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What this study adds
This study contributes to the literature by providing a new 
understanding of the role of extreme temperatures on maternal 
health outcomes. It addresses the impacts of both extreme high 
and low-temperature exposures on GDM risk at the weekly 
level as well as the modification of extreme temperatures and 
GDM risk by microclimate indicators. By identifying windows 
of susceptibility during pregnancy to extreme temperatures and 
examining modifiable microclimate indicators, improved strate-
gies aimed at the use of preventative behaviors or policy imple-
mentation that influence these microclimate indicators may be 
used to attenuate temperature exposures that could, in turn, 
reduce GDM risk.
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Examining the Relationship Between Extreme 
Temperature, Microclimate Indicators, and 
Gestational Diabetes Mellitus in Pregnant Women 
Living in Southern California
Anais Teyton a,b,*, Yi Sunc, John Molitord, Jiu-Chiuan Chene, David Sacksf,g, Chantal Avilaf, Vicki Chiuf, 
Jeff Slezakf, Darios Getahunf,h, Jun Wuc, Tarik Benmarhniai        

Introduction: Few studies have assessed extreme temperatures’ impact on gestational diabetes mellitus (GDM). We examined 
the relation between GDM risk with weekly exposure to extreme high and low temperatures during the first 24 weeks of gestation 
and assessed potential effect modification by microclimate indicators.
Methods: We utilized 2008–2018 data for pregnant women from Kaiser Permanente Southern California electronic health records. 
GDM screening occurred between 24 and 28 gestational weeks for most women using the Carpenter-Coustan criteria or the 
International Association of Diabetes and Pregnancy Study Groups criteria. Daily maximum, minimum, and mean temperature data 
were linked to participants’ residential address. We utilized distributed lag models, which assessed the lag from the first to the corre-
sponding week, with logistic regression models to examine the exposure-lag-response associations between the 12 weekly extreme 
temperature exposures and GDM risk. We used the relative risk due to interaction (RERI) to estimate the additive modification of 
microclimate indicators on the relation between extreme temperature and GDM risk.
Results: GDM risks increased with extreme low temperature during gestational weeks 20–-24 and with extreme high tempera-
ture at weeks 11–16. Microclimate indicators modified the influence of extreme temperatures on GDM risk. For example, there 
were positive RERIs for high-temperature extremes and less greenness, and a negative RERI for low-temperature extremes and 
increased impervious surface percentage.
Discussion: Susceptibility windows to extreme temperatures during pregnancy were observed. Modifiable microclimate indicators were 
identified that may attenuate temperature exposures during these windows, which could in turn reduce the health burden from GDM.

Keywords: Extreme temperature; Effect modification; Gestational diabetes mellitus; Microclimate

Introduction
A range of maternal complications can occur during pregnancy, 
including anemia, hypertension, mental health issues, throm-
boembolic disorders, and gestational diabetes mellitus (GDM), 
among others, and these complications can cause increased 
health risks to the mother and fetus.1–5 GDM, a form of glucose 
intolerance that has an onset during pregnancy, affects approx-
imately 5%–10% of pregnancies within the United States, and 
its incidence has been rising over time.6–8

Certain characteristics can predispose individuals to an 
increased GDM risk, such as obesity, older childbearing age, 
family history of diabetes, parity, race, ethnicity, and previous 
history of GDM.9,10 Furthermore, environmental factors can 
contribute to an increased risk of GDM. This includes char-
acteristics, such as increased air pollution,11–13 extreme tem-
perature exposure,14 and louder road traffic noise.15 Of these 
environmental exposures, although many studies have assessed 
air pollution impacts on GDM,12,13,16–19 fewer studies have 
focused on the role of temperature on GDM risk. Previous 
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studies have focused on exposure to high average temperatures 
and seasonality on GDM.14,20–27 These studies demonstrated 
that GDM risk was higher during the summer months than 
in the winter months, and GDM risk increased with increas-
ing temperatures. However, most of these studies utilized aver-
age temperature and examined this relation at the monthly- or 
seasonal level. To our knowledge, only one study has assessed 
exposure to both extreme high and low temperatures and GDM 
risk.28 Additionally, this relation has rarely been investigated at 
more refined temporal scales, such as the weekly level during 
pregnancy. Investigating this relation would allow for potential 
extreme temperature thresholds and windows of susceptibility 
to these temperatures during pregnancy to be identified. This 
can provide insight for early alert systems and warn pregnant 
women to utilize protective behaviors during these temperature 
thresholds or specific gestational weeks.

