hopes
that the X-learner can adapt to these di↵erent settings. The simulations and real-data
studies presented have demonstrated the X-learner’s adaptivity. However, further studies
and experience with more real data sets are necessary. To enable practitioners to benchmark
these learners on their own data sets, we have created an easy-to-use software library called
hte. It implements several methods of selecting the best CATE estimator for a particular
data set, and it implements confidence interval estimators for the CATE.

In ongoing research, we are investigating using other supervised learning algorithms. For
example, we are creating a deep learning architecture for estimating the CATE that is based

CHAPTER 1. META-LEARNERS 24

on the X-learner with a particular focus on transferring information between di↵erent data
sets and treatment groups. Furthermore, we are concerned with finding better confidence
intervals for the CATE. This might enable practitioners to better design experiments, and
determine the required sample size before an experiment is conducted.

25

Chapter 2

CausalToolbox Package

In this section, we describe the first version of the CausalToolbox package. It has been
designed to make heterogeneous treatment e↵ect estimation simple by providing useful tools
and functions in the R programming language. As of the writing of this thesis, it has not
been published on the Comprehensive R Archive Network (CRAN) but it can be found on
Github (https://github.com/soerenkuenzel/causalToolbox/).

We will first introduce the CATEestimator class. It is the main class of the package,
and all other estimators are implemented as classes that inherit the CATEestimator class.
We will show the basic syntax and principles that have guided us when implementing the
package. We then demonstrate in an example that it is e↵ortless to run many estimators
at the same time. In Chapter 2.2, we will provide one additional method that can be used
to select a good estimator for a given data set. We then conclude with a brief outlook on
functionalities that we expect to release in Version 2.

2.1 CATE Estimators

The CATE estimators

In the following, we describe the di↵erent CATE estimators that are implemented in this
package. The package only implements meta-learners, but it is possible to extend it to other
estimators.

Meta-learners are algorithms that can be combined with any regression or machine learn-
ing algorithm (c.f. Chapter 1). We implemented the M-, S-, T-, and X-Learner and combined
each of them with the Random Forests algorithm (RF) and the Bayesian Additive Regres-
sion Trees algorithm (BART). Thus, in total, we implemented eight di↵erent estimators.
Each estimator is implemented as a class, and its name reveals which meta-learner and base
learner it is based on. For example, X_RF is the X-Learner with RF as the base learner.

Chapter B in the Appendix contains the precise documentation of the di↵erent functions.
In the following, we will only give a high-level explanation of the M-Learner, as the other

CHAPTER 2. CAUSALTOOLBOX PACKAGE 26

meta-learners have been discussed in Chapter 1.

M-Learner

The M-Learner [65] estimates the CATE in three steps:

1. Estimate the response functions and the propensity score,

µ0(x) = E[Y (0)|X = x],

µ1(x) = E[Y (1)|X = x],

e(x) = P[W = 1|X = x],

using the base learner, and denote the estimates as µ̂0, µ̂1, and ê.

2. Define

R̃i :=
Wi � ê(Xi)

ê(Xi)[1� ê(Xi)]

⇣
Yi � µ̂1(Xi)[1� ê(Xi)]� µ̂0(Xi)ê(Xi)

⌘
.

3. Now employ the base learner using R̃i as the dependent variable to obtain the CATE
estimator.

Structure of the Classes

The fundamental class of this package is the CATEestimator class. For each derived class
from CATEestimator, there exists at least two methods:

• EstimateCate - Estimates the Conditional Average Treatment E↵ect (CATE) for
given features.

• CateCI - Estimates confidence intervals for the CATE using the i.i.d. bootstrap.

This unifying framework makes it very easy to switch between di↵erent estimators. Specif-
ically, the same syntax can be used for any CATE estimator that is part of the package or
an extension thereof. We will see how this can be used to iterate through di↵erent learners
to find the best one and to understand how robust the CATE estimates are for the cho-
sen learner [84]. The following example shows how the CATE can be estimated using two
di↵erent CATE estimators. Note that the syntax is in both cases the same.

xl_rf <- X_RF(feat = feat , tr = tr, yobs = yobs)

sl_bt <- S_BART(feat = feat , tr = tr, yobs = yobs)

cate_est_xrf <- EstimateCate(xl_rf , feature_test)

cate_est_sbt <- EstimateCate(sl_bt , feature_test)

CHAPTER 2. CAUSALTOOLBOX PACKAGE 27

Figure 2.1: Package Structure of the main classes

Figure 2.1 shows the di↵erent CATE estimators that are implemented in the package
and the structure of these estimators. Extending it to other estimators is straightforward by
simply inheriting the CATEestimator class. For example, if one wanted to implement another
estimator, it is enough to define the EstimateCate function. CateCI is then automatically
inherited from the CATEestimator class. This avoids repetitive code, errors, and makes
extensions to other estimators simple. It is, of course, also possible to override this option
and implement a specialized method.

2.2 Evaluating the Performance of CATE Estimators

In a standard prediction task, researchers are interested in predicting the regression function,
µ(x) = E[Y |X = x], and they can use several strategies to evaluate the performance of an
estimator. A popular strategy is to set aside a part of the data as a test set, SV . An
estimator, µ̂, can then be evaluated by its ability to minimize the prediction error for the
test set, X

i2SV

�
Yi � µ̂i

�2
.

This package is concerned with estimating the CATE, ⌧(x) = E[Y (1) � Y (0)|X = x].
Naturally, one would also like to set aside a test set to evaluate a CATE estimator, ⌧̂ . One

CHAPTER 2. CAUSALTOOLBOX PACKAGE 28

would then want to calculate the prediction error for the individual treatment e↵ects,

X

i2SV

�
Yi(1)� Yi(0)� ⌧̂i

�2
.

This, however, is impossible since for any unit in the training set, one either observes the
outcome under treatment, Yi(1), or the outcome under control, Yi(0), but never both.

Nonetheless, there are several methods that try to overcome this problem to evaluate
CATE estimators. In the following, we describe a method we have implemented to evaluate
the CATE estimators.

Simulate Causal Experiments

The basic idea of our new method takes the features from the experimental data, and it
simulates the observed outcome and the treatment assignment using a wide range of di↵erent
setups. Since the outcomes are simulated, the true underlying data generating distribution
and therefore, also the CATE is known. An estimator can then simply be evaluated by the
prediction error for the CATE, X

i2SV

�
⌧i � ⌧̂i

�2
.

The Function simulate_causal_experiment implements more than 100 di↵erent
setups. Each setup specifies the response functions, µ0 and µ1, and the propensity score,
e(x) and it can be used with almost any feature matrix. A function call generates a list of
all the potential outcomes, the observed outcome, a treatment assignment, and a split in
training and testing set.

The following code, for example, simulates an experiment with the features based on the
iris data set and it then trains and evaluates the default versions of the X-learner with
BART and RF.

ce <- simulate_causal_experiment(

given_features = iris ,

pscore = "rct5",

mu0 = "fullLinearWeak",

tau = "fullLinearWeak")

xl_rf <- X_RF(feat = ce$feat_tr , tr = ce$W_tr , yobs = ce$Yobs_tr)

xl_bt <- X_BART(feat = ce$feat_tr , tr = ce$W_tr , yobs = ce$Yobs_tr)

mean((EstimateCate(xl_rf , ce$feat_te) - ce$tau_te)^2)

mean((EstimateCate(xl_bt , ce$feat_te) - ce$tau_te)^2)

In this particular example, we find that X_BART performs better than X_RF. This matches
our intuition that for small data sets, estimators based on BART perform better than those
based on RF.

CHAPTER 2. CAUSALTOOLBOX PACKAGE 29

There are many possible settings. In the example above, we used pscore = "rct5",
which specifies that the propensity score is constant and equal to 0.5. Furthermore, we
chose mu0="fullLinearWeak" and tau="fullLinearWeak". This determines that the
response functions are both linear and given by the following equations:

µ0(x) = xT�0,

µ1(x) = µ0(x) + xT�T ,

where �0 and �T 2 Rd are independently sampled from a uniform distribution over [�5, 5]d.
If we want to choose a well-performing estimator, it is essential to avoid making a decision

based on only one simulation setup. It is, therefore, useful to be able to iterate through all
setups. Assume, for example, we had a list of estimators, estimators , that extended the
CATEestimator class, and we wanted to select the best of these estimators. The following
code loops through the di↵erent setups.

for(tau_name in names(tau.simulate_causal_experiment)){

for(mu0_name in names(mu0.simulate_causal_experiment)) {

for(estimator in estimators) {

ce <- simulate_causal_experiment(

given_features = iris ,

pscore = "rct5",

mu0 = mu0_name ,

tau = tau_name)

trained_e <- estimator(ce$feat_tr , ce$W_tr , ce$Yobs_tr)

performance[estimator$name , setup] <-

mean((EstimateCate(trained_e , ce$feat_te) - ce$tau_te)^2)

}

}

}

Table 2.1 shows the performance table of the example code above averaged over 100
random seeds. We can see that the BART-based CATE estimators outperform the RF-
based ones. It is, however, not obvious which estimator to choose, since X_RF, S_BART , and
X_BART all perform well.

2.3 Version Two

This is only a brief description of the first version of the published package. Looking ahead,
the goal of this package is to provide a comprehensive library that provides software for
estimating, analyzing, and describing treatment e↵ect heterogeneity.

For the second version, we have already implemented three goodness-of-fit tests that are
based on matching [69], the modified outcome estimator [1], and the Robinson transform
[62]. We believe the user should be able to choose between di↵erent methods. We want to

CHAPTER 2. CAUSALTOOLBOX PACKAGE 30

connect them with the popular caret package to find ways to tune our estimators to the
underlying data generating distribution quickly.

Another line of work focuses on confidence intervals. We implemented a customized
version of the RF algorithm in a package called forestry that achieves provably valid
confidence intervals under some conditions. However, we have noticed that these conditions
are sometimes not met and are particularly problematic when the overlap condition (i.e.,
the propensity score is bounded away from 0 and 1) is violated. We have developed a novel
method that indicates points for which we cannot provide reliable predictions and confidence
intervals (c.f. Chapter 4).

Estimating the CATE is rarely the final goal. Researchers are often interested in under-
standing the underlying treatment mechanism. For the second version, we provide tools for
better visualizing an estimated CATE function. We have already implemented a method to
represent the data with a new regression tree algorithm that leads to shallow trees that can
be used to understand the underlying mechanism better and to analyze how a particular
prediction was made (c.f. Chapter 5).

CHAPTER 2. CAUSALTOOLBOX PACKAGE 31

µ0 ⌧ M RF S RF T RF X RF M BT S BT T BT X BT
SLW const 0.25 0.44 0.52 0.18 1.33 0.21 0.94 0.26
SLW SLW 1.53 1.21 0.93 2.8 2.23 1.12 1.43 1.21
SLW FLW 1.5 5.23 1.47 3.04 2.49 1.38 1.61 1.24
SLW FLLW 0.53 0.88 0.54 0.44 1.33 0.58 0.96 0.34
SLW SNS3 0.25 0.41 0.52 0.18 1.33 0.18 0.94 0.29
SLS const 4.72 50.73 24.31 2.8 10.88 3.6 32.61 6.11
SLS SLW 5.15 58.75 24.01 3.05 13.74 9.5 36.5 9.79
SLS FLW 9.8 62.89 29.12 8.81 12.94 8.3 34.06 6.88
SLS FLLW 6.31 4.11 24.08 3.6 11.88 6.81 35.72 7.97
SLS SNS3 4.55 10.08 24.2 2.79 10.88 3.37 32.61 7.45
FLW const 0.15 0.59 0.49 0.08 0.54 0.17 1.78 0.22
FLW SLW 1.52 2.1 2.03 2.87 0.8 1.32 2.02 0.77
FLW FLW 1.76 1.71 1.38 2.57 2.16 1.49 2.95 1.39
FLW FLLW 0.39 1.87 0.64 0.4 0.56 0.52 1.9 0.47
FLW SNS3 0.15 0.94 0.5 0.08 0.54 0.14 1.78 0.2
FLLW const 0.35 0.54 0.6 0.23 8.31 0.15 0.49 0.21
FLLW SLW 1.65 1.52 1.29 3.07 8.12 1.01 0.9 0.57
FLLW FLW 1.88 2.42 1.77 2.97 10.69 1.81 1.31 1.41
FLLW FLLW 0.59 0.78 0.82 0.6 7.7 0.68 0.49 0.28
FLLW SNS3 0.35 0.58 0.6 0.23 8.31 0.13 0.49 0.28
FLWS const 0.21 0.57 0.77 0.16 0.73 0.29 1.02 0.25
FLWS SLW 1.53 1.57 1.44 2.85 0.92 0.89 1.02 0.56
FLWS FLW 1.78 2.57 1.84 3.01 1.51 1.56 1.35 1.23
FLWS FLLW 0.39 2.43 0.82 0.44 0.65 0.53 0.96 0.35
FLWS SNS3 0.21 2.23 0.77 0.15 0.73 0.19 1.02 0.19
SNS1 const 0.2 0.25 0.31 0.13 3.36 0.11 0.22 0.18
SNS1 SLW 1.52 1.16 0.88 2.8 4.65 0.99 0.57 0.81
SNS1 FLW 1.57 1.76 1.16 2.59 4.41 1.56 0.99 1.06
SNS1 FLLW 0.41 0.42 0.42 0.46 3.28 0.64 0.36 0.41
SNS1 SNS3 0.2 0.27 0.31 0.13 3.36 0.07 0.22 0.18
SNS2 const 0.2 0.32 0.37 0.15 2.74 0.14 0.38 0.2
SNS2 SLW 1.55 1.38 1.15 2.9 3.67 1.05 0.67 0.69
SNS2 FLW 1.54 1.55 1.14 2.71 3.53 1.39 1.05 0.94
SNS2 FLLW 0.42 0.38 0.43 0.5 2.6 0.66 0.45 0.46
SNS2 SNS3 0.2 0.33 0.37 0.15 2.74 0.12 0.38 0.18
SNS3 const 0.19 0.26 0.3 0.12 3.22 0.11 0.21 0.16
SNS3 SLW 1.53 1.21 0.88 2.8 4.23 0.98 0.56 0.61
SNS3 FLW 1.55 1.74 1.12 2.58 4.59 1.48 0.94 1.1
SNS3 FLLW 0.41 0.41 0.41 0.46 3.24 0.57 0.35 0.28
SNS3 SNS3 0.19 0.27 0.3 0.12 3.22 0.07 0.21 0.15

Table 2.1: Simulation of 40 RCTs to evaluate the eight implemented CATE estimators.

32

Chapter 3

Causaltoolbox—Estimator Stability
for Heterogeneous Treatment E↵ects

3.1 Introduction

Heterogeneous Treatment E↵ect (HTE) estimation is now a mainstay in many disciplines,
including personalized medicine [34, 59], digital experimentation [75], economics [2], political
science [29], and statistics [76]. Its prominence has been driven by the combination of the
rise of big data, which permits the estimation of fine-grained heterogeneity, and recognition
that many interventions have heterogeneous e↵ects, suggesting that much can be gained by
targeting only the individuals likely to experience the most positive response. This increase
in interest amongst applied statisticians has been accompanied by a burgeoning methodolog-
ical and theoretical literature: there are now many methods to characterize and estimate
heterogeneity; some recent examples include [35, 2, 45, 80, 58]. Many of these methods
are accompanied by guarantees suggesting they possess desirable properties when specific
assumptions are met, however, verifying these assumptions may be impossible in many ap-
plications; so practitioners are given little guidance for choosing the best estimator for a
particular data set. As an alternative to verifying these assumptions we suggest practition-
ers construct a large family of HTE estimators and consider their similarities and di↵erences.

Treatment e↵ect estimation contrasts with prediction problems, where researchers can use
cross-validation (CV) or a validation set to compare the performance of di↵erent estimators
or to combine them in an ensemble. This is infeasible for treatment e↵ect estimation because
of the fundamental problem of causal inference: we can never observe the treatment e↵ect for
any individual unit directly, so we have no source of truth to validate or cross-validate against.
Partial progress has been made in addressing this problem; for example, [2] suggest using the
transformed outcome as the truth, a quantity equal in expectation to the individual treatment
e↵ect and [45] suggests using matching to impute a quantity similar to the unobserved
potential outcome. However, even if there were a reliable procedure for identifying the
estimator with the best predictive performance, we maintain that using multiple estimates

CHAPTER 3. STABILITY FOR HETEROGENEOUS TREATMENT EFFECTS 33

can still be superior, because the best performing method or ensemble of methods may
perform well in some regions of the feature space and badly in others; using many estimates
simultaneously may permit identification of this phenomenon. For example, researchers can
construct a worst-case estimator that is equal to the most pessimistic point estimate, for
each point in the feature space, or they can use the idea of stability [83] to assess whether
one can trust estimates for a particular subset of units.

3.2 Methods

Study setting

The data set we analyzed was constructed for the Empirical Investigation of Methods for
Heterogeneity Workshop at the 2018 Atlantic Causal Inference Conference. The organizers of
the workshop: Carlos Carvalho, Jennifer Hill, Jared Murray, and Avi Feller used the National
Study of Learning Mindsets, a randomized controlled trial in a probability sample of U.S.
public high schools, to simulate an observational study. The organizers did not disclose
how the simulated observational data were derived from the experimental data because the
workshop was intended to evaluate procedures for analyzing observational studies, where the
mechanism of treatment assignment is not known a priori.

Measured variables

The outcome was a measure of student achievement; the treatment was the completion of
online exercises designed to foster a learning mindset. Eleven covariates were available for
each student: four are specific to the student and describe the self-reported expectations for
success in the future, race, gender and whether the student is the first in the family to go
to college; the remaining seven variables describe the school the student is attending mea-
suring urbanicity, poverty concentration, racial composition, the number of pupils, average
student performance, and the extent to which students at the school had fixed mindsets; an
anonymized school id recorded which students went to the same school.

Notation and estimands

For each student, indexed by i, we observed a continuous outcome, Yi, a treatment indicator
variable, Zi, that is 1 if the student was in the treatment group and 0 if she was in the control
group, and a feature vector Xi. We adopt the notation of the Neyman-Rubin causal model:
for each student we assume there exist two potential outcomes: if a student is assigned to
treatment we observe the outcome Yi = Yi(1) and if the student is assigned to control we
observe Yi = Yi(0). Our task was to assess whether the treatment was e↵ective and, if so
whether the e↵ect is heterogeneous. In particular, we are interested in discerning if there is
a subset of units for which the treatment e↵ect is particularly large or small.

CHAPTER 3. STABILITY FOR HETEROGENEOUS TREATMENT EFFECTS 34

To assess whether the treatment is e↵ective, we considered the average treatment e↵ect,

ATE := E[Yi(1)� Yi(0)],

and to analyze the heterogeneity of the data, we computed average treatment e↵ects for a
selected subgroup S,

E[Yi(1)� Yi(0)|Xi 2 S],

and the Conditional Average Treatment E↵ect (CATE) function,

⌧(x) := E[Yi(1)� Yi(0)|Xi = x].

Estimating average e↵ects

Wherever we computed the ATE or the ATE for some subset, we used four estimators.
Three of which were based on the CausalGAM package of [28]. This package uses generalized
additive models to estimate the expected potential outcomes, µ̂0(x) := Ê[Yi(0)|Xi = x], and
µ̂1(x) := Ê[Yi(1)|Xi = x], and the propensity score: ê(x) := Ê[Zi|Xi = x]. With these
estimates we computed the Inverse Probability Weighting (IPW) estimator,

ˆATEIPW :=
1

n

nX

i=1

✓
YiZi

êi
�

Yi(1� Zi)

1� êi

◆
,

the regression estimator,

ˆATEReg :=
1

n

nX

i=1

[µ̂1(Xi)� µ̂0(Xi)] ,

and the Augmented Inverse Probability Weighted (AIPW) estimator,

ˆATEAIPW :=
1

2n

nX

i=1

✓
[Yi � µ̂0(Xi)]Zi

êi
+

[µ̂1(Xi)� Yi][1� Zi]

1� êi

◆
.

We also used the Matching package of [69] to construct a matching estimator for the ATE.
Matches were required to attend the same school as the student to which they were matched
and be assigned to the opposite treatment status. Among possible matches satisfying these
criteria we selected the student minimizing the Mahalonobis distance on the four student
specific features.

Characterizing heterogeneous treatment e↵ects

In any data set there might be some units where estimators significantly disagree; when this
happens, we should not trust any estimate unless we understand why certain estimates are

CHAPTER 3. STABILITY FOR HETEROGENEOUS TREATMENT EFFECTS 35

●

●

●
●

●

● ●

●

●

●

● ●

● ●

●
● ● ●

●
●

●
●

● ●

●
● ●

●

● ●

● ● ● ● ● ● ● ● ● ●

●

●

● ●

●

● ●

●

●
●

● ● ● ● ● ● ● ● ● ●●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●
● ●

●
● ● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●
●

●

● ●
●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●
●

●

● ●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●
● ●

●

●
●

● ●

●

●

●
● ● ●

● ●●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

● ●

●

● ●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

32
6

49
1

99
5

10
11

19
15

23
87

24
16

34
82

38
22

46
26

id

C
AT

E
es

tim
at

e

Figure 3.1: CATE estimation for ten units. For each unit, the CATE is estimated using 28
di↵erent estimators.

unreasonable for these units1. Instead of simply reporting an estimate that is likely wrong,
we should acknowledge that a conclusions cannot be drawn and more data or domain specific
knowledge is needed. Figure 3.1 demonstrates this phenomenon arising in practice. It shows
the estimated treatment e↵ect for ten subjects corresponding to 28 CATE estimators (these
estimates arise from the data analyzed in the remainder of this paper). Some of these
estimators may have better generalization error than others. However, a reasonable analyst
could have selected any one of them. We can see that for five units the estimators all fall in
a tight cluster, but for the remaining units, the estimators disagree markedly. This may be
due to those units being in regions with little overlap, where the estimators overcome data
scarcity by pooling information in di↵erent ways.

In this analysis, our goal was to understand and interpret the heterogeneity that exists
in the treatment response. An estimate of the CATE function describes the heterogeneity.
However, this estimate is hard to interpret, and drawing statistically significant conclusions
based on it is di�cult. Therefore, we sought large subgroups with a markedly di↵erent

1A standard way to capture estimation uncertainty is to report the standard errors or confidence intervals
of a single estimator, and we recommend using this approach as well. However, such methods can be
misleading and should not be trusted blindly. For example, in Appendix C of [45], the authors found that
in regions without overlap, bootstrap confidence intervals were smaller than in regions with overlap. The
confidence intervals suggested that in regions without overlap the estimates were more trustworthy, while
the opposite was was true.

CHAPTER 3. STABILITY FOR HETEROGENEOUS TREATMENT EFFECTS 36

average treatment e↵ects to help characterize the heterogeneity.
Specifically, we split the data into an exploration set and an equally sized validation

set. We used the exploration set to identify subsets, which may have a very di↵erent behavior
from the rest of the students. To do this, we used all CATE estimators trained on the
exploration set and we carefully formulated hypotheses based on plots of all the CATE
estimates: For example, based on plots of the CATE estimates we might theorize that
students in schools with more than 900 students have a much higher treatment e↵ect than
those in schools with less than 300 students. Next, we used the validation set to verify our
findings by estimating the ATEs of each of the subgroups.

The exploration and validation sets were constructed so that all students from the same
school are in the same set: we do not randomize on student level, but on school-level. This
is important, because it mirrors the probability sampling approach used to construct the
full sample; it also means that we can argue that the estimand captured by evaluating our
hypotheses on the validation set is the estimand corresponding to the population from which
all schools were drawn.

CATE estimators

We use several procedures to estimate the CATE and we give a brief overview of the proce-
dures here; however, interested readers should consult the referenced papers for a complete
exposition.

Many of the procedures can be classified as meta-learners: they modify base learners
designed for standard non-causal prediction problems to estimate the CATE. This is advan-
tageous because we can select a base learner that performs well on the observed data.

1. The T-Learner is the most common meta-learner. Base learners are used to estimate
the control and treatment response function separately, µ̂1(x) := Ê[Yi(1)|Xi = x] and
µ̂0(x) := Ê[Yi(0)|X = x]. The CATE estimate is then the di↵erence between these two
estimates, ⌧̂T (x) := µ̂1(x)� µ̂0(x).

2. The S-Learner uses one base learner to estimate the joint outcome function, µ̂(x, z) :=
Ê[Yi|Xi = x, Zi = z]. The predicted CATE is the di↵erence between the predicted
values when the treatment assignment indicator is changed from treatment to control,
⌧̂S(x) := µ̂(x, 1)� µ̂(x, 0).

3. The MO-Learner [65, 81] is a two stage meta-learner. It first uses the base learners
to estimate the propensity score, ê(x) := Ê[Zi|X = x], and the control and treatment
response functions. It then defines the adjusted modified outcome as

Ri :=
Zi � ê(xi)

ê(xi)[1� ê(xi)]

⇣
Yi � µ̂1(xi)[1� ê(xi)]� µ̂0(xi)ê(xi)

⌘
.

An estimate of the CATE is obtained by using a base learner to estimate the conditional
expectation of Ri given Xi, ⌧̂MO(x) := Ê[Ri|Xi = x].

CHAPTER 3. STABILITY FOR HETEROGENEOUS TREATMENT EFFECTS 37

4. The X-Learner [45] also uses base learners to estimate the response functions and
the propensity score. It then defines the imputed treatment e↵ects for the treatment
group and control group separately as D̃1

i := Yi(1)� µ̂0(Xi) and D̃0

i := µ̂1(Xi)� Yi(0).
The two estimators for the CATE are obtained by using base learners to estimate the
conditional expectation of the imputed treatment e↵ects, ⌧̂X

1
:= Ê[D̃1

i |Xi = x], and
⌧̂X
0

:= Ê[D̃0

i |Xi = x]. The final estimate is then a convex combination of these two
estimators,

⌧̂X(x) := ê(x)⌧̂X
0
(x) + (1� ê(x))⌧̂X

1
(x).

All of these meta-learners have di↵erent strength and weaknesses. For example, the T-
Learner performs particularly well when the control and treatment response function are
simpler than the CATE. The S-Learner performs particularly well when the expected treat-
ment e↵ect is mostly zero or constant. The X-Learner, on the other hand, has very desirable
properties when either the treatment or control group is much larger than the other group.

Note, however, that all of these meta-learners need a base learners to be fully defined.
We believe that tree-based estimators perform well on mostly discrete and low-dimensional
data sets. Therefore, we use the causalToolbox package [41] that implements all of these
estimators combined with RF and BART.

Using two di↵erent tree estimators is desirable because CATE estimators based on BART
perform very well when the data-generating process has some global structure (e.g., global
sparsity or linearity), while random forest is better when the data has local structure that
does not necessarily generalize to the entire space. However, to protect our analysis from
biases caused by using tree-based approaches only, we also included methods based on neural
networks. We followed [46] and implemented the S, T and X-Neural Network methods.

We also included non-meta-learners that are tree-based, and we believe would work well
on this data set:

5. The causal forest algorithm [80] is a generalization of the random forest algorithm to
estimates the CATE directly. Similar to random forest, it is an ensemble of many tree
estimators. Each of the tree estimators follows a greedy splitting strategy to generate
leaves for which the CATE function is as homogeneous as possible. The final estimate
for each tree for a unit with features x is the di↵erence-in-means estimate of all units
in the training set that fall in the same leaf as x.

6. The R-Learner [58] is a set of algorithms that use an approximation of the following
optimization problem to estimate the CATE,

argmin
⌧

(
1

n

nX

i=1

✓�
Yi � µ̂(�i)(Xi)

�
�
�
Wi � ê(�i)(Xi)

�
⌧(Xi)

◆2

+ ⇤n(⌧(·))

)
.

⇤n(⌧(·)) is a regularizer and µ(�i)(x) and ê(�i)(Xi) are held-out predictions of µ(x) =
E[Yi|Xi = x] and the propensity score, e(x), respectively. There are several versions

CHAPTER 3. STABILITY FOR HETEROGENEOUS TREATMENT EFFECTS 38

of the R-Learner; we have decided to use one that is based on XGBoost [14] and one
that is based on RF.

Although we expected there would be school-level e↵ects, and that both the expected
performance of each student and the CATE would vary from school to school, it was not
clear how to incorporate the school id. The two choices we considered were to include
a categorical variable recording the school id, or to ignore it entirely. The former makes
parameters associated with the six school-level features essentially uninterpretable because
they cannot be identified separately from the school id; the second may lead to less e�cient
estimates because we are denying our estimation procedure the use of all data that was
available to us. Because we do not want our inference to depend on this decision, we fit
each of our estimators twice, once including school id as a feature and once excluding it.
We considered 14 di↵erent CATE estimation procedures; since each procedure was applied
twice, a total of 28 estimators were computed.

3.3 Workshop Results

Our sample consisted of about 10,000 students enrolled at 76 di↵erent schools. The interven-
tion was applied to 33% of the students. Pre-treatment features were similar in the treatment
and control groups but some statistically significant di↵erences were present. Most impor-
tantly a variable capturing self-reported expectations for success in the future had mean 5.22
(95% CI, 5.20-5.25) in the control group and mean 5.36 (5.33-5.40) in the treatment group.
This meant students with higher expectations of achievement were more likely to be treated.

We assessed whether overlap held by fitting a propensity score model and we found that
propensity score estimate for all students in the study was between 0.15 and 0.46 therefore,
the overlap condition is likely to be satisfied.

Average treatment e↵ects

The IPW, regression, and AIPW estimator yielded estimates identical up to two significant
figures: 0.25 with 95% bootstrap confidence interval of (0.22, 0.27). The matching estimator
gave a similar ATE estimate of 0.26 with confidence interval (0.23, 0.28).

The similarity of all the estimates we evaluated is reassuring, but we cannot exclude
the possibility that the experiment is a↵ected by an unobserved confounder that a↵ects all
estimators in a similar away. To address this we characterize the extent of hidden bias re-
quired to explain away our conclusion. We conducted a sensitivity analysis for the matching
estimator using the sensetivitymv package of [63]. We found that a permutation test for
the matching estimator still finds a significant positive treatment e↵ect provided the ratio
of the odds of treatment assignment for the treated unit relative to the odds of treatment
assignment for the control unit in each pair can be bounded by 0.40 and 2.52. This bound
is not very large, and it is plausible that there exists an unobserved confounder that in-
creases the treatment assignment probability for some unit by a factor of more than 2.52.

CHAPTER 3. STABILITY FOR HETEROGENEOUS TREATMENT EFFECTS 39

More information about the treatment assignment mechanism would be required to conclude
whether this extent of confounding exists.

Heterogeneous e↵ects

The marginal distribution and partial dependence plots for the 28 CATE estimators as a
function of school-level pre-existing mindset norms are shown on the left hand side of Figure
3.2. There appears to be substantial heterogeneity present: students at schools with mindset
norms lower than 0.15 may have a larger treatment e↵ect than students at schools with higher
mindset norms. However the Figure suggests the conclusion is not consistent for all of the 28
estimators. A similar analysis of the feature recording the school achievement level is shown
on the right hand side of this Figure. Again we appear to find the existence of heterogeneity:
students with school achievement level near the middle of the range had the most positive
response to treatment. On the basis of this figure, we identified thresholds of -0.8 and 1.1 for
defining a low achievement level, a middle achievement level, and a high achievement level
subgroup.

0.0

0.1

0.2

0.3

C
AT

E

0.15

0.20

0.25

0.30

0.35

C
AT

E
PD

P

−2 0 2
School−level pre−existing mindset norms

D
en

si
ty

0.0

0.1

0.2

0.3

C
AT

E

0.10

0.15

0.20

0.25

0.30

C
AT

E
PD

P

−2 0 2
School achievement level

D
en

si
ty

Figure 3.2: Marginal CATE and Partial Dependence Plot (PDP) of the CATE as a function
of school-level pre-existing mindset norms and school achiemvent level.

We then used the validation set to construct ATE estimates for each of the subgroups.
We found that students who attended schools where the measure of fixed mindsets was
less than 0.15 had a higher treatment e↵ect (0.31, 95% CI 0.26-0.35) than students where
the fixed mindset was more pronounced (0.21, 0.17–0.26). Testing for equality of the ATE

CHAPTER 3. STABILITY FOR HETEROGENEOUS TREATMENT EFFECTS 40

for these two groups yielded a p-value of 0.003. However, when we considered the subsets
defined by school achievement level the di↵erences were not so pronounced. Students at
the lowest achieving schools had the smallest ATE estimate 0.19 (0.10–0.32); while students
at middle and high-achieving schools had similar ATE estimates: 0.28 (0.24–0.32) and 0.24
(0.16-0.31) respectively. However, none of the pairwise di↵erence between the three groups
were significant.

3.4 Postworkshop results

During the workshop, other contributors found that the variable recording the urbanicity of
the schools might explain some of the heterogeneity and we want to analyze this phenomena
in the following. The left hand side of Figure 3.3 shows the CATE as a function of urbanicity,
and the right hand side of this figure shows the CATE as a function of the student’s self-
reported expectation of success. We formulated two hypothesis: students at schools with
an urbanicity of 3 seemed to have a lower treatment e↵ect than students at other schools;
students with a self-reported evaluation of 4 might enjoy a higher treatment e↵ect.

These hypotheses were obtained by only using the exploration set; to confirm or refute
these hypotheses we used the validation set. The validation set confirmed the hypothesis
that students at schools with an urbanicity of 3 had a lower treatment e↵ect (0.16, 0.08–
0.24) compared to students at schools with a di↵erent urbanicity (0.28, 0.25–0.31); however
we could not reject the null hypothesis of no di↵erence for the subsets identified by the
self-reported evaluation measure. The urbanicity test yielded a p-values of 0.008 and the
self-reported evaluation test yielded a p-value of 0.56.

3.5 Discussion

The importance of considering multiple estimators

The results of our analysis confirm that point estimates of the CATE can di↵er markedly
depending on subtle modelling choices; so we confirm that an analyst’s discretion may be the
deciding factor in whether and what kind of heterogeneity is found. As the methodological
literature on heterogeneous treatment e↵ect estimation continues to expand this problem will
become more, not less, serious. To facilitate applying many estimation procedures we have
authored an R package causalToolbox that provides a uniform interface for constructing
many common heterogeneous treatment estimators. The design of the package makes it
straightforward to add new estimators as they are proposed and gain currency.

