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DESIGN CONSIDERATIONS FOR A LUMPED SOLENOID* 

Klaus Halbach 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94702 

1. Introduction 

This note is primarily intended to demonstrate 
which characteristics of a lumped solenoid (with a 
steel return path that may also be lumped) are 
important for good performance. This understanding 
is clearly necessary to make judgments about trade­
offs between qualities of the magnetic field and 
other desirable attributes of a particular magnet 
geometry. We also want to show the use of a method­
ology and some "thinking tools" that can help to 
obtain the good qualitative understanding of mag­
netic fields that is necessary for good magnet de­
sign, is indispensable for hand calculations, and 
should be the basis for magnetic field computer 
runs. While it is clear that it is not possible to 
say anything basically new along these lines, it 
seems worthwhile to formulate and state these con­
cepts clearly, since they are not nearly as well 
known as they ought to be. 

To accomplish the stated objective, we first 
describe the design problem and the general method 
used to solve it. We then introduce two analog 
models that often help to get a good qualitative 
understanding of magnetic fields. In addition, we 
derive and use a simple formula that can be useful 
for making quantitative estimates of some properties 
of magnetic fields. Finally, we apply these. methods 
to the design of the lumped solenoid. 

2. The Design Problem and the 
Methodology Used to Solve It 

Fig. B-1 shows a cross-section of the magnet 
under discussion, with the center line (CL) re­
presenting an axis of cylindrical symmetry. The 
vertical line at the left represents a symmetry 
plane. The cross-hatched area indicates the steel 
that is used to conduct the magnetic flux around 
the lumped solenoid of radius rl' the part at the 
top of the drawing representing either a cylindri­
cal shell or a cross-section through a "vane" in 
case one chooses to "lump" that part of the steel 
structure. 

The design goal is the production of a reason­
ably uniform field over a volume that is not. too 
strongly restricted in either the axial or radial 
direction. Furthermore' the magnetic field should 
be small in a region outside the coils that begins 
(~t too far from the coils. 

To understand and assess these problems we 
start with a discussion of the properties of an 
idealized magnet (infinite permeability ~, r2 = 00, 

*This report has also been included in toto in the 
PEP Summer Study 1975 Proceedings as Appendix B 

Figures, references, and tables here 
retain their B prefixes from the PEP proceedings. 
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steel everywhere to the riqht of the dashed line in 
Fig. B1) and then investigate one by one the 
effects of the modifications that have to be 
applied to the idealized magnet in order to obtain 
the real magnet. . 

3. Useful Tools and Concepts for 
the Discussion of Magnetic Fields 

It is often quite easy to obtain a good picture 
of a magnetic field distribution by applying direct­
ly the magnetos!atic equ~ti~ns, usually in integra­
ted form (~ H·ds = I, ~ S·da = 0). However under 
some circumstances this procedure does not lead 
easily to a good qualitative feeling for the fields, 
particularly when one wants to know the fields close 
to a coil with steel in the vicinity. If the fields 
have cylindrical symmetry with no component in the 
azimuthal direction, or if the fields are of a two 
dimensional nature, the analog model of current flow 
in a two dimensional conductive sheet often gives 
the needed insight much more easily. Although this 
analog model has been used to physically model 20 
magnets, B-1 this use is somewhat complicated in the. 
cylindrical case, and the model is used here only 
as a conceptual aid. Similar comments apply to a 
slightly different analog model that we use to 

. visualize magnet fields produced by magnetic charges. 
In both cases the same labels z, r are used for the 
Cartesian coordinates on the 20 conductive sheet and 
for the coordinates of the cylindrically symmetric 
magnets. 

An expansion of 20 dipole fields into exponen­
tials will be done in Sect. 3.3. Even though this 
may seem to be a rather specialized formula, its 
derivation is reproduced here not only because it 
is useful for the magnet under discussion, but is, 
in the authors opinion, the single most important 
and useful formula (after the magnetostatic equa­
tions) for the understanding and design of magnets. 

3.1. The Orthogonal Analog Model (OAM) 

Inspection of the magnetostatic equations in 
cylindrical geometry, and of the equations governing 
the current flow in a two dimensional conductive 
medium, shows the following relations: (see rows 
1 and 2 of Table 1, and also Fig. B-2. 

