
UC Irvine
UC Irvine Previously Published Works

Title
Real-time blood flow visualization using the graphics processing unit

Permalink
https://escholarship.org/uc/item/9d0360n7

Journal
Journal of Biomedical Optics, 16(1)

ISSN
1083-3668

Authors
Yang, Owen
Cuccia, David
Choi, Bernard

Publication Date
2011

DOI
10.1117/1.3528610

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9d0360n7
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Journal of Biomedical Optics 16(1), 016009 (January 2011)

Real-time blood flow visualization using the graphics
processing unit

Owen Yang,a,b David Cuccia,c and Bernard Choia,b
aUniversity of California, Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road, Irvine,
California 92612
bUniversity of California, Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine,
California 92697-2715
cModulated Imaging Inc., 1002 Health Sciences Road, Irvine California 92612

Abstract. Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a
reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells,
indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of
relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture
(CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written
in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a
monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA
code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ∼10 fps.
We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with
fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine
stain birthmark. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3528610]

Keywords: speckle interferometry; speckle; real-time imaging; image processing; digital imaging; digital processing.

Paper 10505R received Sep. 15, 2010; revised manuscript received Nov. 12, 2010; accepted for publication Nov. 22, 2010; published
online Jan. 28, 2011.

1 Introduction
Laser speckle imaging (LSI) is a noninvasive technique for
studying motion of optical scatterers (i.e., red blood cells) with
high spatial and temporal resolution. Fercher and Briers1 first
proposed a technique for the analysis of the time-integrated
speckle pattern, which results from the interaction of coherent
light and a scattering medium. An attractive feature of LSI is
its simplicity; the minimum requirements are a laser source,
imaging sensor, and a computer for image acquisition and post-
processing. Recently, LSI has found uses in monitoring blood
flow in the brain,2 retina,3 and skin.4, 5

Conversion of raw laser speckle images to speckle contrast
(SC) and speckle flow index (SFI) images is computationally
intensive and CPU-based algorithms are not well suited for real-
time processing of high-resolution images, let alone real-time
visualization of the postprocessed images. One of the reasons
for the slow processing times is that the architecture of modern
CPUs is optimized for execution of sequential code, with only
a fraction of CPU transistors dedicated to arithmetic operations.
On the other hand, graphical processing units (GPUs) are well
suited for executing mathematical computations on large data
sets in parallel, such as rendering graphics for display on a
monitor. In addition, multiple GPUs can be added to a system
and processing power will scale nearly proportionally.

To exploit the parallel processing power of GPUs for gen-
eral purpose computing on GPUs, we used NVIDIA’s Compute
Unified Device Architecture (CUDA). CUDA allows users with

Address all correspondence to: Owen Yang, Beckman Laser Institute and Med-
ical Clinic, University of California, Irvine, 1002 Health Sciences Rd., Irvine,
CA 92612. Tel: 949-824-3054; Fax: 949-824-6969; E-mail: yango@uci.edu

programming knowledge of high-level languages, such as C,
to take control of the many stream processors of a GPU using
the supplied CUDA C extensions.6 Recently, Liu et al.7 utilized
CUDA to process laser speckle images and were able to ob-
tain a significant speed-up in processing times. However, the
algorithms implemented to do so were not clearly defined and
a comparison to a fast and efficient CPU algorithm was not
addressed. Here, we describe the GPU algorithm in detail and
compare the results to an efficient CPU algorithm. In addition,
we describe integration of our GPU-based solution with LSI
hardware to achieve a complete, real-time blood flow imaging
instrument. To enable end users to integrate our GPU-based
approach, the CUDA C source code (Appendix A), “Roll” Al-
gorithm C source code (Appendix B), and LabVIEW real-time
demonstration software are available for download from our
laboratory’s website: http://choi.bli.uci.edu.

2 Materials and Methods
In this section, we describe our LSI instrument, the algorithms
used to integrate GPU processing into the setup, and visualiza-
tion of processed images.

2.1 LSI Setup
Figure 1 shows the setup for our real-time LSI system. The
laser used for our experimental setup was a continuous-wave
HeNe laser (λ = 633 nm, 30 nm, 30 mW; Edmund Industrial
Optics, Barrington, New Jersey). Laser light was delivered to

1083-3668/2011/16(1)/016009/14/$25.00 C© 2011 SPIE

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-1

mailto: yango@uci.edu

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

Fig. 1 Schematic of a typical LSI setup consisting of the (a) acquisition
stage (He-Ne 633-nm laser, optical fiber, glass diffuser, CCD camera)
and (b) processing/display stage (PC and monitor).

the target with an optical fiber and diverged with a ground-glass
diffuser (Thorlabs, Newton, New Jersey). Reflected speckle pat-
terns were imaged with a 12-bit, thermoelectrically cooled CCD
Camera (RetigaEXi or Retiga 2000R, QImaging, Burnaby, BC,
Canada) with a resolution of 1392 (W)×1040 (H) (Retiga EXi)
or 1600 (W)×1200 (H) (Retiga 2000R) pixels and a close-focus
zoom lens (18–108 mm, f/2.5-close, Edmund Optics, model
no. 52–274, Barrington, New Jersey). Images were transferred
to the personal computer (PC) in real time via the FireWire 400
interface at a frame rate of ∼9.7 fps (RetigaEXi) or 8.3 fps
(Retiga 2000R). The PC was running an Intel Core 2 4300
running at 1.80 Ghz, 1 GB DDR2 RAM, and Windows XP Pro-
fessional with Service Pack 3. To process and render the SC and
SFI images, we developed software in Microsoft Visual Studio
2005 and LabVIEW 8.6 (National Instruments, Austin, Texas).
The graphics card used for image processing was the GeForce
8800GTS made by EVGA, which included the NVIDIA G80
GPU and 640MB of GDDR3 RAM. The performance specifi-
cations included a core clock of 500 MHz, memory clock of
800 MHz, shader clock of 1200 MHz, 12 stream multiproces-
sors, and 96 stream processors (eight per multiprocessor).