Di↵erences that arise in our estimation of the CATE function translate directly into
suboptimal real world applications of the treatment considered. To see this we propose a
thought experiment: suppose we wanted to determine the treatment for a particular student:
a natural treatment rule is to allocate her to treatment if her estimated CATE exceeds a
small positive threshold or withhold treatment if it is below the threshold. The analyst

CHAPTER 3. STABILITY FOR HETEROGENEOUS TREATMENT EFFECTS 41

0.10

0.15

0.20

0.25

C
AT

E

0.15

0.20

0.25

0.30

C
AT

E
PD

P

25
50

0 1 2 3 4
Urbanicity

D
en

si
ty

0.15

0.20

0.25

0.30

C
AT

E

0.10

0.15

0.20

0.25

0.30

C
AT

E
PD

P
25
50

1 2 3 4 5 6 7
Students' self−reported expectations

D
en

si
ty

Figure 3.3: Marginal CATE and PDP of Urbanicity and self-reported expectations.

might select a CATE estimator on the basis of personal preference or prior experience and it
is likely that, for some experimental subjects, the choice of estimator will a↵ect the CATE
estimated to such an extent that it changes the treatment decision. This is particularly
problematic in studies where analysts have a vested interest in a particular result and are
working without a pre-analysis plan, as they should not have discretion to select a procedure
that pushes the results in the direction they desire. On the other hand, if analysts consider a
wide variety of estimators, as we recommend, and if most estimators agree for an individual,
we can be confident that our decision for that individual is not a consequence of arbitrary
modelling choices. Conversely, if some estimators predict a positive and some a negative
response, we should reserve judgment for that unit until more conclusive data is available
and admit that we do not know what the best treatment decision is.

Would we recommend the online exercises?

We find that the overall e↵ect of the treatment is significant and positive. We were not able
to identify a subgroup of units that had significant and negative treatment e↵ect and we
would therefore recommend the treatment for every student. We are, however, concerned
that an unobserved confounder exists. Our sensitivity analysis showed that our findings
would still hold if the confounder is not too strong. We cannot exclude the possibility that
there is a strong confounder and would have to know more about the assignment mechanism
to address this question. This is particularly problematic, because we have seen that students

CHAPTER 3. STABILITY FOR HETEROGENEOUS TREATMENT EFFECTS 42

who had higher expectations for success in the future were more likely to be in the treatment
group. Uncovering the heterogeneity in the CATE function proved to be substantially more
di�cult. We found heterogeneity could be identified from school-level pre-exising mindset
norms and urbanicity but in general we had limited power to detect heterogeneous e↵ects.
For example, experts believe that the heterogeneity might be moderated by pre-existing
mindset norms and school-level achievement. For both covariates, we see that most CATE
estimators produce estimates that are consistent with this theory. Domain experts also
believe that there could be a ”Goldilocks e↵ect” where middle-achieving schools have the
largest treatment e↵ect. We are not able to verify this statistically, but we do observe that
most CATE estimators describe such an e↵ect.

43

Part II

Statistical Inference based on
Random Forests

44

Chapter 4

Detachment Index for Evaluating
Trustworthiness of Confidence
Intervals and Predictons in Random
Forests

4.1 Introduction

In Chapter 1, we studied several estimators for the Conditional Average Treatment E↵ect
(CATE) and found that all of them struggled to estimate valid Confidence Intervals (CI) for
the CATE in regions where either control units or treated units were missing. This problem
is particularly significant in observational studies (c.f. Chapter A.3) where the propensity
score can be a function of observed or—even worse—unobserved covariates.

In the following, we introduce the detachment index that measures whether a data point
is close to the underlying data set. We find that methods such as Random Forests (RF)
and Bayesian Additive Regression Trees (BART) perform poorly in CI estimation tasks for
regression and CATE estimation tasks on points with an extraordinarily large detachment
index. We generalize the problem of CI estimation by allowing estimators to either estimate
an interval at a point or to report a ”DO NOT TRUST” flag.1 This flag is useful in many
real world tasks. For example, it is useful if some points in the test data are outside of
the support of the training data or if crucial assumptions that are necessary for correct CI
estimation are violated.

We do not believe that we have found a general solution to the problem of providing CI
for the CATE in observational studies. We urge practitioners to be extremely cautious when
analyzing CATE estimates in observational studies since a lot of problems can occur. The
problem we are addressing in this chapter arises when the overlap condition is violated or
the test units are outside of the support of the training set. In fact, we argue that these

1A similar idea has been studied in [18].

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 45

problems are similar because in both cases the estimators have to generalize in regions where
either control units, treated units, or both are missing.

The detachment index is not only useful in CATE estimation tasks, but also in general
regression tasks. To motivate the detachment indices, we first introduce a regression task
(Example A), where some of the test points are unusual. We will use this example in Chapter
4.2 to motivate the detachment indices. In Chapter 4.3, we will then analyze two di↵erent
problems: In the first one (Example B), we study a CATE estimation problem where the
overlap condition is violated. We find that the detachment indices allow us to identify regions
where the overlap condition is violated. In the second part (Example C), we analyze a low-
dimensional regression problem where the test data is not in the support of the training
data. We are able to identify points in the test set for which a prediction and CI should not
be trusted because the covariates are outside of the support of the training set.

Example A: Predicting Car Prices

We will use the following example to motivate the detachment indices and show how well they
can be used to find units in the test set where predictions and CIs based on RF should not
be trusted. The data set is from Ebay-Kleinanzeigen (German Ebay listings) and contains
151,547 car o↵erings. In each o↵ering a car is described using eleven features. Table 4.1
and 4.2 summarize these continuous and discrete features. It should be noted that due to
the many categories contained in Model and Brand, the prediction task is challening. If we
encoded all categories using indicators, the data set would have 316 features. Figure 4.1
shows a histogram of the price tags of the cars. We can see that there are a few cars that
are very expensive, even though most cars are o↵ered for less than 10,000 Euros.

Days Ago Created Registration D. Horse Power Kilometer Driven ZIP Code
Min. : 748.0 Min. :1950 Min. : 1.0 Min. : 5000 Min. : 1067
1st Qu.: 757.0 1st Qu.:2000 1st Qu.: 82.0 1st Qu.:100000 1st Qu.:31303
Median : 765.0 Median :2004 Median :116.0 Median :150000 Median :50969
Mean : 765.1 Mean :2004 Mean :127.7 Mean :124919 Mean :51767
3rd Qu.: 773.0 3rd Qu.:2008 3rd Qu.:150.0 3rd Qu.:150000 3rd Qu.:72531
Max. :1132.0 Max. :2019 Max. :579.0 Max. :150000 Max. :99998

Table 4.1: Continuous features of the cars data set.

Our goal is to predict the o↵ered price. To validate an estimator, we have split the data
into a training set of 51,548 cars and a held-out test set of 100,000 cars. We have trained a
RF estimator on the training data set and found that the overall Root Mean Squared Error
(RMSE) is about 4,479. However, most of the RMSE is driven by very few observations. If
we simply exclude the 1% of the cars with the highest prediciton error, then the RMSE is

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 46

Vehicle Type Gearbox Model Fuel Type Brand
limousine :43939 automatik: 34488 golf : 12043 benzin :94973 vw :31981
kleinwagen:34670 manuell :114942 andere : 10897 diesel :48478 bmw :17609
kombi :31167 unknown : 2117 3er : 9032 unknown: 5279 opel :15458
bus :14145 polo : 5038 lpg : 2356 mercedes:15036
cabrio :10848 unknown: 5016 cng : 256 audi :14281
coupe : 8687 corsa : 4670 hybrid : 122 ford : 9966
(Other) : 8091 (Other):104851 (Other): 83 (Other) :47216

Table 4.2: Discrete features of the Cars data set.

0

5000

10000

15000

0 25000 50000 75000 100000
price

co
un
t

Figure 4.1: Histogram of the price distirbution in the cars data set.

would drop to 2,972. Of course, in a usual prediciton task one does know which predictions
are the worst.

Figure 4.2 shows the absolute error divided by the true value. We can see that there are
regions where the RF estimator performs particularly poorly. Most cars that are sold on the
platform are very popular cars and have prices that are rather easy to predict. These cars
are usually between 1 and 8 years old, and their horsepower is not extremely large. There
are, however, some cars that are rare and very hard to predict. Some examples are vintage
cars, racing cars, and specialty cars. For these cars, the RF algorithm often fails to predict
a good price. We will develop a new method that can automatically flag units for which
the RF estimates perform particularly poorly. More specifically, we will see that it identifies
”unusual” cars. Estimates of the RF algorithm are not reliable for these cars. This is also
reflected in the unreliability of CI.

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 47

Figure 4.2: Projection of the support of the cars data set onto the two most predictive
covariates as chosen by the default RF variable importance measure [6]. The colors show
the absolute residuals of the RF estimates divided by the true price.

4.2 The RF-detachment Index

Motivation

The idea of the RF-detachment index is partly based on ideas by [51] and [72] to interpret
random forests as an adaptive, nearest neighbors algorithm. Let us recall their interpretation
of the random forests algorithm. Consider a training data set with n units, (Yi, Xi)ni=1

, and
a random forests object with B trees. We use the notation that Lb(x) is the leaf in which x
falls in Tree b, and |Lb(x)| is the number of training units in that leaf. We can then write

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 48

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●
● ●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

● ●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●
●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

P1

P2

P3

P4

0

200

400

600

1980 1985 1990 1995 2000
Date of Registration

H
or

es
po

we
r

(a) Scatter plot of the first two dimensions

P10

200

400

600

1980 1985 1990 1995 2000

P2

0

200

400

600

1980 1985 1990 1995 2000

P3

0

200

400

600

1980 1985 1990 1995 2000

P4

0

200

400

600

1980 1985 1990 1995 2000

(b) RF-weights w(x) for P1, P2, P3, P4.

Figure 4.3: Scatterplot and RF-weights for the four points in the cars data set.

the random forests prediction µ̂(x) as,

µ̂(x) =
1

B

BX

b=1

nX

i=1

Yi
1{Xi 2 Lb(x)}

|Lb(x)|
(4.1)

=
nX

i=1

Yi
1

B

BX

b=1

1{Xi 2 Lb(x)}

|Lb(x)|
(4.2)

=
nX

i=1

Yiwi(x). (4.3)

Here, wi(x) =
PB

b=1

1{Xi2Lb(x)}
|Lb(x)|

can be interpreted as a local weighting function that is given
by the random forest algorithm.

Note that for every x, the weights assigned to the n training units are usually very
di↵erent. To better understand the local weighting function, we have plotted it for four
points in Figure 4.3. P1 is an undamaged VW Golf with 70 horsepower and a manual gear
that has been created in January 1990. P2, P3, and P4 are the same car, but we artificially
set the strength of the engines to be 450, 600, and 750 horsepower respectively. Those are
unreasonably large numbers, and we can see that in the left part of Figure 4.3 there was no
o↵ering of a car with 750 Horsepower in the training set.

Now let us take a look at the weight functions of the four cars. The weight function
assigns positive weight to units that are in some relevant metric close to the point x. We

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 49

can see that for point P1, the positive weight is very concentrated around point P1. This
is because P1 is a relatively common car. There are many VW Golfs with about the same
power and date of registration. For points P2, P3, and P4, the weight function is much
further spread out. This is because there are very few, if any, cars that are similar to these
artificial cars. Even more interestingly, the weight functions for P3 and P4 are the same and
they are very similar to the one of P2. This is because P3 and P4 always fall in exactly the
same leaf in every tree. Point predictions and confidence intervals for P3 and P4 are exactly
the same and very similar to those of P2.

The Detachment Index

As motivated in the preceding section, a prediction is potentially untrustworthy if RF aver-
ages over data points that are dissimilar from the new data point xnew in relevant dimensions.
This motivates us to define the RF-detachment index that measures the average distance of
the point distance of the point xnew to the training points with a positive RF weight, w.

Definition 4 For a covariate 1  j  d and a point x 2 Rd, define the RF-detachment
index in the jth covariate as

dj(x) =
nX

i=1

wi(x)
��Xj

i � xj
�� ,

where Xj
i and xj are the jth covariate of vector Xi and x, respectively.

In the cars example, we know that the Horsepower covariate is the most important
covariate as measured by the default RF variable importance test [6]. We find that the
RF-detachment indices in the Horsepower covariate are 9.9 for P1, 116.6 for P2, 236.5 for
P3, and 386.5 for P4. Unsurprisingly, the detachment index is increasing from P1 to P4.
Intuitively, one would be more cautious when using RF for inference on P4 instead of P1.

However, to flag a prediction or a confidence interval for being not trustworthy, we need
a threshold or rule that determines whether a detachment index is too large. Deriving such
a rule is di�cult and depends on the use of the index. We propose two di↵erent ways to
determine whether a unit is detached.

Threshold 1: CV-Error Calibration

In our first approach, we use a global quantity to find a threshold that can be applied to all
units. More precisely, we want to find a threshold t and label all units with a detachment
index of greater than t as “detached” and all units with a detachment index of less than t
as “trustworthy.”

Let us first demonstrate this in a one-dimensional example based on the Horsepower
covariate in the cars data set: Using Cross-Validation, we first compute the detachment
index and the CV-prediction errors for the observations in the training set. We then choose

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 50

0

1000

2000

3000

4000

5000

0%

1%

2%

3%

4%

5%

0 50 100 150 200
Threshold

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r (

R
M

SE
) o

n
tru

st
wo

rth
y

un
tis

Proportion of Excluded U
nits

Prop. Excluded

RMSE

Figure 4.4: RMSE vs proportion of excluded units for a given threshold.

the threshold t in such a way that we do not exclude too many units while we try to minimize
the RMSE on the “trustworthy” units. Figure 4.4 shows this trade o↵ for the cars data set
and the Horespower covariate. The blue, solid line shows that increasing the threshold leads
to fewer units being excluded while the RMSE (red, dashed line) is being increased. For
example, if we chose a threshold of t = 32, we expect to exclude only about 5% of the test
units while decreasing the RMSE from 4,479 to about 3400.2

However, usually there is more than one variable. One has to select a threshold for each
variable. For example, in the cars data set there are eleven covariates. To avoid dealing with
categorical variables, we will choose a threshold for each of the five continuous covariates (c.f.,
Table 4.1).3 Table 4.3 shows a summary of the detachment indices for the five continuous
covariates. We can see that the indices are small for most units in the training set, and the
3rd quantile is up to 50 times smaller than the maximum. This suggests that most of the
units are in a dense area, but there are still some outliers.

The goal is to find a threshold for each of the five continuous covariates of the cars data
set. Let us call these thresholds t1, t2, t3, t4, and t5. We want to choose them in such a way
that the number of “trustworthy” units does not fall below a predefined threshold M , but

2Instead of optimizing the RMSE, it is also possible to evaluate Confidence Intervals.
3We refer to the forestry package for a treatment of the categorical variables.

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 51

Days Ago Created Registration D. Horse Power Kilometer Driven ZIP Code
Min. : 4.117 Min. : 0.4393 Min. : 5.727 Min. : 136.4 Min. : 7729
1st Qu.: 5.892 1st Qu.: 1.1558 1st Qu.: 11.619 1st Qu.: 841.7 1st Qu.:14973
Median : 6.392 Median : 1.6782 Median : 13.933 Median : 2077.2 Median :16324
Mean : 6.578 Mean : 2.0629 Mean : 16.925 Mean : 6367.1 Mean :16762
3rd Qu.: 7.003 3rd Qu.: 2.2624 3rd Qu.: 18.800 3rd Qu.:11289.8 3rd Qu.:17984
Max. :355.982 Max. :34.1566 Max. :204.668 Max. :54380.9 Max. :34993

Table 4.3: Summary of the OOB detachment indices for the continuous covariates.

the MSE for the “trustworthy” units is as small as possible. We can formulate this via the
following optimization problem:

minimize
t2R5

1

#S(t)

X

i2S(t)

⇣
Yi � Ỹi

⌘2

subject to #S(t) �M

(4.4)

where we choose M = 95% ⇤ 51, 548 ⇡ 48, 971. Ỹi is the CV-prediction of Yi, and S(t) is the
set of trusted units:

S(t) :=
�
i | dj(Xi) < tj for all j 2 {1, . . . , 5}

.

While it is an interesting problem on its own, it is not necessary to find the exact optimizer
of this problem. In the following, we outline a simple approximation which has shown
promising results in preliminary simulation experiments. In this particular example, we have
sampled 100,000 potential threshold vectors (t1, t2, t3, t4, and t5) and have evaluated their
performance. Table 4.4 shows the five best vectors, t 2 R5, as evaluated by the objective in
Equation (4.4).4

First of all, it is interesting to note that Date of Registration and Power are the only
relevant features. The others appear to matter relatively little since all their thresholds are
larger than the 99.95% quantile. This is in line with our subject knowledge that suggests
that Power is the most predictive covariate followed by Date of Registration. Furthermore,
when we apply this five-dimensional threshold, we find that we can decrease the total RMSE
in the test set from about 4,479 to about 3,052 by labeling slightly more than 4.7 % of the
data as “detached.” Figure 4.5 shows the distribution of the data points that are labeled as
“detached” versus those that are labeled as “trustworthy.”

Threshold 2: Neighborhood Calibration

Using the same threshold for every observation has worked well for the cars data set. How-
ever, some data sets exhibit a very di↵erent behaviour on a local and on a global scale. In

4Table C.1 in the Appendix contains the 40 best thresholds.

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 52

Days Ago C. Registration D. Horse Power Kilometer Dr. ZIP Code RMSE
50.7 (100%) 9.3 (98.8%) 37.1 (96.1%) 47155.5 (100%) 30653.6 (100%) 2981.65
137.1 (100%) 9.2 (98.8%) 38.1 (96.3%) 47496.9 (100%) 30915.4 (100%) 2984.89
50.6 (100%) 7.7 (98.1%) 41.5 (97.2%) 34628.5 (99.5%) 34944.2 (100%) 2988.02
58.5 (100%) 7.3 (98.0%) 40.8 (97.1%) 52064.3 (100%) 31871.9 (100%) 2988.98
59.4 (100%) 7.9 (98.2%) 41.1 (97.1%) 36530.9 (99.6%) 32554.2 (100%) 2989.33

Table 4.4: Best 5 thresholds out of a sample of 100,000. The number in brackets is the
corresponding percentile.

●

●

●

●
●

● ●

●

●
●●

●

●

●

●● ●
●

●
●

●

●

●
●

●

●● ●●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●●
●●

●●
●

● ●

●

●

●
●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●
●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●
●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

● ●

●
● ●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●
●● ●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●●

● ●●

●
● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●
●

●
●●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●●
●

●

●
● ● ●●

●

●

●

●
●

● ●

●

●●
●●

●

●

●●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

10000

20000

30000

40000

detached trustworthy

Ab
so

lu
te

 P
re

di
ct

io
n

Er
ro

r

Figure 4.5: Error Distribution of detached and trustworthy test points.

this section, we want to discuss another approach that computes an individualized threshold
for every unit. Recall the four cars, P1, P2, P3, and P4, that we have introduced in the
beginning of this section. Figure 4.6 shows the detachment indices for Horsepower for each
of the four points and the distribution of the OOB detachment indices for the neighbors of
the four points.

It is immediately clear that P1 not only has a small detachment index, but it is also not
particularly extreme compared to its neighbors. Interestingly, P2 has a large detachment
index, but it is not very extreme, since about 12 % of its neighbors have even more extreme

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 53

P3: 100% P4: 100%

P1: 52.2% P2: 88.0%

0 100 200 300 400 0 100 200 300 400

0.00

0.02

0.04

0.00

0.02

0.04

RF−detachment of Neighbors

de
ns

ity

Realized versus expected RF−detachment for Horsepower

Figure 4.6: Detachment indices of cars P1, P2, P3, and P4 compared to their neighbors.
The green line corresponds to the detachment index. The solid, black line shows the density
of the detachment indices of its neighbors, weighted by the RF-weight function.

detachment indices. In comparison, P3 and P4 are very extreme, and all its neighbors
have smaller detachment indices. Based on these insights, we conclude that P3 and P4 are
atypical. We would then flag those as “detached” to emphasize the fact that inference with
RF cannot not be trusted. We propose to flag a point as “detached” and suggest to not make
a prediction on it if its detachment index is more extreme in a relevant direction than 99% of
its neighbors. Algorithm 1 describes the exact algorithm that determines which predictions
are trustworthy. We will show its e↵ectiveness in Example B and C in the following section.

Software

We have carefully evaluated and implemented the stated algorithms in our software pack-
age forestry. Even though we stated everything in this section in terms of the RF-weight
function, wi(x), our implementation avoids using the weight function and computes the de-
tachment indices in a fast and memory e�cient way. The idea is similar to the fact that
Equation 4.3 is a perfectly valid way for getting the RF predictions, but the actual imple-

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 54

Algorithm 1 Flag as Trustworthy for covariate j

Input: Training Set: (Xi, Yi)ni=1
with Xi 2 Rd and Yi 2 R,

Test point: x 2 Rd,
Covariate to be checked: j 2 {1, . . . , d},

Output: Flag (can be “trustworthy” or “detached”)

1: procedure is trustworthy
2: Train a RF on (Xi, Yi)ni=1

and denote the corresponding RF-weights as wi(x).
3: Compute the RF detachments, dj(x), as in Definition 4,

. Compute the detachment indices for all training units using Cross-Validation.
4: Create K CV folds of the training data.
5: for k 2 {1, . . . , K} do
6: Train a RF on all units apart from those in Fold k
7: Using this RF, compute the RF detachments, d̃j(Xi), for all units i in Fold k.

8: Compute the weighted percentile of units with a bigger detachment index than x,

p(x)
nX

i=1

wi(x)1
n
d̃j(Xi) > dj(x)

o
.

9: if p(x) > 1% then
10: return (“trustworthy”)
11: else
12: return (“detached”)

Note that wi(x) is 0 for most i and positive for i corresponding to a small neighborhood around x. In our
actual implementation, we set the number of units sampled for each tree in R to be relatively small (50% or
less). The algorithm displayed here would be too slow for a real implementation. We are using an algorithm
that is mathematically equivalent, but significantly more e�cient in terms of computation and memory. The
precise implementation can be found in the forestry package.

mentations use an algorithm that is conceptually much closer to Equation 4.1. The relevant
functions are the compute_detachments and evaluate_detachments functions.

4.3 Applications

We will now apply Algorithm 1 to two further examples. The first one (Example B) deals
with the overlap condition for the CATE estimation. The second one (Example C) deals with
extrapolation and prediction outside the support of the training set. With these examples we
want to show the usefulness of the detachment index as a tool that can be used in di↵erent
statistical settings.

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 55

Example B: CATE Estimation Without Overlap

Let us recall the CATE estimation problem that we have studied in Chapter 1: We employ
the Neyman–Rubin potential outcome framework [66, 71] and assume a superpopulation
or distribution P from which a realization of N independent random variables is given as
the training data. That is, (Yi(0), Yi(1), Xi,Wi) ⇠ P , where Xi 2 Rd is a d-dimensional
covariate or feature vector, Wi 2 {0, 1} is the treatment assignment indicator, Yi(0) 2 R
is the potential outcome of unit i when i is assigned to the control group, and Yi(1) is the
potential outcome when i is assigned to the treatment group. The goal is to estimate the
CATE which is defined as

⌧(x) := E
h
Y (1)� Y (0)

���X = x
i
.

To make this goal feasible, researchers usually assume that there are no hidden con-
founders [64].

Condition 1 (No hidden confounders)

(Y (1), Y (0)) ? W |X.

Furthermore, they assume that the propensity score, e(x) := P(W |X = x), is bounded
away from 0 and 1 [64].

Condition 2 (Overlap) There exists emin and emax such that for all x in the support of X,

0 < emin < e(x) < emax < 1.

Both of these conditions are satisfied in a randomized controlled trial, where the treatment
is assigned to the training units by a coin flip. Therefore, these conditions become more
important in an observational study in which the treatment assignment is not done by the
researcher. Arguably, both conditions are very restrictive. In some sense they are even
in competition with each other: More covariates make it more likely that Condition 1 is
satisfied, but they make it less likely that Condition 2 is satisfied [17].

We study here the problem that can arise when Condition 2 is violated. We set up two
simulations: Simulation 1 is a randomized controlled trial, and Simulation 2 is similar to
Simulation 1 except that for a subset of the training data, the propensity score is artificially
set to 0. This could, for example, happen in a clinical study where doctors do not want to
try a new drug on a certain subsets of patients, but experimenters still allow these units to
be part of the study as control units or in an actual observational study where a specific
subset of units avoids the treatment.

Simulation 1
We take a random sample of 12,000 potential voters from the GOTV experiment that we
have introduced in Chapter 1. Recall that the data consists of an indicator for the binary

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 56

treatment, an outcome variable, and seven key individual-level covariates: gender, age, and
whether the registered individual voted in the primary elections in 2000, 2002, and 2004 or
the general election in 2000 and 2002.

We only take the seven covariates of each voter and do not make use of the treatment
assignment or the observed outcomes. Instead, we simulate the treatment assignment and
the observed outcomes according to the following equations:

Yi(0) = Xi · �0 + ",

Yi(1) = Xi · �1 + ",

Wi ⇠ Bern(0.5),

where �0, �1 2 R7 was sampled independently before the experiment from a standard normal

distribution and "i
iid
⇠ N (0, 1).

Simulation 2
We take the simulated data from Simulation 1 and assign all units between 30 and 40 to the
control group.

Note that in Simulation 2 the overlap condition (Condition 2) is violated for units between
30 and 40. However, there are still no hidden confounders, and thus Condition 1 is satisfied.

To evaluate the performance of di↵erent CATE estimators, we split the data of each of
the simulations into a training set of 2,000 units and a test set of 10,000. We then evaluated
the X-Learner with RF (X RF) and BART (X BART) on both data sets. Figure 4.7 shows
the average confidence coverage and length of the two CATE estimators for both simulations.
We can see that the coverage for Simulation 2 is much worse than the coverage for Simulation
1 and that the average length is smaller. The reasons for this are that the CATE estimators
are further away from the true values for observations in the set without overlap and they
report for these observations smaller confidence intervals (c.f. Figure C.1).

This is, of course, an undesirable behavior. We would at least hope to report larger
confidence intervals in areas without overlap. To overcome this problem, we want to use a
decision rule based on the detachment index to label units in the area without overlap as
“detached” or not trustworthy. Table 4.5 shows the number of units that have been labeled
by Algorithm 1 as “detached” or “trustworthy.” Note that in both Simulations most units
in the set that have overlap are labeled as “trustworthy.” In Simulation 2, most units that
were not in the overlap set were labeled as “detached.” This confirms that Algorithm 1 is
able to detect units without overlap at least to some extent. Furthermore, Figure 4.5 shows
that the confidence interval coverage on only those units that were labeled as “trustworty”
is much larger for Simulation 2 and slightly larger for Simulation 1. This suggests that we
were able to identify at least some points for which CI estimation appears to be di�cult.

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 57

●

●

X_RF

X_BART

●

●

X_RF

X_BART

Simulation 1 Simulation 2

0 5 10 0 5 10

0.00

0.25

0.50

0.75

1.00

Average Confidence Interval Length

Av
er

ag
e

C
ov

er
ag

e

Figure 4.7: Confidence interval coverage and length of X RF and X BART for Simulation 1
and 2.

●

●

X_RF

X_BART

●

●X_RF
X_BART

Simulation 1 on trustworthy points Simulation 2 on trustworthy points

0 5 10 0 5 10

0.00

0.25

0.50

0.75

1.00

Average Confidence Interval Length

Av
er

ag
e

C
ov

er
ag

e

Figure 4.8: Confidence interval coverage and length of X RF and X BART for the trustwor-
thy points in Simulations 1 and 2.

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 58

Simulation 1 trustworthy detached
Overlap 9,806 149

No Overlap 0 0

Simulation 2 trustworthy detached
Overlap 5,645 283

No Overlap 700 3,372

Table 4.5: Number of “trustworthy” units in the overlap area and the area without overlap.

Example C: Prediction Outside of the Support

We investigate the problem in a simple prediction task, where the test set is not in the
support5 of the training set. That is, of course, a situation that should be avoided. But
nonetheless, it is a scenario methodologists have to face in a time where an increasing amount
of decisions are being automated, and the engineers designing these decision making processes
are often not the ones that make these decisions.

For example, many medical studies are based on subjects that are older than 18 years
old. Medical professionals, of course, know that findings in such a study do not necessarily
generalize to patients younger than 18 years old and would be extra cautious when applying
these findings to a young patient. Algorithms, however, often do not automatically reveal
that information. We think that it is important for algorithms to automatically flag such a
prediction as not trustworthy.

To investigate the performance of our proposed algorithm, consider the following simu-
lation.

Simulation 3
For the training set, sample the independent variable x from a uniform distribution with
support in [18, 34] [[48, 64]. For the test set, sample the independent variable x from a
uniform distribution with support in [0, 75]. Create the dependent outcome y according to
y = sin(x/3).

Note that the support of the training data, [18, 34][[48, 64], does not include the support
of the test data, [0, 75]. Figure 4.9 shows the results of this simulation with bootstrap CIs
for RF estimates. We can see that for points outside of the support, the confidence intervals
are far away from the true response function. To make matters even worse, with more data,
the CIs get tighter. This suggests more certainty about these estimates, even though they
are just as far o↵ as the estimates based on a sample size of 30.

Figure 4.10 shows the units that Algorithm 1 flagged as “detached” in red and the
trustworthy ones in “blue.” We can see that for this simple example, our method correctly
identifies test units that are outside the support of the training set. Further research is
needed to understand how well it works in practice especially in high-dimensional data sets.

5Here we define the support of the training set as the space of the covariate that has a positive density
in the data generating distirbution of the training set.

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 59

●

●

●

●

●●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

● ● ●

●

●●

●

●

●

● ●

● ●●

●

●

●

●

●

● ●

● ●

●

● ●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●●
●

●
●

● ● ●

●

●●●

●

●

−1.0

−0.5

0.0

0.5

1.0

0 20 40 60
x

y

Training size = 30

(a) Trainings Size of 30

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

−1.0

−0.5

0.0

0.5

1.0

0 20 40 60
x

y

Training size = 3000

(b) Trainings Size of 3000

Figure 4.9: CI estimation with RF outside the support of the training data for a sample size
of 30 and a training set of 3000 points. The grey area is the support of the training data.
The black line is the regression function. The point estimates and 95% confidence intervals
are displayed in blue.

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

−1.0

−0.5

0.0

0.5

1.0

0 20 40 60
x

y

●

●

not trustworthy

trustworthy

Training size = 3000

Figure 4.10: CI estimation with RF outside the support of the training data on trustworthy
points.

4.4 Conclusion

In a time where algorithms are increasingly influencing our everyday lives, it becomes crucial
to have algorithms that are aware of their flaws. We should design them in such a way that
they warn the user if the underlying data situation does not allow a trustworthy output.

We have focused in this paper on the RF algorithm. We have demonstrated that the
spreading of the weight function contains information about the trustworthiness of the fit.
We have proposed a detachment index and have shown two strategies that can be used to
determine that a detachment index is too big for prediction or CI estimation. We have also
shown its usefulness in three examples: The first one is a usual prediction task, the second
one is a CATE estimation problem with a violated overlap condition, and the last one is

CHAPTER 4. DETACHMENT INDEX FOR TRUSTWORTHINESS 60

a prediction task where the test data is not in the support of the training data. All of
these examples are dealing with low-dimensional data sets and we are currently working on
extending this framework to high-dimensional problems.

We believe that the general problem of trusting the predictions of algorithms is important
and it should also be studied for other methods. The particular solution we have found for
RF, the detachment index, is potentially useful beyond the settings described in this work. It
is not clear yet whether the concept would have to be adapted to deal with more challenging
scenarios, such as high-dimensional or heterogeneous data. We believe that more work should
be done to allow any estimator to flag predictions as “untrustworthy.”

61

Chapter 5

Linear Aggregation in Tree-based
Estimators

5.1 Introduction

Classification and Regression Trees (CART) [56, 8] have long been used in many domains.
Their simple structure makes them interpretable and useful for statistical inference, data min-
ing, and visualizations. The Random Forests (RF) [6] algorithm and the Gradient Boosting
Machine (GBM) [25] build on these tree algorithms. They are less interpretable and more
laborious to visualize than single trees, but they often perform better in predictive tasks and
lead to smoother estimates [12, 74, 78].

As these tree-based algorithms predict piece-wise constant responses, this leads to (a)
weaker performance when the underlying data generating process exhibits smoothness, (b)
relatively deep trees that are harder to interpret, and (c) bias that makes valid inference and
confidence interval estimation di�cult.

To address these weaknesses, we study regression trees with a linear aggregation function
implemented in the leaves. Specifically, we introduced three core changes to the classical
CART algorithm:

1. Instead of returning for each leaf the mean of the corresponding training observations
as in the classical CART algorithm, we fit a ridge regression in each leaf. That is, for
a unit that falls in a leaf S, the tree prediction is

µ̂(xnew) = xt
new

(X t
SXS + �I)�1X t

SYS, (5.1)

where YS is the vector of y-values of the training observations that fall in leaf S, XS is
the corresponding design matrix for these observations, and � 2 R+ is a regularization
parameter.1

1In a more elaborate version of the algorithm, the observations in leaf S are a subset that is independent
of the subset of training observations used to create the skeleton of the trees.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 62

2. Crucial to the success of such an aggregation function, we take the fact that we fit
a regularized linear model in the leaves into account when constructing the tree by
following a greedy strategy that finds the optimal2 splitting point at each node. That
is, for each candidate split that leads to two child nodes SL and SR, we take the split
such that the total MSE after fitting an `2-penalized linear model on each child is
minimized. This is very di�cult, and we believe that one of our main contributions is
that we found a very e�cient way to find this optimal splitting point. We discuss in
detail how the optimal splitting point is calculated in Section 5.2.

3. Furthermore, we use a cross-validation stopping criteria that determines when to con-
tinue splitting as opposed to when to construct a leaf node. After selecting the optimal
split, the improvement in R2 that is introduced by the potential split is calculated. If
the potential split increases the R2 by less than a predetermined stopping value, then
the splitting procedure is halted and a leaf node is created. This leads to trees that can
create large nodes with smooth aggregation functions on smooth parts of data, while
taking much smaller nodes which mimic the performance of standard CART aggrega-
tion on separate subsets of the response surface. This adaptivity over varying degrees
of smoothness is displayed below in Figure 5.1 and explored in greater detail in Section
5.3.

These changes improve the predictive performance of such Linear Regression Trees
(LRT) substantially, and—as we see in Section 5.3—it compares favorably on real-world
examples when used in a Linear Random Forests (LRF) ensemble. We also connect it
with an e↵ective tuning algorithm, and we find that it can behave like both a regularized
linear model and a CART/RF estimator depending on the chosen hyperparameters. This
adaptivity as an estimator is explored in a set of experiments in Section 5.3.

The linear response functions in turn lead to much shallower trees without losing predic-
tive performance. This improves the interpretability of the trees substantially—a direction
which has always been a major motivation for studying regression trees with linear aggrega-
tion functions [39].

