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Abstract

Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g.,
lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide
association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched
healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and
discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity
and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians
(median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the
sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age
at death.102 and 85% to classify subjects with an age at death.105). For further validation, we applied the model to an
additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls
with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide
significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from
the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped
into clusters characterized by different ‘‘genetic signatures’’ of varying predictive values for exceptional longevity. The
correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different
signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.
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Introduction

The average human lifespan in developed countries now ranges

from about 80 to 85 years. Environmental factors such as lifestyle

choices and where we choose to live as well as genetic factors all

contribute to healthy aging. Supporting the importance of

environmental factors in survival to old age is the 88 year average

life expectancy of Seventh-Day Adventists [1], who by virtue of

their religion have health related behaviors conducive to healthy

aging.

Human twin studies suggest that only 20–30% of the variation

in survival to about 85 years is determined by genetic variation [2].

However, the existence of rare families demonstrating remarkable

clustering for extreme ages [3,4], the increased relative risks of

survival amongst siblings of nonagenarians [5] and of centenarians

[6,7,8,9,10,11,12,13], the fact that children of centenarians

experience a marked delay in age-related diseases [14], and the

similarity of centenarians’ lifestyles to the general population [15],

all argue that genetic factors play a much stronger role in living

25–35 years beyond the mid-eighties [10,16,17]. Impressively,

siblings of centenarians born in 1900 have a relative risk of living

nearly 100 years that is 8 (females) to 17 times (males) greater than

that for the average of their birth cohort [10]. The rarity of the

trait —only 1 centenarian amongst approximately 5,000 people in

the US and only 1 supercentenarian (age 110+ years) amongst

seven million people [18]— places exceptional longevity in a very

different category from both average life expectancy and common

complex traits associated with aging.

Based upon the hypothesis that exceptionally old individuals are

carriers of multiple genetic variants that influence human lifespan,

we conducted a genome-wide association study (GWAS) of

centenarians. We began with a traditional one SNP at a time

analysis to identify SNPs that are individually associated with

exceptional longevity. We then used a novel approach to build a

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e29848



family of genetic risk models based on Bayes rule which, while

taking into account the simultaneous influence of many genetic

variants, can accurately discriminate between subjects with

average versus exceptional longevity. Next, we used this family

of models to construct subject-specific genetic risk profiles that, by

cluster analysis, can be used to discover sub-phenotypes of

exceptional longevity that are characterized by different genetic

signatures. Figure 1 summarizes the steps of the analyses.

Results

Primary and secondary sets
Our primary set (discovery set) consisted of 801 unrelated

subjects enrolled in the New England Centenarian Study (NECS)

and 914 genetically matched controls. NECS subjects were

Caucasians who were born between 1890 and 1910 with an age

range of 95 to 119 years (median age 104 years). Approximately

one-third of the NECS sample included centenarians with a first-

degree relative also achieving exceptional longevity, thus enhanc-

ing the sample’s power [19]. Controls included 241 genetically

matched NECS referent subjects who were spouses of centenarian

offspring or children of parents who died at an age #73 years, and

673 genetically matched subjects selected from the Illumina

control database. For genetic matching we used a previously

described algorithm [20] that groups subjects by ethnicities based

on cluster analysis of the most informative principal components of

genome-wide genotype data (Figure S1). Note that, based on the

U.S. Social Security Administration’s 1920 birth cohort life table,

the average life expectancy in the cohort is 82 years, with standard

deviation of 7.9 years, so that the mean age of the cases in our

study and the average life expectancy in the cohort differ by 2.69

times the standard deviation. Furthermore, the mean age of NECS

controls was 75 years, with standard deviation 7 years. Therefore,

the difference between mean age of centenarians in the discovery

set and NECS controls was more than 4 times the standard

deviation, thus boosting the power of the study. For replication we

used two additional sets. The replication set 1 (‘‘ELIX’’) consisted

of 253 North American Caucasian subjects enrolled by Elixir

Pharmaceuticals between 2001 and 2003. These individuals were

born between 1890 and 1910 (age range of 89–114 years, median

age 100) and were recruited and phenotyped using a protocol

similar to the NECS. Referent subjects (n = 341) were identified

from the remaining Illumina controls and genetically matched to

the 253 cases using the same matching algorithm used in the

discovery set. The replication set 2 was composed of 60

centenarians that included 39 subjects of European ancestry

enrolled in the NECS between June 2009 and September 2010

(age range 100–114, mean age 108) plus 21 centenarians (age

range 101–115, mean age 107) not included in the discovery set

during the genetic matching, and all available Caucasians samples

from the Illumina control database not used in the above

comparisons. Centenarians and controls in replication set 2 were

not genetically matched to test the generalizability of the results.

Figure 2 displays the age distributions of centenarians in the

discovery and replication sets 1 and 2. We also used an additional

set of 867 neurologically normal subjects used as controls for a

Parkinson’s disease GWAS [21], to test the robustness of single

SNP associations. We analyzed 243,980 SNPs that passed a

stringent quality control protocol described in the methods.

Single SNP Analysis
First we conducted a traditional single SNP analysis in which we

ranked SNPs in the discovery set by the strength of association. We

employed both Bayesian and traditional frequentist analyses of 4

different genetic models (general/genotypic, allelic/additive,

recessive and dominant associations) to maximize power [22,23].

With the Bayesian analysis, we scored each SNP association by the

Bayes Factor (BF), which is the posterior odds for the association

Figure 1. Schematic showing the methodology used to discover genetic signatures of exceptional longevity (EL). The analysis
included genetic matching to remove confounding by population stratification between cases and controls of the discovery and replication set 1,
discovery and replication of single SNP associations, multivariate genetic risk modeling and generation of predictive genetic profiles, and cluster
analysis of genetic risk profiles to discover genetic signatures of EL.
doi:10.1371/journal.pone.0029848.g001
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when the null hypothesis of no association and the alternative

hypothesis of an association have the same prior probability [24],

and then we used the maximum BF (MBF) as a measure of

statistical significance. Figure S2 shows the error rate of decision

rules based on several thresholds for MBF. The matching strategy

appeared to remove confounding by stratification because we did

not observe any inflation of associations and the genomic control

factor in allelic association was 0.99 (Figure S3). We also

conducted additional analyses described below to investigate

whether residual confounding by population stratification could

bias the results and found no evidence of bias.

The Manhattan plot (Figure 3) displays the log10(MBF) for

each tested SNP. This analysis identified a single SNP in APOE/

TOMM40 as irrefutably genome-wide significant (P,10e-8,

Table 1). The association was replicated in the ELIX set, and

was maintained when we used 867 referent subjects included in a

GWAS of Parkinson’s disease as alternative controls (Table 1).

The apolipoprotein E (APOE) is associated with human lifespan

[25,26,27]. SNP rs2075650 occurs in an intron of TOMM40 but it

is a strong proxy of the SNPs that define the APOE alleles [28].

This SNP has been associated with Alzheimer’s disease (AD)

[29,30] and lipid levels [31,32].

Genetic Risk Modeling
In the single SNP analysis, we observed a substantial

enrichment for significant associations which do not meet the

stringent threshold for genome wide significance. For example,

112 SNPs were associated with exceptional longevity with

log10(MBF).2 against an estimated error rate of 4 in 100,000

independent tests and hence 8–10 false positive associations

expected by chance in ,250,000 tested SNPs if there were no

significant associations and all SNPs were independent (Figure
S2). The clusters of associations in chromosomes 8, 9 and 21 in

Figure 3 point to interesting regions, although they fail to reach

genome wide significance. Several authors have argued that SNPs

that do not reach genome wide significance may be biologically

important by virtue of their joint effect [33,34,35,36], and have

successfully built risk models that can predict genetic susceptibility

to several complex traits that are highly heritable [37,38,39,40,41].

We similarly explored the hypothesis that different sets of SNPs

that are associated with exceptional longevity, although with

moderate effects, may jointly characterize the genetic predisposi-

tion to exceptional longevity [42,43] and therefore provide a

model for in silico analysis that can suggest targets and genetic

paths to exceptional longevity.

Selection of Predictive SNPs. To proceed with this analysis,

we had to make several decisions about the class of models to work

with, how to determine the number of SNPs to be included in the

model, and the overall search strategy. We chose to compute the

genetic risk associated with a set of SNPs using a simple but

effective Bayesian classification model, also known as the naı̈ve

Bayes classifier (Figure 4A) [44]. This approach –also used in [39]

to accurately predict the susceptibility to carotid atherosclerosis –

classifies a subject as predisposed to exceptional longevity if the

posterior probability of exceptional longevity, given genotypes of a

set of SNPs, exceeds the posterior probability of average longevity

(Figure 4A). The advantage of this method is that there is

virtually no upper limit to the number of SNPs that can be used for

classification, and it can be used for risk prediction even if the data

used for the analysis are from a case control study. We designed a

forward search procedure to discover a sufficient number of

predictive SNPs (Figure 4A). The procedure builds a series of

Figure 2. Distribution of age of last contact or age at death of centenarians included in the study. NECS: centenarians of the discovery
set, ELIX: nonagenarians and centenarians from the ELIX replication set, NECS 2: additional NECS replication set of 60 centenarians. The y-axis reports
the density, and the x-axis reports the age, in group of 2 years. The frequency of subjects with ages between x and x+2 is 2*density*(sample size).
doi:10.1371/journal.pone.0029848.g002
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nested genetic risk models starting with the most significant SNP in

the discovery set and incrementally adding one SNP at a time from

a pruned set of SNPs that are sorted in order of log10(MBF). Each

model is used for prediction, and the accuracy of each model to

predict exceptional longevity and average longevity is evaluated by

sensitivity and specificity (Figure 4B). The trend of sensitivity and

specificity in Figure 4B shows that including more SNPs increases

both sensitivity and specificity but the gain of accuracy becomes

less and less as SNPs with decreasing statistical significance (lower

MBF) are added. Particularly, the sensitivity plateaus between

275–285 SNPs so that including more SNPs does not appear to

improve the sensitivity further (Figure 4B). Because the model

with 281 gives the closest sensitivity and specificity, we stopped the

search for predictive SNPs at 281. We also used a resampling

approach (Figure S4A) to validate this choice, and examined the

effect of changing the SNP order in our heuristic search (Figure
S4C and D), and possible lab-genotyping bias (Figure S4B).

Table S1 provides complete details of all of the 281 SNPs, and

the probabilities that are used to compute the prediction using the

formula in Figure 4A. Reliability of the Illumina genotyping was

double-checked by re-genotyping the top 28 SNPs of the model

using TaqMan genotyping in an independent lab, and the 99.7%

concordance suggests that the data are reliable (Figure S5).

