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Valosin-containing protein (VCP) mutations cause inclusion body myopathy with Paget disease and
frontotemporal dementia. However, the mechanisms by which mutant VCP triggers degeneration remain
unknown. Here, we investigated the role of VCP in cellular stress and found that the oxidative stressor
arsenite and heat shockdactivated stress responses evident by T-intracellular antigen-1epositive
granules in C2C12 myoblasts. Granules also contained phosphorylated transactive response DNA-binding
protein 43, ubiquitin, microtubule-associated protein 1A/1B light chains 3, and lysosome-associated
membrane protein 2. Mutant VCP produced more T-intracellular antigen-1epositive granules than wild-
type in the postarsenite exposure period. Similar results were observed for other granule components,
indicating that mutant VCP delayed clearance of stress granules. Furthermore, stress granule resolution
was impaired on differentiated C2C12 cells expressing mutant VCP. To address whether mutant VCP
triggers dysregulation of the stress granule pathway in vivo, we analyzed skeletal muscle of aged VCPR155H-
knockin mice. We found significant increments in oxidated proteins but observed the stress granule
markers RasGAP SH3-binding protein and phosphorylated eukaryotic translation initiation factor 2a un-
changed. The mixed results indicate that mutant VCP together with aging lead to higher oxidative stress
in skeletal muscle but were insufficient to disrupt the stress granule pathway. Our findings support that
deficiencies in recovery from stressors may result in attenuated tolerance to stress that could trigger
muscle degeneration. (Am J Pathol 2016, 186: 1623e1634; http://dx.doi.org/10.1016/
j.ajpath.2016.02.007)
Funded by the NIH, National Institute of Arthritis and Musculoskeletal
and Skin Diseases (NIAMS) grant R00AR054695 (M.K.).

Disclosures: None declared.
Mutations in the vasolin-containing protein (VCP) gene cause
a rare hereditary disease called inclusion body myopathy
associated with Paget disease of bone and frontotemporal
dementia (IBMPFD).1,2 Some of these mutations are also
attributed to cause familial amyotrophic lateral sclerosis
(ALS).3 The disease penetrance, however, is different
between IBMPFD and ALS or even within IBMPFD.4,5

Although 80% to 90% of IBMPFD patients develop inclu-
sion body myopathy, the penetrance for frontotemporal de-
mentia or Paget disease is significantly less, ranging from
30% to 50%, respectively.4,5 In the case of skeletal muscle,
pathologic features include weakness and skeletal muscle
atrophy. Progressive muscle wasting affects respiratory
muscles and the heart, leading to respiratory and cardiac
stigative Pathology. Published by Elsevier Inc
failures, which are the main cause of death in these patients.5

At the cellular level, pathologic hallmarks include rimmed
vacuoles positive for microtubule-associated protein 1A/1B-
light chain 3 (LC3),6 abnormal buildup of ubiquitylated
proteins, and mislocalization of transactive response DNA-
binding protein 43 (TDP-43) to the cytoplasmic compart-
ment in muscle fibers.7,8 Interestingly, distribution of VCP
appears unaltered in affected cells.9

VCP is a highly conserved ATPase composed of two
ATPase domains (D1 andD2), two linker domains (L1 and L2),
. All rights reserved.
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and the amino and carboxyl terminal domains.4 Physiologi-
cally, VCP participates in a wide variety of cellular functions,
including proteasome-mediated and endoplasmic reticulum-
associated protein degradation and handling of protein
aggregates,10,11 DNA repair, and regulation of autophagy.12

Dysregulation of these functions directly affects the survival
of cells and may trigger cell death pathways.

In addition, VCP plays a key role in cellular mechanisms
aimed to defend against different kinds of cellular stress. These
include, but are not limited to, oxidative stress, changes in
temperature, inflammation, and mechanical stress. To cope
with these endogenous and exogenous kinds of stress, cells
produce transient cytoplasmic aggregates denominated stress
granules, composed in large part of translationally silent
mRNAs and RNA binding proteins.13 Growing evidence
strongly suggests that deficiencies in VCP function impair
tolerance to cellular stress.14,15 Inhibition of VCP, autophagy,
or lysosome produces stress granules with an altered compo-
sition, indicating that VCP and the autophagy/lysosome
pathway are involved in stress granule dynamics.15 Further-
more, inactivation of VCP leads to accumulation of stress
granules in yeast and mammalian cells, suggesting that VCP is
required for stress granule clearance.14