Furthermore, some studies have assessed microclimate indi-
cator impacts, including green space presence and the normal-
ized difference vegetation index (NDVI), on GDM risk, which 
are exposures that may modify the impact of extreme tempera-
tures.11,22,29 These studies’ findings suggested that increased 
residential proximity to greenness and greenness exposure led 
to a decreased GDM risk. However, other microclimate indi-
cators, including tree canopy, imperviousness, and land surface 
temperature, have not yet been considered in studies assessing 
environmental exposures and GDM risk, despite their known 
influence on variations in local temperatures.30–33 Additionally, 
while the literature has focused on how urban landscape may 
influence variations in micro-heat islands, it may also drive 
variations in extreme low temperatures and associated health 
impacts.34 If these microclimate characteristics influence the 
relation between extreme temperatures and GDM risk, then 
urban planning policies may be implemented, such as planting 
more trees and/or reducing impervious surfaces by using higher 
albedo manmade surfaces, as a means of attenuating extreme 
temperatures, which would, in turn, reduce the risk of GDM. 
Identifying these potentially modifiable microclimate indicators 
is especially important in the context of climate change, as both 
high- and low-extreme temperatures may become more severe.25 
The assessment of microclimate indicator modification and the 
identification of extreme temperature thresholds would allow 
for improved individual and community-based preventive mea-
sures to be implemented, which could assuage extreme tempera-
tures and indirectly minimize GDM risk.

In this study, we assessed GDM risk with weekly exposure 
to extreme air temperature (maximum, minimum, and average) 
during the first 24 weeks of gestation, and we examined whether 
microclimate indicators including NDVI, tree canopy, impervi-
ous surfaces, and land surface temperature, among others, mod-
ify this relation. This analysis used data from electronic health 
records for pregnancies delivered in the Kaiser Permanente 
Southern California (KPSC) healthcare system. This large pop-
ulation-based cohort of pregnant women presents a unique 
opportunity to study these relationships.35,36

Methods

Study population

This retrospective cohort study included women who gave birth 
between January 1, 2008, and December 31, 2018, at KPSC facil-
ities, which include 15 hospitals and 234 medical offices across 
Southern California. Women without residential address data (n 
= 680), those with multiple births (n = 7,454), those who were 
not KPSC members during the study period, or those with preg-
nancy lasting <20 or >47 gestational weeks (n = 8,912) at the 
time of miscarriage or delivery, respectively, were excluded from 
this study. Pregnancies with preexisting diabetes (n = 5,518) and 
those with missing laboratory test results on GDM status (n = 
30,355) were also excluded. In total, 395,927 pregnancies were 

included in this analysis. All residential addresses were geo-
coded with the Texas A&M, NAACCR, Automated Geospatial 
Geocoding Interface Environment Geocoder.37 The gestational 
week was determined by the date of onset of the last menstrual 
period and corroborated by early pregnancy ultrasonogra-
phy. Information on demographic characteristics, residential 
history, medical records, birth history, and individual lifestyle 
was extracted from KPSC electronic health records (EHRs). 
Further details of the cohort have been previously described.36 
This study was approved by the Institutional Review Board of 
KPSC and the University of California, Irvine with a waiver of 
informed consent.

