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Abstract

Against the backdrop of resource competition, ecological coexistence appears mysterious: if species must spe-

cialize in order to exist, how can dozen of similar species inhabit the same environment? Many explanations

have been put forward, but efforts have remained primarily theoretical, with simple models demonstrating

coexistence via simple mechanisms. Therein lies the problem — explanations are simple by design, but

nature is complex. Here, we improve upon Modern Coexistence Theory, a mathematical framework that can

be used to measure the relative importance of different explanations for coexistence. Innovations range from

the methodological to the conceptual.

Additionally, we attempt to understand the causes of unexpected population crashes, also known as

catastrophes or ecological "black swan" events. Many such crashes do not fit the common explanation of

tipping points resulting from changing environmental conditions. We provide an alternative and general

mechanism for population crashes in a static environment, namely stochasticity (of any variety) combined

with multiple episodes of density dependence. This explanation is confirmed in experimental microcosms of

the red flour beetle, and connections to real-world population crashes are discussed.
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Introduction

Community ecologists have put forward many explanations for coexistence, the most prominent of which

are are specialized natural enemies (Nicholson, 1937; Holt, 1977; Holt et al., 1994; Holt and Lawton, 1994),

a trade-off between competition and colonization (Levins and Culver, 1971; Sousa, 1979; Hastings, 1980;

Tilman, 1994), the Janzen-Connell Hypothesis (Janzen, 1970; Connell, 1971; Stump and Chesson, 2015);

the partitioning of resources across space (MacArthur, 1958;Hutchinson, 1961; Tilman, 1982; Holt, 1984);

opportunist-gleaner tradeoffs (Fredrickson and Stephanopoulos, 1981); seasonal variation in resource supply

(Stewart and Levin, 1973; Grover, 1997) or endogenously cyclical resource-consumer dynamics (Armstrong

and McGehee, 1976; 1980), temporal partitioning of the environment (Loreau, 1989; Loreau, 1992; Klaus-

meier, 2010), the storage effect (Chesson and Warner, 1981, Chesson, 2003), and neutral theory (cite:

Caswell, 1976; Hubbell, 2001, Kalyuzhny et al., 2015). Each explanation, having emerged from simple mod-

els (e.g., Levins and Culver, 1971), experiments (e.g., Paine, 1966), or curious patterns in field data (e.g.,

Janzen, 1970), are certainly partial explanations. Real ecological communities are complex, and many of

the above phenomena may be operating at once. Spectacularly, each of these partial explanations can be

grouped into natural categories called coexistence mechanisms and assigned a measure of relative importance.

Modern Coexistence Theory (MCT) is the framework that makes this possible.

MCT has been widely successful. It has been the basis of important conceptual and theoretical advances

(e.g., Chesson and Huntly, 1997; Stump and Chesson, 2015; Snyder and Chesson, 2003; Chesson and Kuang,

2008; Chesson and Kuang, 2010; Schreiber, 2021), and several attempts to infer the mechanisms of coexis-

tence in real communities (Cáceres, 1997; Venable et al., 1993; Pake and Venable, 1995; Pake and Venable,

1996; Adler et al., 2006; Sears and Chesson, 2007; Descamps-Julien and Gonzalez, 2005; Facelli et al., 2005;

Angert et al., 2009; Adler et al., 2010; Usinowicz et al., 2012; Chesson et al., 2012; Chu and Adler, 2015;

Usinowicz et al., 2017; Ignace et al., 2018; Hallett et al., 2019; Armitage and Jones, 2019; Armitage and

Jones, 2020; Zepeda and Martorell, 2019; Zepeda and Martorell, 2019; Towers et al., 2020; Holt and Chesson,

2014; Ellner et al., 2016) or laboratory microcosms (Jiang and Morin, 2007; Letten et al., 2018). Addition-

ally, MCT unifies seemingly dissimilar explanations for coexistence through categorization into coexistence

1



mechanisms, thus organizing a scattered literature and highlighting similarities, such as the symmetrical role

(with regards to coexistence) of resource specialization and specialist predators (Chesson and Kuang, 2008).

We perceive of MCT as a broad edifice (Fig. 1) that relates real coexistence (i.e., coexistence in real

ecological communities) to simple yet incomplete explanations for coexistence (i.e., simple models in which

coexistence has been demonstrated). The edifice is composed of three kinds of relationships, each correspond-

ing to a level of arrows in Figure 1: 1) the relationship between coexistence and invasion growth rates, 2)

the relationships between the invasion growth rate and coexistence mechanisms 3) the relationship between

coexistence mechanisms and simple explanations for coexistence.
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Figure 1: The goal of Modern Coexistence Theory: connecting actual coexistence to simple explanations for coexistence
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This dissertation attempts to bridge the gaps in Figure 1, and in doing so, enable better inferences about

ecological coexistence. In Chapter 1, we tackle relationship # 3, the connection between invasion growth rates

and coexistence mechanisms. Specifically, we show how coexistence mechanisms can be measured measured

in realistic models with spatiotemporal variation (Section 1.2). Additionally, we provide alternatives to the

problematic and infamously confusing scaling factors (Section 1.1). In Chapter 2, we focus on relationship

#3, the connection between coexistence mechanisms and fine-grained explanations of coexistence. Specifi-

cally, we discuss the biological meaning of the storage effect (Section 2.1) and other fluctuation-dependent

mechanisms (Section 2.2). Relationship #1 is left to future research.

Chapter 3 focuses on a different topic: single-species population dynamics. Using experimental micro-

cosms (of the red flour beetle, Tribolium castaneum) and stochastic models, we infer a novel mechanism of

population crashes. The mechanism is connected to real-world populations, and the general utility of micro-

cosm experiments is discussed. The composition of density dependence at successive life stages, all within a

single generation, produces a variety of complex population dynamics, including chaos. Each section of this

dissertation is presented as a stand-alone manuscript, complete with appendices and references.
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1.1 Methods for calculating coexistence mechanisms: Beyond

scaling factors

1.1.1 Abstract

How do species coexist? A framework known as Modern Coexistence Theory can "measure coexistence"

by partitioning invasion growth rates into coexistence mechanisms, terms which correspond to classes of

explanations for coexistence. There are several reasonable ways to define coexistence mechanisms, each

depending on exactly how a species perturbed to low density (the invader) is compared to other species

that remain at their typical densities (the residents). Using conceptual arguments and two case studies, we

compare five methods for calculating coexistence mechanisms: i) Scaling factors, the traditional approach

which attempts to eliminate the linear effects of regulating factors; ii) The simple comparison, which gives

equal weight to all resident species; iii) Generation time scaling, a novel method which corrects for intrinsic

differences in population-dynamical speed; iv) β scaling, where resident growth rates are scaled by a measure

of relative sensitivity to competition; and v) The invader–invader comparison, a previously obscure method in

which a focal species is compared to itself at high vs. low density. We find that the conventional scaling factors

can lead to nonsensical results when species have strong and asymmetric niche differences; though scaling

factors can be useful in certain theoretical studies, they are not recommended for explaining coexistence

in real communities. Invader–invader comparisons are also problematic, as they do not effectively measure

specialization or niche differentiation. The universally-applicable simple comparison often works well, but can

give counterintuitive results when species have disparate generation times. The β scaling method often works

well in simple models, but faces implementation problems in complex models. We tentatively recommend

generation time scaling as the all-purpose method for calculating coexistence mechanisms.
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1.1.2 Introduction

Determining the mechanisms of coexistence in any given community is a difficult task. The underlying

problem is that nature is complex, but explanations for coexistence (being reductionistic, as all explanations

are) are simple, often codified in two-species models and several paragraphs of commentary. Therefore, our

task is to take a arbitrary, complex model (representing the real world), and extract the relative importance

of several simple explanations. Modern Coexistence Theory (Chesson, 1994; Chesson, 2000a; Barabás et al.,

2018) is a tool that makes this possible

Modern Coexistence Theory (MCT) is a framework for understanding coexistence. More specifically,

MCT "measures coexistence" by quantifying coexistence mechanisms: processes (e.g., resource partitioning)

that tend to increase species’ per capita growth rates when rare. The ability of each species to recover from

rarity is ostensibly related to the overall stability of the community – coexistence. Crucially, coexistence

mechanisms are operationalized with an invader–resident comparison: processes that contribute the per

capita growth rate of a species that has been perturbed to low density (the invader) are compared to

corresponding processes for species at typical abundances (the residents).

However, to date, little attention has been paid to the interpretation of coexistence mechanisms. MCT

is used unquestioningly in empirical applications, even though it was not originally designed to measure

coexistence, but rather to produce theoretical insights about the role of fluctuations in coexistence (Barabás

et al., 2018, p. 288; Chesson, 2020, p. 6). The absence of conceptual analysis is a problem: if our goal is to

interpret the values of coexistence mechanisms as the relative importance of explanations for coexistence,

then we must be sure of the correspondence between explanations and coexistence mechanisms. In other

words, the exact definition of coexistence mechanisms is crucial to their interpretation, and thus crucial to

how we understand coexistence.

One part of the definition of coexistence mechanisms is scaling factors, constants that re-scale the growth

rates of residents. For many, the scaling factors are the most confusing part of MCT. They were introduced

by Chesson (1994, p. 241) with little justification: “This choice is justified by the results that it gives. It

leads to a clear partitioning of mechanisms of coexistence, as shown in subsection 4.2, below." A diligent

reader may go onto infer that the purpose of the scaling factors is to eliminate a term in the mathematical

expression for the invader’s growth rate: ". . . linear terms in competition do not appear in this comparison

. . ." (Chesson, 1994, p. 247; also see equations 36 and 43). Decades later, Chesson (2020, p. 3) confirms, "The

idea [of the scaling factors] is that the [invader–resident] comparison should eliminate common components

of competition to highlight critical species differences." One is left wondering why the linear effects of

competition cannot be the basis of a critical species difference.
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Further complicating the usage of scaling factor is that fact that they cannot serve their purported

purpose — eliminating the linear effects of competition — when there are more distinct regulating factors

than resident species (Chesson, 1994; Barabás et al., 2018). Regulating factors (also known as limiting factors

or internal variables), are variables that are involved in a feedback loop that regulates population density.

Examples include resources, refugia, and natural enemies. When a regulating factor is continuous (e.g.,

seeds along a continuum of sizes, varying rates of resource supply across space), then there are technically an

infinite number of regulating factors, and thus the scaling factors automatically cannot serve their purported

purpose.

There are a slew of other problems with scaling factors. 1) When species’ sensitivities to regulating

factors are similar, small differences in species’ sensitivities will lead to big differences in the scaling factors

(due to inverting an ill-conditioned matrix; see Barabás et al., 2018, p. 295). This means that inferences

from empirical applications of MCT can be sensitive to measurement error and/or parameter estimation

error. 2) Scaling factors can switch from positive to negative, turning an invader–resident difference into

a invader–resident sum (due to subtracting a negative; Snyder et al., 2005, p. E92); this is problematic

because the invader–resident difference is what permits us to interpret coexistence mechanisms as a rare-

species advantage. 3) When a certain assumption of the mathematical theory is not met (Assumption a6

in Chesson, 1994), the scaling factors may not be uniquely determined, even when there are more residents

than regulating factors. In this scenario, the analytic theory cannot be used to calculate scaling factors, and

instead one must use one of several computationally-intensive work-arounds (see Ellner et al., 2016, SI.5).

Here, we argue that the primary function of the scaling factors — eliminating the linear effects of competi-

tion — is not desirable if one wants to use MCT to understand coexistence in real communities. Eliminating

the linear effects of competition is effective at showing that not all species can coexist via classical mecha-

nisms (i.e., fluctuation-independent mechanisms such as resource or natural-enemy partitioning), which can

be useful in theoretical research. But, if one wants to "measure coexistence" (i.e., understand empirically

how species coexist) then is desirable to be able to attribute coexistence to classical mechanisms.

However, it is not merely the case that scaling factors are unnecessary: they can also lead to incorrect

inferences about how species are coexisting. Scaling factors are designed entirely to eliminate the linear

effects of competition, but they necessarily weight resident growth rates in the calculation of other coexistence

mechanisms. Consequentially, the scaling factors can modulate other coexistence mechanisms, sometimes in

a way that is nonsensical.

The obvious alternative to scaling factors is a simple average over resident species, which we call the

simple comparison method. To be more precise, each resident gets weighted by 1/(S − 1) (where S is the

number of species in the community), such that equal weight is given to the low density state (i.e., the
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invader) and the high density state (i.e., the sum of residents). The simple comparison can work well, but it

can also be problematic if some species have comparatively fast population dynamics; such species tend to

dominate all other species in the invader–resident comparison.

Our proposed solution to the shortcomings of previous methods is to scale resident growth rates by

ratios of generation times. Conceptually, this generation time scaling converts the intrinsic speed of resident

population dynamics to that of the invader. Functionally, the generation time scaling prevent the invader–

resident comparison from being dominated by terms corresponding to a handful of speedy species. Yet

another solution is to replace the invader–resident comparison with an invader–invader comparison, wherein

a single focal species is compared to itself at high vs. low density.

In this paper, we define and discuss the five aforementioned methods for calculating coexistence mech-

anisms: scaling factors (Section 1.1.3.2), the simple comparison (Section 1.1.3.3), generation time scaling

(Section 1.1.3.4), β scaling (Section 1.1.3.5)and the invader–invader comparison (Section 1.1.3.6). We dis-

cuss the strengths and weakness of each method (see Table 1.3 in the Discussion), using both conceptual

arguments and two case study (Section 1.1.4 & Appendix 1.1.C). We conclude that scaling factors and the

invader–invader comparison should not be used in empirical applications of MCT. All other methods have

their time and place, but we recommend generation time scaling as the best all-purpose method.

1.1.3 Methods

All methods for calculating coexistence mechanisms are rooted in Modern Coexistence Theory (MCT). For

completeness, we offer a summary of MCT below; for those seeking detail or clarification, see Barabás et al.,

2018.

1.1.3.1 A summary of Modern Coexistence Theory

The main innovation of MCT is the partition of invasion growth rates into coexistence mechanisms. This

partition is obtained with two main steps: "decompose and compare" (Ellner et al., 2019).

1. Decompose.

Consider a community composed of scalar populations (i.e., populations without age, stage, or spatial

structure), subject to temporal variation in the environment, population densities, and regulating

factors. The per capita growth rate of species j is denoted by rj(t) = dNj(t)/(Nj(t)dt) in continuous

time or rj(t) = log(Nj(t+ 1)/Nj(t)) in discrete time. Now, we perturb species i (the invader) to zero

density and use the superscript "{−i}" to indicate quantities that must be evaluated in this context.
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We represent the per capita growth rate as a function gj of the environmental parameter Ej(t), as well

as a vector of L regulating factors, F {−i}(t) = (F
{−i}
1 (t), F

{−i}
2 (t), ..., F

{−i}
L (t)):

r
{−i}
j (t) = gj(Ej(t),F

{−i}(t)). (1.1)

For notational simplicity, we will drop the explicit time-dependence. The parameter Ej is sometimes

called the environmental response, or the environmentally-dependent parameter, or simply the envi-

ronment. While it usually represents a demographic parameter that depends on the environment (e.g.,

the probability of seed germination), it more generally represents the influence of density-independent

factors. The regulating factors F can be abiotic resources, biotic resources, species densities, natural

enemies, refugia, light, etc.

Next, we approximate each species’ per capita growth rate with a second order Taylor series expansion

about the equilibrium values E∗
j and F ∗j , selected so that rj(E

∗
j ,F

∗j) = 0. While the regulating

factors F are not species-specific, the equilibrium values F ∗j = (F ∗j
1 , F ∗j

2 , ..., F ∗j
L ) may be species-

specific (note the superscript "j"). There is no agreed upon method for determining the equilibrium

parameters (a number of strategies are discussed in Appendix 1.1.A). In any case, they should be

close to their respective temporal means, Ej and F {−i}, in order for the Taylor series to be a good

approximation (Barabás et al., 2018, p. 280).

After calculating the aforementioned Taylor series expansion, we take a temporal average in order to

obtain an approximation of species j’s long-term average growth rate. The quality of this approximation

depends on the environmental parameter only experiencing small deviations from equilibrium (for the

mathematical details, see Chesson, 1994; and Chesson, 2000a). These small-noise assumptions also

allow us to replace (Ej − E∗
j )(F

{−i}
k − F ∗j

k ) with Cov
(
Ej , F

{−i}
k

)
and perform analogous replacements

for other terms. The result is

r
{−i}
j ≈ α

(1)
j (Ej − E∗

j ) +
1

2
α
(2)
j Var(Ej)

+

L∑
k=1

ϕ
(1)
jk (F

{−i}
k − F ∗j

k )

+

L∑
k=1

L∑
m=1

ϕ
(2)
jkmCov

(
F

{−i}
k , F {−i}

m

)
+ ζ

(1)
jk

L∑
k=1

Cov
(
Ej , F

{−i}
k

)
,

(1.2)

where the coefficients of the Taylor series,
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α
(1)
j =

∂gj(E∗
j ,F

∗j)

∂Ej
, ϕ

(1)
jk =

∂gj(E∗
j ,F

∗j)

∂Fk
, α

(2)
j =

∂gj(E∗
j ,F

∗j)

∂Ej
, ϕ

(2)
jkm =

∂2g(E∗
j ,F

∗j)

∂Fk∂Fm
, ζ

(1)
jk =

∂2g(E∗
j ,F

∗j)

∂Ej∂Fk
,

(1.3)

are all evaluated at Ej = E∗
j and F = F ∗j .

2. Compare

Resident species (denoted with subscript s) have a long-term average per capita growth rate of zero;

otherwise, resident populations would go extinct or explode to infinity. Therefore, the value of the

invasion growth rate is unaltered if we subtract a linear combination of the residents’ average growth

rates. That is, we can write the invasion growth rate of species i as

r
{−i}
i = r

{−i}
i −

S∑
s̸=i

qisr
{−i}
s , (1.4)

where the qis are the scaling factors, and S is the number of total species in the community. To identify

the processes that generate a rare-species advantage, we can substitute Eq.2.6 into Eq.2.7 and group

like-terms. The invasion growth rate now becomes

r
{−i}
i ≈α

(1)
i (Ei − E∗

i ) +
1

2
α
(2)
i Var(Ei)−

(
L∑

k=1

ϕ
(1)
ik F ∗i

k

)
−

S∑
s̸=i

qis

(
(Es − E∗

s ) +
1

2
α(2)
s Var(Es)−

L∑
k=1

ϕ
(1)
sk F

∗s
k

)
︸ ︷︷ ︸

r′i : Density-independent effects

+

(
L∑

k=1

ϕ
(1)
ik F

{−i}
k

)
−

S∑
s ̸=i

qis

(
L∑

k=1

ϕ
(1)
sk F

{−i}
k

)
︸ ︷︷ ︸

∆ρi : Linear density-dependent effects

+
1

2

( L∑
k=1

L∑
m=1

ϕ
(2)
ikmCov

(
F

{−i}
k , F {−i}

m

))
−

S∑
s ̸=i

qis

L∑
k=1

L∑
m=1

ϕ
(2)
skmCov

(
F

{−i}
k , F {−i}

m

)
︸ ︷︷ ︸

∆Ni : Relative nonlinearity

+

L∑
k=1

ζ
(1)
ik Cov

(
Ei, F

{−i}
k

)
−

S∑
s̸=i

qis

L∑
k=1

ζ
(1)
sk Cov

(
Es, F

{−i}
k

)
︸ ︷︷ ︸

∆Ii : The storage effect
(1.5)

The symbols under the brackets (r′i, ∆ρi, ∆Ni, and ∆I) denote the coexistence mechanisms.

The interpretations of the coexistence mechanisms are as follows: The density independent effects,

∆Ei, is the degree to which all density-independent factors favor the invader. The linear density-
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dependent effects, ∆ρi, represents a rare-species advantage due to specialization on regulating factors

(e.g., resources, natural enemies). Relative nonlinearity, ∆Ni, is a rare-species advantage due to

specialization on variation in regulating factors. The storage effect, ∆Ii, is the rare-species advantage

due to specialization on certain states of a variable environment. See Barabás et al. (2018) for a

more thorough discussion of the coexistence mechanisms, their interpretations, and their connection

to specific models.

Experts may note that our presentation of MCT differs subtly from that of previous research. First, our

exposition above only accommodates models with temporal variation. There is an analogous version of MCT

for models with spatial variation (Chesson, 2000a), which we do not present here for the sake of simplicity.

Second, we write the per capita growth rate directly as a function of shared (across species) regulating

factors, as opposed to a function of a species-specific competition parameter (as in Chesson, 1994; Barabás

et al., 2018). Third, we do not change coordinates to the so-called standard parameters, which function to

generate coexistence mechanisms that sum exactly to the invasion growth rate (Chesson, 2020); we exclude

these exact coexistence mechanisms from our exposition for the sake of simplicity, but they are computed in

the case study.

1.1.3.2 Scaling factors

The scaling factors were introduced by Chesson and Huntly (1997), and later integrated into Modern Co-

existence Theory (MCT; Chesson, 1994). They were referred to only by symbols until Ellner et al. (2016)

coined the term scaling factors. The scaling factors have been referred to as comparison quotients (Chesson,

2018) and have been denoted in different ways (Barabás et al., 2018; Chesson, 2020; Barabás and D’Andrea,

2020). It is worth recognizing that these superficially different versions of the scaling factors all serve the

same fundamental goal: canceling the ∆ρi coexistence mechanism.

To define the scaling factors, we must first define the standard standard competition parameter:

Cj(t) = gj(E
∗
j ,F ). (1.6)

The regulating factors F may have different meanings in different models (representing different species

and/or communities); they may even have different units (e.g., abundance vs. biomass). By contrast, the

standard competition parameter is always defined with the common currency of growth rates (or pseudo-

rates in the case of discrete time), and can therefore be thought of as the main effect of competition on the

average per capita growth rate.
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The scaling factors are defined as

qis =
∂C

{−i}
i

∂C
{−i}
s

, (1.7)

evaluated at Cs = 0. Note that the definition of the scaling factors presumes that the invader’s Ci can be

written as a function of the residents’ Cs (assumption a6 in Chesson, 1994). In Appendix 1.1.B, we show

that the scaling factors are solely functions of species’ sensitivities to regulating factors, ϕ(1)
jk (see Eq.2.5),

and further, that the scaling factors can be obtained by solving a system of linear equations. A solution

does not exist if there are more limiting factors than resident species; in this case, the scaling factors cancel

the linear density-dependent effects (i.e., ∆ρi = 0). If the converse is true — the number of limiting factors

is less than or equal to the number of resident species — then there are an infinite number of the solutions,

and thus the scaling factors are not uniquely defined.