Intensity plots of the 281 SNPs are available from www.bumc.bu.

edu/centenarian. 137 SNPs of the 281 SNPs occur in 130 genes,

some of which have been previously associated with aging such as

LMNA (rs915179), WRN (rs1800392), and SOD2 (rs2758331) and

several of them are in close proximity of coding SNPs [45]. The

LMNA gene, which encodes the nuclear envelope proteins lamin A

and lamin C, has been associated with the progeroid (premature

aging-like) syndrome, Hutchinson-Gilford syndrome [46]. The

WRN gene is a DNA helicase and exonuclease that plays a

deterministic role in DNA repair and another progeroid

syndrome, Werner’s Syndrome [47]. The WRN gene has been

associated with longevity in the Framingham Heart Study (FHS)

sample [48]. It is remarkable that the two genes responsible for the

best known progeroid syndromes appear in the genetic risk model,

and this may reflect the power of the discovery sample which

includes such extreme old ages. Another gene, also noted to be

associated with longevity in the FHS sample as well as the

Jerusalem Study, is SOD2, or superoxide dismutase 2 [49]. SOD2 is

a key free radical scavenger and free radical damage likely plays an

Figure 3. The Manhattan plot displays the maximum log10(Bayes Factor) (y-axis) for each of the analyzed SNPs in the discovery set.
The Manhattan plot displays the maximum log10(Bayes Factor) (y-axis) for each of the analyzed SNPs in the discovery set. The SNPs
are ordered by chromosome (alternate color bands) and, within chromosome, by physical position (x-axis). We tested the association of each SNP
with exceptional longevity using general, allelic, dominant and recessive models and the y-axis reports the maximum log10(Bayes factor) observed
for each SNP. The SNP rs2075650 in APOE/TOMM40 reached irrefutable genome wide significance (log10(MBF) = 7.9 and p-value,e-10). Figure S3
shows the Manhattan plot and QQ plot for the additive model using logistic regression.
doi:10.1371/journal.pone.0029848.g003

Table 1. Replication of the association of rs207650 in TOMM40/APOE.

SNP Gene Chrom Alleles Discovery Set (801, 914)

LOG10(BF) p-value OR p(A)

Discovery Set (801, 914) rs2075650 TOMM40/APOE chr19:50087459 AG/GG v AA 6.31 1.03E-08 0.49 0.15/0.26

Replication Set (Elix 253, 341) 2.04 0.000468 0.47 0.15/0.27

Combined (1054, 1255) 9.30 1.01E-11 0.48 0.15/0.26

Coriell (801, 867) 3.73 3.86E-06 0.55 0.15/0.24

The table shows the replicated associations of the SNP rs207650 in TOMM40/APOE in the replication set 1 and the additional control set from the Parkinson’s Disease
study. Column legends: SNP = official dbSNP identifier. Gene = official gene name for SNPs that are within 20 kb from transcribed regions. Chrom = Chromosome and
physical position of SNP in hg18. Alleles = the two SNP alleles (allele 1 v allele 2) in the genetic model that reached strongest significance in the Bayesian analysis.
LOG10(BF) = the logarithm 10 Bayes Factor for the association relative to the null model of no association. Assuming uniform prior probabilities for the two
hypotheses, the BF represents the posterior odds for association. P-value = p-value for 1 degree of freedom test for the dominant model AG/GG versus AA. OR = odds
ratio for exceptional longevity in subjects who carry allele 1 relative to allele 2. For example, subjects who carry the allele 1 (AG/GG) of SNP rs2075650 have 0.49 times
the odds for exceptional longevity compared to subjects who carry the allele 2 (AG/GG: either the genotype AG or GG). P(A) = prevalence of allele 1 in cases and
controls. For example, 15% of centenarians carry the allele AG/GG of SNP rs2075650 compared to 26% of controls. Row 1 shows the results in the discovery set; row 2 in
the ELIX set, row 3 the combined discovery and ELIX datasets and row 4 is the set in which the 914 matched controls of the discovery set were replaced with the
unmatched Coriel controls.
doi:10.1371/journal.pone.0029848.t001
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important pathogenic role in aging and numerous age-related

diseases [50]. CDKN2A (rs1063192) performs a key step in the p53

pathway that has been posited to play a key role in inducing

cellular senescence [51] and it has been associated with adult onset

diabetes [52]. SORCS1 (rs7907713) and SORCS2 (rs6812745) have

been linked AD [53]. Gastric inhibitory polypeptide (GIP),

commonly referred to as glucose-dependent insulinotropic peptide,

encodes a protein that regulates insulin secretion and activates

AKT [54]. The association of this gene (rs9899404) supports the

potential role of insulin regulation in exceptional longevity [55],

and suggests new target genes for human aging beyond FOXO1,

FOXO3A and IGF-IR [56,57,58]. There is also growing evidence of

GIP playing a protective role in both diabetes and AD and GIP is

being investigated as a therapeutic target [59].

We used Genomatix (http://www.genomatix.de) to annotate

the list of 130 genes included in the genetic risk model and the

analysis showed that the list was enriched for several groups of

genes linked to both common and rare diseases (MeSH). Genes

related to Alzheimer’s disease, dementia and tauopathies were the

most significant: 38 of the 130 genes were linked to AD in the

literature (p-value to test the null hypothesis that this happens by

chance was 6.17 e-7) and they are displayed in Figure 5; 42

genes were linked to dementia (Figure S6, p-value to test the null

hypothesis that this happens by chance was 1.07 e-6) and 38 to

tauopathies (p-value 8.47e-7). The fact that so many genes are

noted to play a role in dementia is consistent with the

epidemiologic finding that dementia is absent or markedly delayed

amongst centenarians (average age of onset, 93 years) [60]. Genes

related to other age related diseases were also significantly

represented: 24 genes were linked to coronary artery disease

(Figure 5), and several genes were linked to neoplasms.

Genetic Risk Profiles and Ensemble of Risk Models. To

better understand the role of these 281 SNPs in shaping the

genetic susceptibility to exceptional longevity, we generated a

genetic risk profile for each subject by plotting the posterior

probability of exceptional longevity (p(EL|Sk), y axis) against the

number of SNPs in each of the 281 SNP sets Sk (x-axis) and

examined their patterns. Figure 6 shows, for example, the profiles

from 3 centenarians and a control. In each profile, an increasing

posterior probability of exceptional longevity shows strong

enrichment of longevity associated variants, because the

posterior probability of exceptional longevity increases when the

profile includes a new SNP genotype that is more frequent in

centenarians than in controls (see methods).

These examples support the hypothesis that exceptional longevity

is determined by varying combinations of longevity associated

variants and some number of SNPs may be optimal for classifying

some subjects but not others. Consistent with this observation, we

choose an ensemble of all 281 genetic risk models to compute the

posterior probability of exceptional longevity. This ensemble of 281

genetic risk models provides 89% specificity and sensitivity in the

discovery set (Figure 7A). We next evaluated the predictive

accuracy of this ensemble of models in the two replication sets, the

ELIX set and a recently enrolled sample of NECS centenarians.

Figure 4. A) Schematic illustration of the genetic risk prediction model. We ordered SNPs by maximum Bayes Factor in the discovery set and
built nested SNP sets starting with the most significant SNP and then adding one SNP at a time from the ordered list. The conditional probabilities of
SNP genotypes in centenarians (p(SNPi|EL)) and controls (p(SNPi|AL)) are used to compute the posterior probability of exceptional longevity (p(EL|Sk))
using Bayes’ theorem and prior probability p(EL) = 0.5. The classification rule is the standard Bayesian classification rule that is optimal under a 0–1
loss function. B) Sensitivity and specificity of 400 nested models. The x-axis reports the number of SNPs in each of the nested models, and the
y-axis reports sensitivity (% of centenarians with posterior probability of exceptional longevity.posterior probability of average longevity) and
specificity (% of controls with posterior probability of exceptional longevity,posterior probability of average longevity).
doi:10.1371/journal.pone.0029848.g004
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Sensitivity and specificity in the replication set 1 (the ELIX

sample) comprised of 253 nonagenarians and centenarians and

341 genetically matched controls were 60% and 58% (Figure 7B)

and AUC = 0.58 (Figure S7). Although the distributions of the

predictive scores are significantly different (p-value from t-test

comparing the predicted probabilities of exceptional longevity in

the two groups was 0.001), the discrimination of the model is less

remarkable. Since the ages of subjects in this replication set are

younger compared to the centenarians in the discovery set (median

age in the ELIX set was 100 years compared to 104 in

centenarians of the discovery set) and because we expect that

the genetic component of exceptional longevity increases with age,

we next examined the distribution of the predictive score and the

trend of sensitivity in subsets of subjects with older ages. The

median probability of exceptional longevity in subsets of increasing

age of survival increases to more than 68% in the 81 subjects with

ages .101 (Figure 7C) and, consistently, the sensitivity of the

model to correctly classify older subjects increases with older ages

and reaches 85% in 20 subjects ages 106 and older (Figure 7D).

For example, when the 253 cases of the replication set were

divided into two age groups to better match the ages of the

substantially older discovery set (204 subjects, age ,103, median

age 100 years, and 49 subjects, age $103, median age 105) the

sensitivity of the model was 71% (Figure 7E).

To further investigate our hypothesis that the genetic contribu-

tion to exceptional longevity increases with older ages we

evaluated the sensitivity of the classification rule in a second

replication set of newly enrolled NECS centenarians (n = 39) plus

NECS centenarians not included in the discovery set (n = 21), the

sum of which had a median age of 107 years (Figure 7F). The

sensitivity was 78% (71.5% in the group of 21 with median age

106 and 82% in the recently enrolled and older group of 39)

confirming increasing sensitivity with increasing ages. The boxplot

in Figure 7F shows that the specificity in an additional set of 2863

controls of replication set 2 was is 61.2%, and the AUC in this

second replication set was 0.74 (Figure S7). Figure S8 shows

that classification rules based on randomly ordering the top 281

SNPs (mid panels) or selecting 281 SNPs at random have lower

sensitivity and specificity.

Our analysis used genetic matching to remove confounding by

population structure. However, since we matched subjects within

clusters, residual stratification might still confound the association

and possibly affect the classification rule. To test the hypothesis

that there is no confounding by residual stratification, we

conducted two traditional analyses. In one analysis, we adjusted

the associations of the 281 SNPs by the top 4 principal

components, and in the second analysis we did not. We then

checked whether adjusting the analysis by the principal compo-

nents would change the results of the unadjusted analysis. Figure
S9 shows that the distributions of p-values for the two analyses in

different genetic models are essentially identical (correlation

coefficient 0.98 to 0.99). This analysis would indicate that there

is no confounding due to residual stratification. We repeated the

analysis adjusting for the top 10 principal components. The effect

of this more stringent adjustment made 3 of the 281 SNPs

borderline significant. We also checked if there is any residual

Figure 5. Genes in the genetic risk models have been linked to coronary artery disease and Alzheimer’s disease. The two networks
display 38 of the 130 genes in the genetic risk model that are linked to Alzheimer’s disease (top) and 24 of the 130 genes that are linked to coronary
artery disease (bottom) in the literature, either by functional or genetic association studies. The nodes that are linked by an edge represents either
genes that are ‘‘co-cited’’ (dashed lines) or ‘‘associated by expert curation’’ (continuous lines). The arrow head means that the associations are
activation (triangle), inhibition (circle), modulation (diamond), conversion (arrow head). The node shape informs about known roles of the genes (see
inset). The nodes that are singleton were linked to AD/CAD in the literature but not together with other genes. The number of genes linked to each
disease was compared to what is expected by chance using Fisher exact test, and the p-values show that the gene seta are unluckily the result of
chance. (Networks generated with Genomatix).
doi:10.1371/journal.pone.0029848.g005
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correlation between the top two PCs and the score predicted by

our model, and there appears to be none (Figure S10).

Genetic Signatures
Some genetic risk profiles were recurrent and we speculated that

groups of centenarians may have genetic risk profiles that are

associated with different sub-types of exceptional longevity such as

different prevalences or ages of onset of age-related diseases. To

test this hypothesis, we used cluster analysis to group the genetic

risk profiles into prototypical signatures. We then investigated

whether groups of centenarians with particular genetic risk profiles

shared specific age-related sub-phenotypes.