Incomplete penetrance of the three different pathologic
components in IBMPFD cases may be indicative that, in
addition to genetic, environmental factors trigger or favor
the development of discrete pathologic processes associated
with mutant VCP. Although it is challenging to establish
clear cause-effect relation between environmental factors and
degenerative diseases, some evidence suggests an association
between the two of them.16,17 In this regard, arsenic is one
of the most toxic metalloids that exist in the soil and water.
This pollutant can be found in fresh and salt water and
consequently, in plants and animals in affected regions. In
contaminated areas, arsenic concentration can be as high as
8.5 mg/L, almost 200 times more than the current accepted
standard concentration of 0.05 mg/L.18 In a biological
context, consumption of water and food with considerable
amounts of arsenic can lead to a variety of diseases, including
dermatosis, several different kinds of cancer, vascular dis-
eases, and hyperkeratosis.19 Arsenic enters the cells through
aquaglyceroporins because of its similar structure to glyc-
erol.18 Inside cells, arsenic binds a variety of enzymes that
possess reactive sulfur atoms and produces elevated amounts
of oxidative stress. The mechanisms by means of which
arsenic causes oxidative stress are not fully understood;
however, it has been shown that arsenic generates imbalance
of the oxido-reduction state of the cell, leading to the pro-
duction of reactive oxygen species and induction of stress
proteins such as the 70-kDa heat shock protein.19,20 Dysre-
gulation of cellular stress management produced by muta-
tions on the VCP gene, together with chronic exposure to
arsenic and other stress-inducing pollutants, could facilitate
the progression of the disease. Here, we present that mutant
VCP significantly impaired the stress response in C2C12
cells. Cells were exposed to the oxidative stressor arsenite21
1624
or heat shock, and stress granule composition, formation,
and resolution were analyzed. We observed deficits in the
resolution phase of the arsenite-induced stress response when
mutant VCP was expressed, reflected by a delayed clearance
of stress granules. However, no differences were observed
between wild-type and mutant VCP on heat shock. Charac-
terization of stress granules found that both arsenite- and
heat shockeinduced cellular stress produced stress granules
that include TDP-43, phosphorylated TDP-43 (ser409/410),
and ubiquitin. In addition, significantly lower colocalization
was observed between the autophagosome- and lysosome-
associated proteins, LC3 and lysosome-associated membrane
protein 2 (LAMP2) and stress granules. To further address
whether the presence of mutant VCP leads to dysregulation of
the stress granule pathway on skeletal muscles, we quantita-
tively analyzed quadriceps of the VCPR155Heknockin (KI)
mouse model of IBMPFD. In aged VCPR155H-KI mice, we
observed significantly higher levels of ubiquitylated and oxi-
dated proteins than age-matched wild-type littermates, indic-
ative of elevated cellular and oxidative stress in the skeletal
muscle of VCPR155H-KI mice. However, steady-state levels of
the stress granule markers RasGAP SH3-binding protein
(G3BP) and phosphorylated and eukaryotic translation initia-
tion factor 2a (eIF2a) remained unchanged. Immunohisto-
chemical analysis found no differences between genotypes for
G3BP, T-intracellular antigen-1 (TiA-1), and TDP-43 pro-
teins. These in vivo results suggest possible compensatory
mechanisms to cope with stress in chronic conditions. Yet,
accumulation of modified proteins could still be detrimental
and may trigger pathologic stress responses in later ages.
Taken together, our results indicate that IBMPFD-relevant
VCP mutations impair tolerance to stress response, leading
to slower recovery of stress granule resolution after acute
exogenous stress.

Materials and Methods

C2C12 Cell Culture, Differentiation, and Transfection

Cells were seeded at 70% confluence in 6-well plates or
chambered cover glasses. Twenty-four hours later, cells
were transfected with 1 mg/mL human wild-type VCP(wt),
VCP(R155H), or VCP(A232E) fused to dsRED (kindly pro-
vided by Dr. J. Paul Taylor, St. Jude Children’s Research
Hospital, Memphis, TN) with the use of turbofect according to
the manufacturer’s instructions (Thermo Scientific, Waltham,
MA). One day later, cells were treated and processed for
immunofluorescence or nuclear/cytoplasmic fractionation.
Stress-inducing treatments were 200 mmol/L arsenite

for 60 minutes and 42�C for 30 minutes. Sodium arsenite
(10 mmol/L; Sigma-Aldrich, St. Louis, MO) was prepared
in sterile water and diluted to 200 mmol/L with complete
Dulbecco’s modified Eagle’s medium before use.
To inhibit autophagy, cells were treated for 3 hours with

12 mmol/L MHY-1485, and to inhibit lysosomal function,
cells were incubated for 24 hours with 20 mmol/L leupeptin.
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Mutant VCP Dysregulates Stress Response
For differentiation experiments, C2C12 cells were seeded
at 70% confluence in 8-well plastic slides. Twenty-four hours
later, cells were transfected with 1.5 mg/mL as described
above and changed to Dulbecco’s modified Eagle’s medium
2% horse serum to induce differentiation. Five days later,
cells were treated and processed for immunofluorescence.