2.2 Algorithms to Process LSI Data
To quantify the blurring effect associated with moving particles
in raw laser speckle images, the local spatial SC is computed for
each pixel using the sliding-window technique (where ω is the
radius of the window, usually ω = 2 or ω = 3) and the following:

K = σ

〈I 〉 =

√
[1/(N − 1)]

N∑
i=1

(Ii − 〈I 〉)2

〈I 〉

=

√
[1/(N − 1)]

(
N∑

i=1
I 2
i

)
− N 〈I 〉2

〈I 〉 , (1)

where σ is the local standard deviation, 〈I〉 the local mean within
the sliding window, N is (ω + 1 + ω)2, and Ii is the intensity
of pixel i within the sliding window. The last formula contains a
simpler form of standard deviation using sum of squares that is
used for more efficient processing. For computing edge pixels,
the values outside of the actual image are assumed to be zero,
resulting in suspect calculations of K at these pixels.

In brief, to relate SC to actual flow rates, the speckle correla-
tion time τ must first be determined. We employed the simpli-
fied speckle imaging equation by Ramirez-San-Juan et al.8 and
Cheng and Duong:9

τ = 2TK 2, (2)

where T is the exposure time. Assuming 1/τ to be proportional
to the degree of blood flow, we calculated relative flow values,
or SFI values, using the following:

SFI = 1

τ
= 1

2TK 2
. (3)

2.3 LSI Algorithm Implementation in CUDA
The motivation for using a GPU for this application is its mas-
sively parallel architecture, which can be efficiently exploited
to compute SC and SFI values much faster than the CPU alone.
A raw speckle image is divided into a grid of blocks, called
thread blocks, which are processed concurrently by the stream
multiprocessors until all blocks are in use. Each multiproces-
sor has eight stream processors and limited, but extremely fast,
on-chip shared memory to be used in the processing of the data
in each thread block. To handle the concurrent execution of
same command for each thread, NVIDIA uses a new architec-
ture based on single-instruction, multiple-thread that handles the
vast number of thread programs in parallel. For this particular
application, each thread in the thread block executes identical
instructions (called the kernel) for each pixel. Optics-related ap-
plications of GPU technology include holography,10, 11 real-time
shape measurements,12 atmospheric turbulence,13 and Monte
Carlo modeling of light transport.14, 15 An excellent description
of GPUs is provided in Ref. 16.

Figure 2 depicts a comparison of CPU and GPU methods
to convert a single raw speckle image (e.g., 1392×1040) into
SC and SFI images. After the main (host) memory has been
allocated, the first step for processing raw speckle images on the
GPU is to allocate global memory on the graphics card using
the cudaMalloc() function. The raw speckle image, SC, and SFI
images are both preallocated, along with intermediate tempo-
rary matrices. The raw speckle image is then transferred from
host memory to GPU memory using the cudaMemcpy() that
was preallocated in the previous step. Next, a grid of thread
blocks and number of threads per block must be defined, us-
ing the dim3 class, prior to execution of the kernel. Once these
variables are defined, the kernel(s) (explained in detail later)
can be executed. The SC and SFI images are then moved from
GPU memory to host memory using the cudaMemcpy() func-
tion. Finally, GPU memory is deallocated using the cudaFree()
function.

The conversion from raw speckle images to SC and SFI im-
ages consists of two separate kernels (C source code is shown

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-2

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

Fig. 2 Flowchart of the differences between utilizing a CPU versus a GPU in converting a single raw image into SC/SFI images. The processing
times of individual steps are highlighted in red for an image pixel resolution of 1392×1040. The processing steps and times enclosed in brackets are
repeated in real-time software.

in Appendix A), which collectively mimic the separable con-
volution method for filters and computes the sum of squares
for the standard deviation calculations in Eq. (1) using the least
amount of computational resources. The first kernel commences
by moving data from global GPU memory to the allocated shared
memory and then calculates the sum of the row within the slid-
ing window in which the pixel of interest resides (Fig. 3 depicts
a ω = 2 sliding-window example). The second kernel similarly
initializes shared memory then computes the sum of the afore-
mentioned summed rows to compute squared sums and mean
intensity of the sliding window, with minimal numerical calcu-
lations (Fig. 4). The second kernel continues by computing the

Fig. 3 First of two kernels executed on the GPU to convert raw images
into SC/SFI images. A raw image is separated into smaller thread blocks
to be executed by the multiprocessors on the GPU. The individual
threads compute the sum of a (ω + 1 + ω) width strip in preparation
for mean and standard deviation calculations [see Eq. (1)].

sample standard deviation in the numerator of Eq. (1). After the
SC has been computed for each pixel, a quick calculation using
Eq. (3) results in an SFI map.