The purpose of the scaling factor is to eliminate the linear density-dependent effects, ∆ρi. But why

eliminate ∆ρi? To our knowledge, the most explicit explanation comes from Chesson (2020, p. 3): "The idea

is that the [invader–resident] comparison should eliminate common components of competition to highlight

critical species differences." It is not clear why ∆ρi does not constitute a critical species difference, particularly

since it encapsulates classical explanations for species coexistence: resource partitioning and natural-enemy

partitioning. Perhaps we can arrive at a clearer justification of the scaling factors by studying papers in

which the scaling factors played a crucial role.

Chesson and Huntly (1997) analyzed a model where per capita growth rates responded linearly to en-

vironmental fluctuations and a single regulating factor. The scaling factors eliminated ∆ρi, and the linear

responses precluded the fluctuation-dependent mechanisms, ∆Ni and ∆Ii. Thus, a species’ average growth

rate could be represented entirely by the density-independent effects, r′i. One can show that a weighted sum

of r′i across species is equal to zero; if some species have a positive r′i, others necessarily have a negative r′i,

so at least one species is destined for extinction. This result is a triumph of the scaling factors because it

contradicted the idea that disturbances per se promote coexistence (Wiens, 1977; Huston, 1979; Strong Jr,

1983).

The scaling factors can also highlight the role of fluctuations in coexistence. If ∆ρi is cancelled, then

not all species can coexist on r′i. If species nonetheless coexist, then coexistence must be attributable to

fluctuation-dependent mechanisms, ∆Ni and/or ∆Ii. Using this approach, Chesson (1994) showed that

fluctuations are necessary for coexistence in the lottery model and the annual plant model. Crucially, in

both of the aforementioned papers (i.e., Chesson and Huntly, 1997; and Chesson, 1994), the cancelling of

∆ρi is valuable because it tells us how species are not coexisting.

There are two auxiliary reasons for canceling ∆ρi, one technical and one pragmatic. The technical small-
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noise assumptions of MCT (Chesson, 1994) imply that the fluctuation-dependent mechanisms are small (i.e.,

O(σ2), where σ is a small parameter), but imply nothing about ∆ρi. Therefore, if ∆ρi is not eliminated,

it can dominate the invader-resident comparison, rendering the original point of MCT (understanding the

role environmental fluctuations) moot. Of course, this is no concern for empirical applications of MCT:

environmental fluctuations are not small in the real world, and even if ∆ρi does dominate the invader–

resident comparison, that in itself is scientifically interesting.

There is one pragmatic rationale for the scaling factors: they prevent us from having having to calculate

the temporal averages of the regulating factors (which are inherent in ∆ρ; Eq.1.5). This is mainly useful

for theorists, since analytical expressions for F {−i} can be unobtainable or otherwise too complicated to be

insightful. For empirical applications of MCT, one can simply evaluate F {−i} numerically. Barabás et al.

(2018, p. 282) claim that eliminating ∆ρi can prevent us from having to explicitly model the dynamics of

the regulating factors, since even though the variance and covariance terms in ∆N and ∆I depend on the

regulating factors, ". . . these quantities can be calculated without a detailed knowledge of the dynamics of

limiting factors (for an example, see Appendix S4)." We do not believe that this is true most of the time

– Barabás et al.’s example relies on the unrealistic assumption that the value of the regulating factor only

depends on the current environmental parameter, which in turn implies either 1) a time-scale separation

where environmental change is much slower than the dynamics of regulating factors, or 2) a very particular

model structure; e.g., in the two-species lottery model, the resident density is fixed at one, so competition

effectively does not depend on adult density.

Given that the scaling factors are a seminal part of MCT, which itself is an all-purpose framework, it

is easy to get the impression that the scaling factors are also all-purpose. Yet the historical record shows

that the scaling factors have been used as a means to specific ends: expanding on the competitive exclusion

principle, highlighting the role of fluctuation-dependent mechanisms, and simplifying mathematical formulas.

More generally, the scaling factors are suited for deriving biological insights from the mathematical analysis

of simple models. The original goal of MCT was to understand how fluctuations affect coexistence (Barabás

et al., 2018, p. 288, Chesson, 2020, p. 6), and indeed, the scaling factors have proved valuable in pursuit of

this goal.

There is growing interest in using MCT as a measurement tool; as a way to quantify the mechanisms of

coexistence in real communities (e.g., Cáceres, 1997; Adler et al., 2006; Sears and Chesson, 2007; Descamps-

Julien and Gonzalez, 2005; Angert et al., 2009; Usinowicz et al., 2012; Chesson et al., 2012; Chu and Adler,

2015; Usinowicz et al., 2017; Hallett et al., 2019; Armitage and Jones, 2019; Armitage and Jones, 2020;

Zepeda and Martorell, 2019; Zepeda and Martorell, 2019; Towers et al., 2020; Ellner et al., 2016; Ellner

et al., 2019). It is arguable, a priori, that the scaling factors do not serve this goal. We want to know the
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degree to which classical explanations (i.e., resource and natural-enemy partitioning) promote coexistence,

so we should not try to cancel ∆ρi. Quite the opposite — to gain a more fine-grained understanding of

coexistence, we typically expand ∆ρi into contributions from individual regulating factors.

1.1.3.3 The simple comparison

Ellner et al. (2019) suggested abandoning the scaling factors and redefining the coexistence mechanisms with

a simple average over resident species. This schema, which we call the simple comparison, can be thought of

as a special case of the generalized invasion growth rate partition:

ri ≈
(
α
(1)
i (Ei − E∗

i ) +
1

2
α
(2)
i Var(Ei)

)
−

S∑
s̸=i

Ais

(
(Es − E∗

s ) +
1

2
α(2)
s Var(Es)

)
︸ ︷︷ ︸

∆Ei : Density-independent effects

+

(
L∑

k=1

ϕ
(1)
ik

(
F

{−i}
k − F ∗i

k

))
−

S∑
s̸=i

Ais

(
L∑

k=1

ϕ
(1)
sk

(
F

{−i}
k − F ∗s

k

))
︸ ︷︷ ︸

∆ρi : Linear density-dependent effects

+
1

2

( L∑
k=1

L∑
m=1

ϕ
(2)
ikmCov

(
F

{−i}
k , F {−i}

m

))
−

S∑
s̸=i

Ais

(
L∑

k=1

L∑
m=1

ϕ
(2)
skmCov

(
F

{−i}
k , F {−i}

m

))
︸ ︷︷ ︸

∆Ni : Relative nonlinearity

+

(
L∑

k=1

ζ
(1)
ik Cov

(
Ei, F

{−i}
k

))
−

S∑
s ̸=i

Ais

(
L∑

k=1

ζ
(1)
sk Cov

(
Es, F

{−i}
k

))
,︸ ︷︷ ︸

∆Ii : The storage effect

(1.8)

where Ais is the generalized scaling factor. Note that because ∆ρi does not need to be cancelled, there is

no need to shunt F ∗j terms from ∆ρi to the density-independent effects. Because the density-independent

effects contains only environmental parameters, it is now denoted by ∆Ei. The linear density-dependent

effects, ∆ρi, can be expanded further into contributions from individual regulating factors. For instance, the

degree to which species i specializes on regulating factor k is

∆ρi,Fk
=
(
ϕ
(1)
ik

(
F

{−i}
k − F ∗i

k

))
−

S∑
s̸=i

Ais

(
ϕ
(1)
sk

(
F

{−i}
k − F ∗s

k

))
. (1.9)

If one so desires, similar expansions could be applied to the other consistence mechanisms.

The simple comparison is obtained by fixing the generalized scaling factor at

Ais =
1

S − 1
, (1.10)
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such that the invader is compared the arithmetic mean of resident terms. Coexistence is understood as a

rare-species advantage, which necessitates a comparison of low-density states and high-density states. The

simple comparison ostensibly gives equal weight to the low-density state and the high-density state, while

equally utilizing each resident. However, there is a sense in which the simple factors do not give equal weight

to all residents. Consider a single resident that has the capacity to grow and decline at a rapid rate. Even

though this resident’s average growth rate is zero, the resident’s grow rate components (i.e., the additive

terms in Eq.2.6) will tend to be large in magnitude, and will therefore tend to dominate the invader–resident

comparison. The simple comparison inappropriately emphasizes species with fast life-cycles.

1.1.3.4 Generation time scaling

We recommend scaling resident growth rates by ratios of generation times. To use this method, take the

invasion growth rate partition (Eq.1.8) and plug-in the generalized scaling factors as

Ais =
1

S − 1

Ts

Ti
, (1.11)

where Tj is the generation time of species j. Generation time scaling still gives equal weight to the low-density

state and the high-density state (hence the factor 1/(S − 1)), but further decrements residents with short

generation times. Because 1/Tj is a measure of population-dynamical speed, the generation time scaling can

be thought of as converting the population-dynamical speed of the resident to that of the invader; the factor

Ts is cancelled by the resident’s speed (implicit in the resident’s growth rate), leaving only the invader’s

speed, 1/Ti.

But why do we need to correct for speed? The simple answer is that failing to correct for speed will cause

species with fast population dynamics to dominate the invader–resident comparison. The more elaborate

answer is that speed is a (mostly) density-independent factor that does not reflect the sort of specialization

or ecological differentiation that we would like coexistence mechanisms to measure.

That is not to say that population-dynamical speed is irrelevant for coexistence. On the contrary,

population speed can weaken relative nonlinearity by dampening variation in resource concentration (Hsu,

1980; Smith, 1981), or strengthen the storage effect by increasing population build-up when the environment

is favorable (Li and Chesson, 2016). Population speed can even promote coexistence via ∆ρ in Lotka Volterra

models (Song et al., 2020, Appendix B). Crucially, in all of these examples, the effects of speed on coexistence

are mediated through some form of niche differences (speed per se cannot cause coexistence, as it is a density-

independent property). The generation time scaling "corrects for population speed" in the sense that it level

out the magnitudes of species’ per capita growth rate components; it does not simulate a world in which
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species have exactly the same speed.

While there is no single definition of generation time in structured population models (Caswell, 2001,

Section 5.3), many definitions are equivalent when species have attained their limiting dynamics (Ellner,

2018). A good general-use definition of generation time is the weighted average of parent age across all births

at one time, with weights equal to the reproductive value of offspring. This quantity can be calculated with

a simple formula in deterministic structured population models (Eq. 12 in Bienvenu and Legendre, 2015)

and can easily be calculated via simulation in more complex settings (e.g., individual-based, stochastic,

and/or spatial models). Additionally, when the offspring state is independent of the parent state, and

parent mortality is independent of age, the generation time is simply the mean age of individuals. Thus, in

continuous-time models with per capita death rate δ, the distribution of lifespans is given by the exponential

distribution with mean age 1/δ. Similarly, for discrete-time models with death probability δ, the distribution

of lifespans is given by a geometric distribution with mean age 1/δ.

The generation time scaling aims to correct for intrinsic (i.e., density-independent) between-species dif-

ferences in population-dynamical speed. If generation time is to be a proxy for population speed, we should

treat it as an intrinsic, density-independent property. In many models, generation time does not depend

on population density – the lottery model (Section 1.1.3.7) and case study #1 (Section 1.1.4) are two such

examples. However, in models where the generation time varies with population density, one should calculate

the generation time while fixing the environment and regulating factors at their equilibrium values, E∗
j and

F ∗j . The resulting "intrinsic generation time" has the added virtues of a) being easier to calculate, since

simple formulas for generation time in deterministic stage-structured models can now be applied (i.e., Eq.

12 in Bienvenu and Legendre, 2015); b) numerically coinciding for four different measures of generation time

(Ellner, 2018; and c) requiring no additional modelling choices, since the equilibrium parameters must always

be selected.

To calculate generation time, one must have distinct information about survival and fecundity. Unfortu-

nately, some population models (particularly simple unstructured models) only include the aggregate effects

of survival and fecundity. For example, the term
(
−
∑S

j=1 αijnj(t)
)

in the competitive Lotka-Volterra model

could represent the fact the birth rates decrease with population density or that death rates increase with

population density (Allen, 2010, p. 125).

That being said, generation time can be estimated most of the time. There are standard methods for

estimating survival and fecundity empirically, and many empirical applications of MCT employ mechanistic

models from which generation times can be immediately extracted. Throughout all the empirical applications

of MCT mentioned in Section 1.1.3.2 (last paragraph), generation time would be difficult to estimate for

only two types of study organisms: phytoplankton (Ellner et al., 2019; Descamps-Julien and Gonzalez, 2005)
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and duckweeds (Armitage and Jones, 2019). Both types of study organisms cannot be effectively aged and

are hard to track.

When the generation time is difficult to estimate, there are several options, the efficacy of which should

be judged on a case-by-case basis. 1) Make an assumption (or educated guess) about what terms in the

per capita growth rate function represent survival and fecundity. For example, in the competition Lotka

Volterra model with per capita growth rate ri(1−
∑

j αijnj(t), we might assume that ri is the birth rate and∑
j αijnj(t) is the death rate. 2) Assume that generation time is approximately equal to the average adult

lifespan, and obtain this statistic from one of several databases (e.g., De Magalhaes and Costa, 2009; Jones

et al., 2009; Myhrvold et al., 2015) 3) Use β scaling (discussed in the next section) in lieu of the generation

time scaling.

1.1.3.5 The β scaling method

Chesson (2018) has recently suggested scaling growth rates by sensitivity to competition. First, we define

a species-specific competition parameter Cj , which is a function of the regulating factors: Cj = ϕ′(F ).

Naturally, the equilibrium level of competition is C∗
j = ϕ′(F ∗j). Second, we re-parameterize the growth

function such that the per capita growth rate is given by g′j(Ej , Cj). The sensitivity to competition can now

be written as

βj =
∂g′j(E

∗
j , C

∗
j )

∂Cj
. (1.12)

The β scaling method is defined by the generalized partition (Eq.1.8) and the generalized scaling factor,

Ais =
1

S − 1

|βi|
|βs|

. (1.13)

The β scaling method and generation time scaling method share the exact same justification. Both

methods attempt to correct for population-dynamical speed to prevent species with fast life cycles from

dominating the invader–resident comparison. Based on the observation that 1/βj is equal to generation time

in the lottery model and the annual plant model, Chesson (2018) writes, "... the timescale that allows the

clean comparisons ... is the timescale of a generation, or if not exactly that, longevity is a major factor in

this timescale. Thus, “tortoise-hare” can become “perennial-annual” for plants."

Though β scaling and generation time scaling aim to solve the same problem — and sometimes give the

same answers — there are several reasons for favoring generation time scaling. We list these reasons below

and provide elaboration / examples in Appendix 1.1.D.

1. The sensitivity to competition, βj , depends on how the competition parameter is defined. Two rea-
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sonable choices of Cj lead to two different βj ’s, and in turn, two different partitions of the invasion

growth rate. In all fairness, the values of coexistence mechanisms always depend on subjective choices

— definitions of the environmental parameters, regulating factors, and equilibrium parameters — but,

the competition parameter introduce an additional level of subjectivity.

2. Some definitions of Cj lead to a 1/βj that differs substantially from generation time. There is no reason

to use the βj scaling method in such cases, given that the sole justification of the β scaling (according

to Chesson, 2018) is the connection between 1/βj and generation time. In case study #2, Appendix

1.1.C, we show how a reasonable choice of Cj can lead to nonsensical values of coexistence mechanisms.

3. Sometimes, there is no reasonable definition of Cj , and thus no reasonable definition of βj . In Appendix

1.1.D, we introduce a model with two environmental parameters (per species) and argue that there

is no way to write the per capita growth rate as a function of both environment and competition

parameters. Either the environmental parameters become latent (hidden within Cj), in which case

the storage effect is subsumed by relative nonlinearity, or one defines two competition parameters, in

which case there are two βj ’s per species and no obvious way to combine them.

4. The sensitivity to competition is not well-defined in stochastic stage-structured models. In scalar

populations, the sensitivity to competition is defined as a partial derivative of the function g′j , which

gives the per capita growth rate at a single point in time. In stochastic stage-structured models, there

is no obvious analogue of the per capita growth rate at a single point in time, due to the systemic

effects of temporal autocorrelation on the long-term average growth rate (Tuljapurkar, 1982; Caswell,

2001, Section 14.3.6.2). We suspect that β scaling faces similar problems in other kinds of complex

models.

1.1.3.6 The invader–invader comparison

So far, we have been operating under the implicit assumption that coexistence mechanisms should be cal-

culated as invader–resident comparisons. At first glance, this seems appropriate: Coexistence mechanisms

are supposed to measure the importance of different explanations for coexistence, the concept of special-

ization/differentiation has played a central role in historical explanations of coexistence, and the invader–

resident comparison putatively captures the notion of specialization/differentiation. However, upon further

reflection, we may worry that the invader–resident comparison not only captures the rare-species advantage

that results from specialization, but also that which results from intrinsic, density-independent differences

between species.
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The alternative to the invader–resident comparison is what we call the invader–invader comparison:

a comparison of the high density and low density states of a single focal species. An invader–invader

comparison holds species-specific features constant, thus isolating the effects of rarity. Using the difference-

making / but-for account of causation (Moore, 2019), we can say that the invader–invader comparison gives

the causal effects (on average per capita growth rates) of perturbing a species to low density, mediated

through different variables (e.g., mean resource levels for ∆ρi, resource variation for ∆Ni). Though the

invader–invader comparison isolates the effects of rarity, it does not directly compare different species, and

therefore, the resulting coexistence mechanisms do not always capture the notion of specialization; see the

case study (Section 1.1.4) for a demonstration of this phenomenon.

The inventor of MCT, Peter Chesson, has previously alluded to the invader–invader comparison: "Often

the mechanism is most easily understood in terms of how the conditions encountered by an individual species

change between its resident and invader states." (Chesson, 2008), and "...within-species comparison is more

reliable if appropriate within-species resident and invaders states can be prepared" (Chesson, 2013). To our

knowledge, there are no published uses of the invader–invader comparison, which we define in the following

partition of the invasion growth rate:

ri ≈

(
L∑

k=1

ϕ
(1)
ik

(
F

{−i}
k − F ∗i

k

))
−

(
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k

))
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∆Ni : Relative nonlinearity
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))
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ζ
(1)
ik Cov(Es, Fk)

)
,︸ ︷︷ ︸

∆Ii : The storage effect

(1.14)

Note the absence of the superscript "{−i}" from the subtracted terms, which indicates that the reference

state is a community where all species are at their typical densities. Also note that the density-independent

effects, ∆Ei, have vanished.

Unfortunately, the invader–invader comparison lacks the generality of the invader–resident comparison.

There may be no stable high-density state for the focal species, as is the case when the focal species has

a negative invasion growth rate, or when the focal species becomes temporarily abundant only to become

excluded later on (a phenomenon that has been dubbed the resident strikes back ; Mylius and Diekmann,

2001; Geritz et al., 2002). In such cases, the invader–invader comparison does not exist, and thus cannot tell

us how species are failing to coexist. When the invader–invader comparison does exist, it will not be unique
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if there are multiple stable high-density states for the focal species.

1.1.3.7 The relationship between scaling factors, generation time scaling, and β scaling

In models with a single regulating factor, the scaling factors are

qis =
ϕ
(1)
i1

ϕ
(1)
s1

. (1.15)

The right-hand-side resembles both the generation time scaling quotient, Ts/Ti, and the β scaling quotient,

|βi|/|βs|. As it turns out, all three of these quotients are identical in the lottery model and the annual plant

model, two canonical models in MCT (Chesson, 1994, Section 5). In the lottery model of reef fish dynamics,

the finite rate of increase can be written as

λj = exp(Ej − C) + (1− dj), (1.16)

where dj is the death probability for an adult fish, Ej is the logarithm of per capita fecundity, and C is the

logarithm of fish larvae per open territory. By noting that exp
(
E∗

j − C∗) = dj , and treating the competition

parameter as a single regulating factor, one can show that ϕ
(1)
j1 = βj = −dj . As discussed in Section 1.1.3.4,

the generation time in this context is simply the reciprocal of the death probability: Tj = 1/dj . Now it

becomes easy to see that all thee scaling methods multiply residents’ rates by di/ds.

The equivalence of scaling methods does much to explain the continued usage of scaling factors: the

problems with scaling factors are not evident in the simple models that theoreticians tend to study. Scaling

factors can become enormous (due to the inversion of a matrix with nearly dependent columns), but this

problem is not evident if one studies models with a single regulating factor.

When theoreticians do study models with multiple regulating factors, they often envision species compet-

ing equally with all heterospecifics (e.g., Chesson, 1994; Chesson, 2000b), a scenario that has been referred

to as diffuse competition (Stump, 2017). The simplifying structure of diffuse competition allows one to

derive mathematical formulas in the S-species case, which is intractable in most cases. When the regulating

factors are species’ densities, species’ sensitivities to regulating factors are defined by a matrix of competition

coefficients with intraspecific competition c and interspecific competition x. In Appendix 1.1.E, we derive

the exceedingly simple formula

qis =
x

c+ (S − 2)x
, (1.17)

which converges to the simple comparison for large S. Further, all residents are weighted equally, precluding

a small set of species from dominating the invader–resident comparison. Again, we see that simple models
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obscure substantial differences between scaling methods. Judgements about the utility of scaling methods

for empirical applications of MCT should be based off complex models with multiple regulating factors and

asymmetric niches.

1.1.4 Results

Here we test methods for calculating coexistence mechanisms in a model where the true reasons for coexis-

tence are known. Modern Coexistence Theory (MCT) systematizes the analysis of models by breaking an

arbitrarily complex growth rate function into simple polynomial terms, and therefore, is most useful when

we don’t know how species are coexisting. However, if MCT is to be a useful measurement tool, it ought to

conform to expectations when we do know how species are coexisting.

Inspired by the Armstrong-McGehee model (1976; 1980), we examine a deterministic, continuous-time

resource-consumer model where relative nonlinearity features as a crucial coexistence mechanisms. A stochas-

tic stage-structured model of annual and perennial plants is analyzed in Appendix 1.1.C. All computa-

tions can be replicated using the Mathematica notebooks, ArmMc_3Spp.nb and SE_3Spp.nb, found at

https://github.com/ejohnson6767/scaling_factors.

The dynamics of three consumers (densities denoted by N1, N2, and N3) and two resources (densities

denoted by R1 and R2) are described by the equations,

dN1

dt
= N1b1 [c11R1 + c21R2 − d]

dN2

dt
= N2b2

[
c12R1 +

c22R2

η +R2
− d

]
dN3

dt
= N3b3 [c13R1 + c23R2 − d]

dR1

dt
= R1

[
r1

(
1− R1

K1

)
− c11N1 − c12N2 − c13N3

]
dR2

dt
= R2

[
r2

(
1− R2

K2

)
− c21N1 −

c22N2

η +R2
− c23N3

]
.