1) If one makes the resistivity p(r,z) of the 
sheet proportional to r·~(r,z) (column 1), and 

2) If one injects a current density j3(r,z) 
into the top surface of the conductive sheet that 
is proportional to the exciting current density, 
j¢(r,z), in the magnet (column 2), 

Then: 

3) Scalar equi-potential lines in the model 
correspond to surfaces of constant rA (i.e., field 

() r7 ~,,, n (, 0 0 r ~. '~.i ::;, ,= 



surface~) in the magnet (column 3), and the vectors 
Rand rB are obtained by rotating t~e 2D cUfrent 
density vector J and electric field vector in the 
model by 900 (columns 6 and 7). 

The table of equivalents for two dimensional 
magnetic fields is obtained by removing all factors 
r from Table B-1. 

While this treatment of the permeability ~ 
can be advantageous, it is often more convenient to 
treat finite permeability effects differently: 

First ~ is assumed to be infinite in order to 
obtain an understanding of the fields in the vacuum 
region. From this one learns how magnetic flux· 
enters the steel, leading in turn to a qualitative 
understanding of the field lines in the steel, and 
at the steel-vacuum interface. Whenever a field 
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1 ine in the steel at that interface forms a non-zero 
angle a with the normal to the interface a non-zero 
tangential field component IHtl= sin a IBI/~ exists 
at that interface. Since that field component is . 
continuous through the interface, it is this compon­
ent that modifies the field in the vacuum region. 
Usually, the field produced by this tangential field 
component Ht is most easily understood it..0ne replaces 
Ht by a current sheet of strength I' = I ITt I on the 
steel surface. It is easy to see that the current 
in this sheet points out of (into) the paper plane 
if the steel lies to the left (right) of the vector 
Ht. The fields produced by these current sheets are 
in turn often most easily obtained by applying again 
the OAM. 

3.2. The Direct Analog Model (DAH) 

In discussing magnetic fields produced by mag­
netic charges (See Sect. 4.3), it is clear that 
scalar potentials can be used to describe the 
properties of the fields. In cylindrical geometry, 
the radial dependencies become ~learer if one uses 
again a two-dimensional conductive sheet model with 
the appropriate conductivity and current injection. 
The equivalences between the quantities in the DAM 
and a cylindrical magnet are given in rows 2 and 3 
of Table B-1, with a representing the conductivity 
of the sheet, and q the magnetic charge density in 
the magnet. 

3.3. Expansion of 2D-Dipo1e Fields into Exponentials 

Fig. B-3 shows the cross-section of a magnet 
assumea to be sufficiently long in the direction 
perpendicular to the paper plane so that the fields 
can be considered two-dimensional. We assume fur­
ther that the magnet has mid-plane symmetry and 
that ~ = 00 in the steel. As a consequence, the 
fields are perpendicular to the steel surfaces and 
the midplane. 

To find an expression for the fields that is 
suitable for our purposes and is valid in the region 
bounded on top and bottom by the flat part of the 
pole, we first look at, and graphically represent, 
how Hy dep~nds on y for x = 0 (see Fig. 4): 
Since div H = 3Hx/3x + 31iY/3y = 0, and Hx = 0 for 
'y = 0 and y= ± g/2, it Tollows that 3Hy/3Y = 0 for 
y = 0, y = ± g/2. r1id-p1ane symmetry requires that 
Hy is an even function of y, and Hx is an odd 
function of y, leading qual itative1y to functions 
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Hx' H as shown in Fig. 4. It follows directly that 
both ~x and Hy are expandable into Fourier series 
with period g that should converge quite rapidly 
since both the functions and at least their first 
two derivatives with respect to yare continuous. 
Using the complex representati,on for these Fourier 
series, we then form the combination H* = Hx - iHy 
and obtain, by combining the coefficients into an: 

(1) 

