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Schubert, A., Nunez, M., Hagemann, D., & Vandekerckhove, J. (2019). Individual differences in cortical processing speed predict cognitive abilities: A model-based
cognitive neuroscience account. Computational Brain & Behavior, 2, 64–84.

Previous research has shown that individuals with greater cognitive abilities display a greater speed of higher-order cognitive processing.
These results suggest that speeded neural information-processing may facilitate evidence accumulation during decision making and memory
updating and thus yield advantages in general cognitive abilities. We used a hierarchical Bayesian cognitive modeling approach to test the
hypothesis that individual differences in the velocity of evidence accumulation mediate the relationship between neural processing speed and
cognitive abilities. We found that a higher neural speed predicted both the velocity of evidence accumulation across behavioral tasks as well
as cognitive ability test scores. However, only a negligible part of the association between neural processing speed and cognitive abilities
was mediated by individual differences in the velocity of evidence accumulation. The model demonstrated impressive forecasting abilities by
predicting 36% of individual variation in cognitive ability test scores in an entirely new sample solely based on their electrophysiological and
behavioral data. Our results suggest that individual differences in neural processing speed might affect a plethora of higher-order cognitive
processes, that only in concert explain the large association between neural processing speed and cognitive abilities, instead of the effect
being entirely explained by differences in evidence accumulation speeds.

cognitive abilities | processing speed | cognitive latent variable model | reaction times | ERP latencies | diffusion model

Individual differences in cognitive abilities are important predictors
for real-world achievements such as job performance and highest
level of educational attainment (Schmidt & Hunter, 2004). Cogni-
tive ability differences also predict differences in individuals’ health
(Deary, 2008; Der, Batty, & Deary, 2009), happiness (Nikolaev &
McGee, 2016), and well-being (Pesta, McDaniel, & Bertsch, 2010).
However, what remains largely unexplored are the fundamental bio-
logical processes that give rise to individual differences in cognitive
abilities across individuals. In this study we explore how individual
differences in cognitive abilities are associated with individual dif-
ferences in neural processing speed, and how this association can
be explained by individual differences in the velocity of evidence
accumulation as an intermediate cognitive process.

Previous research has suggested that those individuals with
greater cognitive abilities have a higher speed of information-
processing, typically measured as reaction or inspection times
in elementary cognitive tasks on a behavioral level (Kyllonen & Zu,
2016; Sheppard & Vernon, 2008), or as latencies of event-related
potential (ERP) components on a neurophysiological level (e.g.,
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Bazana & Stelmack, 2002; Schubert, Hagemann, Voss, Schankin,
& Bergmann, 2015; Troche, Indermühle, Leuthold, & Rammsayer,
2015). Neuroimaging studies have shown that the association
between the speed of information-processing and cognitive abili-
ties may reflect individual differences in white-matter tract integrity,
either as an overall brain property (Penke et al., 2012) or in specific
brain regions such as the forceps minor and the corticospinal tract
(Kievit et al., 2016).

However, those with greater cognitive abilities do not seem to
benefit from a higher speed of information-processing during all
stages of information-processing. Instead, individuals with greater
cognitive abilities show a higher speed of information processing
only in higher-order cognitive processes such as decision making
and memory updating (Schmiedek, Oberauer, Wilhelm, Suss, &
Wittmann, 2007; Schubert, Hagemann, & Frischkorn, 2017). In
particular, the velocity of evidence accumulation during decision
making has been repeatedly associated with individual differences
in cognitive abilities (Schmiedek et al., 2007; Schmitz & Wilhelm,
2016; Schubert et al., 2015; van Ravenzwaaij, Brown, & Wagen-
makers, 2011). Moreover, cognitive abilities have been specifically
associated with the latencies of ERP components reflecting higher-
order cognitive functions such as memory and context updating
(Bazana & Stelmack, 2002; McGarry-Roberts, Stelmack, & Camp-
bell, 1992; Schubert et al., 2017; Troche, Houlihan, Stelmack, &
Rammsayer, 2009). Taken together, these results suggest that a
greater speed of information-processing may facilitate evidence ac-
cumulation during decision making and memory updating and may
give rise to advantages in general cognitive abilities. In the present
study, we explore this hypothesis by using a hierarchical Bayesian
cognitive modeling approach to investigate if individual differences
in the velocity of evidence accumulation mediate the relationship
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between neural processing speed and general cognitive abilities.

Measuring the speed of higher-order cognitive processes. Re-
action time measures are affected by a variety of cognitive and
motivational processes and differences across individuals are not
solely due to differences in the specific processes of interest
(Nunez, Srinivasan, & Vandekerckhove, 2015; Schubert et al.,
2015). Therefore, mean reaction times and differences in reaction
times between certain experimental conditions can only provide
very imprecise measurements of the speed of specific higher-order
cognitive processes. One approach to measure the speed of
higher-order cognitive processes is to use validated mathemati-
cal models of decision making, which allow estimating the speed
and efficiency of specific cognitive processes (Voss, Rothermund,
& Voss, 2004). One of the most influential model types used to
jointly describe reaction time distributions and accuracies in binary
choice tasks are diffusion models. Diffusion models assume that
information accumulation follows a continuous, stochastic Wiener
process that terminates once one of two decision thresholds has
been reached (Stone, 1960; Ratcliff, 1978; Ratcliff & McKoon,
2008). That is, it is assumed that on any given trial an individual
will accumulate evidence for one choice over another in a ran-
dom walk evidence accumulation process with an infinitesimal time
step (while neural coding may be more sequential in nature, the
infinitesimal approximation should hold true for small time steps).
It is predicted that the change in relative evidence Et follows a
Wiener (i.e., Brownian motion) process with an average evidence
accumulation rate δ and instantaneous variance ς2 (Ross, 2014).

Typically, the variance ς2 is fixed to some standardized value
for reasons of identifiability (but see Nunez, Vandekerckhove, &
Srinivasan, 2017). The drift rate (δ) measures the relative velocity
of evidence accumulation during decision making and individual
differences in this parameter have been suggested to be associ-
ated with individual differences in cognitive abilities (Schmiedek
et al., 2007; Ratcliff, Thapar, & McKoon, 2010, 2011; Schubert
et al., 2015; Schmitz & Wilhelm, 2016). The evidence units per
second of the drift rate (δ) are relative to a predetermined decision
criterion for evidence (α), which reflects speed-accuracy trade-offs
(Voss et al., 2004). In addition, a basic diffusion model consists
of one more additional parameter describing and complementing
the decision process: The non-decision time (ter) encompasses
all non-decisional processes such as encoding and motor reaction
time.

It is not surprising that the drift rate parameter in particular
has become widely popular in individual differences research
(Frischkorn & Schubert, 2018), because it allows quantifying the
speed of information uptake free of confounding process parame-
ters such as encoding and motor times or decision cautiousness,
which are captured by other model parameters and are largely
irrelevant for cognitive abilities research. Individual differences in
drift rates have been shown to exhibit trait-like properties (i.e., they
show temporal stability and trans-situational consistency; Schu-
bert, Frischkorn, Hagemann, & Voss, 2016) and to be associated
with individual differences in cognitive abilities (Ratcliff et al., 2010,
2011; Schmiedek et al., 2007; Schmitz & Wilhelm, 2016; Schubert
et al., 2015), attention (Nunez et al., 2015), and word recognition
(Yap, Balota, Sibley, & Ratcliff, 2012). The drift rate can even be in-
terpreted in the framework of item response theory (IRT), in which
it can under certain assumptions be decomposed into an ability
and difficulty parameter (van der Maas, Molenaar, Maris, Kievit, &
Borsboom, 2011).

Moreover, several studies suggest a direct link between drift

rates and neural processing correlates in the EEG. In particular,
it has been shown that the P3, an ERP component occurring
typically about 250-500 ms after stimulus onset with a positive
deflection that is maximal at parietal electrodes (Polich, 2007), is a
neural correlate of the evidence accumulation process captured
in the drift rate (Kelly & O’Connell, 2013; O’Connell, Dockree, &
Kelly, 2012; Ratcliff, Philiastides, & Sajda, 2009; Ratcliff, Seder-
berg, Smith, & Childers, 2016; van Ravenzwaaij, Provost, & Brown,
2017). O’Connell et al. (2012) and Kelly and O’Connell (2013) even
suggested that the buildup rate of this positive centroparietral posi-
tive potential may directly reflect the rate of evidence accumulation
on a neural level.