Tissue Preparation for Immunoblot Analysis

After deep anesthetization with sodium pentobarbital, 15-
to 18-month-old mice were perfused transcardially with
0.1 mol/L phosphate-buffered saline (PBS), pH 7.4. Protein
extracts were prepared by homogenizing quadriceps tissue
in T-PER extraction buffer (150 mg/mL; Pierce, Rockford,
IL), complemented with protease and phosphatase inhibitors
(Sigma-Aldrich), and followed by centrifugation at 20,000� g
for 15 minutes. Protein concentration was determined with
the Bradford assay (Bio-Rad, Hercules, CA). For oxyblot
assay (EMD Millipore, Norwood, OH), 10 mg protein were
2,4-dinitrophenylederivatized and detected according to the
manufacturer’s instructions. All animal procedures and use
were performed in strict accordance with NIH’s Guide for the
Care and Use of Laboratory Animals22 and University of
California Institutional Animal Care and Use Committee
protocol no. AUP14-0014.

Cell Immunofluorescence

After treatment, cells were fixed in PBS þ 4% para-
formaldehyde (pH 7.4). After tris-buffered saline (TBS)
washes, cells were incubated with TBS and Tween 20 þ 3%
bovine serum albumin (BSA) for 10 minutes and blocked in
TBS þ 1% BSA þ 5% goat serum for 1 hour. Cells were
incubated 18 to 72 hours with one or two of the following
primary antibodies: antieTiA-1 (dilution 1:50; Santa Cruz
Biotechnology, Santa Cruz, CA; G11), TDP-43 (dilution
1:500: ProteinTech, Rosemont, IL; 12892-1-AP), phos-
phorylated TDP-43 S409/410 (dilution 1:500; Cosmo Bio
Co, Carlsbad, CA; TIP-PTD-P01), ubiquitin (dilution 1:500;
Dako, Carpinteria, CA; Z0458), VCP (dilution 1:2000;
Pierce, Rockford, IL; MA3-004), LC3 I/II (dilution 1:500;
Abnova, Walnut, CA; PAB12534), LAMP2 (dilution 1:500;
Abcam, Cambridge, MA; ABL-93), or G3BP (dilution
1:500; ProteinTech, 13057-2-AP) in TBS þ 1% BSA þ 2%
goat serum at 4�C. After washes, cells were incubated with
the appropriate secondary Alexa Fluor-conjugated antibody
(dilution 1:200; Life Technologies, Carlsbad, CA) at room
temperature for 1 hour, washed, and incubated with 300
nmol/L DAPI (Invitrogen, Carlsbad, CA) for 5 minutes.
Cover glasses were placed on gelatin-coated slides with
Fluoromount-G (SouthernBiotech, Birmingham, AL).

Stress granules were examined under an EVOS FL
(Advanced Microscopy Group, Bothell, WA) fluorescence
microscope with the use of a 40� objective. Two variables
were quantified: the number of cells positive for granules
(100 cells per well; five to six wells per condition) and the
The American Journal of Pathology - ajp.amjpathol.org
number of TiA-1þ granules that were also positive for a
second marker (eg, TDP-43 or ubiquitin) (20 cells per well;
five to six wells per condition). In the case of transfected
cells, only dsREDþ cells were included in the analysis.

Immunohistochemistry

For skeletal muscle immunofluorescence, calf muscle was
dissected and immersed in liquid nitrogen-cold 2-methylbutane
and was immediately transferred to dry ice. Twenty-micron
sections were obtained with a Leica cryostat (CM1860). Tis-
sue was fixed in PBSþ 4% paraformaldehyde (pH 7.4). After
TBS washes, tissue was incubated with TBS and Tween 20þ
3%BSA for 30minutes and blocked in TBSþ 1%BSAþ 5%
goat serum for 1 hour. Tissue was incubated approximately
18 hours with one of the following primary antibodies: antie
TiA-1 (dilution 1:50; Santa Cruz Biotechnology; G11),
TDP-43 (dilution 1:500; ProteinTech; 12892-1-AP), or G3BP
(dilution 1:500; ProteinTech; 13057-2-AP) in TBS þ 1%
BSA þ 2% goat serum at 4�C. After washes, tissue was
incubated with the appropriate secondary Alexa Fluor-
conjugated antibodies (dilution 1:200; Life Technologies) at
room temperature for 2 hours, washed, and incubated with
300 nmol/L DAPI (Invitrogen) for 5 minutes. Cover glasses
were placed on gelatin-coated slides with Fluoromount-G
(SouthernBiotech).

Hematoxylin and eosin staining was performed on 20-m
sections fixed in 4% paraformaldehyde for 15 minutes.
Sections were incubated in alum-hematoxylin solution for
5 minutes and counterstained with eosin-Phloxine B for
5 minutes, dehydrated, and cleared with CitriSolv (Fisher
Scientific). Cover glasses were placed on gelatin-coated
slides with Permount (Fisher Scientific, Pittsburgh, PA).