In Section 5.4, we illustrate the advantages for interpretability using a large dataset
measuring the treatment e↵ect of several treatments on voter turnout [27]. We adapt the
S-Learner with random forests as implemented in causalToolbox [45] to use the linear aggre-
gation function of linear regression trees. We then use the plot function from the forestry
package to visualize several trees in Figure 5.3 and the regression coe�cients of their leaves.
This allows us to identify groups of potential voters with similar voting behavior, make in-
ference on their future voting propensity, and see the e↵ects di↵erent mailers have on future
voter turnout.

2We define what we mean by optimal in Section 5.2.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 63

−2

0

2

y

CART

LRT

truth

0

10

−4 0 4 8
x

co
un
t

Figure 5.1: Comparison of the classical CART and LRT. The top of the figure shows the
Linear Regression Trees and the classical CART, and the lower part shows the density of
the training set.

Literature

Studying regression trees with linear aggregation functions has a long history. The earliest
reference we are aware of is by [7] which precedes the original CART publication [8]. The
algorithm can be interpreted as a tree algorithm: At each node, the algorithm attempts
to introduce a new split along a randomly oriented plane. It then fits a linear model in
both children, and it accepts the split if it su�ciently reduces the residual sum of squares as
captured by an F-ratio test. If the split is not accepted, the algorithm attempts more splits
a limited number of times before declaring the node a leaf node.

There has been much research that builds on this first algorithm, and many di↵erent
variants of it have been proposed. Apart from a few exceptions [86], the trees are constructed
in a recursive strategy and the main di↵erences between the algorithms are, how the splits
are generated—the splitting criteria—and when splitting is halted for a node to be defined
as a leaf—the stopping criteria.

For the splitting criteria, there have been many di↵erent suggestions. [77] spans the
trees similar to the standard CART algorithm without adaptations to the new aggregation
function. [13] and [50], on the other hand, fit a linear model, or more generally, a polynomial

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 64

model, on all units in the current node and then suggest a split by looking at the residuals of
the fitted model. [85] and [67], in turn, use a two-step procedure to find a good split. In the
first step, the algorithms also fit a linear model on all units in the current node, and they
then screen for good splitting covariates using a test statistic that can be computed relatively
fast. In a second step, the algorithm then exhaustively searches through all possible splits
along the selected features.

While it is possible to grow trees until there is only one observation left in each leaf, it is
useful to have tree structures with more than one observation per leaf. This is particularly
important when using a linear aggregation function. However, the exact number of observa-
tions which should be in each leaf is much harder to determine. Early stopping and pruning
of the trees after they have been trained have both been used for regression trees with linear
aggregation functions. For example, [61] and [26] build linear models in the pruning phase of
each leaf, while [13] use a stopping criterion that is based on cross-validation and attempts
to estimate whether a further split su�ciently improves the mean squared error.

While it is always possible to bootstrap these algorithms and combine them with ideas
introduced in Random Forests [6], these ideas were mainly studied as regression trees, even
though one would expect better predictive power and smoother prediction surfaces in the
bagged versions [12]. Additionally, some of these algorithms would be computationally too
expensive to be used in a bagged version.

However, there has been some work done combining RF and bagged trees with linear
models. [5] followed ideas by [37], [51], and [54] to interpret random forests as an adaptive
potential nearest neighbor method. Their method, SILO (Supervised Local modeling), uses
the random forests algorithm to provide a distance measure, w, based on the proximity
distance of random forests, and it then defines the random forests prediction, ĝ(x), as a local
linear model [72] via the following two step process:

f̂x(·) = argmin
f2F

NX

i=1

w(xi, x)(yi � f(xi � x))2,

ĝ(x) = f̂x(0),

(5.2)

where F is some set of functions. In their paper, they focused in particular on linear models
and demonstrated its superior performance over other local models such as LOESS [16] and
untuned RF.

In a very recent paper, [23] also combined random forests with linear models. Their work
is similar to that of [5] in the sense that they also use the proximity weights of random
forests to fit a local linear model. Specifically, they focus on linear models, and they fit a
ridge regularized linear model,

✓
µ̂(x)
✓̂(x)

◆
= argmin

µ,✓

(
nX

i=1

w(xi, x)(yi � µ� (xi � x)t✓)2 + �||✓||2
2

)
, (5.3)

and use µ̂(x) as the estimate for E[Y |X = x]. Similar to [13], they adapt the splitting function
to account for the fitting of such local models. When evaluating a split on a parent node

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 65

P, the split is adapted by fitting a ridge regression in each parent node P to predict ŶP,Ridge

from XP and then the standard CART splitting procedure on the residuals YP � ŶP,Ridge is
used to select a splitting point. This results in a fast splitting algorithm which utilizes the
residuals to model for local e↵ects in forest creation and optimize for the fitted models which
are later used for regression.

Our contribution

Our main contribution is to develop a fast algorithm to find the best partition for a tree with
a ridge regularized linear model aggregation function. To our knowledge, we are the first to
develop and analyze this algorithm, even though there are software packages that have not
publicized their source code that might use a similar idea. In Section 5.2, we explain the
algorithm and we show that its run time is O(m⇤ (n⇤ log(n)+n⇤p2)) where n is the number
of observations in the current node, p is the number of dimensions that is fit with a linear
model, and m is the number of potential splitting covariates. In Section 5.3, we use the
splitting algorithm with random forests, and we show that it compares favorably on many
data sets. Depending on the chosen hyperparameters, the LRF algorithm can then behave
and perform similarly to either the default RF algorithm or a ridge regularized linear model.
Because the algorithms can be trained relatively fast, we were able to connect them with a
tuning algorithm, and show how it can quickly adapt to the underlying smoothness levels
in di↵erent datasets. In Section 5.4, we then apply a simple LRT to a real data set to show
how its simple structure lead to a deeper understanding of the underlying processes.

Software example

An implementation of this algorithm is used in the forestry package and can, for example,
be used in random forests using the linear = TRUE option.

forest <- forestry(x = iris[,-1],

y = iris[,1],

linear = TRUE ,

overfitPenalty = 2)

predict(forest , feature.new = iris[,-1])

5.2 The Splitting Algorithm

Random forests are based on a regression tree algorithm, which is in turn based on a splitting
algorithm. This splitting algorithm is used in most tree-based algorithms to recursively split
the space into subspaces which are then encoded in a binary regression tree. In this section,
we first motivate and describe the new splitting algorithm and then discuss its asymptotic
runtime.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 66

To setup the notation, assume that we observe n observations, (Xi, Yi)ni=1
. Xi 2 Rd is the

d-dimensional feature vector and Yi 2 R is the dependent variable of unit i. For a feature
` 2 {0, . . . , d}, the goal is to find a splitting point s to separate the space into two parts,

L := {x 2 Rd : x[`] < s}, R := {x 2 Rd : x[`] � s}. (5.4)

We call L and R the left and right sides of the partition respectively.
In many tree-based algorithms, including CART, RF, and GBM, the splitting point s⇤ is

a point that minimizes the combined RSS when fitting a constant in both parts of the space,

s⇤ 2 argmin
s

X

i:Xi2L

⇣
Yi � Ȳ L

⌘2
+
X

i:Xi2R

⇣
Yi � Ȳ R

⌘2
. (5.5)

Here Ȳ L is the mean of all units in the left partition and Ȳ R is the mean of all units in the
right partition. Note that L and R are functions of s.

We generalize this idea to Ridge regression. We want to find s⇤ that minimizes the overall
RSS when- in both partitions- a Ridge-regularized linear model is fitted instead of a constant
value.

s⇤ 2 argmin
s

X

i:Xi2L

⇣
Yi � Ŷ L

i

⌘2
+
X

i:Xi2R

⇣
Yi � Ŷ R

i

⌘2
. (5.6)

Now Ŷ L
i is the fitted value of unit i when a Ridge regression is fit on the left part of the

split, and similarly, Y R
i is the fitted value of unit i when a Ridge regression is fit on the right

part of the split.
To find an s⇤ that satisfies (5.6), it would be enough to exhaustively search through the

set S = {Xi[`] : 1  i  n}. However, if feature ` is continuous, then there are n potential
splitting points. Fitting a ridge regression in both parts and computing the RSS for each
potential splitting point thus requires at least n2 steps. This is too slow for most data sets,
since the splitting algorithm is applied up to dn times when constructing a single regression
tree.

Fast and exact ridge splitting algorithm

In the following section, we describe an algorithm that computes the exact solution of (5.6) in
quasilinear time by using an online update for the RSS after fitting a ridge regularized linear
model. Specifically, the algorithm first sorts the realized values of feature ` in ascending
order. To simplify the notation, let us redefine the ordering of the units in such a way that

X1[`] < X2[`] < · · · < Xn[`].

Such a sorting can be done in O(n log n).3

3We assume here that Xi[`] 6= Xj [`] for all j 6= j. We refer to our implementation in forestry [44] for
the general case.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 67

The algorithm then checks the n � 1 potential splitting points that lie exactly between
two observations,

sk :=
Xk[`] +Xk+1[`]

2
, for 1  k  n� 1.

We define

L(k) := {x 2 Rd : x[`] < sk}, R(k) := {x 2 Rd : x[`] � sk}, (5.7)

and the RSS when splitting at sk as RSS(k),

RSS(k) :=
X

i:Xi2L(k)

⇣
Yi � Ŷ L(k)

i

⌘2
+

X

i:Xi2R(k)

⇣
Yi � Ŷ R(k)

i

⌘2
. (5.8)

Once again, Ŷ L(k)
i is the fitted value of unit i when a Ridge regression is fit on the left part

of the split, and similarly, Y R(k)
i is the fitted value of unit i when a Ridge regression is fit on

the right part of the split. We are interested in finding

k⇤ = argmin
k

RSS(k). (5.9)

Decomposition of the RSS

Let us first state the ridge-regression for the left partition [36]. For a given � > 0 and leaf,
L, we want to find (�̂, ĉ) that minimize the ridge penalized least squares equation,

(�̂, ĉ) = argmin
(�,c)

X

i:Xi2L

�
Yi �XT

i � � c
�2

+ �k�k2
2
. (5.10)

A closed form solution of this problem can be derived by setting the gradient of this loss
function equal to zero,


�̂
ĉ

�
=

nX

i=1


Xi

1

� ⇥
XT

i 1
⇤
+ �


Id 0
0 0

�!�1 nX

i=1

Yi


Xi

1

�
. (5.11)

For a set H ⇢ Rd, define

AH :=
X

i:Xi2H


Xi

1

� ⇥
XT

i 1
⇤
+ �


Id 0
0 0

�

SH :=
X

i:Xi2H

Yi


Xi

1

�
,

GH :=
X

i:Xi2H


Xi

1

� ⇥
XT

i 1
⇤
.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 68

With this notation, we can decompose RSS(k),

RSS(k) =
X

i:Xi2L(k)

⇣
Yi �

⇥
XT

i 1
⇤
A�1

L(k)SL(k)

⌘2

+
X

i:Xi2R(k)

⇣
Yi �

⇥
XT

i 1
⇤
A�1

R(k)SR(k)

⌘2

= �L(k) + �R(k) +
nX

i=1

Y 2

i .

Here, we used the definition that for a set H ⇢ Rd,

�H := ST
HA

�1

H GHA
�1

H SH � 2ST
HA

�1

H SH . (5.12)

As
Pn

i=1
Y 2

i is constant over k, it can be discarded when considering the optimization problem
and thus,

argmin
k

RSS(k) = argmin
k

�L(k) + �R(k). (5.13)

Update Step from k to k + 1

In order to have a manageable overall runtime for a split, we need to quickly find the
minimizer of (5.9) by looping through from k = 1 to k = n.

1. The algorithm first computes SL(1), A
�1

L(1), GL(1), SR(1), A
�1

R(1)
, and GR(1), and computes

the RSS(1).

2. The algorithm now computes the RSS(k) for k � 2 in an iterative way:

a) SL(k), GL(k), SR(k), and GR(k) can be directly computed from SL(k�1), GL(k�1),
SR(k�1), and GR(k�1) by a simple addition or subtraction.

b) For A�1

L(k) and A�1

R(k), we use the Sherman-Morrison Formula:

AL(k) = A�1

L(k�1)
�

A�1

L(k�1)


xk

1

� ⇥
xT
k 1

⇤
A�1

L(k�1)

1 +
⇥
xT
k 1

⇤
A�1

L(k�1)


xk

1

� , (5.14)

AR(k) = A�1

R(k�1)
+

A�1

R(k�1)


xk

1

� ⇥
xT
k 1

⇤
A�1

R(k�1)

1�
⇥
xT
k 1

⇤
A�1

R(k�1)


xk

1

� . (5.15)

An explicit implementation of the split algorithm can be found in Algorithm 2.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 69

Algorithm 2 Find Split to Minimize Sum of RSS

Input: Features: X 2 Rn⇥d,
Dependent Outcome: Y 2 Rn,
overfitPenalty (regularization for split): � 2 R+,

Output: Best Split point k

1: procedure FindBestSplitRidge

Initialization:

2: A�1

L1

✓
X1

1

� ⇥
XT

1
1
⇤
+ �


Id 0
0 0

�◆�1

3: A�1

R1

✓Pn
i=2


Xi

1

� ⇥
XT

i 1
⇤
+ �


Id 0
0 0

�◆�1

4: SL1 Y1


X1

1

�

5: SR1
Pn

i=2
Yi


Xi

1

�

6: GL1


X1

1

� ⇥
XT

1
1
⇤

7: GR1
Pn

i=2


Xi

1

� ⇥
XT

i 1
⇤

8: Compute the RSS sum:

RSS1 ST
L1A

�1

L1GL1A
�1

L1SL1 � 2ST
L1A

�1

L1SL1

+ ST
R1
A�1

R1
GR1A

�1

R1
SR1 � 2ST

R1
A�1

R1
SR1.

9: for k = 2, . . . , n do
10: A�1

L(k) Update A inv(A�1

L(k�1)
, Xk, leftNode = TRUE)

11: A�1

R(k) Update A inv(A�1

R(k�1)
, Xk, leftNode = FALSE)

12: SL(k) SL(k�1) + Yk


Xk

1

�

13: SR(k) SR(k�1) � Yk


Xk

1

�

14: GL(k) GL(k�1) +


Xk

1

� ⇥
XT

k 1
⇤

15: GR(k) GR(k�1) �


Xk

1

� ⇥
XT

k 1
⇤

16: Compute the RSS sum for the current split:

RSSk ST
L(k)A

�1

L(k)GL(k)A
�1

L(k)SL(k) � 2ST
L(k)A

�1

L(k)SL(k))

+ ST
R(k)A

�1

R(k)GR(k))A
�1

R(k)SR(k) � 2ST
R(k)A

�1

R(k)SR(k).

17: return (argmink RSSk)

Update A inv is defined in Algorithm 3

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 70

Algorithm 3 Update the A�1 Component of the RSS

Input: A�1

k�1
2 R(d+1)⇥(d+1),

Xk 2 Rd,
leftNode (indicator whether this updates A�1

L(k) or A
�1

R(k))

Output: Updated matrix A�1

k

1: procedure Update A inv

2: zk A�1

k�1


Xk

1

�

3: if leftNode then

4: gk
�zkzTk

1 +
⇥
XT

k 1
⇤
zk

5: else

6: gk
zkzTk

1�
⇥
XT

k 1
⇤
zk

7: return A�1

k�1
+ gk

Runtime Analysis of Finding Split Points

The ability to use an online update for calculating the iterated RSS at each step is crucial for
maintaining a runtime that can scale in quasilinear runtime. Here we will provide a detailed
breakdown of the runtime for calculating the best split point on a given feature. As we have
several steps for updating the RSS components, the runtime depends on both the number
of observations, as well as the number of features and therefore may be a↵ected by either.
We begin each split by sorting the current split feature taking O(n log n) time. Within the
split iterations, we iterate over the entire range of split values once, however, at each step
we must update the RSS components.

While updating the A�1 component, as we use the Sherman-Morison Formula to update
the inverse of the sum with an outer product, we must compute one matrix vector product
(O(d2)), one vector outer product (O(d2)), one vector inner product (O(d2)), division of a
matrix by scalars and addition of matrices (both O(d2)). While updating the G component,
we need to both add and subtract an outer product (both O(d2)), and while updating the
S component, we need to add and subtract a vector (O(d)). At each step of the iteration,
we must evaluate the RSS of the right and left models. To do this, we need 8 matrix vector
products, each of which is O(d2), and 4 vector inner products, each of which is O(d). Putting
these parts together gives us a total run time of O(n log n+ nd2) to find the best split point
for a given node with n observations and a d-dimensional feature space.

Early Stopping

As we will see in Section 5.3, early stopping can prevent overfitting in the regression tree
algorithm and the RF algorithm. Furthermore, as we discuss in Section 5.4, it leads to well

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 71

performing yet shallow trees that are much easier to understand and interpret.
We use a one step look-ahead stopping criteria to stop the trees from growing to deep.

Specifically, we first compute a potential split as outlined in the algorithm above. We then
use cross validation to compute the R2 increase of this split and only accept it, if the increase
of the split is larger than the specified minSplitGain parameter. A larger minSplitGain

thus leads to smaller trees. The precise description of this parameter can be found in
Algorithm 4.

5.3 Predictive Performance

It is well known that RF outperforms regression trees, and we have therefore implemented a
version of RF that utilizes our new splitting algorithm. We call this Linear Random Forests
(LRF) and we demonstrate its predictive performance in the following section. A version of
LRF is implemented in our forestry package.4

Methods and Tuning

In this section, we compare the predictive power of LRF with five competitors:

• The random forest algorithm as implemented in the ranger package [82] and in the
forestry package.

• The Bayesian Additive Regression Trees (BART) algorithm as implemented in the
BART package [15].

• Local linear forests [23] as implemented in the grf package [3].

• The Rule and Instance based Regression Model presented in [61] as implemented in
the Cubist package.

• Generalized Linear Models as implemented in the glmnet package [24].

In most real world prediction tasks, appliers carefully tune their methods to get the
best possible performance. We believe that this is also important when comparing di↵erent
methods. That is why we used the caret package [40] to tune the hyperparameters of all of
the above methods. Specifically, we used the caret package’s adaptive random tuning over
100 hyperparameter settings, using 8 fold CV tuning repeated and averaged over 4 iterations.

4A version of forestry is available at https://github.com/soerenkuenzel/forestry.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 72

Algorithm 4 Early Stopping: The One Step Look-Ahead Algorithm

Input: Features: X 2 Rn⇥d,
Dependent Outcome: Y 2 Rn,
Indexes of potential left Child: L ⇢ {1, . . . , n},
minSplitGain: m 2 R,
number of folds: k 2 {2, . . . , n},
overfit penalty: � > 0

Output: Boolean: TRUE if split should be implemented, FALSE otherwise

1: procedure Check split
2: Partition {1, . . . , n} into k disjoint subsets: {S1, . . . , Sk}.
3: for i in {1, . . . , k} do

. Predict the outcome without the split:
4: For j 2 Si set

Ŷ p
j =


Xj

1

�0

@
X

k2S̄i


Xk

1

� ⇥
XT

k 1
⇤
+ �


Id 0
0 0

�1

A
�1

X

k2S̄i

Yk


Xk

1

�
.

. Predict the outcome with the split:
5: For j 2 Si \ L set

Ŷ c
j =


Xj

1

�0

@
X

k2S̄i\L


Xk

1

� ⇥
XT

k 1
⇤
+ �


Id 0
0 0

�1

A
�1

X

k2S̄i\L

Yk


Xk

1

�
.

6: For j 2 Si \ L̄ set

Ŷ c
j =


Xj

1

�0

@
X

k2S̄i\L̄


Xk

1

� ⇥
XT

k 1
⇤
+ �


Id 0
0 0

�1

A
�1

X

k2S̄i\L̄

Yk


Xk

1

�
.

7: Compute the EMSE with and without split:

RSSc =
nX

i=1

⇣
Yi � Ŷ c

i

⌘2
and RSSp =

nX

i=1

⇣
Yi � Ŷ p

i

⌘2

8: Compute the total variation: tV =
Pn

i=1

�
Yi � Ȳ

�2

9: if (RSSc
� RSSp)/tV > m then

return TRUE
10: else

return FALSE

For a set S we define its compliment as S̄ := {i : 1  i  n and i 62 S}.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 73

Experiments

LRF is particularly well suited for picking up smooth signals. It can also behave like a linear
model or like classical RFs. To demonstrate this adaptivity, we first analyze artificially
generated examples. We will see that LRF automatically adapts to the smoothness of the
underlying data generating distribution. In the second part of this study, we show the
competitive performance of our estimator on real world data.

Adaptivity for the appropriate level of smoothness

We analyze three di↵erent setups. In the first setup, we use linear models to generate the
data. Here we expect glmnet to perform well and the default versions of RF as implemented
in ranger and forestry to not perform well. In the second setup we use step functions.
Here we expect RF and other tree-based algorithms to perform well and glmnet to perform
relatively worse. In the third setup, there are areas that are highly non-linear and other
areas that are very linear. It will thus be di�cult for both the default RF algorithm and
glmnet to perform well on this data set, but we expect the adaptivity of LRF to excel here.

1. Linear Response Surface
In Experiment 1, we start with a purely linear response surface. We simulate the
features from a normal distribution and we generate Y according to the following linear
model:

X ⇠ N(0, 1) 2 R10, " ⇠ N(0, 4)

Y = fL(X) + ",

fL(X) = �0.47X2 � 0.98X3 � 0.87X4 + 0.63X8 � 0.64X10.

(5.16)

2. Step Functions
Next, we are interested in the other extreme. In Experiment 2, we simulate the
features from a 10-dimensional normal distribution distribution, X ⇠ N(0, 1) 2 R10

and we create a regression function from a regression tree with random splits, 50 leaf
nodes, and randomly sampled response values between -10 and 10 and we call this
function fS. Y is then generated according to the following model:

Y = fS(X) + " (5.17)

" ⇠ N(0, 1) (5.18)

A specific description how fS was generated can be found in detail in Appendix D.3.

3. Linear Function with steps
Finally, we look at a data set that exhibits both a linear part and a step-wise constant
part. Specifically, we split the space into two parts and we combine the regression
functions from Experiment 1 and Experiment 2 to create a new regression function

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 74

as follows:

Y =

(
fL(X) if X1 < .5

fS(X) else
+ " (5.19)

" ⇠ N(0, 1). (5.20)

The results of these simulations for a range of sample sizes can be found in Figure 5.2.

Real World data sets

To analyze the behavior of these estimators on real data, we used a variety of data sets.
Table 5.1 describes the metrics of the data sets that we have used and Table 5.2 shows the
performance of the di↵erent estimators. Of these datasets, Autos describes pricing data and
many related features scraped from German Ebay listings, Bike describes Capital Bikeshare
user counts and corresponding weather features. These datasets are available on Kaggle [48]
and the UCI repository respectively [21].

The remaining datasets were lifted from Brieman’s original regression performance section
[6], with the test setups altered only slightly. For the Boston, Ozone, and Servo datasets,
we used 5-fold cross validation to estimate the Root Mesan Squared Error (RMSE), for the
Abalone dataset, we took a test set of 50%, and for the three Friedman simulations, we kept
Brieman’s original scheme using 2000 simulated test points.

Results

name ntrain ntest dim numeric features
Abalone 2089 2088 11 11
Autos 1206 39001 12 6
Bike 869 16510 16 16

Boston 506 9 9
Friedman 1 1000 2000 11 11
Friedman 2 1000 2000 5 5
Friedman 3 1000 2000 5 5

Ozone 330 9 9
Servo 167 13 13

Table 5.1: Summary of real data sets.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 75

RF (forestry)

RF (forestry)

RF (forestry)

RF (forestry)
RF (forestry)

RF (ranger)

RF (ranger)

RF (ranger)

RF (ranger)
RF (ranger)

RLM (glmnet)

RLM (glmnet)
RLM (glmnet)

RLM (glmnet) RLM (glmnet)

Cubist (Cubist)

Cubist (Cubist)Cubist (Cubist)

Cubist (Cubist) Cubist (Cubist)

LLF (grf)

LLF (grf)

LLF (grf)
LLF (grf) LLF (grf)

BART (dbarts)

BART (dbarts)

BART (dbarts) BART (dbarts) BART (dbarts)

LRF (forestry)

LRF (forestry)

LRF (forestry)
LRF (forestry) LRF (forestry)

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●0.0

0.5

1.0

1.5

2.0

500 1000 1500 2000
Sample Size

EM
SE

(a) Experiment 1: Linear regression function.

RF (forestry)

RF (forestry)RF (forestry)
RF (forestry)

RF (forestry)

RF (ranger)

RF (ranger)RF (ranger)
RF (ranger)

RF (ranger)

RLM (glmnet)

RLM (glmnet)RLM (glmnet) RLM (glmnet) RLM (glmnet)

Cubist (Cubist)

Cubist (Cubist)
Cubist (Cubist)

Cubist (Cubist)
Cubist (Cubist)

LLF (grf)

LLF (grf)
LLF (grf)

LLF (grf)
LLF (grf)

BART (dbarts)

BART (dbarts)BART (dbarts)
BART (dbarts) BART (dbarts)

LRF (forestry)

LRF (forestry)
LRF (forestry)

LRF (forestry)
LRF (forestry)

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

500 1000 1500 2000
Sample Size

EM
SE

(b) Experiment 2: Step function.

RF (forestry)

RF (forestry)

RF (forestry)

RF (forestry)
RF (forestry)

RF (ranger)

RF (ranger)

RF (ranger)

RF (ranger)
RF (ranger)

RLM (glmnet)

RLM (glmnet)RLM (glmnet) RLM (glmnet) RLM (glmnet)

Cubist (Cubist)

Cubist (Cubist)

Cubist (Cubist) Cubist (Cubist)
Cubist (Cubist)

LLF (grf)

LLF (grf)

LLF (grf)
LLF (grf)

LLF (grf)

BART (dbarts)

BART (dbarts)

BART (dbarts)

BART (dbarts)

BART (dbarts)

LRF (forestry)

LRF (forestry)
LRF (forestry)

LRF (forestry) LRF (forestry)

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.0

0.5

1.0

500 1000 1500 2000
Sample Size

EM
SE

(c) Experiment 3: Partly linear and partly a step function.

Figure 5.2: Di↵erent levels of smoothness. In Experiment 1, the response surface is a linear
function, in Experiment 2, it is a step function, and in Experiment 3, it is partly a step
function and partly a linear function.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 76

Table 5.2: Estimator RMSE compared across real data sets

The results shown in Figure 5.2 show the results for the di↵erent estimators on the simu-
lated response surfaces detailed in Section 5.3. As expected, we find that Regularized Linear
Models (RLM) as implemented in the glmnet package perform very well on Experiment
1 where the response is linear, while it performs poorly on Experiments 2 and 3. The de-
fault random forest estimators implemented for example in ranger performs very well on
Experiment 2, but it performs rather poorly on Experiment 1 and 3, as estimators which
can exploit the linearity benefit greatly here. The estimators which can pick up linear sig-
nals (RLM, LLF, and LRF), perform nearly identically on Experiment 1, showing a tuned
LRF can mimic the linear performance of a purely linear model such as RLM. Experiment
2 showcases a pure step function, in which smooth estimators such as RLM and LLF su↵er,
while RF and boosting algorithms such as BART excel. In this scenario, the performance
of LRF now converges to match that of the purely random forest algorithms. Finally, in
Experiment 3, the response surface is evenly distributed between smooth response values,
and a step function. In this case, there are areas of weakness for both the smooth estimators
and the RF estimators, but the adaptivity of LRF allows it to adapt to the di↵erences across
the response surface, and fit the appropriately di↵erent estimators on each portion.

The results shown in Table 5.2 are mixed, but display the adaptivity of LRF on datasets
which are both linear as well as highly nonlinear. The ability to tune the nodesize in LRF
allows for fits which mimic linear models in large nodes, and closely mimic CART fits in small
node sizes. With fast tuning, this range of variation can be exploited to deliver an estimator

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 77

which can adapt itself well to a variety of di↵erent response surfaces. This adaptivity results
in an estimator which can exploit the presence of smooth signals very well and remain
competitive over a wide range of response surfaces.

5.4 Interpretability

In this section, we want to show how linear aggregation can be used to create more inter-
pretable trees and we demonstrate this with a large data set about voter turnout. We will
show the usefulness of linear aggregation to better understand the heterogeneity in the data.
We first outline the problem of estimating the Conditional Average Treatment E↵ect and
summarize a few results from the literature before applying LRF to the data set.

Social Pressure and Voter Turnout Data Set

We use a data set from a large field experiment that has been conducted by [27] to measure
the e↵ectiveness of four di↵erent mailers on voter turnout. The data set contains 344,084
potential voters in the August 2006 Michigan statewide election with a wide range of o�ces
and proposals on the ballot. The sample was restricted to voters that voted in the 2004
general election, because the turnout in the 2006 election was expected to be extremely low
among potential voters who did not vote in the 2004 general election.

The specific mailers can be found in [27] and we briefly describe the mailers as follows.
Each mailer carries the message ”DO YOUR CIVIC DUTY — VOTE!” and applies a di↵er-
ent level of social pressure. We present the mailers ordered by the amount of social pressure
they put on the recipients.

• Civic Duty (CD): The Civic Duty mailer contains the least amount of social pressure
and only reminds the recipient that ”the whole point of democracy is that citizens are
active participants in government”.

• Hawthorne (HT): Households receiving the Hawthorne mailer were told ”YOU ARE
BEING STUDIED!” and it explains that voter turnout will be studied in the up-
coming August primary election, but whether or not an individual votes ”will remain
confidential and will not be disclosed to anyone else.”

• Self (SE): The Self mailer exerts even more pressure. It informs the recipient that
”WHO VOTES IS PUBLIC INFORMATION!” and contains a chart containing the
information of who voted in the past two elections within the household the letter was
addressed to. It also contains a field for the upcoming August 2006 election and it
promises that an updated chart will be sent to the households after the election.

• Neighbors (NE): The Neighbors mailer increases the social pressure even more and
starts with the rhetorical question: ”WHAT IF YOURNEIGHBORS KNEWWHETHER

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 78

YOU VOTED?”. It lists the voting records not only of the people living in the house-
hold, but also of those people living close by and it promises to send an updated chart
after the election. This treatment mailer implies that the voting turnout of the re-
cipients are publicised to the people living close by and thereby creates the strongest
social pressure.

The randomization was done on a household level. The set of all households was split
into four treatment groups and a control group. Each of the four treatment groups contained
about 11% of all voters, while the control group contained about 56% of all households.

The data set also contains seven key individual-level covariates: gender, age, and whether
or not the individual voted in the primary elections in 2000, 2002, 2004, or the general election
in 2000 and 2002. We also derived three further covariates from the ones above. We believe
that there are voters that generally have a high voting propensity, but still did not vote in
every election. To enable a tree algorithm to discriminate potential voters with high voting
propensity from those with a low one, we added a new feature that we called Cumulative
Voting History (CVH). It is the number of times the voter has voted within the last five
election before the 2004 general election. Similarly, we define the Cumulative Primary Voting
History (CPVH) as the number of primary elections a voter has participated in between 2000
and 2004 and the Cumulative General election Voting History (CGVH) as the number of
general elections a voter has participated in between 2000 and 2002.

[45] analyze the e↵ect of the Neighbors mailer while paying specific attention to uncover-
ing the heterogeneity in the data. They find strong evidence of heterogeneous e↵ects using
the S-, T- and X-learner combined with random forests.5 Specifically, they estimate the
Conditional Average Treatment E↵ect (CATE),

⌧(x) = E[Y (1)� Y (0)|X = x].

Here, Y (1) 2 {0, 1} is the outcome when a unit is treated (is assigned to receive the Neighbors
mailer), Y (0) is the outcome when the unit is in the control group, and x is the vector of
covariates of unit x.

Estimating the CATE is useful for targeting treatment to individuals with a particularly
strong e↵ect. Policy makers could use these estimates to specifically target individuals
with a large CATE. However, researchers are often interested in better understanding the
underlying e↵ects through plots and interpretable summaries of the estimators. This is, in
particular, important for communication with subject experts and policy makers [57]. [43,
45], for example, uncover the heterogeneity by using partial dependence plots and by looking
at specific subgroups that have been defined through subject knowledge and exhaustive
EDAs. They find that the estimated CATE varies with the CVH and it is suggested that
the treatment e↵ect is particularly low for potential voters who did not vote in any other
election before the general election in 2004 and units that voted in all past elections. These

5The S-, T- and X-learner are algorithms that can make use of a base algorithm such as random forests
to estimate the CATE. We refer to [45] for a detailed description.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 79

are interesting insights, but it is unsatisfying that looking into these particular subgroups
had to be motivated by subject knowledge or an EDA of an independent data set.

Using a linear aggregation function in RF directly enables us to understand the underlying
prediction function and we will show this in the following using the S-learner with random
forests. We will see that we do not need to specify interesting subgroups and that the
algorithm uncovers the heterogeneity automatically.

Making causal mechanisms more interpretable

Recall that in [45], the S-Learner estimates the outcome by using all of the features and the
treatment indicator, without giving the treatment indicator a special role,

µ̂(x, w) = Ê[Y |X = x,W = w].

The predicted CATE for an individual unit is then the di↵erence between the predicted
values when the treatment-assignment indicator is changed from control to treatment, with
all other features held fixed,

⌧̂(x) = µ̂(x, 1)� µ̂(x, 0). (5.21)

We are making four crucial changes to this formulation of S-RF:

1. In the original formulation, the treatment is binary. In our data set, there are, however,
four di↵erent treatments and we generalize the S-learner here to work with multiple
treatments at the same time. Specifically, we encode a treatment indicator for each of
the four treatments and we estimate the response function using all covariates and the
treatment indicators as independent variables,

µ̂(x, w1, . . . , w4) = Ê[Y |X = x,W1 = w1, . . . ,W4 = w4].

The CATE for the CD mailer is then defined as

⌧̂(x) = µ̂(x, 1, 0, 0, 0)� µ̂(x, 0, 0, 0, 0)

and the treatment e↵ects for the other mailers is defined analogue.

2. In the usual S-RF algorithm, each tree contains several splits on the treatment indi-
cators and the features. To compute the CATE of the NE mailer at x, the average of
the leaf in which (x, 0, 0, 0, 0) falls is subtracted from the average of the leaf in which
(x, 0, 0, 0, 1) falls.6 In our new formulation, we choose to linearly adapt in the four
treatment indicators and we allow splits on all covariates but not the variables that
encode the treatment assignment. In other words, the splits are done in such a way

6 If (x, 0, 0, 0, 0) falls into a leaf L and on the path to the leaf there was no split on w4, then also
(x, 0, 0, 0, 1) will fall into the same leaf and thus the predicted CATE will be 0 (c.f. 5.21). This often leads
to bias, and can be beneficial when the treatment e↵ect is close to 0.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 80

that a ridge regularized linear model that is linear in the four treatment indicators
minimizes the overall RSS. Figure 5.3 shows the first four trees of an S-RF estimator
with linear aggregation in the treatment indicators. Specifically, we chose the overfit
penalty, �, to be 10�8 so that the splits are essentially linear and the coe�cient of the
linear models in each leaf can be interpreted as the average treatment e↵ect in the
particular leaf.