Particularly intriguing from an individual-differences perspective
is the observation that individual differences in P3 amplitudes
across conditions have been shown to explain about 74 percent
of the variance in drift rates δ (Ratcliff et al., 2009). Because both
individual differences in drift rates and individual differences in P3
characteristics have been shown to explain cognitive abilities, a
theoretical framework of the neurocognitive processes underlying
cognitive abilities needs to specify if individual differences in P3
characteristics and drift rates contribute jointly or independently to
intelligence differences.

Bridging the gap between neural and behavioral correlates of
cognitive abilities to outline a cognitive theory of intelligence.
As of yet, researchers from the fields of mathematical modeling
and cognitive neuroscience have largely independently contributed
to our understanding of the basic processes underlying individual
differences in cognitive abilities. While mathematical modeling
researchers have suggested that the velocity of evidence accumu-
lation may be specifically related to cognitive abilities (Ratcliff et al.,
2010, 2011; Schmiedek et al., 2007; Schubert et al., 2015), cogni-
tive neuroscience researchers have characterized the time-course
of information-processing and identified structural and function
neural correlates of cognitive abilities(Basten, Hilger, & Fiebach,
2015; Neubauer & Fink, 2009; Jung & Haier, 2007). However,
neurophysiological correlates of cognitive abilities still need to be
integrated into a theoretical framework that outlines how advan-
tages in neural processing translate into advantages in cognitive
information processing that give rise to advantages in cognitive
abilities to meaningfully explain the processes underlying individual
differences in intelligence.

Based on the associations of P3 latencies and drift rates with
intelligence, it may be proposed that the relationship between ERP
latencies reflecting higher-order cognition and cognitive abilities is
mediated by individual differences in drift rates. Such a mediation
account is empirically supported by the result that reaction times
partly mediate the relationship between ERP latencies and cogni-
tive abilities (Schubert et al., 2015). Moreover, it has been shown
that advantages in a larger number of white-matter tract integrity
measures gave rise to advantages in a smaller number of behav-
ioral processing speed measures, which in turn explained about 60
% of variance in fluid intelligence in a many-to-one way (Kievit et
al., 2016). On the other hand, individual differences in both neural
processing speed and drift rates may reflect some confounding
variable (e.g., functional brain properties) that is also substantially
related to cognitive abilities. This confounding variable account
was supported by a recent study that failed to find any transfer of
an experimentally induced increase in both neural and behavioral
processing speed by transdermal nicotine administration on intelli-
gence test scores (Schubert, Hagemann, Frischkorn, & Herpertz,
2018). Candidate confounding variables may be properties of the
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salience network that have been associated both with P3 elicita-
tion and individual differences in cognitive abilities (Hilger, Ekman,
Fiebach, & Basten, 2017; Menon & Uddin, 2010; Soltani & Knight,
2000).

Recent advancements in the emerging field of model-based
cognitive neuroscience have demonstrated the advantages of in-
tegrating mathematical modeling and cognitive neuroscience to
generate and test theoretical accounts that jointly account for neu-
ral correlates and cognitive models of psychological processes
(e.g., Forstmann, Wagenmakers, Eichele, Brown, & Serences,
2011; Nunez et al., 2017; Palmeri, Love, & Turner, 2017; Turner,
Forstmann, Love, Palmeri, & van Maanen, 2017). In the present
study, we used a model-based cognitive neuroscience approach
to test the hypothesis that the relationship between ERP latencies
reflecting higher-order cognition and cognitive abilities is mediated
by individual differences in drift rates. If evidence in favor of the
mediation hypothesis is found, the mediation model will provide
a clear theoretical outline how advantages in neural processing
speed give rise to advantages in cognitive abilities. However, if
evidence against the mediation model is found, this will imply that
a confounding variable is likely to explain the association of neural
processing and drift rates with cognitive abilities.

A model-based cognitive neuroscience account of individual
differences in cognitive abilities. Jointly analyzing behavioral
and brain data improves inferences about human cognition, be-
cause it is assumed that both measures reflect properties of the
same latent cognitive process. In particular, the joint analysis of
both behavioral and brain data allows to explicitly test theories
regarding the cognitive processes and mechanisms governing
the association between neural correlates and observable behav-
ior. This simultaneous analysis can be achieved in a hierarchical
Bayesian framework using formal mathematical models such as
the diffusion model to constrain or inform inferences based on the
brain data (Forstmann et al., 2011; Turner, Forstmann, et al., 2017).
The hierarchical Bayesian framework provides many advantages
(M. D. Lee, 2011; Shiffrin, Lee, Kim, & Wagenmakers, 2008). First
and foremost, joint models are fit to all data simultaneously and
do not require separate parameter estimation stages that lead to
an underestimation of parameter uncertainty or standard errors
(Vandekerckhove, 2014). Both empirical and simulation studies
have shown that ignoring the hierarchy in hierarchically structured
data can bias inferences drawn from these data (Boehm, Marsman,
Matzke, & Wagenmakers, 2018; Vandekerckhove, 2014)

Second, hierarchical Bayesian models can easily handle low
observation counts or missing data structures (M. D. Lee & Wagen-
makers, 2014), which is an ideal property when the cost of collect-
ing neural measurements is high. In particular, Bayesian Markov
Chain Monte Carlo (MCMC) sampling finds posterior distributions
of model parameters without the need for strong assumptions re-
garding the sampling distribution of these parameters (Levy & Choi,
2013). Moreover, Bayesian statistical modeling approaches do not
rely on asymptotic theory (S. Y. Lee & Song, 2004). These two
properties make convergence issues in multivariate regression
models in smaller samples less likely. Another favorable property
of Bayesian hierarchical modeling is shrinkage, which describes
the phenomenon that individual parameter estimates are informed
by parameter estimates for the rest of the sample. Because less
reliable and outlier estimates are pulled towards the group mean,
shrinkage has been used in neuroimaging research to improve
the reliability of individual functional connectivity estimates by 25
to 30 percent (Dai & Guo, 2017; Mejia et al., 2018; Shou et al.,

Fig. 1. Simple visualization of both linking models (such that the mediation-linking
model includes dashed connections). Shaded nodes represent observed data across
participants i. Bi, δI , and gi represent the highest latent variables of neural pro-
cessing speed (left: describing shared variance across ERP latencies), evidence
accumulation velocity (top: describing shared variance across reaction time distribu-
tions), and cognitive ability (right: describing shared variance across intelligence test
scores).

2014). Taken together, these desirable properties of hierarchical
Bayesian models open up the possibility to use multivariate regres-
sion models such as structural equation models (SEM) or latent
growth curve models in neuroimaging research, where sample
sizes are usually smaller than in behavioral research due to the
cost associated with the collection of neural measures.

The joint analysis of behavioral and neural data can be ex-
panded into a cognitive latent variable model (CLVM) by including
data from multiple conditions and/or tasks and by introducing co-
variates such as cognitive ability tests or personality questionnaires
into the hierarchical model (Vandekerckhove, Tuerlinckx, & Lee,
2011; Vandekerckhove, 2014). In addition to jointly modeling be-
havioral and neural data, the cognitive latent variable framework al-
lows estimating correlations between higher-order variables, which
reflect the covariances between behavioral, neural, and cognitive
abilities data across experimental tasks or ability tests. As such,
a CLVM is a computationally expensive, but highly flexible tool
that strongly resembles structural equation modeling (SEM) in the
way that it allows specifying associations between latent variables
and distinguishing between constructs and their measurements.
Vandekerckhove (2014) demonstrated the advantages of a CLVM
in comparison to a more conventional two-stage analysis when
modeling the latent association between evidence accumulation
rates in executive function tasks and psychometric measures of
dysphoria.

In the present study, we constructed CLVMs to assess the la-
tent relationship between latencies of ERP components reflecting
higher-order processing (P2, N2, P3), reaction times and accura-
cies in elementary cognitive tasks, and general cognitive abilities
(see Figure 1). For this purpose, we reanalyzed data from a
study with multiple measurement occasions previously reported
in Schubert et al. (2017). In particular, we wanted to test if the
association between latencies of ERP components associated
with higher-order cognitive functions and general cognitive abilities
established with conventional structural equation modeling could
be explained by individual differences in the velocity of evidence
accumulation.