(1.18)

In the absence of consumers, both resources grow logistically with intrinsic growth rates rj and carrying

capacities Kj . Consumers share a mortality parameter, d, and have birth rates proportional to resource

consumption. The maximum (per-consumer, per-resource) rate at which resource k is consumed by consumer

j is given by ckj . Consumers 1 and 3 have linear functional responses to resource densities. Consumer 2 has

a linear response to resource 1, but has a type II functional response to resource 2 with a half-saturation

constant η. Population-dynamical speed is denoted by bj .

Individuals die at the rate bjd, making the generation time ratio Ts/Ti = bi/bs. Intuitively, the com-

petition parameter should be a decreasing function of resource consumption: the bracketed terms in the
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consumer equations, excluding −d. Making the natural choice C1 = − log(c11R1 + c21R2), and analogous

choices for consumers 2 and 3, the sensitivities to competition become βj = −bjd. The β scaling ratios are

thus |βi|/|βs| = bi/bs. The generation time scaling and β scaling are equivalent in this model, but give very

different results in case study #2 (Appendix 1.1.C). The scaling factors are obtained by solving a system of

linear equations (see Appendix 1.1.B).

We select parameter values so that consumer 1 specializes on resource 1, consumer 2 specializes on

resource 2 and consumer 3 specializes on the variation in resource 2: c11 = c22 = c23 = 1, c21 = c12 = c13 =

0.05, d1 = d2 = d3 = 0.47, r1 = r2 = 1, K1 = K2 = 1.5, η = 0.5. These parameter values produce two

virtually independent subsystems: {consumer 1, resource 1} and {consumer 2, consumer 3, resource 2}, the

latter of which is essentially the Armstrong-McGehee model. The regulating factors are simply the resource

densities. The environmental parameter Ej is nonexistent, so ∆Ei and ∆Ii are necessarily zero.

Consumer 1 specializes on resource 1, and thus coexists via the linear density-dependent effects. Because

consumer 2 and consumer 3 both heavily consume the same resource, one of these species must coexist via

fluctuation-dependent mechanisms. Consumer 2 clearly coexists via linear density-dependent effects, because

it is the superior competitor (compared to consumer 3) in the absence of fluctuations via Tilman’s R∗ rule

(see Fig. 1.1). Consumer 3 clearly coexists via relative nonlinearity, because consumer 2’s birth rate function

is relatively concave down, meaning that resource fluctuations help consumer 3 relative to consumer 2.

Figure 1.1: An opportunist-gleaner trade-off. Consumer 2 (the gleaner) excludes consumer 3 (the oppor-
tunist) in the absence of resource fluctuations (by Tilman’s (1982) R∗ rule: R∗

2 < R∗
3), but consumer 2 is

hurt more by resource fluctuations (by Jensen et al.’s (1906) inequality). Consumer 2 specializes on mean
resource levels, whereas Consumer 3 specializes on resource variation. Consumer 1 is not shown.
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Following the intuition in the previous paragraph, we predict that ∆ρ1, ∆ρ2, and ∆N3 will be positive

and large (relative to other coexistence mechanisms within each species, respectively). This is precisely what

we see for both the simple comparison and generation time scaling (Table 1.1). By contrast, the scaling

factors counterintuitively attribute the persistence of species 1 to relative nonlinearity (i.e., in Table 1.1, box

A, ∆N1 is large and positive). It is not so surprising that ∆N1 is non-zero: after all, species 1 does have a

nonlinear response to competition, relative to species 2. What is surprising is that ∆N1 is so large that it

almost entirely accounts for the positive invasion growth rate of species 1. Of course, it is unreasonable to

think that ∆ρ1 would be large and positive when using the scaling factors (the whole point of the scaling

factors is to cancel ∆ρi), but one might reasonably think that r′1 would be large and positive, since both

∆ρ1 and r′1 represent fluctuation-independent forces.

The failure of the scaling factors method (i.e., the counterintuitively large ∆N1) can be explained by the

sheer magnitude of the scaling factors, which are q12 ≈ −84 and q13 ≈ 64. Because species 2 barely interacts

with species 1, the growth rate components of species 2 must be heavily weighted in order to cancel ∆ρ1.

Consider the analytical formula for one scaling factor, q12 = (ϕ
(1)
12 ϕ

(1)
31 − ϕ

(1)
11 ϕ

(1)
32 )/(ϕ

(1)
22 ϕ

(1)
31 − ϕ

(1)
21 ϕ

(1)
32 ). This

formula demonstrates that the scaling factors can become large via division by a small number; ϕ31 and

ϕ21 are small, so the denominator ϕ
(1)
22 ϕ

(1)
31 − ϕ

(1)
21 ϕ

(1)
32 is small even though all species respond similarly to

resources in total (i.e., ϕ(1)
11 + ϕ

(1)
21 + ϕ

(1)
31 ≈ ϕ

(1)
12 + ϕ

(1)
22 + ϕ

(1)
32 )

When species have similar population-dynamical speeds, the simple comparison and generation time

scaling both give results that accord with intuition: ∆ρ1, ∆ρ2, and ∆N3 are positive and large (relative

to other coexistence mechanisms within each species). Strangely, the invader–invader comparison produces

exactly the opposite of what we predicted for species 2 and 3: the coexistence mechanisms ∆N2 and ∆ρ3

are large and positive (see box B and C in Table 1.1).

We make sense of the invader–invader coexistence mechanisms by recognizing that they do not directly

compare species, and therefore do not always capture the notions of specialization or ecological differentiation.

In our model, consumer 2 and consumer 3 exhibit an opportunist-gleaner trade-off (Fig. 1.1; Grover, 1997).

When species 2 — the gleaner — becomes abundant, it increases resource variation by inducing cyclical

resource-consumer dynamics. Because the gleaner has a concave-down per capita growth rate function, its

high-density state suffers from the increased variation, resulting in ∆N2 > 0. When the opportunist —

species 3 — is absent from the community, the gleaner produces a lower F {−3}
2 through nonlinear averaging.

When the opportunist is at its high-density state, resource fluctuations becomes smaller, nonlinear averaging

becomes weaker, and mean resource level rise, resulting in ∆ρ3 > 0.

To better understand the effects of population-dynamical speed on the coexistence mechanisms, we

increase species 1’s speed by setting b1 = 100. Because species 1 attains an equilibrium with resource 1
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and barely interacts with the subsystem {consumer 2, consumer 3, resource 2}, increasing the speed of

species 1’s population dynamics has little effect on population dynamics of the full three-species community,

or any of the sub-communities (see simulated time series in the Mathematica notebook ArmMc_3Spp.nb.

Nonetheless, Table 1.2 shows that increasing species 1’s speed can complicate the interpretation of species 3’s

coexistence mechanisms. Species 3 specializes on resource variation relative to species 2, so ∆N3 should be

large; this is precisely what we see for the generation time scaling method. However, the simple comparison

method gives us a large ∆ρ3,F1 (Table 1.2, Box A), implying that species 3 persists by specializing on resource

1, despite the fact that species 3 barely consumes resource 1.

Because species 3 barely consumes resource 1, the mean level of resource 1 barely changes species 3 is

perturbed to the invader state. However, there is a small persistent difference between F
{−3}
1 and F ∗1

1 ,

not because of species 3’s interaction with resource 1, but because the community is a nonlinear and non-

equilibrium system (because of nonlinear averaging, it is not possible to select F ∗1 = F {−3} and still satisfy

the constraint g1(E
∗
1 ,F

∗1) = 0). The small difference between F
{−3}
1 and F ∗1

1 gets amplified by species 1’s

extreme responsiveness to regulating factors (i.e., a large ϕ
(1)
11 ), which is a natural consequence of species

1’s fast population dynamics. The term ϕ
(1)
11

(
F1 − F ∗1

1

)
, belonging to species 1, comes to dominate in the

simple comparison method, resulting in a large ∆ρ3,F1
. The generation time scaling method successfully

counteracts this phenomenon.
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Table 1.1: Values of coexistence mechanisms when species have the same population-dynamical speed.
Red boxes highlight the failures of various methods: the large and positive values indicate coexistence via
mechanisms that are not actually helping species coexist. Coexistence mechanisms are calculated with the
generalized partitioning framework of Ellner et al. (2019). The density-independent effects are denoted by
r′i (only for the scaling factor method) or ∆Ei. We display the linear effects of the two regulating factors
and their aggregate effect: ∆ρi = ∆ρi,F1

+∆ρi,F2
.

Species
i =

Calculation method Coexistence mechanisms

r′ior ∆Ei ∆ρi ∆ρi,F1 ∆ρi,F2 ∆Ni

1 Scaling factors -7.922 0 NA NA 10.855 A
1 Simple comparison 0 0.957 0.962 -0.005 0.065
1 Generation time scaling 0 0.957 0.962 -0.005 0.065
1 β scaling 0 0.957 0.962 -0.005 0.065
1 Invader–invader comparison 0 1.010 1.013 -0.002 0.000

2 Scaling factors 0.094 0 NA NA 0.000
2 Simple comparison 0 0.094 -0.000 0.094 0.000
2 Generation time scaling 0 0.094 -0.000 0.094 0.000
2 β scaling 0 0.094 -0.000 0.094 0.000
2 Invader–invader comparison 0 0.001 -0.000 0.001 0.117 B

3 Scaling factors -0.124 0 NA NA 0.228
3 Simple comparison 0 -0.013 0.001 -0.015 0.087
3 Generation time scaling 0 -0.013 0.001 -0.015 0.087
3 β scaling 0 -0.013 0.001 -0.015 0.087
3 Invader–invader comparison 0 0.056 C -0.000 0.056 0.000

1.1.5 Discussion

If we can define coexistence mechanisms as measures of the importance of various explanations for coex-

istence, then they can be straightforwardly used to infer how species are coexisting in real communities

(through the analysis of empirically-calibrated models). In this paper, we have discussed five definitions of

coexistence mechanisms, each respectively based on scaling factors, a simple comparison, generation time

scaling, β scaling, and an invader–invader comparison.

Scaling factors can be useful in theoretical research, but they are not recommended for the purpose of

quantifying coexistence mechanisms in real communities. There are better alternative methods for computing

coexistence mechanisms (namely the simple comparison, generation time scaling, and β scaling), each with

strengths and weaknesses (Table 1.3). The simple comparison method is easy to compute and interpret, but

may give unintuitive results when species have dissimilar generation times. Generation time scaling works

well when species have dissimilar generation times, but is not always well-defined. The invader–invader

comparison directly measures the causal effects of low density, but it does not always exist. When the invader–

invader comparison does exist, it does not always quantify the notion of specialization/differentiation; this
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Table 1.2: Values of coexistence mechanisms when species 1 has fast population dynamics (b1 = 100).
Species
i =

Calculation method Coexistence mechanisms

r′ior ∆Ei ∆ρi ∆ρi,F1
∆ρi,F2

∆Ni

1 Scaling factors -792.237 0 NA NA 1085.440
1 Simple comparison 0 100.976 101.237 -0.261 0.065
1 Generation time scaling 0 95.742 96.223 -0.481 6.453
1 β scaling 0 95.742 96.223 -0.481 6.453
1 Invader–invader comparison 0 101.029 101.288 -0.259 0.000

2 Scaling factors 0.094 0 NA NA 0.000
2 Simple comparison 0 0.094 -0.002 0.096 0.000
2 Generation time scaling 0 0.094 -0.000 0.094 0.000
2 β scaling 0 0.094 -0.000 0.094 0.000
2 Invader–invader comparison 0 -0.001 0.000 -0.001 0.117

3 Scaling factors -0.124 0 NA NA 0.234
3 Simple comparison 0 -0.013 0.138 A -0.151 0.089
3 Generation time scaling 0 -0.013 0.001 -0.014 0.089
3 β scaling 0 -0.013 0.001 -0.014 0.089
3 Invader–invader comparison 0 0.055 -0.000 0.055 0.000

has lead to counterintuitive results in case study #1 (Section 1.1.4) and in a phytoplankton model (Steve

Ellner, personal communication). Though we have substantial conceptual arguments in favor of generation

time scaling, we have only compared methods in two case studies (Section 1.1.4 and Appendix 1.1.C).

We tentatively recommend the general use of generation time scaling. If generation time cannot be

unambiguously extracted from a model, but the sensitivity to competition is well-defined, then β scaling

should be used in lieu of the generation time scaling. If neither the generation time nor the sensitivity to

competition is well-defined, then the simple comparison is recommended. Neither the scaling factors nor the

invader–invader comparison should be used in empirical research.

In the end, the difference between the simple comparison and generation time scaling may be inconse-

quential: coexistence is most often studied in guilds of species that have similar generation times, because

the putative coexistence of species with similar life histories is more surprising in light of the competitive ex-

clusion principle (Gause, 1934; Levin, 1970). When there are small between-species differences in generation

times, any inferential error that results from selecting the simple comparison over generation time scaling

will likely be small, relative to the error which results from failing to account for parameter uncertainty (if

one does not calculate coexistence mechanisms across either the joint posterior or bootstrap distribution of

model parameters) and structural uncertainty (if one does not calculate coexistence mechanisms for several

disparate models). It is important to keep in mind that there are many ways in which a MCT analysis can

be provisional.
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The simple comparison method captures the notion of specialization, but also captures intrinsic between-

species differences like population-dynamical speed. The invader–invader comparison, on the other hand,

isolates the effects of rarity, but does not necessarily capture the notion of specialization. We may think

of generation time scaling as giving the best of both worlds: reducing between-species differences that are

irrelevant to coexistence, but capturing the notion of specialization (by remaining within the paradigm of

invader–resident comparisons). In fact, generation time scaling can be thought of as partially correcting for

between-species differences in average fitness (Appendix 1.1.F).

We have criticized the scaling factors, the simple comparison, and the invader–invader comparison on the

grounds that they can lead to counterintuitive conclusions about how species are coexisting. Our intuitions

are rooted in a belief that coexistence mechanisms should measure explanations for coexistence, and that

in turn, explanations for coexistence should involve specialization/differentiation that lead to systematic

(i.e., across species) rare-species advantages. Historically, the notion of specialization has been central to

explanations for coexistence. For example, the heuristic ". . . each species must consume proportionately more

of the resource that more limits its growth" (Tilman, 1982, p. 96) contains the word "proportionately", which

insinuates a cross-species comparison: demographic parameters from multiple species must be considered

simultaneously. Indeed, this can be seen in either the mathematical (Tilman, 1982, p. 77), or the graphical

(Chase and Leibold, 2003) versions of Tilman’s coexistence theory.

Unfortunately, heady concepts like specialization or population-dynamical speed do not have formal def-

initions that apply generally (i.e., in an arbitrary model), meaning that generation time scaling cannot be

justified with a single concise argument. Instead, we have evaluated methods through conceptual analysis

and the probing of particular models. Though the two case studies support the usage of generation time

scaling, it is the possible that they can be problematic in contexts that we have failed to imagine. MCT is

powerful because it is a general framework: take an arbitrary model, select a few equilibrium parameters,

and algorithmically partition the invasion growth rate. In a sense, calculating coexistence mechanisms is the

easy part; the hard part is determining the meaning of the numbers that MCT spits out.

Table 1.3: Pros and cons of methods for calculating coexistence

mechanisms

Method Pros Cons

Scaling factors
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• Eliminates ∆ρi when there are more

residents than regulating factors, showing

that not all species can coexist via classical

mechanisms

• Eliminates ∆ρi when there are more

residents than regulating factors; prevents

us from determining the degree to which

species coexist via classical mechanisms

• Converts the units of resident growth to

that of invader growth; Useful if species are

measured in different units

• Modulates other coexistence mechanisms,

sometimes leading to counterintuitive infer-

ences about how species are coexisting

• Ensures that all coexistence mechanisms

are of the same magnitude under small-

noise assumptions

• Are not uniquely determined when there

are more regulating factors than resident

species

• In rare cases, eliminating ∆ρi can elim-

inate the need to explicitly model the dy-

namics of regulating factors

• Are not uniquely determined (even if

there are less regulating factors than resi-

dent species) when the invader’s C cannot

be written as a function of the resident C’s

(see Eq. 2 in Appendix 1.1.B)

• Can be sensitive to small changes in in-

puts if species responses to regulating fac-

tors are nearly linearly dependent

• In models with mutualism, can turn an

invader–resident difference into an invader–

resident sum; the interpretation of coexis-

tence mechanisms as a rare-species advan-

tage is lost

Simple comparison

• Solves all of the scaling factor cons • If some species have fast population

dynamics, they will dominate the invader–

resident comparison, leading to counterin-

tuitive inferences about how species are co-

existing

• Easy to compute; works universally

Generation time scaling
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• Solves all of the scaling factor and sim-

ple comparison cons; puts species with dif-

ferent population-dynamical speeds on an

equal footing

• If it is not clear what demographic param-

eters are associated with birth vs. death

processes, then generation time is not well-

defined

• Has only been tested in two case studies

β scaling

• Solves all of the scaling factor and sim-

ple comparison cons; puts species with dif-

ferent population-dynamical speeds on an

equal footing

• Reasonable definitions of the competi-

tion parameter can lead to different βj ’s;

results can be sensitive to subjective mod-

elling choices

• Can sometimes succeed where generation

time scaling fails — in simple, unstructured

population models

• A reasonable competition parameter may

not exist, even in simple models

• Even when the competition param-

eter does exist, βj is not well-defined

in complex models, like stochastic stage-

structured models or individual-based mod-

els

Invader–invader comparison

• Has a straightforward causal interpre-

tation as the effects of perturbing a species

to low density (mediated through mean reg-

ulating factors, variation in regulating fac-

tors, etc.)

• Can’t be computed if the focal species

has a negative invasion growth rate or in

the case of the resident strikes back

• Solves all of the scaling factor and sim-

ple comparison cons; puts species with dif-

ferent population-dynamical speeds on an

equal footing

• Can’t always be interpreted in terms of

specialization / differentiation

• Can’t be interpreted in terms of the in-

vader out-performing the residents, which is

the actual determinant of invasion success
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Appendices

1.1.A Strategies for selecting equilibrium parameters

In the case of one regulating factor, the canonical way to select the equilibrium parameters is to set en-

vironmental noise to zero (thus creating a deterministic skeleton), set E∗
j as the now-fixed environmental

parameter, and then solve for F ∗j using the constraint gj(E
∗
j , F

∗j) = 0 (see Chesson, 1994, Section 5).

Alternatively, Barabás et al. (2018) suggests selecting E∗
j = Ej (without first eliminating environmental

noise), and then solving for F ∗j . In the case of multiple regulating factors, Chesson (2020) suggests selecting

reasonable F ∗j first, and then solving for E∗
j . For instance, one could simulate the full community dynamics

(where all species are present), set the equilibrium regulating factors to their temporal averages, F , and

then solve for E∗
j for each species. However, because the quality of the Taylor series approximation of the

invasion growth rate depends on F ∗j being close to F {−i} (the temporal averages of regulating factors in

the community without invader i), this method could work poorly if putting a species in the invader state

would substantially change the mean levels of the regulating factors.

It is worth noting that the values of coexistence mechanisms generally depend on one’s definition of

the Ej and F , as well as the corresponding equilibrium parameters (Chesson, 1994; Barabás et al., 2018).

Thus, one’s inferences about how species are coexisting should not be based solely on the relative values of

coexistence mechanisms, especially when comparisons are being made across species or communities with

disparate models. Rather, one should use all available means (e.g., definitions of Ej and F , model analysis,

analogy with previously well-studied models) to understand what mechanical explanations for coexistence

are entailed by particular instantiations of coexistence mechanisms.

1.1.B The mathematics of scaling factors

As stated in the main text, the scaling factors are defined as

qis =
∂C

{−i}
i

∂C
{−i}
s

, (1.19)

evaluated at Cs = 0. Next, we make two assumptions (respectively Assumption a6 and Eq.49 in Chesson,

1994). Assume that we can express the standard competition parameter of the invader as a function of the

residents’ standard competition parameters:

C
{−i}
i = f

(
C

{−i}
1 , . . . ,C

{−i}
S

)
. (1.20)
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Further, assume that the standard competitive parameters can be written as a function of L competitive

factors (F1, . . . , FL)
⊺ = F :

Cj = ϕj(F1, . . . , FL) = ϕj(F ). (1.21)

The competitive factors can now be related to the scaling factors through the chain rule,

∂C
{−i}
i

Fk
=

S∑
s̸=i

∂C
{−i}
i

∂C
{−i}
s

∂C
{−i}
s

Fk
(1.22)

with all derivatives evaluated at C
{−i}
s = 0. The partial derivatives of C

{−i}
j with respect to Fk are the

first order coefficients of a Taylor series of ϕj expanded about F = F ∗j , so we we may use the notation

ϕ
(1)
jk = ∂Cj/∂Fk|Fk=F∗j

k
= ∂C

{−i}
j /∂Fk

∣∣∣
Fk=F∗j

k

Substituting ϕ
(1)
jk and the left-hand-side of Eq.1.19 into Eq.1.22, we get

ϕ
(1)
ik =

S∑
s ̸=i

qirϕ
(1)
rk . (1.23)

With this one equation and S − 1 unknowns (the qir’s), Eq.1.23 is underdetermined. If we consider the

equations of all L competitive factors simultaneously, we get the vector-matrix equation

Φi∗ = qi∗Φ
(−i). (1.24)

Here, Φ is a (S × L) matrix of species’ sensitivities to competitive factors, with elements ϕ
(1)
jk . The symbol

Φi∗ is the (1× L) row vector of the invader’s sensitivities to regulating factors; qi∗ is the (1× (S − 1)) row

vector of scaling factors (the element qii is not included); and Φ(−i) is a ((S − 1)× L) matrix, obtained by

removing the invader (i.e., the i-th row) from Φ.

Solving for qi∗ involves multiplying both sides of Eq.1.24 by the inverse of Φ(−i). However, the invertible

matrix theorem states that the matrix inverse only exists if Φ(−i) is square (i.e., S − 1 = L) and has

linearly independent columns. What do we do when Φ(−i) is not square: when there are more residents than

regulating factors, or more regulating factors than residents?

Chesson’s (1994) solution is the generalized inverse. A generalized inverse of a matrix A is denoted as

Ag, and satisfies the equation AAgA = A (Ben-Israel and Greville, 2003). Our expression for the scaling

factors now becomes
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qi∗ = Φi∗

(
Φ(−i)

)g
. (1.25)

When Φ(−i) is square and has full rank, then the regular matrix inverse is the unique generalized inverse.

When the linear system is underdetermined (i.e., S−1 > L, assuming Φ(−i) has full rank), then a generalized

inverse produces an infinite number of solutions to Eq.1.24. According to Chesson (2020, p. 6) this non-

uniqueness is a virtue: different choices of generalized inverses allow the user of MCT to ask different scientific

questions.