GDM outcome

GDM diagnosis was based on KPSC laboratory tests that were 
routinely performed between 24 and 28 gestational weeks, 
except for women at higher risk for GDM who are screened 
earlier. Similarly to Sun et al.36 two criteria for GDM testing 
were used: the Carpenter-Coustan criteria (a 1-hour 50-g glu-
cose challenge test >200 mg/dL or two or more abnormal values 
for 3-hour 100-g oral glucose tolerance test [OGTT], using the 
cutoff values fasting ≥95, 1 hour ≥180, 2 hour ≥155, 3 hour 
≥140 mg/dl); or the International Association of Diabetes and 
Pregnancy Study Groups criteria (one or more abnormal values 
for a 2-hour 75-g OGTT, using the cutoff values fasting ≥ 92, 
1hour ≥ 180, 2hour ≥ 153 mg/dl).36,38

Ambient temperature exposure

Historical daily temperature data from January 1, 2007 to 
December 31, 2018 were derived from the spatiotemporal, 
high-resolution Gridded Surface Meteorological dataset.39 This 
dataset provides daily surface fields of maximum temperature 
(Tmax) and minimum temperature (Tmin) at a 4-km spatial res-
olution covering the contiguous United States. The gridded 
meteorological data were validated against automated weather 
stations across the complex topography of the western United 
States,39 and they are available via the Climatology Lab—grid-
MET product.

For creating individual-level exposure to ambient air tem-
perature, gridded daily temperature estimates were spatiotem-
porally linked to each woman based on the geocoded residential 
addresses during pregnancy. Because approximately 44% of 
the population moved during pregnancy in this population, 
information on residential changes (address, start date, and end 
date) were also extracted from KPSC EHRs. The ambient air 
temperature exposures were collected based on a given individ-
ual’s accurate residential address for that particular day, thus 
incorporating if they had moved during pregnancy. We then 
calculated Tmax, Tmin, and Tmean ([Tmax+ Tmin]/2) in every gesta-
tional week by averaging these variables on the first day of the 
corresponding week and the following 6 days. The time-varying 
exposure based on the exact diagnosis date was not accounted 
for, because GDM screening and diagnosis is generally per-
formed between 24 and 28 gestational weeks. In our study, 
approximately 80% of GDM cases were diagnosed after the 
20th gestational week, and only some high-risk women (12%) 
may have been screened early in their pregnancy (during the 
first trimester). Thus, we explored the effect of weekly-specific 
maternal temperature exposure on GDM risk by accounting for 
all past (lagged) exposures from 1 to 24 gestational weeks as 
performed in previous studies.19,28

In this study, Tmax, Tmin, and Tmean were used to explore the 
effect of extreme temperature exposure. We focused on the 1st 
and 3rd percentiles of each temperature variable as our extreme 
low-temperature exposures, while the 97th and 99th percentiles 
were defined as extreme high-temperature exposures. These heat 
wave and cold spell definitions were based on the temperature 
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distribution of each participant’s neighborhood. For each thresh-
old of extreme temperatures, mothers were considered exposed 
if they experienced (at least) one extreme high- or low-tempera-
ture event during a given gestational week. We thus considered 
12 weekly temperature exposures (3 temperature variables and 
4 percentiles).