Nuclear-Cytoplasmic Fractionation

After exposure, cells were washed once with PBS and tryp-
sinized. Cells were centrifuged at 1000 � g for 4 minutes at
4�C, washed again with PBS, and resuspended in a buffer that
contained 10 mmol/L HEPES, pH 7.9, 1.5 mmol/L MgCl2,
10 mmol/L KCl, 0.5 mmol/L dithiothreitol, 0.1% to 0.2%
Triton X-100, proteases, and phosphatases inhibitors (Sigma-
Aldrich). Cell membranes were disrupted with a Dounce
homogenizer (20 strokes ‘tight’ pistil). Samples were incu-
bated on ice for 20 minutes and centrifuged at 1000 � g for
10 minutes at 4�C. Supernatant fluid (crude cytosolic) was
transferred into a new tube. Crude nuclei pellet was washed
three timeswith cold PBS and resuspended by pipetting up and
down several times in a buffer that contained 5 mmol/L
HEPES, pH 7.9, 1.5 mmol/L MgCl2, 0.2 mmol/L EDTA,
0.5mmol/L dithiothreitol, 26% glycerol (v/v), and 0.325mol/L
NaCl. Nuclei fraction was incubated on ice for 20 minutes.
To remove debris, both cytosol and nuclei fractions were
centrifuged at 20,000 � g for 20 minutes at 4�C, and super-
natant fluids were transferred into a new tube. Protein con-
centration was determined with the Bradford assay (Bio-Rad).
1625
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Figure 1 Characterization of arsenite-induced
stress granules by immunoblot in C2C12 cells.
A: Analysis of the cytoplasmic fraction shows an
increment in the protein levels of p-eIF2a immedi-
ately after 200 mmol/L arsenite exposure that
diminishes 1 hour after treatment (arsenite and re-
covery). B: Total levels of eIF2a are unchanged. C
and D: G3BP (C) and ubiquitin protein (D) levels
increase after arsenite treatment in the cytosol. E:
LC3-II protein levels are up-regulated 1 hour after
arsenite treatment. F and G: Cytoplasmic levels of
TDP-43 (F) and VCP (G) are similar in all conditions.
H: Representative images of the blots quantified
in panels AeG. n Z 6 to 7 (from 4 independent
experiments). *P < 0.05, **P < 0.01, and
***P < 0.001 versus no arsenite. eIF2a, eukaryotic
translation initiation factor 2a; G3BP, RasGAP
SH3-binding protein; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; LC3, microtubule-
associated protein 1A/1B-light chain 3; p,
phosphorylated; TDP-43, transactive response
DNA-binding protein 43; VCP, valosin-containing
protein.

Rodriguez-Ortiz et al
Immunoblotting

Equal amounts of protein were separated onto 4% to 15%
Bis-Tris gel and transferred to polyvinylidene difluoride
membranes. Membranes were blocked for 1 hour in Odyssey
blocking solution (LI-COR Biosciences, Lincoln, NE). After
blocking, membranes were incubated 18 to 72 hours with one
or two of the following primary antibodies: G3BP (dilution
1:1000; ProteinTech, 13057-2-AP), phosphorylated eIF2a
(S51) (dilution 1:1000; Cell Signaling Technology, Danvers,
MA; D9G8), total eIF2a (dilution 1:1000; Cell Signaling
Technology; L57A5), TDP-43 (dilution 1:1000; ProteinTech;
12892-1-AP), ubiquitin (dilution 1:3000; Dako; Z0458), LC3
I/II (dilution 1:3000; Abnova; PAB12534), VCP (dilution
1:5000; Pierce; MA3-004), mono- and polyubiquitylated
proteins (dilution 1:1000; Enzo, Farmingdale, NY; FK2),
glyceraldehyde-3-phosphate dehydrogenase (dilution 1:5000;
Santa Cruz Biotechnology; FL-335), or tubulin (dilution
1:25,000; Sigma-Aldrich; B-5-1-2) in Odyssey blocking
solution þ 0.2% Tween-20 at 4�C. After washes with TBS þ
0.1% Tween-20, membranes were incubated for 1 to 2 hours
with the corresponding secondary antibody at a dilution of
1:20,000 (IRDye; LI-COR Biosciences) in TBS þ 5% nonfat
milk þ 0.2% Tween-20 þ 0.01% SDS. Blots were scanned
in an Odyssey infrared imager (LI-COR Biosciences). Image
Studio software version 5.0 (LI-COR Biosciences) was used
for blot analysis. Protein levels were normalized to glycer-
aldehyde-3-phosphate dehydrogenase or tubulin levels.
1626
Statistical Analysis

Comparisons between multiple groups used factorial anal-
ysis of variance, followed by Fisher post hoc tests. P � 0.05
was considered significant.