When a solution is available, the resulting scaling factors (Eq.1.25) can be used to cancel the linear effects

of density-dependence, i.e., ∆ρi. The linear effects of density-dependence can be expressed in vector-matrix

form:

∆ρi = Φi∗F
{−i} − qi∗Φ

(−i)F {−i}. (1.26)

Substituting in the right-hand-side of Eq.1.25, we get

∆ρi = Φi∗F
{−i} −Φi∗

(
Φ(−i)

)g
Φ(−i)F {−i}. (1.27)

The matrix product
(
Φ(−i)

)g
Φ(−i) evaluates to the (L× L) identity matrix, and therefore, ∆ρi = 0.

When the linear system in Eq.1.24 is overdetermined (i.e., S − 1 < L, assuming Φ(−i) has full rank),

Eq.1.25 can still be used, but the resulting qi∗ will not be a strict solution. Barabás et al. (2018) suggests

cancelling a major regulating factor that has a particularly strong effect on per capita growth rates. In fact,

one could cancel up to (L− S + 1) such major regulating factors by computing the generalized inverse for a

submatrix of Φ(−i) that contains only columns corresponding to the major regulating factors.

In this paper, we will argue against most uses of the scaling factors. However, if one still desires to use

the scaling factors, we suggest using the Moore-Pensrose Pseudoinverse (denoted with a dagger: †) when the

linear system in Eq.1.24 is underdetermined or overdetermined. Specifically, in the case of overdetermination,

we suggest

qi∗ = Φi∗

(
Φ(−i)

)†
. (1.28)

The pseudoinverse gives the optimal solution in the least-squares sense (Ben-Israel and Greville, 2003,

p. 122), so while it may be impossible to cancel ∆ρi, it may be possible to get close. In the case of

underdetermination, we suggest
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qi∗ = z + (Φi∗ − zΦ(−i))
(
Φ(−i)

)†
, (1.29)

where z is an (1× (S−1)) row vector where each element is equal to 1/(S−1). This formula comes from

taking Eq.1.24, replacing qi∗ with x+z, and attempting to solve for x. The answer gives the minimum norm

solution (Ben-Israel and Greville, 2003, p. 109) for x, which means qi∗ = x+z is close z in the least-squares

sense. In other words, we eliminate ∆ρi while deviating a minimal amount from the simple average over

residents.

1.1.C Case study #2: Coexistence via the storage effect in a annual–perennial

plant model

General model description

Here, we examine a stochastic, stage-structure, discrete-time model of annual and perennial plants. The

densities of seeds and germinants are denoted Xj(t) and Nj(t), respectively. At the beginning of the growing

season, seeds germinate with probability Gj ; the remaining seeds survive to the next year with probability

sj . Per germinant seed production fluctuates over time, but tends to decline with the density of germinant

competitors. After new seeds join the seed bank, the germinants survive to the beginning of the next growing

season with probability s̃j . Annual plants necessarily have s̃j = 0.

The equations for the three plants are

Xj(t+ 1) = Xj(t)sj(1−Gj) +
(Xj(t)Gj +Nj(t)) exp(Ej(t))

1 + αj1(X1(t)G1 +N1(t)) + αj2(X2(t)G2 +N2(t)) + αj3(X3(t)G3 +N3(t))
,

Nj(t+ 1) = (Xj(t)Gj +Nj(t)) s̃j , j = (1, 2, 3),

(1.30)

where the αjk are competition coefficients and exp(Ej(t)) are the maximum fecundities. We assume that each

species’ maximum fecundity is temporally autocorrelated, which serves to generate the covariance between

environment and competition that is needed for the storage effect (Li and Chesson, 2016, Schreiber, 2021).

Through inter-generational population growth, a good environment for a resident generically leads to high

competition in the future. However, a covariance between the future environment and future competition can

only be established if the future environment is similar to the present environment, i.e., if the environment

is autocorrelated.
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The environmental parameters follow autoregressive order-1 dynamics,

Ej(t+ 1) = µj + θj(Ej(t)− µj) + σj

√
1− θ2j , j = (1, 2, 3),

(ϵ1(t), ϵ2(t), ϵ3(t))
⊺ ∼ MultivariateNormal(0,W ),

(1.31)

with mean µj , autoregressive parameter θj , noise scale σj , and covariance matrix W . The factor
√
1− θ2j ,

when combined with the fact that the variances of ϵj are equal to one (i.e., Wjj = 1), ensures that the

variance of the marginal asymptotic stationary distribution of Ej(t) is always σ2
j . This fact allows us to

control the level of environmental noise while modulating the autoregressive parameters.

Quantities for the various scaling methods

The regulating factors F are the number of germinants of each species after the germination phase of the

growing season, e.g., F1 = X1(t)G1 + N1(t). The equilibrium regulating factors are found by fixing Ej at

E∗
j = µj , and then numerically finding the equilibrium where all species have positive seed and germinant

densities. Then, the equilibrium population densities are used to calculate the equilibrium regulating factors,

e.g., F ∗
1 = X∗

1G1 + N∗
1 . With the crucial parameters defined (Ej , E∗

j , F , and F ∗j), we can now calculate

the scaling factors.

In general, the scaling factors can’t cancel ∆ρi when the number of residents is less than or equal to

the number of regulating factors. Here, we ostensibly have 3 residents and 3 regulating factors, but when

a species is placed in the invader state, one of the regulating factors vanishes and the scaling factors can

be used to cancel ∆ρi. Thus, when calculating the scaling factors, we invert the matrix of responses with

the i-th row and i-th column removed (Chesson, 1994, p. 250), as opposed to only removing the row (as in

Eq.1.25, Appendix 1.1.B).

To obtain the intrinsic generation time of species j, we first write the equations of population dynamics

(Eq.1.30) in matrix-vector form, i.e., Y (t+ 1) = M j(t)Y (t+ 1), where M j(t) is the transition probability

matrix and Y = (X,N)⊺ is the state. Second, we write the transition probability matrix as the sum of a

fecundity matrix F̃ j and survival matrix S̃j . The three focal matrixes are

M j(t) =

sj(1−Gj) +
Gj exp(Ej(t))

1+αj1F1(t)+αj2F2(t)+αj3F3(t)
exp(Ej(t))

1+αj1F1(t)+αj2F2(t)+αj3F3(t)

Gj s̃j s̃j

 , (1.32)

F̃ j(t) =

 Gj exp(Ej(t))
1+αj1F1(t)+αj2F2(t)+αj3F3(t)

exp(Ej(t))
1+αj1F1(t)+αj2F2(t)+αj3F3(t)

0 0

 , and (1.33)
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S̃j(t) =

sj(1−Gj) 0

Gj s̃j s̃j

 . (1.34)

The intrinsic generation time is given by the formula

Tj =
v⊺jwj

v⊺j F̃jwj

∣∣∣Ej=E∗

F=F ∗j

, (1.35)

which is the same as Eq. 12 in Bienvenu and Legendre (2015) and Eq. 13 in Ellner (2018), except our

formulation does not explicitly include the dominant eigenvalue (it is always one, because the population is

at equilibrium). Here wj is the stable age/stage distribution (the normalized right eigenvector of M j) and

vj contains the reproductive values (the normalized left eigenvector of M j). The vertical bar and symbols

thereafter indicate that the quantity is evaluated at equilibrium.

Plugging the matrixes (Eq.1.32 and Eq.1.33) into Eq.1.35, substituting in the equilibrium parameters,

and simplifying, we find that the intrinsic generation time is

Tj =
1− (1−Gj)sj s̃j

(1− s̃j)(1− (1−Gj)sj)
. (1.36)

In the case of an annual species (s̃j = 0), the intrinsic generation time collapses to Tj = 1/(1− (1−Gj)sj).

As expected, this is the average lifespan of a seed in the canonical annual plant model of Modern Coexistence

Theory (Chesson, 1994, Section 5).

To use the β scaling method, we must define the sensitivity to competition. We use the formula

βj =
∂ log(λj,0)

∂Cj

∣∣∣Ej=E∗

Cj=C∗
j

, (1.37)

where λj,0 is the dominant eigenvalue of the species j’s transition probability matrix, reparameterized in

terms of Ej and Cj (as opposed to Ej and F ). While the expression above is the only obvious definition of

βj , it is (somewhat) conceptually unsatisfactory for reasons explained in Appendix 1.1.D (Reason # 4).

One of the major problems with β scaling is that the value of βj can be sensitive to the definition of the

competition parameter. In the context of annual–perennial model, there are two reasonable definitions of Cj .

The first definition identifies competition as a linear combination of regulating factors: C
(1)
j = αj1(X1G1 +

N1) + αj2(X2G2 +N2) + αj3(X3G3 +N3). The second definition identifies competition as the logarithm of

the denominator in Eq.1.30: C
(2)
j = log

(
1 + αj1(X1G1 +N1) + αj2(X2G2 +N2) + αj3(X3G3 +N3)

)
. These

two definitions (distinguished by superscripts "(1)" and "(2)") lead to two completely different sensitivities
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to competition:

β
(1)
j = −e−µj (1− s̃j)

2(1− (1−Gj)sj)
2

Gj − (1−Gj)Gjsj s̃j
, and β

(2)
j = − (1− s̃j)(1− (1−Gj)sj)

1− (1−Gj)sj s̃j
. (1.38)

It is easy to verify that 1/
∣∣∣β(2)

j

∣∣∣ = Tj . Thus, the β scaling can give results that are equivalent to that of

the generation time scaling, but only if the analyst intuits the "correct" definition of Cj . By contrast, the

intrinsic generation time does not depend on how the model is parameterized (e.g., the definition of F ).

In certain parameter regimes, β scaling (with β
(1)
j ) and generation time scaling can give similar results.

That is, 1/
∣∣∣β(1)

j

∣∣∣ ≈ Tj . We found this to be the case when the germination and seed survival probabilities

have moderate values (e.g., Gj = sj = 0.5). However, in other parameter regimes, the two methods diverge

greatly. Figure 1.2 shows how much a perennial resident is scaled when an equivalent annual is an invader.

When the germination probability is low and seed survival is high, the generation time is relatively insensitive

to the germinant survival probability. This makes sense — with these parameters, most of an individual’s

life is spent in the seed stage, regardless of the value of s̃j . The sensitivity to competition, on the other hand,

grows quickly as s̃j increases. We are unsure of the ecological interpretation of this pattern. Regardless, we

will show that the extremely large values of
∣∣∣β(1)

s

∣∣∣/∣∣∣β(1)
i

∣∣∣ can produce counterintuitive values of coexistence

mechanisms.

Figure 1.2: A comparison of scaling methods. The x-axis (limits = [0, 0.99]) depicts the germinant survival
probability of the resident. The y-axis (limits = [0, 100]) depicts

∣∣∣β(1)
s

∣∣∣/∣∣∣β(1)
i

∣∣∣ for the "β scaling" line and
Ts/Ti for the "Generation time scaling" line. The invader is an annual (i.e., s̃i = 0). Both species share
other parameters: Gj = 0.1, sj = 0.95, µj = 4.
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Results

In every scenario, the competition coefficient matrix and noise covariance matrixes are respectively

α =


1 0.001 0.001

0.001 1 1.001

0.001 1.001 1

 , W =


1 −0.49 −0.49

−0.49 1 −0.49

−0.49 −0.49 1

 . (1.39)

With competition structured in this way, species 1 is nearly-independent of species 2 and 3. In the absence

of fluctuations, the either species 2 or 3 is competitively excluded depending on initial conditions; However,

these priority effects may be overcome by the storage effect. For ease of interpretation, we will group ∆Ei

and ∆ρi to represent all fluctuation-independent mechanisms. Intuition dictates that ∆Ei+∆ρ1 (∆r′i in the

case of scaling factors), ∆I2, and ∆I3 will be positive and large (relative to other coexistence mechanisms

within each species). In Scenario #1, we imagine that all species are long-lived perennial (s̃j = 0.975 for

all j). All species are highly fecund, have long-lived seeds, small germination probabilities, and experience

a temporally autocorrelated environment with moderate variance: µj = 4, sj = 0.9, Gj = 0.1, σj = 1, and

θj = 0.9 for all j. In this scenario, all methods agree with intuition (Table 1.4, the values of ∆E1 +∆ρ1 in

the box are large).

Scenario #2 is identical to Scenario #1 except for the fact that species 1 is now an annual (i.e., s1 = 0).

Here, the β scaling method (using β
(1)
j from the previous section, Eq.1.38) fails spectacularly. Even though

species 1 barely interacts with the other species and has roughly the same seed density as the perennials

(germination is low and seed survival is high), the β scaling method indicates that species 1 is persisting

because of the storage effect (Table 1.5, the value of ∆I1 in the box is large, relative to other values in

its row). All other methods agree with intuition, once again indicating that species 1 is persisting due to

fluctuation-independent mechanisms.

The βj method fails because it greatly up-weights the residents; when species 1 is the invader, the

resident scaling factor is |βi|/|βs| ≈ 350. We do not have a ecological explanation for why the perennials are

so sensitive to competition in this parameter regime, but it is concerning that a reasonable definition of Cj

can result in such unreasonable coexistence mechanisms.

1.1.D Extended discussion of β scaling

It is worth noting a few differences between the β scaling method and the method which was implied by

Chesson (2018). First, Chesson uses the bj instead of βj (see Eq. 9 in Chesson, 2018). Second, Chesson

defines the sensitivity to competition with a negative sign "baked in" (see Eq. 7 in Chesson, 2018), such
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Table 1.4: Case study #2, Scenario #1: Coexistence mechanisms when all species are perennials. Species 2
and 3 behave symmetrically, so they have the same coexistence mechanisms. Model parameters are µj = 4,
sj = 0.9, Gj = 0.1, σj = 1, θj = 0.9, and s̃j = 0.975 for all j.

Species
i =
. . .

Calculation method Coexistence mechanisms

r′i or ∆Ni ∆Ii
∆Ei +∆ρi

1 Scaling factors 1.163 0.027 0.177
1 Simple comparison 1.163 0.027 0.177
1 Generation time scaling 1.163 0.027 0.177
1 β scaling 1.163 0.027 0.177
1 Invader-invader comparison 1.160 0.025 0.181

2 & 3 Scaling factors -0.003 -0.002 0.008
2 & 3 Simple comparison -0.003 -0.002 0.008
2 & 3 Generation time scaling -0.003 -0.002 0.008
2 & 3 β scaling -0.003 -0.002 0.008
2 & 3 Invader-invader comparison -0.002 -0.000 0.006

that betaj is typically positive. We elect to use the absolute value, since Chesson’s sign convention can

return a negative βi/βr (when g′j is an increasing function of the competition parameter Cj), thus ruining

the interpretation of |βi|/|βr| as converting between species’ population dynamical speeds. Third, we scale

the residents’ average per capita growth rates, whereas Chesson (2018) divides all species’ average per capita

growth rates by their respective βj ’s. Scaling the invader is supposed to ensure that no species dominates the

community-average coexistence mechanisms (Chesson, 2003; Barabás et al., 2018). As we argue elsewhere

(Johnson and Hastings, 2022), community-average coexistence mechanisms should be calculated by dividing

species-level coexistence mechanisms by the absolute value of the focal species’ invasion growth rate, not by

sensitivity to competition.

Below we expand on the four reasons for favoring generation time scaling over β scaling.

1. The sensitivity to competition, βj , depends on how the competition parameter is defined. Consider a

model of two lake phytoplankton species competing for a single resource:

dNj(t)

dt
= Nj(t)

[
eEj(t)

wjF (t)

Kj + F (t)
− d

]
j = 1, 2

dF (t)

dt
= d(a− F (t))− eE1(t)

N1(t)F (t)

K1 + F (t)
− eE2(t)

N2(t)F (t)

K2 + F (t)
.

(1.40)
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Table 1.5: Case study #2, Scenario #2: Coexistence mechanisms when species 2 & 3 are perennials and
species 1 is an annual. Species 2 and 3 behave symmetrically, so they have the same coexistence mechanisms.
Model parameters are µj = 4, sj = 0.9, Gj = 0.1, σj = 1, θj = 0.9, for all j; s̃2 = s̃3 = 0.975, s̃1 = 0.

Species
i =
. . .

Calculation method Coexistence mechanisms

r′i or ∆Ni ∆Ii
∆Ei +
∆ρi

1 Scaling factors 1.054 0.031 0.050
1 Simple comparison 1.020 0.003 0.112
1 Generation time scaling 1.018 0.002 0.115
1 β scaling -0.488 -1.248 2.887
1 Invader-invader comparison 1.053 -0.053 0.134

2 & 3 Scaling factors 0.002 -0.046 0.048
2 & 3 Simple comparison 0.000 -0.004 0.008
2 & 3 Generation time scaling 0.000 -0.004 0.007
2 & 3 β scaling 0.000 0.001 0.002
2 & 3 Invader-invader comparison -0.002 -0.000 0.006

Here, Nj(t) is the phytoplankton density, F (t) is the resource concentration, eEj(t) is the temporally-

fluctuating maximum uptake rate, wj is the resource-to-phytoplankton conversion factor, Kj is the

half-saturation constant, d is the dilution rate, and a is the resource supply. For a single resident, the

equilibrium parameter is fixed at E∗
j and the corresponding equilibrium resource level is dKj/(wje

E∗
j −

d).

If one selects competition as proportional to the handling time per unit resource, i.e. Cj(t) = (K +

F (t))/F (t), then the sensitivity to competition evaluates to |βj | = d2/(wje
E∗

j ). If, on the other hand,

one selects competition as the reciprocal of resource availability, i.e. Cj = 1/F (t), then the sensitivity

to competition evaluates to |βj | = (Kjwjd
2eE

∗
j )/(d +Kjwje

E∗
j )2. Two reasonable choices of Cj lead

to two different βj ’s, and in turn, two different partitions of the invasion growth rate.

2. Reasonable definitions of Cj can produce factors 1/βj that differ substantially from the generation

time. For an example, see case study #2 (Appendix 1.1.C)

3. Sometimes, there is no reasonable definition of Cj , and thus no reasonable definition of βj . Consider

a phytoplankton species (akin to that in Eq.1.40) which consumes two resources:
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dNj(t)

dt
= Nj(t)

[(
eEj1(t)wj1F1(t)

Kj1 + F1(t)
+

eEj2(t)wj2F2(t)

Kj2 + F2(t)

)
− d

]
. (1.41)

There is no way to write the per capita growth rate as a function of the two environmental parameters

and a single competition parameter. It may be tempting to define the competition parameter as

the reciprocal of the entire term in parentheses, but then the environmental parameters would be

latent (hidden within Cj), and the piece of invasion growth rate attributable to the storage effect

would be absorbed by relative nonlinearity. It may be tempting to define two separate competition

parameters, but then there would be two βj ’s with no obvious way to combine them (take the mean?

the maximum?).

4. The sensitivity to competition is not well-defined in stochastic stage-structured models. The sensitivity

to competition is defined as a partial derivative of the function g′j , which gives the per capita growth

rate at a single point in time (i.e., dNj(t)/dt or log(λj(t)) = log(Nj(t+ 1)/Nj(t))). A stage-structure

model has at least two such per capita growth rates (one for each stage) and no obvious analogue

of the overall per capita growth rate at single point in time. One candidate is the logarithm of the

dominant lyapunov exponent of the transition probability matrix at a single point in time, denoted by

log(λj,0(t)).

Unfortunately, λ0(t) not the current per capita growth rate, but rather the long-term average growth

rate under the assumption that the elements of the transition probability matrix do not change. Fur-

ther, the long-term average growth rate is not simply the temporal average of log(λj,0(t)) (due to the

systemic effect of temporal auto-correlations; see Tuljapurkar, 1982; Caswell, 2001, Section 14.3.6.2),

thus making the measure log(λj,0(t)) somewhat disanalogous to log(λj(t)) in scalar population models.

It is no great surprise that βj is not well-defined in stochastic stage-structured models. Like the scaling

factors, β scaling was designed to deliver theoretical insights (Chesson, 2000b; Chesson, 2018), not to

quantify coexistence mechanisms in real communities.

1.1.E Scaling factors in the case of diffuse competition

Consider the S-species Lotka-Volterra model:

1

nj(t)

dnj(t)

dt
= kj −

S∑
k=1

αjknk(t), j = (1, . . . , S). (1.42)

In the case of diffuse competition where x is interspecific competition and c is intraspecific competition,

the competition coefficients are
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αjk =


c if j = k

x if j ̸= k

. (1.43)

The regulating factors in this model are the species densities. The matrix of sensitivities to regulating

factors is thus

Φ =



c x . . . x

x c . . . x

...
...

. . .
...

x x . . . c


. (1.44)

When a species is placed in the invader state, one of the regulating factors vanishes. Therefore, we invert

the matrix of responses with the i-th row and i-th column removed. This matrix, which we will still call

Φ{−i}, is a square (S − 1)× (S − 1) matrix. Note that this is a slight abuse of notation, since in Appendix

1.1.B, Φ{−i} represents a matrix where only the invader’s row has been removed.

To invert Φ{−i}, we first decompose it:

Φ{−i} = A+ uv⊺, (1.45)

where A =



c− x 0 . . . 0

0 c− x . . . 0

...
...

. . .
...

0 0 . . . c− x


, u =


x

...

x

, and v⊺ =

[
1 . . . 1

]
.

The variables A, u, and v all have S − 1 rows. Now we can use the Sherman-Morrison formula for the

matrix inverse, which states that

Φ{−i} = (A+ uv⊺)
−1

= A−1 − A−1uv⊺A−1

1 + v⊺A−1u
. (1.46)

Combined with the well-known fact that the inverse of a diagonal matrix is the matrix of the recipro-

cals of diagonal elements, we find that
(
Φ{−i})−1

is a symmetric matrix with diagonal elements equal to

x
(c−x)(c+x(S−2) , and off-diagonal elements equal to 1

c−x − x
(c−x)(c+x(S−2) .

Since Φ{−i} is invertible, the solution for the scaling factors, Eq.1.25, becomes

qi∗ = Φi∗

(
Φ(−i)

)−1

. (1.47)
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Performing this computation with Φi∗ =

[
x . . . x

]
, a row vector with S − 1 elements, we get

qis =
x

c+ (S − 2)x
. (1.48)

1.1.F Generation time scaling corrects for average fitness differences

One side of Modern Coexistence Theory (MCT) is concerned with partitioning the invasion growth rate into

coexistence mechanisms like relative nonlinearity, the storage effect, etc. There is an entirely different side of

MCT, which is concerted with explaining the coexistence in terms of equalizing mechanisms and stabilizing

mechanisms (Chesson, 1990; Chesson, 2000b; Chesson, 2018). Equalizing mechanisms weaken competitive

differences between species, whereas stabilizing mechanisms strengthen niche differences. The important

insight here is that different kinds of between-species differences can have different effects on coexistence.

The equalizing vs. stabilizing paradigm only applies to two-species models with Lotka-Volterra-like

dynamics (There is a multi-species theory, but the mathematical objects are different; Song et al., 2019).