Cluster analysis identified 26 groups of 8 to 94 centenarians

(90% of the discovery set) with similar genetic risk profiles, while

10% of the centenarians had rare profiles that occur in groups of 7

centenarians or less. Figure 8 shows, for example, the 9 largest

clusters while all clusters are shown in Figure S11. The

prototypical genetic risk profiles associated with each cluster are

informative displays of the longevity associated variants, and

represent different genetic signatures of exceptional longevity.

While the ensemble of genetic risk models provides a global

estimate of the probability of exceptional longevity, the pattern

itself provides information about the different sets of longevity

associated variants that drive a subject toward this probability.

The same cluster analysis of predicted profiles in centenarians of

the merged replication sets 1 and 2 identified 15 clusters with 8 or

more subjects, while approximately 35% profiles clustered in

groups of 7 or less. The two most predictive and the one least

predictive clusters from the replication set are also shown in

Figure 8. Figure S12 depicts all 15 clusters with 8 or more

subjects in the merged replication sets.

To examine the specificity of the profiles in characterizing

exceptional longevity, we also generated genetic risk profiles of the

control subjects in the discovery set and used cluster analysis to

group them. Only 5 subjects had profiles that predicted

exceptional longevity with more than 90% posterior probability

(Figure S13). Other clusters with more than 8 subjects show that

the majority of these profiles match either the lack of a predictive

genetic signature as in cluster C26 or the sporadic presence of

longevity associated variants of clusters C24–C25 in Figure S11.

To further extend this analysis, we clustered the genetic profiles of

all 4118 controls that include all controls in the discovery and

replication sets 1 and 2. Cluster analysis identified several

signatures, of which only 17% predict exceptional longevity with

Figure 6. Examples of genetic risk profiles in 4 study subjects (3 centenarians with ages at death 107, 108 and 119 years, and a
control). 281 nested SNP sets were used to compute the posterior probability of exceptional longevity in the 4 subjects (y-axis) and were plotted
against the number of SNPs in each set (x-axis). In the 107 year old, the first 5 SNP sets S1 = [rs2075650], S2 = [S1, rs1322048], …, S5 = [S4, rs6801173]
determine a posterior probability of exceptional longevity ranging between 0.54 and 0.28. This subject carries genotypes AA, AG, AG, CC, AA for the 5
SNPs respectively and, with the exclusion of genotype AA of rs2075650 that is more common in centenarians, the other genotypes are more common
in controls than centenarians and determine a posterior probability of exceptional longevity that is lower than the posterior probability of average
longevity. The sixth SNP set, S6 = [S5, rs337656], predicts an almost 30% chance of exceptional longevity. The subject carries the AA genotype for the
SNP rs337656 that is more frequent in centenarians (Table S1), and carrying this genotype increases the posterior probability of exceptional longevity.
The probability predicted by the next SNP sets increases steadily and all models with more than 20 SNPs predict more than a 50% chance of
exceptional longevity. This genetic profile shows that the subject carries some combinations of SNP alleles that are associated with exceptional
longevity, while other alleles are associated with ‘‘average longevity’’. However, the overall genetic risk profile determined by all 281 SNP sets makes a
strong case for exceptional longevity because the majority of models predict more than an 80% chance of exceptional longevity. The genetic risk
profile of the centenarian who died at age 119 years is even more convincing: with the exception of the first SNP, all subsequent SNP sets determine
more than a 70% chance of exceptional longevity, and 272 of the 281 models predict more than an 80% chance for exceptional longevity. This profile
shows that this subject is highly enriched for SNPs alleles that are more common in centenarians (longevity associated variants) and that probably
played a determinant role in the extreme survival. The profile of the third subject, age 108 years, shows that different SNP sets determine different
chances for exceptional longevity, and only the overall trend of genetic risk provides evidence for exceptional longevity. The fourth plot displays the
profile of a control, and shows that this subject carries some longevity associated variants; however, the overall trend of genetic risk points to average
longevity rather than exceptional longevity.
doi:10.1371/journal.pone.0029848.g006
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more than 70% posterior probability, and 67% predict average

longevity (Figure S14). The most predictive genetic signatures

that characterize exceptional longevity are rare amongst control

subjects, and only 0.6% of the genetic signatures of control

subjects have a posterior probability of exceptional longevity

.0.95.

Interestingly, the patterns of genetic risk profiles that cluster into

genetic signatures distinctly differ from clusters of genetic risk

profiles generated from SNPs selected at random (Figure S15).

We also investigated if some clusters were enriched for specific

ethnicities, but no clusters showed enrichment for any specific

European ethnicity.

We next investigated whether different genetic signatures

correlate with different life spans (Figure 9). Some genetic

signatures were indeed associated with significantly different life

spans. For example, the most predictive signature (C1) was

comprised of centenarians with significantly longer survival

compared to centenarians with signatures C2 (the second most

predictive) or cluster C26 (the least predictive), and the median

survival in centenarians with signature C1 was 105 years

compared to 104 years in centenarians with signature C2 or

103 years in centenarians with signature C26. We observed a

similar result when we compared the survival of centenarians

with the most predictive signatures in the merged replication sets

(R1 and R2), and when we compared the survival of

centenarians with the most and the least predictive signatures

(R1 and R15) (See Figure 9). However, not all signatures

correlated with different survival, for example centenarians with

signatures C1 and C3 did not demonstrate different survival (See

Figure S16). Preliminary analyses provided in the supplemen-

tary material (in need of replication) suggest that the different

genetic signatures of exceptional longevity associate with varying

prevalences and ages of onset of various age-related diseases

(Figure S17, Table S2).

Figure 7. Discrimination of the classification rule based on the ensemble of 281 genetic risk models. Panel A: Posterior probability of
exceptional longevity (EL) and average longevity (AL) (x axis) in the centenarians (red boxplots) and controls (AL1: Illumina controls, blue boxplots,
AL2: NECS controls, green boxplots) of the discovery set (NECS, top left). Both sensitivity and specificity were 89%. The boxplots in blue and green
show that the distributions of the posterior probability of EL in the two control groups are not statistically different (p-value from t-test comparing
the posterior probability of EL = 0.21). Panel B: Posterior probability of EL and AL (x axis) in the centenarians (red boxplots) and controls of the
replication set 1. Sensitivity and specificity were 60% and 58% and the distributions of the predictive score are significantly different (t-test p-
value = 0.001). Panel C: Median values of the posterior probability of EL (predictive score) in subsets of centenarians of the replication set 1 with
increasing ages. The barplot shows that the median score increases with older ages. Panel D: Sensitivity of the classification rule in subsets of
centenarians of the replication set 1 with increasing ages. The barplot shows the increasing sensitivity in older groups that reaches 85% in 20
subjects aged 106 and older. Panel E: Distribution of the posterior probability of exceptional longevity in the 253 cases of the
replication set divided into two age groups (,103 years, pale blue, mean age 99 years, and $103 years, red, mean age 106). The
sensitivities in the two groups are 57% and 71.4%. The three distributions are significantly different (p-value = 0.04 from t-test comparing Illumina
controls and centenarians aged ,103; p-value = 0.004 from t-test comparing the centenarians stratified by age). Panel F: Sensitivity and
specificity in an additional set of 2863 controls from the Illumina database (blue), and an additional set of 60 centenarians that
include 39 centenarians enrolled since June 2009 (mean age 108) and 21 centenarians that were excluded from older analysis
because of genetic matching (mean age 106). The specificity in the additional Illumina controls is 61.2%. The sensitivity in the additional
centenarians was 71.5% in the set of 21, and 82% in the additional 39 for a total of 78% (p-value from t-test comparing the posterior probabilities of
EL in controls and centenarians ,1e-10).
doi:10.1371/journal.pone.0029848.g007
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For 17 of the 28 centenarians in cluster C26 who lack almost all

the longevity associated variants discovered in this study, we had

information about familial longevity. Twenty-five percent (n = 5)

had .50% of siblings who survived past the age of 90 and some

had evidence for longevity as shown in some pedigrees in Figure
S18. This could indicate that such families have more private or

rare variants not captured by either the genotyping or the model.

Discussion

Though living to very old age runs strongly in families, it is also

a very complex phenomenon with many different patterns of

survival that include disease-free survival but also survival with

various age-related diseases. Given this complexity, it is extremely

unlikely that a single or few genes confer this survival advantage,

but rather it is likely that many genes are involved. To capture this

genetic complexity we developed an approach that uses genetic

risk modeling for in-silico genetics. Our approach includes 3 steps:

1) a single SNP analysis to identify and rank SNPs that are

significantly associated with exceptional longevity, 2) genetic risk

modeling based on nested Bayesian classifiers that produce genetic

risk profiles and 3) cluster analysis of the profiles to discover

genetic signatures and correlate these to different survival patterns

or subphenotypes of exceptional longevity.

Limitations
Although we elected to work with naı̈ve Bayesian classifiers, many

alternative approaches to genetic risk modeling exist and our method

could be extended and/or improved to include for example different

parametric models, or different types of cluster analyses to discover

genetic signatures. We conducted extensive simulation studies to

compare our approach to logistic regression that use the genetic data,

or a summary of the genetic data in a genetic risk score. Our analyses

show that when all SNPs have an additive effect, using a Bayesian

classifier or a logistic regression model with a weighted genetic risk

score perform equivalently. However, when the genetic effects

include different models of inheritance, such as a combination of

dominant/recessive/general associations, then a Bayesian classifier is

more robust than logistic regression with a weighed genetic risk

score. In either case, the approach we chose guarantees robustness as

indicated in simulation studies (Clustering by genetics ancestry using

genome-wide single nucleotide polymorphisms and incorporating

genetic ancestry into genetic prediction models, Doctoral dissertation

by Nadia Solovieff, May 2011, available upon request). Further-

more, many other ‘‘machine-learning type’’ approaches exist that

can be used to generate genetic risk models, and years of

comparative evaluations in the machine learning community have

shown that there is no clear winner, but different problems require

different solutions [61]. In our search for genetic predictors of

exceptional longevity, Bayesian classifiers appear to perform

reasonably well and can be extended to more general directed

graphical models to include interactions between SNPs and between

genes and environmental factors [62]. Our approach for selecting

predictive features appears to work well in this application. However

other search procedures for feature selection need to be explored and

may produce even better predictive accuracy.

Figure 8. Example of 9 clusters of genetic risk profiles in centenarians of the discovery set and 3 similar clusters in replication sets 1
and 2. In each plot, the x-axis reports the number of SNPs in each genetic risk model (1,…,281), and the y-axis reports the posterior probability of
exceptional longevity predicted by each model. The boxplots (one for each SNP set on the x axis) display the genetic risk profiles of the centenarians
grouped in the same cluster. Numbers N in parentheses are the cluster sizes, and the average posterior probability of exceptional longevity. Color
coding represents the strength of the genetic risk to predict EL (Blue: P(EL|g281).0.95; Red: 0.5,P(EL|g281),0.95; Orange: 0.20,P(EL|g281),0.5;
Green: P(EL|g281),0.2). The full set of 26 clusters is in Figure S11 and includes more than 90% of centenarians in the discovery set.
doi:10.1371/journal.pone.0029848.g008
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There are aspects of our method that are based on heuristics.

For example, our choice of the number of SNPs to be used in the

genetic risk modeling is based on a heuristic rule. The choice of the

optimal number of features to be used in a classifier is a well-

known problem, with no simple solution [44] and to limit the effect

of a sub-optimal selection we used an ensemble of classifiers to gain

robustness. This approach is known to produce better classifiers

than one single model [63]. Our heuristic search orders SNPs by

maximum Bayes factor. Our secondary analyses show that

random reordering of the 281 SNPs decreases the specificity

slightly and selecting SNPs at random from the most significant

1700 SNPs gives models that are less predictive in independent sets

(Figure S4 and S8). If other investigators apply this approach to

other domains, they may want to conduct similar secondary

analyses to evaluate whether the same heuristics lead to better

models.