Results

Temporal Resolution of Stress Granules Containing
Phosphorylated TDP-43 and Ubiquitin after Acute
Arsenite Exposure in C2C12 Cells

C2C12 cells were acutely exposed to the oxidative stress
inducer arsenite for 60 minutes at subtoxic concentration of
200 mmol/L. We then monitored changes in cellular stress
responses represented by the formation and resolution of
stress granules. Stress granules were identified by staining
with TiA-1, an RNA binding protein presented in stress
granules.23 We observed that acute exposure to arsenite
significantly triggered the formation of stress granules in
most cells (71%). Stress response gradually resolved during
the time after arsenite exposure, resulting in only 24% of the
cells showing TiA1þ stress granules at 60 minutes after
arsenite exposure (Supplemental Figure S1A).
We also examined whether TDP-43 and phosphorylated

TDP-43 were incorporated and aggregated in these stress
granules, because aberrant cytoplasmic inclusions of TDP-43
are commonly observed in skeletal muscle tissue of IBMPFD
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Mutant VCP Dysregulates Stress Response
and IBMpatients.7,8 In addition, TDP-43was shown to play an
important role in assembly and maintenance of stress gran-
ules.24,25 In the acute arsenite exposure, we detected both
TDP-43 and phosphorylated TDP-43 (ser409/410) foci that
significantly colocalized with TiA-1þ stress granules in the
cytoplasm of C2C12 cells (Supplemental Figure S1, BeD).
TiA-1þ stress granules also contained ubiquitin (Supplemental
Figure S1, B and E) and, to a lesser extent, LC3 and LAMP2,
the autophagosome- and lysosome-associated proteins,
respectively (Supplemental Figure S1, B, FeG). However,
no colocalization was found between VCP and TDP-43þ

stress granules after the acute arsenite exposure in C2C12
cells (Supplemental Figure S1H).

Stress granule formation is commonly initiated by phos-
phorylation of eIF2a in response to different stressor stimuli.
Phosphorylation of eIF2a inhibits general translation and
promotes binding of mRNAs and nucleating RNA binding
proteins such as TiA-1.26,27 We analyzed cytoplasmic frac-
tions of arsenite-exposed C2C12 cells by immunoblot and
found that arsenite induced phosphorylation of eIF2a, but total
eIF2a cytoplasmic levels remained unchanged (Figure 1, A
and B). Increased levels of G3BP, another common compo-
nent of stress granules, were also observed immediately after
arsenite exposure in cytoplasmic fractions (Figure 1C).
Consistent with our TiA-1 observations, G3BP returned to
basal levels within 1 hour after the exposure (Figure 1C).
DMSO MHY1485Untreated Leupeptin

D
A
P
I

Ti
A
-1

M
er
ge G
ra
nu
le
s
po
si
tiv
e
ce
lls
(%
)

0

20

40

Untrea

60

G3BP

U
nt
re
at
ed

D
M
S
O
0.
3%

M
H
Y
14
85

Polyubiquitin
FK2

Tubulin

Le
up
ep
tin

0
0.5
1

1.5
2

2.5
3

3.5

R
at
io
to
un
tre
at
ed

Untrea

A B

D E

Figure 2 Autophagy and lysosome inhibitors delay stress granule resolution af
or lysosome (20 mmol/L leupeptin) inhibitors present more stress granules than
arsenite exposure. Arrowheads indicate stress granules. B: Quantification of pane
the absence of arsenite exposure. D: Similarly, cells analyzed by immunoblot 1 ho
stress granule marker G3BP and polyubiquitylated proteins. E and F: Quantificatio
**P < 0.01, ***P < 0.001 versus untreated; yP < 0.05, yyyP < 0.001 versus 0.3% D
and polyubiquitylated proteins antibody; G3BP, RasGAP SH3-binding protein; TiA

The American Journal of Pathology - ajp.amjpathol.org
On arsenite-exposed cells, we also identified increased
cytoplasmic levels of ubiquitin (Figure 1D), together with up-
regulation of the specific LC3 isoform recruited in autopha-
gosomes (LC3-II) (Figure 1E). However, we failed to detect
changes on cytoplasmic TDP-43 protein levels, suggesting
redistribution of available cytoplasmic TDP-43 into stress
granules on arsenite exposure (Figure 1F). In addition,
cytoplasmic levels of VCP were similar in all conditions
(Figure 1G). Representative images of the blots are shown in
Figure 1H. Overall, these results indicate that exposure of 200
mmol/L arsenite for 1 hour reliably induced strong stress
granule formation in C2C12 cells. Stress response was
resolved for the most part within 60 minutes, including
phosphorylation of eIF2a and formation of stress granules
positive for phosphorylated TDP-43 (ser409/410), and ubiq-
uitylated proteins, LC3 and LAMP2. The latter two proteins
are members of autophagosomes and lysosomes, respectively,
suggesting resolution of arsenite-induced stress granules
through autophagy.