We have chosen the combination H - iH because the 
magnetostatic equations for the ~acuumYfie1d compon­
ents H ana -Hyare the same equations as the Cauchy­
Riemanft conditions for the real and imaginary part 
of an analytical function of the complex variable . 
z = x + iy. Since we have an explicit expression 
for the function H* for the case x = 0, we obtain 
an expression for H* for x tOby replacing in Eqn. 
(1) iy by z = x + iy. Because H = 0 in the mid­
plane, the coefficients an_ must ~e purely imaginary. 
Since the deviations from a uniform field will get 
sma 11 er as one moves from the 1 eft side (x=O) or the. 
right side (x = x2) of the magnet toward its center, 
the terms with n < 0 can contribute significantly 
only on the left side of the magnet, and those with 
n > 0 only on the right side. It is therefore con­
venient to rewrite Eqn. (1) in the following way: 

H* = 

The hn in this formula are real and ho represents 
the central field value. 

It is clear from Eqn. (2) that deviations from 
a uniform field due to the truncation of the poles 
or by the manner in wh i ch the magnet is exc i ted de-. 
cay very rapidly if the pole edges are shaped in 
such a way that h-1 = h1 = o. That is, of course, 
what. one does when one shims a pole. A very sophis­
ticated pole contour would also make h_2 and h2 
zero, or very small compared to ho' but trying to 
cancel higher orders would not be worthwhile. It 
should also be pointed out that the dependence of 
Hy on y can be used to measure the low order hn 
with relative ease by using appropriately made 
stacks of measuring coils. 

If the excitation of the magnet, or the trunca­
tion of' the poles, violates mid-plane symmetry, one~ 
will also have midp1ane-antisymmetric fields. For' 
such fields Hy is an odd function of y and Hx an ; 
even function of y. A consideration similar to the. 
one made above gives for midp1ane-antisymmetric 
fields: -

H* = ~ b en (2n+l)z/g 
l. n • 

n=-oo 
(3) 

In this formula, the bn are real, and one can write 
H* of course in the same fashion as Eqn. (2). Com­
parison of Eqn.'s (2) and (3) shows that the most 
slowly decaying terms in Eqn. (3) decay only half as 
fast as the slowest terms in Eqn. (2). It should 
finally be pointed out that Eqn's (2) and (3) can 



be applied to many magnets other than dipoles (e.g., 
strong focussing dipoles, quadrupoles, etc.) by 
conformally mapping them into dipoles. • 

4. Magnet Design Considerations 

4.1. Properties of the Ideal Lumped Solenoid 

The ideal lumped solenoid is (see Fig. B-1 
characterized by )J = co;, by a steel-vacuum interface 
along the dashed line on the right side of Fig. 1; 

~ and by a cylindrical shell at r2 = co to conduct the 
flux entering along the dashed line around the 
solenoid. 

For symmetry reasons, the distance between the 
left boundary of the problem and the center of the 
adjacent coil is g/2, and we assume the same dis­
tance between the dashed line and the center of the 
coil adjacent to it. This means that we are dealing 
with a periodic system of fundamental period length 
g, so that we need to treat only one cell, indicated 
by the dotted lines. Because of symmetry the magne­
tic field must be perpendicular to these lines. The 
line going through the center of the coil is also a 
line of symmetry, with the field perpendicular to it 
as well. To get a qualitative feeling for the 
fields in the cell, we use the OAM (see Sect. 3a). 
In it the dotted lines represent insulators, the 
space between them has a resistivity proportional to 
the distance r from the center line. The current 
injected over the cross-section of the coil flows in 
an easily imaginable pattern to the axis of the 
system, r = O. While the current density in the 
OAM is quite non-uniform in the immediate vicinity 
of the coil, it will obviously smooth out very 
quickly as one moves toward the axis. A small 
fraction of the injected current will flow in the 
vicinity of the symmetry line radially outward, 
then turn toward the axial direction and, close to 
the dotted line, flow radially inward. It is quite 
apparent from this picture that the fields get weak 
very fast as one moves radially away from the coils. 
If one were dealing with two-dimensional fields 
instead of cylindrical fields, the expansion of 2D 
fields into exponentials (Sect. 3.3) could be 
directly applied and would yield the result that 
the dominant term in the description of the field 
for r? rl, and of the inhomogeneity for'r < rl, is 
proportional to f2nlr-rll/g. A more detailed 2D 
model calculation shows that the constant of pro­
porti ona 1 ity for the domi n,ant term equals the aver­
age field value Ho on axis. The fact that we are 
dealing with cylindrical geometry will obviously 
mod i fy the deta i 1 s of the decays, but not the i r bas i c 
character. Using again the OM1 to see qual itatively 
the difference between the decay in cylindrical 
geometry compared to 2D geometry, the fact that the 
·(histivity in the model is proportional to r leads 
us to conclude that the field outside the coil 
decays a little faster than indicated above, where­
as the field inhomogeneity inside the coil will 
decay a little slower. 