Consider the following parameterization of the Lotka-Volterra Model:

1

Nj

dNj

dt
= bj

(
1−

2∑
k=1

αjkNk

)
. (1.49)

The conditions for coexistence are described by the relation

ρ <
κ1

κ2
<

1

ρ
, (1.50)

where ρ is the niche overlap and κ1/κ2 is the average fitness ratio. They are defined as

ρ =

√
b1α12b2α21

b1α11b2α22
, and (1.51)

κ1

κ2
=

b2
b1

√
α21α22

α11α12
. (1.52)

The reciprocal of the average fitness ratio, κ2/κ1 includes the ratio of generation times, b1/b2. Crucially,

the speed parameters, bj , cancel out in the niche overlap, but not the average fitness difference. Therefore,

if one accepts that κj can be rightfully called the average fitness of species j (justification in Chesson, 2018;

counterpoint in Barabás et al., 2018), then it is reasonable to think of the action of generation time scaling

as virtually reducing average fitness differences between species. Even though the average fitness ratio and

the ratio of generation times are not identical, dividing by the fitness ratio and ratio of generation times will
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have largely the same effect if species have different dynamical speeds, but similar competitive effects. This

supports our claim in the main text (Discussion) that generation time scaling is most useful when species

have dissimilar population-dynamical speeds.

Data availability statement

All computations can be replicated using the Mathematica notebooks, ArmMc_3Spp.nb and SE_3Spp.nb,

found at https://github.com/ejohnson6767/scaling_factors.
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1.2 Coexistence in spatiotemporally fluctuating environments

1.2.1 Abstract

Ecologists have put forward many explanations for coexistence, but these are only partial explanations; nature

is complex, so it is reasonable to assume that in any given ecological community, multiple mechanisms of

coexistence are operating at the same time. Here, we present a methodology for quantifying the relative

importance of different explanations for coexistence, based on an extension of Modern Coexistence Theory.

Current versions of Modern Coexistence Theory only allow for the analysis of communities that are affected

by spatial or temporal environmental variation, but not both. We show how to analyze communities with

spatiotemporal fluctuations, how to parse the importance of spatial variation and temporal variation, and

how to measure everything with either mathematical expressions or simulation experiments. Our extension

of Modern Coexistence Theory shows that many more species can coexist than originally thought. More

importantly, it allows empiricists to use realistic models and more data to better infer the mechanisms of

coexistence in real communities. ta to better infer the mechanisms of coexistence in real communities.
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Table 1.6: The symbols and terminology of Spatiotemporal Modern

Coexistence Theory (MCT).

Description

MCT-specific terminology

invader a rare species; for mathematical convenience, the per capita growth rate of

this species is approximated by perturbing population density to zero.

resident a common species, more precisely understood as a species at its typical

abundances

invasion growth rate the long-term average of the per capita growth rate of an invader

partition a scheme for breaking up an invasion growth rate into a sum of component

parts

coexistence mechanism a class of explanations for coexistence; corresponds to a component of the

invasion growth rate partition of Spatiotemporal MCT

space-time decomposition a type of partition which parses the effects of spatial and temporal variation

on the invasion growth rate

invader–resident comparison a comparison between an invader and the resident species; measures a rare-

species advantage

generation time quotient scales resident growth rates, hypothetically converting the population-

dynamical speeds of resident species to that of the invader; corrects for

average fitness differences in the invader–resident comparison; replaces the

scaling factors, also known as comparison quotients, from previous versions

of MCT

Variable

x a location in space

t a point in time

j species index (subscript)
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nj(x, t) the population density of species j at patch x and time t.

νj(x, t) relative density, calculated as local population density divided by the spatial

average of population density, i.e., nj(x, t)/Ex[nj ]

λj(x,t) the local finite rate of increase. In non-spatial models, λj is defined

as nj(x, t + 1)/nj(x, t). However, in spatial models, λj is defined as

n′
j(x, t)/nj(x, t), where n′

j(x, t) is the population size after the local growth

phase, but before the dispersal phase.

λ̃j(t) the metapopulation finite rate of increase, defined as a density-weighted

average of λj over patches: λ̃j = Ex[(nj/Ex[nj ])λj ]

Et

[
log
(
λ̃j

)]
The long-term average per capita growth rate; for resident species, this is

zero by definition; for invader, this is the invasion growth rate

Ej(x, t) the environmental parameter, more generally understood as the effects of

density-independent factors

Cj(x, t) the competition parameter, more generally understood as the effects of

density-dependent factors

gj a function that gives the local finite rate of increase: λj(x, t) =

gj(Ej(x, t), Cj(x, t))

E∗
j the equilibrium environmental parameter, defined so that gj(E

∗
j , C

∗
j ) = 1

C∗
j the equilibrium competition parameter, defined so that gj(E

∗
j , C

∗
j ) = 1

σ the scale of environmental fluctuations: Ej(x, t)−E∗
j = O(σ); it is sometimes

the case that σ controls the size of fluctuations in nj , Ej , and Cj , see

Appendix 1.2.B.2

S the total number of species in the community; S−1 is the number of residents

GTj the generation time of species j, evaluated at equilibrium; the quantity

1/GTj is a measure of the speed of population dynamics — the intrinsic

capacity to grow or decline quickly;

GTr

GTi
generation time quotient; effectively converts the population-dynamical

speed of resident r to that of the invader i

Ej the main effect of density-independent factors on the average per capita

growth rate, defined as Et

[
log
(
Ex

[
gj(Ej , C

∗
j )
])]

Cj the main effect of density-dependent on the average per capita growth rate,

defined as Et

[
log
(
Ex

[
gj(E

∗
j , Cj)

])]
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Ij the interaction effect of density-dependent and density-independent factors

on the average per capita growth rate, defined as Et[log(Ex[gj(Ej , Cj)])] −

Ej − Cj

Kj the main effect of allowing relative density to vary on the average per capita

growth rate, defined as Et[log(Ex[νjgj(Ej , Cj)])]− Et[log(Ex[gj(Ej , Cj)])]

Coexistence mechanisms

∆Ei Density-independent effects; the degree to which density-independent factors

favor the invader

∆ρi Linear density-dependent effects; specialization on resources and/or natural

enemies

∆Ni Relative nonlinearity; specialization on the spatiotemporal variance of re-

sources and/or natural enemies

∆Ii The storage effect; specialization on different states of a spatiotemporally

varying environment

∆κi Fitness-density covariance; the differential ability of rare species to end up

in locations with high ecological fitness

Taylor series coefficients

α
(1)
j the linear effects of fluctuations in Ej , defined as ∂gj

∂Ej

∣∣∣Ej=E∗
j

Cj=C∗
j

=
∂gj(E

∗
j ,C

∗
j )

∂Ej

α
(2)
j the nonlinear effects of of fluctuations in Ej , defined as ∂2gj(E

∗
j ,C

∗
j )

∂E2
j

β
(1)
j the linear effects of fluctuations in Cj , defined as ∂gj(E

∗
j ,C

∗
j )

∂Cj

β
(2)
j the nonlinear effects of fluctuations in Cj , defined as ∂2gj(E

∗
j ,C

∗
j )

∂C2
j

ζ
(1)
j the non-additive (i.e., interaction) effects of fluctuations in Ej and Cj , de-

fined as ζj =
∂2gj(E

∗
j ,C

∗
j )

∂Ej∂Cj

Superscripts and subscripts
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Subscripts

j index of an arbitrary species

i index of the invader

r index of a resident

x indicates that a summary statistic (e.g., mean, covariance, variance) is cal-

culated by summing across space

t indicates that a summary statistic (e.g., mean, covariance, variance) is cal-

culated by summing across time

A denotes the effect of average conditions in the space-time decomposition

S denotes the main effect of spatial variation in the space-time decomposition

T denotes the main effect of temporal variation in the space-time decomposi-

tion

R denotes the interaction effect of spatial and temporal variation in the space-

time decomposition

Superscripts

(e) denotes exact coexistence mechanisms, or intermediate products in the cal-

culation of exact coexistence mechanisms

# indicates that the elements of a vector or matrix have been shuffled (sampled

randomly without replacement)

Operators

Ex,t[·] The spatiotemporal sample arithmetic mean; for a variable Z that varies

over K patches and T time points,

Ex[Z] = (1/K)
∑K

x=1 Z(x, t),

Et[Z] = (1/T )
∑T

t=1 Z(x, t), and

Ex,t[Z] = (1/(TK))
∑T

t=1

∑K
x=1 Z(x, t)

Varx,t(·) The spatiotemporal sample variance; for a variable Z that varies over K

patches and T time points,
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Varx(Z) = (1/K)
∑K

x=1(Z(x, t)− Ex[Z])2,

Vart(Z) = (1/T )
∑T

t=1(Z(x, t)− Et[Z])2, and

Varx,t(Z) = (1/(TK))
∑T

t=1

∑K
x=1(Z(x, t)− Ex,t[Z])2

Covx,t(·, ·) The spatiotemporal sample covariance; for variables W and Z that vary over

K patches and T time points,

Covx(W,Z) = (1/K)
∑K

x=1(W (x, t)− Ex[W ])(Z(x, t)− Ex[Z]),

Covt(W,Z) = (1/T )
∑T

t=1(W (x, t)− Et[W ])(Z(x, t)− Et[Z]), and

Covx,t(W,Z) = (1/(TK))
∑T

t=1

∑K
x=1(W (x, t)− Ex,t[W ])(Z(x, t)− Ex,t[Z])
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1.2.2 Introduction

Modern Coexistence Theory (MCT) is a framework for understanding ecological coexistence (Chesson, 1994;

Chesson, 2000; see Barabás et al., 2018 for a recent review). MCT has two main strengths. First, MCT

gives us the relative importance of different explanations for coexistence, and thus tells us how species are

coexisting, not simply whether they are coexisting. Second, MCT is general because it is a framework for

analyzing arbitrary models of population dynamics (which could represent all kinds of different communities).

This feature of MCT stands in contrast to several big theories in community ecology — such as neutral

theory, maximum entropy, and metacommunity theory — in which highly constrained models are used to

make inferences about many communities. MCT has been successfully used to derive theoretical insights

(e.g., Chesson and Huntly, 1997; Stump and Chesson, 2015; Li and Chesson, 2016; Snyder and Chesson, 2003;

Chesson, 2008; Kuang and Chesson, 2010; Schreiber, 2021), and to infer the mechanisms of coexistence in

real communities (Cáceres, 1997; Adler et al., 2006; Angert et al., 2009; Sears and Chesson, 2007; Usinowicz

et al., 2012; Descamps-Julien and Gonzalez, 2005; Chu and Adler, 2015; Usinowicz et al., 2017; Ignace et al.,

2018; Towers et al., 2020).

Despite MCT’s successes, there are a handful of problems that limit its applicability. One such problem

is that currently, MCT can be used to analyze models where the environment fluctuates over space or time,

but not both. Here, we extend Modern Coexistence Theory (MCT) to show how models with

spatiotemporal fluctuations can be analyzed. Further, we show how to parse the importance

of spatial fluctuations and temporal fluctuations, and how to measure everything with math-

ematics or simulations. While a couple papers (Chesson, 1985; Snyder et al., 2005; Snyder, 2008) have

examined the effects of spatiotemporal fluctuations in particular models, our approach permits the analysis

of a broad variety of models and is thus targeted towards empirical applications.

MCT is based on invasion growth rates, the average per capita growth rates of species that have been

perturbed to low density. However, the appropriate average is not trivial to compute in spatiotemporal

models. A simple arithmetic average over space and time is not appropriate, due to a fundamental difference

in how populations grow over space and time: with respect to the geometric mean of the finite rate of increase

(the quantity predictive of persistence; Lewontin and Cohen, 1969; Dempster, 1955; Stearns, 2000; Metz et

al., 1992), contributions from populations across space are additive, but contributions from populations

across time are multiplicative. Therefore, the appropriate spatiotemporal averaging involves a density-

weighted spatial average, followed by a temporal average on the log-scale.

The ability to analyze models with spatiotemporal fluctuations helps us better understand coexistence in

real ecological communities: MCT necessarily interfaces with the real world through empirically-calibrated
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models, and good representations of real communities will undoubtedly involve spatiotemporal variation. But

the addition of spatiotemporal fluctuations is not realism for realism’s sake: failure to include spatiotemporal

fluctuations will typically lead to underestimates of fluctuation-dependent coexistence mechanisms, which

could lead to poor downstream inferences about the nature of coexistence and macroecological patterns that

entail coexistence (e.g., metacommunity structure, species abundance distributions). Further, our extension

of MCT permits a more fine-grained quantification of coexistence mechanism. With Spatiotemporal MCT,

one can compare the relative importance of spatial variation, temporal variation, and classical coexistence

mechanisms (e.g., resource partitioning); one can partition individual coexistence mechanisms — like the

storage effect — into its spatial and temporal constituents.

The ability to analyze models with spatiotemporal fluctuations can also lead to novel theoretical insights.

For instance, we show that 1) temporal variation can promote the storage effect in the lottery model, even in

the case of non-overlapping generations (Section 1.2.5), 2) that it is (nearly) impossible for the competitive

exclusion principle to hold true in the presence of spatiotemporal fluctuations (Section 1.2.6), and 3) the

inclusion of spatiotemporal fluctuations exactly doubles the maximum number of species that can coexist

due to fluctuation-dependent coexistence mechanisms (Section 1.2.6).

1.2.3 Spatiotemporal coexistence mechanisms

1.2.3.1 Overview

At the coarsest level of description, Modern Coexistence Theory (MCT) has two steps: "decompose and

compare" (Ellner et al., 2019). First, decompose the average per capita growth rate of each species into

terms that correspond to conceptually distinct processes (e.g., growth that can be attributed to resource

consumption). Second, compare the like-terms of rare species (termed invaders) and common species (termed

residents) in order to discover which processes tend to help rare species. These invader–resident comparisons,

called coexistence mechanisms, correspond to classes of explanations for coexistence. The sum of coexistence

mechanisms is the invasion growth rate, the long-term average per capita growth rate of a species that has

been perturbed to near-zero density.

How do invasion growth rates and coexistence mechanisms relate to coexistence? The main idea is that

invasion growth rates measure the tendency to recover from rarity, so a set of S species can be said to coexist

if each species has a positive invasion growth rate in the sub-community of S − 1 resident species. This is

known as the mutual invasibility criterion for coexistence (Turelli, 1978; Chesson, 2000; Chesson and Ellner,

1989; Grainger, Levine, et al., 2019).

In truth, the relationship between invasion growth rates and coexistence is not so simple. The mutual
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invasibility criterion fails when the elimination of one species causes knock-on extinctions, such that the

S − 1 residents cannot coexist. For the mutual invasibility criterion to work, we must either assume that all

S − 1 residents can coexist (Case, 2000), or limit ourselves to two-species competitive communities (Ellner,

1989). When the mutual invasibility criterion fails, one can still use invasion growth rates as inputs to

the Hofbauer criterion for coexistence (Hofbauer, 1981; Benaïm and Schreiber, 2019, Eq.3.4), a sufficient

condition for a type of global stability called permanence or uniform persistence (Schreiber, 2000; Garay and

Hofbauer, 2003; Schreiber et al., 2011; Roth and Schreiber, 2014). But this criterion potentially combines

invasion growth rates in many sub-communities (with S−n residents, for n = 1, 2, . . . , S), so it is unclear to

how to average over sub-communities to obtain species-level coexistence mechanisms or community-average

coexistence mechanisms (as in Chesson, 2003, Eq.16).

Invasion growth rates are used in the mutual invasibility criterion and the Hofbauer criterion, both of

which test for global stability. However, global stability can sometimes be too strong a notion of coexistence:

under a certain set of scenarios (e.g., Allee effects, obligate mutualisms, and intransitive competition) negative

invasion growth rates can erroneously indicate a failure to coexistence, since all species would be able to

coexist if simultaneously introduced at higher densities. We leave all of these issues to future research; thus,

we temporarily use these concepts heuristically: larger coexistence mechanisms → larger invasion growth

rate → stronger coexistence. We deliberately avoid models with obligate mutualisms and Allee effects; if

placing a species in the invader state causes knock-on extinctions, we forge onward, measuring coexistence

mechanisms with the reduced number of residents.

In this paper, we will define two types of coexistence mechanisms. The first is small-noise coexistence

mechanisms, which closely approximate the invasion growth rate when environmental fluctuations are small.

The second type is exact coexistence mechanisms, which always sum exactly to the invasion growth rate.

Small-noise coexistence mechanisms are calculated with Taylor series expansions (i.e., a linearization of popu-

lation dynamics about an equilibrium), whereas exact coexistence mechanisms are calculated with simulation

data (an approach pioneered by Ellner et al. (2016, 2019). To be clear, small-noise coexistence mechanisms

do not assume that environmental fluctuations are unimportant or that the fluctuation-independent mech-

anisms drive coexistence. Small-noise refers to a technical assumption that environmental fluctuations are

small relative to other parameters in a model of population growth. This assumption, (when paired some

additional assumptions; Appendix 1.2.B.2) allows us to derive analytical expressions for the coexistence

mechanisms.

There has been recent debate about how exactly coexistence mechanisms should be defined (Barabás

et al., 2018; Chesson, 2020; and Barabás and D’Andrea, 2020), with Chesson claiming that true coexistence

mechanisms are exact (Chesson, 2020, Eq. 9) contradicting previous work (Chesson, 1994, Eq. 22). Some
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expositions of MCT mix-and-match both types of coexistence mechanisms (e.g., Chesson, 1994, Eq. 19–22),

adding to the confusion. We present the two types of coexistence mechanisms separately, partially for clarity,

but primarily because they have distinct pros and cons.

Even though small-noise coexistence mechanisms only approximate the invasion growth rate, there are

situations in which small-noise coexistence mechanisms are preferred. For one, the small-noise approxima-

tions can be calculated quickly, which is important in empirical applications where coexistence mechanisms

are calculated for many draws from a posterior or bootstrap distribution of model parameters. Secondly,

small-noise coexistence mechanisms sometimes permit analytical expressions (for a worked example, see Sec-

tion 1.2.5), whereas the exact coexistence mechanisms almost never do. Finally, the small-noise coexistence

mechanisms could correspond more closely to our verbal/textual explanations for coexistence, and thus could

be more interpretable. On the other hand, the primary advantage of the exact coexistence mechanisms is

that they sum exactly to the invasion growth rate. We will derive both the small-noise coexistence mecha-

nisms (Section 1.2.3.2) and the exact coexistence mechanisms (Section 1.2.3.3), but we leave it to the reader

to determine which is more relevant to their work.

Our exposition focuses on discrete-time models with spatial structure but without age/stage structure. In

Appendix 1.2.E, we discuss generalizations of Spatiotemporal MCT to different classes of models, including

continuous-time models and age/stage-structured models. For the time being, community dynamics are

governed by a system of difference equations,

nj(x, t+ 1) = nj(x, t) λj(x, t) + cj(x, t)− ej(x, t) j = (1, 2, ..., S), (1.53)

where nj(x, t) is the local density of species j, λj is the local finite rate of increase, x is a discrete patch

in space, t is a discrete point in time, and S is the number of species in the community. The terms cj

and ej represent immigration and emmigration respectively, in units of population density. We require that

the sum of cj and ej across space (i.e., net dispersal) vanishes (Appendix 1.2.B.3), which occurs generically

when either 1) the system is closed (i.e., no individuals can enter or leave the system of patches), or 2) that

the system of patches is representative of a larger metacommunity, such that it receives roughly as many

immigrants as it loses emigrants.

A few notes on notation are necessary. For convenience, we will often write out random variables without

the explicit dependence on space and time; for example, we will write λj instead of λj(x, t). We use

the operator E[Z] to denote average of some random variable Z, with subscripts to denote whether the

average is being taken across space, time, or both. For example, in a system with K patches that has

been observed for T time-steps, Ex[Z] = (1/K)
∑K

x=1 Z(x, t), Et[Z] = (1/T )
∑T

t=1 Z(x, t), and Ex,t[Z] =
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(1/(TK))
∑T

t=1

∑K
x=1 Z(x, t). We use the operators Varx,t(.) and Covx,t(., .) in a similar fashion, to the

denote the sample variance and sample covariance respectively.

Our use of the expectation operator is unorthodox: it usually denotes the average across an infinite num-

ber of instantiations of the stochastic population process at one point in time, not the temporal average of one

instantiation. However, the sample average is asymptotically equivalent to the expectation if the stochastic

process is stationary and ergodic; see Section 1.2.4). Additionally, Ex,t[.] is visually similar to Varx,t(.) and

Covx,t(., .), whereas the subscripts "x, t" are located incongruously in more conventional notation for the

mean, e.g., ⟨Z⟩x,t, Z
{x,t}

.

The local finite rate of increase is defined as λj = n′
j(x, t+1)/nj(x, t), where n′

j(x, t+1) is the population

density after a bout of local population growth, but before the dispersal phase. The metapopulation finite

rate of increase, λ̃j = Ex[(nj/Ex[nj ])λj ], is the density-weighted spatial average of λj . The average growth

rate rate, Et

[
log
(
λ̃j

)]
, is the quantity whose sign is predictive of long-term growth (Schreiber et al., 2011).

The average growth rate of the invader is called the invasion growth rate. The subscript i references an

invader species, the subscript r references a resident species, and the subscript j references a generic species

whose status as a resident or invader is impertinent.

1.2.3.2 Small-noise coexistence mechanisms

A full derivation of small-noise spatiotemporal coexistence mechanisms is provided in Appendix 1.2.A. Here,

we summarize the main steps:

1. The local finite rate of increase is expressed as a function of an environmental parameter Ej , and a

competition parameter Cj : λj(x, t) = gj(Ej(x, t), Cj(x, t)).

The environmental parameter Ej has also been referred to as "the environmentally-dependent param-

eter", "the environmental response", or simply, "the environment". It is more generally defined as

some parameter that depends on spatiotemporally fluctuating density-independent factors (e.g., the

germination probability of a seed, which depends on precipitation). Similarly, the competition param-

eter Cj , also known as "competition", is more generally defined as some parameter that depends on

density-dependent factors. As such, Cj may represent resource competition, apparent competition, or

even mutualism. The competition parameter can often be expressed as function of multiple regulating

factors (see Appendix 1.2.E.3), such as resources, refugia, competitors’ densities, and predators.

2. The local finite rate of increase is approximated with a second-order Taylor series expansion of gj about

the equilibrium parameters, E∗
j and C∗

j , constants which are specified by the user of MCT but must

satisfy the constraint gj(E
∗
j , C

∗
j ) = 1. The resulting second-order polynomial will lead to an accurate
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approximation of the invasion growth rate, but only if some assumptions about the magnitude of

environmental fluctuations are met (see Appendix 1.2.B.2). To help satisfy these assumptions, it is

important to select the equilibrium parameters so that they are close to their spatiotemporal means,

Ex,t[Ej ] and Ex,t[Cj ], respectively.