To provide evidence that on C2C12 cells stress granules
are cleared through autophagy, we incubated cells either for
3 hours with 12 mmol/L MHY-1485, an mTOR activator
that potently inhibits autophagy by suppression of fusion
between autophagosomes and lysosomes,28 or for 24 hours
with 20 mmol/L leupeptin, a protease inhibitor that severely
impairs lysosomal function. Cells exposed to arsenite and
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Figure 3 IBMPFD-relevant VCP mutants delay stress granule resolution after arsenite exposure in C2C12 cells. A: Cells expressing VCP(R155H) or
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allowed to recover for 1 hour presented a significant larger
number of cytoplasmic TiA-1þ stress granules when
treated with MHY-1485 or leupeptin period (Figure 2, A
and B) compared with untreated and dimethyl sulfoxide
groups (untreated Z 28%; dimethyl sulfoxide Z 23%;
MHY1485 Z 55%; leupeptin Z 49%); supporting the fact
that the autophagy/lysosome pathway plays an important
role in stress granule resolution on C2C12 cells. Consistently,
immunoblot analysis found G3BP and polyubiquitylated
protein level increments on the MHY-1485e and leupeptin-
treated lysates of cells allowed to recuperate for 60 minutes
after arsenite treatment (Figure 2, DeF). Importantly, MHY-
1485 or leupeptin incubation without arsenite treatment did
not induce a stress response, and no stress granules were
detected (Figure 2C).

IBMPFD-Relevant VCP Mutants Impair the Resolution
of Arsenite-Induced Stress Granules in
Undifferentiated and Differentiated C2C12 Cells

To determine whether mutations in VCP significantly affect
cellular stress response, we transiently transfected C2C12
1628
cells with one of the following constructs: human VCP(wt),
VCP(R155H), or VCP(A232E) fused to dsRED and moni-
tored the formation and resolution of stress granules after
acute arsenite exposure. We found a small, but significant
increase of stress granule-positive cells because of trans-
fection on cells with no arsenite exposure [no transfected
(noT) Z 3%; VCP(wt) Z 8%; VCP(R155H) Z 8%;
VCP(A232E) Z 6%] (Figure 3A). However, no significant
effects were observed among the different transfection
conditions immediately after the 60 minutes of arsenite
incubation (Figure 3A). Importantly, we found that
mutant VCP-transfected cells failed to resolve significant
numbers of stress granules even 60 minutes after exposure
[noT Z 15%; VCP(wt) Z 24%; VCP(R155H) Z 43%;
VCP(A232E) Z 48%] (Figure 3, A and E), indicating that
VCP is involved in the clearance of stress granules, and
that mutations on VCP impair this process, causing an
abnormally prolonged cellular stress response. Similarly,
significant number of cytoplasmic stress granules positive
for G3BP (Figure 3, B and F), phosphorylated TDP-43
(ser409/410) (Figure 3, C and G), and total TDP-43
(Figure 3, D and H) were observed on cells transfected
ajp.amjpathol.org - The American Journal of Pathology
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Mutant VCP Dysregulates Stress Response
with mutant VCP compared with noT and VCP(wt) groups
that had a 60-minute recovery period after arsenite
exposure.

In addition, impaired stress granule resolution was
observed on differentiated C2C12 cells transfected with
mutant VCP. Cells incubated on horse serum for 5 days
expressed myosin and showed dsREDþ expression when
transfected (Figure 4A). Differentiated C2C12 cells that ex-
press mutant VCP presented significantly more TiA-1þ stress
granules than noT and VCP(wt) expressing cells when
incubated with arsenite and allowed to recover for 60 minutes
[noT Z 17%; VCP(wt) Z 33%; VCP(R155H) Z 78%;
VCP(A232E) Z 79%] (Figure 4, B and C). All together,
these findings indicate that mutant VCP impaired oxidative
stress response by hindering stress granule resolution.

IBMPFD-Relevant VCP Mutants Do Not Impair the
Resolution of Heat ShockeInduced Cellular Stress
Response in C2C12 Cells

We next examined whether mutant VCP also impaired the
resolution of stress granules with the use of a different type
of exogenous cellular stress. Heat shock is one of the best
characterized cellular stressors and produces stress granules
in a wide variety of cells.23 We, therefore, incubated C2C12
cells at 42�C for 30 minutes to induce heat shock, and we
observed cytoplasmic stress granules in 99% of the cells.
The number of cytoplasmic TiA-1þ puncta decreased by
51% at 30 minutes of recovery, by 70% at 1 hour of re-
covery, and by 75% at 2 hours of recovery (Supplemental
Figure S2A). Similar to arsenite-induced granules, heat
shockeinduced stress granules were positive for TDP-43
(Supplemental Figure S2, B and C), phosphorylated TDP-43
(ser409/410) (Supplemental Figure S2, B and D), ubiquitin
(Supplemental Figure S2, B and E), and the autophago-
some- and lysosome-associated proteins, LC3 and LAMP2
(Supplemental Figure S2, B, FeH) but negative for VCP
(Supplemental Figure S2H).