4.2. The Effects Caused by Lumped Return Yokes 

If we bring the return flux shell from infinity 
to a finite value r2, we bring steel into a region 
where the pre-existing field is of the order 
Hoe2n(r2-rl)/g. The resulting field modifications 
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in that region will be of the same order, and their 
effect on the field' at location rl will be cut down 
by another factor e-2n(r2- r l)/9. We conclude from 
this that the effect at r = r1 of moving the steel 
shell to a finite value r2 is of order 
Hoe-4n(r2-rl)/g, i.e. in most cases negligible, 
provided (r2-r, )/g > 1/4. 

If we now "lump" the return flux shell in the 
azimuthal direction into "vanes", the details of 
the field modification are more complicated. If 
we assume first that the endplates still extend to 
r = 00, the periodicity in z is not affected by 
lumping the steel in the azimuthal direction. We 
therefore still expect field modifications at r = 
rl of the order Hoe-4n (r2-rl)/g, but there will be 
some dependence on azimuth. If we then reduce the 
radius of the endplates to r = r2' there will be 
some additional field modifications. Although the 
periodicity in z is destroyed by this process, these 
additional fields will also be extremely small, 
since the pre-existing fields at the endplates for 
r > r2 are very small for a reasonable number (~6) 
of vanes. While it is not too difficult to pursue 
this argument in more detail, that treatment would 
go beyond the scope of this report. 

If, for a given distance g between coils, it is 
necessary to obtain a decay of the fields that is 
faster than e-2n(r-rl)/g outside the coils, one 
can accomplish this by putting vanes close to the 
coil and separating them in the azimuthal direction 
by a distance D somewhat smaller than g/2. Under 
these circumstances, eqn. 3 of Sect. 3.3 will 
approximately describe the decay of fields between 
vanes, giving there a most slowly decaying term 
~roPortional to e-n~r/D, with ~r representing the 
distance from the inside edge of the vanes. In 
this case, the proximity of the coils could cause 
local saturation problems in the vanes that would 
have to be studied in more detail than can be done 
here. 

4.3. Effects Caused by Removal 
of Steel from Region 1 

When removing the steel from region 1 (see 
Figure 1), i.e., the space between the dashed line 
and the actually desired steel contour, the field 
to the 1 eft of the dashed 1 i ne wi 11 obvi ous ly be 
reduced over some distance. While this field re­
duction can be partially compensated by a coil close 
to steel surface a, the use of that coil does not 
accurately simulate the field modification caused 
by the removal of the steel. Instead, we use the 
following procedure: We first put a magnetic sur­
face charge onto the steel-vacuum interface indica­
ted by the dashedlineto the left of region 1. If 
that surface charge equals the local surface magne­
tic field value B everywhere, removal of the steel 
does not change any magnetic fields. We therefore 
obtain the magnetic field modification everywhere 
by removing those magnetic charges or, equivalently, 
by adding the same charges with opposite polarity 
all along the dashed line to the left of region 1. 
To see the resulting fields, we use the DAM (see 
Sect. 3.2 and Table 1), with the vacuum region 
represented by a 2D sheet with conductivity propor-

o o a 



tiqnal to r, the steel modeled with perfectly con­
ducting electrodes, and the added magnetic charges 
represented by current injection from the third 
dimension. Visualizing the resulting current den­
sity and electric field in the 2D sheet, it becomes 
evident that along the-dashed line, the axial field 
component will be very close to 1/2 of the pre­
existing value, and that there will be an increase 
of the fields all along the inside boundary of the 
endplate. It should be noted that the increase of 
the conductivity with r in the DM1 indicates that 
the field modification ·far from the axis is smaller 
for cylindrical geometry than it would be in 2D 
geometry. If the hole that is opened up is compar­
able to the coil radius rl, the fields outside the 
coils will clearly increase substantially in the 
end region. 
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4.4. Effects Caused by Removal of 
Stee 1 from Region 2 