For this purpose, we constructed one measurement model for
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each of the three variable domains (ERP latencies, behavioral
data, intelligence test performance). In each of these measure-
ment models, a superordinate latent variable provides an estimate
of the common variance of conditions or subtests within each
variable domain. This latent variable can be considered a latent
trait free of measurement error and task-specific variances. The
main reason for estimating those latent traits is that they allow
the estimation of individual differences on the construct level and
are therefore not restricted to specific measurements or opera-
tionalizations of constructs. For ERP latencies, this latent variable
reflects an error-free estimate of the neural processing speed of
higher-order cognitive processes. For behavioral data, this latent
variable reflects an error-free estimate of velocity of evidence ac-
cumulation across different elementary cognitive tasks and their
conditions. While we used a cognitive model (the diffusion model)
to describe performance in these cognitive tasks, we could also
have estimated behavioral processing speed as mean reaction
times in these tasks. Finally, for intelligence test performance, the
superordinate latent variable reflects an error-free measurement
of general intelligence across different intelligence subtests.

Each of these latent traits contain a surplus meaning that al-
lows the generalization of any results to other measurements of the
same construct, i.e., any association between general intelligence
and neural processing speed should not only hold for the specific
tests used in the present study, but also for similar cognitive abil-
ity tests. To test the mediation hypothesis, we only used those
superordinate latent variables and regressed general intelligence
on neural processing speed and evidence accumulation velocity,
which was in turn regressed on neural processing speed. Hence,
the core of our hypothesis that individual differences in the velocity
of evidence accumulation mediate the association between neu-
ral processing speed and general intelligence is reflected in this
regression model of latent variables. The measurement models
giving rise to the latent variables only serve to provide error-free
and task-/test-general estimates of these three traits.

We also conducted out-of-sample forecasts to validate how well
this mediation model was able to predict individual cognitive ability
test scores solely based on new participants’ electrophysiological
and behavioral data. We expected that a greater speed of neural
information-processing would facilitate evidence acquisition during
decision making and memory updating, and that this advantage
in the velocity of evidence accumulation would mediate the pre-
dicted association between neural processing speed and general
cognitive abilities.

1. Materials and Methods

Participants.N = 122 participants (72 females, 50 males) from
different occupational and educational backgrounds participated in
three sessions of the study. They were recruited via local newspa-
per advertisements, social media platforms, and flyer distributions
in the Rhine-Neckar metropolitan region. Participants were be-
tween 18 and 60 years old (M = 36.7, Med = 35.0, SD = 13.6),
had normal or corrected to normal vision, and reported no history
of mental illness. All participants signed an informed consent prior
to their participation in the experiment. The study was approved
by the ethics committee of the faculty of behavioral and cultural
studies, Heidelberg University.

Procedure. The study consisted of three sessions that were each
approximately four months apart. Participants completed the ex-
perimental tasks in the first and third session while their EEG

was recorded in a dimly-lit, sound-attenuated cabin. The order of
tasks (choice reaction time task, recognition memory task, letter
matching task) was the same for all participants and both sessions.
During the second session, participants completed the cognitive
ability tests, a personality questionnaire (data reported in Kret-
zschmar, Spengler, Schubert, Steinmayr, & Ziegler, 2018), and a
demographic questionnaire. Each session lasted approximately
3-3.5 hours in duration with EEG being collected for approximately
2.5 hours. Participants were given breaks between tasks and
conditions to reduce mental fatigue.

Measures.

Experimental tasks.

Choice reaction time task (CR) Participants completed a choice
reaction time task with two conditions, a two-alternative (CR2) and
a four-alternative (CR4) choice condition. Four white squares were
presented in a row on a black screen. Participants’ middle and
index fingers rested on four keys directly underneath the squares.
After a delay of 1000-1500 ms, a cross appeared in one of the four
squares and participants had to press the corresponding key as
fast and accurate as possible. The screen remained unchanged
for 1000 ms after their response to allow the recording of post-
decision neural processes. Then, a black screen was shown for
1000-1500 ms between subsequent trials; the length of the inter-
trial interval (ITI) was uniformly distributed. See the left part of
Figure 2 for an overview of the experimental procedure. While
the task may suggest that the stimulus might simply “pop out”,
resulting in immediate stimulus detection after its onset, this is
not corroborated by empirical data. An increase in the logarithm
of stimulus alternatives leads to a linear increase in RTs (Hick’s
law, Hick, 1952), which indicates that evidence is accumulated
continuously until a decision point is reached and that this process
takes longer the more stimulus alternatives are presented, either
because more evidence has to be considered or because the
process gets noisier. The slope of a regression across choice
alternatives in Hick-like tasks is supposed to reflect the “rate of
gain of information” (Hick, 1952), which is conceptually very similar
to the drift rate as a measure of the rate of evidence accumulation.

In the two-choice response time condition, the number of
choices was reduced to two squares in which the cross could
appear for 50 subsequent trials. In the four-choice response time
condition, the cross could appear in any of the four squares. Both
conditions began with ten practice trials with immediate feedback
followed by 200 test trials without feedback. The order of condi-
tions was counterbalanced across participants. In the four-choice
condition, we treated all three responses that were not the correct
one as incorrect, allowing us to model the decision process with
two decisions thresholds. Due to the high accuracy in the four-
choice condition, it is unlikely that this simplification of the decision
process has distorted the results, which is also supported by the
similar and high factor loadings of the latent choice reaction time
factor on the two- and four-choice conditions (see Results).

Letter matching task (LM) Participants saw two white letters on
a black screen and had to decide whether they were physically
(physical identity condition) or semantically (name identity condi-
tion) identical by pressing one of two keys. Letters were identical
in 50% of the trials. Each trial was followed by an inter-trial in-
terval (ITI) of 1000-1500 ms. See the middle part of Figure 2
for an overview of the experimental procedure. Conditions were
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presented block-wise. Each condition began with ten practice tri-
als with immediate feedback followed by 300 test trials without
feedback. All participants completed the physical identity condition
first at the first measurement occasion, and second at the second
measurement occasion.

Recognition memory task (RM) Participants viewed memory sets
of white, numerical digits (0 to 9) on a black screen. Digits were
presented sequentially for 1000 ms each followed by a blank inter-
stimulus interval shown for 400-600 ms. After the final digit was
presented, participants saw a black screen with a white question
mark for 1800-2200 ms. Subsequently, they were shown a single
digit and had to decide whether the digit had been included in
the previously presented memory set by pressing one of two keys.
Each trial was followed by a uniformly distributed ITI of 1000-1500
ms. The probe digit was included in the memory set in 50% of the
trials. There were three conditions of the experiment with the mem-
ory set consisting of either one, three, or five digits. See the right
part of Figure 2 for an overview of the experimental procedure in
the set size 3 condition. The three conditions were presented block-
wise and the order of presentation was counterbalanced across
participants. Each condition consisted of ten practice trials with
immediate feedback followed by 100 test trials without feedback.

Cognitive abilities tests.

Berlin intelligence structure test (BIS) We administered the Berlin
intelligence structure test (Jäger & Süß, 1997), which distinguishes
between four operation-related (processing speed, memory, cre-
ativity, processing capacity), and three content-related (verbal,
numerical, figural) components of cognitive abilities. Each of the
45 tasks included in the test consists of a combination of one
operation- with one content-related component. Following the
manual, we calculated participants’ scores in the four operation-
related components by aggregating the normalized z-scores of
tasks reflecting the specific operational components irrespective
of content. The mean score of the processing capacity (PC) com-
ponent was M = 101.70 (SD = 7.99), the mean score of the
processing speed (PS) component was M = 98.00 (SD = 7.10),
the mean score of the memory (M) component was M = 99.40
(SD = 6.51), and the mean score of the creativity (C) component
was M = 98.02 (SD = 6.14). We then transformed these scores
to z-scores for further analyses.

Advanced Progressive Matrices (APM) Participants completed a
computer-adapted version of Raven’s Advanced Progressive Matri-
ces (Raven, Court, & Raven, 1994). The APM is a fluid intelligence
test that consists of 36 items. Each item consists of a 3x3-matrix
with geometric figures that follow certain logical rules and sym-
metries. The last element of the matrix is missing and must be
chosen out of eight alternatives without time limit (see Figure 3 for
a fictional sample item). Following the manual, participants’ perfor-
mance was calculated as the number of correctly solved items of
the second set. Moreover, we calculated performance in the odd
and even trials of the test separately to construct two indicators
of latent APM performance. We then transformed these raw test
sores to z-scores for further analyses. Participants solved on aver-
age M = 23.43 (SD = 6.71) items correctly, which corresponds
to a mean IQ score of M = 98.80 (SD = 15.68). Performance on
even trials, Meven = 12.23 (SD = 3.51) correctly solved items,
was comparable to performance on odd trials, Modd = 11.20
(SD = 3.52) correctly solved items.