We then transfected C2C12 cells with human VCP(wt),
VCP(R155H), or VCP(A232E) fused to dsRED and quan-
titatively examined cytoplasmic stress granules on untreated
cells, cells incubated for 30 minutes at 42�C, and cells that
recovered for 30 minutes after 42�C incubation (Figure 5A).
We did not find significant effects among the different
transfection conditions on untreated cells or immediately
after 42�C incubation (Figure 5A). Surprisingly, we did not
observe any significant delay either in resolving the heat
shockeinduced cellular stress responses between wt and
mutant VCP-transfected C2C12 cells (Figure 5, A and B).
The number of cytoplasmic TiA-1þ puncta was 33% for wt,
35% for R155H, and 32% for A232E at 30 minutes of
recovery (Figure 5A). These findings suggest that stress
granules produced by different kinds of stressors are not
resolved by exactly the same mechanisms and that, at least
on C2C12 cells, VCP may be dispensable for the clearance
of stress granules produced by some cellular insults.
The American Journal of Pathology - ajp.amjpathol.org 1629
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The VCPR155H-KI Mouse Model Shows Elevated
Oxidative Stress but Not Increments on the
Steady-State Levels of Stress Granule Markers

In 2010, Kimonis and colleagues29 generated a KI mouse
model of IBMPFD, which expresses a disease-relevant VCP
mutation (R155H) in physiologically relevant levels. This
model presents muscle, bone, and brain pathologic char-
acteristics similar to VCP-associated disease in patients.5

For muscle pathology, the VCPR155H-KI mouse develops
significant progressive muscle weakness and shows
increased cytoplasmic ubiquitin deposits and autophagy
1630
dysregulation.30 Autophagy is a process that helps to
deal with cellular stress and plays an important role in
quality control functions.29 Therefore, with the use of the
VCPR155H-KI mouse as a model, we explored whether
mutant VCP leads to elevated levels of cellular stress
and alterations on the stress granule pathway. Consistent
with previous reports,29 we observed that aged (15- to
18-month-old) heterozygous VCPR155H-KI mice showed
significant increments of ubiquitinylated proteins on skel-
etal muscle compared with age-matched wt littermates
(Figure 6A). We also analyzed the basal levels of oxidated
proteins and found that skeletal muscle of VCPR155H-KI
mice present increased amounts compared with wt muscle
samples (Figure 6B). These findings indicate that skeletal
muscle from VPCR155H-KI mice exhibit chronic cellular
and oxidative stress. We then addressed whether steady-
state levels of the stress granule pathway were altered
in the VCPR155H-KI mouse. Despite showing increased
oxidative stress, we did not observe differences on the
levels of the stress granule markers G3BP, phosphorylated
eIF2a, or poly(A)-binding protein 1 on VCPR155H-KI mice
muscle (Figure 6, CeG). Furthermore, hematoxylin and
eosin staining revealed no major histologic differences
between genotypes (Figure 6I). Finally, TDP-43 and the
stress granule markers G3BP and TiA-1 showed similar
staining on wt and VCPR155H-KI skeletal muscle by
immunofluorescence (Figure 6, JeL). Specifically, TiA-1þ

and TDP-43þ signal was predominantly detected together
with DAPI, indicating major nuclear localization of these
two proteins (Figure 6H). Together, these results suggest
that cumulative oxidative stress produced by aging may
not be a sufficient condition to trigger the delayed reso-
lution of the stress granule response, but additional cellular
stress, possibly from exogenous origin (eg, arsenite
exposure), may be required to exhibit pathologic dysre-
gulation of the stress granule pathway caused by mutant
VCP on muscle tissue.
Discussion

One of the physiologic functions of VCP is to alleviate
cellular stress.10 In this study, we transiently transfected
myoblast C2C12 cells with mutant VCP and observed
slower clearance of TiA-1þ stress granules after arsenite
exposure. Similarly, immunofluorescence staining for
G3BP, total TDP-43, and phosphorylated TDP-43 showed
delayed resolution of stress granules on oxidative stress.
Our findings indicate that IBMPFD-relevant VCP muta-
tions impair the resolution of acutely induced oxidative
cellular stress. This is important because skeletal muscle
cells are frequently exposed to diverse endogenous or
exogenous kinds of stress and require effective mecha-
nisms to cope with these insults. Attenuated tolerance
to oxidative stress may, therefore, result in muscle
degeneration.
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 Oxidative stress but not stress granule markers are increased in the IBMPFD model: the VCPR155H-KI mouse. A: Immunoblot analysis of skeletal
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Mutant VCP Dysregulates Stress Response
The connection between stress granules and degenerative
diseases that present protein aggregates has become
increasingly clear.27 TDP-43 is an example of a RNAbinding
protein, whose mutations lead to cytoplasmic protein in-
clusions and neurodegeneration. Pathologic TDP-43 accu-
mulates as insoluble aggregates in neurons and/or glia of
patients with frontotemporal lobar degeneration, ALS, and
IBMPFD.9,29,31e33 TDP-43 aggregates are also developed in
the cytosol of skeletal muscle fibers in IBM and IBMPFD.7,8