A major challenge we faced with our genome-wide association

study was the choice of appropriate controls. Because of the

limited number of controls in the NECS, we had to resort to

healthy controls from other genome-wide association studies (the

Illumina control data set and the NECS controls where genotype

data were generated in different labs with different SNP arrays) as

other investigators have done [64]. Our stringent quality control

approach and the genetic matching minimized the number of false

positive associations, likely at the expense of missing some true

positive associations. We decided to use genetic matching to

reduce the effect of population stratification because our initial

genome-wide association study that included all control subjects

from the Illumina repository had a genomic control factor .1.3

suggesting substantial population stratification between cases and

controls. Simulation studies that we published in [65] showed that

matching is a good way to remove the effect of stratification

without losing too much power. In addition, a traditional model

that includes principal components from genome-wide principal

component analysis would not be useful for prediction because the

values of the principal components for new subjects would be

missing. Our analysis does not show any systematic difference

between results in the controls genotyped in our lab compared to

healthy controls genotyped elsewhere (Figures 5 and 8). Also,

additional analyses using traditional principal-components ap-

proaches to control for population stratification suggest that no

residual stratification is likely to confound the associations

(Figures S9 and S10). However, only replication of these results

in independent data from comparably old subjects by independent

investigators will definitively validate the results and this approach.

In our study we included only Caucasian subjects and the extent

to which this analysis applies to other racial groups is an open

question.

Novel insights about the genetics of exceptional
longevity

The large number of SNPs in our genetic risk model and the

variety of genetic signatures confirm that exceptional longevity is

influenced by the combined effects of a large number of SNPs.

The genetic risk model implicates 130 genes, most of them known

to play a role in various disease mechanisms (Figure 5), and our

findings suggest that different variants of these genes may have a

protective role. The most intriguing examples are LMNA and

WRN: while specific variants of these two genes determine

progeria and accelerated aging, alternative variants may increase

life span. About 50% of the SNPs in the genetic risk model are in

intragenic regions and this also suggests that regulatory mecha-

nisms play an important role in exceptional longevity. We also

found that the sensitivity of the prediction in independent sets

Figure 9. Correlation of genetic signatures with lifespan. Panel A: Some genetic signatures are associated with significantly different life-
span. For example the most predictive signature (C1) comprises centenarians with significant longer survival compared to centenarians with
signatures C2 or C26. (p-value 0.01 and 0.02) More examples are in Figure S15. Panel B: The two most predictive genetic signatures and the least
predictive signature in the centenarians of the merged replications sets show consistent results. The comparison between survival of centenarians
with the most predictive signature R1 and the least predictive signature R15 reaches statistical significance, (p-value = 0.003) while the comparison
between survival distributions of centenarians with signatures R1 and R2 does not reach statistical significance (p-value 0.10).
doi:10.1371/journal.pone.0029848.g009
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increases with the ages of centenarians, and therefore likely, the

genetic contribution to lifespan increases with increasing ages of

the centenarians.

Our analysis provides further insight about the role of APOE in

survival to extreme ages. Although the SNP rs2075650 in

TOMM40/APOE is the most significantly association with excep-

tional longevity, the value of this SNP to identify who can live to 100

and older appears to be limited. The traces of sensitivity and

specificity of the nested genetic models in Figure 4B show that the

model with only this SNP has 85% sensitivity to predict exceptional

longevity but only 26% specificity in the discovery set. We conducted

an ROC analysis to show the poor predictive value of this SNP alone

(Figure S19, AUC = 0.62). Also, sensitivity and specificity of the

model with only this SNP are 85%/26% in the ELIXIR set, and

82%/23% in the second replication set. The traces of sensitivity/

specificity of the models with increasing number of SNPs show that,

the predictive accuracy increases only when a substantial number of

variants are added to the model that includes rs2075650

(Figure 4B). We also examined the changes in sensitivity/specificity

when we removed this SNP from the list of 281, and dropping

rs2075650 resulted in a loss of approximately 1% accuracy (88%

sensitivity/specificity in the discovery set (AUC = 0.95); 55%

sensitivity and 58% specificity in the ELIX set (AUC = 0.56); and

75% sensitivity and 60% specificity in the additional 60 centenarians

and 2863 Illumina controls (AUC = 0.73)) These results are

summarized in Figure S7. This SNP is only in weak linkage

disequilibrium with the two SNPs that define the 3 alleles of APOE

but its association with longevity was shown to be dependent on the

APOE alleles in [66]. The reason for the low predictive value of

rs2075650 alone is that the GG genotype of this SNP is rare in the

population (genotype frequency 3%) but virtually absent in

centenarians (genotype frequency 0.1%), therefore if someone is a

carrier of the GG allele it is unlikely that he will become a

centenarian, while predicting the outcome in carriers of the AA or

AG genotypes is more difficult without additional genetic data.

The NECS previously showed that centenarians fall into

different groups in terms of age of onset of age-related diseases:

survivors (onset of aging disease #80 years), delayers (onset of

aging disease between 80 and 100 years) and escapers (age of onset

$100 years) [67]. This current analysis now shows that some of

the centenarians carry genetic signatures that correlate with

different ages of survival and suggests that the complexity of aging

and the different patterns of survival to the age of 100 and older

may be the result of different genetic profiles. Unlike the typical

approach of finding individuals with a specific phenotype in

common and then performing a genetic association study to

discover genetic associations with the trait, our approach tries to

dissect a complex phenotype into sub-phenotypes based on the

genetic data. Our analysis is preliminary, based on small a sample,

and needs to be replicated but we hope that this new approach

may prove useful in dissecting other complex genetic traits [68].

While large numbers of longevity associated variants appear to

be necessary for extreme survival, we did not observe a substantial

difference in the numbers of a large sample of known disease-

associated variants carried by centenarians and controls

(Figure 10, Table S3). The Leiden Longevity and Leiden 85+
Studies recently produced similar findings for alleles associated

with specific age-related diseases amongst 85+ year olds and

nonagenarians [69]. Furthermore, only 13 SNPs previously

associated with common diseases in genome wide association

studies reach statistical significance in the discovery set, and the

risk alleles are significantly less frequent in centenarians than in

controls (Table S4) [70,71,72,73,74,75].

These preliminary data suggest that exceptional longevity may

be the result of an enrichment of longevity associated variants that

counter the effect of disease-risk alleles and contribute to the

compression of morbidity and/or disability towards the end of

very long lives [43].

In our analysis we also found that specific signatures correlated

with the prevalence and age of onset of some age-related diseases

Figure 10. Distribution of risk alleles of 1214 SNPs in 1054 centenarians (red) and 4118 controls (blue). Risk alleles were derived from
the GWAS catalogue at the NHGRI (downloaded in April 2011) and the Human Genome Mutation Database. The boxplots displays the rate of risk
alleles carried by centenarians (red) and controls (blue). The disease described are: lupus, cholesterol level (Chol), macular degeneration (MD),
Parkinson’s Disease (PD), Chron’s disease (chr), diabetes (diab), cardiovascular disease (CVD), cance (canc)r, Alzheimer’s (AD), GWAS.pt is the group of
alleles related to personality disorders that were found in GWAS, gwas.qt is the group of alleles related to QTL from GWASs and include cholesterol,
BMI, obesity etc, and GWAS.cc is the group of risk alleles found from case/control GWASs so include for example cancer, PD, MD etc, cod is for coding
variants from the HGMD, and all is the full set of 1214 variants. Table S3 reports the actual rates.
doi:10.1371/journal.pone.0029848.g010
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and further investigation is needed to understand how and why

they predispose for exceptional longevity and for specific, different

patterns of aging. The genetic signatures were built by using an

ensemble of genetic risk models. The high sensitivity of these

predictions in independent samples of centenarians shows that

genetic data can indeed predict exceptional longevity without

knowledge of any other risk factors. The high sensitivity is

consistent with (1) theoretical results that show potentially high

predictability of rare and highly heritable traits even when only

50% of the genetic variants that determine the trait are found [36]

and (2) the accuracy of genetic risk models that have been

developed to predict complex and highly heritable traits

[37,38,39,40,41]. To quantify the amount of genetic variance in

liability to exceptional longevity that is explained by our model, we

used the online calculator http://gump.qimr.edu.au/genroc/ to

translate the predictive accuracy measured by the AUC in

proportion of explained genetic variance on the liability scale

[36]. Based on previous reports and the latest US 2010 Census

(http://www.census.gov/prod/cen2010/briefs/c2010br-03.pdf), we

estimated that the prevalence of exceptional longevity (living to

100+) is 1 in every 5,000 people, while the sibling relative risk for

exceptional longevity ranges between 8 and 17 [9,10]. With these

numbers, we estimated that the maximum AUC of a genetic model

of exceptional longevity ranges between 0.95 to 0.98 and our

genetic model that reaches AUC = 0.74 in the second replication set

(Figure S7) explains between 12% to 17% of the genetic variance

on the liability scale. In the ELIXIR replication set, the AUC of our

genetic risk model is 0.58 and this would represent 1–2% of

explained genetic variance. Since the ELIXIR set includes more

nonagenarians than centenarians, and their prevalence in the

population is 0.5% and the sibling relative risk of this trait is

approximately 2.5, we repeated the calculations in this scenario and

the 0.58 AUC translated into approximately 4% of the genetic

variance in the liability scale. These results show that although we

explained a good amount of genetic variability on the liability scale

to live to very old ages, there is still more than 80% missing

heritability that remained to be explained, and more comprehensive

genetic studies have the real potential to decipher the genetic base of

this complex phenotype.

Some centenarians in our study however lack a genetic

signature conducive to exceptional longevity. The strong clustering

of exceptional longevity in some of their families suggests that

these individuals harbor rare or private alleles associated with

exceptional longevity. This in turn would suggest that sequencing

these individuals could be particularly fruitful.

The specificity of our classification rule is 60–61% in the

independent sets and is comparable to other genetic studies of

complex traits [76,77,78]. Although the specificity is better than

random, it would not be useful as a diagnostic test. The decreased

specificity in this study could be explained by the fact that the

control subjects from the Illumina database are primarily made up

of healthy controls used for other genome-wide association studies

and therefore the control data set may be enriched for healthy

aging subjects.

Our finding that about 17% of Illumina controls have signatures

with .70% chance of exceptional longevity (Figure S14) suggests

that a substantial proportion of this group have a genetic

predisposition to exceptional longevity. If this observation is

replicated in more representative samples of the population, it

could in part explain why centenarians are the fastest growing age

group in developed countries [79,80]. At the turn of the last

century, infant mortality was approximately 25%. As public health

measures markedly reduced infant mortality rates in the first

quarter of the 20th century, a greater and greater proportion of the

population had the opportunity to age into middle and older ages.

If nearly one fifth of the population had an increased genetic

predisposition to survive to 100 years, it is understandable why the

number of centenarians is growing at such a relatively high rate.

Although sensitivity and specificity of our classification rule

may improve with a more comprehensive knowledge of human

genomic variation, its limitations could also suggest that

environmental factors (e.g., lifestyle) contribute in important ways

to the ability of people to survive to very old ages. Replications of

these results in independent cohorts will help to answer these

questions.

Materials and Methods

Ethics statement
NECS and Elixir subjects were enrolled under similar protocols

approved by Boston Medical Center’s Institutional Review Board

and the Western Institutional Review Board, respectively. Written

informed consent was obtained for all NECS and ELIXIR

subjects.