2.4 Real-Time LabVIEW LSI Visualization
with GPU Integration

Because of the relative ease of interfacing our QImaging
camera with the computer and displaying both raw and pro-
cessed images, LabVIEW was employed as the visualization
platform for our GPU code. To integrate the LSI CUDA C
code into LabVIEW, three C wrapper functions are written:
LSIonGPU_init(), to initialize the memory on the graphics card,
LSIonGPU_process(), to transfer the raw speckle image into
GPU space, execute both kernels, and transfer the SC and SFI
images back to the host, and lastly LSIonGPU_term() to deallo-
cate GPU memory so that it can be used for other purposes. The
entire C project is compiled as a dynamic link library (DLL) so
that the functions can be called from LabVIEW.

For maximum performance, LabVIEW code is written with
two main while loops, one for image acquisition from the at-
tached camera and another for image processing, which are
executed simultaneously (Fig. 5). The purpose for this approach
is to enable simultaneous acquisition and processing of images
(executed in parallel on a dual-core machine), thus maximizing
the frame rate of the system. For this approach to perform prop-
erly, a ring buffer must be employed. A ring buffer allocates
sufficient memory such that multiple raw images can fit within
it. As a new image is acquired, it fills the next space within the
buffer and when it reaches the end, it loops around and replaces
the first slot, then second, etc. This method aids in ensuring
that the processing while loop has enough time to process the

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-3

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

Fig. 4 Second of two kernels executed on the GPU to convert raw images into SC/SFI images. The strip sums calculated in Kernel 1 are summed
in the vertical direction and used to calculate the mean and standard deviation of the sliding window for every pixel in the image. The SC and SFI
images are subsequently computed.

data before being replaced by freshly acquired images from the
camera.

Another important feature in the design of this program is
the use of the queue buffer feature in LabVIEW. A queue buffer
allows the transfer of data between different parts of a block
diagram—in this case, the two while loops. As soon as an image

Fig. 5 LabVIEW pseudocode used to acquire and process data from
the camera. Two for loops are employed such that images can be
processed while newer images are acquired. An image ring buffer is
used to store multiple images in memory and the queue buffer is used
to pass information between the two for loops.

is acquired from the camera and placed into the ring buffer, an
element is enqueued into the queue buffer with a reference to the
location in which the image was placed. As soon as an element is
within the queue buffer, the processing while loop will dequeue
the foremost element and can immediately begin processing the
dequeued data. These two features in combination allow imme-
diate processing of raw speckle images without the downtime of
waiting for processing to finish before a new image is acquired
from the camera. As long as the processing time is shorter than
the image acquisition time, the proposed algorithm can execute
indefinitely.

3 Results
This section discusses the results of integrating the GPU into the
laser speckle image processing model. As a proof of concept,
video demonstrations utilizing the custom LabVIEW program
are shown.

3.1 LSI on CPU versus GPU C Performance
Benchmarking

To make a proper comparison between the performances of a
CPU versus a GPU, an efficient CPU algorithm was imple-
mented beforehand. Tom et al.17 devised an algorithm named
the “Roll” algorithm to convert raw speckle images into SC im-
ages. The algorithm takes the rolling sums of rows and columns
and subtracts the new row/column to minimize the number of

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-4

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

Fig. 6 Graph of processing times for various image sizes (i.e., number
of pixels).

calculations needed to compute the standard deviation of the
sliding window. We integrated their algorithm in customized
C code and performed benchmarking experiments (C source
code is shown in Appendix B).

The timer used to measure system performance for both CPU
and GPU algorithms was the built-in timer function in CUDA.
Both the CPU and GPU method used a 5×5 sliding-window
filter and was performed on randomly generated images gener-
ated in C using the rand() function. The results for processing a
single image at various image resolutions are displayed in Fig. 6
and compiled in Table 1. For CPU algorithm benchmarking, we
exclude the time it takes to allocate free memory due to the fact
that the our LabVIEW code only allocates/deallocates memory
one time after the program has started, thus making the associ-
ated memory management time irrelevant in real-time execution
of our code. Similarly, the GPU benchmarking values exclude
the time it takes to allocate and deallocate memory on the GPU
in addition to the host memory deallocation/allocation times due
to the fact that these processes are only performed once during
run time. It is important to note that the GPU algorithm times
only include the time it takes to transfer the raw image onto the
GPU, execute both kernels, and transfer the processed image
back to main memory. The normalized errors [(LSI_CPU –
LSI_GPU)/(LSI_CPU)] were computed for all pairs of im-
ages and found to be negligible, with errors on the order
of 10− 7.

3.2 Real-Time LabVIEW Performance
With the setup described in Fig. 1, the LabVIEW software is
evaluated with a single raw image (1392×1040) being processed
with the GPU and visualized with the built-in Intensity Graph.
The maximum frame rate is ∼15 fps, which is sufficient to dis-
play the real-time LSI images because the maximum frame rate
of our camera is ∼10 fps (RetigaEXi). As such, the program can
run indefinitely without memory conflicts because the process-
ing and display times are less than the time between collection
of successive raw speckle images. In addition, as GPUs gain fast
clock speeds, more processing cores, and faster RAM, the gap
will widen further.

Table 1 CPU versus GPU processing times for various image sizes.