3. The appropriate spatial and temporal averaging is applied in order to express average growth rates

entirely in terms of moments of local growth, λj , and relative density, νj = nj/Ex[nj ]:

Et

[
log
(
λ̃j

)]
≈ Ex,t[λj ] + Et[Covx(ν, λj)]− 1− 1

2
Vart(Et[λj ]) (1.54)

4. The Taylor series approximation of λj (see step 2) is substituted into the expression for the average

growth rate (Eq.1.54), resulting in a long expression for species j’s average growth rate:

Et

[
log
(
λ̃j

)]∣∣∣∣
Ej=E∗

j

Cj=C∗
j
≈ α

(1)
j Ex,t

[
(Ej − E∗

j )
]
+ β

(1)
j Ex,t

[
(Cj − C∗

j )
]

+
1

2
α
(2)
j Varx,t(Ej) +

1

2
β
(2)
j Varx,t(Cj) + ζjCovx,t(Ej , Cj)

+ Et

[
Covx

(
νj , α

(1)
j (Ej − E∗

j ) + β
(1)
j (Cj − C∗

j )
)]

− 1

2
α
(1)2

j Vart(Ex[Ej ])−
1

2
β
(1)2

j Vart(Ex[Ej ])− α
(1)
j β

(1)
j Covt(Ex[Ej ] ,Ex[Cj ]) ,

(1.55)

where the coefficients of the Taylor series,

α
(1)
j =

∂gj(E∗
j ,C

∗
j )

∂Ej
, β

(1)
j =

∂gj(E∗
j ,C

∗
j )

∂Cj
, α

(2)
j =

∂2gj(E∗
j ,C

∗
j )

∂E2
j

, β
(2)
j =

∂2gj(E∗
j ,C

∗
j )

∂Cj ,2
, ζj =

∂2gj(E∗
j ,C

∗
j )

∂Ej∂Cj
,

(1.56)

are all evaluated at user-specified equilibrium values Ej = E∗
j and Cj = C∗

j , as implied by the notation.

The additive terms in the above equation (Eq.1.55), which we may call growth rate components, can

be conceptualized as distinct processes. For example, the second term β
(1)
j Ex,t

[
(Cj − C∗

j )
]

is the effect

of the mean level of competition on the average growth rate.

5. The invader is compared to the residents. Because coexistence is about a rare-species advantage, we

do not care so much about the invader’s growth rate components, but rather their magnitude relative

to the corresponding components of residents. Since every resident species cannot grow or decline on
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average (i.e., Et

[
log
(
λ̃r

)]
= 0) we may subtract a linear combination of the S − 1 resident species

from the invasion growth rate

Et

[
log
(
λ̃i

)]
= Et

[
log
(
λ̃i

)]
− 1

S − 1

S∑
r ̸=i

GTr

GTi
Et

[
log
(
λ̃r

)]
, (1.57)

without any distortion of the invasion growth rate. The weighting by 1/(S − 1) assumes that all S − 1

species can coexist; if perturbing a species to the invader state causes knock-on extinctions, then we

only average over extant residents. The coefficients GTr/GTi are quotients of species’ generation times

and function to hypothetically convert the population-dynamical speed of the residents to that of the

invader (Johnson and Hastings, 2022a). They will be discussed further in a few paragraphs. The

long decomposition of the average growth rate (Eq.1.55) can be substituted into the above equation

(Eq.1.57), and like-terms can be grouped such that the invasion growth rate is expressed as a sum of

invader–resident comparisons. These comparisons are the coexistence mechanisms.

Formulas for small-noise coexistence mechanisms

The invasion growth rate

Et

[
log
(
λ̃i

)]
≈ ∆Ei +∆ρi +∆Ni +∆Ii +∆κi (1.58)

Density-independent effects

∆Ei =

[
α
(1)
i Ex,t[Ei − E∗

i ] +
1

2
α
(2)
i Varx,t(Ei)−

1

2
α
(1)2

i Vart(Ex[Ei])

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
α(1)
r Ex,t[Er − E∗

r ] +
1

2
α(2)
r Varx,t(Er)−

1

2
α(1)2

r Vart(Ex[Er])

]
(1.59)

Linear density-dependent effects

∆ρi =β
(1)
i Ex,t[Ci − C∗

i ]−
1

S − 1

S∑
r ̸=i

GTr

GTi
β(1)
r Ex,t[Cr − C∗

r ] (1.60)

Relative nonlinearity
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∆Ni =
1

2

[
β
(2)
i Varx,t(Ci)− β

(1)2

i Vart(Ex[Ci])
]

− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
β(2)
r Varx,t(Cr)− β(1)2

r Vart(Ex[Cr])
]

(1.61)

The storage effect

∆Ii =
[
ζiCovx,t(Ei, Ci)− α

(1)
i β

(1)
i Covt(Ex[Ei] ,Ex[Ci])

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
ζrCovx,t(Er, Cr)− α(1)

r β(1)
r Covt(Ex[Er] ,Ex[Cr])

]
(1.62)

Fitness-density covariance

∆κi =Et

[
Covx

(
νi, α

(1)
i Ei + β

(1)
i Ci

)]
− 1

S − 1

S∑
r ̸=i

GTr

GTi
Et

[
Covx

(
νr, α

(1)
r Er + β(1)

r Cr

)]
(1.63)

The density-independent effects (∆Ei) is the degree to which all density-independent factors favor the

invader. The linear density-dependent effects (∆ρi) represents a rare-species advantage due to specialization

on regulating factors (i.e., resources and/or natural enemies). Relative nonlinearity (∆Ni) is a rare-species

advantage due to specialization on variation in regulating factors. The storage effect (∆Ii) is the rare-species

advantage due to specialization on certain states of a variable environment. Fitness-density covariance (∆κ)

is the differential ability of a rare species’ individuals to end up in locations where they have high fitness.

Note that "coexistence mechanism" is a misnomer when it comes to ∆Ei, since ∆Ei can only support a single

species in the absence of all other mechanisms. See Barabás et al. (2018) for a more thorough discussion of

the canonical coexistence mechanisms and their interpretations.

Experts in coexistence theory may notice several differences between spatiotemporal MCT and previous

versions of MCT (i.e., Chesson, 1994, Chesson, 2000; Barabás et al., 2018), aside from the inclusion of

spatiotemporal fluctuations. First, we keep the equilibrium competition parameters, C∗
j , as part of ∆ρi,

whereas previous versions of MCT shunted the C∗
j to the density-independent effects, which are then denoted

by r′i (see Barabás et al., 2018, Eq.19). Second, we scale resident growth rates by a quotient of generation

times, whereas previous versions of MCT scaled resident growth rates by the so-called scaling factors. Both
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the shunting of C∗
j and the scaling factors have a very specific function: to cancel ∆ρi. As we have argued

elsewhere (Johnson and Hastings, 2022a), cancelling ∆ρi can be useful in the context of theoretical research,

but is not recommended for "measuring coexistence" (i.e., using MCT to infer the mechanisms of coexistence

in real communities). In the myopic quest to cancel ∆ρi, the scaling factors can dramatically modulate the

values of other coexistence mechanisms, potentially leading to incorrect inferences about coexistence.

Retaining the C∗
j terms in ∆ρi helps with the interpretability of ∆ρi: the term α

(1)
j (Ex,t [Cj ]−C∗

j ) can be

interpreted as the effect (on per capita growth rates) of the average deviation from equilibrium competition,

whereas α
(1)
j Ex,t[Cj ] has no clear meaning. That being said, it will sometimes make sense to present the

sum of ∆ρi and ∆Ei, the total contribution of fluctuation-independent forces (e.g., Johnson and Hastings,

2022a, SI Table 1–2 ; Ellner et al., 2019, Table 2, "Fluctuation-free growth rate").

To ensure that species with fast life-cycles do not dominate the invader–resident comparison, we multiply

each residents’ average growth rate by a quotient of generation times, GTr/GTi. Because 1/GTj is a measure

of population-dynamical speed, the scaling quotients can be thought of as converting the speed of resident

dynamics to that of the invader: the reciprocal of resident speed, GTr, is canceled by the speed implicit in the

resident’s average growth rate, leaving only the invader’s speed, 1/GTi. When the species under consideration

do not have dramatically different generation times, it is often reasonable (and in some models, considerably

simpler) to fix GTr/GTi = 1 for all i and r. This approach, dubbed the simple comparison by Johnson

and Hastings (2022a), was originally performed by Ellner et al. (2016, 2019), who also retained ∆ρi (using

different notation).

There is no single definition of generation time, but many definitions are quantitatively equivalent in

a stable population (Ellner, 2018). Thus, to minimize arbitrariness, we fix model parameters at their

equilibrium values and operationalize generation time as the weighted average of parent age across all births

at one time, with weights equal to the reproductive value of offspring. This quantity can be calculated with

a simple formula in structured population models (Bienvenu and Legendre, 2015, Eq. 12; Ellner, 2018, Eq.

13), or via simulation in more complex models. In simple models where individuals are identical (i.e., there

is no variation in reproductive values) and reproduction is independent of parent age, the generation time is

simply the average age of adults; if then mortality occurs at a density-independent rate δ, the distribution of

adult age is given by a geometric distribution (or exponential distribution in continuous-time models) with

mean 1/δ.

1.2.3.3 Exact coexistence mechanisms

The sum of small-noise coexistence mechanisms merely approximates the invasion growth rate (Eq.1.58). The

approximation will be good if environmental fluctuations are small (see Appendix 1.2.B.2 for all assumptions),
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but in empirically-calibrated models there is no guarantee that the small-noise assumptions will be met. An

alternative approach is to define a set of coexistence mechanisms that sum exactly to the invasion growth

rate. We call these exact coexistence mechanisms and demarcate them with the superscript "(e)", e.g., the

exact relative nonlinearity is ∆N
(e)
i .

The average growth rate of species j can be broken into two terms:

Et

[
log
(
λ̃j

)]
= Et[log(Ex[λj ])]︸ ︷︷ ︸

1○

+Et

[
log
(
λ̃j

)]
− Et[log(Ex[λj ])]︸ ︷︷ ︸
2○

. (1.64)

Term 1○ captures the appropriate spatiotemporal average of fitness. Term 2○ captures the effects of variation

in relative density, which can be seen either by noting that Et

[
log
(
λ̃j

)]
= Et[log(Ex[λj ])] when fitness-

density covariance is zero (Eq.1.54), or that the second term will approximate Et[Covx(νj , λj)] when the

small-noise assumptions (Appendix 1.2.B.2) are met.

Term 1○ can be further decomposed with the following schema:

Et[log(Ex[λj ])] = Ej + Cj + Ij (1.65)

Ej = Et

[
log
(
Ex

[
gj(Ej , C

∗
j )
])]

(1.66)

Cj = Et

[
log
(
Ex

[
gj(E

∗
j , Cj)

])]
(1.67)

Ij = Et[log(Ex[gj(Ej , Cj)])]−
(
Ej + Cj

)
(1.68)

The term Ej is the main effect of the environment on the average growth rate, Cj is the main effect of

competition, and Ij is the effect of interactions between environment and competition, in analogy with

a two-way ANOVA. These new terms are analogous to the temporal or spatial means of the standard

parameters, quantities that played an important role in previous iterations of MCT (e.g. Chesson, 1994,

Eq. 8–9; Chesson, 2000, Eq. 28–29). However, they are not equivalent, despite sharing the same notation.

Term 2○ can be re-expressed as

log
(
λ̃j

)
− Et[log(Ex[λj ])] = Kj , (1.69)

K j = Et[log(Ex[νjgj(Ej , Cj)])]− Et[log(Ex[gj(Ej , Cj)])] , (1.70)

where K j is the main effect of allowing relative density, νj = nj/Ex[nj ], to vary across space.

The intermediate quantities — Ej , Cj , Ij , and Kj — can be computed generically using simulation
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data. Simply run a simulation of a model while archiving a record of the Ej ’s, Cj ’s and νj ’s; specify the

equilibrium parameters E∗
j and C∗

j ; and plug everything into the above equations.

To preempt a point of potential confusion, we emphasize that simulation data is never created while

holding Ej or Cj at their equilibrium values. To compute Cj , one must evaluate gj function while holding

the environment at E∗
j and allowing Cj to vary; but we still use the Cj that we would have obtained had

we not held the environment at E∗
j . To obtain these unadulterated Cj , we first run a business-as-usual

simulation whilst recording Ej and Cj .

To calculate the exact coexistence mechanisms, our new quantities (Ej , Cj , and Ij) are used in the

invader–resident comparison (Eq.1.57) in lieu of the appropriately averaged Taylor series terms (i.e., the

additive terms in Eq.1.55).

Formulas for exact coexistence mechanisms

The invasion growth rate

Et

[
log
(
λ̃i

)]
= ∆Ei

(e) +∆ρi
(e) +∆Ni

(e) +∆Ii
(e) +∆κi

(e), (1.71)

Density-independent effects

∆Ei
(e) = Ei −

1

S − 1

S∑
r ̸=i

GTr

GTi
Er (1.72)

E j = Et

[
log
(
Ex

[
gj(Ej , C

∗
j )
])]

(1.73)

Linear density-dependent effects

∆ρi
(e) = log(gi(E

∗
i ,Ex,t[Ci]))−

1

S − 1

S∑
r ̸=i

GTr

GTi
log(gr(E

∗
r ,Ex,t[Cr])) (1.74)

Relative nonlinearity

∆Ni
(e) =

Ci −
1

S − 1

S∑
r ̸=i

GTr

GTi
Cr

−∆ρi
(e) (1.75)
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C j = Et

[
log
(
Ex

[
gj(E

∗
j , Cj)

])]
(1.76)

The storage effect

∆Ii
(e) = Ii −

1

S − 1

S∑
r ̸=i

GTr

GTi
Ir (1.77)

Ij = Et[log(Ex[gj(Ej , Cj)])]−
(
Ej + Cj

)
(1.78)

Fitness-density covariance

∆κi
(e) = Ki −

1

S − 1

S∑
r ̸=i

GTr

GTi
Kr (1.79)

K j =Et[log(Ex[νj gj(Ej , Cj)])]− Et[log(Ex[gj(Ej , Cj)])] (1.80)

Et[log(Ex[νj gj(Ej , Cj)])]−
(
Ej + Cj + Ij

)

1.2.3.4 The space-time decomposition of small-noise coexistence mechanisms

Ideally, we would like to take any coexistence mechanism that relies on spatiotemporal variation, and perform

a space-time decomposition to generate four additive components: the contribution of average Ej and Cj , the

contribution of spatial variation, the contribution of temporal variation, and the contribution of the interac-

tion between spatial and temporal variation. For example, we would like to write the density-independent

effects as ∆Ei = ∆Ei,A+∆Ei,S+∆Ei,T +∆Ei,R, with the subscripts A, S, T , and R respectively correspond-

ing to the average component, the space component, the time component, and the space-time interaction.

The letter R was chosen because the space-time interaction is calculated as a Remainder (Eq.1.84), and

because the letter I is already used in ∆Ii and Ii.

Before decomposing entire coexistence mechanisms, we will decompose Varx,t(Ej), a building block of
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the ∆Ei coexistence mechanism. The space-time decomposition of Varx,t(Ej) is

Varx,t(Ej) = Sj + Tj +Rj (1.81)

Sj =Varx(Et[Ej ]) (1.82)

Tj =Vart(Ex[Ej ]) (1.83)

Rj =Varx,t(Ej)− (Sj + Tj) (1.84)

=Ex[Vart(Ej)]−Vart(Ex[Ej ])

=Et[Varx(Ej)]−Varx(Et[Ej ]) .

The last two expressions for Rj are obtained using the law of total variance. A close examination confirms

our space-time decomposition satisfies some minimal requirements: Sj = 0 when there is no spatial variation

in Ej , Tj = 0 when there is no temporal variation, and Rj = 0 when there is either no spatial or temporal

variation.

The components of the space-time decomposition of Varx,t(Ej) can be thought of as differences between

hypothetical worlds in which spatial and/or temporal variation has been turned on or off. For example,

the space term, Sj , is the difference between the variance of Ej in a world where temporal variation has

been turned off (by setting Ej(x, t) to Et[Ej ], leaving only spatial variation), and the variance of Ej in a

reference world where both spatial and temporal variation have turned off (which is necessarily zero). Adding

only spatial variation to the reference state of "no variation" gives the main effect of spatial variation. The

interaction effect of spatial and temporal variation is the marginal effect of turning on both spatial and

temporal variation; it is the extent to which the combination of spatial and temporal variation exceeds the

sum of its parts, which is why the interaction term (Eq.1.84) involves subtracting both main effects.

Our talk of "hypothetical worlds" and "turning off variation" may give our space-time decomposition a

speciously ad hoc aura. However, it is ordinary scientific practice to measure the causal effect of X as the

marginal effect of X is relation to some reference state (VanderWeele, 2015); think of a clinical trial where the

effect of drug X is the difference in health outcomes between the control and treatment groups. In Appendix

1.2.C, we justify our space-time decomposition by 1) showing that the results it gives in a toy model accords

with intuition, and 2) using the philosophical literature to show that our decomposition results in terms that

can be interpreted as the causal effects of spatial and temporal variation.

In Eq.1.81–1.84, we defined the space-time decomposition of Varx,t(Ej). The other variance/covariance

terms featured in the small-noise coexistence mechanisms (i.e., Varx,t(Cj) and Covx,t(Ej , Cj)) can be de-
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composed in analogous fashion, by turning on/off Ej and Cj in tandem. To obtain the space-time decompo-

sition of the small-noise coexistence mechanisms, we propagate the small-noise decompositions of Varx,t (Ej),

Varx,t(Cj), and Covx,t(Ej , Cj) though the expressions for the small-noise coexistence mechanisms (Eq.2.14–

1.63). For example, since variance in Ej is the purview of the density-independent effects (∆Ei), and because

the space-component of Varx,t(Ej) is Varx(Et[E]), it follows that all terms involving Varx(Et[E]) will belong

to ∆Ei,S , the space-component of the density-independent effects.

How should the space-time components of coexistence mechanisms be interpreted? In the abstract,

they are the causal effects of spatial or temporal variation (or their interaction) on particular coexistence

mechanisms. For example, the space-component of the storage effect, ∆Ii,S , is the rare-species advantage

that results from species specializing on persistent spatial heterogeneity. Because models without temporal

variation will generate a ∆Ii,S that is quantitatively identical to the spatial storage effect of Chesson’s

(2000) spatial coexistence theory, we may call ∆Ii,S the spatial storage effect, with the notable caveat that

∆Ii,S does not capture all the effects of spatial variation (∆Ii,R also depends on spatial variation). The

space-time components may have more precise ecological interpretations — beyond "the causal effects of

spatial (temporal) variation on X coexistence mechanism" — but these will depend on the idiosyncrasies of

particular models.

All averages over space and time are shunted into the "Average" components of the space-time time de-

composition, denoted with the subscript A. Note that relative nonlinearity (∆Ni) has no average component

because the average effect of Cj is captured in the linear density-dependent effects (∆ρi). Also note that the

average component of the storage effect (∆Ii,A) equals zero, since the covariance between two constants is

always zero.

Formulas for space-time decomposition of small-noise coexistence mechanisms

Density-independent effects

∆Ei = ∆Ei,A +∆Ei,S +∆Ei,T +∆Ei,R (1.85)
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∆Ei,A = α
(1)
i Ex,t[Ei − E∗

i ]−
1

S − 1

S∑
r ̸=i

GTr

GTi
α(1)
r Ex,t[Er − E∗

r ] (1.86)

∆Ei,S =
1

2
α
(2)
i Varx(Et[Ei])−

1

S − 1

S∑
r ̸=i

GTr

GTi

1

2
α(2)
r Varx(Et[Er]) (1.87)

∆Ei,T =
1

2

(
α
(2)
i − α

(1)2

i

)
Vart(Ex[Ei])−

1

S − 1

S∑
r ̸=i

GTr

GTi

1

2

(
α(2)
r − α(1)2

r

)
Vart(Ex[Er]) (1.88)

∆Ei,R =
1

2
α
(2)
i

[
Et[Varx(Ei)]−Varx(Et[Ei])

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

1

2
α(2)
r

[
Et[Varx(Er)]−Varx(Et[Er])

] (1.89)

=
1

2
α
(2)
i

[
Ex[Vart(Ei)]−Vart(Ex[Ei])

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

1

2
α(2)
r

[
Ex[Vart(Er)]−Vart(Ex[Er])

]

Linear density-dependent effects

∆ρi = β
(1)
i Ex,t[Ci − C∗

i ]−
1

S − 1

S∑
r ̸=i

GTr

GTi
β(1)
r Ex,t[Cr − C∗

r ] (1.90)

Relative nonlinearity

∆Ni = ∆Ni,S +∆Ni,T +∆Ni,R, (1.91)
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∆Ni,S =
1

2
β
(2)
i Varx(Et[Ci])−

1

S − 1

S∑
r ̸=i

GTr

GTi

1

2
β(2)
r Varx(Et[Cr]) (1.92)

∆Ni,T =
1

2

(
β
(2)
i − β

(1)2

i

)
Vart(Ex[Ci])−

1

S − 1

S∑
r ̸=i

GTr

GTi

1

2

(
β(2)
r − β(1)2

r

)
Vart(Ex[Cr]) (1.93)

∆Ni,R =
1

2
β
(2)
i

[
Et[Varx(Ci)]−Varx(Et[Ci])

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

1

2
β(2)
r

[
Et[Varx(Cr)]−Varx(Et[Cr])

] (1.94)

=
1

2
β
(2)
i

[
Ex[Vart(Ci)]−Vart(Ex[Ci])

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

1

2
β(2)
r

[
Ex[Vart(Cr)]−Vart(Ex[Cr])

]

The storage effect

∆Ii = ∆Ii,A +∆Ii,S +∆Ii,T +∆Ii,R (1.95)

∆Ii,A = 0 (1.96)

∆Ii,S = ζiCovx(Et[Ei] ,Et[Ci])−
1

S − 1

S∑
r ̸=i

GTr

GTi
ζrCovx(Et[Er] ,Et[Cr]) (1.97)

∆Ii,T =
(
ζi − α

(1)
i β

(1)
i

)
Covt(Ex[Ei] ,Ex[Ci]) (1.98)

− 1

S − 1

S∑
r ̸=i

GTr

GTi

(
ζr − α(1)

r β(1)
r

)
Covt(Ex[Er] ,Ex[Cr])

∆Ii,R =
[
ζi (Et[Covx(Ei, Ci)]− Covx(Et[Ei] ,Et[Ci]))

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
ζr (Et[Covx(Er, Cr)]− Covx(Et[Er] ,Et[Cr]))

] (1.99)

=
[
ζi (Ex[Covt(Ei, Ci)]− Covt(Ex[Ei] ,Ex[Ci]))

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
ζr (Ex[Covt(Er, Cr)]− Covt(Ex[Er] ,Ex[Cr]))

]

Fitness-density covariance
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∆κi = ∆κi,A +∆κi,S +∆κi,T +∆κi,R (1.100)

∆κi,A = 0 (1.101)

∆κi,S = Covx

(
Et[νi] , α

(1)
i Et[Ei] + β

(1)
i Et[Ci]

)
− 1

S − 1

S∑
r ̸=i

GTr

GTi
Covx

(
Et[νr] , α

(1)
r Et[Er] + β(1)

r Et[Cr]
) (1.102)

∆κi,T = 0 (1.103)

∆κi,R = Et

[
Covx

(
νi, α

(1)
i Ei + β

(1)
i Ci

)]
− Covx

(
Et[νi] , α

(1)
i Et[Ei] + β

(1)
i Et[Ci]

)
− 1

S − 1

S∑
r ̸=i

GTr

GTi

(
Et

[
Covx

(
νr, α

(1)
r Er + β(1)

r Cr

)]
− Covx

(
Et[νr] , α

(1)
r Et[Er] + β(1)

r Et[Cr]
))

(1.104)

= Ex

[
Covt

(
νi, α

(1)
i Ei + β

(1)
i Ci

)]
− Covt

(
Ex[νi] , α

(1)
i Ex[Ei] + β

(1)
i Ex[Ci]

)
− 1

S − 1

S∑
r ̸=i

GTr

GTi

(
Ex

[
Covt

(
νr, α

(1)
r Er + β(1)

r Cr

)]
− Covt

(
Ex[νr] , α

(1)
r Ex[Er] + β(1)

r Ex[Cr]
))

1.2.3.5 The space-time decomposition of exact coexistence mechanisms

In this section, we will describe how the space-time decomposition of the exact coexistence mechanisms can

be computed using data from simulations. Our exposition is focused on the storage effect because it is the

most difficult exact coexistence mechanism to quantify.