Study populations
The New England Centenarian Study (NECS) began in 1994 as

a population-based study of all centenarians living within 8 towns

in the Boston area [81]. Since ,2000, the NECS expanded

enrollment to include centenarians from throughout the USA

(www.bumc.bu.edu/centenarian). Potential subjects are ascer-

tained via voting records and media alerts. Subjects are sent a

demographic data, life style choices, medical history and

functional status questionnaire, family pedigree form and blood

kit. A dementia scale test is administered over the telephone. The

study is still actively recruiting centenarians, with an average of 50

subjects enrolled per year.

Elixir Pharmaceuticals American Centenarians. In

2001–2003, Elixir Pharmaceuticals (co-founded by Leonard

Guarante and Cynthia Kenyon) conducted a U.S. nation-wide

centenarian recruitment effort. Since 2006, Elixir’s centenarian

research effort has ceased (and DNA and data are stored and have

also been shared with the NECS, where genotyping of all the

samples was performed in 2008). Recruitment and data collection

were modeled after the NECS protocol.

NECS controls. The NECS has recruited approximately 450

referent subjects comprised of spouses of centenarian offspring and

children of parents who died at the mean age of 73 years, with an

age at enrollment ranging between 53 and 90 years.

Illumina controls. We identified 3,613 Caucasian healthy

controls from the Illumina control database (iControlDB, http://

www.illumina.com/downloads/PurposeDocument.pdf). No pheno-

typic information is available for subjects selected from the Illumina

repository, except for gender (,60% females) and age at blood draw

for some subjects (age range 0—75 years).

The Coriell NINDS control sample in the Parkinson’s disease

(PD) set is described elsewhere [21].

Subjects from these studies were combined to generate a

discovery and replication set using genetic matching (see below)

and an additional replication set in which subjects were not

genetically matched.

Discovery set (NECS). This consisted of 801 cases and 914

controls. Cases are long lived individuals from the NECS who

were born between 1880 and 1910 and reached an age at death

between 95 and 119 (mean 10463, median 104). Controls were

comprised of 673 healthy controls from the Illumina database

(Illumina I), and 241 referent subjects from the NECS. Controls

were selected to match the genetic background of cases.
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Replication 1 (ELIX). This is comprised of 253 long lived

individuals enrolled from ELIXIR Pharmaceutical (mean age

10163, median 100), and 341 healthy controls from the Illumina

database (Illumina II). Controls were selected to match the genetic

background of the 253 cases in this set.

Replication 2 (NECS 2). 60 NECS individuals and 2863

healthy controls from the Illumina database (Ilumina III). In this

set, no genetic matching was performed. The 60 centenarians

include 39 subjects of European ancestry enrolled between June

2009 and September 2010 (age range 100–114, mean age 108)

plus 21 centenarians also of European ancestry (age range 101–

115, mean age 107) that were not included in the discovery set

during the genetic matching.

SNP genotyping
We analyzed 1 ug of genomic DNA for NECS and ELIXIR

samples, using the Illumina 370 CNV chip, v.1, the Human610-

Quad v1.0, and the Human 1 M v1.0 (Illumina, San Diego, CA).

We used the Beadstudio software for genotype calling using the

top-strand rule, so that SNPs alleles are coded using lexicograph-

ical order (typically A/G and A/C). The data in the Illumina

repository were generated with different SNP arrays (300 and 550)

and we selected the SNPs that were in common to all platforms.

SNPs with reverse alleles, and monomorphic in some of the arrays

were detected by comparing allele frequencies in controls (300 vs

550, 370 vs 550), and in centenarians (370 vs 1 M, 370 vs 610).

Table 2 summarizes the arrays used.

Quality Control
Rules for sample inclusion. Raw GWAS data were

clustered using standard Illumina cluster definitions in array-

specific batches (all 370 samples together, all 1 M samples

together, all 610 samples together). Specifically, we performed

sample-based QC checks and produced QC statistics to compute

sample call rates (CR). We eliminated all samples with

CR,96.5% and remaining samples were reclustered. After re-

clustering, we included the ‘‘excluded’’ samples using this new

cluster file. If the previously excluded samples had a CR above

93% they were included in the final analysis.

We also used the genome-wide identity by descent analysis in

PLINK [82], to discover unknown relatedness and to estimate

error rate using the number of mismatch of replicated samples

(2%). With this analysis we discovered one subject enrolled in both

the NECS and ELIX studies, whom we removed from the ELIX

set. We also removed samples with inconsistent gender between

heterozygosity of the X chromosome and gender recorded in the

database.

Rules for SNP inclusion. SNPs were included in the final

clean data set if all these conditions were satisfied:

1. CR.98% in each array type (300, 370, 550, 610, 1 M) in both

centenarians and controls of the discovery set, and overall

CR.98% in all samples included in discovery and replication

sets.

2. Cluster separation score .0.25.

3. Excess heterozygosity score between 20.3 and 0.3.

4. Hardy Weinberg equilibrium x2 statistics in controls ,50.

5. Minor allele frequency difference between any pair of array

type ,0.2

A total of 243,980 SNPs were selected for the analysis.

Assessment of between arrays bias and batch

effects. The 610-Quad is part of the new line of Infinium high

density whole-genome genotyping products, and had undergone

substantial design changes compared to the Human CNV370,

Human 1 M, HumanHap550-Duo and HumanHap300. We used

data from 32 samples that had been genotyped with both the

Human CNV370 and 610-Quad illumina arrays and that

underwent the same QC procedure, to test for systematic bias

between the two arrays. 345,219 SNPs were in common between

the two arrays but only 294,153 SNPs had CR.0.97 (so at least 31

genotypes were called) in both arrays after reclustering. In this set,

915 SNPs had 2 or more different genotypes, and only 28 SNPs had

allele frequencies that differed by more than 0.05. The plot of allele

frequencies (Figure S20) suggests that there is no systematic bias

between arrays but rather sporadic errors that can be identified by

plotting allele frequencies.

We tested the agreement between allele coding in the other

arrays by comparing the allele frequencies. See Figure S21. The

plots rule out general bias between arrays and show that SNPs

with reversed alleles were removed.

The additional sample of 60 centenarians included 39 subjects

that were genotyped in September 2010, using the 610-Quad

array. To be able to test for batch effects, we genotyped the 39

samples in a batch of 48 that included two replicated samples, and

7 samples that had been genotyped with the Human 1 M in the

original analysis. The agreement between genotype calls in the 7

samples genotyped with the 610-Quad and the Human 1 M

ranged between 99.2% and 99.7%.

Table 2. Breakdown of genotyped samples by Illumina SNP array type (columns 3—7), laboratory (column 8), and case/control/
study status (rows).

370 610 1 M 300 550 Lab

Centenarians NECS 583 102 176 0 0 BU

ELIXIR 209 44 0 0 0 BU

Controls NECS 237 4 0 0 0 BU

Illumina I 0 0 0 89 584 unknown

Illumina II 0 0 0 62 279 unknown

Illumina III 0 0 0 574 2289 unknown

Coriell NINDs 867 0 0 0 0 CIDR

The columns of the table denote the Illumina array types. The column ‘‘Lab’’ denotes the laboratory that performed the genotyping: BU = Boston University;
CIDR = Center for Inherited Disease Research. The row Illumina I denotes the control samples included in the discovery set; Illumina II denotes the control samples
included in the first replication set, and Illumina III denotes the residual samples from the Illumina repository; Coriell NINDs denotes the neurologically normal controls.
doi:10.1371/journal.pone.0029848.t002
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Genetic matching of controls
Population stratification was assumed to be a serious problem

with the centenarian and control data, because a large proportion

of NECS subjects were immigrants from Europe, and the patterns

of immigration at the end of the 19th century may lead to an

overrepresentation of some European ethnic groups [83]. In fact,

an initial GWAS analysis in which we randomly selected controls

from the Illumina repository pointed to substantial stratification

(genomic control factor ,1.3). We therefore reduced possible

confounding due to population stratification by selecting controls

to match the genetic backgrounds of NECS subjects.

To identify the population substructure in the centenarians and

controls we ran a principal components analysis with the software

EIGENSOFT [84], using GWAS SNP data for SNPs common to

the NECS and Illumina datasets that had a SNP call rate.0.95

and MAF.0.05. SNPs in strong LD were removed using the

program PLINK with a SNP window of 50 and sliding window of

5 SNPs and we removed 1 SNP from each pair of SNPs with

r2.0.30 leaving 97,508 SNPs for this analysis. We found that the

top several principal components (PCs) correlated to the genetic

ancestry and formed a similar pattern to other studies of subjects

of European ancestry [84,85]. However, the analysis also showed

that the Illumina controls contain many more ethnic groups than

the NECS (Figure S1), and the inclusion of these control

subjects might therefore inflate false positive associations. We

used the clustering algorithm in [65] to group individuals with

similar ancestry into the same cluster. The algorithm utilizes k-

means clustering to iteratively group individuals into cluster sizes

varying from 2 to 30 and then computes a scoring index at each

cluster size that accounts for the accuracy of the subjects’ cluster

assignments, the stability of k-means clustering from iteration to

iteration and the ability of the algorithm to maximize the distance

between subjects allocated to different clusters. This analysis

identified 20 clusters corresponding to sub-populations with

different genetic structure, and Figure S1 shows the details of

the clusters and their ethnic labels based on the known mother

tongue and ancestry of the cluster members. NECS cases were

present in only 16 of the 20 clusters as shown in Table 3 that

displays the frequency of NECS cases (row 2), NECS controls

(row 3) and Illumina controls (row 4). For example, no

centenarians were allocated to cluster 1 or 15 (empty and full

red dots in Figure S1 that may represent Franks and Celtics-

Alpine ethnicities). To increase the number of controls, we

randomly selected additional Illumina controls from those 16

clusters to maintain the same ratio of cases/controls in each

cluster. For example, we sampled 4 additional Illumina controls

from cluster 2, so that the ratio case/controls in cluster 2 was 21/

24 = 0.88, and similarly, we sampled 19 additional controls from

cluster 9, so that the ratio case/control in cluster 9 was 31/

35 = 0.88 etc.

Single SNP Analysis
Bayesian test of association. We employed both Bayesian

and traditional frequentist analyses of four different genetic

models: general in which we analyzed the distribution of three

genotypes; allelic in which we analyzed the distribution of alleles

M versus m; recessive and dominant in which we grouped the

genotypes in two groups, either MM/Mm versus mm (dominant

for TOP strand allele), or MM versus Mm/mm (recessive for TOP

strand allele) respectively. Note that M is the allele in the TOP

strand and m is the allele in the BOTTOM strand based on

Illumina genotype calling rules. We used a traditional x2 test of

independence in a 263 contingency table to test general

association, and the x2 test of independence in a 262

contingency table to test additive, dominant and recessive

associations.

With the Bayesian analysis, we scored each SNP association by

the Bayes Factor (BF) that can be interpreted as the posterior odds

for the association when the null hypothesis of no association and

the alternative hypothesis of an association have the same prior

probability [86]. Specifically, let H0 and H1 denote the null

hypothesis of no association between the SNP and the phenotype

and the alternative hypothesis that there is an association between

the SNP and the phenotype, and let p(H0) and p(H1) denote the

prior probabilities of the two hypotheses. Then, by Bayes’

theorem, the posterior odds of the alternative hypothesis is

computed as:

p(H1jdata)

p(H0jdata)
~

p(datajH1)

p(datajH0)

p(H1)

p(H0)

The quantities p(data|H0) and p(data|H1) are the ‘‘marginal

likelihoods’’ of the data, given the two hypotheses H0 and H1, and

are computed as the solutions to the two integrals

p(datajH0)~

ð
p(datajh,H0)p(hjH0)dh and

p(datajH1)~

ð
p(datajh,H1)p(hjH1)dh

The quantities p(datajh,H0) and p(datajh,H1) are the traditional

likelihood functions under the null and alternative hypotheses, and

p(hjH0),p(hjH1) are the prior distributions of the parameters of

the two likelihood functions. These parameters are the conditional

probabilities of the SNPs alleles in cases and controls and, in the

paragraph below, we will provide details of the parameterizations.