Modification by microclimate indicators

We additionally explored the potential effect modification of 
microclimate indicators on the relation between extreme tem-
perature exposures and GDM risk. Such microclimate indicators 
are critical to study, as they may influence extreme temperatures. 
This information could be particularly useful to tailor interven-
tions to minimize the impact of extreme temperature exposures 
on GDM risk. We aggregated these indicators through satellite 
remote sensing products such as Moderate Resolution Imaging 
Spectroradiometer and Landsat, which provide high spatial and 
temporal resolution images of these indicators. We primarily 
focused on the 2011 percentage of the tree canopy, the 2013 
percentage of developed impervious surfaces, the 2018 land sur-
face temperature, and the 2018 average NDVI. These have a 
spatial resolution of 30 m, 30 m, 70 m, and 250 m, respectively. 
Additional indicators were explored including evapotranspira-
tion canopy, evapotranspiration soil, evaporative stress index, 
landcover classification, and water use efficiency, as these fac-
tors may provide further insight regarding the implementation 
of actionable policies, such as replacing impermeable surfaces 
with more permeable surfaces or planting trees and other types 
of vegetation. We hypothesized that effect modification existed 
by increasing impervious surfaces, evaporative stress index, and 
more developed land cover, which would exacerbate the relation 
between increasing temperatures and GDM risk, and by increas-
ing tree canopy percentage, NDVI, evapotranspiration canopy, 
evapotranspiration soil, and water use efficiency, which would 
attenuate the relation of interest. Raster files were aggregated 
from Google Earth Engine, and 200-meter buffers (as a priori 
buffer size to consider residential exposure) were created sur-
rounding the residential addresses to find the average microcli-
mate indicators for each participant.

Covariates

Covariate data were extracted from KPSC EHRs. Pregnancy-
related covariates and potential confounders were selected 
a priori based on the existing literature,28,40 which included 
maternal age at delivery; race/ethnicity (African American, 
Asian, Hispanic, non-Hispanic white, and others including 
Pacific Islanders, Native American/Alaskan, and multiple race/
ethnicities specified); maternal educational level (≤ 8th grade, 
9th grade to high school, college <4 years, and college ≥4 years); 
median household income at block group level in 2013 (cate-
gorized as quartiles)41; pre-pregnancy body mass index (BMI) 
(underweight: <18.5 kg/m2, normal: 18.5–24.9 kg/m2, over-
weight: 25.0–29.9 kg/m2, and obese: ≥30.0 kg/m2); exposure to 
active smoking (never smoker, ever smoker, and smoking during 
pregnancy); passive (i.e., secondhand) smoking (yes or no); par-
ity (1, 2, 3, and ≥4); infant sex (male and female); year of infant 
birth (2008–2018); and the season of conception (warm season: 
May–October, and cool season: November–April). Previous 
studies have included the season of conception covariate with 
four categories,28,42 while others have utilized this as a binary 
variable as we did.43

Statistical analysis

Descriptive statistics of population characteristics were assessed 
for the total study population and stratified by GDM and 
non-GDM status. For our main analyses, we examined the 

exposure-lag-response associations between each of our 12 
weekly extreme temperature exposures and GDM risk by imple-
menting distributed lag models (DLMs) coupled with logistic 
regression as performed previously.44,45 Such models consider 
current exposure at a given time t, past exposure before time t 
(as our main approach, we used an inverse weighting approach 
with weights being calculated based on time to a week t to give 
more weight to weeks right before a week t), and potential 
interactions between past (i.e., week1–weekt-1) and current (i.e., 
weekt) exposures. The lag range was defined as completed ges-
tational weeks from the first week to the corresponding week. 
Odds ratios (ORs) and 95% confidence intervals (CIs) were cal-
culated for the probability of GDM occurrence for each of the 
12 temperature exposures. Main analyses adjusted for mater-
nal age, race/ethnicity, education, median household income, 
pre-pregnancy BMI, active or passive smoking during preg-
nancy, insurance type, season of conception, and year of birth.

As a sensitivity analysis, we added both parity and the sex 
of the infant as potential confounders that were additionally 
adjusted for in the DLM models, given that these covariates 
have been adjusted for in previous studies. We then explored 
alternative functional forms for the potential lagged effects by 
distributed lag nonlinear models (DLNMs) with logistic regres-
sion.46 The median temperature of each temperature variable 
was used as the reference temperature.28 DLNMs were applied 
to calculate ORs and 95% CIs of GDM risk at the 3rd and 
97th percentiles of each temperature variable relative to median 
temperature (as models did not converge for temperature defi-
nitions based on 1st and 99th percentiles). Natural cubic splines 
were used to define the lag-response effect, and we used three 
degrees of freedom for all temperature indicators to explore 
such alternative nonlinear relationships.