LSI processing times for various image sizes (5×5 window)

Resolution CPU GPU
(W×H) Pixels (ms) (ms) Speed-up

320×240 76,800 6.8 1.5 4.6×

480×320 153,600 13.5 2.8 4.9×

640×480 307,200 38.0 5.3 7.2×

800×600 480,000 59.8 7.2 8.3×

1024×768 786,432 69.8 10.9 6.4×

1000×1000 1,000,000 124.1 15.8 7.9×

1280×1024 1,310,720 116.7 17.3 6.7×

1200×1200 1,440,000 129.2 18.7 6.9×

1392×1040 1,447,680 130.2 18.8 6.9×

1600×1200 1,920,000 171.8 24.4 7.1×

1400×1400 1,960,000 176.4 28.8 6.1×

1600×1600 2,560,000 228.4 32.1 7.1×

1920×1440 2,764,800 246.8 34.4 7.2×

2048×1536 3,145,728 280.3 39.0 7.2×

1560×1600 4,096,000 365.5 50.5 7.2×

3072×2048 6,291,456 562.2 76.9 7.3×

3872×2592 10,036,224 897.6 120.4 7.5×

4000×4000 16,000,000 1431.7 192.1 7.5×

3.2.1 Real-time LabVIEW video demonstration
1—reactive hyperemia

This section contains videos of the fully functional LabVIEW
software described in Section 2.3. The videos are acquired with
a simple screen capture utility that captures the entire LabVIEW
window frame. Videos are taken with ambient lighting off and
exposure time set to 10 ms. Please note that the video-capture
software in conjunction with a relatively high overhead program,
such as LabVIEW, slightly reduces the image-processing speed
of the system by ∼1 fps.

The first demonstration consists of viewing real-time SFI
images displayed in LabVIEW’s built-in Intensity Graph of a
reactive hyperemia experiment of theinner hand (Video 1). A
pressure cuff was placed over the upper arm of a subject (IRB
Protocol no. 2004-3626). The palm side of the subject’s hand
was imaged for 3 min without any applied pressure. The cuff
was inflated to 220 mm Hg for 3 min, after which the applied
pressure was abruptly released. Video 1 shows real-time SFI
images collected during the ∼20 s before the pressure cuff was
released and the ensuing ∼20 s after release. Immediately after

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-5

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

Video 1 Single-frame excerpt from LabVIEW real-time LSI demonstration of reactive hyperemia experiment (MPEG, 3 MB)
[URL: http://dx.doi.org/10.1117/1.3528610.1]

Video 2 Single-frame excerpt from LabVIEW real-time LSI demonstration of ordered fluid flow (MPEG, 3 MB).
[URL: http://dx.doi.org/10.1117/1.3528610.2]

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-6

http://dx.doi.org/10.1117/1.3528610.1
http://dx.doi.org/10.1117/1.3528610.1
http://dx.doi.org/10.1117/1.3528610.2
http://dx.doi.org/10.1117/1.3528610.2

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

Video 3 Single-frame excerpt from LabVIEW real-time LSI demonstration of PWS therapy (MPEG, 7 MB).
[URL: http://dx.doi.org/10.1117/1.3528610.3]

release of the pressure cuff, a typical hyperemic response was
observed, with a large-scale influx of blood into the hand.

3.2.2 Real-time LabVIEW video demonstration
2—ordered flow in phantom

The second real-time demonstration involves use of the same
instrument and software to image, in real-time, ordered fluid
flow (Video 2). A simple ordered-flow phantom was created
by attaching plastic tubing to a piece of cardboard. The video
depicts manually controlled injection of a scattering fluid (20%
Intralipid) into the tube with a syringe, followed by manual
retraction of the fluid halfway through the video. The position
of the leading edge of the fluid moving through the tube can
be visualized with high temporal resolution, limited in this case
only by the maximum frame rate (∼10 fps) of the camera.

3.2.3 Real-time LabVIEW video demonstration
3—intraoperative LSI during port wine
stain therapy

Port wine stain (PWS) birthmarks are vascular malformations
characterized by ectatic blood vessels in the dermis of the skin.18

PWS therapy involves the use of a laser to photocoagulate the
blood vessels using a wavelength with high oxy-hemoglobin
absorption [e.g., pulsed dye laser (PDL), 577 nm].19 The LSI
system (using the Retiga 2000R camera) was brought into the
operating room of the Surgery Laser Clinic adjoining Beckman
Laser Institute, and screen-capture video was recorded before,
during, and after PDL treatment of PWS. All imaging procedures
were approved by the Institutional Review Board at University
of California, Irvine (Video 3) depicts the changes in SFI values

in the skin of treated areas. The hand of the surgeon and PDL
handpiece are intermittently shown within the video footage.
The reduction in relative blood flow is immediately apparent
and visible for the surgeon to make an assessment of the degree
of photocoagulation of PWS vessels.

4 Conclusions
We have demonstrated a full implementation of real-time visual-
ization of blood flow, using the GPU as the main processing unit
and integrated the technology into a LabVIEW-based program.
The parallelized architecture of the GPU is able to process data
faster than the acquisition rate of our camera and results in our
system being limited by the bus speed of the camera. Thus, par-
allel acquisition and processing of data using the GPU allows for
an efficient method for real-time visualization of laser speckle
images.