The ratio p(data|H1)/p(data|H0) is the BF, so that under the

assumption that p(H0) = p(H1) = 0.5, the posterior odds equals the

BF. The BF can be computed in closed form for all 4 models when

appropriate parameterizations are used and missing genotypes are

Table 3. Distribution of NECS cases (row 2), NECS controls (row 3) and Illumina controls (row 4) in clusters of genetic ethnicity
(columns).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cent 0 21 34 79 27 189 6 0 31 102 22 20 3 94 0 15 94 34 0 25

Control 2 20 8 14 30 38 2 1 16 19 18 3 4 12 4 3 29 7 0 12

Illumina 90 310 192 47 278 168 223 104 277 288 200 120 173 132 169 54 266 154 118 250

The table shows the 20 clusters of genetic ethnicity that were discovered using a clustering algorithm described in reference [20]. Note that no centenarians were
allocated to cluster 1 or 15. These clusters are represented by full red dots in Figure S1 and denote Franks and Celtics- Alpine ethnicities.
doi:10.1371/journal.pone.0029848.t003
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assumed to be missing at random [87]. The formulas are given

below.

We assume that genotypes frequencies in cases and controls

follow independent multinomial distributions with parameters

that follow Dirichlet distributions with uniform prior hyper-

parameters. This is the standard parameterization for conjugate

Bayesian analysis of a contingency table when we condition on one

dimension of the table. See for example the supplement material of

the review article of Balding [86]. In our case, we condition on the

phenotype (case/control status) so that we use the retrospective

likelihood that is appropriate in a case-control design.

Then the marginal likelihood of the data, given a genotype

association, is the formula:

p(DjMassociation)~
C(a1.)

C(a1.zn1.)
Pk

C(a1kzn1k)

C(a1k)

|
C(a0.)

C(a0.zn0.)
Pk

C(a0kzn0k)

C(a0k)

and the marginal likelihood of the data, assuming no association

between SNP and phenotype, is the formula:

p(DjMindependence)~
C(a)

C(azn)
Pk

C(a.kzn.k)

C(a.k)
;

a.k~
X

j
ajka~

X
j
a.k

where the genotype frequencies nij and hyper-parameters aij of the

Dirichlet distribution are defined in Table 4 and 5. The Bayes

factor is the ratio between the two marginal likelihoods:

Bayes Factor BF~p(DjMassociation)=p(DjMindependence)

The Bayes factors for the other models are calculated using the

same formulas, after the genotype frequencies are converted into

allele frequencies (Table 6), or frequencies for dominant alleles

(Table 7), and recessive alleles (Table 8).

We used ajk = 2 in all 4 tests.

For genotype association, we estimated the two ORs for

exceptional longevity (EL) as:

OR(Mm v MM)~
p(MmjEL)p(MMjAL)

p(MmjAL)p(MMjEL)
and

OR(mmvMM)~
p(mmjEL)p(MMjAL)

p(mmjAL)p(MMjEL)

And we estimated the conditional probabilities of genotypes as:

p(MMjEL)~
a11zn11

a1.zn1.
; p(MmjEL)~

a12zn12

a1.zn1.
;

p(mmjEL)~
a13zn13

a1.zn1.

p(MMjAL)~
a01zn01

a0.zn0.
; p(MmjAL)~

a02zn02

a0.zn0.
;

p(mmjAL)~
a03zn03

a0.zn0.

The formulas are similar for the other genetic models. We

estimated the genomic control factor as described in [88].

Interpretation of MBF. We conducted extensive simulations

to compute the expected number of false positive associations of the

decision rule that selects a significant association when the BF of at

least one of the four models is greater than the threshold. For each

allele frequency p(a) = 0.05,0.10,0.15,…,0.5, we simulated 100,000

data sets with no associations with 1750 subjects that we randomly

split into 800 cases and 950 controls, to mimic the sample size of the

discovery set. We used thresholds varying between 10 and 1,800

and, in each simulated data set, we computed the BF for the 4

models of association as described above, and determined the SNP

as significantly associated if the BF of at least one of the 4 models

was greater than the threshold. The simulations are summarized in

Figure S2 and show how to interpret different thresholds for the

MBF in terms of expected error rate.

Gender effect. For the significant SNPs in the discovery set,

we tested whether the associations are substantially modified when a

gender-SNP interaction model was used. We used the retrospective

likelihood and tested whether the distribution of each selected SNP

is independent of the phenotype once we condition on gender.

Accepting the null hypothesis implies that the association between

SNPs and phenotype is explained away by gender and none of the

associations could be explained away by gender.

Table 4. Notation of genotype frequencies.

Genotype Frequencies

MM Mm mm Total

Cases (Y = 1) n11 n12 n13 n1.

Controls(Y = 0) n01 n02 n03 n0.

Total n.1 n.2 n.3 N

The table defines the mathematical notation for the genotype frequencies used
in the methods.
doi:10.1371/journal.pone.0029848.t004

Table 5. Notation of the hyper-parameters in the Dirichlet
prior distributions.

Prior Hyper-parameters

MM Mm mm Total

Cases (Y = 1) a11 a12 a13 a1.

Controls(Y = 0) a01 a02 a03 a0.

Total a.1 a.2 a.3 a

The table defines the mathematical notation for the hyper-parameters of the
Dirichlet distribution used in the methods.
doi:10.1371/journal.pone.0029848.t005

Table 6. Notation of allele frequencies in the allelic model.

Allele Frequencies

M M Total

Cases (Y = 1) 2n11+n12 n12+2n13 2n1.

Controls(Y = 0) 2n01+n02 n02+2n03 2n0.

Total 2n.1+n.2 n.2+2n.3 2N

The table defines the mathematical notation for the allele frequencies used in
the methods.
doi:10.1371/journal.pone.0029848.t006
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Association with known disease alleles. We identified

62,339 unique SNPs that were associated with a variety of diseases

and traits in several GWASs from the catalogue of published

genome wide association studies at http://www.genome.gov/

26525384 [89], and the Human Gene Mutation Database

(HGMD). We found 1214 of these SNPs in the Illumina array

that we used for the GWAS of EL with acceptable quality. We

calculated the number of disease alleles carried by centenarians

versus all Caucasian controls included in our analysis.

Genetic Risk Modeling
Nested Bayesian Models. We define k nested SNP sets

(k = 1,…,K), starting from the most significant SNP

S1~ rs2075650½ �

and then we increment the set by adding one SNP at a time in

order of maximum Bayesian factor (MBF). The latter is the

maximum Bayes Factor among the 4 genetic models that we tested

for each SNP in the GWAS. Therefore, the (k+1)th SNP set is

defined as

Skz1 Sk; SNPkz1½ �

where SNPk+1 is the SNP with the (k+1)th Bayesian significance.

We choose K = 500 that corresponds to testing SNPs with

approximately a posterior probability of an association .0.95,

and removed from this set 100 SNPs that are highly correlated.

To this end, we build a Bayesian network to capture mutual

dependencies between SNPs that represent either strong linkage

disequilibrium or strong SNP-SNP associations and removed those

SNPs that are conditionally independent of the phenotype given

more significant SNPs. We used a threshold on the posterior

probability of association ranging between 10 for multiple

dependencies to 100 for two-way SNPxSNP interaction. The

methodology based on Bayesian networks is described in details in

[62,90].

For each SNP set, Sk, the Bayesian classification rule calculates

the posterior probability of EL as:

p(ELjSk)~
p(EL)Pk

i~1 p(SNPijEL)

p(EL)Pk
i~1 p(SNPijEL)zp(AL)Pk

i~1 p(SNPijAL)

where p(EL) and p(AL) = 1-p(EL) are the prior probabilities of

exceptional and average longevity. The conditional probabilities

p(SNPijEL) and p(SNPijAL) represent the distribution of the ith

SNP genotype in cases (EL) and controls (AL). The rule is to

classify a subject as predisposed to exceptional longevity if

p(ELjSk)wp(ALjSk).

We used the prior Pr(EL) = Pr(AL) = 0.5 as described in the

caption of Figure 4. This choice of a prior probability 0.5 for both

EL and AL means that the classification becomes independent of

the prior because, by Bayes’ theorem, the rule becomes ‘‘assign

EL’’ if

p(ELjSk)wp(ALjSk)uPi p(SNPijEL)wPi SNPijAL)

and hence when the probability of the data given EL is greater

than the probability of the data given AL.

The quantities

Pk
i~1 p(SNPijEL) and Pk

i~1 p(SNPijAL)

are the joint probabilities of the SNPs in the set Sk that are

estimated from the cases and controls. The rationale of this

formula is that the SNPs are modeled as conditionally independent

given the phenotype so that the probability distribution of a SNP

set, given the phenotype, has the product form

p(SNP1, � � � ,SNPkjphenotype)~Pi p(SNPijphenotype)

The product form is equivalent to assuming that the SNPs have a

multiplicative effect, as in an additive logistic regression model.

Compared to logistic regression, the Bayesian classification rule

uses the retrospective likelihood to update the prior probabilities of

EL and AL into the posterior probabilities. Also, the product form

in the retrospective likelihood has the advantage that the genetic

effect of each SNP can be estimated independently of the other

SNPs and so there is virtually no upper limit on the number of

SNPs that we can include in the SNP set.

We estimate the conditional probabilities p(SNPijphenotype)
using conjugate Bayesian analysis as described earlier.

Evaluation of sensitivity and specificity. Sensitivity (how

many centenarians are predicted as centenarians) and specificity

(how many controls are predicted as controls) of each SNP set

were estimated as:

Sensitivity = proportion of centenarians in the discovery

set for whom p(EL | Sk)$p(AL | Sk);

Specificity = proportion of controls in the discovery set

for whom p(EL | Sk),p(AL | Sk);

Resampling Method. In the bootstrap-type approach, we

repeatedly split the discovery set into non overlapping 2/3 training

and 1/3 test sets that were respectively used to estimate the nested

genetic risk models and to evaluate their predictive value. We

Table 8. Notation of allele frequencies in the recessive
model.

Allele Frequencies

M M Total

Cases (Y = 1) n11 n12+n13 n1.

Controls(Y = 0) n01 n02+n03 n0.

Total n.1 n.2+n.3 N

The table defines the mathematical notation for the recessive model for the M
allele in the methods.
doi:10.1371/journal.pone.0029848.t008

Table 7. Notation of allele frequencies in the dominant
model.

Allele Frequencies

MM/Mm Mm Total

Cases (Y = 1) n11+n12 n13 n1.

Controls(Y = 0) n01+n02 n03 n0.