In the effect modification analysis, we used the relative risk 
due to interaction (RERI) to estimate the additive interactive 
effect of extreme temperature exposure and microclimate indi-
cators on the risk of GDM. We first calculated temperature 
exposures by averaging the daily temperature measurements 
during the first 24 gestational weeks, and we considered the 
same 12 binary temperature exposures as in our main analy-
ses. These temperature exposure definitions were context-spe-
cific, where the distribution of each participant’s neighborhood 
was utilized. The RERIs were calculated per one-unit increase 
in each microclimate variable (some indicators were reversed to 
facilitate the interpretation). RERI = OR11 −OR10 −OR01 + 1
, where ORxz = Pr (Y = 1 | X = x, Z = z) is the risk of the 
outcome Y when the first exposure X is value x (e.g., extreme 
temperature exposure, in the context of this study) and the sec-
ond exposure Z is value z (e.g., a particular microclimate indi-
cator).47,48 All analyses were performed in SAS version 9.4 (SAS 
Institute, Inc., Cary, NC) and R (version 4.0.5).

Results
Table 1 provides the descriptive statistics for Tmean, Tmin, and Tmax 
across the first 24 weeks of gestation. Temperature averages for 
Tmean, Tmin, and Tmax were found to be 18.7ºC (SD: 3.2), 12.3ºC 
(SD: 3.2), and 25.0ºC (SD: 3.7), respectively. The Supplementary 
Material (http://links.lww.com/EE/A221) includes summary sta-
tistics of characteristics for the full population and stratified by 
the GDM outcome (Table S1; http://links.lww.com/EE/A221). 
Large differences were observed for GDM by maternal race and 
ethnicity, where more Asian and Hispanic mothers had GDM, 
and by prepregnancy BMI, where more obese mothers had 
GDM.

The results from the main DLM models are depicted in 
Figure  1, which shows the relation between the 12 extreme 
temperature exposures and GDM across the first 24 gestational 
weeks. For the 1st percentile of temperature, while variation 
across weeks can be noted, ORs tend to become higher (i.e., 
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an increased GDM risk) in the second half of the gestational 
weeks for Tmean and Tmin, where weeks 20–24 show a signifi-
cant 22%–35% increase in GDM risk. In comparison, weaker 
but increased GDM risks were observed for Tmin for the 3rd 
percentile of temperature, where weeks 21–24 have positive 
ORs with more precise CIs (i.e., narrow 95% CIs that exclude 
1.0), while the Tmean estimates tend to remain consistently but 
imprecisely negative. Similarly, for both the 1st and 3rd per-
centiles (extreme low temperatures), the Tmax estimates tend to 
be predominantly negative and imprecise. For the 97th percen-
tile (extreme high temperatures), Tmax had a bell-shaped curve 
for its estimates across gestational weeks, with negative or null 
estimates for the first trimester and late second trimester and 
positive estimates for weeks 13–14. Although Tmean and Tmin 
followed a similar pattern for the 97th percentile estimates, 
they were close to null and insignificant. The shape of the 99th 
temperature percentile over the gestational weeks was simi-
lar to that of the 97th percentile, although more pronounced. 
Both Tmin and Tmax have more precise, positive ORs from ges-
tational weeks 11–16, indicating approximately 21%–41% 
higher risks of GDM.

Sensitivity analyses show that parity and infant sex did not 
change the results substantially. Figure S1; http://links.lww.com/
EE/A221 shows results considering DLNM with 3 degrees of 
freedom. Across Tmean, Tmin, and Tmax for the 3rd and 97th per-
centiles of temperature, we found a similar pattern of negative 
or null estimates during the first few gestational weeks, followed 
by positive values for weeks 6–18, negative values from weeks 
18 to 22, and an upward trend for the remaining 22–24 weeks.