Although the video demos presented here have a slight de-
crease in visualized frame per second, this is mainly due to the
processing overhead associated with LabVIEW. The algorithm
to process data is certainly capable of higher frame rates. This
system can also be modified with a higher-frame-rate camera
while still maintaining very high frame rates. For example, if a
1920 (W)×1440 (H) camera was used, the GPU-based system
can process data at ∼30 fps, whereas a CPU-only–based sys-
tem will result in ∼4 fps. In addition, the flexibility of CUDA
enables increased processing speed simply by integrating addi-
tional GPUs into the system.

We have also demonstrated the effectiveness of our system
by monitoring real-time LSI processed images (Video 3). The
relative changes in motion on a macroscopic scale can be visual-

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-7

http://dx.doi.org/10.1117/1.3528610.3
http://dx.doi.org/10.1117/1.3528610.3

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

ized for both bulk perfusion and ordered fluid flow. Additionally,
preliminary measurements with our real-time LSI system dur-
ing PWS treatment clearly show a reduction in blood flow, as

one would expect with PDL therapy. Therefore, we envision im-
mediate biomedical applications of such an instrument toward
image-guided surgery and physiological studies.

Appendix A
// =
// Kernel Code that is executed on GPU to convert Raw to SC/SFI
// Two kernels (rows and columns) execute sequentially
// =

// 24-bit multiplication is faster on G80,
// but we must be sure to multiply integers
// only within [-8M, 8M - 1] range
#define IMUL(a, b) __mul24(a, b)

#ifndef _SPECKLECONTRAST_H_
#define _SPECKLECONTRAST_H_

//
// Kernel configuration (constants for GPU calculations)
//
// Assuming ROW_TILE_W, KERNEL_RADIUS_ALIGNED and dataW
// are multiples of maximum coalescable read/write size,
// all global memory operations are coalesced in convolutionRowGPU5()
#define ROW_TILE_W 128
#define WINDOW_RADIUS_ALIGNED 16

// Assuming COLUMN_TILE_W and dataW are multiples
// of maximum coalescable read/write size, all global memory operations
// are coalesced in convolutionColumnGPU5()
#define COLUMN_TILE_W 16
#define COLUMN_TILE_H 48

//
// Loop unrolling templates, needed for best performance (5×5 window)
//
template<int i> __device__ int convolutionRowMeans5(int *data){

return data[2 - i] + convolutionRowMeans5<i - 1>(data);
}

template<> __device__ int convolutionRowMeans5<-1>(int *data){
return 0;

}

template<int i> __device__ int convolutionRowSquares5(int *data){
return data[2 - i] * data[2 - i] + convolutionRowSquares5<i - 1>(data);

}

template<> __device__ int convolutionRowSquares5<-1>(int *data){
return 0;

}
template<int i> __device__ int convolutionColumnFull5(int *data){

return data[(2 - i) * COLUMN_TILE_W] + convolutionColumnFull5<i - 1>(data);
}

template<> __device__ int convolutionColumnFull5<-1>(int *data){
return 0;

}

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-8

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

//
// Row convolution filter (5×5)
//
// dataW and dataH are the width and height of raw data, respectively
// d_Data, d_Means, d_Squares are preallocated device memory for the raw input,
// strip sums of mean buffer, and strip sums of squares buffer, respectively
// WINDOW_RADIUS is NOT current implemented, 5×5 window filter is hardcoded
__global__ void convolutionRowGPU5(

int *d_Data,
int *d_Means,

int *d_Squares,
int dataW,
int dataH,

int WINDOW_RADIUS
){

// Shared memory allocation
__shared__ int data[2 + ROW_TILE_W + 2];
// Current tile and apron limits, relative to row start
const int tileStart = IMUL(blockIdx.x, ROW_TILE_W);
const int tileEnd = tileStart + ROW_TILE_W - 1;
const int apronStart = tileStart - 2;
const int apronEnd = tileEnd + 2;

// Clamp tile and apron limits by image borders
const int tileEndClamped = min(tileEnd, dataW - 1);
const int apronStartClamped = max(apronStart, 0);
const int apronEndClamped = min(apronEnd, dataW - 1);

// Row start index in d_Data[]
const int rowStart = IMUL(blockIdx.y, dataW);

// Aligned apron start. Assuming dataW and ROW_TILE_W are multiples
// of half-warp size, rowStart + apronStartAligned is also a
// multiple of half-warp size, thus having proper alignment
// for coalesced d_Data[] read.
const int apronStartAligned = tileStart - WINDOW_RADIUS_ALIGNED;
// Current load postion (of this thread)
const int loadPos = apronStartAligned + threadIdx.x;
// Set the entire data cache contents
// Load global memory values, if indices are within the image borders,
// or initialize with zeroes otherwise
if(loadPos > = apronStart){

//shared memory postion
const int smemPos = loadPos - apronStart;

data[smemPos] =
((loadPos > = apronStartClamped) && (loadPos < = apronEndClamped)) ?
d_Data[rowStart + loadPos] : 0;

}
// Ensure the completeness of the loading stage
// because results, emitted by each thread depend on the data,
// loaded by another threads
__syncthreads();

// Current write position
const int writePos = tileStart + threadIdx.x;
// Assuming dataW and ROW_TILE_W are multiples of half-warp size,
// rowStart + tileStart is also a multiple of half-warp size,
// thus having proper alignment for coalesced d_Result[] write.