Total n.1+n.2 n.3 N

The table defines the mathematical notation for the dominant model for the M
allele in the methods.
doi:10.1371/journal.pone.0029848.t007
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repeated this random procedure 1000 times for each SNP set, and

summarize the sensitivity and specificity into the average values

(See Figure S4). We evaluated the growth of sensitivity and

specificity in the 1000 resampled sets. The mean number of SNPs

in which the absolute difference between sensitivity and specificity

was ,0.02 and accuracy was .85% was 281.
Effect of the search order. We tested the effect of our

ordering heuristics to see whether different orderings may lead to

better risk prediction models. We conducted two types of tests. In

the first test, we randomly permuted the order of the top 281 SNPs

and repeated the heuristic of building nested genetic risk models

by adding one SNP at a time from the randomized list of SNPs. In

each test, we examined the effect of changing SNP order on the

sensitivity and specificity in the discovery set, and also in the

bootstrap procedure. The results of these analyses are shown in

Figure S4.
Interpretation of genetic risk profiles. We generated

genetic risk profiles for each subject by plotting the posterior

probability of EL (p(EL|Sk), y axis) against the number of SNPs in

each of 281 SNP sets (x-axis). The trend of the profiles informs

about the enrichment of longevity associated variants (LAV)s

because the posterior probability of exceptional longevity in a

subject, given the SNP set Sk+1 is greater than that given the SNP

set Sk if the subjects carries a genotype of the (k+1)th SNP that is

more common in centenarians rather than controls. In fact

p(ELjSkz1)wp(ELjSk) if and only if

p(EL)Pkz1
i~1 p(SNPijEL)

p(EL)Pkz1
i~1 p(SNPijEL)zp(AL)Pkz1

i~1 p(SNPijAL)

w

p(EL)Pk
i~1 p(SNPijEL)

p(EL)Pk
i~1 p(SNPijEL)zp(AL)Pk

i~1 p(SNPijAL)

And the inequality is equivalent to

p(SNPkz1jEL)

w

p(EL)Pkz1
i~1 p(SNPijEL)zp(AL)Pkz1

i~1 p(SNPijAL)

p(EL)Pk
i~1 p(SNPijEL)zp(AL)Pk

i~1 p(SNPijAL)

This can be written as

p(SNPkz1jEL) p(EL)Pk
i~1 p(SNPi jEL)zp(AL)Pk

i~1 p(SNPi jAL)
� �

w

p(SNPkz1jEL)|p(EL)Pk
i~1 p(SNPi jEL)zp(SNPkz1jAL)p(AL)Pk

i~1 p(SNPi jAL)

which simplifies into

p(SNPkz1jEL)wp(SNPkz1jAL)

Note that this property is independent of the SNPs in the current

SNP set, so changing the order of the nested model may change

the overall pattern of the risk profile but not the interpretation in

terms of enrichment of longevity associated variants.
Ensemble of genetic risk models. The ensemble of genetic

risk models uses 281 nested SNP sets to compute the risk for EL

and AL (average longevity), and the overall risk is estimated as the

average of all genetic risks:

p(ELjS1, � � � ,S281)~
X281

i~1
p(ELjSi)=281:

Prediction in independent tests. For prediction, we used

the ensemble of 281 genetic risk models trained in the discovery set

and computed the posterior probability of AL and EL in cases and

controls of the two sets. We assumed uniform prior probabilities

(P(AL) = P(EL) = 0.5), and classify a subjects as EL if the posterior

probability of EL given the genotype of 281 SNPs was.posterior

probability of AL. We assessed sensitivity and specificity by the

number of centenarians classified as EL and the number of

controls classified as AL.

Genetic Signatures
Clustering of genetic risk profiles. We used the Bayesian

model-based clustering procedure implemented in the program

CAGED [91] to cluster the genetic risk profiles of centenarians

and controls, independently, in the discovery and replication sets.

The method in CAGED is designed to cluster row profiles of a two

dimensional array by preserving the column ordering and it uses a

Bayesian search strategy to identify the number of clusters by

maximizing a Bayesian score [92]. We organized the genetic risk

profiles into a N x 281 array, with rows that represent subjects and

the jth column that represents the genetic risk calculated from the

jth SNP set. We used polynomial models up to order 4 to capture a

variety of patterns [93] and then used hierarchical clustering of the

profiles to check whether similar clusters could be further merged.

The signatures in the merged replication sets were generated by

cluster analysis of the predicted profiles calculated using the 281

genetic risk models trained in the discovery set.

Correlation of genetic signatures with aging sub-

phenotypes. Difference in survival was tested using log-rank

tests implemented in the survival package of R. Only subjects with

events or alive without events were included in the analysis.

Correlation of genetic signatures with race and

ethnicity. We tested the association between the genetic

signatures in centenarians and the genetic structure determined

with the cluster algorithm of the principal components. When we

correlate the 26 clusters of genetic signatures to the clusters of

different population structures, we did not find any association (the

p-value from x2 was 0.3).

Validation with the TaqMan platform. In order to

validate the genotyping of the SNPs included in the model, 30

SNPs (.10% of the SNPs in the model) were selected to re-

genotype using the TaqMan platform (Applied Biosystems,

Carlsbad, CA). This genotyping was performed at Yale

University. The samples included 688 centenarians and 221

controls from the NECS that were included in the discovery set

and for whom we had available DNA. For each sample, 2.5 ng of

DNA was arrayed into 384-well plates and was dried prior to

TaqMan genotyping. Thermal cycling was performed using either

a BioRad C1000 or S1000 (BioRad, Hercules, CA) and plate reads

were done using the CFX Optical Reaction Module (BioRad,

Hercules, CA). Genotype calls were made using the BioRad CFX

Manager Software for Allelic Discrimination (BioRad, Hercules,

CA). Of the 30 SNPs attempted, 28 SNPs were successfully

genotyped; one zSNP, rs4802234, did not yield data that could be

clustered using the allelic discrimination software for one of the

three 384-well plates, and one SNP, rs12629971, had a lower call

rate (93%). All TaqMan genotyping was performed blind to the

microarray genotypes as the Yale group did not have access to the

microarray genotypes.

There were 34 duplicate samples genotyped using TaqMan

across the 28 SNPs generating a total of 952 duplicate genotypes,

950 of which had both samples called. Of these 950 duplicate

genotypes, 100% of the genotypes were concordant. For the 28

SNPs successfully genotyped, we observed between 1 and 10
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discordant genotypes per SNP between the TaqMan genotype and

the microarray genotype, yielding concordance rates between

98.88 and 99.89% between genotyping platforms. Our overall

discordance rate across all SNPs was ,1%.

This low rate of discordant genotypes did not affect the results:

23 of the 28 SNPs reached statistical significance in the replicated

data, and although 5 SNPs did not reach statistical significance

possibly because of the small sample of controls, the allele

frequencies from the microarray data and TaqMan data are

virtually indistinguishable (Figure S5), suggesting that a 1%

genotyping error rate should have no impact on this analysis.

Supporting Information

Figure S1 Population structure of centenarians and
controls. Scatter plot of principal components 1 and 2 (PC1

and 2 PC2, top panels), and principal components 3 and 4 (PC3

and PC4, bottom panels) in subjects from the NECS (left) and

Illumina database (right) that were estimated using genome wide

data. We labeled the clusters by ethnicity using the information

about mother tongue and place of birth of NECS subjects and

their parents. Note that some of the European ethnic groups in

controls (NECS and Illumina) are not represented in NECS cases,

for example Italics (fl green), Saxon/Scandinavia (N green),

Celtics/Alpine (& red), and Franks (NN , red).

(TIF)

Figure S2 Error rate in log10 scale of the Bayes rule for
different thresholds of the MBF. The x axes reports the

estimate of the 2log10(error rate) and 95% credible intervals that

were estimated using a Beta distribution in 1,000,000 simulations

per threshold on the MBF (y-axis). The MBF is the maximum

Bayes Factor computed to test the association of each SNP in 4

genetic models (genotypic, allelic, dominant, recessive). The

genotype data were generated with allele frequencies varying

uniformly between 0.05 and 0.5 and assuming HWE. The analysis

suggests that a MBF.1,400 determines an error rate of

approximately 1 to 2 errors per 100,000 tested association

(2log10(2/100,000) = 4.7)), and a MBF.100 determines an error

rate of approximately 4 errors per 100,000 tested association

(2log10(4/100,000) = 3.4). Note that this analysis includes the

additional costs of searching for 4 genetic models.

(TIF)

Figure S3 Manhattan plot and QQ-plot for the allelic
association tested using a traditional frequentist ap-
proach. The Manhattan plot shows the 2log10(p-value) for the 1

degree of freedom test Chi-square test. The QQ-plot displays the

observed quantiles of the 1 degree of freedom test Chi-square test

versus the expected quantiles.

(TIF)

Figure S4 Effect of sampling variability, and SNP
ordering on the sensitivity and specificity of the model.
Panel A) displays the average sensitivity and specificity of 400

nested models in 1000 resampled sets. 1000 training and test sets

were randomly resampled from the discovery set and each training

set was used to estimate the Bayesian classification rule that was

tested in the test set. The plot displays the average sensitivity and

specificity (y-axis) versus number of SNPs (x-axis). The sensitivity is

the proportion of centenarians with posterior probability of

exceptional longevity.posterior probability of average longevity

and the specificity is the proportion of controls with posterior

probability of exceptional longevity,posterior probability of

average longevity. The mean number of SNPs in which the

absolute difference between sensitivity and specificity was ,0.02

and accuracy was .85% was 281. Panel B) displays the

specificity for the two types of controls in the discovery set (NECS

referent subjects: continuous line; Illumina controls: dashed lines)

and shows that there is no difference between the two control sets.

Panel C) describes the effect of re-ordering the 281 SNPs.

Patterns of sensitivity and specificity using the discovery set (left),

and randomly generated validation sets (right) when the top 281

SNPs were randomly entered into the nested models (continuous

lines: SNPs are ordered by MBF; dashed lines: the same 281 SNPs

are randomly arranged). Panel D) describes the effect of random

selection on sensitivity and specificity of the nested models.

Patterns of sensitivity and specificity using the discovery set (left),

and randomly generated validation sets (right) when 281 SNPs

were randomly chosen from the top 1,700 most significant SNPs.

(continuous lines: SNPs are ordered by MBF; dashed lines: 281

SNPs are randomly selected from the 1700 most significant). The

analysis shows that changing the order affects sensitivity and

specificity of the model. Furthermore, selecting SNPs at random

from the top most significant SNPs gives models that are

consistently less specific and less sensitive.

(TIF)

Figure S5 Correlation between allele frequencies esti-
mated with the TaqMan assay and the arrays. The top

panel shows the agreement between the allele frequencies

estimated with the TaqMan assay in 688 centenarians (x-axis)

and 801 centenarians of the discovery set (y-axis). The bottom

panel shows the agreement between the allele frequencies

estimated with the TaqMan assay in 221 controls of the NECS

included in the discovery set (x-axis) and all 914 controls of the

discovery set (y-axis).The difference between allele frequencies in

the two groups was at most 0.04 (rs6801173). This particular SNP

has substantial variability with ethnicity.

(TIF)

Figure S6 Genes in the genetic risk models have been
linked to dementia. The networks display 42 of the 130 genes in

the genetic risk model that are linked to dementia in the literature,

either by functional or genetic association studies. 38 of the 42 genes

are also linked to Alzheimer’s disease (See Figure 6) and in red are 4

nodes that are specifically linked to dementia but not Alzheimer’s

disease. The nodes that are linked by an edge represent genes that

are either ‘‘co-cited’’ (dashed lines) or ‘‘associated by expert

curation’’ (continuous lines). The arrow head means that the

associations are activation (triangle), inhibition (circle), modulation

(diamond), conversion (arrow head). The node shape informs about

known roles of the genes (see inset). The nodes that are singleton

were linked to dementia in the literature but not together with other

genes. The number of genes linked to dementia was compared to

what is expected by chance using Fisher exact test, and the p-value

1.07e -6 shows that the gene set is unluckily the result of chance.

(Network generated with Genomatix).