3. Another important variation is that for each tree, we split the training set into two
disjoint sets: A splitting set that is used to create the tree structure and an aggregation
set that is used to compute the leaf aggregation. This property has been studied before
under di↵erent names ([68, 80]) to obtain better confidence intervals or prove mathe-
matical properties about the RF algorithm. Here, we use it to add interpretability and
to allow valid inference. Since the tree structure is independent of the aggregation set,
the leaf estimates are based on a completely independent data set. Thus for a leaf, L,
the regression coe�cients become estimates for the average treatment e↵ect for that
leaf,

(⌧̂ , b̂) = argmin
(⌧,b)

X

i:Xi2L

�
Yi �W T

i ⌧ � b
�2

+ �k⌧k2
2
. (5.22)

Here Wi 2 {0, 1}4 is the four dimensional vector containing the indicator for the
treatment group of unit i (e.g., W = (0, 0, 0, 0) encodes the control group, W =
(1, 0, 0, 0) encodes the CD group and W = (0, 1, 0, 0) encodes the HT group). Xi and
Yi are the features and the observed outcome of unit i and thus {i : Xi 2 L} is the set
of all indices of all units that fall in leaf L. (⌧̂ , b̂) is plotted in the leaves of each node
in Figure 5.3. Take, for example, the leaf on the very left in the first tree. It contains
units that have never voted in a primary (CPVH < 0.5) and who have also not voted
in the 2002 general election (g2002 = no). The structure and thus the splits of this
tree is based on a set that is disjoint to the subset of the training set that is used to
estimate the coe�cients. Thus b̂ (in the plot untr BL) is an estimate for the voting
propensity of voters falling into this leaf that were in the control group and the ⌧̂3 (in
the plot TE(SE)) is an estimate for the treatment e↵ect of the Self mailer.

4. If we trained the trees in the random forests algorithm without any stopping criteria
other than a minimal node size, we would still get very deep trees and they might even
perform very well in the standard random forest aggregation. We noticed, however,
that for a single tree predictor, training until purity leads to overfitting and makes it
very hard to learn a lot about the underlying causal e↵ects, since one cannot really
understand trees with several hundred or even thousands of nodes. We then use the
one step look-ahead stopping criteria introduced in Section 5.2.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 81

Software Solutions

Regression trees with linear aggregation can be much shallower and therefore more inter-
pretable without sacrificing predictive performance. However, we warn to not blindly use
only one tree and instead to use several. In the example below, we created several trees. For
each tree, we randomly split the training data into two parts: the splitting and the averaging
set. Since this partitioning is di↵erent for each tree, we find that there is some variation in
the trees and practitioners should consider multiple trees to draw rubust conclusions.

To aid researchers in analyzing regression trees, we implemented a plotting function
in the forestry package that is fast, easy to use, and flexible. It enables researchers to
quickly look at many trees in a RF algorithm. Figure 5.3 is created using this package by
varying the tree.id parameter to look at di↵erent trees. We recommend using a smaller
minSplitGain to draw even more personalized conclusions.

rft <- forestry(x = x,

y = y,

minSplitGain = .005,

linear = TRUE ,

overfitPenalty = 1e-8,

linFeats = 1:4,

splitratio = .5)

plot(forest , tree.id = 1)

Interpretation of the results

Let us take a look at the four trees in Figure 5.3. These trees are not exactly the same,
however, they still describe a very similar and therefore consistent behavior.

First of all, we notice that the primary voting history (CPVH) appears to be the most
important variable. However, age, the 2002 general election turnout, and the overall voting
history (CVH) appear to be useful features carrying a lot of information about the voting
propensity of the voters and the magnitude of the turnout.

In each tree, there is a leaf node of potential voters who never or very rarely voted in the
five elections before the 2004 general election. Unsurprisingly, all of these units have a very
low base line estimate for voting in the 2004 primary election (the outcome of interest) when
they are not treated. A bit more surprising, however, is that the treatment e↵ects of the
four mailers appear to be rather small for these units. This contradicts our intuition that
for a group of potential voters with a low baseline, there is a lot of space for improvement
and one might expect large treatment e↵ects.

We also find that in each of the trees there is a subgroup of units that have voted in at
least two out of the three recorded primary elections. As expected, for these units, the voting
propensity is very high even if they do not receive any of the mailers. The treatment e↵ects
are very large as well, which is again a bit surprising. After all, for a potential voter i who

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 82

would vote if they did not receive any of the mailers (Y (0) = 1), the individual treatment
e↵ect, Di = Yi(1)� Yi(0), can only be 0 or �1.

It is also interesting to see that there are a lot of splits on age at around 53 years. Older
voters tend to have a much higher baseline turnout of approximately 10%. The treatment
e↵ects here are very heterogeneous: All trees suggest that among voters who voted in at
least one primary (CPVH > .5 or CVH > 2.5),7 the treatment e↵ects of the di↵erent mailers
appear to be pretty similar for the two age groups. On the contrary, for potential voters who
voted in one general election, but never in a primary, the trees suggest that the treatment
e↵ect of the SE and NE mailers is larger for younger voters.

5.5 Conclusion

In this paper, we have proposed three main changes to the core CART algorithm and explored
their consequences in several examples. Specifically, our changes were focused on three main
additions: introducing linear aggregation functions for prediction in the leaf nodes of the esti-
mator, modifying the CART splitting algorithm to optimize the linear aggregation functions
on each node resulting from the split, and adding a stopping criteria which limits further
node creation when splitting would not increase the R2 by a predetermined percentage.

In order to explore these contributions, we analyzed the increase in predictive power
over a range of data sets in Section 5.3. Here we also highlighted the adaptivity of LRF as
an estimator by using a wide range of node sizes and regularization parameters. We then
noted how the linear aggregation leads to estimators that are much simpler to understand in
Section 5.4. We utilized the stopping criteria to build trees that have high performance as
well as o↵er inference through both the selected splits and resulting regression coe�cients.

We have already implemented a version of gradient boosting in the forestry package,
and we are very interested in evaluating the e↵ect of linear aggregation on gradient boosting.
We also believe that LRF can be less biased than the usual versions of RF, and we wonder
whether it would improve nonparametric confidence interval estimation. Finally, we believe
that the regression coe�cients could be very informative and we would like to study statistical
tests that can be used to determine whether the estimated coe�cients for the leaves are
statistically provably di↵erent.

7Since there have been only two general elections reported, a potential voter with CVH > 2.5 implies
that they must have voted in at least one primary.

CHAPTER 5. LINEAR AGGREGATION IN TREE-BASED ESTIMATORS 83

Figure 5.3: The first four trees of the S-Learner as described in Section 5.4. The first row
in each leaf contains the number of observations in the aggregation set that fall into the
leaf. The second part of each leaf displays the regression coe�cients. untr BL stands for
untreated Base Line and it can be interpreted as the proportion of units that fall into that
leaf who voted in the 2004 primary election. TE(CD) can be interpreted as an estimate for
the ATE of the CD mailer within the leaf. The color are chosen to represent the size of the
treatment e↵ect for the neighbors treatment. Eg., red represents leaves with a low treatment
e↵ect for the Neighbors mailer, TE(NE).

84

Bibliography

[1] Alberto Abadie. “Semiparametric di↵erence-in-di↵erences estimators”. In: The Review
of Economic Studies 72.1 (2005), pp. 1–19.

[2] Susan Athey and Guido W Imbens. “Recursive partitioning for heterogeneous causal
e↵ects”. In: Proceedings of the National Academy of Sciences of the United States of
America 113.27 (2016), pp. 7353–7360.

[3] Susan Athey, Julie Tibshirani, Stefan Wager, et al. “Generalized random forests”. In:
The Annals of Statistics 47.2 (2019), pp. 1148–1178.

[4] Peter J Bickel and Kjell A Doksum. Mathematical statistics: Basic ideas and selected
topics. Vol. 2. CRC Press, (2015).

[5] Adam Bloniarz et al. “Supervised neighborhoods for distributed nonparametric regres-
sion”. In: Artificial Intelligence and Statistics. 2016, pp. 1450–1459.

[6] Leo Breiman. “Random forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

[7] Leo Breiman and WS Meisel. “General estimates of the intrinsic variability of data
in nonlinear regression models”. In: Journal of the American Statistical Association
71.354 (1976), pp. 301–307.

[8] Leo Breiman et al. “Classification and regression trees. Wadsworth Int”. In: Group
37.15 (1984), pp. 237–251.

[9] David Broockman and Joshua Kalla. “Durably reducing transphobia: A field experi-
ment on door-to-door canvassing”. In: Science 352.6282 (2016), pp. 220–224.

[10] David Broockman, Joshua Kalla, and Peter Aronow. “Irregularities in LaCour”. In:
Work. pap., Stanford Univ. (2014).

[11] David E Broockman, Joshua L Kalla, and Jasjeet S Sekhon. “The design of field
experiments with survey outcomes: A framework for selecting more e�cient, robust,
and ethical designs”. In: Political Analysis 25 (2017), pp. 435–464.

[12] Peter Bühlmann, Bin Yu, et al. “Analyzing bagging”. In: The Annals of Statistics 30.4
(2002), pp. 927–961.

[13] Probal Chaudhuri et al. “Piecewise-polynomial regression trees”. In: Statistica Sinica
(1994), pp. 143–167.

BIBLIOGRAPHY 85

[14] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. KDD ’16. ACM, (2016), pp. 785–794.

[15] Hugh A Chipman, Edward I George, Robert E McCulloch, et al. “BART: Bayesian
additive regression trees”. In: The Annals of Applied Statistics 4.1 (2010), pp. 266–298.

[16] William S Cleveland and Susan J Devlin. “Locally weighted regression: an approach to
regression analysis by local fitting”. In: Journal of the American statistical association
83.403 (1988), pp. 596–610.

[17] Alexander D’Amour et al. “Overlap in Observational Studies with High-Dimensional
Covariates”. In: arXiv preprint arXiv:1711.02582 (2017).

[18] Arthur P Dempster. “The Dempster–Shafer calculus for statisticians”. In: International
Journal of approximate reasoning 48.2 (2008), pp. 365–377.

[19] Vincent Dorie et al. “Automated versus do-it-yourself methods for causal inference:
Lessons learned from a data analysis competition”. In: arXiv preprint arXiv:1707.02641
(2017).

[20] Bradley Efron. “Estimation and accuracy after model selection”. In: Journal of the
American Statistical Association 109.507 (2014), pp. 991–1007.

[21] Hadi Fanaee-T. Capital Bikeshare Database. Hourly and daily count of rental bikes be-
tween years 2011 and 2012 in Capital bikeshare system with the corresponding weather
and seasonal information. 2013. url: https://archive.ics.uci.edu/ml/datasets/
bike+sharing+dataset.

[22] Jared C Foster. “Subgroup Identification and Variable Selection from Randomized
Clinical Trial Data”. PhD thesis. The University of Michigan, 2013, pp. 1–97.

[23] Rina Friedberg et al. “Local linear forests”. In: arXiv preprint arXiv:1807.11408 (2018).

[24] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. “Regularization paths for gen-
eralized linear models via coordinate descent”. In: Journal of statistical software 33.1
(2010), p. 1.

[25] Jerome H Friedman. “Greedy function approximation: a gradient boosting machine”.
In: Annals of statistics (2001), pp. 1189–1232.

[26] João Gama. “Functional trees”. In: Machine Learning 55.3 (2004), pp. 219–250.

[27] Alan S Gerber, Donald P Green, and Christopher W Larimer. “Social pressure and
voter turnout: Evidence from a large-scale field experiment”. In: American Political
Science Review 102.1 (2008), pp. 33–48.

[28] Adam Glynn and Kevin Quinn. CausalGAM: Estimation of Causal E↵ects with Gen-
eralized Additive Models. R package version 0.1-4. (2017).

[29] Donald P Green and Holger L Kern. “Modeling heterogeneous treatment e↵ects in sur-
vey experiments with Bayesian additive regression trees”. In: Public Opinion Quarterly
76.3 (2012), pp. 491–511.

BIBLIOGRAPHY 86

[30] László Györfi et al. A distribution-free theory of nonparametric regression. Springer
Science & Business Media, (2006).

[31] Jaroslav Hájek. “On basic concepts of statistics”. In: Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probabilities. Vol. 1. (1967), pp. 139–162.

[32] Ben B Hansen and Jake Bowers. “Attributing e↵ects to a cluster-randomized get-
out-the-vote campaign”. In: Journal of the American Statistical Association 104.487
(2009), pp. 873–885.

[33] James J Heckman, Je↵rey Smith, and Nancy Clements. “Making the most out of
programme evaluations and social experiments: Accounting for heterogeneity in pro-
gramme impacts”. In: The Review of Economic Studies 64.4 (1997), pp. 487–535.

[34] Nicholas C. Henderson et al. “Bayesian analysis of heterogeneous treatment e↵ects
for patient-centered outcomes research”. In: Health Services and Outcomes Research
Methodology 16.4 (2016), pp. 213–233.

[35] Jennifer L Hill. “Bayesian nonparametric modeling for causal inference”. In: Journal
of Computational and Graphical Statistics 20.1 (2011), pp. 217–240.

[36] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased estimation for
nonorthogonal problems”. In: Technometrics 12.1 (1970), pp. 55–67.

[37] Torsten Hothorn et al. “Bagging survival trees”. In: Statistics in medicine 23.1 (2004),
pp. 77–91.

[38] Joshua L Kalla and David E Broockman. “The Minimal Persuasive E↵ects of Campaign
Contact in General Elections: Evidence from 49 Field Experiments”. In: American
Political Science Review 112.1 (2018), pp. 148–166.

[39] Aram Karalič. “Employing linear regression in regression tree leaves”. In: Proceedings
of the 10th European conference on Artificial intelligence. John Wiley & Sons, Inc.
1992, pp. 440–441.

[40] Max Kuhn et al. “Building predictive models in R using the caret package”. In: Journal
of statistical software 28.5 (2008), pp. 1–26.

[41] Sören Künzel et al. causalToolbox: Toolbox for Causal Inference with emphasize on
Heterogeneous Treatment E↵ect Estimator. R package version 0.0.1.000. (2018).

[42] Sören Künzel et al. hte: An implementation of Heterogeneous Treatment E↵ect Esti-
mators and Honest Random Forests in C++ and R. 2017. url: https://github.
com/soerenkuenzel/hte.

[43] Sören R Künzel, Simon JS Walter, and Jasjeet S Sekhon. “Causaltoolbox—Estimator
Stability for Heterogeneous Treatment E↵ects”. In: arXiv preprint arXiv:1811.02833
(2018).

[44] Sören R. Künzel et al. Forestry—CART, random forests, and gradient boosting algo-
rithms for inference and interpretability. 2019.

BIBLIOGRAPHY 87

[45] Sören R Künzel et al. “Metalearners for estimating heterogeneous treatment e↵ects
using machine learning”. In: Proceedings of the National Academy of Sciences 116.10
(2019), pp. 4156–4165.

[46] Sören R Künzel et al. “Transfer Learning for Estimating Causal E↵ects using Neural
Networks”. In: arXiv preprint arXiv:1808.07804 (2018).

[47] Lucien Le Cam. “On the asymptotic theory of estimation and testing hypotheses”. In:
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Proba-
bility. Vol. 1. (1956).

[48] Orges Leka. Used Cars Database. Over 370,000 used cars scraped from Ebay Kleinanzeigen.
2016. url: https://www.kaggle.com/orgesleka/used-cars-database/metadata.

[49] Daniel Lewandowski, Dorota Kurowicka, and Harry Joe. “Generating random correla-
tion matrices based on vines and extended onion method”. In: Journal of Multivariate
Analysis 100.9 (2009), pp. 1989–2001.

[50] Ker-Chau Li, Heng-Hui Lue, and Chun-Houh Chen. “Interactive tree-structured re-
gression via principal Hessian directions”. In: Journal of the American Statistical As-
sociation 95.450 (2000), pp. 547–560.

[51] Yi Lin and Yongho Jeon. “Random forests and adaptive nearest neighbors”. In: Journal
of the American Statistical Association 101.474 (2006), pp. 578–590.

[52] Hanzhong Liu and Bin Yu. “Asymptotic properties of Lasso+mLS and Lasso+Ridge in
sparse high-dimensional linear regression”. In: Electronic Journal of Statistics 7 (2013),
pp. 3124–3169.

[53] Christopher B Mann. “Is there backlash to social pressure? A large-scale field experi-
ment on voter mobilization”. In: Political Behavior 32.3 (2010), pp. 387–407.

[54] Nicolai Meinshausen. “Quantile regression forests”. In: Journal of Machine Learning
Research 7.Jun (2006), pp. 983–999.

[55] Melissa R Michelson. “The risk of over-reliance on the Institutional Review Board: An
approved project is not always an ethical project”. In: PS: Political Science & Politics
49.02 (2016), pp. 299–303.

[56] James N Morgan and John A Sonquist. “Problems in the analysis of survey data, and
a proposal”. In: Journal of the American statistical association 58.302 (1963), pp. 415–
434.

[57] W James Murdoch et al. “Interpretable machine learning: definitions, methods, and
applications”. In: arXiv preprint arXiv:1901.04592 (2019).

[58] Xinkun Nie and Stefan Wager. “Learning Objectives for Treatment E↵ect Estimation”.
In: arXiv preprint arXiv:1712.04912 (2017).

[59] Scott Powers et al. “Some methods for heterogeneous treatment e↵ect estimation in
high dimensions”. In: Statistics in medicine (2018).

BIBLIOGRAPHY 88

[60] Hein Putter and Willem R Van Zwet. “Resampling: consistency of substitution esti-
mators”. In: Selected Works of Willem van Zwet. Springer, (2012), pp. 245–266.

[61] John R Quinlan et al. “Learning with continuous classes”. In: 5th Australian joint
conference on artificial intelligence. Vol. 92. World Scientific. 1992, pp. 343–348.

[62] Peter M Robinson. “Root-N-consistent semiparametric regression”. In: Econometrica
56.4 (1988), pp. 931–954.

[63] Paul R. Rosenbaum. sensitivitymv: Sensitivity Analysis in Observational Studies. R
package version 1.4.3. (2018).

[64] Paul R Rosenbaum and Donald B Rubin. “The central role of the propensity score in
observational studies for causal e↵ects”. In: Biometrika 70.1 (1983), pp. 41–55.

[65] Daniel Rubin and Mark J van der Laan. “A doubly robust censoring unbiased trans-
formation”. In: The international journal of biostatistics 3.1 (2007).

[66] Donald B Rubin. “Estimating causal e↵ects of treatments in randomized and nonran-
domized studies.” In: Journal of Educational Psychology 66.5 (1974), p. 688.

[67] Thomas Rusch and Achim Zeileis. “Gaining insight with recursive partitioning of gen-
eralized linear models”. In: Journal of Statistical Computation and Simulation 83.7
(2013), pp. 1301–1315.

[68] Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. “Consistency of random forests”.
In: The Annals of Statistics 43.4 (2015), pp. 1716–1741.

[69] Jasjeet S. Sekhon. “Multivariate and Propensity Score Matching Software with Auto-
mated Balance Optimization: The Matching Package for R”. In: Journal of Statistical
Software 42.7 (2011), pp. 1–52.

[70] Jasjeet S Sekhon and Yotam Shem-Tov. “Inference on a New Class of Sample Average
Treatment E↵ects”. In: arXiv preprint arXiv:1708.02140 (2017).

[71] Jerzy Splawa-Neyman, Dorota M Dabrowska, and TP Speed. “On the application
of probability theory to agricultural experiments.” In: Statistical Science 5.4 (1990),
pp. 465–472.

[72] Charles J Stone. “Consistent nonparametric regression”. In: The annals of statistics
(1977), pp. 595–620.

[73] Charles J Stone. “Optimal global rates of convergence for nonparametric regression”.
In: The Annals of Statistics 10.4 (1982), pp. 1040–1053.

[74] Vladimir Svetnik et al. “Random forest: a classification and regression tool for com-
pound classification and QSAR modeling”. In: Journal of chemical information and
computer sciences 43.6 (2003), pp. 1947–1958.

[75] Matt Taddy et al. “A nonparametric bayesian analysis of heterogenous treatment ef-
fects in digital experimentation”. In: Journal of Business & Economic Statistics 34.4
(2016), pp. 661–672.

BIBLIOGRAPHY 89

[76] Lu Tian et al. “A simple method for estimating interactions between a treatment
and a large number of covariates”. In: Journal of the American Statistical Association
109.508 (2014), pp. 1517–1532.

[77] Lúıs Torgo. “Functional Models for Regression Tree Leaves”. In: Proceedings of the
Fourteenth International Conference on Machine Learning. ICML ’97. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1997, pp. 385–393. isbn: 1-55860-486-3.
url: http://dl.acm.org/citation.cfm?id=645526.657280.

[78] Wouter G Touw et al. “Data mining in the Life Sciences with Random Forest: a walk
in the park or lost in the jungle?” In: Briefings in bioinformatics 14.3 (2012), pp. 315–
326.

[79] Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer Series in
Statistics, (2009).

[80] Stefan Wager and Susan Athey. “Estimation and inference of heterogeneous treat-
ment e↵ects using random forests”. In: Journal of the American Statistical Association
(2017).

[81] Simon Walter, Jasjeet Sekhon, and Bin Yu. “Analyzing the modified outcome for het-
erogeneous treatment e↵ect estimation”. In: Unpublished manuscript (2018).

[82] Marvin N Wright and Andreas Ziegler. “ranger: A fast implementation of random
forests for high dimensional data in C++ and R”. In: arXiv preprint arXiv:1508.04409
(2015).

[83] Bin Yu. “Stabiilty”. In: Bernoulli 19 (2013), pp. 1484–1500.

[84] Bin Yu and Karl Kumbier. “Three principles of data science: predictability, computabil-
ity, and stability (PCS)”. In: arXiv preprint arXiv:1901.08152 (2019).

[85] Achim Zeileis, Torsten Hothorn, and Kurt Hornik. “Model-based recursive partition-
ing”. In: Journal of Computational and Graphical Statistics 17.2 (2008), pp. 492–514.

[86] Ruoqing Zhu, Donglin Zeng, and Michael R Kosorok. “Reinforcement learning trees”.
In: Journal of the American Statistical Association 110.512 (2015), pp. 1770–1784.

90

Appendix A

Supporting Information for
Meta-learners for Estimating
Heterogeneous Treatment E↵ects
using Machine Learning

A.1 Simulation Studies

In this section, we compare the S-, T-, and X-learners in several simulation studies. We
examine prototypical situations where one learner is preferred to the others. In practice,
we recommend choosing powerful machine-learning algorithms such as BART [35], Neural
Networks, or RFs for the base learners, since such methods perform well for a large variety
of data sets. In what follows, we choose all the base learners to be either BART or honest
RF algorithms—as implemented in the hte R package [42]—and we refer to these meta-
learners as S–RF, T–RF, X–RF, S–BART, T–BART, and X–BART, respectively. Using two
machine-learning algorithms as base learners helps us to demonstrate that our conclusions
about the performance of the di↵erent meta learners is often independent of the particular
base learner. For example, for all our simulation results we observe that if X–RF outperforms
T–RF, then X–BART also outperforms T–BART.

Remark 3 (BART and RF) BART and RF are regression tree-based algorithms that use
all observations for each prediction, and they are in that sense global methods. However,
BART seems to use global information more seriously than RF, and it performs particularly
well when the data-generating process exhibits some global structures (e.g., global sparsity or
linearity). RF, on the other hand, is relatively better when the data has some local structure
that does not necessarily generalize to the entire space.

APPENDIX A. SI FOR META-LEARNERS 91

Causal Forests

An estimator closely related to T–RF and S–RF is Causal Forests (CF) [80], because all
three of these estimators can be defined as

⌧̂(x) = µ̂(x, w = 1)� µ̂(x, w = 0),

where µ̂(x, w) is a form of random forest with di↵erent constraints on the split on the
treatment assignment, W . To be precise, in the S-learner the standard squared error loss
function will decide where to split on W , and it can therefore happen anywhere in the tree.
In the T-learner the split on W must occur at the very beginning.1 For CF the split on
W is always made to be the split right before the terminal leaves. To obtain such splits,
the splitting criterion has to be changed, and we refer to [80] for a precise explanation of
the algorithm. Figure A.1 shows the di↵erences between these learners for full trees with 16
leaves.

CF is not a meta-learner since the random forests algoirthm has to be changed. How-
ever, its similarity to T–RF and S–RF makes it interesting to evaluate its performance. Fur-
thermore, one could conceivably generalize CF to other tree-based learners such as BART.
However, this has not been done yet, and we will therefore compare CF in the following
simulations to S–, T–, and X–RF.

T-learner S-learner Causal Forests

Figure A.1: Illustration of the structural form of the trees in T–RF, S–RF, and CF.

Simulation setup

Let us here introduce the general framework of the following simulations. For each simula-
tion, we specify: the propensity score, e; the response functions, µ0 and µ1; the dimension,
d 2 N, of the feature space; and a parameter, ↵, which specifies the amount of confounding
between features. To simulate an observation, i, in the training set, we simulate its feature
vector, Xi, its treatment assignment, Wi, and its observed outcome, Yi, independently in the
following way:

1In the original statement of the algorithm we train separate RF estimators for each of the treatment
groups, but they are equivalent.

APPENDIX A. SI FOR META-LEARNERS 92

1. First, we simulate a d-dimensional feature vector,

Xi
iid
⇠ N (0,⌃), (A.1)

where ⌃ is a correlation matrix that is created using the vine method [49].

2. Next, we create the potential outcomes according to

Yi(1) = µ1(Xi) + "i(1),

Yi(0) = µ0(Xi) + "i(0),

where "i(1), "i(0)
iid
⇠ N (0, 1) and independent of Xi.

3. Finally, we simulate the treatment assignment according to

Wi ⇠ Bern(e(Xi)),

we set Yi = Y (Wi), and we obtain (Xi,Wi, Yi).2

We train each CATE estimator on a training set of N units, and we evaluate its perfor-
mance against a test set of 105 units for which we know the true CATE. We repeat each
experiment 30 times, and we report the averages.

The unbalanced case with a simple CATE

We have already seen in Theorem 2 that the X-learner performs particularly well when the
treatment group sizes are very unbalanced. We verify this e↵ect as follows. We choose the
propensity score to be constant and very small, e(x) = 0.01, such that on average only one
percent of the units receive treatment. Furthermore, we choose the response functions in
such a way that the CATE function is comparatively simple to estimate.

Simulation 1 (unbalanced treatment assignment)

e(x) = 0.01, d = 20,

µ0(x) = xT� + 5 I(x1 > 0.5), with � ⇠ Unif
�
[�5, 5]20

�
,

µ1(x) = µ0(x) + 8 I(x2 > 0.1).

The CATE function ⌧(x) = 8 I(x2 > 0.1) is a one-dimensional indicator function, and thus
simpler than the 20-dim function for the response functions µ0(·) and µ1(·). We can see in
Figure A.2 that the X-learner indeed performs much better in this unbalanced setting with
both BART and RF as base learners.

2This is slightly di↵erent from the DGP we were considering for our theoretical results, because here
m, the number of control units, and n, the number of treated units, are both random. The di↵erence is,
however, very small, since in our setups N = m+ n is very large.

APPENDIX A. SI FOR META-LEARNERS 93

●
●●
●

●

●

●

●
●

●

● ● ● ●
●

●●●●●●●●●● ● ● ● ● ●

Base−learners are BART Base−learners are RF

0 100 200 300 0 100 200 300

1

10

Training Size (in 1000)

M
SE

Meta−learner ●CF S−learner T−learner X−learner

Figure A.2: Comparison of S–, T–, and X–BART (left) and S–, T–, and X–RF and CF
(right) for Simulation 1.

Balanced cases without confounding

Next, let us analyze two extreme cases: In one of them the CATE function is very complex
and in the other one the CATE function is equal to zero. We will show that for the case
of no treatment e↵ect, the S-learner performs very well since it sometimes does not split on
the treatment indicator at all and it tends to be biased toward zero. On the other hand, for
the complex CATE case simulation we have chosen, there is nothing to be learned from the
treatment group about the control group and vice versa. Here the T-learner performs very
well, while the S-learner is often biased toward zero. Unlike the T-learner, the X-learner
pools the data, and it therefore performs well in the simple CATE case. And unlike the
S-learner, the X-learner is not biased toward zero. It therefore performs well in both cases.

Complex CATE

Let us first consider the case where the treatment e↵ect is as complex as the response
functions in the sense that it does not satisfy regularity conditions (such as sparsity or
linearity) that the response functions do not satisfy. We study two simulations here, and
we choose for both the feature dimension to be d = 20, and the propensity score to be
e(x) = 0.5. In the first setup (complex linear) the response functions are di↵erent linear
functions of the entire feature space.

APPENDIX A. SI FOR META-LEARNERS 94

Simulation 2 (complex linear)

e(x) = 0.5, d = 20,

µ1(x) = xT�1, with �1 ⇠ Unif([1, 30]20),

µ0(x) = xT�0, with �0 ⇠ Unif([1, 30]20).

The second setup (complex non-linear) is motivated by [80]. Here the response function are
non-linear functions.

Simulation 3 (complex non-linear)

e(x) = 0.5, d = 20,

µ1(x) =
1

2
&(x1)&(x2),

µ0(x) = �
1

2
&(x1)&(x2)

with

&(x) =
2

1 + e�12(x�1/2)
.

Figure A.3 shows the MSE performance of the di↵erent learners. In this case, it is best
to separate the CATE estimation problem into the two problems of estimating µ0 and µ1

since there is nothing one can learn from the other assignment group. The T-learner follows
exactly this strategy and should perform very well. The S-learner, on the other hand, pools
the data and needs to learn that the response function for the treatment and the response
function for the control group are very di↵erent. However, in the simulations we study here,
the di↵erence seems to matter only very little.

Another interesting insight is that choosing BART or RF as the base learner can matter
a great deal. BART performs very well when the response surfaces satisfy global properties
such as being globally linear, as in Simulation 2. However, in Simulation 3, the response sur-
faces do not satisfy such global properties. Here the optimal splitting policy di↵ers through-
out the space and this non-global behavior is harmful to BART. Thus, choosing RF as the
base learners results in a better performance here. Researchers should use their subject
knowledge when choosing the right base learner.

No treatment e↵ect

Let us now consider the other extreme where we choose the response functions to be equal.
This leads to a zero treatment e↵ect, which is very favorable for the S-learner. We will
again consider two simulations where the feature dimension is 20, and the propensity score
is constant and 0.5.

We start with a global linear model (Simulation 4) for both response functions. In
Simulation 5, we simulate some interaction by slicing the space into three parts, {x : x20 <

APPENDIX A. SI FOR META-LEARNERS 95

●

●

●

●

●

●
● ●

●

●

● ● ●

●●●●● ● ●
●

●

●

●

●

●

Base−learners are BART Base−learners are RF

com
plex linear

com
plex non−linear

0 100 200 300 0 100 200 300

10

100

1000

0.01

0.10

Training Size (in 1000)

M
SE

Meta−learner ●CF S−learner T−learner X−learner

Figure A.3: Comparison of the S-, T-, and X-learners with BART (left) and RF (right) as
base learners for Simulation 2 (top) and Simulation 3 (bottom).

�0.4}, {x : �0.4 < x20 < 0.4}, and {x : 0.4 < x20}, where for each of the three parts of the
space a di↵erent linear response function holds. We do this because we believe that in many
data sets there is a local structure, that appears only in some parts of the space.

Simulation 4 (global linear)

e(x) = 0.5, d = 5,

µ0(x) = xT�, with � ⇠ Unif([1, 30]5),

µ1(x) = µ0(x).

Simulation 5 (piecewise linear)

e(x) = 0.5, d = 20,

µ0(x) =

8
><

>:

xT�l if x20 < �0.4

xT�m if � 0.4  x20  0.4

xT�u if 0.4 < x20,

µ1(x) = µ0(x),

APPENDIX A. SI FOR META-LEARNERS 96

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●●

●
●

●
●

●

●●
●

●

● ●
● ●

Base−learners are BART Base−learners are RF

global linear
piecew

ise linear

0 100 200 300 0 100 200 300

1e−02

1e+00

1e+02

0.01

1.00

Training Size (in 1000)

M
SE

Meta−learner ●CF S−learner T−learner X−learner

Figure A.4: Comparison of S-, T-, and X-learners with BART (left) and RF (right) as base
learners for Simulation 4 (top) and Simulation 5 (bottom).

with

�l(i) =

(
�(i) if i  5

0 otherwise
�m(i) =

(
�(i) if 6  i  10

0 otherwise
�u(i) =

(
�(i) if 11  i  15

0 otherwise

and
� ⇠ Unif([�15, 15]d).

Figure A.4 shows the outcome of these simulations. For both simulations, the CATE is
globally 0. As expected, the S-learner performs very well, since the treatment assignment
has no predictive power for the combined response surface. The S-learner thus often ignores
the variable encoding the treatment assignment, and the S-learner correctly predicts a zero
treatment e↵ect. We can again see that the global property of the BART harms its perfor-
mance in the piecewise linear case since here the importance of the features is di↵erent in
di↵erent parts of the space.

Confounding

In the preceding examples, the propensity score was globally equal to some constant. This
is a special case, and in many observational studies, we cannot assume this to be true. All of

APPENDIX A. SI FOR META-LEARNERS 97

●
●

●●●

●

●

●

●
●

●

●
●

●

●

●

●
●
●●●
●
●●●

●
● ● ● ●

Base−learners are BART Base−learners are RF

0 100 200 300 0 100 200 300

0.001

0.100

Training Size (in 1000)

M
SE

Meta−learner ● S−learner T−learner X−learner

Figure A.5: Comparison of S–, T–, and X–BART (left) and S–, T–, and X–RF (right) for
Simulation 6.

the meta-learners we discuss can handle confounding, as long as the ignorability assumption
holds. We test this in a setting that has also been studied in [80]. For this setting we
choose x ⇠ Unif([0, 1]n⇥20) and we use the notation that �(x1, 2, 4) is the � distribution
with parameters 2 and 4.

Simulation 6 (beta confounded)

e(x) =
1

4
(1 + �(x1, 2, 4)),

µ0(x) = 2x1 � 1,

µ1(x) = µ0(x).