EEG recording. Participants’ EEG was recorded with 32 equidis-
tant silver-silver chloride electrodes, a 32-channel BrainAmp DC
amplifier (Brain Products, Munich) and a sampling rate of 1000
Hz (software bandpass filter of 0.1-100 Hz with a slope of 12
db/octave). In addition, participants’ electrooculogram (EOG) was
recorded bipolarly with two electrodes positioned above and below
the left eye and two electrodes positioned at the outer corners
of the eyes. Electrode impedances were kept below 5 kΩ during
recording. Data were collected with a central electrode reference
but later offline re-referenced to the average activity of all elec-
trodes (average reference). The data were filtered offline with a
low-pass filter of 16 Hz with a slope of 12 db/octave.

Data analysis.

Behavioral data. To remove outliers in the behavioral data, we dis-
carded any reaction times faster than 100 ms or slower than 3000
ms. In a second step, we discarded any trials with logarithmized
reaction times exceeding ± 3 standard deviations from the mean
reaction time of each condition. Deviations in criteria (i.e., less strict
criteria) did not affect the covariance structure between variables,
suggesting adequate robustness.

Evoked electrophysiological measures. Event-related potentials
(ERPs) were analyzed separately for each task and condition.
ERPs were calculated by averaging all experimental trials, time-
locked to the onset of the task-relevant visual stimuli, with windows
of interest that were 1000 ms long with a preceding baseline of 200
ms. We corrected for ocular artifacts with the regression proce-
dure suggested by Gratton, Coles, and Donchin (1983). Windows
of EEG data with amplitudes exceeding ± 70 µV at least once
within the time window, with amplitude changes exceeding 100 µV
within 100 ms, or with activity lower than 0.5 µV were discarded
as artifacts.

Latencies of three ERP components were calculated for each
participant in each experiment. Grand-average waveforms of event-
related potentials are presented in Figure 4. P2 peak latencies
were determined with regard to the greatest positive local maxima
at the fronto-central electrode on the midline, which roughly corre-
sponds to the Fz electrode in the 10-20 system, in a 120 to 320
ms time window. N2 and P3 peak latencies were determined with
regard to the greatest negative and positive local maxima at the
parietal electrode on the midline, which roughly corresponds to the
Pz electrode in the 10-20 system, in a 140 to 370 ms time window
(N2) and a 200 to 630 ms time window (P3), respectively. Peak
latencies were determined separately for each condition of each
experimental task, then averaged across conditions within each
experiment, and then z-standardized for further analyses. Prior
to averaging across experimental conditions, we discarded any
peak latencies exceeding ± 3 SDs from the mean peak latency
of each condition. If any peak latencies were discarded, the av-
erage across conditions was calculated based on the remaining
conditions.

Cognitive latent variable models. We constructed hierarchical
Bayesian models to assess the latent relationship between re-
action times, latencies of the three ERP components (P2, N2, P3),
and cognitive ability test scores. For this purpose, we defined
three separate sub-models describing the domain-specific asso-
ciations between a) ERP latencies in experimental tasks across
two measurement occasions, b) behavioral data in experimental
tasks across two measurement occasions, and c) performance in
cognitive ability tests.

Schubert et al. Cognition and Individual Differences lab | University of California, Irvine | cidlab.com | February 20, 2025 | 5
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Fig. 2. Participants completed three experimental tasks. The choice reaction time task (CR) consisted of a 2-choice (CR2) and a 4-choice (CR4) condition with 200 trials each,
the letter matching task of a physical identity (PI) and name identity (NI) condition with 300 trials each, and the recognition memory task (RM) of memory set sizes 1 (RM1), 3
(RM3), and 5 (RM5) with 100 trials each.

Then, we constructed two models using either 1) only ERP
latencies or 2) ERP latencies and behavioral data to predict per-
formance in cognitive ability tests. To test the hypothesis that drift
rates mediate the relationship between neural processing speed
and cognitive abilities, we compared performance of a direct re-
gression model, in which ERP latencies predicted cognitive abilities
(“Regression Model”), to a mediation model, in which the effect
of ERP latencies on cognitive abilities was mediated by drift rates
(“Mediation Model”).

We used Just Another Gibbs Sampler (JAGS; Plummer, 2003)
with a module that adds a diffusion model distribution to JAGS
(jags-wiener; Wabersich & Vandekerckhove, 2014) to find parame-
ter estimates for the hierarchical model. Each model was fit with
three Markov Chain Monte Carlo (MCMC) chains run in paral-
lel. Each chain contained 2,000 burn-in samples and 100,000
additional samples with a thinning parameter of 10, resulting in
10,000 posterior samples per chain. Posterior samples from the
three chains were combined to one posterior sample consisting of
30,000 samples for each model parameter. Model convergence
was evaluated based on the Gelman-Rubin convergence statistic
R̂, which compares the estimated between-chains and within-chain
variances for each model parameter (Gelman & Rubin, 1992). Neg-
ligible differences between these variances were indicated by R̂
values close to 1.

Submodel: ERP latencies in experimental tasks ERP latencies
were modeled in a hierarchical structural equation model (SEM) in-
spired by the parameter expansion approach suggested by Merkle
and Rosseel (2018). Each of the three ERP latencies (P2, N2, P3)
was quantified in three tasks at two sessions. Hence, six observed
variables (3 tasks j × 2 sessions m) loaded onto each of the three

first-order component (c)-specific ERP factors η(P2), η(N2), and
η(P3). These three latent components loaded onto a second-order
latent factor B that was estimated per participant i.

Latent factors and observed variables had normally distributed
prior and hyperprior distributions. The means of these priors re-
flected linear regressions of the respective higher-order factors.
For reasons of identifiability, the loading γ(P2) of the first lower-
order factor ηP2 on the higher-order factor B was fixed to 1, while
the other loadings, γ(N2) and γ(P3), were given standard normal
priors: γ(P2) = 1 and γ(N2), γ(P3) ∼ N (0, 1).

Finally, precisions ψ (inverses of variances) of all la-
tent variables were modeled as gamma distributed variables:
ΨB , ψ(P2), ψ(N2), ψ(P3) ∼ Γ(1, 0.5).

ηi(P2) ∼ N (γ(P2) ·Bi , ψ(P2))
ηi(N2) ∼ N (γ(N2) ·Bi , ψ(N2))
ηi(P3) ∼ N (γ(P3) ·Bi , ψ(P3))

For the second-order latent factor,

Bi ∼ N (0 , ΨB)

Subsequently, the observed latencies ERPicjm of ERP compo-
nents c, tasks j, and measurement occasions m for each participant
i were regressed onto the first-order latent variables. These re-
gressions were defined by the respective factor loadings λcjm,
the respective higher-order latent variables ηic, and the respective
precisions θcjm . Factor loadings λcjm on the first-order latent vari-
ables were fixed to 1 for task j = CR and measurement occasion
m = 1 for all three ERP components for reasons of identifiability.
See the bottom left parts of Figure 5, Figure 6, and Figure 7 for a
graphical illustration of the measurement model of ERP latencies.
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Fig. 3. Example stimuli of Raven’s Progressive Matrices. Each item consists of a
3x3-matrix with geometric figures that follow certain logical rules and symmetries.
The last element of the matrix is missing and must be chosen out of eight alternatives.

ERPicjm ∼ N (λcjm · ηic , θcjm)
λc(CR)1 = 1
λcjm ∼ N (0, 1) ∀ (j,m) /∈ {j = CR} ∩ {m = 1}
θcjm ∼ Γ(1, 0.5)

Submodel: Behavioral data in experimental tasks We used a com-
bination of the SEM approach based on parameter expansion
described above and the hierarchical diffusion model approach
described by Vandekerckhove et al. (2011) to model individual
differences in reaction times and accuracies in experimental tasks
j, conditions k, and measurement occasions m.

In a first step, we modeled task-, condition-, and measurement
occasion-specific drift rates in a hierarchical SEM with three task-
specific first-order factors ηij . These three latent components
loaded onto a second-order latent factor ∆i. Again, latent factors
and observed variables had normally distributed priors and hyper-
priors. The means of these priors reflected linear regressions of
the respective higher-order factors.

For reasons of identifiability, the loading γ(CR) of the first lower-
order factor η(CR) on the higher-order factor ∆ was fixed to 1, while
the other loadings, γ(RM) and γ(LM), were given standard normal
priors: γ(CR) = 1 and γ(RM), γ(LM) ∼ N (0, 1). Precisions ψ
(inverses of variances) of all latent variables were modeled as
gamma distributed variables: ψ(CR), ψ(RM), ψ(LM) ∼ Γ(1, 0.5).