(TIF)

Figure S7 Results of the ROC analysis in the discovery
and replication sets. Top panel: We conducted the ROC

analysis using the R package ‘‘validation’’ for the ensemble of 281

nested models. The ensemble of model trained in the discovery set

was then used to predict the outcome in the two replication sets

and the predictions were assessed using ROC analysis. Bottom

panel: ROC analysis of the predictions when the SNP rs2075650in

TOMM40 was removed from the predictive SNPs.

(TIF)

Figure S8 Effect of rearrangement of the top 281 SNPs
and random selection of 281 SNPs from the top 1,700
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most significant. Posterior probability of exceptional longevity

(EL) and average longevity (AL) (x axis) in the centenarians (red

boxplots, label EL), nonagenarians-centenarians (light blue, label

NN), Illumina controls (blue boxplots, label AL), in the replication

set 1 (panel 1) and replication set 2 (panel 2). Panels 3 and 4 show

the effect of reordering the nested models, and panels 5 and 6

show the effect of selecting a random set of 281 SNPs from the top

1,700 most significant SNPs. Numbers in parentheses denote the

accuracy in each boxplot ordered from top to bottom. For

example, in panel 1, 58% is the accuracy ( = specificity) in controls,

57% is the accuracy (sensitivity) in subjects of the replication set

ages ,103, and 71% is the accuracy (sensitivity) in the

centenarians ages .102. Changing the order of the 281 SNPs

decreases the difference in posterior probability of EL between

centenarians and controls so that the model is less able to

discriminate between centenarians and controls. The effect is even

greater when the SNPs are randomly chosen from the top most

significant.

(TIF)

Figure S9 No evidence of residual stratification on
individual SNP associations. Plot of the 2log10(p-value) of

the 281 SNPs included in the ensemble of genetic risk models. The

x-axis reports the 2log10(p-value) for the unadjusted analysis, and

the y-axis reports the 2log10(p-value) for the analysis adjusted by

the first 4 principal components. The analysis shows that there is

no real change between adjusted and unadjusted analysis

(correlation coefficient = 0.98.6, 99.0 and 98.2) and suggests that

population stratification does not appear to confound the

associations. For both analyses, we fit a logistic regression models

using PLINK.

(TIF)

Figure S10 No evidence of residual stratification on
posterior probability of exceptional longevity. Panel A)
Plot of first two principal components (PC1 and PC2) to show the

population structure in centenarians. Panels B and C show the

principal components (PC1, and PC2, x axis) and probability of

exceptional longevity (y-axis). The plot shows that the ranges of

values of probability of exceptional longevity do not change in the

3 groups.

(TIF)

Figure S11 26 genetic signatures of exceptional longev-
ity in centenarians. The profiles fitted in the discovery set were

clustered using CAGED and hierarchical clustering and then

ordered by the average genetic risk. In each plot, the x-axis reports

the number of SNPs in each genetic risk model (1,…,281 SNPs),

and the y-axis reports the posterior probability of exceptional

longevity predicted by each model. Together, the boxplots (one for

each SNP set on the x axis) display the genetic risk profiles of the

centenarians in the same cluster. Numbers in parentheses are the

cluster sizes (N), and the average posterior probability. Color

coding represents the strength of the genetic risk to predict EL

(Blue: P(EL |g281).0.95; Red: 0.5,P(EL |g281),0.95; Orange:

0.20,P(EL|g281),0.5; Green: P(EL|g281),0.2). Only clusters

with 8 or more centenarians are included and describe 90% of all

cases in the discovery set.

(TIF)

Figure S12 Clusters of profiles predicted in the repli-
cation set comprising the ELIXIR subjects and the
additional set of 60 centenarians from the NECS. Only

clusters with 8 or more centenarians are included. Several of the

signatures discovered in the replication set match signatures in the

discovery set: The pattern of R1 matches C1, R2 matches C2, R4

matches C6, R5 matches C11, R8 matches C19, R15 matches

C26. The profiles were generated using the genetic risk models

trained in the discovery set. The profiles were then clustered using

CAGED and hierarchical clustering and then ranked by the

average posterior probability of exceptional longevity per cluster.

(TIF)

Figure S13 Clusters of profiles of the controls in the
discovery set. Genetic signatures in 845 controls subjects of the

discovery set. Numbers in parentheses are the cluster sizes (N), and

the average posterior probability of exceptional longevity per

cluster. Color coding represents the strength of the genetic risk to

predict EL (Blue: P(EL|g281).0.95, Red: 0.5,P(EL|g281),0.95;

Orange: 0.20,P(EL|g281),0.5; Green: P(EL|g281),0.2).

(TIF)

Figure S14 Summary of genetic signatures of excep-
tional longevity in the centenarians of the discovery set
and 4118 controls. We used the nested genetic risk models

trained in the discovery set to compute the genetic profiles of all

controls, and clustered the profiles using the same analytic

strategy. The cluster analysis grouped subjects in 254 clusters of

7 or more, while the remaining subjects had more sporadic

signatures. The pie charts display the distribution of all genetic

signatures in the 801 centenarians of the discovery set (left) and the

4118 controls (right). The slices are color coded as in the previous

figures (Blue: p(EL|g281).0.95; Red: 0.70,P(EL|g281),0.95;

Brown: 0.5,P(EL|g281),0.7; Orange: 0.17,P(EL|g281),0.50;

Green P(EL|g281),0.17). The label P(E) denotes p(EL|g281).

Note the almost lack of ‘‘blue’’ and the dominance of ‘‘green’’ and

‘‘orange’’ signatures in the control set compared to the centenarian

set.

(TIF)

Figure S15 Signatures with random profiles. To compare

the results from cluster analysis of genetic risk profiles and derived

signatures against random results, we randomly selected 300 SNPs

from the list of analyzed SNPs, we generated a set of nested genetic

risk models using the procedure described in the manuscript and

then we tried to cluster the genetic risk profiles. We repeated this

analysis a few times, and consistently showed that sensitivity and

specificity in the replication set were 0.5 (pure chance), and when

we attempted to cluster the genetic risk profiles the analysis

produced many smaller clusters (average size 3 profile per clusters

compared to 15 profiles per cluster in the signatures generated in

the manuscript), many profiles that could not be clustered at all,

and those profiles that could be clustered more effectively were

showing random variability around 0.5.

(TIF)

Figure S16 Age distribution of centenarians in the 26
genetic signatures in the discovery set and in 15
signatures of the merged replication sets. The boxplots

were generated with the R package, and the box displays the ages

at death between the 25th and 75th percentile, with median age

depicted as the middle bar. The whiskers extend to the most

extreme data point which is no more than 1.5 times the

interquartile range from the box. The boxplots are ordered by

predictive accuracy of the genetic risk models within clusters.

(Blue: P(EL|g281).0.95,; Red: 0.5,P(EL|g281),0.95; Orange:

0.20,P(EL|g281),0.5; Green: P(EL|g281),0.2). The most

predictive cluster (C1) is associated with the longest median

survival, and other genetic signatures are characterized by

different survivals as well.

(TIF)
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Figure S17 Distributions of age of onset to cardiovas-
cular disease (CVD), pulmonary disease (CPD), macular
degeneration (MD) and hypertension between centenar-
ians with different genetic signatures. The x-axis reports

age of events, and the y-axis reports the event-free survival

distribution. Only subjects with events were included in the

analysis. The caption below each plot indicates the disease and the

p-value to test significance differences using the log-rank test.

Median ages of onsets are in the insets. Subjects in cluster C1 had

a significant delay in the onset of dementia and stroke, compared

to other clusters. They also delayed onset of cancer compared to

centenarians with signatures C2, C3 and C5, but not differently

from centenarians with signature C6, and delayed cardiovascular

disease compared to centenarians with other signatures but not

differently from centenarians with signature C3. Ages of onset of

other diseases also differ between other clusters.

(TIF)

Figure S18 Pedigrees of 2 centenarians in a cluster
showing no prediction for exceptional longevity (C26).
The two pedigrees show examples of familial longevity although

the genetic risk profiles of the two centenarian probands (red

arrows) show no enrichment of longevity associated variants. This

could indicate that such families have more private or rare variants

not captured by either the genotyping or the model.

(TIF)

Figure S19 Predictive value of the SNP rs2075650 in
TOMM40/APOE in the discovery set. The table reports the

posterior probability of exceptional and average longevity for

different genotypes of rs2075650. The ROC analysis shows that

this SNP alone cannot optimize the trade off between sensitivity

and specificity. The area under the curve is 0.62 compared to 0.95

when 281 SNPs are used in the model (Figure S7, top, left panel).

Note that some threshold on the posterior probability can produce

an accuracy that is worse than random classification.

(TIF)

Figure S20 Plot of allele frequencies in 32 subjects
genotyped with both the Humanhap CNV370 Illumina
array (x axis) and HumanHap 610-Quad Illumina array
(y-axis). Dots in the boundaries of the figure represent

inconsistent SNPs between arrays. Only SNPs that had

CR.97% are included.

(TIF)

Figure S21 Agreement of allele frequencies in different
SNP arrays. Panel A) shows the plot of allele frequencies in 573

centenarians genotyped with array HumanHap370 (x-axis) and

168 centenarians genotyped with the HumanHap 1 M (y-axis).

Panel B) shows the allele frequency in 151 controls typed with

array HumanHap330 (x-axis) and 863 with HumanHap 550 (y-

axis). Panel C shows C) shows the allele frequency in 241 controls

typed with array HumanHap370 (x-axis) and 863 with Human-

Hap 550 (y-axis).

(TIF)

Table S1 List of 281 SNPs included in the genetic risk
model. This is an excel file with 3 worksheets. ‘‘README’’

worksheet describes the column contents; ‘‘281 SNPs’’ worksheet

describes the list of 281 SNPs used in the ensemble genetic risk

models. This includes details about call rate by array type and

phenotype, details of QC, statistical analysis. ‘‘Functional

annotation’’ worksheet includes functional annotation of the 281

SNPs.

(XLS)

Table S2 Disease prevalence in clusters of centenarians
with different genetic signatures. Cardiovascular disease

defined as angina, congestive heart failure, peripheral circulatory

disease or myocardial infarction; pulmonary disease is asthma,

chronic bronchitis or emphysema; hypertension: systolic blood

pressure .140 mm Hg and/or diastolic blood pressure .90 mm

Hg or on medication for HTN.

(DOCX)

Table S3 Rate of disease associated variants carried by
centenarians and controls, and p-value from Student’s T
test. Risk alleles were derived from the GWAS catalogue at the

NHGRI (downloaded in April 2011) and the Human Genome

Mutation Database. The boxplots displays the rate of risk alleles

carried by centenarians (blue) and controls (red). The disease

described are: lupus, cholesterol level (Chol), macular degenera-

tion (MD), Parkinson’s Disease (PD), Chron’s disease (chr),

diabetes (diab), cardiovascular disease (CVD), cance (canc)r,

Alzheimer’s (AD), GWAS.pt is the group of alleles related to

personality disorders that were found in GWAS, gwas.qt is the

group of alleles related to QTL from GWASs and include

cholesterol, BMI, obesity etc, and GWAS.cc is the group of risk

alleles found from case/control GWASs so include for example

cancer, PD, MD etc, cod is for coding variants from the HGMD,

and all is the full set of 1214 variants.

(DOCX)

Table S4 List of disease associated SNPs that showed
significant differences in the discovery sets. Highlighted in

grey are the SNPs with risk alleles that are less common in

centenarians. Some SNPs had unreported risk alleles in the

original publications that are denoted with a question mark.

(DOCX)
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