Figure A.5 shows that none of the algorithms performs significantly worse under con-
founding. We do not show the performance of causal forests, because—as noted by the
authors—it is not designed for observational studies with only conditional unconfounded-
ness and it would not be fair to compare it here [80].

A.2 Notes on the ITE

We provide an example that demonstrates that the ITE is not identifiable without further
assumptions. Similar arguments and examples have been given before [33], and we list it
here only for completeness.

Example 3 (Di is not identifiable) Assume that we observe a one-dimensional and uni-
formly distributed feature between 0 and 1, X ⇠ Unif([0, 1]), a treatment assignment that is

APPENDIX A. SI FOR META-LEARNERS 98

independent of the feature and Bernoulli distributed, W ⇠ Bern(0.5), and a Rademacher-
distributed outcome under control that is independent of the features and the treatment as-
signment,

P (Y (0) = 1) = P (Y (0) = �1) = 0.5.

Now consider two Data-Generating Processes (DGP) identified by the distribution of the
outcomes under treatment:

1. In the first DGP, the outcome under treatment is equal to the outcome under control:

Y (1) = Y (0).

2. In the second DGP, the outcome under treatment is the negative of the outcome under
control:

Y (1) = �Y (0).

Note that the observed data, D = (Yj, Xj,Wj)1jN , has the same distribution for both DGPs,
but Di = 0 for all i in DGP 1, and Di 2 {�2, 2} for all i in DGP 2. Thus, no estimator
based on the observed data D can be consistent for the ITEs, (Di)1in. The CATE, ⌧(Xi),
is, however, equal to 0 in both DGPs. ⌧̂ ⌘ 0, for example, is a consistent estimator for the
CATE.

A.3 Confidence Intervals for the Social Pressure
Analysis

In this paper, we study general meta-learners without making any parametric assumptions
on the CATE. This generality makes it very di�cult to provide confidence intervals with
formal guarantees. In the GOTV section of the main paper, we used bootstrap confidence
intervals; in this section, we explain why we choose the bootstrap and details of the variant
of the bootstrap, we selected.

The bootstrap has been proven to perform well in many situations [52] and it is straight-
forward to apply to any estimator that can be written as a function of iid data. There
are, however, many ways to obtain bootstrap confidence intervals. We have decided to use
Algorithm 10, because it performed well for X–RF in the Atlantic Causal Inference Confer-
ence (ACIC) challenge [19], where one of the goals was to create confidence intervals for a
wide variety of CATE estimation problems. We refer to these confidence intervals as normal
approximated CIs.

It was seen in the ACIC challenge that constructing confidence intervals for the CATE
that achieve their nominal coverage is extremely di�cult, and no method always provides
the correct coverage. To argue that the conclusions we draw in this paper are not specific
to a single bootstrap method, we implement another version of the bootstrap to estimate

APPENDIX A. SI FOR META-LEARNERS 99

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

−0.4

0.0

0.4

−0.4 0.0 0.4
Center of normal approximated CI

C
en

te
r o

f s
m

oo
th

ed
 C

I

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00
CI length of the normal approximated CI

C
I l

en
gt

h
of

 th
e

sm
oo

th
ed

 C
I

Figure A.6: Comparison of normal approximated CI (Algorithm 10) and smoothed CI (Al-
gorithm 11). The blue line is the identity function.

confidence intervals due to [60] and [20]. We refer to it as the smoothed bootstrap, and we
call the corresponding confidence intervals smoothed CIs. Pseudocode for this method can
be found in Algorithm 11.

There are many other versions of the bootstrap that could have been chosen, but we
focus on two that performed well in the ACIC challenge. To compare these methods, we use
the GOTV data, and we estimate confidence intervals for 2, 000 test points based on 50, 000
training points. We have to use this much smaller subset of the data for computational
reasons.

For both methods, we use B = 10, 000 bootstrap samples. This is a large number of
replications, but it is necessary because the smoothed CIs (Algorithm 11) are unstable for
a smaller B. Figure A.6 compares the center and the length of the confidence intervals
of the two methods for T–RF. We can see that the two methods lead to almost the same
confidence intervals. The normal approximated CIs are slightly larger, but the di↵erence is
not substantial. This is not surprising given the size of the data, and it confirms that our
analysis of the GOTV data would have come to the same conclusion had we used smoothed
CIs (Algorithm 11). However, normal approximated CIs (Algorithm 10) are computationally
much less expensive and they are therefore our default method.

APPENDIX A. SI FOR META-LEARNERS 100

CI-Simulation 1: Comparison of the coverage of the CI estimation
methods

To analyze the coverage of the di↵erent bootstrap methods, we use a simulation study
informed by the GOTV data. We generate the data in the following way:

CI-Simulation 1

1. We start by training the T-learner with random forests on the entire GOTV data set
to receive CATE estimates. We take this estimate as the ground truth and call it ⌧(x).

2. We then compute for each unit i the missing potential outcome. That is, for a unit
in the control group, we add ⌧(xi) to the observed outcome to obtain the outcome
under treatment, and for each unit in the treatment group, we subtract ⌧(xi) from the
observed outcome to obtain the outcome under control.

3. Next, we create a new treatment assignment by permuting the original one. This also
determines our new observed outcome.

4. Finally, we sample uniformly and without replacement a test set of 2, 000 observations
and a training set of 50, 000 observations.

We then compute 95% confidence intervals for each point in the test set using the the
normal and smoothed bootstrap combined with the S, T, and X-learner. The left part of
Figure A.7 shows a comparison of the six methods. We find that none of the methods provide
the correct coverage. The coverage of the smooth bootstrap intervals is slightly higher than
the coverage of the normal approximated confidence intervals, but the di↵erence is within
1%. It also appears that the T-learner provides the best coverage, but it also has the largest
confidence interval length.

Based on this simulation, we believe that the smooth CIs have a slightly higher coverage
but the intervals are also slightly longer. However, the smooth CIs are computationally
much more expensive and need a lot of bootstrap samples to be stable. They are therefore
unfeasible for our data. Hence we prefer the normal approximated CIs.

In general, we observe that none of the methods achieve the anticipated 95% coverage and
we suspect that this is the case, because the CATE estimators are biased and the bootstrap
is not adjusting for the bias terms. To analyze this, we approximated the bias using a Monte
Carlos simulation for each of the 2,000 test points using Algorithm 12. The density plot in
Figure A.8 shows that the bias of X–RF in our sample is substantial and in particular of the
same order as the size of the confidence intervals of X–RF. For example, more than 11% of
all units had bias bigger than 0.15.

This raises the question whether it is possible to correct for the bias. We tried to use the
bootstrap again to estimate the bias. Specifically, we used Algorithm 13 to estimate it. The
upper subfigure in Figure A.8 is a scatter plot of the Monte-Carlo-approximated bias versus

APPENDIX A. SI FOR META-LEARNERS 101

●

●

●

S−RF
T−RF

X−RF S−RF
T−RF

X−RF
●

●

●

S−RF

T−RF

X−RF
S−RF

T−RF

X−RF

●

●

●

S−RF

T−RF

X−RF
S−RF

T−RF

X−RF

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6
Average CI Length

C
ov

er
ag

e

Area with overlap

Bootstrap
● normal

smooth

CI−Simulation 1 CI−Simulation 2
Area without overlap
CI−Simulation 2

Figure A.7: Coverage and average confidence interval length of the three meta-learners for
normal approximated CI (Algorithm 10) and smoothed CI (Algorithm 11). The left figure
corresponds to Simulation 3.1; the middle figure corresponds to units in an area with overlap
in Simulation SI 3.2, and the right figure corresponds to units in an area without overlap in
Simulation SI 3.2. The dotted line corresponds to the target 95% confidence interval.

the bootstrap-estimated bias. We can see that the bootstrap does not correctly estimate the
bias.

CI-Simulation 2: Confounding without overlap

In observational studies, researchers have no control over the treatment assignment process
and, in some cases, even the overlap condition may be violated. That is, there exists a
subgroup of units that is identifiable by observed features for which the propensity score is 0
or 1. Consequently, all units are either treated or not and estimating the CATE is impossible
without very strong assumptions. We generally advise researchers to be very cautious when
using these methods on observational data. In this section, we want to study how well
one can estimate confidence intervals in observational studies where the overlap condition is
violated. Ideally, we would hope that the confidence intervals in areas with no overlap are
extremely wide.

To test the behavior of the di↵erent confidence interval estimation methods, we set up
another simulation based on real data. In this simulation we intentionally violate the overlap
condition by assigning all units between 30 and 40 years to the control group. We then
compared the confidence intervals for this subgroup with the other units where the overlap

APPENDIX A. SI FOR META-LEARNERS 102

●● ● ● ●● ●

●

●

●

●● ● ●
●

●● ●
●

●●●●●
●

●●
●
● ● ●●

●● ●●
● ●● ●

●
●

●
●● ●

●
●●

●
●

●●

●
●
●●●

● ●●
● ●●

●
●●
●●

●
● ●●

●
●

●
●
●

● ● ●

●

●
●

●
●

●
●●

●● ● ●

●

● ●
●

●

● ●●
●

● ●●
●●

●
●

●●
●
●

●
●

●

●
●●

●
● ●

●
● ●●

●

●
●

●

● ●

●

●
●● ●● ●

●● ●
●

● ●
● ● ●●

● ●
●

●

●

● ● ●● ●
●

●
●●

●
●● ●

● ●
●

●● ●
●

● ●

●

● ●●●
● ●

● ●

●

●
●

● ●
●●

●
● ●● ● ●●● ●●

●
● ●

●
●
●

●●●
● ●● ● ● ●●
●

●

●
●

●

●●●
● ● ●

●
●

●
● ●

● ●
●

●●●●
●

●● ●●●
●

●●

●

●
●●

●●
●

● ●

●
●

●●● ●

●
●

●
●● ●

●

● ●
●

●● ●●●

●

● ●●●● ●● ●●
●

●
●

●●
●

●
●

●

● ●●
●
●

●
●

●

●

●

●

●
●

●
●●
●●●●

●

●
●●●

●
●

● ●●
●●

● ●●
●

●
●

● ●
●● ●●●● ●●

●
●
●

●●●
● ●

●

●

●
●

●
●

●
●

● ●

●

●

●
●

●
●

●

●
●

● ● ●●

●
●

●

●

● ●●

●

●
●

●
●

●

●
●●

●

●
● ●● ● ●

●

●●●
●●

●
●

●● ●
●

●●● ●● ●
●

● ● ●
●

●●
●●

● ●● ●

●

●
●

●
● ●● ●

●
●

●●● ●
● ●

●

●

●
● ●●●

●
● ●

●●
●●

●

●
●

●
●

●
●● ●●
●● ● ●●

●
●●●●

●●
●

●
●● ●●

●

●
●

●
●●

●

●

● ● ●
●
●

●

●

●

●●
●

● ● ●●

●
●

● ●
●● ● ●
●●●

●

●

●

● ●●

●

●● ●● ●● ●
●

●

●
●
●●

●
●●●●● ●●

●
● ●●

●

●
●● ● ● ●

●

●

● ●
●● ●● ●

●

●

● ●●
●● ●

●
●●●
● ●● ●

● ●●
●

●
●

●
●●

● ● ●

●●●
●

●
●

●●
● ●

●● ●
● ●●

●

● ● ●
●

●

●

● ●
●●● ●

●

●

●● ●● ●
●● ● ● ●● ●●

●
●

●

●● ●●● ●● ●● ●
●

●
●● ●● ●● ● ●

●
●

●● ●●
●

●

●

●
●

●
●● ●

●

●●● ●
●

●

●

●
●

●

●

●
●

● ●

●

● ●●●●
●● ●●●

● ●● ●● ● ●● ●●●●

●
●

●

● ●
●

●

●● ● ●●●●●
●

●

●
● ●●

●
●

●

● ●●

●

●

●

●
●● ● ● ●●

●● ●
● ●

● ● ● ●
●

●

● ●●
● ●

●
●●

● ●

●
●●●

●
● ●●● ●

●
●
● ●

●

●● ● ●●● ●●
● ●

●●●
●●

●
●

●

●

●●● ●●●
●

● ●●
●●

●●●
●

●
●

●●
●

● ●
●

●●

●
● ●● ●

● ●●● ●● ●●●● ● ●●
●

●
●●

●
● ●

●
●

●
●● ●

●● ●
●

●
● ●● ●

●
●

●●●
●

●
●

●

●

● ● ●●
●

●

●
●

●●

●

●

●

●●
●●

●
● ●

●
● ●●●● ●●

●●

●
●

● ●
●

●
●

●●● ●
●●●●

●

● ●● ●

●

●●
●●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●
●● ●

●
●

● ●
●●● ●
●

● ●●
●● ●

●
●

●

●
● ●●

●

●● ● ●
●
● ● ●

●
●●

●
● ●●●

●
●● ●
●

●
● ● ●● ●●●

● ●●
●●● ●●

● ●
●●

●
●
● ●

●
● ●

●●
●
●

● ●
●●● ●●

● ●●

●

● ● ●

●
● ●

● ●● ●●

●
●

●
●
●●

●● ●
●● ●

●

● ●

●
●

●

●

● ● ●● ●●
●●

●

●

●

●●
●●

●●
●●

●
● ●●● ●●

●● ●●

●
●

●
●

●
●

●

●●
●

●

● ●
●

●● ●
●●

●
●

●
●●

●

●

●
● ●

●● ●
●

●●
●

●

●●● ●●●
●●●

●
●

●
●

●

● ●

●

● ●

● ●

●●
●

●

● ●● ●
●

●
● ● ● ●● ●●

●

●

●

●
●

●

●●
●●

● ●
●

●●●
●●●

●

●

●● ●

●

●
● ●

●
●

●
●● ●

●

●
●
● ● ●
● ●

● ●

●

●
● ●

●

●
● ●●

●

●
●

●

●
●●

●
●

●
● ●●●● ●

●
●

● ●●
●

●
●

●●
● ●

●

●●●
●

●

●● ●
● ●

●●
●● ●

●● ●●● ● ●
●

● ●●

●

●●

● ●

●
●

●●
●

●● ●●
●

●

●

●●●
● ●● ● ● ●● ●●●

●
● ●●

●

● ●
●

●

● ●●●
●

●
●●

●
●● ●

●

●

● ●
●

●
●●

●

●●●

●

●

● ●●

●

● ● ●●● ●
● ● ●

● ●●
●

●

●
●●●

●
●

●
●

● ● ●●●
●●● ● ●●
● ●●● ●

● ●
●

●
●

● ●● ● ●●● ●
●

●
● ●● ● ●

●

●●
●

●
●

●●● ● ●●●●● ●
●

● ●
● ●
●

●●● ●● ●●
●●

●

●
●●

●●
●● ● ●
●
● ●

●
●

●
● ●

●

●

●
●●

●

●

●

●

●
●

●

●
●●●●●

●
● ●●● ●●

●

●●●●
● ●

●

●

● ●
●●

●●

●
●

● ●
●

●

●● ●●

●

●
●

●
● ●

●
●

●
●

●
● ●

●

●●●
●

●
●

●●
●
●

●

● ●
● ●●

●

● ●
●

●
● ●

●
●

● ●
● ●

●

●
●●

●
●

●

●●
●●● ●

●

● ●

●

● ●
●

●● ●
● ●●●● ●

●

●●
●

● ●● ● ●● ●

●

●● ●● ●
●

●
● ●●●

●

●● ●●
● ●

●●
● ●● ●

●

●●
●

●●
●●

●

●

●
● ●

●
● ●●

● ●
●
●

●

●●
● ●●● ●● ● ●

●
●

● ●●● ● ●
●
● ●

●

●
●

●
● ●

●

●● ●● ●● ●●
●

●
●

●
●

●

● ●● ●
●●●

●
●●

●
●●● ●● ●● ●
●

●● ●
●

● ●●
●●● ●● ●●●●

●

●●
●

●● ●●
●

●● ●●
●

●
●

●

●

●
●

● ● ●
●

●● ●
●●

●●
●

●

●
●●●

● ●
●

●
●●

●
●● ●

●●
●● ●

●

●

●
●●

●

●●
●

●

●

●

●
●

●

●●
● ●●

●

●
● ●●

● ●
●● ●

●●
● ● ●

●

●●
●● ●●● ●●

●
●

●●●

●

●
●●

●
●

●
●

● ●
●● ●
●

●
●

● ●

●

●
●

●●
●

●
●

● ●
●●

● ●
●

●
●

●
●

●●

●

●
●
●

●
●

●
●

●
● ●

●● ●●●
● ●

● ●●●
●

●●
●

●●
●

●●●
●●● ●

●●
●●●

●

●
●

●
● ●

● ●
●

●●● ●
● ●

●
●

● ●

●
●● ●● ●

●● ● ●●
●●

●● ●● ● ●

●●●●
● ●

● ●

●

●
●●●

●
● ●

●

● ●

●
●

● ●●

●
●

●●
●

●●
●

●●●●●

●
●

● ● ●● ●●● ●● ●
●

● ●

−0.2

0.0

0.2

Es
tim

at
ed

 B
ia

s

0
2
4
6

−0.2 0.0 0.2
Approximated Bias

D
en

si
ty

Figure A.8: Approximated bias using Algorithm 12 versus estimated bias using Algorithm
13 and X–RF.

condition is not violated. For our simulation, we follow the same steps as in Section A.3,
but we modified Step 3 to ensure that all units between 30 and 40 years of age are in the
control group. Specifically, we construct the data in the following way:

1. We start by training the T-learner with random forests on the entire GOTV data set
to construct CATE estimates. We take this estimate as the ground truth and call it
⌧(x).

2. We then use ⌧(x) to impute the missing potential outcomes. That is, for a unit
in the control group, we add ⌧(xi) to the observed outcome to obtain the outcome
under treatment, and for each unit in the treatment group, we subtract ⌧(xi) from the
observed outcome to obtain the outcome under control.

3. Next, we create a new treatment assignment by permuting the original treatment
assignment vector and assigning all entries for units between 30 and 40 years old to
the control group. This also determines our new observed outcome.

4. Finally, we sample uniformly and without replacement two test sets and one training
set. We first sample the training set of 50, 000 observations. Next, we sample the first
test set of 20, 000 units out of all units that are not in the 30 to 40-year-old age group.
This test set is called the overlap test set. Finally, we sample the second test set of

APPENDIX A. SI FOR META-LEARNERS 103

20, 000 units out of all units in the 30 to 40-year-old age group and we call this test
set the non-overlap test set.

Note that by construction the overlap condition is violated for the subgroup of units between
30 and 40 years and satisfied for units outside of that age group.

We trained each method on the training set and estimated the confidence intervals for
the CATE in both test sets. The middle and the right part of Figure A.7 shows the results
for the overlap test set and the non-overlap test set, respectively. We find that the coverage
and the average confidence interval length for the overlap test set is very similar to that
of the previous simulation study, CI-Simulation 1. This is not surprising, because the two
setups are very similar and the overlap condition is satisfied in both.

The coverage and the average length of the confidence intervals for the non-overlap test
set are, however, very di↵erent. For this subgroup, we do not have overlap. We should be
cautious when estimating the CATE or confidence intervals of the CATE when there is no
overlap, and we hope to see this reflected in very wide confidence intervals. Unfortunately,
this is not the case. We observe that for all methods the confidence intervals are tighter
and the coverage is much lower than on the data where we have overlap because they try
to extrapolate into regions of the covariate space without information on the treatment
group. This is a problematic finding and suggests that confidence interval estimation in
observational data is extremely di�cult and that a violation of the overlap condition can
lead to invalid inferences. We believe that this is an artifact of how random forests deal
with the predictions for units outside of the support of the training data. We are currently
working on an improved version of random forests that better captures this uncertainty.

A.4 Stability of the Social Pressure Analysis across
Meta-learners

In Figure 1.2, we present how the CATE varies with the observed covariates. We find a very
interesting behavior in the fact that the largest treatment e↵ect can be observed for potential
voters who voted three or four times before the 2004 general election. The treatment e↵ect
for potential voters who voted in none or all five of the observed elections was much smaller.
We concluded this based on the output of the X-learner. To show that a similar conclusion
can be drawn using di↵erent meta-learners, we repeated our analysis with the S and T learner
(cf. Figure A.9). We find that the output is almost identical to the output of the X-learner.
This is not surprising since the data set is very large and most of the covariates are discrete.

APPENDIX A. SI FOR META-LEARNERS 104

0%

25%

50%

Vo
te

r P
ro

po
rti

on

S−learner

−5%

0%

5%

10%

15%

20%

0 1 2 3 4 5
Cumulative Voting History

C
AT

E

0%

25%

50%

Vo
te

r P
ro

po
rti

on

T−learner

−5%

0%

5%

10%

15%

20%

0 1 2 3 4 5
Cumulative Voting History

C
AT

E
Figure A.9: Results for the S-learner (left) and the T-learner (right) for the get-out-the-vote
experiment.

A.5 The Bias of the S-learner in the Reducing
Transphobia Study

For many base learners, the S-learner can completely ignore the treatment assignment and
thus predict a 0 treatment e↵ect. This often leads to a bias toward 0, as we can see in
Figure 1.4. To further analyze this behavior, we trained a random forest estimator on the
transphobia data set with 100,000 trees, and we explored how often the individual trees
predict a 0 treatment e↵ect by not splitting on the treatment assignment. Figure A.10
shows that the trees very rarely split on the treatment assignment. This is not surprising
for this data set since the covariates are very predictive of the control response function and
the treatment assignment is a relatively weak predictor.

A.6 Adaptivity to Di↵erent Settings and Tuning

Tuning the base learners to receive better CATE estimators or even selecting the best CATE
estimator from a finite set of CATE estimators is very di�cult, and our recent R package,
hte, attempts to implement some tuning and selection methods. This is, however, very
di�cult and in the preceding sections, we did not tune our random forest algorithm or our
BART estimators on the given data sets. Instead, we used fixed hyperparameters that were
chosen in a di↵erent simulation study. In the sequel, we show that tuning the base learners
and being able to select the best meta-learner can be very beneficial to constructing a good
CATE estimator.

We conduct a simple experiment showing the potential benefits of hyperparameter tuning

APPENDIX A. SI FOR META-LEARNERS 105

0

1000

2000

3000

4000

5000

0% 25% 50% 75% 100%
Percentage of the support of X with no splits on W

N
um

be
r O

f T
re

es

Figure A.10: This figure is created from an S–RF learner to show that the S-learner often
ignores the treatment e↵ect entirely. It is based on 100,000 trees and it shows the histogram
of trees by what percentage of the support of X is not split on W .

of the base learners. Specifically, we evaluate S–RF, T–RF, and X–RF in Simulations 4 and
2. We sample 1,000 hyperparameter settings for each of the learners and evaluate them in
both simulations. In other words, for each hyperparameter setting, we obtain an MSE for
Simulation 4 and an MSE for Simulation 2.

Figure A.11 shows the MSE pairs. As expected, we observe that the T-learner generally
does very well when the treatment e↵ect is complex, while it does rather poorly when the
treatment e↵ect is simple. This was expected as the T-learner generally performs poorly
compared to the S-learner when the treatment e↵ect is simple or close to 0. Also as expected,
the S-learner performs well when the treatment e↵ect is simple, but it performs relatively
poorly compared to the T-learner when the treatment e↵ect is complex. The X-learner, on
the other hand, is extremely adaptive. In fact, depending on the set of hyperparameters,
the X-learner can perform as well as the T-learner or the S-learner. However, there is not
a single set of parameters that is optimal for both settings. In fact, the optimal settings
almost describe a utility curve.

Setting the Tuning Parameters

Since tuning each algorithm for each data set separately turns out to be very challenging, we
decided to hold the hyperparameters fix for each algorithm. To chose those preset hyperpa-
rameters, we used the 2016 Atlantic Causal Inference Conference competition [19], and we
chose the parameters in such a way that the algorithms perform very well in this competi-
tion. Specifically, we randomly generated for each algorithm 10,000 hyperparameters. We
then evaluated the performance of these 10,000 hyperparameter settings on the 20 data sets

APPENDIX A. SI FOR META-LEARNERS 106

0.00

0.01

0.02

0.03

0.04

1000 2000 3000
MSE for Complex Treatment Effect and no Confounding

M
SE

 fo
r S

im
pl

e
Tr

ea
tm

en
t E

ffe
ct

 w
ith

 C
on

fo
un

di
ng

Estimator
S−learner

T−learner

X−learner

Figure A.11: Each point corresponds to a di↵erent hyperparameter setting in random forests
as the base learner in one of the S-, T-, or X-learners. The y-axis value is the MSE of
Simulation 4 and the x-axis value is the MSE in Simulation 2. A perfect estimator that gets
an MSE error of 0 in both simulations would thus correspond to a point at the origin (0,0).
The training set size had 1,000 units and the test set that was used to estimate the MSE
had 10,000 units.

of the “Do it yourself!”-challenge, and we chose the hyperparameter combination which did
best for that challenge.

A.7 Conditioning on the Number of Treated Units

In our theoretical analysis, we assume a superpopulation and we condition on the number of
treated units both to avoid the problem that with a small but non-zero probability all units
are in the treatment group or the control group and to be able to state the performance of
di↵erent estimators in terms of n, the number of treated units, and m, the number of control
units. This conditioning, however, leads to nonindependent samples. The crucial step in
dealing with this dependent structure is to condition on the treatment assignment, W .

Specifically, there are three models to be considered.

1. The first one is defined by 1.1. It specifies a distribution, P , of (X,W, Y), and we

APPENDIX A. SI FOR META-LEARNERS 107

assume to observe N independent samples from this distribution,

(Xi,Wi, Yi)
N
i=1

iid
⇠ P .

We denote the joint distribution of (Xi,Wi, Yi)
N
i=1

by P
N .

2. We state our technical results in terms of a conditional distribution. For a fixed n with
0 < n < N , we consider the distribution of (Xi,Wi, Yi)

N
i=1

given that we observe n
treated units and m = N � n control units. We denote this distribution by P

nm.

"
(Xi,Wi, Yi)

N
i=1

����
NX

i=1

Wi = n

#
⇠ P

nm.

Note that under Pnm the (Xi,Wi, Yi) are identical in distribution, but not independent.

3. For technical reasons, we also introduce a third distribution, which we will use only in
some of the proofs. Here, we condition on the vector of treatment assignments, W .

h
(Xi,Wi, Yi)

N
i=1

��W = w
i
⇠ P

w.

Under this distribution W is non-random and (Xi, Yi) are not identical in distribution.
However, within each treatment group the (Xi, Yi) tuples are independent and identical
in distribution. To make this more precise, define P1 to be the conditional distribution
of (X, Y) given W = 1; then, under Pw, we have

(Xi, Yi)Wi=1

iid
⇠ P1.

We prove these facts as follows.

Theorem 3 Let n and N be such that 0 < n < N and let w 2 {0, 1}N with
PN

i=1
wi = n.

Then, under the distribution P
w,

(Xk, Yk)Wk=1

iid
⇠ P1.

We prove this in two steps. In Lemma 1, we prove that the distributions are independent
and in Lemma 2 we prove that they are identical.

Lemma 1 (independence) Let n, N , and w be as in Theorem 3 and define S = {j 2 N :
wj = 1}. Then for all ; 6= I ⇢ S, and all (Bi)i2I with Bi ⇢ Rp

⇥ R,

P

\

i2I

{(Xi, Yi) 2 Bi}

����W = w

!
=
Y

i2I

P
✓
(Xi, Yi) 2 Bi

����W = w

◆
. (A.2)

APPENDIX A. SI FOR META-LEARNERS 108

Note that another way of writing A.2 is

Pw

\

i2I

{(Xi, Yi) 2 Bi}

!
=
Y

i2I

Pw ((Xi, Yi) 2 Bi) . (A.3)

Proof. [Proof of Lemma 1]

P

\

i2I

{(Xi, Yi) 2 Bi}

����W = w

!

= P
 ⇣\

i2I

{(Xi, Yi) 2 Bi}

⌘
\

⇣\

j2S

{Wj = 1} \
\

k2Sc

{Wk = 0}
⌘!

/ P
⇣
W = w

⌘

= P

0

@
⇣\

i2I

�
(Xi, Yi,Wi) 2 Bi ⇥ {1}

 ⌘
\

⇣ \

j2S\I

{Wj = 1} \
\

k2Sc

{Wk = 0}
⌘
1

A /P
⇣
W = w

⌘

=
Y

i2I

P
⇣
(Xi, Yi,Wi) 2 Bi ⇥ {1}

⌘P
⇣T

j2S\I{Wj = 1} \
T

k2Sc{Wk = 0}
⌘

P
⇣
W = w

⌘ = (⇤).

The last equality holds because (Xi, Yi,Wi)Ni=1
are mutually independent. The second term

can be rewritten in the following way:

P
⇣T

j2S\I{Wj = 1} \
T

k2Sc{Wk = 0}
⌘

P
⇣
W = w

⌘ =

Q
j2S\I P(Wj = 1)

Q
k2Sc P(Wk = 0)

Q
j2S P(Wj = 1)

Q
k2Sc P(Wk = 0)

=
Y

j2J

1

P(Wj = 1)

=
Y

j2J

Q
j2S\{j} P(Wj = 1)

Q
k2Sc P(Wk = 0)

Q
j2S P(Wj = 1)

Q
k2Sc P(Wk = 0)

=
Y

i2I

P
T

j2S\{i}{Wj = 1} \
T

k2Sc{Wk = 0}

�

P
h
W = w

i .

APPENDIX A. SI FOR META-LEARNERS 109

Thus,

(⇤) =
Y

i2I

P

(Xi, Yi,Wi) 2 Bi ⇥ {1}

�Y

i2I

P
T

j2S\{i}{Wj = 1} \
T

k2Sc{Wk = 0}

�

P
h
W = w

i

=
Y

i2I

✓
P

(Xi, Yi,Wi) 2 Bi ⇥ {1} \

⇣ \

j2S\{i}

{Wj = 1} \
\

k2Sc

{Wk = 0}
⌘�

/ P
h
W = w

i◆

=
Y

i2I

✓
P
⇣
(Xi, Yi) 2 Bi \

n
W = w

o⌘
/ P
⇣
W = w

⌘◆

Y

i2I

P
✓
(Xi, Yi) 2 Bi

����W = w

◆
,

which completes the proof.

Next, we are concerned with showing that all treated units have the same distribution.

Lemma 2 (identical distribution) Assume the same assumptions as in Lemma 1 and let
i 6= j 2 S. Under the conditional distribution of W = w, (Xi, Yi) and (Xj, Yj) have the same
distribution, P1.

Proof. Let B ⇢ Rp
⇥ R; then

P
✓
(Xi, Yi) 2 B

����W = w

◆
⇤
= P

�
(Xi, Yi) 2 B

��Wi = 1
�

=
P ((Xi, Yi,Wi) 2 B ⇥ {1})

P(Wi = 1)

a
=

P ((Xj, Yj,Wj) 2 B ⇥ {1})

P(Wj = 1)

= P
�
(Xj, Yj) 2 B

��Wj = 1
�

⇤
= P

✓
(Xj, Yj) 2 B

����W = w

◆
.

Here ⇤ follows from (Xi, Yi,Wi)Ni=1
being mutually independent, and a follows from (Xi, Yi,Wi)Ni=1

being identically distributed under P .

A.8 Convergence Rate Results for the T-learner

In this section, we want to prove Theorem 1 of the main paper. We start with a short lemma
that will be useful for the proof of the theorem.

APPENDIX A. SI FOR META-LEARNERS 110

Lemma 3 Let P be defined as in 1.1 with 0 < emin < e(x) < emin < 1. Furthermore, let
X,W be distributed according to P, and let g be a positive function such that the expectations
below exist; then

emin

emax

E[g(X)]  E[g(X)|W = 1] 
emax

emin

E[g(X)], (A.4)

1� emax

1� emin

E[g(X)]  E[g(X)|W = 0] 
1� emin

1� emax

E[g(X)]. (A.5)

Proof. [Proof of Lemma 3] Let us prove A.4 first. The lower bound follows from

E[g(X)|W = 1] � E[g(X)]
infx e(x)

E[W]
�

emin

E[W]
E[g(X)] �

emin

emax

E[g(X)],

and the upper bound from

E[g(X)|W = 1]  E[g(X)]
supx e(x)

E[W]


emax

emin

E[g(X)].

A.5 follows from a symmetrical argument.

Let us now restate Theorem 1. Let m,n 2 N+ and N = m + n and let P be a distri-
bution of (X,W, Y) according to 1.1 with the propensity score bounded away from 0 and
1. That is, there exists emin and emax such that 0 < emin < e(x) < emax < 1. Furthermore,
let (Xi,Wi, Yi)Ni=1

be i.i.d. from P and define P
nm to be the conditional distribution of

(Xi,Wi, Yi)Ni=1
given that we observe n treated units,

PN
i=1

Wi = n.
Note that n and m are not random under Pnm. We are interested in the performance of

the T-learner, ⌧̂mn
T , under Pnm as measured by the EMSE,

EMSE(⌧̂mn
T ,Pnm)

def
= E

"
(⌧̂mn

T (X)� ⌧(X))2
����

NX

i=1

Wi = n

#
.

The expectation is here taken over the training data set (Xi,Wi, Yi)Ni=1
, which is distributed

according to P
nm, and X , which is distributed according to the marginal distribution of X

in P .
For a family of superpopulations, F 2 S(aµ, a⌧), we want to show that the T-learner with

an optimal choice of base learners achieves a rate of

O(m�aµ + n�aµ).

An optimal choice of base learners is estimators that achieve the minimax rate of n�aµ and
m�aµ in F .

APPENDIX A. SI FOR META-LEARNERS 111

Proof. [Proof of Theorem 1] The EMSE can be upper bounded by the errors of the single
base learners:

EMSE(⌧̂mn
T ,Pnm) = E

"
(⌧̂mn

T (X)� ⌧(X))2
����

NX

i=1

Wi = n

#

 2E
"
(µ̂n

1
(X)� µ1(X))2

����
NX

i=1

Wi = n

#

| {z }
A

+2E
"
(µ̂m

0
(X)� µ0(X))2

����
NX

i=1

Wi = n

#

| {z }
B

.

Here we use the following inequality:

(⌧̂mn
T (X)� ⌧(X))2  2(µ̂n

1
(X)� µ1(X))2 + 2(µ̂m

0
(X)� µ0(X))2.