To obtain a qualitative understanding of the 
field modifications resulting from removal of steel 
from region 2, we use the same technique as in 
section 4.3, and should, in fact, apply it simultan­
eously in the following way: first place appropriate 
magnetic charges all along the dashed line, remove 
the steel, and then place charges with opposite 
polarity on the dashed line and find the resulting 
fields with the DAM. Since in region 2 the new 
steel surface is quite close to the old one, most 
of the injection current in the DAM will flow to 
the electrode surface representing the new steel 
surface. Combining that with 2hE Ifact that the pre­
existing field behaves like e- TI r g, one can con­
clude that the removal of steel from region 2 has 
only a small effect on the field distribution. 

Breaking the endplate into radial spokes is a 
more drastic modification. Its effect can be vis­
ualized also with the magnetic charge - scalar pot­
ential surface representation, and it is qualita­
tively clear that the effects are small provided 
one uses a reasonab1e number of spokes (> 6) and 
does not start the spokes closer to the coil than 
g/2. 

4.5. Effect of Saturation of-Steel 

By providing sufficient amounts of steel, sat­
uration of the vanes and the outer part of the end­
plate can be reduced to any desired level. In the 
region where the magnetic flux enters the steel one 
cannot add steel at will. Consequently saturation 
will occur there above a certain level of excitatio~ 
and we want to discuss only the field modification 
caused by saturation of this part of the steel 
structure. To do so, we use the method outlined in 
section 3.1. 

It is clear that the flux entering the center 
part of the endplate (surface S) will produce field 
lines in the region bounded by surfaces a,S,y, that 
are in the same general direction as surfaces a and 
y. From this follows that the tangential field com­
ponent at surfaces a and y will be considerably 
larger than its value at surface S. Representing 
these tangential field components by current sheets, 
and looking at the polarities of the current in the 
solenoids, the fields, and the current sheets, it 
is clear that the current sheet at surface a has the 

LBL 4270 

same polarity as the solenoidal currents, and the 
current in the sheets at surfaces Sand y has the 
opposite polarity. I~e apply now the OAM to see the 
resulting fields and find the following: Saturation 
effects on surface a will increase the field in 
region 1 and its vicinity, while saturation effects 
on surfaces Sand y will reduce the field over a 
region that starts near the left edge of region 1 
and has an axial size of the order of the outer 
radius of surface S. 

The fields produced by saturation on surfaces ;.~ 
Sand y will also have a considerable range in the 
radial direction. However, the increase of resis­
tivity with r in the OA~1 indicates that the radial 
range of these fields is smaller than it would be 
in 2D geometry. . 

To keep the proper perspective, one has to 
remember that the saturation-produced fields are 
excited by exceedingly weak current sheets unless 
one drives the steel extremely hard. 
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Table B-1. Equivalences Between Quantities In 
Cylindrical Magnet and Two Analog Models 

2 13 1 4 \ 5 I 6 ! 7 

1 DAM Ip 
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rB 2 j Cyl. Magn I rll 
3 ! DAM ; (J 
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DEFINITIONS: 

p 

(J 

j3 

-+ e3 
V 
-+ E J, 

jQl 
q' 

IJ 

A 
H,B 
r 

resistivity in the 2D sheet 
conductivity in the 2D sheet 
current density injected into the top of 
the 2D sheet 
unix vector perpendicular to 2D sheet plan~ 
scalar potential in 2D sheet 
current density and electric field in 2D , 
sheet 

excitation current density in magnet 
= magnetic charge density in magnet 
= permeability of steel 
= vector potential in magnet 
= magnetic fields 

= distance from axis 
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Fig. B-3. Dipole Cross Section 
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Fig. B-4. Dipole Field Components Hx' Hy VS. y. 
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