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-9

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

if(writePos < = tileEndClamped){
const int smemPos = writePos - apronStart;
int sumMeans = 0;
int sumSquares = 0;

// Loop unrolling section - computes rolling sums and square sums
// only uses unrolling templates (defined at begining) if defined
// if not defined, uses for loop
#ifdef UNROLL_INNER

sumMeans = convolutionRowMeans5<2 * 2>(data + smemPos);
sumSquares = convolutionRowSquares5<2 * 2>(data + smemPos);

#else
for(int k = -2; k < = 2; k+ +){

sumMeans + = data[smemPos + k];
sumSquares + = data[smemPos + k] * data[smemPos + k];
}

#endif
// Writes the strip sums to preallocated global memory

d_Means[rowStart + writePos] = sumMeans;
d_Squares[rowStart + writePos] = sumSquares;

}
}
//
// Column convolution filter + Speckle Contrast + Speckle Flow Index (5×5)
//
// dataW and dataH are the width and height of raw data, respectively
// d_MeansRow, d_SquaresRow are preallocated device memory for strip sums of
// mean and squares values obtained in the previous kernel, respectively
// d_MeansFull, d_SquaresFull are preallocated device memory for full sums of
// mean and squares values buffer, respectively
// d_SC, d_SFI are preallocated device memory for speckle contrast and speckle
// flow index values buffer, respectively
// expT is the exposure time of the raw images
// smemStride, gmemStride are the incremental position movement of the
// shared and globably memory processing positions, respectively
// WINDOW_RADIUS is NOT current implemented, 5×5 window filter is hardcoded
__global__ void convolutionColumnGPU5(

int *d_MeansRow,
int *d_SquaresRow,
int *d_MeansFull,
int *d_SquaresFull,
float *d_SC,
float *d_SFI,
int dataW,
int dataH,
int WINDOW_RADIUS,
float expT,
int smemStride,
int gmemStride

){
// Shared memory allocation
__shared__ int rowMeans[COLUMN_TILE_W * (2 + COLUMN_TILE_H + 2)];
__shared__ int rowSquares[COLUMN_TILE_W * (2 + COLUMN_TILE_H + 2)];
// Current tile and apron limits, in rows
const int tileStart = IMUL(blockIdx.y, COLUMN_TILE_H);
const int tileEnd = tileStart + COLUMN_TILE_H - 1;
const int apronStart = tileStart - 2;
const int apronEnd = tileEnd + 2;
// Clamp tile and apron limits by image borders
const int tileEndClamped = min(tileEnd, dataH - 1);

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-10

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

const int apronStartClamped = max(apronStart, 0);
const int apronEndClamped = min(apronEnd, dataH - 1);

// Current column index
const int columnStart = IMUL(blockIdx.x, COLUMN_TILE_W) + threadIdx.x;

const int num_WINDOW_ELEMENTS = IMUL(WINDOW_RADIUS+1+WINDOW_RADIUS,
WINDOW_RADIUS+1+WINDOW_RADIUS);

// Shared and global memory indices for current column
int smemPos = IMUL(threadIdx.y, COLUMN_TILE_W) + threadIdx.x;
int gmemPos = IMUL(apronStart + threadIdx.y, dataW) + columnStart;
// Cycle through the entire data cache
// Load global memory values, if indices are within the image borders,
// or initialize with zero otherwise
for(int y = apronStart + threadIdx.y; y < = apronEnd; y + = blockDim.y){

rowMeans[smemPos] =
((y > = apronStartClamped) (y < = apronEndClamped)) ?
d_MeansRow[gmemPos] : 0;
rowSquares[smemPos] =
((y > = apronStartClamped) (y < = apronEndClamped)) ?
d_SquaresRow[gmemPos] : 0;
smemPos + = smemStride;
gmemPos + = gmemStride;

}
// Ensure the completeness of the loading stage
// because results, emitted by each thread depend on the data,
// loaded by another threads
__syncthreads();

// Shared and global memory indices for current column
smemPos = IMUL(threadIdx.y + WINDOW_RADIUS, COLUMN_TILE_W) + threadIdx.x;
gmemPos = IMUL(tileStart + threadIdx.y, dataW) + columnStart;
// Cycle through the tile body, clamped by image borders
// Calculate the sum of the strips sums (and squares)
for(int y = tileStart + threadIdx.y; y < = tileEndClamped; y + = blockDim.y){

int sumMeansFull = 0;
int sumSquaresFull = 0;

// Loop unrolling section
// only uses unrolling templates (defined at beginning) if defined
// if not defined, uses for loop
#ifdef UNROLL_INNER

sumMeansFull = convolutionColumnFull5<2 * 2>(rowMeans + smemPos);
sumSquaresFull = convolutionColumnFull5<2 * 2> (rowSquares + smemPos);

#else
for(int k = -2; k < = 2; k+ +){

sumMeansFull + =
rowMeans[smemPos + IMUL(k, COLUMN_TILE_W)];
sumSquaresFull + =
rowSquares[smemPos + IMUL(k, COLUMN_ TILE_W)];

}
#endif

// Write sums to device memory
d_MeansFull[gmemPos] = sumMeansFull;
d_SquaresFull[gmemPos] = sumSquaresFull;