ηi(CR) ∼ N (γ(CR) ·∆i , ψ(CR))
ηi(RM) ∼ N (γ(RM) ·∆i , ψ(RM))
ηi(LM) ∼ N (γ(LM) ·∆i , ψ(LM))

Subsequently, the condition, task-, and measurement-occasion-
specific drift rates δijkm were regressed onto the first-order latent
variables ηij . Factor loadings on the respective first-order latent
variables were fixed to 1 for condition k = 1, referring to the
condition with lowest-information processing demands within each
task, and measurement occasion m = 1 for all three tasks for
reasons of identifiability. The other loadings λjkm were given

standard normal priors: λjkm ∼ N (0, 1). Precisions of drift rates
were modeled as gamma distributed variables: θjkm ∼ Γ(1, 0.5).
In addition, we estimated intercepts νjkm for the lowest-order
drift rates, because the behavioral data were not z-standardized:
νjkm ∼ N (2, 1.52).

δijkm ∼ N (νjkm + λjkm · ηij , θjkm)

In a second step, these drift rates were entered into the dif-
fusion model distribution in addition to task-, condition-, mea-
surement occasion-, and person-specific boundary separation
αijkm and non-decision time τijkm parameters (with the starting
point parameter fixed at 0.5). Both boundary separation param-
eters and non-decision times were given standard normal priors:
αijkm ∼ N (1, 0.52), τijkm ∼ N (0.3, 0.22). See the top parts of
Figure 5, Figure 6, and Figure 7 for a graphical illustration of the
measurement model of behavioral data in experimental tasks.

yijkmn ∼ Wiener(αijkm, 0.5, τijkm, δijkm)

Submodel: Performance in cognitive abilities tests Performance
in the two cognitive abilities tests was modeled with a SEM. The
four operation-related components of the BIS and the two halves
of the APM loaded onto a first-order latent factor gi.

Subsequently, the observed tests scores IQit per cognitive
ability test t were regressed onto the first-order latent variable
gi. For reasons of identifiability, the loading λ1 of the processing
capacity score of the BIS η1 on the higher-order factor g was
fixed to 1, while the other loadings, λ2, λ3, λ4, λ5, λ6 were given
standard normal priors: λ1 = 1 and λ2, λ3, λ4, λ5, λ6 ∼ N (0, 1).
Precisions θ (inverse of variances) of observed IQ scores were
given gamma distributed priors: θt ∼ Γ(1, 0.5). See the bottom
right parts of Figure 5, Figure 6, and Figure 7 for a graphical
illustration of the measurement model of cognitive abilities tests.

IQit ∼ N (λt · gi , θt)

Linking models Finally, we linked all submodels in two linking
structures. Whereas the three submodels only established latent
measurement models for each of the three variable domains (neu-
ral data, behavioral data, and cognitive abilities data), the two
linking structures specified structural associations between vari-
able domains. Hence, the comparison of the two linking models
contained the critical comparison: If the velocity of evidence ac-
cumulation mediated the relationship between neural speed and
cognitive abilities, the mediation model should outperform a direct
regression of cognitive abilities on ERP latencies.

We therefore specified two linking structures. In the first linking
structure we specified a regression model and predicted cognitive
abilities tests scores solely through neural processing speed by
regressing the latent cognitive abilities factor gi on the latent ERP
latencies factor Bi (see Figure 1 and compare to Figure 6), while
the latent drift rate factor ∆i was unrelated to the other two latent
variables.

gi ∼ N (β ·Bi , Ψg),
∆i ∼ N (0 , Ψ∆),
β ∼ N (0, 1),

Ψg,Ψ∆ ∼ Γ(1, 0.5)

Schubert et al. Cognition and Individual Differences lab | University of California, Irvine | cidlab.com | February 20, 2025 | 7
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Fig. 4. Grand averages of event-related potentials at frontal, central, and parietal electrodes over midline. ERPs were elicited by stimulus onset and averaged across laboratory
sessions and conditions for each experimental task.
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Fig. 5. Graphical visualization of both the regression-linking and mediation-linking models (such that the mediation-linking model includes dashed connections). An alternate
way of understanding the neurocognitive models presented in this manuscript is by viewing the graphical notation for hierarchical models as described by M. D. Lee and
Wagenmakers (2014). Shaded nodes represent observed data while unshaded nodes represent unknown (fitted) parameters. Arrows represent direction of influence such
that hierarchical parameters influence lower level parameters and observed data. Plates denote the number of observations for each variable and data point of participant i,
experimental task j, experimental condition k, measurement occasion m, ERP component c, cognitive abilities task t, and trial n. Behavioral data y is a vector of both reaction
time and accuracy observations.
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The second linking structure consisted of a mediation model, in
which the latent cognitive abilities factor gi was regressed onto both
the latent ERP latencies factor Bi and the latent drift rate factor ∆i,
which was in turn regressed onto the latent ERP latencies factor
Bi (see Figure 7).

gi ∼ N (β1 ·Bi + β2 ·∆i, Ψg),
∆i ∼ N (β3 ·Bi, Ψδ),

β1, β2, β3 ∼ N (0, 1),
Ψg, θδ ∼ Γ(1, 0.5)

The data of 92 randomly drawn participants (of 114 total; drawn
without replacement) were used as a training set to find posterior
distributions of cognitive latent variables (i.e., samples from proba-
bility distributions that reflect certainty/uncertainty about parame-
ter estimates as reflected by the data). Standardized regression
weights were calculated by multiplying unstandardized regression
weights with the quotient between the ratio of standard deviation
between the predictor (the higher-order latent variable) to the crite-
rion (the lower-order latent or observed variable): β = b · σy

σx
. The

indirect mediation effect βindirect was calculated by multiplying the
standardized regression weights β2 and β3 in the Mediation model
as discussed by Baron and Kenny (1986). We report the median,
2.5th, and 97.5th percentiles, forming a 95% credible interval (CI)
as an equal-tailed interval to describe the posterior distributions of
standardized regression weights.

Model evaluation The performance of both linking structures was
compared based on their in-sample prediction ability, their De-
viance Information Criterion (Spiegelhalter, Best, Carlin, & van der
Linde, 2014), and, crucially, their out-of-sample-prediction ability of
new participants’ data.

In-sample prediction Fitting the model with the training set,
we created posterior predictive distributions by simulating new neu-
ral, behavioral, and cognitive abilities data separately for each par-
ticipant based on each participant’s posterior distributions of model
parameters and on model specifications. Hence, we simulated
two posterior predictive data sets for each of the 92 participants in
the training set: One of these posterior predictive data sets was
based on model specifications and parameter estimates of the re-
gression model, and the other one based on model specifications
and parameter estimates of the mediation model. Subsequently,
we assessed how strongly these simulated data were related to
the observed data for the whole sample of 92 participants sepa-
rately for each of the two candidate models. For this purpose, we
compared a) observed and predicted ERP latencies for each ERP
component c, experimental task j, and session m, b) observed and
predicted RT distributions and accuracies for each condition c, ex-
perimental task j, and session m, and c) observed and predicted IQ
test scores for each sub-test t. Because accuracies in elementary
cognitive tasks are typically near ceiling, the prediction of accura-
cies is considered less critical than the prediction of the other three
variables in the present study. RT distributions were compared by
comparing the 25th, 50th, and 75th percentile of the observed and
predicted RT distributions. To quantify the association between
observed and predicted values, we calculated R2

pred as the propor-
tion of variance of values T (ERP latencies, percentiles of the RT
distribution, accuracies in the experimental tasks, cognitive abilities

test scores) explained by model predictions. This statistic is based
on the mean squared error of prediction of T, MSEPT , and the
estimated variance of T across participants, ̂V ar(T ).

R2
pred = 1−

∑I

i=1 (T(i) − Tpred(i))2/(I − 1)∑I

i=1 (T(i) − T )2/(I − 1)
= 1− MSEPT

̂V ar(T )

Deviance information criterion (DIC) DIC is a measure of
goodness-of-fit for hierarchical models that provides a penalty for
model complexity (Spiegelhalter et al., 2014). DIC can be thought
of as an extension of Akaike information criterion (AIC) for hier-
archical models that enforce shrinkage, such that the number of
parameters k is no longer useful as a penalty for model complexity.
Another alternative is Bayesian information criterion (BIC), which
approximates the logarithm of the Bayes Factor (i.e. the ratio of
Bayesian probabilities for two comparison hypotheses), but which
is difficult to estimate in most hierarchical models (Kass & Raftery,
1995). Due to ease of estimation and implementation in JAGS
(Plummer, 2003), we used DIC as a known model comparison met-
ric. Smaller DIC values indicate more favorable models. However,
we consider out-of-sample prediction of new participants to be the
ultimate test of models that natively penalizes model complexity
due to overfitting of in-sample data.