However, under physiologic conditions, TDP-43, like other
RNA binding proteins, aggregates in the reversible and
highly regulated process that gives rise to stress gran-
ules.25,34,35 Specifically, it is involved in maturation of stress
The American Journal of Pathology - ajp.amjpathol.org
granules that contain G3BP, and was shown to colocalize
with stress granules that contain TiA-1 or ubiquitin.24,25,35e37

In animal models, ALS-relevant TDP-43 mutations were
reported to produce larger stress granules than wt TDP-
43,37,38 consistent with an altered stress response. Here, we
observed that cellular stress produces TDP-43 recruitment to
stress granules in C2C12 cells. Mutant VCP keeps TDP-43
within stress granules for abnormal periods of time, and
this could favor pathologic TDP-43 aggregation. Consis-
tently, it has been shown that TDP-43 accumulation in stress
granules can progress to stable cytosolic aggregates.39

Pathologic TDP-43 inclusions are ubiquitylated and
phosphorylated.31 In particular, phosphorylation of S409/
1631
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410 of TDP-43 is commonly observed in frontotemporal
lobar degeneration and ALS, among other neurodegener-
ative diseases.40 Phosphorylated TDP43 was shown to be
more resistant to degradation by the ubiquitin-proteasome
system than its not phosphorylated counterpart,41 and
TDP43 phosphorylation is tightly correlated with its ag-
gregation.42 Therefore, it has been suggested that phos-
phorylation is an early pathologic event that contributes to
TDP-43 buildup.42 However, we observed this particular
site of TDP-43 to be phosphorylated and recruited to stress
granules on cellular stress, indicating that S409/410
phosphorylation has a relevant functional role in stress
granule dynamics.

Intracellular protein degradation happens mainly through
the ubiquitin-proteasome system and the autophagosome/
lysosome pathway. In both these cellular processes, VCP
plays a central role by binding either directly or through
partners to ubiquitylated proteins to sort them to one of
these cellular compartments.11,43 Accordingly, IBMPFD-
relevant VCP mutations alter both these pathways.44

Particularly, mutant VCP isoforms were reported to dysre-
gulate proteasome activity and induce apoptosis.45,46 In
addition, it was shown that mutant VCP produces disruption
of autophagosome-lysosome fusion in muscle tissue.6

Moreover, primary myoblasts of IBMPFD patients revealed
accumulation of LC3-II, suggesting dysregulation of auto-
phagy.29,47 Similarly, increased protein levels of LC3-II
and p62 were reported in transgenic mice that expressed
VCP(R155H).29,44

Stress granule formation is a highly regulated process that
starts with translocation of nucleating RNA binding proteins
from the nucleus to the cytoplasm where they encounter
and bind mRNAs.13 Stress granules are initially small
but rapidly recruit many more mRNAs and RNA binding
proteins to generate mature stress granules. RNA binding
proteins not only interact with RNA but with each other
through glycine-rich domains and are therefore susceptible
to aggregation.26 Stress response is resolved by dissolution
of stress granules and reinitiation of RNA translation once
stress is removed.23,26,27 Here, we observed that mutant
VCP delays stress granule resolution. Thisfinding is consistent
with reports that suggest VCP participation in clearance
of stress granules.14,15 Recently, it was reported that autophagy
or lysosome orVCP inhibition produces impairments on either
stress granule resolution or composition.14,15 These observa-
tions led to the proposal that autophagy underlies VCP-
mediated stress granule clearance,14,15 and that this process
may depend on ubiquitin tagging. Consistent with this idea,
stress granules are heavily ubiquitylated complexes,48 and
inhibition of ubiquitin-proteasome system induces stress
granule formation.49 Consistently, Tresse et al.12 reported that
VCP is essential for autophagy-mediated degradation of
ubiquitylated substrates and that this function is disrupted on
IBMPFD-relevant VCP mutations.

Although several key processes altered by IBMPFD-
relevant mutations were identified, the exact pathogenic
1632
mechanisms that lead to disease remain unclear. Our results
strengthen the hypothesis that mutations on VCP generate
dysregulation of the stress response by diminishing resolu-
tion of stress granules. Impaired ability to recovery from
cellular stress may result in chronic overactive response and
skeletal muscle degeneration.
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