// Calcuation of Speckle Contrast (K)
// K = standard deviation / mean
// Compute mean
float mean = sumMeansFull/(float)num_WINDOW_ELEMENTS;

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-11

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

// Compute standard deviation
float coeff = __fdividef(1,num_WINDOW_ELEMENTS-1);
float SD = sqrtf(coeff*(sumSquaresFull -
(num_WINDOW_ELEMENTS*mean*mean)));
float K = SD/mean;

// Calculation of Speckle Flow Index (SFI)
// SFI = 1 / (2 * tc * K * K)
// tc = correlation time = 10ms

float SFI = 1 / (2 * expT * K * K);

// move calculated values into master Speckle Contrast matrix
d_SC[gmemPos] = K;

// move calculated values into master Speckle Flow matrix

d_SFI[gmemPos] = SFI;
smemPos + = smemStride;
gmemPos + = gmemStride;

}
}

Appendix B
//
// ‘Roll’ Algorithm, Custom Integration based off Tom et al. (Ref. 17)
//
// width and height are the width and height of the raw image, respecively
// Raw is the raw speckle image
// SpeckleContrast and SpeckleFlowIndex are preallocated 1D matricies
// rollRow, rollColumn, rollRowSquares, rollColumnSquared are preallocated
// buffers for holding the strip sums in the row and column and strip sums
// of squared values in the row and column, respectively
// the size of these 4 buffers are width*1
// wR is the size of the sliding window radius
// t is the exposure time of the camera used to obtain the raw speckle images
void LSI_roll(int *Raw, float *SpeckleContrast, float *SpeckleFlowIndex,

int *rollRow, int *rollColumn,
int *rollRowSquared, int *rollColumnSquared,
int width, int height,
int wR, float t)

{
// Full window size
int w = wR*2 + 1;
// Number of elements within sliding window
int els = w*w;
// Inverse degrees of freedom
float iDoF = (float)1.0/(els*(els-1));
// Intialize counters
int i, j;
// Step 1) Calculate first accumulated sum to start
// Perform analysis on first accumulated row
for (i = 0; i<width; i+ +)
{
for (j = 0; j<w; j+ +)
{
rollRow[i] + = Raw[j*width+i];
rollRowSquared[i] + = (Raw[j*width+i]*Raw[j*width+i]);
}

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-12

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

if (i> = w)
{
rollColumn[i] = rollColumn[i-1] - rollRow[i-w] + rollRow[i];
rollColumnSquared[i] = rollColumnSquared[i-1] - rollRowSquared[i-w] +

rollRowSquared[i];
SpeckleContrast[wR*width+i-wR] = (els * sqrt((float)iDoF*(els*

rollColumnSquared[i]-(rollColumn[i]*rollColumn[i]))))/rollColumn[i];
SpeckleFlowIndex[wR*width+i-wR] = (float)1/(2*SpeckleContrast[wR*width+i-wR]*

SpeckleContrast[wR*width+i-wR]*t);
}
else
{
rollColumn[w-1] + = rollRow[i];
rollColumnSquared[w-1] + = rollRowSquared[i];
if(i = = (w-1))
{
SpeckleContrast[wR*width+i-wR] = (els * sqrt((float)iDoF* (els*

rollColumnSquared[w-1]-(rollColumn[w-1]*rollColumn[w-1]))))/rollColumn[w-1];
SpeckleFlowIndex[wR*width+i-wR] = (float)1/(2*SpeckleContrast[wR*width+iwR]*

SpeckleContrast[wR*width+i-wR]*t);
}
}
}
// Step 2) Perform optimized roll algorithm
// Cumulate rows and columns simultaneously
// Calculate SC and SFI immediately
for (j = w; j<height; j+ +)
{
rollColumn[w-1] = 0;
rollColumnSquared[w-1] = 0;
for (i = 0; i<width; i+ +)
{
rollRow[i] = rollRow[i] - Raw[(j-w)*width+i] + Raw[j*width+i];
rollRowSquared[i] = rollRowSquared[i] - (Raw[(j-w)*width+i]*Raw[(j-w)*width+

i]) + (Raw[j*width+i]*Raw[j*width+i]);
if (i> = w)
{
rollColumn[i] = rollColumn[i-1] - rollRow[i-w] + rollRow[i];
rollColumnSquared[i] = rollColumnSquared[i-1] --

rollRowSquared[i-w] + rollRowSquared[i];
SpeckleContrast[(j-wR)*width+i-wR] = (els * sqrt((float)iDoF*(els*

rollColumnSquared[i]-(rollColumn[i]* rollColumn[i]))))/rollColumn[i];
SpeckleFlowIndex[(j-wR)*width+i-wR] = (float)1/(2*SpeckleContrast[(j-wR)*
width+i-wR]*SpeckleContrast[(j-wR)*width+i-wR]*t);
}
else
{
rollColumn[w-1] + = rollRow[i];
rollColumnSquared[w-1] + = rollRowSquared[i];
if(i = = (w-1))
{
SpeckleContrast[(j-wR)*width+i-wR] = (els * sqrt((float)iDoF*(els*

rollColumnSquared[w-1]-(rollColumn[w-1]*rollColumn[w-1]))))/rollColumn[w-1];
SpeckleFlowIndex[(j-wR)*width+i-wR] = (float)1/(2*SpeckleContrast[(jwR)*

width+i-wR]*SpeckleContrast[(j-wR)*width+i-wR]*t);
}
}
}
}
}

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-13

Yang, Cuccia, and Choi: Real-time blood flow visualization using the graphics processing unit

Acknowledgments
This work was funded, in part, by the Arnold and Mabel Beck-
man Foundation, the National Institutes of Health (Grant No.
EB0095571, to B.C.), and the National Institutes of Health
(NIH) Laser Microbeam and Medical Program (Grant No. P41-
RR01192). The authors acknowledge the contributions of Austin
McElroy and also the contributions of Dr. J. Stuart Nelson for
his permission to perform LSI during laser surgery. The authors
acknowledge Bruce Yang and Eugene Huang for technical sup-
port on the instrumentation and assistance with imaging in the
operating room.