Out-of-sample prediction A test set of 22 new participants
(the randomly drawn remaining participants) was used to find a
second set of posterior predictive distributions for each participant.
This test set allowed us to assess how well models were able
to predict new participants’ data in one domain (e.g., cognitive
abilities) based on data from the other two domains (e.g., electro-
physiological and behavioral data). We iteratively predicted data
from each of the three domains (electrophysiological, behavioral,
and cognitive abilities data) by the other two for each new partici-
pant and each of the two models. Out-of-sample prediction was
then evaluated in each of the three data domains using R2

pred

as a measure of variance explained in variables of one domain
by variables from the other two domains. Note that there is no
constraint of R2

pred in out-of-sample evaluation to values above
zero. Negative values indicate that there is more deviation of the
predicted values from the true values than there is variance in the
true values themselves.

Open-source data and analysis code. MATLAB, Python, and
JAGS analysis code and data are available at https://osf.io/
de75n/ and in the following repository (as of February 2018):
https://github.com/mdnunez/ERPIQRT/

2. Results

Mean performance (reaction times and accuracies) in the three
experimental tasks is shown in Table 1. Grand-average waveforms
of event-related potentials are presented in Figure 4. See Table 2
for mean ERP latencies in both sessions.

In-sample prediction. The first linking model (see Figure 5 and
Figure 6), in which cognitive abilities were solely predicted by
neural processing speed, provided an acceptable account of the
training data. On average, it explained 63% of the variance in
cognitive abilities tests, 62% of the variance in ERP latencies, 87%
of the variance in the 25th percentile of the RT distribution, 89% of
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the variance in the 50th (median) percentile of the RT distribution,
83% of the variance in the 75th percentile of the RT distribution,
and 30% of the variance in accuracies in reaction time tasks. Note
that the cognitive latent variable model may have explained more
variance in reaction times than in ERP latencies and cognitive
abilities tests because the measurement model of reaction times
was more complex (allowing the task-, condition- and session-
specific estimation of boundary separation and non-decision time
models not depicted in the structural equation model visualization)
than the other two more parsimonious measurement models. The
DIC of the overall hierarchical model with the first linking structure
was -3.2012 * 105 and was thus the favored model by the DIC
(compared to the second linking structure DIC below). The latent
neural processing speed variable predicted the latent cognitive
abilities variable to a large degree, β = .84, CI 95% [.75; .91],
suggesting that participants with greater cognitive abilities showed
a substantially higher neural processing speed.

The second linking model (see Figure 7 and Figure 5), in
which the effect of neural processing speed was partly mediated
by drift rates, also provided a good account of the training data.
It explained on average 63% of the variance in cognitive abilities
tests, 63% of the variance in ERP latencies, 89% of the variance in
the 25th percentile of the RT distribution, 90% of the variance in the
50th (median) percentile of the RT distribution, 83% of the variance
in the 75th percentile of the RT distribution, and 25% of the variance
in accuracies in reaction time tasks. The explained variance is
therefore nearly identical to the first linking model. The DIC of the
model with the second linking structure was -3.2007 * 105, a larger,
and thus unfavored, DIC compared to the previous model. Again,
the latent neural processing speed variable predicted the latent
cognitive abilities variable, β1 = .78, CI 95% [.63; .89]. Individual
latent neural processing speeds also predicted individual latent drift
rates, β3 = .17, CI 95% [.05; .33]. However, there was only weak
evidence that greater latent drift rates predicted greater cognitive
abilities, β2 = .23, CI 95% [-.05; .52]. In addition, we found some
evidence for a negligible indirect effect of neural processing speed
on cognitive ability test scores that was mediated by drift rates,
βindirect = .04, CI 95% [-.01; .09]. See Figure 8 for posterior
density distributions of the standardized regression weights. To
compare both models, we calculated DICs as measures of model
fit. The difference between DICs of ∆DIC = 43.27 indicated that
the mediation model could not provide a better account of the data
than the more parsimonious regression model.

Out-of-sample prediction of new participants. To evaluate the
ability to predict unknown data of a new participant in one domain
(e.g., unknown cognitive ability test scores) from observed data
in another domain (e.g., observed ERP latencies), we assessed
out-of-sample-prediction ability for both models in a test set of 22
randomly drawn participants.

Given a new participant’s ERP and RT data, the regression link-
ing model (see Figure 6) yielded the ability to make somewhat ac-
curate predictions of that participant’s cognitive abilities test scores
and ERP latencies. That is, out-of-sample prediction explained
39% of the variance in cognitive abilities tests across participants
and tasks and 22% of the variance in ERP latencies across par-
ticipants and tasks. However, out-of-sample prediction of reaction
time data was not successful, R2 = −.51 in the 25th percentile of
the RT distribution, R2 = −.50 in the 50th (median) percentile of
the RT distribution, and R2 = −.67 in the 75th percentile of the RT
distribution. Accuracies could also not be predicted successfully,
R2 = −1.22. Note that R2

pred is not constrained to values above

zero in out-of-sample prediction. Hence, negative values indicated
that there was more deviation of the predicted values from the true
values than there was variance in the true values themselves. The
lack of a successful prediction of behavioral data is not surprising,
as the regression model contained no link between drift rates and
the other covariates.

The mediation linking model (see Figure 7) produced very
similar predictions of participants’ cognitive ability test scores and
ERP latencies. Out-of-sample prediction explained 36% of the
variance in cognitive abilities tests across participants and tasks
and 23% of the variance in ERP latencies across participants
and tasks. Again, prediction of out-of-sample reaction time data
was not successful, R2 = −1.10 in the 25th percentile of the
RT distribution, R2 = −.96 in the 50th (median) percentile of
the RT distribution, R2 = −2.09 in the 75th percentile of the
RT distribution, and R2 = −1.46 for accuracies in the reaction
time tasks. This lack of a successful prediction of the behavioral
data indicates that the covariation of drift rates with ERP latencies
and intelligence test scores on the latent level was insufficient
to account for observed reaction time data in specific tasks and
conditions. The predictive failure likely results from the small latent
association of drift rates with ERP latencies and cognitive abilities,
but also from large proportions of task- and condition-specific
variances in condition-specific drift rates that were not predicted
by any covariates.

3. Discussion

We investigated whether the association between neural process-
ing speed and general cognitive abilities was mediated by the
velocity of evidence accumulation. For this purpose, we used a
Bayesian cognitive latent variable modeling approach that allowed
the joint modeling of behavioral, neural, and cognitive abilities
data and estimation of relationships between higher-order latent
variables. The cognitive latent variable model was able to predict
a substantial amount of variance in cognitive ability test scores
in new participants solely based on those participants’ cortical
processing speeds.

We observed a strong association between neural processing
speed and general cognitive abilities in the way that individuals
with greater cognitive abilities showed shorter latencies of ERP
components associated with higher-order cognition. Moreover, we
found that individuals with greater neural processing speed also
showed a greater velocity of evidence accumulation. Given an
individual’s speed of neural information processing and evidence
accumulation, we could predict about 40 percent of their variance in
intelligence test scores. However, the association between neural
processing and general cognitive abilities was only mediated by
drift rates to a very small degree, and the more complex mediation
model did not provide a better account of the data than the more
parsimonious regression model.1

These results support the idea that a greater speed of neural
information processing facilitates evidence accumulation, and that

1We fitted another variant of the mediation model, in which reaction times were described by a
normal distribution instead of a diffusion model distribution to evaluate the benefits of diffusion
modeling and the generalizability of our results (for details regarding modeling choices and results,
see the online repository). The model predicted the same amount of in-sample variance in ERP
latencies and intelligence test scores, but was less accurate in predicting reaction time data (75-
84% of explained variance in percentiles of the RT distribution). The out-of-sample prediction
of both reaction time data and cognitive ability test scores also deteriorated, with R2s ranging
from -1.79 to -2.40 for the percentiles of the RT distribution and only 30% of explained variance
in cognitive ability tests scores. Taken together, these results illustrate the benefits of diffusion
modeling and support the notion of a small mediating effect of drift rate, as predictability of cognitive
abilities decreased when drift was not included in the model.
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Fig. 6. Structural equation modeling visualization of the regression linking model. Posterior medians of standardized regression weights are shown next to paths. Asterisks
indicate factor loadings fixed to 1. CR/CR2/CR4 = choice reaction time task with two or four alternatives; RM/RM1/RM3/RM5 = recognition memory task with memory set size
of 1, 3, or 5; LM/PI/NI = letter matching task with physical identity or name identity condition; PC = processing capacity; PS = processing speed; M = memory; C = creativity.
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Fig. 7. Structural equation modeling visualization of the mediation linking model. Posterior medians of standardized regression weights are shown next to paths. Asterisks
indicate factor loadings fixed to 1. CR/CR2/CR4 = choice reaction time task with two or four alternatives; RM/RM1/RM3/RM5 = recognition memory task with memory set size
of 1, 3, or 5; LM/PI/NI = letter matching task with physical identity or name identity condition; PC = processing capacity; PS = processing speed; M = memory; C = creativity.
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Table 1. Mean RTs (SD in parentheses) for all conditions of the three experimental tasks