Finally, Figure 2 provides forest plots for the effect modifi-
cation (on the additive scale) by the microclimate indicators 
(Table S2; http://links.lww.com/EE/A221 for the RERI estimate 
and 95% CI values). At low-temperature extremes, a negative 
RERI was identified between Tmax and increased impervious 
surface percentage, meaning the combined effects were lower 
than expected. At high-temperature extremes, we found a neg-
ative RERI between Tmean and higher water use efficiency (i.e., 
lower than expected joint effects), while positive RERIs were 

observed between Tmin and non-NDVI, increased land surface 
temperature, and global human settlement, Tmax and higher 
evapotranspiration canopy, and Tmean and higher evapotranspi-
ration canopy (i.e., synergistic effect, or higher than expected 
joint effects).

Discussion
In this study, we assessed both the weekly exposure-lag-response 
associations between 12 extreme high- and low-temperature 
exposures and GDM risk and the RERIs to assess the additive 
effect modification by microclimate indicators. We identified an 
increased GDM risk between weeks 20 and 24 of gestation for 
extreme low-temperature exposures. In contrast, we observed 
an increased GDM risk for gestational weeks 11–16 for extreme 
high-temperature exposures. We also found that microclimate 
indicators modified the influence of extreme temperatures on 
GDM risk.

Although a clear trend was not identified across exposure 
definitions regarding GDM risk, windows of susceptibility 
during certain gestational weeks were observed during extreme 
high- and low temperatures. Many studies have assessed this 
relation later in pregnancy and have identified an increased 
GDM risk with increasing average temperature as well as the 
presence of seasonal variation, where GDM risk and preva-
lence are higher in the warmer seasons than in the colder sea-
sons23,25,27; however, most of these studies have not assessed the 
impact of high temporal-resolution, the weekly time-varying 
temperature on GDM risk. Vasileiou et al20 and Katsarou et al49 
investigated the monthly variation in the relation between tem-
perature and GDM risk, and they identified that GDM diag-
nosis was higher during the summer months. Molina-Vega et 
al21 additionally assessed this monthly-level relation and sea-
sonal variation, and they identified a higher GDM diagnosis 
prevalence during warmer seasons and increased temperatures 
in the 2–4 weeks before oral glucose tolerance testing. To our 
knowledge, only one other study has addressed this relation at 
the weekly level and examined longer-term exposures during 

Table 1.

Summary statistics of weekly temperature indicators (unit: ºC) during the 1st to 24th gestational weeks among participants.

Temperature Mean SD Min 1st 3rd 50th 97th 99th Max 

T
mean

18.7 3.2 0.4 11.3 13.1 18.5 24.1 25.1 28.2
T

min
12.3 3.2 −7.0 3.9 6.0 12.3 17.5 18.3 34.8

T
max

25.0 3.7 5.8 18.1 19.4 24.5 32.4 33.7 43.7

Units are degree Celsius for temperature indicators.
SD indicates standard deviation; T

max
, daily maximum temperature; T

mean
, daily mean temperature; T

min
, daily minimum temperature.

Figure 1. DLM models depicting the relation between Tmean, Tmin, and Tmax and GDM for the 1st, 3rd, 97th, and 99th percentiles of temperature across the first 
24 weeks of gestation. DLM indicates distributed lag models; Tmax, daily maximum temperature; Tmean, daily mean temperature; Tmin, daily minimum temperature.
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pregnancy; Zhang et al28 identified that extreme low-tempera-
ture exposures increased GDM risk between gestational weeks 
14 and 17, while extreme high-temperature exposures increased 
GDM risk between weeks 21 and 24. Thus, these susceptibility 
windows differed but overlapped between the study by Zhang 
et al28 and our study. This may be explained by differences in 
climate conditions (e.g., lower temperature distributions in our 
study than that of Zhang et al28, possible differences in humidity 
levels, etc.) or population composition (e.g., maternal age, pre-
pregnancy BMI, household income, tobacco smoking, fetal gen-
der, and parity), for example. However, increased risk from both 
extreme high- and low-temperature was identified during the 
second trimester of pregnancy in both studies. Identifying these 
susceptibility windows has implications for maternal health 
and interventions to minimize extreme temperature exposures 
during these windows.