References
1. A. F. Fercher and J. D. Briers, “Flow visualization by means of

single-exposure speckle photography,” Opt. Commun. 37(5), 326–330
(1981).

2. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic
imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood
Flow Metab. 21(3), 195–201 (2001).

3. H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of
laser speckle images and its application to retinal blood-flow imaging,”
Opt. Express 16(14), 10214–10219 (2008).

4. Y. C. Huang, N. Tran, P. R. Shumaker, K. Kelly, E. V. Ross,
J. S. Nelson, and B. Choi, “Blood flow dynamics after laser ther-
apy of port wine stain birthmarks,” Lasers Surg. Med. 41(8), 563–571
(2009).

5. B. Choi, W. Jia, J. Channual, K. M. Kelly, and J. Lotfi, “The
importance of long-term monitoring to evaluate the microvascular re-
sponse to light-based therapies,” J. Invest. Dermatol. 128(2), 485–488
(2008).

6. NVIDIA CUDA Programming Guide, v.2.3, NVIDIA, Santa Clara, CA
(2009).

7. S. Liu, P. Li, and Q. Luo, “Fast blood flow visualization of high-
resolution laser speckle imaging data using graphics processing unit,”
Opt. Express 16(19), 14321–14329 (2008).

8. J. C. Ramirez-San-Juan, R. Ramos-Garcia, I. Guizar-Iturbide, G.
Martinez-Niconoff, and B. Choi, “Impact of velocity distribution as-
sumption on simplified laser speckle imaging equation,” Opt. Express
16(5), 3197–3203 (2008).

9. H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis
method and its application to retinal blood flow imaging,” Opt. Lett.
32(15), 2188–2190 (2007).

10. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-
time digital holographic microscopy using the graphic processing unit,”
Opt. Express 16(16), 11776–11781 (2008).

11. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer
generated holography using a graphics processing unit,” Opt. Express
14(2), 603–608 (2006).

12. S. Zhang and S. T. Yau, “High-resolution, real-time 3D absolute coor-
dinate measurement based on a phase-shifting method,” Opt. Express
14(7), 2644–2649 (2006).

13. L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu,
“Real-time liquid-crystal atmosphere turbulence simulator with graphic
processing unit,” Opt. Express 17(9), 7259–7268 (2009).

14. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel com-
puting with graphics processing units for high-speed Monte Carlo
simulation of photon migration,” J. Biomed. Opt. 13(6), 060504
(2008).

15. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration
in 3D turbid media accelerated by graphics processing units,” Opt.
Express 17(22), 20178–20190 (2009).

16. J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,
and K. Schulten, “Accelerating molecular modeling applications with
graphics processors,” J. Comput. Chem. 28(16), 2618–2640 (2007).

17. W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing
of laser speckle contrast images,” IEEE Trans. Med. Imaging 27(12),
1728–1738 (2008).

18. B. Tallman, O. T. Tan, J. G. Morelli, J. Piepenbrink, T. J. Stafford,
S. Trainor, and W. L. Weston, “Location of port-wine stains and the
likelihood of ophthalmic and/or central nervous system complications,”
Pediatrics 87(3), 323–327 (1991).

19. J. S. Nelson and J. Applebaum, “Clinical management of port-wine
stain in infants and young children using the flashlamp-pulsed dye
laser,” Clin. Pediatr. (Phila.) 29(9), 503–508; discussion 509 (1990).

Journal of Biomedical Optics January 2011 � Vol. 16(1)016009-14

http://dx.doi.org/10.1016/0030-4018(81)90428-4
http://dx.doi.org/10.1097/00004647-200103000-00002
http://dx.doi.org/10.1097/00004647-200103000-00002
http://dx.doi.org/10.1364/OE.16.010214
http://dx.doi.org/10.1002/lsm.20840
http://dx.doi.org/10.1364/OE.16.014321
http://dx.doi.org/10.1364/OE.16.003197
http://dx.doi.org/10.1364/OL.32.002188
http://dx.doi.org/10.1364/OE.16.011776
http://dx.doi.org/10.1364/OPEX.14.000603
http://dx.doi.org/10.1364/OE.14.002644
http://dx.doi.org/10.1364/OE.17.007259
http://dx.doi.org/10.1117/1.3041496
http://dx.doi.org/10.1364/OE.17.020178
http://dx.doi.org/10.1364/OE.17.020178
http://dx.doi.org/10.1002/jcc.20829
http://dx.doi.org/10.1109/TMI.2008.925081
http://dx.doi.org/10.1177/000992289002900902