Session 1 Session 2
Task Accuracies RTs Accuracies RTs
Choice reaction time task

CRT2 .99 (.01) 382.79 (58.02) 1.00 (.01) 381.27 (61.01)
CRT4 .99 (.01) 477.22 (82.64) .98 (.02) 467.31 (85.70)

Recognition memory task
Set size 1 .97 (.02) 590.96 (115.67) .98 (.02) 584.02 (135.64)
Set size 3 .97 (.02) 728.46 (167.21) .98 (.03) 706.61 (176.81)
Set size 5 .97 (.03) 890.03 (240.74) .95 (.09) 850.98 (223.18)

Letter matching task
Physical identity .98 (.02) 617.79 (93.93) .98 (.02) 605.19 (102.41)

Name identity .98 (.02) 699.50 (113.02) .97 (.02) 704.38 (126.36)

Table 2. Mean ERP Latencies (SD in parentheses) averaged across conditions of each of the three experimental tasks

Task P2 N2 P3
Session 1
Choice reaction time task 211.54 (32.82) 206.15 (27.71) 330.67 (44.26)
Recognition memory task 234.08 (34.48) 251.11 (42.05) 374.35 (74.76)

Letter matching task 222.26 (33.74) 247.87 (36.80) 414.97 (86.45)
Session 2
Choice reaction time task 208.44 (33.77) 210.38 (29.62) 324.40 (42.04)
Recognition memory task 230.35 (28.19) 248.48 (43.74) 382.39 (81.13)

Letter matching task 218.16 (25.27) 240.02 (44.65) 377.74 (75.09)

Fig. 8. Posterior density distributions of the standardized regression weights of the mediation linking model. Boxes indicate the interquartile range with the median as a
horizontal line. β1 = regression of latent cognitive abilities factor on latent neural processing speed factor; β2 = regression of latent cognitive abilities factor on latent drift rate
factor; β3 = regression of latent drift rate factor on latent neural processing speed factor; βindirect = indirect effect.
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this increase in the velocity of evidence accumulation translates
to some negligible degree to advantages in general cognitive abili-
ties. Although previous studies reported substantial correlations
between drift rates and cognitive abilities (Schmiedek et al., 2007;
Schmitz & Wilhelm, 2016; van Ravenzwaaij et al., 2011), and
although preliminary results suggested that measures of neural
processing speed and drift rates can load onto the same factor
(Schubert et al., 2015), the present study provided the first direct
test of the hypothesis that the velocity of evidence accumulation
mediates the relationship between neural processing speed and
cognitive abilities. Our results suggest that only a very small
amount of the shared variance between neural processing speed
and cognitive abilities can be explained by individual differences
in the velocity of evidence accumulation as a mediating cognitive
process. In the following sections, we provide three conceptual
explanations why the velocity of evidence accumulation may only
explain little of the natural variation in human cognitive abilities
associated with cerebral processing speed. Subsequently, we
discuss methodological advantages, challenges, and possible ex-
tensions of the cognitive latent variable model used in the present
study.

(1) A common latent process. Both neural processing speed and
the velocity of evidence accumulation may reflect properties of the
same latent process that is related to general cognitive abilities.
However, the drift rate may be an impurer measure of this latent
process or may be contaminated by properties of other processes
unrelated to cognitive abilities. This position is supported by the
observation that we found an association between ERP latencies
and drift rates, and by our result that drift rates mediated the re-
lationship between ERP latencies and cognitive abilities at least
partially. Moreover, this explanation is consistent with previous
research, which suggested that the P3 may be a neural correlate
of the evidence accumulation process captured by drift rates (Kelly
& O’Connell, 2013; O’Connell et al., 2012; Ratcliff et al., 2009,
2016; van Ravenzwaaij et al., 2017). The fact that the associations
between neural processing speed and drift rates were lower than
the correlations reported in the literature may be due to deviations
from previous studies: First, the current study focused on ERP
latencies as measures of neural processing speed, whereas pre-
vious studies analyzed the relationship between amplitude and
capacity-related measures of the EEG and drift rates. Second,
previous studies focused mostly on late centro-parietal potentials,
whereas the current study included a more diverse time-course
and topography of ERP components. Third, we only related the
latent neural processing speed factor, which reflected the shared
variance between different ERP latencies across different tasks, to
the latent drift rate factor, and did not inspect task or component-
specific correlations. Considering the psychometric properties of
both ERP latencies and drift rates (Schubert et al., 2015, 2017), it
is highly likely that associations between ERP latencies and drift
rates would have been higher if we had modeled correlations sep-
arately for each condition of each experimental task. However, this
task- or condition-specific variance in ERP latencies and drift rates
is not of interest regarding general cognitive abilities.

(2) Other candidate cognitive processes. The velocity of evi-
dence accumulation may not be the appropriate candidate process
mediating the relationship between neural processing speed and
cognitive abilities. Instead, shorter latencies of ERP components
associated with higher-order cognitive processing may reflect a
faster inhibition of extraneous processes and may thus be a neural

correlate of the efficiency of selective attention (Polich, 2007). The
idea that attentional processes underlie individual differences in
cognitive abilities has been discussed numerous times. Process
overlap theory (Kovacs & Conway, 2016), for example, proposes
that a limited number of domain-general and domain-specific cog-
nitive processes contribute to individual differences in general
cognitive abilities. In the framework of process overlap theory, at-
tentional processes represent a central domain-general bottleneck
that constrains cognitive performance across different tasks. This
notion is supported by several studies reporting substantial asso-
ciations between measures of attentional control and executive
processes and general cognitive abilities (e.g., Unsworth, Fukuda,
Awh, & Vogel, 2014; Wongupparaj, Kumari, & Morris, 2015).

Additionally, a greater neural processing speed may directly fa-
cilitate the storage and updating of information in working memory
(Polich, 2007), and may thus lead to a greater working memory ca-
pacity, which may positively affect performance in a large number
of cognitive tasks. This notion is supported by numerous studies
reporting large and even near-unity correlations between measures
of cognitive abilities and working memory capacity (e.g., Engle,
Tuholski, Laughlin, & Conway, 1999; Conway, Cowan, Bunting,
Therriault, & Minkoff, 2002; Kyllonen & Christal, 1990). Individ-
ual differences in these working memory processes may not be
reflected in drift rates estimated in simple binary decision tasks.
Instead, future studies could use mathematical models of working
memory, such as mathematical implementations of the time-based
resource sharing model (Barrouillet, Bernardin, & Camos, 2004) or
the SOB-CS (Oberauer, Lewandowsky, Farrell, Jarrold, & Greaves,
2012), to explicitly model individual differences in parameters of
working memory processes and relate these parameters to neural
data in a cognitive latent variable model.

Finally, it might even be possible that several cognitive pro-
cesses mediate the relationship between neural processing speed
and cognitive abilities, and that parameters of each single cognitive
process only account for a small amount of the substantial associ-
ation. Larger multivariate studies incorporating cognitive models of
these candidate cognitive processes would be required to quantify
additive and multiplicative effects of different cognitive processes
on the relationship between neural processing speed and general
cognitive abilities.