Furthermore, effect modification by microclimate indicators 
on the relationship between temperature and GDM risk was 
observed. Although studies have explored the direct effects of 
some microclimate indicators on GDM risk as exposures of 
interest (e.g., Liao et al11, Preston et al22, and Qu et al29, iden-
tifying that increased greenness could lead to a decrease in 
GDM risk), few have assessed modification by these indicators 
on the associations of extreme temperatures with GDM. Other 
microclimate indicators, including impervious surfaces, tree 
canopy, and land surface temperature (as a direct measure of 
local variation in temperatures), have neither been considered as 
exposures of interest nor as effect modifiers. Investigating these 
possible effect modifications is critical, as these microclimate 
indicators are modifiable determinants of GDM, meaning that 
if these microclimate indicators were acted on, this may assuage 
extreme temperatures and in turn potentially reduce the risk 
of GDM. We found effect modification by lower NDVI, higher 
land surface temperature, lower water use efficiency, increased 
global human settlement, and higher evapotranspiration can-
opy, which aggravate the relation between extreme high tem-
perature and GDM risk, while a higher developed impervious 
surface percentage attenuates the harmful influence of extreme 
low temperature on GDM risk. Future work may wish to sim-
ulate the intervention effects of these modifiable microclimate 
indicators on GDM risk in entire populations or in susceptible 
sub-populations, which could have critical policy implications.

Previous studies have hypothesized biological mechanisms 
that may explain the influence of extreme temperature on the 
development of GDM. At higher temperatures, insulin sen-
sitivity diminishes, leading to increased insulin resistance.23 
Furthermore, venous plasma glucose levels tend to increase due 
to core temperature-associated blood flow redistribution.23,25,50 
In contrast, brown adipose tissue glucose uptake increases in 
cold temperatures, which in turn improves insulin sensitivity.25 
Although brown adipose tissue activation at lower temperatures 
may improve glucose metabolism through increased insulin sen-
sitivity, other mechanisms may explain glucose level changes and 
subsequent GDM development as a result of colder tempera-
tures.25 One explanation includes vitamin D3 deficiency, which 
is related to sunlight exposure that may be minimized during 
periods of colder temperatures—or periods of high temperature 
during which individuals minimize their time outside—as well 
as dietary intake, and this can lead to glucose metabolism issues 
and thus a higher risk of GDM.23,25 However, mixed results 
have been identified related to the plausibility of the influence of 
sunlight exposure and vitamin D deficiency on GDM risk.25,50,51 
Previous studies have also suggested that extreme high- and 
low-temperature exposure may lead to the activation of an 
inflammatory response, and this may in turn influence GDM 
risk.28,51 Future studies may wish to further examine the mecha-
nisms between extreme temperatures and GDM risk.

The main strengths of this study include the large, diverse 
KPSC pregnancy cohort; comprehensive and high-quality clin-
ical data, especially for GDM diagnosis based on laboratory 
glucose tolerance tests rather than diagnostic codes or recall 
information; the consideration of both extreme low- and 
high-temperature exposure; and accurate exposure estimates 
accounting for residential history during pregnancy. However, 
certain limitations exist. It is possible for extreme tempera-
ture exposure and microclimate indicators to be misclassified, 
as these were defined using geocoded residential addresses. 
Although we incorporated changes in the residential address 
during pregnancy, we did not utilize mobility data that could 
take into consideration individual time-activity patterns and 
dynamic environmental exposures. Thus, it is possible that 
these participants were exposed to extreme temperatures and 
microclimate indicators in areas other than their residen-
tial homes (e.g., workplace). This use of stationary outdoor 