Ellner et al. (2016) showed how simulations could be used to calculate the exact temporal storage in a

model with only temporal variation. Their procedure can be naturally extended to models with spatiotem-

poral variation:

1. Simulate the model. For each species, record a matrix of Ej(x, t)’s and a matrix of Cj(x, t)’s with each

row corresponding to a location in space, and each column corresponding to a point in time. Call these

matrices Ej and Cj .

2. For each species, shuffle the elements of Ej . That is, fill in a matrix with equivalent dimensions by

randomly sampling without replacement from the flattened Ej . Call this new matrix E#
j . Shuffling (i.e.,
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randomly sampling without replacement, or permuting) destroys the covariance between environment

and competition (as well as any higher order mixed moments) that is integral to the storage effect.

3. For each species, estimate the interaction effect as Ij = Et [log(Ex[gj(Ej , Cj)])]−Et

[
log
(
Ex

[
gj(E

#
j , Cj)

])]
.

Note here that we are averaging finite rates of increase across patches instead of individuals. This en-

sures that our estimate of ∆Ii
(e) does not include any bit of growth rate that can be attributed to the

fitness-density covariance, ∆κi.

4. Calculate the exact storage effect as ∆Ii
(e) = Ii −

∑S
r ̸=i

GTr

GTi
Ir.

Ellner et al.’s (2016) critical idea — shuffling an archive of environmental parameters — can also be

utilized to calculate the space-time decomposition of the exact storage effect. To illustrate, we will discuss

how one may calculate the space component of the precursor to the exact storage effect: Ij,S . To measure

the causal effect of spatial covariation, we must compare a hypothetical world with only spatial variation to a

(reference) hypothetical world with only spatial variation and no EC covariation. We obtain the hypothetical

world with only spatial variation by squashing temporal variation, i.e., by setting Ej(x, t) to Et[Ej ] and set-

ting Cj(x, t) to Et [Cj ]. This produces the growth rate log(Ex[gj(Et[Ej ] ,Et[Cj ])]). We obtain the hypothetical

world with no temporal variation and no spatial covariation by squashing temporal variation just as we did

before, and then shuffling the vector of Et [Ej ]. This produces the growth rate log
(
Ex

[
gj(Et[Ej ]

#
,Et[Cj ])

])
.

The effects of spatial covariation (and higher order mixed moments) on species j’s average growth rate is

simply the difference between the growth rates corresponding to the two hypothetical worlds. Put into

symbols, we say that I j,S = log(Ex[gj(Et[Ej ] ,Et[Cj ])])− log
(
Ex

[
gj(Et[Ej ]

#
,Et[Cj ])

])
.

Instead of writing out steps for quantifying every space-time component of every exact coexistence mech-

anism, we will provide formulas that indicate how simulated data are to be used. Of notable importance to

the storage effect is the previously introduced shuffle operator, denoted by the superscript #, which indicates

that the elements of a matrix or vector are to be shuffled, i.e., randomly sampled without replacement.

Note that I j,A, the precursor to the "Average" component of the storage effect, is not necessarily zero

(as it was in the analogous small-noise expression) though it should be small in the limit of small-noise.

Unlike E j,A and C j,A, which could reasonably be called the effect of the average environment and average

competition (respectively), I j,A has no good interpretation — it is the effect of setting the environment

and competition parameters to their spatiotemporal averages, which is simply a textual reiteration of the

mathematical definition.
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Formulas for space-time decomposition of exact coexistence mechanisms

Density-independent effects

∆Ei
(e) = ∆Ei,A

(e) +∆Ei,S
(e) +∆Ei,T

(e) +∆Ei,R
(e) (1.105)

∆Ei,A
(e) = E i,A − 1

S − 1

S∑
r ̸=i

GTr

GTi
E r,A (1.106)

∆Ei,S
(e) = E i,S − 1

S − 1

S∑
r ̸=i

GTr

GTi
E r,S (1.107)

∆Ei,T
(e) = E i,T − 1

S − 1

S∑
r ̸=i

GTr

GTi
E r,T (1.108)

∆Ei,R
(e) = E i,R − 1

S − 1

S∑
r ̸=i

GTr

GTi
E r,R (1.109)

E j = Et

[
log
(
Ex

[
gj(Ej , C

∗
j )
])]

(1.110)

E j,A = log
(
gj(Ex,t[Ej ] , C

∗
j )
)

(1.111)

E j,S = log
(
Ex

[
gj(Et[Ej ] , C

∗
j )
])

− E j,A (1.112)

E j,T = Et

[
log
(
gj(Ex[Ej ] , C

∗
j )
)]

− E j,A (1.113)

E j,R = E j −
(
E j,A + E j,S + E j,T

)
(1.114)

Linear density-dependent effects

∆ρi
(e) = C i,A − 1

S − 1

S∑
r ̸=i

GTr

GTi
C r,A (1.115)

C j,A = log(gi(E
∗
i ,Ex,t[Ci])) (1.116)

Relative nonlinearity

∆Ni
(e) = ∆Ni,S

(e) +∆Ni,T
(e) +∆Ni,R

(e), (1.117)
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∆Ni,S
(e) = C i,S − 1

S − 1

S∑
r ̸=i

GTr

GTi
C r,S (1.118)

∆Ni,T
(e) = C i,T − 1

S − 1

S∑
r ̸=i

GTr

GTi
C r,T (1.119)

∆Ni,R
(e) = C i,R − 1

S − 1

S∑
r ̸=i

GTr

GTi
C r,R (1.120)

C j = Et

[
log
(
Ex

[
gj(E

∗
j , Cj)

])]
(1.121)

C j,A = log
(
gj(E

∗
j ,Ex,t[Cj ])

)
(1.122)

C j,S = log
(
Ex

[
gj(E

∗
j ,Et[Cj ])

])
− C j,A (1.123)

C j,T = Et

[
log
(
gj(E

∗
j ,Ex[Cj ])

)]
− C j,A (1.124)

C j,R = C j −
(
C j,A + C j,S + C j,T

)
(1.125)

The storage effect

∆Ii
(e) = ∆Ii,A

(e) +∆Ii,S
(e) +∆Ii,T

(e) +∆Ii,R
(e), (1.126)

∆Ii,A
(e) = I i,A − 1

S − 1

S∑
r ̸=i

GTr

GTi
I r,A (1.127)

∆Ii,S
(e) = I i,S − 1

S − 1

S∑
r ̸=i

GTr

GTi
I r,S (1.128)

∆Ii,T
(e) = I i,T − 1

S − 1

S∑
r ̸=i

GTr

GTi
I r,T (1.129)

∆Ii,R
(e) = I i,R − 1

S − 1

S∑
r ̸=i

GTr

GTi
I r,R (1.130)
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I j = Et[log(Ex[gj(Ej , Cj)])]−
(
E j + C j

)
(1.131)

≈ Et[log(Ex[gj(Ej , Cj)])]− Et

[
log
(
Ex

[
gj(E

#
j , Cj)

])]
(1.132)

I j,A = log(gj(Ex,t[Ej ] ,Ex,t[Cj ]))−
(
E j,A + C j,A

)
(1.133)

I j,S = log(Ex[gj(Et[Ej ] ,Et[Cj ])])− log
(
Ex

[
gj(Et[Ej ]

#
,Et[Cj ])

])
(1.134)

I j,T = Et[log(gj(Ex[Ej ] ,Ex[Cj)]))]− Et

[
log
(
gj(Ex[Ej ]

#
,Ex[Cj ])

)]
(1.135)

I j,R = I j −
(
I j,A + I j,S + I j,T

)
(1.136)

Fitness-density covariance

∆κi
(e) = ∆κi,A

(e) +∆κi,S
(e) +∆κi,T

(e) +∆κi,R
(e), (1.137)

∆κi,A
(e) = K i,A − 1

S − 1

S∑
r ̸=i

GTr

GTi
K r,A = 0 (1.138)

∆κi,S
(e) = K i,S − 1

S − 1

S∑
r ̸=i

GTr

GTi
K r,S (1.139)

∆κi,T
(e) = K i,T − 1

S − 1

S∑
r ̸=i

GTr

GTi
K r,T = 0 (1.140)

∆κi,R
(e) = K i,R − 1

S − 1

S∑
r ̸=i

GTr

GTi
K r,R (1.141)

K j = Et[log(Ex[νj gj(Ej , Cj)])]− Et[log(Ex[gj(Ej , Cj)])] (1.142)

K j,A = 0 (1.143)

K j,S = log(Ex[Et[νj ] gj(Et[Ej ] ,Et[Cj ])])− log(Ex[gj(Et[Ej ] ,Et[Cj ])]) (1.144)

K j,T = 0 (1.145)

K j,R = K j −
(
K j,A + K j,S + K j,T

)
(1.146)
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1.2.4 Computational tricks for measuring invasion growth rates

We have given formulas for computing coexistence mechanisms, but the components of the those formulas

(Ej and Cj) must be measured in a specific context. Specifically, the invasion growth rate and coexistence

mechanisms must be measured in the context where 1) the invader’s environment (which includes the res-

ident species) has attained its limiting dynamics, and 2) the invader has attained its quasi-steady spatial

distribution.

Here, "the invader’s environment" does not refer to the environmental parameter Ei, but rather all vari-

ables that influence the invader’s per capita growth rate (e.g., resident densities, resources, temperature).

Previous expositions of MCT required that the invader’s environment be an ergodic stationary stochastic

process (Chesson, 1994, p. 236). This assumption is convenient because ergodicity implies that initial condi-

tions are irrelevant, and stationarity allows the long-term average (inherent in the invasion growth rate) to

be replaced with the expectation over the stationary distribution of the state of the invader’s environment;

as we will see, there are several well-established tricks for calculating stationary distributions. However, re-

quiring a stationary distribution excludes any models where parameters change over time, including models

with seasonality and models that track weather patterns. Instead, we only a require that the invader’s envi-

ronment has a unique, asymptotic, time-average distribution (Glynn and Sigman, 1998). This requirement

technically excludes models with unidirectional environmental change, but we discuss several work-arounds

in Section 1.2.6.

In many ecological models, the time-average distribution of invader’s environment is a stationary dis-

tribution (Nisbet and C., 1982). In homogeneous (i.e., time-invariant) Markov chain models with a finite

number of states, the stationary distribution can be computed as the dominant eigenvector of the transition

probability matrix or the generator matrix (the terminology changes depending on whether the model is in

discrete time or continuous time; Allen, 2010, p. 67). When the state space is the natural numbers (i.e.,

there are a countable but infinite number of states), one may approximate the stationary distribution as

the dominant eigenvector of a truncated transition probability matrix (or generator matrix) where rows and

columns corresponding to states of improbably high abundance have been removed (e.g., Allen, 2010, p. 107).

Alternatively, one may obtain an approximate stationary distribution using the Wentzel–Kramers–Brillouin

(WKB) approximation (Assaf and Meerson, 2010; Pande and Shnerb, 2020). For models that take the form

of stochastic differential equations, the stationary distribution can be obtained by solving a second order

differential equation (Karlin and Taylor, 1981, ch. 15.3). Alternatively, one may obtain an approximate sta-

tionary distribution by finding the minimum action of a path integral (Chow and Buice, 2015; Kamenev et al.,

2008). However, because the volume of state space (of joint abundances/densities) increases exponentially
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with the number of species, the computation time for all the aforementioned methods scales exponentially

with the number of species under consideration.

For models with many species, or models where the notion of stationarity is not appropriate, one may

have to take a brute-force approach: simulate a model forward in time, recording the frequency distribution

of different states after a sufficiently long burn-in period. To determine the length of the burn-in period,

one may simply "eye-ball" a time series plot, perhaps selecting 2 × the time it takes for the residents to

attain typical densities. When one must obtain the time-average distribution for many different parameter

combinations, the "eye-ball" approach becomes impractical. Instead, one can employ heuristic tests for

determining the length of the burn-in period (for examples, see Caswell and Etter, 1993; Hiebeler and

Millett, 2011).

MCT assumes that all populations have infinite population sizes; otherwise, the invader could go extinct

before it experiences a representative collection of environmental states, in which case the invasion growth

rate would depend on the initial conditions of the invader’s environment. Because the resident species can

also go extinct in finite-population models, the concept of the stationary distribution can be replaced with

the quasi-stationary distribution (QSD): the distribution of resident densities conditioned on non-extinction.

In single-resident birth-death models, there is iterative numerical procedure for finding the quasi-stationary

distribution (Nisbet and C., 1982, p. 183–184). Unlike the stationary distribution, the QSD cannot be

computed with naive simulation. The problem is that a simulation must run for a long time in order for the

frequency distribution to converge, but the longer the simulation, the more likely extinction is. One solution

is the Fleming-Voit method (Ferrari and Maric, 2007; Blanchet et al., 2016), where a number of simulations

are run in parallel so that extinct simulations can be restarted with initial conditions equal to the state of

one of the other simulations. A similar method restarts extinct simulations by drawing randomly from an

archive of past states (Groisman and Jonckheere, 2012).

To avoid simulations, one may approximate the QSD by analyzing an auxiliary model. This auxiliary

model is exactly like the original model, except either 1) each transition from a non-zero state to the zero

state (i.e., extinction), has probability equal to zero (Pielou, 1969, p. 27; Allen, 2010, p. 127), or 2) one

individual is immortal for all time (Weiss and Dishon, 1971; Norden, 1982). The stationary distribution

of the auxiliary model (computed using the methods in the previous paragraphs) is an approximation of

the quasi-stationary distribution of the original model. The auxiliary model #1 leads to better results for

populations with long mean extinction times, whereas the auxiliary model #2 leads to better results for

populations with short mean extinction times (Nåsell, 2001; Kryscio and Lefévre, 1989).

A unique challenge in spatiotemporal models (with either infinite or finite populations) is determining

the quasi-steady spatial distribution of the invader, not to be confused with the previously discussed quasi-
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stationary distribution of resident densities. To accurately measure the invasion growth rate, one must

inoculate the invader and then wait until it has attained its natural spatial distribution, which we might

technically define as a second-order stationary and isotropic process (Cressie, 2015). However, the longer

one waits for the invader to attain this distribution, the larger the invader population becomes (assuming a

positive invasion growth rate and barring stochastic extinction), leading to inaccurate measurements of the

invasion growth rate. One hopes that the dynamics of spatial correlations operate on a much faster timescale

than the dynamics of total density, such that a quasi-steady spatial distribution of invader density is attained

long before the total density changes too much. The requisite time-scale separation can be verified by plotting

spatial correlations against total density (as in Le Galliard et al., 2003, Fig. 7). Analytical expressions for

the quasi-steady distribution are only available in simple spatially implicit models (see Appendix 1.2.D for

a worked example) or in simple spatially explicit models with the help of pair approximation (Ferrière and

Galliard, 2001).

In more complex models, simulation experiments are needed to compute the quasi-steady spatial distri-

bution of the invader. After virtually inoculating the invader species and waiting through a sufficiently long

burn-in period, one can begin measuring the invasion growth rate. If the regional invader population density

exceeds a user-specified ceiling (i.e., the invader becomes common), then the simulation can be restarted.

Indeed, this general strategy can be used to compute other kinds of quasi-steady distributions, such as the

invader’s stable-age distribution. In finite population models, the invader may go extinct. To circumvent this

problem, one may apply the previously discussed Fleming-Voit method (Ferrari and Maric, 2007; Blanchet

et al., 2016).

1.2.5 Example: the spatiotemporal lottery model

To give readers a sense of how Spatiotemporal MCT may be used in practice, we analyze the lottery model

(Chesson and Warner, 1981; Chesson, 1994) with spatiotemporal fluctuations. The lottery model is one of

the simplest models that features fluctuation-dependent coexistence mechanisms, and has thus become a

canonical model in theoretical ecology. We derive analytical expressions for the special case of two species

with similar demographic parameters (Eq.1.151–Eq.1.166). Additionally, we compute exact coexistence

mechanisms in a three-species system with dissimilar parameters (Fig. 1.3).

Imagine several fish species inhabiting territories on a coral reef. During each time-step, an individual of

species j produces ξj(x, t) larvae; per capita larval production fluctuates over space and time. The remaining

life history is very simple. Adult fish die with the density-independent probability δj . Within a single patch,

the larvae inherit the empty territories with a per-larva recruitment probability equal to the number of empty
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sites, divided by the total number of larvae. The remaining larvae perish. Note that "empty territories" and

"total larvae" here are patch-specific quantities; so far, we have only described local population dynamics.

The uniform per-larva probability of recruitment explains the lottery model’s name (Sale, 1977).

If there are S species, the local dynamics of the lottery model can be encoded in a S-dimensional difference

equation:

λj(x, t) =

survival prob.︷ ︸︸ ︷
1− δj +

per capita fecundity︷ ︸︸ ︷
ξj(x, t)



open territories︷ ︸︸ ︷
S∑

j ̸=i

δjnj(x, t)

S∑
j ̸=i

ξj(x, t)nj(x, t)︸ ︷︷ ︸
total larvae

 , (1.147)

Selecting Ej = log(ξj) and C = log


S∑

j ̸=i

ξjnj

S∑
j ̸=i

δjnj

, the local finite rate of increase takes the simple form,

gj(Ej(x, t), Cj(x, t)) = 1− δj + exp{Ej(x, t)− C(x, t)}. (1.148)

Both species share the same equilibrium competition parameter, C∗ = 1
S

∑S
i=1 Ex,t [Ci], which is the aver-

age competition experienced by the invader, averaged over all species acting as the invader. This equilibrium

competition parameter fixes the species-specific equilibrium environmental parameter at E∗
j = log(δj) +C∗.

With the equilibrium parameters in hand, we can now compute the Taylor series coefficients for the small-

noise coexistence mechanisms: we find that α
(1)
j = δj , β

(1)
j = −δj , α

(2)
j = δj , β

(2)
j = δj , ζj = −δj . The

generation time quotients (see Section 1.2.3.2) are GTr/GTi = δi/δr.

In the second segment of each time-step, after local growth occurs, a fraction of individuals, qj , are

retained at site x while the 1 − qj fraction of dispersing individuals are distributed evenly across all K

patches. This particular form of dispersal dynamics, which we may call local retention with global dispersal,

is easy to simulate and is analytically tractable. The full dynamics of species j can now be written as

nj(x, t+ 1) = qjnj(x, t)gj(Ej(x, t), Cj(x, t)) +
1− qj
K

K∑
s=1

nj(s, t)gj(Ej(s, t), Cj(s, t)). (1.149)

Finally, we must describe the structure of environmental variation. The environmental parameter,

Ej(x, t), is the sum of a patch effect a(x), a time effect b(t), and their interaction, which is scaled by

the interaction coefficient θj :

Ej(x, t) = aj(x) + bj(t) + θjaj(x)bj(t) (1.150)
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For simplicity, aj(x) and bj(t) are independently drawn from normal distributions with standard deviations

σ
(x)
j and σ

(t)
j , respectively. There is no autocorrelation, but there are cross-species correlations: the cor-

relation between aj(x) and ak(x) is ϕ
(x)
jk , and the correlation between bj(t) and bk(t) is ϕ

(t)
jk . Under the

small-noise assumptions of MCT, the term θjaj(x)bj(t) will become negligibly small when squared, and thus

the space-time interaction component of the space-time decomposition will be zero. For purely illustrative

purposes, we will assume that θj = O(σ−1), as this allows us to obtain a non-zero interaction component

while still keeping the simple form of Eq.1.150.

We now analyze a particularly simple case of the spatiotemporal lottery model in which two species are

similar in many respects. Each species has equal death probabilities δ, equal spatial variances σ(t)2, equal

temporal variances σ(t)2, equal space-time interaction coefficients θ, and equal retention fractions, q. The

two species only differ in how they respond to the environment (i.e., ϕ(x) < 1, and ϕ(t) < 1).

Various tricks can be used to simplify the expressions for the small-noise coexistence mechanisms. In

order to calculate the variance and covariance terms inherent the in small-noise coexistence mechanisms,

the competition parameter can be expressed in terms of the environmental parameter, by 1) Taylor-series

expanding competition with respect to the Ej and nj , 2) substituting the expansions into the covariance

terms and truncating at first order in accordance with the small-noise assumptions, 3) recognizing that

Cov (Ej , nj) = 0 due to the absence of spatial or temporal autocorrelation, and 4) recognizing that Var (nr) =

0 in the case of two species, since nr is fixed at 1. To compute fitness-density covariance, ∆κ, we must first

calculate the quasi-steady spatial distribution of the invader (see Section 1.2.4). In Appendix 1.2.D, we

derive an approximation of this distribution using perturbation theory, recursion, and the geometric series.