Let us look only at the first term. We can write

A = E
"
(µ̂n

1
(X)� µ1(X))2

����
NX

i=1

Wi = n

#

= E
"
E
"
(µ̂n

1
(X)� µ1(X))2

����W,
NX

i=1

Wi = n

����
NX

i=1

Wi = n

#
. (A.6)

It is of course not necessary to condition on
PN

i=1
Wi = n in the inner expectation, and we

only do so as a reminder that there are n treated units.
For i 2 {1, . . . , n}, let qi be the ith smallest number in {k : Wk = 1}. That is, {qi : i 2

{1, . . . , n}} are the indexes of the treated units. To emphasize that µ̂n
1
(X) depends only on

the treated observations, (Xqi , Yqi)
n
i=1

, we write µ̂n
1
((Xqi , Yqi)

n
i=1

,X). Furthermore, we define
P1 to be the conditional distribution of (X, Y) given W = 1. Conditioning on W , Theorem
3 implies that (Xqi , Yqi)

n
i=1

is i.i.d. from P1. Let us define X̃ to be distributed according to
P1. Then we can apply Lemma 3 and use the definition of S(aµ, a⌧) to conclude that the
inner expectation in A.6 is in O(n�aµ):

E
"
µ̂n
1
((Xqi , Yqi)

n
i=1

,X)� µ1(X))2
����W,

NX

i=1

Wi = n

#


emax

emin

E
"
(µ̂n

1
((Xqi , Yqi)

n
i=1

, X̃)� µ1(X̃))2
����W,

nX

i=1

Wi = n

#


emax

emin

Cn�aµ .

Hence, it follows that

A  2E
"
emax

emin

Cn�aµ

����
nX

i=1

Wi = n

#
 2

emax

emin

Cn�aµ .

APPENDIX A. SI FOR META-LEARNERS 112

By a symmetrical argument, it also holds that

B  2
1� emin

1� emax

Cm�aµ ,

and we can conclude that

EMSE(⌧̂mn
T ,P)  2C


1� emin

1� emax

+
emax

emin

�
(n�aµ +m�aµ).

A.9 Convergence Rate Results for the X-learner

In this section, we are concerned with the convergence rate of the X-learner. Given our
motivation of the X-learner in the main paper, we believe that ⌧̂0 of the X-learner should
achieve a rate of O(m�a⌧ + n�aµ) and ⌧̂1 should achieve a rate of O(m�aµ + n�a⌧). In what
follows, we prove this for two cases, and we show that for those cases the rate is optimal.
In the first case, we assume that the CATE is linear and thus a⌧ = 1. We don’t assume
any regularity conditions on the response functions, and we show that the X-learner with an
OLS estimator in the second stage and an appropriate estimator in the first stage achieves
the optimal convergence rate. We show this first for the MSE (Theorem 4) and then for
the EMSE (Theorem 2). We then focus on the case where we don’t impose any additional
regularity conditions on the CATE, but the response functions are Lipschitz continuous
(Theorem 7). The optimal convergence rate is here not obvious, and we will first prove a
minimax lower bound for the EMSE, and we will then show that the X-learner with the
KNN estimates achieves this optimal performance.

MSE and EMSE convergence rate for the linear CATE

Theorem 4 (rate for the pointwise MSE) Assume that we observe m control units and
n treated units from some superpopulation of independent and identically distributed obser-
vations (Y (0), Y (1), X,W) coming from a distribution P given in equation [1.1] and assume
that the following assumptions are satisfied:

B1 Ignorability holds.

B2 The treatment e↵ect is linear, ⌧(x) = xT�, with � 2 Rd.

B3 There exists an estimator µ̂0 such that for all x,

E
"
(µ0(x)� µ̂m

0
(x))2

����
NX

i=1

Wi = n

#
 C0m�a.

B4 The error terms "i are independent given X, with E["i|X = x] = 0 and Var["i|X =
x]  �2 <1.

APPENDIX A. SI FOR META-LEARNERS 113

B5 The eigenvalues of the sample covariance matrix of the features of the treated units are
well conditioned, in the sense that there exists an n0, such that

sup
n>n0

E
"
��1

min(⌃̂n)

����
NX

i=1

Wi = n

#
< c1 and sup

n>n0

E
"
�max(⌃̂n)/�

2

min(⌃̂n)

����
NX

i=1

Wi = n

#
< c2,

(A.7)

where ⌃̂n = 1

n(X
1)0X1 and X1 is the matrix consisting of the features of the treated

units.

Then the X-learner with µ̂0 in the first stage, OLS in the second stage, and weighting function
g ⌘ 0 has the following upper bound: for all x 2 Rd and all n > n0,

E
"
(⌧(x)� ⌧̂X(x))

2

����
NX

i=1

Wi = n

#
 Cx

�
m�a + n�1

�
(A.8)

with Cx = max(c2C0, �2dc1)kxk2.

Proof. [Proof of Theorem 4] To simplify the notation, we write X instead of X1 for the
observed features of the treated units. Furthermore, we denote that when g ⌘ 0 in [1.9] in
the main paper, the X-learner is equal to ⌧̂1 and we only have to analyze the performance
of ⌧̂1.

The imputed treatment e↵ects for the treatment group can be written as

D1

i = Yi � µ̂0(Xi) = Xi� + �i + ✏i,

with �i = µ0(Xi)� µ̂0(Xi). In the second stage we estimate � using an OLS estimator,

�̂ = (X 0X)�1X 0D1.

To simplify the notation, we define the event of observering n treated units as En =
{
PN

i=1
Wi = n}. We decompose the MSE of ⌧̂(x) into two orthogonal error terms:

E
"
(⌧(x)� ⌧̂X(x))

2

����
NX

i=1

Wi = n

#
= E

h
(x0(� � �̂))2

���En

i
 kxk2E

h
k(X 0X)�1X 0�k2 + k(X 0X)�1X 0"k2

���En

i
.

(A.9)
Throughout the proof, we assume that n > n0 such assumption B5 can be used. We will show
that the second term decreases at the parametric rate, n�1, while the first term decreases at
a rate of m�a:

E
h
k(X 0X)�1X 0"k2

���En

i
= E

h
tr
�
X(X 0X)�1(X 0X)�1X 0E

⇥
""0
��X,En

⇤� ���En

i

 �2dE
h
��1

min(⌃̂n)
���En

i
n�1

 �2dc1n
�1.

(A.10)

APPENDIX A. SI FOR META-LEARNERS 114

For the last inequality we used assumption B5. Next, we are concerned with bounding the
error coming from not perfectly predicting µ0:

E
h
k(X 0X)�1X 0�k2

2

���En

i
 E

h
�max(⌃̂n)/�

2

min(⌃̂n)k�k
2

2

���En

i
n�1

 E
h
�max(⌃̂n)/�

2

min(⌃̂n)
���En

i
C0m�a

 c2C
0m�a.

(A.11)

Here we used that �max(⌃̂�2

n) = ��2

min(⌃̂n), and E
h
k�k2

2

���X,En

i
= E

hPn
i=1

�2(Xi)
���X,En

i


nC0m�a. For the last statement, we used assumption B5. This leads to [A.8].

Bounding the EMSE

Proof. [Proof of Theorem 2] This proof is very similar to the proof of Theorem 4. The
di↵erence is that here we bound the EMSE instead of the pointwise MSE, and we have a
somewhat weaker assumption, because µ̂0 only satisfies that its EMSE converges at a rate
of a, but not necessarily the MSE at every x. We introduce X here to be a random variable
with the same distribution as the feature distribution such that the EMSE can be written
as E[(⌧(X) � ⌧̂X(X))2|En]. Recall that we use the notation that En is the event that we
observe exactly n treated units and m = N � n control units:

En =

(
NX

i=1

Wi = n

)
.

We start with a similar decomposition as in [A.9]:

E
⇥
(⌧(X)� ⌧̂X(X))2

��En

⇤
 E

⇥
kXk

2
⇤
E
h
k� � �̂k2

��En

i

= E
⇥
kXk

2
⇤
E
⇥
k(X 0X)�1X 0�k2 + k(X 0X)�1X 0"k2

��En

⇤
.

(A.12)

Following exactly the same steps as in [A.10], we get

E
⇥
k(X 0X)�1X 0"k2

��En

⇤
 �2dC⌃n

�1.

Bounding E
⇥
k(X 0X)�1X 0�k2

2

��En

⇤
is now slightly di↵erent than in [A.11]:

E
⇥
k(X 0X)�1X 0�k2

2

��En

⇤
 E

⇥
��1

min(X
0X)kX(X 0X)�1X 0�k2

2

��En

⇤

 E
⇥
��1

min(X
0X)k�k2

2

��En

⇤

 E

��1

min(⌃n)
1

n
k�k2

2

��En

�

 C⌃E
⇥
k�1k

2

2

��En

⇤
.

(A.13)

Here the last inequality follows from Condition 6.

APPENDIX A. SI FOR META-LEARNERS 115

We now apply A.4, A.5, and Condition 4 to conclude that

E
⇥
k�1k

2

2

��En

⇤
= E

⇥
kµ0(X1)� µ̂0(X1)k

2

2

��En,W1 = 1
⇤


emax � emaxemin

emin � emaxemin

E
⇥
kµ0(X1)� µ̂0(X1)k

2

2

��En,W1 = 0
⇤


emax � emaxemin

emin � emaxemin

C0m
�aµ .

Lastly, we use the assumption that E
⇥
kXk

2
��En

⇤
 CX and conclude that

E
⇥
(⌧(X)� ⌧̂X(X))2

��En

⇤
 CX

✓
emax � emaxemin

emin � emaxemin

C⌃C0m
�a + �2dC⌃n

�1

◆
. (A.14)

Achieving the parametric rate

When there are a lot of control units, such that m � n1/a, then we have seen that the X-
learner achieves the parametric rate. However, in some situations the X-learner also achieves
the parametric rate even if the number of control units is of the same order as the number
of treated units. To illustrate this, we consider an example in which the conditional average
treatment e↵ect and the response functions depend on disjoint and independent subsets of
the features.

Specifically, we assume that we observe m control units and n treated units according
to Model 1.1. We assume the same setup and the same conditions as in Theorem 2. In
particular, we assume that there exists an estimator µ̂m

0
that depends only on the control

observations and estimates the control response function at a rate of at most m�a. In
addition to these conditions we also assume the following independence condition.

Condition 7 There exists subsets, S, S̄ ⇢ {1, . . . , d} with S \ S̄ = ;, such that

• (Xi)i2S and (Xi)i2S̄ are independent.

• For all i 2 S, E[Xi|Wi = 1] = 0.

• There exist a function µ̃0, and a vector �̃ with µ0(x) = µ̃0(xS̄) and ⌧(x) = xT
S �̃.

For technical reasons, we also need bounds on the fourth moments of the feature vector
and the error of the estimator for the control response.

Condition 8 The fourth moments of the feature vector X are bounded:

E[kXk4
2
|W = 1]  CX .

Condition 9 There exists an m0 such that for all m > m0,

E

(µ0(X)� µ̂m

0
(X))4

����W = 1

�
 C�.

Here µ̂m
0

is defined as in Condition 4.

APPENDIX A. SI FOR META-LEARNERS 116

This condition is satisfied, for example, when µ0 is bounded.
Under these additional assumptions, the EMSE of the X-learner achieves the parametric

rate in n, given that m > m0.

Theorem 5 Assume that Conditions 1–9 hold. Then the X-learner with µ̂m
0

in the first
stage and OLS in the second stage achieves the parametric rate in n. That is, there exists a
constant C such that for all m > m0 and n > 1,

E
"
(⌧(X)� ⌧̂mn

X (X))2
���
X

i

Wi = n

#
 Cn�1.

We will prove the following lemma first, because it will be useful for the proof of Theorem 5.

Lemma 4 Under the assmuption of Theorem 5, there exists a constant C such that for all
n > n0, m > m0, and s > 0,

P

nk(X10X1)�1X10�k2

2
� s
���
X

i

Wi = n

!
 C

1

s2
,

where �i = µ0(X1

i)� µ̂m
0
(X1

i).

Proof. [Proof of Lemma 4] To simplify the notation, we write X instead of X1 for the feature
matrix of the treated units, and we define the event of observing exactly n treated units as

En =

(
nX

i=1

Wi = n

)
.

We use Condition 6 and then Chebyshev’s inequality to conclude that for all n > n0 (n0

is determined by Condition 6),

P
⇣
nk(X 0X)�1X 0�k2

2
� s
���En

⌘
= P

✓
1

n
k⌃�1

n X 0�k2
2
� s
���En

◆

 P
✓
1

n
��2

min
(⌃n)kX

0�k2
2
� s
���En

◆

 E

P
✓
1

n
C2

⌃
kX 0�k2

2
� s
���En, �

◆ ���En

�

 E

C4

⌃

s2n2
Var

⇣
kX 0�k2

2

���En, �
⌘ ���En

�
.

Next we apply the Efron–Stein inequality to bound the variance term:

Var
⇣
kX 0�k2

2

���En, �
⌘


1

2

nX

i=1

E
h
(f(X)� f(X(i)))2

���En, �
i
.

APPENDIX A. SI FOR META-LEARNERS 117

Here f(x) = kx0�k2
2
, X(i) = (X1, . . . , Xi�1, X̃i, Xi+1, . . . , Xn), and X̃ is an independent copy

of X.
Let us now bound the summands:

E
h
(f(X)� f(X(i)))2

���En, �
i

=E
⇣
kX 0�k2

2
� kX 0� � (Xi � X̃i)�ik

2

2

⌘2 ���En, �

�

=E
⇣

2�0X(Xi � X̃i)�i
⌘2

| {z }
A

+ k(Xi � X̃i)�ik
4

2| {z }
B

� 4�0X(Xi � X̃i)�ik(Xi � X̃i)�ik
2

2| {z }
C

���En, �

�
.

Let us first bound E[A|En, �]:

E
⇣

2�0X(Xi � X̃i)�i
⌘2 ���En, �

�
= E

"
4

nX

j,k=1

�jX
0
j(Xi � X̃i)�i�kX

0
k(Xi � X̃i)�i

���En, �

#

(a)
= E

"
4

nX

j=1

(�jX
0
j(Xi � X̃i)�i)

2

���En, �

#

 4�4i (n� 1)E
h
(X 0

1
(X2 � X̃2))

2

���En, �
i
+ 4�4iE

h
(X 0

1
(X1 � X̃1))

2

���En, �
i

 CA�
4

i n.

Here
CA = 4max

⇣
E
h
(X 0

1
(X2 � X̃2))

2

���En

i
,E
h
(X 0

1
(X1 � X̃1))

2

���En

i⌘
,

which is bounded by Condition 8. For equation (a) we used that for k 6= j; therefore, we
have that either k or j is not equal to i. Without loss of generality let j 6= i. Then

E
h
�jX

0
j(Xi � X̃i)�i�kX

0
k(Xi � X̃i)�i

���En, �
i

= �jE
h
E
h
X 0

j

���W,En, �
i
E
h
(Xi � X̃i)�i�kX

0
k(Xi � X̃i)�i

���W,En, �
i ���En, �

i

= 0,

(A.15)

because E
⇥
X 0

j|W,En, �
⇤
= 0 as per the assumption.

In order to bound E[B|En, �], note that all the fourth moments of X are bounded and
thus

E
h
k(Xi � X̃i)�ik

4

2

���En, �
i
 CB�

4

i .

APPENDIX A. SI FOR META-LEARNERS 118

Finally, we bound E[C|En, �]:

E
h
4�0X(Xi � X̃i)�ik(Xi � X̃i)�ik

2

2

���En, �
i
= E

"
nX

j=1

�jX
0
j(Xi � X̃i)�ik(Xi � X̃i)�ik

2

2

���En, �

#

= E
h
�4iX

0
i(Xi � X̃i)kXi � X̃ik

2

2

���En, �
���En, �

i

= CC�
4

i ,

where the second equality follows from the same argument as in A.15, and the last equality
is implied by Condition 8.

Plugging in terms A, B, and C, we have that for all n > n0,

Var
⇣
kX 0�k2

2

���En, �
⌘


1

2

nX

i=1

E[(f(X, �)� f(X(i), �(i)))2]  C�4n2,

with C = CA + CB + CC . Thus for n > n0,

P
⇣
nk(X 0X)�1X 0�k2

2
� s
���En

⌘
 E


CC4

⌃

s2
�4
���En

�
 CC4

⌃
C�

1

s2
.

Proof. [Proof of Theorem 5] We start with the same decomposition as in A.12:

E
⇥
(⌧(X)� ⌧̂mn

X (X))2
��En

⇤
 E

⇥
kXk

2
⇤
E
⇥
k(X 0X)�1X 0�k2 + k(X 0X)�1X 0"k2

��En

⇤
,

and we follow the same steps to conclude that

E
⇥
k(X 0X)�1X 0"k2

��En

⇤
 �2dC⌃n

�1 and E
⇥
kXk

2
⇤
 CX .

From Lemma 4, we can conclude that there exists a constant C such that

lim
n!1

E
⇥
nk(X 0X)�1X 0�k2

2

��En

⇤
= lim

n!1,n>n0

Z 1

0

P
⇣
nk(X 0X)�1X 0�k2

2
� s
���En

⌘
ds

 lim
n!1,n>n0

Z 1

0

max(1, C
1

s2
)ds

 1 + C.

Thus there exists a C̃ such that for all n > 1,

E
⇥
k(X 0X)�1X 0�k2

2

��En

⇤
 C̃n�1.

APPENDIX A. SI FOR META-LEARNERS 119

EMSE convergence rate for Lipschitz continuous response
functions

In Section A.9, we considered an example where the distribution of (Y (0), Y (1),W,X) was
assumed to be in some family F 2 S(aµ, a⌧) with a⌧ > aµ, and we showed that one can
expect the X-learner to outperform the T-learner in this case. Now we want to explore the
case where a⌧  aµ.

Let us first consider the case, where a⌧ < aµ. This is a somewhat artificial case, since
having response functions that can be estimated at a rate of N�aµ implies that the CATE
cannot be too complicated. For example, if µ0 and µ1 are Lipschitz continuous, then the
CATE is Lipschitz continuous as well, and we would expect a⌧ ⇡ aµ. Even though it is hard
to construct a case with a⌧ < aµ, we cannot exclude such a situation, and we would expect
that in such a case the T-learner performs better than the X-learner.

We therefore believe that the case where a⌧ ⇡ aµ is a more reasonable assumption than
the case where a⌧ < aµ. In particular, we would expect the T- and X-learners to perform
similarly when compared to their worst-case convergence rate. Let us try to back up this
intuition with a specific example. Theorem 2 already confirms that ⌧̂1 achieves the expected
rate,

O
�
m�aµ + n�a⌧

�
,

for the case where the CATE is linear. Below, we consider another example, where the
CATE is of the same order as the response functions. We assume some noise level � that
is fixed, and we start by introducing a family FL of distributions with Lipschitz continuous
regression functions.

Definition 5 (Lipschitz continuous regression functions) Let FL be the class of dis-
tributions on (X, Y) 2 [0, 1]d ⇥ R such that:

1. The features, Xi, are i.i.d. uniformly distributed in [0, 1]d.

2. The observed outcomes are given by

Yi = µ(Xi) + "i,

where the "i is independent and normally distributed with mean 0 and variance �2.

3. Xi and "i are independent.

4. The regression function µ is Lipschitz continuous with parameter L.

Remark 4 The optimal rate of convergence for the regression problem of estimating x 7!
E[Y |X = x] in Definition 5 is N�2/(2+d). Furthermore, the KNN algorithm with the right
choice of the number of neighbors and the Nadaraya–Watson estimator with the right kernels
achieve this rate, and they are thus minimax optimal for this regression problem.

APPENDIX A. SI FOR META-LEARNERS 120

Now let’s define a related distribution on (Y (0), Y (1),W,X).

Definition 6 Let DL
mn be the family of distributions of (Y (0), Y (1),W,X) 2 RN

⇥ RN
⇥

{0, 1}N ⇥ [0, 1]d⇥N such that:

1. N = m+ n.

2. The features, Xi, are i.i.d. uniformly distributed in [0, 1]d.

3. There are exactly n treated units,

X

i

Wi = n.

4. The observed outcomes are given by

Yi(w) = µw(Xi) + "wi,

where ("0i, "1i) is independent normally distributed with mean 0 and marginal variances
�2.3

5. X,W and " = ("0i, "1i) are independent.

6. The response functions µ0, µ1 are Lipschitz continuous with parameter L.

Note that if (Y (0), Y (1),W,X) is distributed according to a distribution in DL
mn, then

(Y (0), X) given W = 0 and (Y (1), X) given W = 1 have marginal distributions in FL,
and (X,µ1(X)� Y (0)) given W = 0 and (X, Y (1)� µ0(X)) given W = 1 have distributions
in F 2L, and we therefore conclude that DL

mn 2 S
�

2

2+d ,
2

2+d

�
.

We will first prove in Theorem 6 that the best possible rate that can be uniformly achieved
for distributions in this family is

O(n2/(2+d) +m2/(2+d)).

This is precisely the rate the T-learner with the right base learners achieves (Theorem 1).
We will then show in Theorem 7 that the X-learner with the KNN estimator for both stages
achieves this optimal rate as well, and conclude that both the T- and X-learners achieve the
optimal minimax rate for this class of distributions.

3We do not assume that "0i ? "1i.

APPENDIX A. SI FOR META-LEARNERS 121

Minimax lower bound

In this section, we will derive a lower bound on the best possible rate for DL
mn.

Theorem 6 (Minimax Lower Bound) Let ⌧̂ be an arbitrary estimator, let a1, a2 > 0,
and let c be such that for all n,m � 1,

sup
P2DL

mn

EMSE(P , ⌧̂mn)  c(m�a0 + n�a1); (A.16)

then a1 and a2 are at most 2/(2 + d):

a0, a1  2/(2 + d).

Proof. [Proof of Theorem 6] To simplify the notation, we define a = 2/(2+d). We will show
by contradiction that a1  a. The proof of a0 is mathematically symmetric. We assume that
a1 is bigger than a, and we show that this implies that there exists a sequence of estimators
µ̂n
1
, such that

sup
P12FL

EDn
1⇠Pn

1

h
(µ1(X)� µ̂n

1
(X ;Dn

1
))2
i
 2cn�a1 ,

which is a contradiction, since by the definition of Dmn
L , µ1 cannot be estimated at a rate

faster than n�a (cf., [30]). Note that we write here µ̂n
1
(X ;Dn

1
), because we want to be explicit

that µ̂n
1
depends only on the treated observations.

Similiarly to µ̂n
1
(X ;Dn

1
), we will use the notation ⌧̂mn(X ;Dm

0
,Dn

1
) to be explicit about

the dependence of the estimator ⌧̂mn on the data in the control group, Dm
0
, and on the data

in the treatment group, Dn
1
. Furthermore, note that in Definition 6 each distribution in D

L
mn

is fully specified by the distribution of W , ", and the functions µ1 and µ2. Define CL to
be the set of all functions f : [0, 1]d �! R that are L-Lipschitz continuous. For f1 2 CL,
define D(f1) to be the distribution in D

L
mn with µ0 = 0, µ1 = f1, "0 ? "1, and W defined

componentwise by

Wi =

(
1 if i  n

0 otherwise.

Then A.16 implies that

c(m�a0 + n�a1) � sup
P2DL

mn

E(Dm
0 ⇥Dn

1)⇠P
⇥
(⌧P(X)� ⌧̂mn(X ;Dm

0
,Dn

1
))2
⇤

� sup
f12CL

E(Dm
0 ⇥Dn

1)⇠D(f1)

h
(µD(f1)

1
(X)� ⌧̂mn(X ;Dm

0
,Dn

1
))2
i
.

This follows, because in D(f1), ⌧D(f1) = µD(f1)
1

= f1. We use here the notation ⌧P , ⌧D(f1), and

µD(f1)
1

to emphasize that those terms depend on the distribution of P and D(f1), respectively.

APPENDIX A. SI FOR META-LEARNERS 122

Let P0 be the distribution of D
m
0

= (X0

i , Y
0

i)
N
i=1

under D(f1). Note that under P0,

Xi
iid
⇠ [0, 1], and Y 0 iid

⇠ N(0, �2), and X0 and Y 0 are independent. In particular, P0 does not
depend on f1. We can thus write

c(m�a0 + n�a1) � sup
f12CL

E(Dm
0 ⇥Dn

1)⇠D(f1)

⇣
µD(f1)
1

(X)� ⌧̂mn(X ;Dm
0
,Dn

1
)
⌘2�

= sup
f12CL

EDn
1⇠D1(f1)EDn

0⇠P0

⇣
µD1(f1)
1

(X)� ⌧̂mn(X ;Dm
0
,Dn

1
)
⌘2�

� sup
f12CL

EDn
1⇠D1(f1)

⇣
µD1(f1)
1

(X)� EDn
0⇠P0 ⌧̂

mn(X ;Dm
0
,Dn

1
)
⌘2�

.

D1(f1) is here the distribution of Dn
1
under D(f1). For the last step we used Jensen’s in-

equality.
Now choose a sequence mn in such a way that m�a1

n + n�a2  2n�a1 , and define

µ̂n
1
(x;Dn

1
) = EDmn

0 ⇠Pmn
0

[⌧̂mn(x;Dmn
0

,Dn
1
)] .

Furthermore, note that
{D1(f1) : f1 2 CL} =

�
P1 2 FL

in order to conclude that

2cn�a1 � c(m�a0
n + n�a1) � sup

f12CL

EDn
1⇠D1(f1)

⇣
µD1(f1)
1

(X)� µ̂nm
1

(Dn
1
;X)

⌘2�

� sup
P12FL

EDn
1⇠Pn

1

⇣
µ
Pn
1

1
(X)� µ̂nm

1
(Dn

1
;X)

⌘2�
.

This is, however, a contradiction, because we assumed a1 > a.

EMSE convergence of the X-learner

Finally, we can show that the X-learner with the right choice of base learners achieves this
minimax lower bound.

Theorem 7 Let d > 2 and assume (X,W, Y (0), Y (1)) ⇠ P 2 D
L
mn. In particular, µ0 and

µ1 are Lipschitz continuous with constant L,

|µw(x)� µw(z)|  Lkx� zk for w 2 {0, 1},

and X ⇠ Unif([0, 1]d).
Furthermore, let ⌧̂mn be the X-learner with

• g ⌘ 0,

APPENDIX A. SI FOR META-LEARNERS 123

• the base learner of the first stage for the control group µ̂0, is a KNN estimator with

constant k0 =
l
(�2/L2)

d
2+dm

2
d+2

m
,

• the base learner of the second stage for the treatment group, ⌧̂1, is a KNN estimator

with constant k1 =
l
(�2/L2)

d
2+dn

2
d+2

m
.

Then ⌧̂mn achieves the optimal rate as given in Theorem 6. That is, there exists a constant
C such that

Ek⌧ � ⌧̂mn
k
2
 C�

4
d+2L

2d
2+d
�
m�2/(2+d) + n�2/(2+d)

�
. (A.17)

Note that in the third step of the X-learner, Equation [1.9], ⌧̂0 and ⌧̂1 are averaged:

⌧̂mn(x) = g(x)⌧̂mn
0

(x) + (1� g(x))⌧̂mn
1

(x).

By choosing g ⌘ 0, we are analyzing ⌧̂mn
1

. By a symmetry argument it is straightfor-
ward to show that with the right choice of base learners, ⌧̂mn

0
also achieves a rate of

O
�
m�2/(2+d) + n�2/(2+d)

�
. With this choice of base learners the X-learner achieves this op-

timal rate for every choice of g.
We first state two useful lemmata that we will need in the proof of this theorem.

Lemma 5 Let µ̂m
0

be a KNN estimator based only on the control group with constant k0,
and let µ̂n

1
be a KNN estinator based on the treatment group with constant k1; then, by the

assumption of Theorem 7,

E[kµ̂m
0
� µ0k

2] 
�2

k0
+ cL2

✓
k0
m

◆2/d

,

E[kµ̂n
1
� µ1k

2] 
�2

k1
+ cL2

✓
k1
n

◆2/d

,

for some constant c.

Proof. [Proof of Lemma 5] This is a direct implication of Theorem 6.2 in [30].

Lemma 6 Let x 2 [0, 1]d, X1, . . . , Xn
iid
⇠ Unif([0, 1]d) and d > 2. Define X̃(x) to be the

nearest neighbor of x; then there exists a constant c such that for all n > 0,

EkX̃(x)� xk2 
c

n2/d
.

Proof. [Proof of Lemma 6] First of all we consider

P(kX̃(x)� xk � �) = (1� P(kX1 � xk  �))n  (1� c̃�d)n  e�c̃�dn.

Now we can compute the expectation:

EkX̃(x)� xk2 =

Z 1

0

P(kX̃(x)� xk �
p

�)d� 

Z d

0

e�c̃�d/2nd� 
1� 1

�d/2+1

(c̃n)2/d
.

APPENDIX A. SI FOR META-LEARNERS 124

Proof. [Proof of Theorem 7] Many ideas in this proof are motivated by [30] and [4]. Further-
more, note that we restrict our analysis here only to ⌧̂mn

1
, but the analysis of ⌧̂mn

0
follows the

same steps.
We decompose ⌧̂mn

1
into

⌧̂mn
1

(x) =
1

k1

k1X

i=1

⇥
Y 1

(i,n)(x)� µ̂m
0

�
X1

(i,n)(x)
�⇤

= µ̂n
1
(x)�

1

k1

k1X

i=1

µ̂m
0

�
X1

(i,n)(x)
�
,

where the notation that
⇣�

Xw
(1,nw)

(x), Y w
(1,nw)

(x)
�
, . . . ,

�
Xw

(nw,nw)
(x), Y w

(nw,nw)
(x)
�⌘

is a reorder-

ing of the tuples
�
Xw

j (x), Y
w
j (x)

�
such that kXw

(i,nw)
(x) � xk is increasing in i. With this

notation we can write the estimators of the first stage as

µ̂m
0
(x) =

1

k0

k0X

i=1

Y 0

(i,m)
(x), and µ̂n

1
(x) =

1

k1

k1X

i=1

Y 1

(i,n)(x),

and we can upper bound the EMSE with the following sum:

E[|⌧(X)� ⌧̂mn
1

(X)|2]

= E
h���µ1(X)� µ0(X)� µ̂n

1
(X) +

1

k1

k1X

i=1

µ̂m
0
(X1

(i,n)(X))
���
2i

 2E
⇥
|µ1(X)� µ̂n

1
(X)|2

⇤
+ 2E

h���µ0(X)�
1

k1

k1X

i=1

µ̂m
0
(X1

(i,n)(X))
���
2i
.

The first term corresponds to the regression problem of estimating the treatment response
function in the first step of the X-learner and we can control this term with Lemma 5:

E[kµ1 � µ̂n
1
k
2] 

�2

k1
+ c1L

2

✓
k1
n

◆2/d

.

The second term is more challenging:

1

2
E
h���µ0(X)�

1

k1

k1X

i=1

µ̂m
0
(X1

(i,n)(X))
���
2i

 E
h���µ0(X)�

1

k1k0

k1X

i=1

k0X

j=1

µ0

⇣
X0

(j,m)
(X1

(i,n)(X))
⌘���

2i
(A.18)

+ E
h���

1

k1k0

k1X

i=1

k0X

j=1

µ0

⇣
X0

(j,m)
(X1

(i,n)(X))
⌘
�

1

k1

k1X

i=1

µ̂m
0
(X1

(i,n)(X))
���
2i
. (A.19)

APPENDIX A. SI FOR META-LEARNERS 125

A.19 can be bound as follows:

[A.19] = E

1

k1k0

k1X

i=1

k0X

j=1

µ0

⇣
X0

(j,m)
(X1

(i,n)(X))
⌘
� Y 0

(j,m)
(X1

(i,n)(X))

!2

max
i

1

k2
m

k0X

j=1

E
⇣
µ0

⇣
X0

(j,m)
(X1

(i,n)(X))
⌘
� Y 0

(j,m)
(X1

(i,n)(X))
⌘2

=max
i

1

k2
m

k0X

j=1

E
"
E
⇣

µ0

⇣
X0

(j,m)
(X1

(i,n)(X))
⌘
� Y 0

(j,m)
(X1

(i,n)(X))
⌘2 ����D,X

�#


�2

k0
.

The last inequality follows from the assumption that, conditional on D,

Y 0

(j,m)
(x) ⇠ N

�
µ0

�
X0

(j,m)
(x)
�
, �2
�
.

Next we find an upper bound for [A.18]:

[A.18]  E

1

k1k0

k1X

i=1

k0X

j=1

���µ0(X)� µ0

⇣
X0

(j,m)
(X1

(i,n)(X))
⌘���

!2

 E

1

k1k0

k1X

i=1

k0X

j=1

L
���X �X0

(j,m)
(X1

(i,n)(X))
���

!2

 L2
1

k1k0

k1X

i=1

k0X

j=1

E
���X �X0

(j,m)
(X1

(i,n)(X))
���
2

(A.20)

 L2
1

k1

k1X

i=1

E
���X �X1

(i,n)(X)
���
2

(A.21)

+ L2
1

k1k0

k1X

i=1

k0X

j=1

E
���X1

(i,n)(X)�X0

(j,m)
(X1

(i,n)(X))
���
2

(A.22)

where [A.20] follows from Jensen’s inequality.
Let’s consider [A.21]. We partition the data into A1, . . . , Ak1 sets, where the first k1 � 1

sets have b n
k1
c elements and we define X̃i,1(x) to be the nearest neighbor of x in Ai. Then

we can conclude that

1

k1

k1X

i=1

E
���X �X1

(i,n)(X)
���
2


1

k1

k1X

i=1

E
���X � X̃i,1(X)

���
2

=
1

k1

k1X

i=1

E

E
h���X � X̃i,1(X)

���
2
���X
i�


c̃

b
n
k1
c2/d

.

APPENDIX A. SI FOR META-LEARNERS 126

Here the last inequality follows from Lemma 6. With exactly the same argument, we can
bound [A.22] and we thus have

[A.18]  L2c̃ ⇤

1

b
n
k1
c2/d

+
1

b
n2
k2
c2/d

!
 2c̃L2

⇤

 ✓
k1
n

◆2/d

+

✓
k0
m

◆2/d
!
.

Plugging everything in, we have

E[|⌧(X)� ⌧̂mn
1

(X)|2]  2
�2

k1
+ 2(c2 + 2c̃)L2

✓
k1
n

◆2/d

+ 2
�2

k0
+ 4c̃L2

✓
k0
m

◆2/d

 C

�2

k1
+ L2

✓
k1
n

◆2/d

+
�2

k0
+

✓
k0
m

◆2/d
!

with C = 2max(1, c2 + 2c̃, 2c̃).

A.10 Pseudocode

In this section, we present pseudocode for the algorithms in this paper. We denote by Y 0

and Y 1 the observed outcomes for the control group and the treatment group, respectively.
For example, Y 1

i is the observed outcome of the ith unit in the treatment group. X0 and
X1 are the features of the control units and the treated units, and hence X1

i corresponds to
the feature vector of the ith unit in the treatment group. Mk(Y ⇠ X) is the notation for a
regression estimator, which estimates x 7! E[Y |X = x]. It can be any regression/machine
learning estimator. In particular, it can be a black box algorithm.