Figure 2. Forest plots depicting the RERIs between extreme temperature and microclimate indicators. The first row provides Tmean, the center row provides Tmin, 
and the last row provides Tmax. From left to right, the columns are as follows: 1st, 3rd, 97th, and 99th percentiles. RERI indicates relative risk due to interaction; Tmax, 
daily maximum temperature; Tmean, daily mean temperature; Tmin, daily minimum temperature.
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temperature exposures would likely contribute to nondiffer-
ential misclassification, and this could lead to bias towards the 
null if the population was exposed to more extreme tempera-
tures outside of their place of residence. Furthermore, regard-
ing the microclimate indicators, these were averaged across a 
given year within the study period (e.g., 2013 for the percent-
age of impervious surfaces, 2018 for NDVI) but not averaged 
across the entire study period of January 1, 2008, through 
December 31, 2018. Indoor temperatures were also not 
accounted for, making it not possible to differentiate between 
locations that the participants were in that utilized or did not 
utilize certain adaptation strategies (ex. air conditioning). In 
California, 75% of the population owns either room or cen-
tral air conditioning,52 and, more specifically within Southern 
California, 44% and 56% of the population in San Diego 
and Los Angeles, respectively, have central air conditioning 
in their household.53 Furthermore, there may be behavioral 
variability of these participants that was not considered, espe-
cially during periods of extreme high or low temperatures. 
This bias resulting from the lack of information related to 
adaptive strategies or protective behaviors would likely be dif-
ferential misclassification, given that some but perhaps not all 
of the population utilize these strategies or behaviors, poten-
tially contributing to bias away from the null. We also did not 
account for time-varying exposure based on the onset time of 
GDM. This is due to the uncertainty related to whether the 
diagnosis date reflects the true onset time of GDM. For most 
pregnant women, screening is performed between 24 and 
28 gestational weeks; however, some high-risk women were 
screened earlier during the first trimester of their pregnancy. 
Thus, we could not assess the exact onset of GDM given these 
screening criteria. Moreover, it is possible that patients identi-
fied as having GDM by one set of criteria may not have been 
identified by the other. We also focused on binary temperature 
exposures as opposed to continuous temperature exposures. 
Although defining cutoffs for binary exposures may be arbi-
trary and information may be lost,54 these binary definitions 
for extreme low and extreme high-temperature definitions 
may be helpful to inform and design warning systems that 
are often based on a threshold to trigger a set of preventive 
actions. Such thresholds may be used to target populations 
that are more at risk, such as pregnant women, to ultimately 
reduce GDM risk.55 The women included in this study had 
access to this insurance, thereby potentially being healthier 
relative to the target population (Southern California preg-
nant mothers). Nevertheless, the KPSC population, in gen-
eral, is representative of the southern California population.56 
These limitations serve as possible future research avenues: 
incorporating personal behaviors such as utilizing air condi-
tioning, heating systems, or cooling centers, and assessing this 
relation between extreme temperature and GDM risk among 
other populations or climatic zones.

Conclusions
This study addressed the impact of extreme high and low tem-
peratures on GDM risk and the modification of this relation 
by microclimate indicators. Specific windows of susceptibility to 
both extreme high and low temperatures were identified during 
the second trimester of pregnancy, allowing for preventative 
behaviors to be used during this time to limit these exposures. 
Furthermore, effect modification was identified by non-NDVI, 
impervious surface percentage, land surface temperature, water 
use efficiency, global human settlement, and evapotranspiration 
canopy, highlighting the possibility of incorporating actionable 
interventions that may modify these microclimate indicators, 
which could assuage extreme temperatures and in turn may 
reduce GDM risk. Identifying these susceptibility windows and 
modifiable microclimate indicators are particularly important, 

as these extreme temperatures may become more frequent and 
severe due to climate change.
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