(3) Brain properties as confounding variables. Individual differ-
ences in neural processing speed may reflect structural properties
of the brain that give rise to individual differences in cognitive abil-
ities. Brain properties may be related both to neural processing
speed and general cognitive abilities and may thus explain the sub-
stantial association between the two variables. Previous research
has shown that individuals with greater cognitive abilities showed
greater nodal efficiency in the right anterior insula and the dorsal
anterior cingulate cortex (Hilger et al., 2017). These brain regions
are core components of the salience network that is assumed
to be responsible for the detection of salient information and its
evaluation with regard to behavioral relevance and an individual’s
goals (Downar, Crawley, Mikulis, & Davis, 2002; Menon & Uddin,
2010; Seeley et al., 2007). Dynamic source imaging and lesion
studies have revealed that the relative timing of responses of the
anterior insula and the dorsal anterior cingulate cortex to stimuli
can be indexed by the N2b/P3a component of the ERP, followed by
an elicitation of the P3b in neocortical regions in response to the
attentional shift (Soltani & Knight, 2000; Menon & Uddin, 2010).
Hence, a more efficient functional organization of the salience net-
work may affect the timing of these ERP components and may also
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positively affect performance in cognitive ability tests by facilitating
the goal-driven selection of task-relevant information.

Cognitive latent variable models. The use of cognitive latent vari-
able models allows the simultaneous modeling of cognitive, neural,
and behavioral data across different tasks and ability tests. CLVMs
thus allow estimating latent correlations between different mea-
surement areas that are free of unsystematic measurement error.
This property is particularly useful when dealing with time-related
electrophysiological data, which have been shown to be very in-
consistent in their reliability (Cassidy, Robertson, & O’Connell,
2012; Schubert et al., 2017). Moreover, CLVMs allow modeling the
shared variance between diffusion model parameters across differ-
ent tasks and conditions in a hierarchical way and can thus solve
the problem of low-to-moderate consistencies of model parameters
in individual differences research (Schubert et al., 2016).

Three advantages of the hierarchical Bayesian approach have
been highlighted by the present study: First, the CLVM demon-
strated advantages over classical structural equation modeling
approaches in its predictive abilities in small-to-moderate sample
sizes. The model has been developed based on only 92 par-
ticipants and has successfully predicted 62 to 89 percent of the
within-sample variance in neural, behavioral and cognitive abilities
data. A conventional structural equation model with the same num-
ber of free parameters would require a substantially larger sample
size. Following the rule of thumb to collect at least five observa-
tions per estimated parameter (Bentler & Chou, 1987), the same
model would require a sample size of at least 480 participants in
a conventional SEM framework. Taking into account the ratio of
indicators to free parameters r (r = number of indicators/number of
free parameters), a sample size of at least 930 participants would
be required according to the equation n = 50 · r2 − 450 · r+ 1100
proposed by Westland (2010) based on the simulation results by
Marsh, Hau, Balla, and Grayson (1998). Such large sample sizes
are hardly feasible for neuroimaging research except in large-scale
collaborative research projects. The Bayesian approach presented
here enabled us to fit a structural equation model of great complex-
ity to a sample of only 92 participants. Most importantly, one of
the main results previously shown in a more parsimonious conven-
tional structural equation model applied to the same data set (i.e.,
the great association between neural processing speed and cog-
nitive abilities reported by Schubert et al., 2017), was adequately
recovered by the Bayesian model.

Moreover, the latent drift rate trait and task-, condition-, and
state-specific boundary separation and non-decision time parame-
ters could account for nearly 90 percent of the in-sample reaction
time data. In comparison, latent diffusion model parameter traits
have been shown to account for only 30 to 79 percent of variance
in single-task parameter estimates in a conventional structural
equation model (Schubert et al., 2016). This in-sample prediction
ability demonstrates that it may be beneficial to model only param-
eters with known trait properties (e.g., drift rate, see Schubert et
al., 2016) as hierarchical factors, while the other model parame-
ters that are known to be more strongly affected by task-specific
influences (e.g., non-decision time and boundary separation, see
Schubert et al., 2016) are estimated separately for each task and
condition.

Second, both the cognitive model and the structural model
were fitted to the data in a single step, allowing an accurate
representation of parameter uncertainty in posterior distributions
(Vandekerckhove, 2014), whereas previous studies relating diffu-
sion model parameters to cognitive abilities tests have relied on a

two-step process (e.g., Schmiedek et al., 2007; Schmitz & Wilhelm,
2016; Schubert et al., 2015).

Third, posterior distributions of model parameters were used
to predict cognitive ability test scores from neural and behavioral
data in a second independent sample. This is the first study to
show that posterior predictives of regression weights relating ERP
latencies, behavioral data, and cognitive ability test scores may be
used to successfully generalize predictions to another independent
sample and to predict a substantial amount of new individuals’ cog-
nitive ability test scores solely based on their electrophysiological
and behavioral data. That about 40 percent of new participants’
variance in intelligence test scores could be predicted by the model
demonstrates that individual differences in cortical and behavioral
processing speed are closely related to general intelligence, and
that both models retained their ability to predict previously unseen
data despite their complexity.

The model developed in the present study can be easily ad-
justed to include different sources of neural data, such as functional
magnetic resonance imaging or diffusion tensor imaging data, and
to relate these data to diffusion model parameters and cognitive
ability tests. Within the same hierarchical framework, parameters of
different cognitive models could be related to neural and cognitive
abilities data. This would, for example, allow testing hypotheses
about the relationship between parameters of working memory
processes and neural and cognitive abilities data. The flexibility
of the hierarchical Bayesian approach allows specifying model
and linking structures directly guided by theoretical assumptions,
which in turn allows direct comparisons of contradicting theories.
In related areas of research, the joint modeling of neural and be-
havioral data has contributed to our understanding of episodes
of mind wandering (Mittner et al., 2014; Hawkins, Mittner, Boekel,
Heathcote, & Forstmann, 2015), the dynamic inhibitory processes
underlying intertemporal choice (Turner et al., 2018), stopping
behavior (Sebastian, Forstmann, & Matzke, 2018), the role of at-
tention in perceptual decision making (Nunez et al., 2017), the
neurocognitive processes contributing to individual differences in
mental rotation (van Ravenzwaaij et al., 2017), and the neurocog-
nitive mechanisms underlying several other cognitive processes.
All of these fields of research are of great relevance for individual
differences research and may contribute to our understanding of
the neurocognitive mechanisms underlying general cognitive abil-
ities. In order to relate covariates to joint models of neural and
cognitive behavioral data, different linking strategies have been
suggested, ranking from simple regression models to multivari-
ate factor-analytical approaches (e.g., Turner, Forstmann, et al.,
2017; Turner, Wang, & Merkle, 2017; Ly et al., 2017; de Hollander,
Forstmann, & Brown, 2016).

Limitations. One limitation of the present study is that the tasks
used to assess individual differences in the efficiency of informa-
tion processing are so-called elementary cognitive tasks. Elemen-
tary cognitive tasks are cognitively relatively undemanding tasks
typically used in individual differences research to minimize the
influence of individual differences in strategy use and of previous
experience with these tasks on task performance. However, cog-
nitively more demanding tasks might yield a stronger association
between the velocity of evidence accumulation and cognitive abili-
ties. Whether drift rates based on performance in more demanding
tasks such as working memory tasks mediate the association be-
tween neural processing speed and cognitive abilities, remains an
open question. In addition, low error rates may have limited the
estimation and interpretation of diffusion model parameters. In par-
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ticular, identifying drift rate and boundary separation parameters
becomes difficult in tasks with few incorrect responses. Although
diffusion model parameters provided a good account of the be-
havioral data in all three tasks, drift rate parameters might have
reflected participants’ decision times to a larger degree than their
evidence accumulation rates.

Conclusions. We used a cognitive latent variable model approach
to show that a higher neural information processing speed pre-
dicted both the velocity of evidence acquisition and general cogni-
tive abilities, and that a negligible part of the association between
neural processing speed and cognitive abilities was mediated by
individual differences in the velocity of evidence accumulation. The
model demonstrated impressive forecasting abilities by predicting
35 to 40 percent of the variance of individual cognitive ability test
scores in an entirely new sample solely based on their electrophys-
iological and behavioral data.

Our results illustrate, however, that the assumption of a unidirec-
tional causal cascade model, in which a higher neural processing
speed facilitates evidence accumulation, which may in turn give
rise to advantages in general cognitive abilities, was not supported
by the data. This result provides important novel insights for intel-
ligence research, because the great associations between both
neural and behavioral processing speed and cognitive abilities
reported in previous studies may have suggested that a greater
neural processing speed gives rise to greater cognitive abilities
by facilitating the velocity of evidence accumulation (Schmiedek
et al., 2007; Schubert et al., 2017). Our results contradict this hy-
pothesis and instead suggest that neural correlates of higher-order
information-processing and drift rates might reflect the same latent
process that is strongly related to general intelligence. Future re-
search will reveal whether structural or functional brain properties
may act as confounding variables giving rise to the association
between mental speed and mental abilities by affecting both the
speed of information processing and general cognitive abilities.
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