Algorithm 5 T-learner
1: procedure T-learner(X, Y,W)
2: µ̂0 = M0(Y 0

⇠ X0)
3: µ̂1 = M1(Y 1

⇠ X1)

4: ⌧̂(x) = µ̂1(x)� µ̂0(x)

M0 and M1 are here some, possibly di↵erent, machine-learning/regression algorithms.

Algorithm 6 S-learner
1: procedure S-learner(X, Y,W)
2: µ̂ = M(Y ⇠ (X,W))
3: ⌧̂(x) = µ̂(x, 1)� µ̂(x, 0)

M(Y ⇠ (X,W)) is the notation for estimating (x,w) 7! E[Y |X = x,W = w] while treating W as a
0,1–valued feature.

APPENDIX A. SI FOR META-LEARNERS 127

Algorithm 7 X-learner
1: procedure X-learner(X, Y,W, g)

2: µ̂0 = M1(Y 0
⇠ X0) . Estimate response function

3: µ̂1 = M2(Y 1
⇠ X1)

4: D̃1

i = Y 1

i � µ̂0(X1

i) . Compute imputed treatment e↵ects
5: D̃0

i = µ̂1(X0

i)� Y 0

i

6: ⌧̂1 = M3(D̃1
⇠ X1) . Estimate CATE in two ways

7: ⌧̂0 = M4(D̃0
⇠ X0)

8: ⌧̂(x) = g(x)⌧̂0(x) + (1� g(x))⌧̂1(x) . Average the estimates

g(x) 2 [0, 1] is a weighting function that is chosen to minimize the variance of ⌧̂(x). It is sometimes possible
to estimate Cov(⌧0(x), ⌧1(x)), and compute the best g based on this estimate. However, we have made good
experiences by choosing g to be an estimate of the propensity score.

Algorithm 8 F-learner
1: procedure F-learner(X, Y,W)
2: ê = Me[W ⇠ X]
3: Y ⇤

i = Yi
Wi�ê(Xi)

ê(Xi)(1�ê(Xi))

4: ⌧̂ = M⌧ (Y ⇤
⇠ X)

Algorithm 9 U-learner
1: procedure U-learner(X, Y,W)
2: µ̂obs = Mobs(Y obs

⇠ X)
3: ê = Me[W ⇠ X]
4: Ri = (Yi � µ̂obs(Xi))/(Wi � ê(Xi))
5: ⌧̂ = M⌧ (R ⇠ X)

APPENDIX A. SI FOR META-LEARNERS 128

Algorithm 10 Bootstrap Confidence Intervals 1

1: procedure computeCI(
x: features of the training data,
w: treatment assignments of the training data,
y: observed outcomes of the training data,
p: point of interest)

2: S0 = {i : wi = 0}
3: S1 = {i : wi = 1}
4: n0 = #S0

5: n1 = #S1

6: for b in {1, . . . , B} do
7: s⇤b = c(sample(S0, replace = T, size = n0), sample(S1, replace = T, size = n1))
8: x⇤

b = x[s⇤b]
9: w⇤

b = w[s⇤b]
10: y⇤b = y[s⇤b]
11: ⌧̂ ⇤b (p) = learner(x⇤

b , w
⇤
b , y

⇤
b)(p)

12: ⌧̂(p) = learner(x, w, y)(p)
13: � = sd({⌧̂ ⇤b (p)}

B
b=1

)
14: return (⌧̂(p)� q↵/2�, ⌧̂(p) + q1�↵/2�)

For this pseudo code we use R notation. For example, c() is here a function that combines its arguments to
form a vector.

APPENDIX A. SI FOR META-LEARNERS 129

Algorithm 11 Bootstrap Confidence Intervals 2

1: procedure computeCI(
x: features of the training data,
w: treatment assignments of the training data,
y: observed outcomes of the training data,
p: point of interest)

2: S0 = {i : wi = 0}
3: S1 = {i : wi = 1}
4: n0 = #S0

5: n1 = #S1

6: for b in {1, . . . , B} do
7: s⇤b = c(sample(S0, replace = T, size = n0), sample(S1, replace = T, size = n1))
8: x⇤

b = x[s⇤b]
9: w⇤

b = w[s⇤b]
10: y⇤b = y[s⇤b]
11: ⌧̂ ⇤b (p) = learner(x⇤

b , w
⇤
b , y

⇤
b)(p)

12: ⌧̃(p) = 1

B

PB
b=1

⌧̂ ⇤b (p)
13: For all b in {1, . . . , B} and j in {1, . . . , n} define

S⇤
bj = #{k : s⇤b [k] = j}

14: For all j in {1, . . . , n} define S⇤
·j =

1

B

PB
b=1

S⇤
bj and

Covj =
1

B

BX

b=1

(⌧̂ ⇤b (p)� ⌧̃(p))(S⇤
bj � S⇤

·j)

15: � =
⇣Pn

j=1
Cov2j

⌘0.5

16: return (⌧̃(p)� q↵/2�, ⌧̃(p) + q1�↵/2�)

This version of the bootstrap was proposed in [20].

APPENDIX A. SI FOR META-LEARNERS 130

Algorithm 12 Monte Carlos Bias Approximation

1: procedure approximateBIAS(
x: features of the full data set,
w: treatment assignments of the full data set,
y(0): potential outcome under control of the full data set,
y(1): potential outcome under treatment of the full data set,
S: indices of observations that are not in the test set,
ST : indices of the training set,
p: point of interest,
⌧(p): the true CATE at p)

2: for i in {1, . . . , 1000} do
3: Create a new treatment assignment by permuting the original one,

wi = sample(w, replace = F).

4: Define the observed outcome,

yi = y(1)wi + y(0)(1� wi).

5: Sample uniformly a training set of 50, 000 observations,

s⇤i = sample(S, replace = F, size = 50, 000),

w⇤
i = wi[s

⇤
i],

x⇤
i = x[s⇤i],

y⇤i = yi[s
⇤
i].

6: Estimate the CATE,

⌧̂ ⇤i (p) = learner(x⇤
i , w

⇤
i , y

⇤
i)(p).

7: ⌧̄ ⇤(p) = 1

1000

P
1000

i=1
⌧̂ ⇤i (p)

8: return ⌧̄ ⇤(p)� ⌧(p)

This algorithm is used to compute the bias in a simulation study where the potential outcomes and the
CATE function are known. S, the indices of the units that are not in the test set and ST , the indices of the
units in the training set are not the same, because the training set is in this case a subset of 50,000 units of
the full data set.

APPENDIX A. SI FOR META-LEARNERS 131

Algorithm 13 Bootstrap Bias

1: procedure estimateBIAS(
x: features of the training data,
w: treatment assignments of the training data,
y: observed outcomes of the training data,
p: point of interest)

2: S0 = {i : wi = 0}
3: S1 = {i : wi = 1}
4: n0 = #S0

5: n1 = #S1

6: for b in {1, . . . , B} do
7: s⇤b = c(sample(S0, replace = T, size = n0), sample(S1, replace = T, size = n1))
8: x⇤

b = x[s⇤b]
9: w⇤

b = w[s⇤b]
10: y⇤b = y[s⇤b]
11: ⌧̂ ⇤b (p) = learner(x⇤

b , w
⇤
b , y

⇤
b)(p)

12: ⌧̂(p) = learner(x, w, y)(p)
13: ⌧̄ ⇤(p) = 1

B

PB
i=1

⌧̂ ⇤i (p)
14: return ⌧̄ ⇤(p)� ⌧̂(p)

132

Appendix B

CausalToolbox Documentation

CausalToolbox is an R package that provides di↵erent tools for estimating heterogeneous
treatment e↵ects. It implements eight CATE estimators and several tools to select a well-
performing estimator for a given data set. The following contains the documentation of the
di↵erent functions in the package with example code.

CateCI Method CateCI

Description

Returns the estimated confidence intervals for the CATE.

Usage

CateCI(theObject, feature_new, method = "maintain_group_ratios",

bootstrapVersion = "normalApprox", B = 2000, nthread = 0,

verbose = TRUE)

S4 method for signature 'CATEestimator'
CateCI(theObject, feature_new,

method = "maintain_group_ratios", bootstrapVersion = "normalApprox",

B = 2000, nthread = 0, verbose = TRUE)

S4 method for signature 'S_BART'
CateCI(theObject, feature_new, verbose = FALSE)

S4 method for signature 'X_BART'
CateCI(theObject, feature_new, verbose = FALSE)

S4 method for signature 'T_BART'
CateCI(theObject, feature_new, verbose = FALSE)

S4 method for signature 'M_BART'
CateCI(theObject, feature_new, verbose = FALSE)

Arguments

theObject A ‘MetaLearner‘ object.

feature new A feature data frame.

method Di↵erent versions of the bootstrap.
bootstrapVersion

Default is normalApprox, which will use the bootstrap normal approximation to get CI.
Smoothed will use CI around the smoothed bootstrap as introduced by Efron 2014.

B Number of bootstrap samples.

nthread Number of threads to be used in parallel.

verbose TRUE for detailed output, FALSE for no output.

Value

A data frame of estimated CATE confidence intervals.

Examples

Not run:
require(causalToolbox)

create example data set
simulated_experiment <- simulate_causal_experiment(
ntrain = 1000,
ntest = 1000,
dim = 10

)
feat <- simulated_experiment$feat_tr
tr <- simulated_experiment$W_tr
yobs <- simulated_experiment$Yobs_tr
feature_test <- simulated_experiment$feat_te

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 133

create the CATE estimator using Random Forests (RF)
xl_rf <- X_RF(feat = feat, tr = tr, yobs = yobs)
CateCI(xl_rf, feature_test, B = 500)

End(Not run)

simulate Experiments Simulate a Causal Experiment

Description

simulate correlation matrix uses the C-vine method for simulating correlation matrices. (Refer to the
referenced paper for details.)

simulate causal experiment simulates an RCT or observational data for causal e↵ect estimation. It is
mainly used to test di↵erent heterogenuous treatment e↵ect estimation strategies.

Usage

simulate_correlation_matrix(dim, alpha)

simulate_causal_experiment(ntrain = nrow(given_features),

ntest = nrow(given_features), dim = ncol(given_features),

alpha = 0.1, feat_distribution = "normal", given_features = NULL,

pscore = "rct5", mu0 = "sparseLinearStrong",

tau = "sparseLinearWeak", testseed = NULL, trainseed = NULL)

pscores.simulate_causal_experiment

mu0.simulate_causal_experiment

tau.simulate_causal_experiment

Arguments

dim Dimension of the data set.

alpha Only used if given features is not set and feat distribution is chosen to be normal.
It specifies how correlated the features can be. If alpha = 0, then the features are in-
dependent. If alpha is very large, then the features can be very correlated. Use the
simulate correlation matrix function to get a better understanding of the impact of al-
pha.

ntrain Number of training examples.

ntest Number of test examples.
feat distribution

Only used if given features is not specified. Either ”normal” or ”unif.” It specifies the
distribution of the features.

given features This is used if we already have features and want to test the performance of di↵erent esti-
mators for a particular set of features.

pscore, mu0, tau

Parameters that determine the propensity score, the response function for the control units,
and tau, respectively. The di↵erent options can be seen using names(pscores.simulate causal experiment),
names(mu0.simulate causal experiment), and names(tau.simulate causal experiment).
This is implemented in this manner, because it enables the user to easily loop through the
di↵erent estimators.

testseed The seed used to generate the test data. If NULL, then the seed of the main session is used.

trainseed The seed used to generate the training data. If NULL, then the seed of the main session is
used.

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 134

Details

The function simulates causal experiments by generating the features, treatment assignment, observed Y
values, and CATE for a test set and a training set. pscore, mu0, and tau define the response functions and
the propensity score. For example, pscore = "osSparse1Linear" specifies that

e(x) = max(0.05,min(.95, x1/2 + 1/4))

and mu0 ="sparseLinearWeak" specifies that the response function for the control units is given by the simple
linear function,

mu0(x) = 3x1 + 5x2.

Value

A correlation matrix.

A list with the following elements:

setup name Name of the setup.

m t truth Function containing the response function of the treated units.

m c truth Function containing the response function of the control units.

propscore Propensity score function.

alpha Chosen alpha.

feat te Data.frame containing the features of the test samples.

W te Numeric vector containing the treatment assignment of the test samples.

tau te Numeric vector containing the true conditional average treatment e↵ects of the test samples.

Yobs te Numeric vector containing the observed Y values of the test samples.

feat tr Data.frame containing the features of the training samples.

W tr Numeric vector containing the treatment assignment of the training samples.

tau tr Numeric vector containing the true conditional average treatment e↵ects of the training
samples.

Yobs tr Numeric vector containing the observed Y values of the training samples.

References

• Daniel Lewandowskia, Dorota Kurowickaa, Harry Joe (2009). Generating Random Correlation Matrices
Based on Vines and Extended Onion Method.

• Sören Künzel, Jasjeet Sekhon, Peter Bickel, and Bin Yu (2017). Meta-learners for Estimating Heteroge-
neous Treatment E↵ects Using Machine Learning.

See Also

X-Learner

Examples

require(causalToolbox)

ce_sim <- simulate_causal_experiment(
ntrain = 20,
ntest = 20,
dim = 7

)

ce_sim

Not run:
estimators <- list(
S_RF = S_RF,
T_RF = T_RF,
X_RF = X_RF,
S_BART = S_BART,

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 135

T_BART = T_BART,
X_BARTT = X_BART)

performance <- data.frame()
for(tau_n in names(tau.simulate_causal_experiment)){
for(mu0_n in names(mu0.simulate_causal_experiment)) {

ce <- simulate_causal_experiment(
given_features = iris,
pscore = "rct5",
mu0 = mu0_n,
tau = tau_n)

for(estimator_n in names(estimators)) {
print(paste(tau_n, mu0_n, estimator_n))

trained_e <- estimators[[estimator_n]](ce$feat_tr, ce$W_tr, ce$Yobs_tr)
performance <-
rbind(performance,

data.frame(
mu0 = mu0_n,
tau = tau_n,
estimator = estimator_n,
MSE = mean((EstimateCate(trained_e, ce$feat_te) -

ce$tau_te)^2)))
}

}
}

reshape2::dcast(data = performance, mu0 + tau ~ estimator)

End(Not run)

EstimateCate Method EstimateCate

Description

Returns the estimated CATE.

Usage

EstimateCate(theObject, feature_new, ...)

S4 method for signature 'M_RF'
EstimateCate(theObject, feature_new)

S4 method for signature 'S_RF'
EstimateCate(theObject, feature_new)

S4 method for signature 'S_BART'
EstimateCate(theObject, feature_new, verbose = FALSE)

S4 method for signature 'X_RF'
EstimateCate(theObject, feature_new)

S4 method for signature 'X_BART'
EstimateCate(theObject, feature_new, verbose = FALSE,

return_CI = FALSE)

S4 method for signature 'T_RF'
EstimateCate(theObject, feature_new)

S4 method for signature 'T_BART'

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 136

EstimateCate(theObject, feature_new, verbose = FALSE,

return_CI = FALSE)

S4 method for signature 'M_BART'
EstimateCate(theObject, feature_new, verbose = FALSE,

return_CI = FALSE)

Arguments

theObject A ‘MetaLearner‘ object.

feature new A feature data frame.

... Additional parameters that are specific for some MetaLearners

verbose TRUE for detailed output FALSE for no output

return CI If TRUE, return predictions and their confidence intervals;

gotv Get Out To Vote

Description

This is an example data set, and it has been created by looking at a certain subset of the ”Social Pressure
and Voter Turnout: Evidence from a Large-Scale Field Experiment” study that tested the impact of social
pressure on voter turnout. A precise description and the full data set can be found at https://isps.yale.
edu/research/data/d001.

The study consists of seven key, individual-level covariates, most of which are discrete: gender, age, and whether
the registered individual voted in the primary elections in 2000, 2002, and 2004 or the general elections in
2000 and 2002. The sample was restricted to voters who had voted in the 2004 general election. The outcome
of interest was the turnout in the 2006 primary election, which was an indicator variable, and the treatment
was whether or not the subjects were elected to receive a mailer.

Usage

gotv

Format

An object of class data.frame with 229461 rows and 9 columns.

References

• Gerber AS, Green DP, Larimer CW (2008) Social Pressure and Voter Turnout: Evidence from a Large-
Scale Field Experiment. Am Polit Sci Rev 102:33–48. https://isps.yale.edu/research/publications/
isps08-001

M-Learner M-Learners

Description

M RF is an implementation of the Modified Outcome Estimator with Random Forest (Breiman 2001) as the
base learner.

M BART is an implementation of the Modified Outcome Estimator with Bayesian Additive Regression Trees
(Chipman et al. 2010) as the base learner.

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 137

Usage

M_RF(feat, tr, yobs, nthread = 0, verbose = FALSE,

mu.forestry = list(relevant.Variable = 1:ncol(feat), ntree = 1000,

replace = TRUE, sample.fraction = 0.8, mtry = round(ncol(feat) * 13/20),

nodesizeSpl = 2, nodesizeAvg = 1, splitratio = 1, middleSplit = TRUE),

e.forestry = list(relevant.Variable = 1:ncol(feat), ntree = 500,

replace = TRUE, sample.fraction = 0.5, mtry = ncol(feat), nodesizeSpl =

11, nodesizeAvg = 33, splitratio = 0.5, middleSplit = FALSE),

tau.forestry = list(relevant.Variable = 1:ncol(feat), ntree = 1000,

replace = TRUE, sample.fraction = 0.7, mtry = round(ncol(feat) * 17/20),

nodesizeSpl = 5, nodesizeAvg = 6, splitratio = 0.8, middleSplit = TRUE))

M_BART(feat, tr, yobs, ndpost = 1200, ntree = 200, nthread = 1,

mu.BART = list(sparse = FALSE, theta = 0, omega = 1, a = 0.5, b = 1,

augment = FALSE, rho = NULL, usequants = FALSE, cont = FALSE, sigest =

NA, sigdf = 3, sigquant = 0.9, k = 2, power = 2, base = 0.95, sigmaf =

NA, lambda = NA, numcut = 100L, nskip = 100L), e.BART = list(sparse =

FALSE, theta = 0, omega = 1, a = 0.5, b = 1, augment = FALSE, rho = NULL,

usequants = FALSE, cont = FALSE, sigest = NA, sigdf = 3, sigquant = 0.9,

k = 2, power = 2, base = 0.95, sigmaf = NA, lambda = NA, numcut = 100L,

nskip = 100L), tau.BART = list(sparse = FALSE, theta = 0, omega = 1, a

= 0.5, b = 1, augment = FALSE, rho = NULL, usequants = FALSE, cont =

FALSE, sigest = NA, sigdf = 3, sigquant = 0.9, k = 2, power = 2, base =

0.95, sigmaf = NA, lambda = NA, numcut = 100L, nskip = 100L))

Arguments

feat A data frame containing the features.

tr A numeric vector with 0 for control and 1 for treated variables.

yobs A numeric vector containing the observed outcomes.

nthread Number of threads which should be used to work in parallel.

verbose TRUE for detailed output, FALSE for no output.
mu.forestry, tau.forestry, e.forestry

A list containing the hyperparameters for the forestry package that are used for estimating
the response functions, the CATE, and the propensity score. These hyperparameters are
passed to the forestry package. (Please refer to the forestry1 package for a more detailed
documentation of the hyperparamters.)

• relevant.Variable Variables that are only used in the first stage.

• ntree Numbers of trees used in the first stage.

• replace Sample with or without replacement in the first stage.

• sample.fraction Size of total samples drawn for the training data in the first stage.

• mtry Number of variables randomly selected in each splitting point.

• nodesizeSpl Minimum nodesize in the first stage for the observations in the splitting
set. (See the details of the forestry package)

• nodesizeAvg Minimum nodesize in the first stage for the observations in the averaging
set.

• splitratio Proportion of the training data used as the splitting dataset in the first
stage.

• middleSplit If true, the split value will be exactly in the middle of two observations.
Otherwise, it will take a point based on a uniform distribution between the two obser-
vations.

ndpost Number of posterior draws.

ntree Number of trees.
mu.BART, e.BART, tau.BART

Hyperparameters of the BART functions for the control and treated group. (Use ?BART::mc.wbart
for a detailed explanation of their e↵ects.)

1https://github.com/soerenkuenzel/forestry

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 138

Details

The M-Learner estimates the CATE in two steps:

1. Estimate the response functions and the propensity score,

µ0(x) = E[Y (0)|X = x]

µ1(x) = E[Y (1)|X = x]

e(x) = E[W |X = x]

using the base learner and denote the estimates as µ̂0, µ̂1, and ê.

2. Define the adjusted modified outcomes as

Ri = (Zi � ê(xi))/(ê(xi)[1� ê(xi)])(Yi � µ̂1(xi)[1� ê(xi)]� µ̂0(xi)ê(xi)).

Now employ the base learner to estimate

⌧(x) = E[R|X = x].

The result is the CATE estimator.

Value

An object from a class that contains the CATEestimator class. It should be used with one of the following
functions: EstimateCATE, CateCI, and CateBIAS. The object has at least the following slots:

feature train A copy of feat.

tr train A copy of tr.

yobs train A copy of yobs.

creator Function call that creates the CATE estimator. This is used for di↵erent bootstrap proce-
dures.

References

• Sören Künzel, Jasjeet Sekhon, Peter Bickel, and Bin Yu (2017). MetaLearners for Estimating Heteroge-
neous Treatment E↵ects Using Machine Learning. https://www.pnas.org/content/116/10/4156

• Sören Künzel, Simon Walter, and Jasjeet Sekhon (2018). Causaltoolbox—Estimator Stability for Hetero-
geneous Treatment E↵ects. https://arxiv.org/pdf/1811.02833.pdf

• Daniel Rubin and Mark J van der Laan (2007). A Doubly Robust Censoring Unbiased Transformation.
https://www.ncbi.nlm.nih.gov/pubmed/22550646

See Also

Other metalearners: S-Learner, T-Learner, X-Learner

Examples

require(causalToolbox)

create example data set
simulated_experiment <- simulate_causal_experiment(
ntrain = 1000,
ntest = 1000,
dim = 10

)
feat <- simulated_experiment$feat_tr
tr <- simulated_experiment$W_tr
yobs <- simulated_experiment$Yobs_tr
feature_test <- simulated_experiment$feat_te

create the CATE estimator using Random Forests (RF)
xl_rf <- X_RF(feat = feat, tr = tr, yobs = yobs)
tl_rf <- T_RF(feat = feat, tr = tr, yobs = yobs)
sl_rf <- S_RF(feat = feat, tr = tr, yobs = yobs)

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 139

ml_rf <- M_RF(feat = feat, tr = tr, yobs = yobs)
xl_bt <- X_BART(feat = feat, tr = tr, yobs = yobs)
tl_bt <- T_BART(feat = feat, tr = tr, yobs = yobs)
sl_bt <- S_BART(feat = feat, tr = tr, yobs = yobs)
ml_bt <- M_BART(feat = feat, tr = tr, yobs = yobs)

cate_esti_xrf <- EstimateCate(xl_rf, feature_test)

evaluate the performance.
cate_true <- simulated_experiment$tau_te
mean((cate_esti_xrf - cate_true) ^ 2)
Not run:
create confidence intervals via bootstrapping.
xl_ci_rf <- CateCI(xl_rf, feature_test, B = 500)

End(Not run)

S-Learner S-Learners

Description

S RF is an implementation of the S-Learner combined with Random Forests (Breiman 2001).

S BART is an implementation of the S-Learner with Bayesian Additive Regression Trees (Chipman et al. 2010).

Usage

S_RF(feat, tr, yobs, nthread = 0, verbose = TRUE,

mu.forestry = list(relevant.Variable = 1:ncol(feat), ntree = 1000,

replace = TRUE, sample.fraction = 0.9, mtry = ncol(feat), nodesizeSpl =

1, nodesizeAvg = 3, splitratio = 0.5, middleSplit = FALSE))

S_BART(feat, tr, yobs, ndpost = 1200, ntree = 200, nthread = 1,

verbose = FALSE, mu.BART = list(sparse = FALSE, theta = 0, omega = 1,

a = 0.5, b = 1, augment = FALSE, rho = NULL, usequants = FALSE, cont =

FALSE, sigest = NA, sigdf = 3, sigquant = 0.9, k = 2, power = 2, base =

0.95, sigmaf = NA, lambda = NA, numcut = 100L, nskip = 100L))

Arguments

feat A data frame containing the features.

tr A numeric vector with 0 for control and 1 for treated variables.

yobs A numeric vector containing the observed outcomes.

nthread Number of threads which should be used to work in parallel.

verbose TRUE for detailed output, FALSE for no output.

mu.forestry A list containing the hyperparameters for the forestry package that are used in µ̂0. These
hyperparameters are passed to the forestry package.

ndpost Number of posterior draws.

ntree Number of trees.

mu.BART hyperparameters of the BART function. Use ?BART::mc.wbart for a detailed explanation of
their e↵ects.

Details

In the S-Learner, the outcome is estimated using all of the features and the treatment indicator without giving
the treatment indicator a special role. The predicted CATE for an individual unit is then the di↵erence
between the predicted values when the treatment assignment indicator is changed from control to treatment:

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 140

1. Estimate the joint response function

µ(x,w) = E[Y |X = x,W = w]

using the base learner. We denote the estimate as µ̂.

2. Define the CATE estimate as
⌧(x) = µ̂1(x, 1)� µ̂0(x, 0).

Value

Object of class S RF. It should be used with one of the following functions EstimateCATE, CateCI, and
CateBIAS. The object has the following slots:

feature train A copy of feat.

tr train A copy of tr.

yobs train A copy of yobs.

m 0 An object of class forestry that is fitted with the observed outcomes of the control group as
the dependent variable.

m 1 An object of class forestry that is fitted with the observed outcomes of the treated group as
the dependent variable.

hyperparameter list

A list containting the hyperparameters of the three random forest algorithms used.

creator Function call of S RF. This is used for di↵erent bootstrap procedures.

References

• Sören Künzel, Jasjeet Sekhon, Peter Bickel, and Bin Yu (2017). MetaLearners for Estimating Heteroge-
neous Treatment E↵ects using Machine Learning. https://www.pnas.org/content/116/10/4156

• Sören Künzel, Simon Walter, and Jasjeet Sekhon (2018). Causaltoolbox—Estimator Stability for Hetero-
geneous Treatment E↵ects. https://arxiv.org/pdf/1811.02833.pdf

• Sören Künzel, Bradly Stadie, Nikita Vemuri, Varsha Ramakrishnan, Jasjeet Sekhon, and Pieter Abbeel
(2018). Transfer Learning for Estimating Causal E↵ects using Neural Networks. https://arxiv.org/

pdf/1808.07804.pdf

See Also

Other metalearners: M-Learner, T-Learner, X-Learner

Other metalearners: M-Learner, T-Learner, X-Learner

Examples

require(causalToolbox)

create example data set
simulated_experiment <- simulate_causal_experiment(
ntrain = 1000,
ntest = 1000,
dim = 10

)
feat <- simulated_experiment$feat_tr
tr <- simulated_experiment$W_tr
yobs <- simulated_experiment$Yobs_tr
feature_test <- simulated_experiment$feat_te

create the CATE estimator using Random Forests (RF)
xl_rf <- X_RF(feat = feat, tr = tr, yobs = yobs)
tl_rf <- T_RF(feat = feat, tr = tr, yobs = yobs)
sl_rf <- S_RF(feat = feat, tr = tr, yobs = yobs)
ml_rf <- M_RF(feat = feat, tr = tr, yobs = yobs)
xl_bt <- X_BART(feat = feat, tr = tr, yobs = yobs)
tl_bt <- T_BART(feat = feat, tr = tr, yobs = yobs)
sl_bt <- S_BART(feat = feat, tr = tr, yobs = yobs)
ml_bt <- M_BART(feat = feat, tr = tr, yobs = yobs)

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 141

cate_esti_xrf <- EstimateCate(xl_rf, feature_test)

evaluate the performance.
cate_true <- simulated_experiment$tau_te
mean((cate_esti_xrf - cate_true) ^ 2)
Not run:
create confidence intervals via bootstrapping.
xl_ci_rf <- CateCI(xl_rf, feature_test, B = 500)

End(Not run)

T-Learner T-Learners

Description

T RF is an implementation of the T-learner combined with Random Forest (Breiman 2001) for both response
functions.

T BART is an implementation of the T-learner with Bayesian Additive Regression Trees (Chipman et al. 2010)
for both response functions.

Usage

T_RF(feat, tr, yobs, nthread = 0, verbose = TRUE,

mu0.forestry = list(relevant.Variable = 1:ncol(feat), ntree = 1000,

replace = TRUE, sample.fraction = 0.9, mtry = ncol(feat), nodesizeSpl =

1, nodesizeAvg = 3, splitratio = 0.5, middleSplit = FALSE),

mu1.forestry = list(relevant.Variable = 1:ncol(feat), ntree = 1000,

replace = TRUE, sample.fraction = 0.9, mtry = ncol(feat), nodesizeSpl =

1, nodesizeAvg = 3, splitratio = 0.5, middleSplit = FALSE))

T_BART(feat, tr, yobs, ndpost = 1200, ntree = 200, nthread = 1,

verbose = FALSE, mu0.BART = list(sparse = FALSE, theta = 0, omega =

1, a = 0.5, b = 1, augment = FALSE, rho = NULL, usequants = FALSE, cont =

FALSE, sigest = NA, sigdf = 3, sigquant = 0.9, k = 2, power = 2, base =

0.95, sigmaf = NA, lambda = NA, numcut = 100L, nskip = 100L),

mu1.BART = list(sparse = FALSE, theta = 0, omega = 1, a = 0.5, b = 1,

augment = FALSE, rho = NULL, usequants = FALSE, cont = FALSE, sigest =

NA, sigdf = 3, sigquant = 0.9, k = 2, power = 2, base = 0.95, sigmaf =

NA, lambda = NA, numcut = 100L, nskip = 100L))

Arguments

feat A data frame containing the features.

tr A numeric vector with 0 for control and 1 for treated variables.

yobs A numeric vector containing the observed outcomes.

nthread Number of threads which should be used to work in parallel.

verbose TRUE for detailed output, FALSE for no output.
mu0.forestry, mu1.forestry

Lists containing the hyperparameters for the forestry package that are used in µ̂0 and µ̂1,
respectively. These hyperparameters are passed to the forestry package. (Please refer to
the forestry2 package for a more detailed documentation of the hyperparamters.)

ndpost Number of posterior draws.

ntree Number of trees.
mu0.BART, mu1.BART

Hyperparameters of the BART functions for the control and treated group. (Use ?BART::mc.wbart
for a detailed explanation of their e↵ects.)

2https://github.com/soerenkuenzel/forestry

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 142

Details

The CATE is estimated using two estimators:

1. Estimate the response functions
µ0(x) = E[Y (0)|X = x]

µ1(x) = E[Y (1)|X = x]

using the base leaner and denote the estimates as µ̂0 and µ̂1.

2. Define the CATE estimate as
⌧(x) = µ̂1 � µ̂0.

Value

Object of class T RF. It should be used with one of the following functions EstimateCATE, CateCI, and
CateBIAS. The object has the following slots:

feature train A copy of feat.

tr train A copy of tr.

yobs train A copy of yobs.

m 0 An object of class forestry that is fitted with the observed outcomes of the control group as
the dependent variable.

m 1 An object of class forestry that is fitted with the observed outcomes of the treated group as
the dependent variable.

hyperparameter list

List containting the hyperparameters of the three random forest algorithms used.

creator Function call of T RF. This is used for di↵erent bootstrap procedures.

References

• Sören Künzel, Jasjeet Sekhon, Peter Bickel, and Bin Yu (2017). MetaLearners for Estimating Heteroge-
neous Treatment E↵ects using Machine Learning. https://www.pnas.org/content/116/10/4156

• Sören Künzel, Simon Walter, and Jasjeet Sekhon (2018). Causaltoolbox—Estimator Stability for Hetero-
geneous Treatment E↵ects. https://arxiv.org/pdf/1811.02833.pdf

• Sören Künzel, Bradly Stadie, Nikita Vemuri, Varsha Ramakrishnan, Jasjeet Sekhon, and Pieter Abbeel
(2018). Transfer Learning for Estimating Causal E↵ects using Neural Networks. https://arxiv.org/

pdf/1808.07804.pdf

See Also

Other metalearners: M-Learner, S-Learner, X-Learner

Examples

require(causalToolbox)

create example data set
simulated_experiment <- simulate_causal_experiment(
ntrain = 1000,
ntest = 1000,
dim = 10

)
feat <- simulated_experiment$feat_tr
tr <- simulated_experiment$W_tr
yobs <- simulated_experiment$Yobs_tr
feature_test <- simulated_experiment$feat_te

create the CATE estimator using Random Forests (RF)
xl_rf <- X_RF(feat = feat, tr = tr, yobs = yobs)
tl_rf <- T_RF(feat = feat, tr = tr, yobs = yobs)
sl_rf <- S_RF(feat = feat, tr = tr, yobs = yobs)
ml_rf <- M_RF(feat = feat, tr = tr, yobs = yobs)
xl_bt <- X_BART(feat = feat, tr = tr, yobs = yobs)

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 143

tl_bt <- T_BART(feat = feat, tr = tr, yobs = yobs)
sl_bt <- S_BART(feat = feat, tr = tr, yobs = yobs)
ml_bt <- M_BART(feat = feat, tr = tr, yobs = yobs)

cate_esti_xrf <- EstimateCate(xl_rf, feature_test)

evaluate the performance.
cate_true <- simulated_experiment$tau_te
mean((cate_esti_xrf - cate_true) ^ 2)
Not run:
create confidence intervals via bootstrapping.
xl_ci_rf <- CateCI(xl_rf, feature_test, B = 500)

End(Not run)

X-Learner X-Learners

Description

X RF is an implementation of the X-learner with Random Forests (Breiman 2001) in the first and second
stage.

X BART is an implementation of the X-learner with Bayesian Additive Regression Trees (Chipman et al.
2010) at the first and second stage

Usage

X_RF(feat, tr, yobs, predmode = "propmean", nthread = 0,

verbose = FALSE, mu.forestry = list(relevant.Variable = 1:ncol(feat),

ntree = 1000, replace = TRUE, sample.fraction = 0.8, mtry =

round(ncol(feat) * 13/20), nodesizeSpl = 2, nodesizeAvg = 1, splitratio =

1, middleSplit = TRUE), tau.forestry = list(relevant.Variable =

1:ncol(feat), ntree = 1000, replace = TRUE, sample.fraction = 0.7, mtry =

round(ncol(feat) * 17/20), nodesizeSpl = 5, nodesizeAvg = 6, splitratio =

0.8, middleSplit = TRUE), e.forestry = list(relevant.Variable =

1:ncol(feat), ntree = 500, replace = TRUE, sample.fraction = 0.5, mtry =

ncol(feat), nodesizeSpl = 11, nodesizeAvg = 33, splitratio = 0.5,

middleSplit = FALSE))

X_BART(feat, tr, yobs, predmode = "pscore", nthread = 1,

ndpost = 1200, ntree = 200, mu.BART = list(sparse = FALSE, theta =

0, omega = 1, a = 0.5, b = 1, augment = FALSE, rho = NULL, usequants =

FALSE, cont = FALSE, sigest = NA, sigdf = 3, sigquant = 0.9, k = 2, power

= 2, base = 0.95, sigmaf = NA, lambda = NA, numcut = 100L, nskip = 100L),

tau.BART = list(sparse = FALSE, theta = 0, omega = 1, a = 0.5, b = 1,

augment = FALSE, rho = NULL, usequants = FALSE, cont = FALSE, sigest =

NA, sigdf = 3, sigquant = 0.9, k = 2, power = 2, base = 0.95, sigmaf =

NA, lambda = NA, numcut = 100L, nskip = 100L), e.BART = list(sparse =

FALSE, theta = 0, omega = 1, a = 0.5, b = 1, augment = FALSE, rho = NULL,

usequants = FALSE, cont = FALSE, sigest = NA, sigdf = 3, sigquant = 0.9,

k = 2, power = 2, base = 0.95, sigmaf = NA, lambda = NA, numcut = 100L,

nskip = 100L))

Arguments

feat A data frame containing the features.

tr A numeric vector with 0 for control and 1 for treated variables.

yobs A numeric vector containing the observed outcomes.

predmode Specifies how the two estimators of the second stage should be aggregated. Possible types are
”propmean,” ”control,” and ”treated.” The default is ”propmean,” which refers to propensity
score weighting.

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 144

nthread Number of threads which should be used to work in parallel.

verbose TRUE for detailed output, FALSE for no output.
mu.forestry, tau.forestry, e.forestry

A list containing the hyperparameters for the forestry package that are used for estimating
the response functions, the CATE, and the propensity score. These hyperparameters are
passed to the forestry package. (Please refer to the forestry3 package for a more detailed
documentation of the hyperparamters.)

• relevant.Variable Variables that are only used in the first stage.

• ntree Numbers of trees used in the first stage.

• replace Sample with or without replacement in the first stage.

• sample.fraction The size of total samples to draw for the training data in the first
stage.

• mtry The number of variables randomly selected in each splitting point.

• nodesizeSpl Minimum nodesize in the first stage for the observations in the splitting
set. (See the details of the forestry package)

• nodesizeAvg Minimum nodesize in the first stage for the observations in the averaging
set.

• splitratio Proportion of the training data used as the splitting dataset in the first
stage.

• middleSplit If true, the split value will be exactly in the middle of two observations.
Otherwise, it will take a point based on a uniform distribution between the two obser-
vations.

ndpost Number of posterior draws.

ntree Number of trees.
mu.BART, tau.BART, e.BART

hyperparameters of the BART functions for the estimates of the first and second stage and
the propensity score. Use ?BART::mc.wbart for a detailed explanation of their e↵ects.

Details

The X-Learner estimates the CATE in three steps:

1. Estimate the response functions
µ0(x) = E[Y (0)|X = x]

µ1(x) = E[Y (1)|X = x]

using the base learner and denote the estimates as µ̂0 and µ̂1.

2. Impute the treatment e↵ects for the individuals in the treated group, based on the control outcome
estimator, and the treatment e↵ects for the individuals in the control group, based on the treatment
outcome estimator, that is,

D1
i = Yi(1)� µ̂0(Xi)

D0
i = µ̂1(Xi)� Yi(0).

Now employ the base learner in two ways: using D1
i as the dependent variable to obtain ⌧̂1(x), and using

D0
i as the dependent variable to obtain ⌧̂0(x).

3. Define the CATE estimate by a weighted average of the two estimates at Stage 2:

⌧(x) = g(x)⌧̂0(x) + (1� g(x))⌧̂1(x).

If predmode = "propmean", then g(x) = e(x), where e(x) is an estimate of the propensity score using
the forestry Random Forests version with the hyperparameters specified in e.forestry. If predmode
= "control", then g(x) = 1, and if predmode = "treated", then g(x) = 0.

3https://github.com/soerenkuenzel/forestry

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 145

Value

An object from a class that contains the CATEestimator class. It should be used with one of the following
functions: EstimateCATE, CateCI, and CateBIAS. The object has at least the following slots:

feature train A copy of feat.

tr train A copy of tr.

yobs train A copy of yobs.

creator Function call that creates the CATE estimator. This is used for di↵erent bootstrap proce-
dures.

Author(s)

Soeren R. Kuenzel

References

• Sören Künzel, Jasjeet Sekhon, Peter Bickel, and Bin Yu (2017). MetaLearners for Estimating Heteroge-
neous Treatment E↵ects using Machine Learning. https://www.pnas.org/content/116/10/4156

• Sören Künzel, Simon Walter, and Jasjeet Sekhon (2018). Causaltoolbox—Estimator Stability for Hetero-
geneous Treatment E↵ects. https://arxiv.org/pdf/1811.02833.pdf

• Sören Künzel, Bradly Stadie, Nikita Vemuri, Varsha Ramakrishnan, Jasjeet Sekhon, and Pieter Abbeel
(2018). Transfer Learning for Estimating Causal E↵ects using Neural Networks. https://arxiv.org/

pdf/1808.07804.pdf

See Also

Other metalearners: M-Learner, S-Learner, T-Learner

Examples

require(causalToolbox)

create example data set
simulated_experiment <- simulate_causal_experiment(
ntrain = 1000,
ntest = 1000,
dim = 10

)
feat <- simulated_experiment$feat_tr
tr <- simulated_experiment$W_tr
yobs <- simulated_experiment$Yobs_tr
feature_test <- simulated_experiment$feat_te

create the CATE estimator using Random Forests (RF)
xl_rf <- X_RF(feat = feat, tr = tr, yobs = yobs)
tl_rf <- T_RF(feat = feat, tr = tr, yobs = yobs)
sl_rf <- S_RF(feat = feat, tr = tr, yobs = yobs)
ml_rf <- M_RF(feat = feat, tr = tr, yobs = yobs)
xl_bt <- X_BART(feat = feat, tr = tr, yobs = yobs)
tl_bt <- T_BART(feat = feat, tr = tr, yobs = yobs)
sl_bt <- S_BART(feat = feat, tr = tr, yobs = yobs)
ml_bt <- M_BART(feat = feat, tr = tr, yobs = yobs)

cate_esti_xrf <- EstimateCate(xl_rf, feature_test)

evaluate the performance.
cate_true <- simulated_experiment$tau_te
mean((cate_esti_xrf - cate_true) ^ 2)
Not run:
create confidence intervals via bootstrapping.
xl_ci_rf <- CateCI(xl_rf, feature_test, B = 500)

End(Not run)

APPENDIX B. CAUSALTOOLBOX DOCUMENTATION 146

147

Appendix C

Supporting Information for the
Detachment Index

APPENDIX C. SI FOR DETACHMENT INDEX 148

C.1 Example A

Days Ago C. Registration D. Horse Power Kilometer Dr. ZIP Code RMSE
50.7 (100%) 9.3 (98.8%) 37.1 (96.1%) 47155.5 (100%) 30653.6 (100%) 2981.65
137.1 (100%) 9.2 (98.8%) 38.1 (96.3%) 47496.9 (100%) 30915.4 (100%) 2984.89
50.6 (100%) 7.7 (98.1%) 41.5 (97.2%) 34628.5 (99.5%) 34944.2 (100%) 2988.02
58.5 (100%) 7.3 (98%) 40.8 (97.1%) 52064.3 (100%) 31871.9 (100%) 2988.98
59.4 (100%) 7.9 (98.2%) 41.1 (97.1%) 36530.9 (99.6%) 32554.2 (100%) 2989.33
12 (99.8%) 9.3 (98.8%) 38.8 (96.6%) 53654.1 (100%) 30712.9 (100%) 2990.46
99.1 (100%) 9 (98.7%) 39 (96.6%) 53311.9 (100%) 28549.6 (99.8%) 2990.95
85.8 (100%) 7.8 (98.2%) 40.4 (97%) 45603.4 (99.9%) 32206.4 (100%) 2991.19
88.7 (100%) 9.4 (98.8%) 38.8 (96.5%) 50460.7 (100%) 30906.1 (100%) 2992.86
355.2 (100%) 8.4 (98.4%) 41.1 (97.1%) 36006.9 (99.5%) 33407.2 (100%) 3001.88
91.3 (100%) 6.3 (97.2%) 45.7 (97.9%) 49730.8 (100%) 32528.5 (100%) 3005.42
326.4 (100%) 6.3 (97.2%) 47.1 (98.1%) 52109 (100%) 28733.6 (99.8%) 3011.85
265.8 (100%) 9.7 (99%) 38.7 (96.5%) 39672 (99.7%) 29327.9 (99.9%) 3015.84
340.2 (100%) 9.5 (98.9%) 43.5 (97.6%) 53791.3 (100%) 24441.7 (98.2%) 3019.70
266.8 (100%) 6.9 (97.8%) 42.6 (97.5%) 53694.4 (100%) 30064 (99.9%) 3020.59
225.7 (100%) 8.6 (98.6%) 41.5 (97.2%) 44089.9 (99.9%) 33679.2 (100%) 3020.74
136.5 (100%) 9.9 (99%) 38.9 (96.6%) 42445.6 (99.8%) 32402.6 (100%) 3020.81
208.8 (100%) 6.9 (97.7%) 42.6 (97.5%) 52235.9 (100%) 30096.9 (99.9%) 3020.95
334.5 (100%) 7.7 (98.2%) 42.6 (97.5%) 38731.1 (99.7%) 32840.9 (100%) 3025.25
286.7 (100%) 7.1 (97.9%) 43.2 (97.6%) 36857.1 (99.6%) 31754.6 (100%) 3027.47
70.4 (100%) 9.9 (99%) 39.5 (96.8%) 38233.3 (99.7%) 34966.4 (100%) 3027.48
250.9 (100%) 5.8 (96.7%) 53.5 (98.6%) 37351.2 (99.6%) 34751.7 (100%) 3027.65
230.8 (100%) 9 (98.7%) 40.4 (97%) 38796.7 (99.7%) 34448.2 (100%) 3028.56
46.4 (100%) 8.9 (98.7%) 41.2 (97.1%) 36460.4 (99.6%) 27232.1 (99.5%) 3029.19
43.2 (100%) 9.2 (98.8%) 40.6 (97%) 37601.4 (99.7%) 34544.7 (100%) 3029.54
238.3 (100%) 8.1 (98.3%) 42.1 (97.3%) 33848 (99.4%) 28189.1 (99.8%) 3030.58
228.9 (100%) 8.6 (98.6%) 52.1 (98.5%) 47264 (100%) 24026.8 (97.8%) 3031.89
48.4 (100%) 9.3 (98.8%) 41.1 (97.1%) 39085.9 (99.7%) 27900.2 (99.7%) 3032.03
168.4 (100%) 8.9 (98.7%) 41.5 (97.2%) 41260.6 (99.8%) 27938.6 (99.7%) 3033.21
186.8 (100%) 6.3 (97.2%) 50.3 (98.4%) 46097.4 (99.9%) 30439.7 (100%) 3034.59
10.5 (99.7%) 9.5 (98.9%) 46.7 (98%) 51111.4 (100%) 24438.6 (98.2%) 3037.74
128.6 (100%) 5.7 (96.6%) 54.5 (98.7%) 49506.9 (100%) 32141.3 (100%) 3039.64
93.9 (100%) 6.1 (97.1%) 51.9 (98.5%) 48448.1 (100%) 32384 (100%) 3039.88
273.8 (100%) 7.9 (98.2%) 44.9 (97.8%) 34257.3 (99.4%) 33468.2 (100%) 3042.80
344.2 (100%) 7.3 (98%) 45.6 (97.9%) 35746.6 (99.5%) 34831.1 (100%) 3043.96

Table C.1: Best 40 thresholds out of a sample of 100,000. The numbers in the brackets are
the corresponding percentiles.

APPENDIX C. SI FOR DETACHMENT INDEX 149

C.2 Example B

●

●

X_RF

X_BART

●

●

X_RF

X_BART

●

●

X_RFX_BART

Sim 1: Area with Overlap Sim 2: Area with Overlap Sim 2: Area without Overlap

0 5 10 0 5 10 0 5 10

0.00

0.25

0.50

0.75

1.00

Average Confidence Interval Length

Av
er

ag
e

C
ov

er
ag

e

Figure C.1: Confidence intervals and confidence interval lengths for Simulations 1 and 2
seperated by the Overlap regions.

150

Appendix D

Supporting Information for Linear
Aggregation in Tree-based Estimators

D.1 Splitting on a Categorical Feature

To split on a categorical feature, we use one-hot encoding to split based on equal or not
equal to the given feature category. In order to evaluate the split RSS, we examine linear
models fit on the set of observations containing the feature and the set not containing the
feature. In order to evaluate this split quickly, we make use of the fact that we can quickly
compute RSS components by keeping track of the total aggregated sum of outer products.

Let GTotal =
Pn

i=1


Xi

1

� ⇥
XT

i 1
⇤

GLeftInitial =


X1

1

� ⇥
XT

1
1
⇤

GRightInitial =
Pn

i=2


Xi

1

� ⇥
XT

i 1
⇤
= GTotal �GLeftInitial

This means that given GTotal, we can immediately begin evaluating splits along any split
feature by using the sequence of indices corresponding to the ascending sequence of values
in the current split feature.

This fact helps us quickly evaluate the sum of RSS of separate regressions on the two
sides of inclusion/exclusion splits on categorical variables.

On a split on categorical variable X(l), when evaluating the split RSS on the value of
category k, the RSS components can be calculated as follows:

Let E(k) = {i : Xi(l) = k}

GLeft =
P

i2E(k)


Xi

1

� ⇥
XT

i 1
⇤
2 Rd⇥d

APPENDIX D. SI FOR LINEAR AGGREGATION 151

GRight =
P

i/2E(k)


Xi

1

� ⇥
XT

i 1
⇤
2 Rd⇥d

GRight = GTotal �GLeft

The same method can be used to update SLeft and SRight at each step, so we can use
this update rule generally to quickly compute the RSS for categorical splits in the algorithm
that follows.

Algorithm 14 Find Best Split for Categorical Features

Input: Features: X 2 Rn⇥d,
Dependent Outcome: Y 2 Rn,
overfitPenalty (regularization for split): � 2 R+,

Output: Best Split point k

1: procedure FindBestSplitRidgeCategorical

Initialization:

2: GTotal =
Pn

i=1


Xi

1

� ⇥
XT

i 1
⇤

3: STotal
Pn

i=1
Yi


Xi

1

�

4: for category k = 1, . . . , l do
5: E(k) {i : Xi(splitFeat) = category k}

6: GL
P

i2E(k)


Xi

1

� ⇥
XT

i 1
⇤

7: SL
P

i2E(k) Yi


Xi

1

�

8: GR GTotal �GL

9: SR STotal � SL

10: A�1

R

✓
GR + �


Id 0
0 0

�◆�1

11: A�1

L

✓
GL + �


Id 0
0 0

�◆�1

12: Compute the RSS sum for the current split:

RSSk ST
LA

�1

L GLA
�1

L SL � 2ST
LA

�1

L SL)

+ ST
RA

�1

R GR)A
�1

R SR � 2ST
RA

�1

R SR.

13: return (argmin(k)RSSk)

APPENDIX D. SI FOR LINEAR AGGREGATION 152

Runtime Analysis of Finding Categorical Split Point

Using a set to keep track of category membership, we can create the set in O(NlogN) time
and access a member of any specific category in amortized constant time. Once we begin
iterating through the categories, we can access the elements and create the left model RSS
components in O(|K|) where |K| is the size of category k, and using the Gtotal and Stotal

matrices, we can find the right model RSS components in O(d2) time once we calculate GL

and SL. As the sum of sizes of the various categories sums to the number of observations,
we end up doing the same number of RSS component update steps as the continuous case as
well as one additional step to get the right RSS components for each category. The overall
asymptotic runtime remains O(NlogN +Nd2).

APPENDIX D. SI FOR LINEAR AGGREGATION 153

D.2 Tuned Simulation Hyperparameters

Dataset mtry nodesize overfitP LOGminSplitGain sample.frac
Friedman 1 9 16 0.23 -3.86 0.91
Friedman 2 3 195 0.43 -5.07 0.89
Friedman 3 4 11 6.65 -3.16 0.65

Boston Housing f1 10 7 0.28 -7.86 0.95
Boston Housing f2 4 13 3.06 -4.81 0.99
Boston Housing f3 3 12 0.19 -4.94 0.94
Boston Housing f4 5 13 0.77 -9.12 0.91
Boston Housing f5 2 11 0.25 -13.71 0.99

Ozone fold1 2 19 9.47 -6.41 0.5
Ozone fold2 3 12 3.06 -4.81 0.99
Ozone fold3 1 20 7.4 -10.41 0.9
Ozone fold4 3 19 9.36 -4.76 0.92
Ozone fold5 2 3 8.51 -7.12 0.88
Servo fold1 12 5 0.31 -2.83 0.89
Servo fold2 9 16 0.11 -6.78 0.97
Servo fold3 11 2 0.87 -8.84 0.97
Servo fold4 11 34 0.12 -3.22 0.87
Servo fold5 11 33 0.12 -3.22 0.87

Abalone 1 150 0.13 -6.25 0.92
autos 5 18 0.8 -8.44 0.92
bike 8 23 0.11 -6.78 0.97

artificial LM 256 3 50 5.57 -8.71 0.52
artificial LM 512 2 16 0.19 -2.78 0.51
artificial LM 1024 4 3 0.18 -2.82 0.63
artificial LM 2048 9 17 0.23 -3.86 0.91

Step 128 8 9 9.29 -8.39 0.92
Step 256 9 30 0.3 -7.36 0.77
Step 512 8 47 0.28 -12.75 0.89
Step 1024 5 27 0.31 -18.42 0.73

StepLinear 256 10 10 8.74 -3 0.92
StepLinear 512 10 11 8.74 -3 0.92
StepLinear 1024 10 12 8.74 -3 0.92

Table D.1: Selected hyperparameters.

APPENDIX D. SI FOR LINEAR AGGREGATION 154

D.3 Generating Random Step Function

The Simulated-Step-Function in Section 5.3 was generated according to the fol-
lowing scheme:

Algorithm 15 Generate Simulated Step
Input: numLevels (number of random levels for step function),

n (dimension of data)
Output: Independent Input: X 2 Rn⇥d,

Step Function Outcome: Ystep 2 Rn,

1: procedure Generate Simulated Step
2: Xn

i=1
 Normal(0, 1)10

3:

4: Y numLevels
i=1

 Unif(�10, 10)
5:

6: Xsample X[sample(1 : nrow(X), numLevels, replace = FALSE),]
7:

8: fs forestry(x = Xsample, y = Y, nodeSize = 1)
9:

10: Ystep predict(fs, feature.new = X)
11:

12: return (X, Ystep)

155

Appendix E

forestry Documentation

forestry is a C++ implementation of the random forests algorithm [6] with new tools to
do better inference and to improve the interpretability of the algorithm. The software is
written in C++ so that the algorithm can run extremely fast, even on big data sets. It also
provides an R front end so that appliers can easily use it in their usual workflows.

addTrees addTrees-forestry

Description

Add more trees to an existing forest.

Usage

addTrees(object, ntree)

Arguments

object A trained model object of class ”forestry”.

ntree Number of new trees to add.

Value

A trained model object of class ”forestry”.

compute lp-forestry compute lp distances

Description

Return lp distances of selected test observations.

Usage

compute_lp(object, feature.new, feature, p)

Arguments

object A trained model object of class ”forestry”.

feature.new A data frame of testing predictors.

feature A string denoting the dimension for computing lp distances.

p A positive real number determining the norm p-norm used.

Value

A vector lp distances.

Examples

Set seed for reproductivity
set.seed(292313)

Use Iris Data
test_idx <- sample(nrow(iris), 11)
x_train <- iris[-test_idx, -1]
y_train <- iris[-test_idx, 1]
x_test <- iris[test_idx, -1]

rf <- forestry(x = x_train, y = y_train)
predict(rf, x_test)

Compute the l2 distances in the "Petal.Length" dimension
distances_2 <- compute_lp(object = rf,

feature.new = x_test,
feature = "Petal.Length",
p = 2)

APPENDIX E. FORESTRY DOCUMENTATION 156

forestry forestry

Description

forestry is a fast implementation of a variety of tree-based estimators. Implemented estimators include CART
trees, randoms forests, boosted trees and forests, and linear trees and forests. All estimators are implemented
to scale well with very large datasets.

Usage

forestry(x, y, ntree = 500, replace = TRUE, sampsize = if (replace)

nrow(x) else ceiling(0.632 * nrow(x)), sample.fraction = NULL,

mtry = max(floor(ncol(x)/3), 1), nodesizeSpl = 3, nodesizeAvg = 3,

nodesizeStrictSpl = 1, nodesizeStrictAvg = 1, minSplitGain = 0,

maxDepth = round(nrow(x)/2) + 1, splitratio = 1,

seed = as.integer(runif(1) * 1000), verbose = FALSE, nthread = 0,

splitrule = "variance", middleSplit = FALSE, maxObs = length(y),

linear = FALSE, splitFeats = 1:(ncol(x)), linFeats = 1:(ncol(x)),

sampleWeights = rep((1/ncol(x)), ncol(x)), overfitPenalty = 1,

doubleTree = FALSE, reuseforestry = NULL, saveable = TRUE)

Arguments

x A data frame of all training predictors.

y A vector of all training responses.

ntree The number of trees to grow in the forest. The default value is 500.

replace An indicator of whether sampling of training data is with replacement. The default value is
TRUE.

sampsize The size of total samples to draw for the training data. If sampling with replacement, the
default value is the length of the training data. If samplying without replacement, the default
value is two-third of the length of the training data.

sample.fraction

If this is given, then sampsize is ignored and set to be round(length(y) * sample.fraction).
It must be a real number between 0 and 1

mtry The number of variables randomly selected at each split point. The default value is set to
be one third of total number of features of the training data.

nodesizeSpl Minimum observations contained in terminal nodes. The default value is 3.

nodesizeAvg Minimum size of terminal nodes for averaging dataset. The default value is 3.

nodesizeStrictSpl

Minimum observations to follow strictly in terminal nodes. The default value is 1.
nodesizeStrictAvg

Minimum size of terminal nodes for averaging dataset to follow strictly. The default value is
1.

minSplitGain Minimum loss reduction to split a node further in a tree. specifically this is the percentage
R squared increase which each potential split must give to be considered. The default value
is 0.

maxDepth Maximum depth of a tree. The default value is 99.

splitratio Proportion of the training data used as the splitting dataset. It is a ratio between 0 and 1.
If the ratio is 1, then essentially splitting dataset becomes the total entire sampled set and
the averaging dataset is empty. If the ratio is 0, then the splitting data set is empty and all
the data is used for the averaging data set (This is not a good usage however since there will
be no data available for splitting).

seed Seed for random number generator.

verbose Flag to indicate if training process is verbose.

APPENDIX E. FORESTRY DOCUMENTATION 157

nthread Number of threads to train and predict the forest. The default number is 0 which represents
using all cores.

splitrule Only variance is implemented at this point and it specifies the loss function according to
which the splits of random forest should be made.

middleSplit Flag to indicate whether the split value takes the average of two feature values. If false, it
will take a point based on a uniform distribution between two feature values. The default
value is FALSE.

maxObs The max number of observations to split on. If set to a number less than nrow(x), at each
split point, maxObs split points will be randomly sampled to test as potential splitting points
instead of every feature value (default).

linear Fit the model with a split function optimizing for a linear aggregation function instead of a
constant aggregation function. The default value is FALSE.

splitFeats Specify which features to split on when creating a tree (defaults to use all features).

linFeats Specify which features to split linearly on when using linear (defaults to use all numerical
features)

sampleWeights Specify weights for weighted uniform distribution used to randomly sample features.

overfitPenalty

Value to determine how much to penalize magnitude of coe�cients in ridge regression when
using linear. The default value is 1.

doubleTree Indicate whether the number of tree is doubled as averaging and splitting data can be ex-
changed to create decorrelated trees. The default value is FALSE.

reuseforestry Pass in a ‘forestry‘ object which will recycle the dataframe the old object created. It will
save some space working on the same dataset.

saveable If TRUE, then RF is created in such a way that it can be saved and loaded using save(...)
and load(...). Setting it to TRUE (default) will, however, take longer and it will use more
memory. When training many RF, it makes a lot of sense to set this to FALSE to save time
and memory.

Details

For Linear Random Forests, set the linear option to TRUE and specify lambda for ridge regression with
overfitPenalty parameter. For gradient boosting and gradient boosting forests, see mulitlayer-forestry.

Value

A ‘forestry‘ object.

See Also

predict.forestry

multilayer-forestry

predict-multilayer-forestry

getVI

getOOB

make savable

Examples

set.seed(292315)
library(forestry)
test_idx <- sample(nrow(iris), 3)
x_train <- iris[-test_idx, -1]
y_train <- iris[-test_idx, 1]
x_test <- iris[test_idx, -1]

rf <- forestry(x = x_train, y = y_train)
weights = predict(rf, x_test, aggregation = "weightMatrix")$weightMatrix

weights %*% y_train

APPENDIX E. FORESTRY DOCUMENTATION 158

predict(rf, x_test)

set.seed(49)
library(forestry)

n <- c(100)
a <- rnorm(n)
b <- rnorm(n)
c <- rnorm(n)
y <- 4*a + 5.5*b - .78*c
x <- data.frame(a,b,c)

forest <- forestry(
x,
y,
ntree = 10,
replace = TRUE,
nodesizeStrictSpl = 5,
nodesizeStrictAvg = 5,
linear = TRUE
)

predict(forest, x)

getOOB-forestry getOOB-forestry

Description

Calculate the out-of-bag error of a given forest.

Usage

getOOB(object, noWarning)

Arguments

object A trained model object of class ”forestry”.

noWarning Flag to not display warnings.

Value

The out-of-bag error of the forest.

See Also

forestry

getVI getVI-forestry

Description

Calculate variable importance for ‘forestry‘ object as introduced by Breiman (2001). Returns a list of percent-
age increases in out-of-bag error when shu✏ing each feature values and getting out-of-bag error.

Usage

getVI(object, noWarning = FALSE)

APPENDIX E. FORESTRY DOCUMENTATION 159

Arguments

object A trained model object of class ”forestry”.

noWarning Flag to not display warnings or display warnings.

See Also

forestry

make savable make savable

Description

When a ‘foresty‘ object is saved and then reloaded ,the Cpp pointers for the data set and the Cpp forest have
to be reconstructed.

Usage

make_savable(object)

Arguments

object A trained model object of class ”forestry”.

Value

A list of lists. Each sublist contains the information to span a tree.

See Also

forestry

Examples

set.seed(323652639)
x <- iris[, -1]
y <- iris[, 1]
forest <- forestry(x, y, ntree = 3)
y_pred_before <- predict(forest, x)

forest <- make_savable(forest)
save(forest, file = "forest.Rda")
rm(forest)
load("forest.Rda", verbose = FALSE)
forest <- relinkCPP_prt(forest)

y_pred_after <- predict(forest, x)
testthat::expect_equal(y_pred_before, y_pred_after, tolerance = 0.000001)
file.remove("forest.Rda")

APPENDIX E. FORESTRY DOCUMENTATION 160

multilayer-forestry Multilayer forestry

Description

Constructs a gradient boosted random forest.

Usage

multilayerForestry(x, y, ntree = 500, nrounds = 1, eta = 0.3,

replace = FALSE, sampsize = nrow(x), sample.fraction = NULL,

mtry = ncol(x), nodesizeSpl = 3, nodesizeAvg = 3,

nodesizeStrictSpl = max(round(nrow(x)/128), 1),

nodesizeStrictAvg = max(round(nrow(x)/128), 1), minSplitGain = 0,

maxDepth = 99, splitratio = 1, seed = as.integer(runif(1) * 1000),

verbose = FALSE, nthread = 0, splitrule = "variance",

middleSplit = TRUE, maxObs = length(y), linear = FALSE,

splitFeats = 1:(ncol(x)), linFeats = 1:(ncol(x)),

sampleWeights = rep((1/ncol(x)), ncol(x)), overfitPenalty = 1,

doubleTree = FALSE, reuseforestry = NULL, saveable = TRUE)

Arguments

x A data frame of all training predictors.

y A vector of all training responses.

ntree The number of trees to grow in the forest. The default value is 500.

nrounds Number of iterations used for gradient boosting.

eta Step size shrinkage used in gradient boosting update.

replace An indicator of whether sampling of training data is with replacement. The default value is
TRUE.

sampsize The size of total samples to draw for the training data. If sampling with replacement, the
default value is the length of the training data. If samplying without replacement, the default
value is two-third of the length of the training data.

sample.fraction

If this is given, then sampsize is ignored and set to be round(length(y) * sample.fraction).
It must be a real number between 0 and 1

mtry The number of variables randomly selected at each split point. The default value is set to
be one third of total number of features of the training data.

nodesizeSpl Minimum observations contained in terminal nodes. The default value is 3.

nodesizeAvg Minimum size of terminal nodes for averaging dataset. The default value is 3.
nodesizeStrictSpl

Minimum observations to follow strictly in terminal nodes. The default value is 1.
nodesizeStrictAvg

Minimum size of terminal nodes for averaging dataset to follow strictly. The default value is
1.

minSplitGain Minimum loss reduction to split a node further in a tree. specifically this is the percentage
R squared increase which each potential split must give to be considered. The default value
is 0.

maxDepth Maximum depth of a tree. The default value is 99.

splitratio Proportion of the training data used as the splitting dataset. It is a ratio between 0 and 1.
If the ratio is 1, then essentially splitting dataset becomes the total entire sampled set and
the averaging dataset is empty. If the ratio is 0, then the splitting data set is empty and all
the data is used for the averaging data set (This is not a good usage however since there will
be no data available for splitting).

seed Seed for random number generator.

verbose Flag to indicate if training process is verbose.

APPENDIX E. FORESTRY DOCUMENTATION 161

nthread Number of threads to train and predict the forest. The default number is 0 which represents
using all cores.

splitrule Only variance is implemented at this point and it specifies the loss function according to
which the splits of random forest should be made.

middleSplit Flag to indicate whether the split value takes the average of two feature values. If false, it
will take a point based on a uniform distribution between two feature values. The default
value is FALSE.

maxObs The max number of observations to split on. If set to a number less than nrow(x), at each
split point, maxObs split points will be randomly sampled to test as potential splitting points
instead of every feature value (default).

linear Fit the model with a split function optimizing for a linear aggregation function instead of a
constant aggregation function. The default value is FALSE.

splitFeats Specify which features to split on when creating a tree (defaults to use all features).

linFeats Specify which features to split linearly on when using linear (defaults to use all numerical
features)

sampleWeights Specify weights for weighted uniform distribution used to randomly sample features.
overfitPenalty

Value to determine how much to penalize magnitude of coe�cients in ridge regression when
using linear. The default value is 1.

doubleTree Indicate whether the number of tree is doubled as averaging and splitting data can be ex-
changed to create decorrelated trees. The default value is FALSE.

reuseforestry Pass in a ‘forestry‘ object which will recycle the dataframe the old object created. It will
save some space working on the same dataset.

saveable If TRUE, then RF is created in such a way that it can be saved and loaded using save(...)
and load(...). Setting it to TRUE (default) will, however, take longer and it will use more
memory. When training many RF, it makes a lot of sense to set this to FALSE to save time
and memory.

Value

A trained model object of class ”multilayerForestry”.

See Also

forestry

plot-forestry visualize a tree

Description

Plots a single tree in the forest.

Usage

S3 method for class 'forestry'
plot(x, tree.id = 1, print.meta_dta = FALSE,

beta.char.len = 30, return.plot.dta = FALSE, ...)

Arguments

x A trained model object of class ”forestry”.

tree.id Specifies the tree number that should be visualized

print.meta dta Should the data for the plot be printed?

beta.char.len The length of the beta values in leaf node representation.
return.plot.dta

If TRUE no plot will be generated, but instead a list with all the plot data is returned.

... additional arguments that are not used.

APPENDIX E. FORESTRY DOCUMENTATION 162

Examples

set.seed(292315)
rf <- forestry(x = iris[,-1],

y = iris[, 1])

plot(x = rf)
plot(x = rf, tree.id = 2)
plot(x = rf, tree.id = 500)

ridge_rf <- forestry(
x = iris[,-1],
y = iris[, 1],
replace = FALSE,
nodesizeStrictSpl = 10,
mtry = 4,
ntree = 1000,
minSplitGain = .004,
linear = TRUE,
overfitPenalty = 1.65,
linFeats = 1:2)

plot(x = ridge_rf)
plot(x = ridge_rf, tree.id = 2)
plot(x = ridge_rf, tree.id = 1000)

predict-forestry predict-forestry

Description

Return the prediction from the forest.

Usage

S3 method for class 'forestry'
predict(object, feature.new, aggregation = "average",

localVariableImportance = FALSE, ...)

Arguments

object A trained model object of class ”forestry”.

feature.new A data frame of testing predictors.

aggregation How shall the leaf be aggregated. The default is to return the mean of the leave ‘average‘.
Other options are ‘weightMatrix‘.

localVariableImportance

Returns a matrix providing local variable importance for each prediction.

... additional arguments.

Details

Allows for di↵erent methods of prediction on new data.

Value

A vector of predicted responses.

See Also

forestry

APPENDIX E. FORESTRY DOCUMENTATION 163

predict-multilayer-forestry

predict-multilayer-forestry

Description

Return the prediction from the forest.

Usage

S3 method for class 'multilayerForestry'
predict(object, feature.new,

aggregation = "average", ...)

Arguments

object A ‘multilayerForestry‘ object.

feature.new A data frame of testing predictors.

aggregation How shall the leaf be aggregated. The default is to return the mean of the leave ‘average‘.
Other options are ‘weightMatrix‘.

... additional arguments.

Value

A vector of predicted responses.

See Also

forestry

relinkCPP prt relink CPP ptr

Description

When a ‘foresty‘ object is saved and then reloaded the Cpp pointers for the data set and the Cpp forest have
to be reconstructed

Usage

relinkCPP_prt(object)

Arguments

object an object of class ‘forestry‘

APPENDIX E. FORESTRY DOCUMENTATION 164