Small-noise coexistence mechanisms in the spatiotemporal lottery model: two symmetric species with

diffuse competition

Density-independent effects

∆Ei = 0 (1.151)

∆Ei,A = 0 (1.152)

∆Ei,S = 0 (1.153)

∆Ei,T = 0 (1.154)

∆Ei,R = 0 (1.155)
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Linear density-dependent effects

∆ρi = 0 (1.156)

Relative nonlinearity

∆Ni = 0 (1.157)

∆Ni,S = 0 (1.158)

∆Ni,T = 0 (1.159)

∆Ni,R = 0 (1.160)

The storage effect

∆Ii = δi

[
σ(x)2

(
1− ϕ

(x)
ir

)
+ σ(t)2

[
(δi − 1)ϕ

(x)
ir − (δr − 1)

]
+ θ2σ(x)2σ(t)2

(
1− ϕ

(x)
ir ϕ

(t)
ir

)]
(1.161)

∆Ii,A = 0 (1.162)

∆Ii,S = δσ(x)2
(
1− ϕ

(x)
ir

)
(1.163)

∆Ii,T = δ (1− δ)σ(t)2
(
1− ϕ

(t)
ir

)
(1.164)

∆Ii,R = δθ2σ(x)2σ(t)2
(
1− ϕ

(x)
ir ϕ

(t)
ir

)
(1.165)

Fitness-density covariance

∆κi =
2qδ2σ(x)2

1− q

[
θ2σ(t)2

(
1− ϕ

(x)
ir ϕ

(t)
ir

)
+
(
1− ϕ

(x)
ir

)]
(1.166)
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∆κi,A = 0 (1.167)

∆κi,S =
2q

1− q

(
δσ(x)

)2 (
1− ϕ

(x)
ir

)
(1.168)

∆κi,T = 0 (1.169)

∆κi,R =
2q

1− q

(
δθσ(x)σ(t)

)2 (
1− ϕ

(x)
ir ϕ

(t)
ir

)
(1.170)

Figure 1.3: Values of exact coexistence mechanisms in the spatiotemporal lottery model with 3 species. The
mechanisms are color coded, with the components of the space-time decomposition taking a lighter hue.
Coexistence can be attributed to the storage effect and fitness-density covariance. Parameter values and
code can be found in lottery_model_example.R at https://github.com/ejohnson6767/spatiotemporal_
coexistence.

We first use the small-noise coexistence mechanisms above to look at edge cases where there is no spatial

or temporal variation. When there is no spatial variation (i.e., σ(x) = 0), the lottery model analyzed in

this section collapses to the temporal lottery model of Chesson (1994). The entire invasion growth rate

is δ(1 − δ)
(
σ(t)

)2
(1 − ϕ(t)), which transparently shows that stable coexistence is not possible if species’
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responses to the environment are perfectly correlated (i.e., if ϕ(t) = 1), or if generations are non-overlapping

(i.e., if δ = 1). This latter result speaks to the storage effect’s namesake: coexistence "... relies on such

buffering effects of persistent stages..." (Chesson, 2003).

When there is no temporal variation and we assume no local retention (i.e., σ(t) = 0 and q = 0), our

lottery model collapses to the spatial lottery model of Chesson (2000). In this case, the invasion growth rate

is δ
(
σ(x)

)2 (
1− ϕ(x)

)
, which demonstrates that the spatial storage effect can promote coexistence in the face

of non-overlapping generations.

Finally, we consider the spatiotemporal lottery model. The invasion growth rate, minus fitness-density

covariance and any space-time interaction terms is ∆Ii,T+∆Ii,S = δσ(t)2 (1− δ)
(
1− ϕ(t)

)
+δσ(x)2

(
1− ϕ(x)

)
,

the sum of invasion growth rates in the purely-temporal-variation case and the only-spatial-variation case.

This quantity shows us that while spatial and temporal variation both tend to promote coexistence, they do

not do so symmetrically. Specifically, compared to spatial variation, temporal variation is discounted by a

factor of (1 − δ). This discrepancy can be explained by the tendency of temporal variation to decrease the

geometric mean of λj (Lewontin and Cohen, 1969).

Next, consider the sum of all space-time interaction terms from the space-time decomposition, which

is equal to δθ2(1 − ϕ(x)ϕ(t))
(
σ(x)σ(t)

)2
. Both this quantity and the small-noise fitness density covariance

(Eq.1.166) reveal that even when generations are overlapping and responses to time-effects are perfectly

correlated across species (i.e., ϕ(t) = 1), temporal variation can still promote coexistence by effectively

amplifying species-specific responses to spatial variation, with strength according to the interaction coefficient

θ. Note, however, that this result is a consequence of the assumption that the interaction between spatial

and temporal variation, θ, is large (to counteract the fact that σ(x)σ(t) is very small). Also note that when

both species respond identically to patch effect and time effects, the space-time interaction terms disappear,

confirming the perennial fact that niche differences are required for stable coexistence.

When we consider the general case of multiple residents and asymmetric demographic parameters, the

small-noise coexistence mechanisms become more complicated. However, plotting the exact coexistence

mechanisms (Fig. 1.3) corroborates the idea that coexistence in the lottery model is achieved via the storage

effect and fitness-density covariance. In empirical applications of MCT, Coefficient plots (such as Fig. 1.3)

should always include error bars representing parameter uncertainty, and potentially model uncertainty,

propagated through to the level of coexistence mechanisms.

Here we have examined the space-time decomposition of coexistence mechanisms. In general, there are

many ways to partition the invasion growth rate, each potentially leading to ecological insights. One may

wish to aggregate terms in various ways, e.g., all space terms, all terms containing partial derivatives of C

(i.e., both ∆ρi and ∆Ni). Conversely, the invasion growth rate partition can be made even more fine-grained.
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Ellner et al. (2019) decomposed ∆Ei into multiple terms, and partitioned the invasion growth rates with

respect to trait values (as opposed to E and C). In many models, the competition parameter Cj can be

expressed as a function of multiple regulating factors (see Appendix 1.2.E.3), so naturally, ∆ρi, ∆Ni, and

∆Ii can be broken down further into terms which measure the contributions of individual (or subsets of)

regulating factors.

1.2.6 Discussion

In this paper, we have shown how the invasion growth rate can be partitioned so as to isolate the effects of

spatial variation and temporal variation. With this new capability, one can determine whether species are

coexisting because of spatial heterogeneity, temporally changing environmental conditions, or both. Further,

one can break-down individual coexistence mechanisms (such as the storage effect) into contributions from

spatial and temporal variation, e.g., the spatial storage effect and the temporal storage effect can be extracted

from a complex model with spatiotemporal variation.

In addition to the partitioning of spatiotemporal variation, the framework presented here contains several

improvements on previous iterations of Modern Coexistence Theory (MCT). 1) Resident growth rates are

scaled by quotients of generation times, as opposed to the conventional but infamously confusing scaling

factors (see Section 1.2.3.2; Johnson and Hastings, 2022a). 2) Coexistence mechanisms based on small-

noise approximations are clearly delineated from exact coexistence mechanisms (Section 1.2.3.1). 3) Both

small-noise and exact coexistence mechanisms can be extracted from a diversity of model types, including

discrete-time models, continuous-time models (including Stochastic Differential Equations), models with

multiple regulating factors, and structured population models (Appendix 1.2.E). We have presented canonical

coexistence mechanisms (e.g., the storage effect), but more exotic coexistence mechanisms can be derived

with a generalized partition (following Ellner et al., 2019); replace the arguments of the growth function gj

with any number of variables, and apply the logic of Section 1.2.3.

Spatiotemporal MCT allows for the analysis of more realistic models, which naturally lead to better

inferences regarding mechanisms of coexistence in real communities. Although generating realistic models

requires immense amounts of system-specific knowledge, data collection, and statistical expertise, all of this

hard work can be thought of as a safeguard against bad inferences. When simplistic statistical approaches are

used to understand community structure, the data are often overdetermined by theory. For example, left skew

in a species abundance distributions could indicate neutral population dynamics (Hubbell, 2001); or temporal

autocorrelation in sampling (McGill, 2003); or an excess of transient species (Magurran and Henderson,

2003); or a sequential stick-breaking model (Nee et al., 1991); or a log-normal distribution paired with a
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zero-sum constraint (Pueyo, 2006). Randomization-based null models for detecting interspecific competition

can implicitly exclude or include the effects of competition (Connor and Simberloff, 1979, Diamond and

Gilpin, 1982). A saturating curve on a plot of regional vs. local species richness could indicate environmental

filtering (Cornell and Lawton, 1992) or dispersal limitation (Fox et al., 2000).

While data is always overdetermined by theory to some extent (Duhem, 1954), the problem can be

abated by MCT’s model-based approach and a few best practices. First, one ought to use large and flexible

models. As Leonard Savage used to say, all models should be "as big as a house" (qtd in Draper, 1995).

Big models tend to be less biased and implicitly capture structural uncertainty in the form of parameter

uncertainty (Draper, 1995). As a statistical example of this phenomenon, consider a student t-distribution,

which interpolates between a Gaussian distribution and a Cauchy distribution depending on the degrees

of freedom parameter. An ecological example is MacArthur’s resource-consumer model (MacArthur, 1970;

Chesson, 1990), which interpolates between an explicit resource-consumer model and the Lotka Volterra

model depending on the speed of resource dynamics. Simple template models (like the annual plant model;

Law and Watkinson, 1987; Chesson, 1994, Section 5; Godoy and Levine, 2014) can be made complex through

the process of continuous, iterative model expansion (Box, 1980; Draper, 1995; Gelman et al., 2020; Gelman

et al., 2020).

When dealing with complex models, there is a legitimate fear of overfitting (Hastie et al., 2009, Ch. 7).

However, overfitting can be addressed by regularization, the general term for penalizing model complexity

in the parameter-tuning process (Gelman and Vehtari, 2021), as opposed to penalizing complexity in the

model selection process (using AIC, cross-validation, etc.). Regularization can be enforced via model-fitting

algorithms (such as the LASSO, ridge-regression, or least-angle regression; Hastie et al., 2009, Ch. 3), prior

distributions in the Bayesian context (see horseshoe priors for sparsity-inducing regularization; Carvalho

et al., 2009), and hierarchical model structures (Gelman and Hill, 2006). Hierarchical model structures are

the obvious way of reducing estimation variance for large matrixes of competition coefficients (S species →

S2 competition coefficients!); alternatively, the number of parameters can be reduced by grouping species

based on phylogeny, ecological function, or traits (Martyn et al., 2021). It is worth noting that overfitting

can be largely avoided simply by using a Bayesian model-fitting framework: MCMC methods explore the

typical set (the volume where the posterior density is close to its expected value; Gelman et al., 2020), not

the posterior mode, and are therefore unlikely to sample parameter values with spuriously high likelihoods.

Another modelling best practice is to propagate uncertainty in model parameters through to the level

of coexistence mechanisms, which can be generically accomplished by sampling from bootstrap or posterior

distributions of model parameters. To our knowledge, only one empirical application of MCT (Ellner et al.,

2016, Section SI.8) has performed this crucial step. Without uncertainty propagation, it is difficult to say
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whether estimates of coexistence mechanisms reflect reality or sampling error.

MCT assumes that the statistical properties of the environment (e.g., the mean level and variance) do

not change in a directional manner (i.e., a unique time-averaged distribution of the invader’s environment

exists; Section 1.2.4), an assumption that is certainly false in many cases. However, MCT can still be used

when unidirectional environmental change is considerably slower than demographic change (Fig. 1.4). For

example, temperate lake phytoplankton can invade on the time-scale of years, but are appreciably affected by

climate change on the time-scale of decades (Izmest’eva et al., 2011). Therefore, it may be reasonable to not

incorporate climate change projections into one’s model of phytoplankton dynamics, with the understanding

that the validity of one’s inferences regarding coexistence only extends so far into the future.
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Figure 1.4: How the utility of MCT changes with the type and speed of environmental change. Red indicates
that MCT is a not a suitable tool; yellow indicates that some coexistence mechanisms are automatically ab-
sent, or that MCT can be used with caveats; green indicates that MCT can be used without worry. a) When
environmental change is directional but slow, one can estimate invasion growth rates by treating the current
statistical characteristics of the environment (e.g., the mean, variance) as constant. b) When environmental
change is directional and appreciable, quasi invasion growth rates can be calculated, but they are conditional
on initial conditions and the time period over which growth rates are averaged. c) Invasion growth rates are
dominated by the trend component of the environment; coexistence mechanisms do not matter. d) When
environmental change is slow relative to the speed of population dynamics, the environment is effectively
constant on ecological time-scales; the temporal storage effect and environment-induced temporal relative
nonlinearity will be zero, but MCT can still be used to quantify spatial coexistence mechanisms, temporal
relative nonlinearity via endogenous population cycles (sensu Armstrong and McGehee, 1976; Armstrong
and McGehee, 1980), and to partition the linear density-dependent effects (Appendix 1.2.E.3). e) There are
no problems applying MCT in this regime. f) When the environment fluctuates too quickly, there is not
enough time for population buildup to occur during favorable periods, thus enervating the high intraspecific
competition felt by common species; in the limit of a fast environment, the temporal storage effect is zero
(Li and Chesson, 2016).
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When the time scales of demographic change and directional environmental change are commensurate, it

is still possible to use MCT. Invasion growth rates can be calculated under projected environmental change,

but their values will depend on the initial conditions and the length of the period over which growth rates

are averaged. While this subjectivity is undesirable, there are reasonable methods for dealing with it. One

could select the initial conditions to be time-dependent equilibrium parameters, the most recent observation,

or a range of recent observations (in which case marginalizing invasion growth rates would be necessary).

The dependence of invasion growth rates on the time-frame of measurement cannot be circumvented, but it

can be acknowledged by plotting a temporal moving-average of growth rates (i.e., a local invasion growth

rate) and subsequent coexistence mechanisms across time.

When environmental change is much slower than demographic change, the infinite population assumption

of MCT (Section 1.2.4) breaks-down: in theory, long periods of unfavorable conditions can be offset by

sufficiently favorable conditions; in reality, long periods of unfavorable conditions lead to extinction. In

the limit of strong environmental autocorrelation, the environment is effectively fixed its initial conditions

(Kamenev et al., 2008) and competitive exclusion occurs in the absence of other coexistence-promoting

mechanisms. Regardless of the relative speed of environmental change, one ought to be wary of calculating

invasion growth rates over long time-scales. Even though the invasion growth rate of a tree species may

converge after 500,000 years — perhaps after the effects of anthropogenic climate change have been attenuated

by several Milankovitch cycles — our models of contemporary population dynamics will certainly be poor

representations of the far future.

A few basic insights emerge from Spatiotemporal Modern Coexistence Theory (MCT). The inclusion of

spatiotemporal fluctuations (as opposed to only spatial or only temporal fluctuations) exactly doubles the

maximum number of species that the fluctuation-dependent coexistence mechanisms can support (Table 1.7).

The reason is laid bare in the space-time decomposition of the small-noise coexistence mechanisms (Eq.1.85–

Eq.1.104): species may specialize on either spatial variation or temporal variation. It is worth noting that

this result depends on the veracity of the small-noise assumptions (Appendix 1.2.B.2); even more species

could potentially coexist by specializing on higher-order moments (Zicarelli, 1975; Levins, 1979), such as the

spatial skew of resource concentrations.
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Table 1.7: The maximum number of species that can coexist via various coexistence mechanisms, in a
system with L discrete resources, M discrete environmental states, and K discrete patches. In the column
headings, spatial variation and temporal variation refer to variation in the environment, regulating factors,
and relative density. The entries in this table were derived as follows: only one species will have the largest
∆E, and in the absence of other influences on the per capita growth rates, this species’ relative frequency
will approach 1 over time. The entries for ∆ρ simply express the competitive exclusion principle. The entries
for ∆N follow from recognizing that the covariances between regulating factors can be treated as honorary
regulating factors, and then by applying the competitive exclusion principle. The entries for ∆I are derived
in the same way, and are an obvious extrapolation of the work by Miller and Klausmeier, 2017. The entries
for ∆κ come from Appendix 1.2.F. It is well known that many species can coexist if patches have different
resource supply points (Levin, 1974; Tilman, 1982; Chase and Leibold, 2003); this manifests as the M × L
term in the entries for ∆κ, where M is the number of distinct resource supply points. We have not formally
analyzed the case where fitness-density covariance is caused by aggregating behavior (such as swarming or
schooling) or preferential dispersal (Barabás et al., 2018, Appendix S5), but we imagine that behaviors or
patch preferences can be treated as density-independent variables, and therefore, that the table entries for
∆κ are still accurate.
Coexistence
mechanisms

Models
with

neither
spatial nor
temporal
variation

Models with only
spatial variation

Models with
only temporal

variation

Models with
spatiotemporal

variation

∆E:
Density-independent
effects

1 1 1 1

∆ρ: Linear,
density-dependent
effects

L L L L

∆N : Relative
nonlinearity

0 (L(L− 1))/2 (L(L− 1))/2 L(L− 1)

∆I: Storage effect 0 LM LM 2LM
∆κ: Fitness-density
covariance

0 LM + (L(L− 1))/2 0 LM + (L(L− 1))/2

Table 1.7 reveals that with even a modest number of regulating factors and environmental states, there

are more than enough ways for species to coexist. This highlights the importance of actually measuring

coexistence mechanisms in real communities. Table 1.7 also shows the enormous potential of the fluctuation-

dependent coexistence mechanisms, relative to classical explanations for coexistence (i.e., ∆ρi). While this

may be interesting, it is not likely to drive diversity patterns in the real world. For one, it has been

argued that regulating factors are plentiful if you look hard enough (Levin, 1970; Haigh and Smith, 1972;

Abrams, 1988). Second, biodiversity is affected by many forces, including structural stability (Gyllenberg and

Meszéna, 2005), evolutionary / developmental / physiological constraints on extreme forms of specialization,

and extinction–speciation balance.

Spatiotemporal MCT also strengthens an a priori refutation of the competitive exclusion principle, the

idea that no more than L species can coexist on L regulating factors). The competitive exclusion principle
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was originally based on equilibrium theory (Volterra, 1926, Lotka, 1932, Gause, 1934), but the principle still

applies in fluctuating environments when there are no fluctuation-dependent coexistence mechanisms (Hening

and Nguyen, 2020; Barabás et al., 2018, p.295). Of course, for this to occur, there must be linear responses

to regulating factors (this precludes relative nonlinearity) and no interaction effect between environment

and competition (this precludes the storage effect). Spatiotemporal MCT shows that species’ responses to

regulating factors cannot simultaneously be linear with respect to fluctuations on the natural scale (i.e.,
∂2gj(E

∗
j ,C

∗
j )

∂C2
j

= β
(2)
j = 0), which is necessary for spatial averaging, and linear with respect to fluctuations on

the log-scale (i.e.,
∂2 log(gj(E∗

j ,C
∗
j ))

∂C2
j

= β
(2)
j −β

(1)2

j = 0), which is necessary for temporal averaging. This shows

that the competitive exclusion principle is unlikely to have real-world relevance.

The competitive exclusion principle has been challenged from many angles: it is trivial (Cole, 1960; Ayala,

1969), tautological (Gilbert et al., 1952), relies on the false assumption of a stable equilibrium (Armstrong

and McGehee, 1980), has stymied the development of a broader research program (Simha et al., 2022), and

is irrelevant on ecologically relevant time scales, since similar species can co-occur for a long time (Hurtt and

Pacala, 1995). Nevertheless, the competitive exclusion principle and its interrogative forms — the paradox of

the plankton a.k.a. the diversity paradox (Hutchinson, 1961) — are frequently used to motivate coexistence

research (Simha et al., 2022, supplement 1), probably because authors need to cite something other than

their personal interest in biodiversity. The competitive exclusion principle does deserve to be recognized,

not for making believable predictions, but for its role in the dialectical narrative of coexistence research.

The Hegelian dialectic is a model of history in which a thesis is met with an antithesis, and the conflict

itself produces synthesis. In our current context, the thesis is the presumption of competitive exclusion,

an idea that started with Darwin and was formalized with the competitive exclusion principle. Charles

Darwin, not knowing the genetic basis for inheritance, believed that evolution necessitated fierce competition;

otherwise, favorable mutations would be blended with the wild-type until the population was phenotypically

uniform (Lewens, 2010). Indeed, Darwin (1859, p. 322) writes "We need not marvel at extinction; if we

must marvel, let it be at our own presumption in imagining for a moment that we understand the many

complex contingencies on which the existence of each species depends."

It is plausible that Darwin’s emphasis on competition and exclusion was influenced not only by the faulty

of theory of blending inheritance, but also by the upper-class milieu of 1800s England — Darwin was a mem-

ber of the Whig party during the era of the New Poor Law and was predominantly influenced by the work

of the eugenicist Thomas Malthus, consequently endorsing the extermination (via disease, famine, economic

deprivation) of colonized people in the name of creative destruction, all the while detesting explicit genocide

(Moore and Desmond, 1991). The presumption of competitive exclusion evolved into the competitive exclu-
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sion principle, though the exact reason for the principle’s prominence is unclear. Explanations include the

attention of few superstar authors (namely Robert MacArthur and G.E. Hutchinson, see Schoener, 1982),

the naturalization of capitalist ideology (Simha et al., 2022), and the fact that mutualism — the conceptual

reciprocal of competition — does not play nice with the tools of theoretical ecology (May, 1981, p. 95).

The antithesis of competitive exclusion emerged from the discovery of fluctuation-dependent mechanisms

(Armstrong and McGehee, 1976; Chesson and Warner, 1981), the realization that spatial and temporal

variances could be treated as regulating factors (Levins, 1979), and formulae suggesting that an arbitrary

number of species could coexist on a single resource (e.g., Chesson, 1994, Eq. 81). The focal question flipped

from "Why are there so many species?" to "Why are there so few species?". These two questions, laid

side-by-side, reveal the absurdity of trying to make strong quantitative predictions without an underlying

model. Depending on one’s theoretical commitments, biodiversity can be bounded in whatever way one

chooses; recall that the bounds in Table 1.7 depend on the small-noise assumptions (Section 1.2.B.2) and the

assumption that both resources and environmental states are fundamentally discrete. The conflict between

the thesis and antithesis suggests the synthesis: the question "Why is the number of species that which we

observe?" By serving as a methodology for measuring coexistence, Spatiotemporal MCT is poised to help

answer this question.

Although we have extended MCT to more complex models, there remain a number of problems with MCT

(see Section 1.2.3.1). But we should not be surprised nor disheartened that such problems exist: MCT was

invented to explain the role of environmental variation in coexistence (Barabás et al., 2018, p. 288, Chesson,

2020, p. 6), not to be a measurement tool. There has been a recent surge of interest in the interpretation

and application of MCT (Ellner et al., 2016; Ellner et al., 2019; Grainger, Letten, et al., 2019; Song et al.,

2020; Pande et al., 2020; Ellner et al., 2020; Barabás et al., 2018; Chesson, 2020; and Barabás and D’Andrea,

2020; Johnson and Hastings, 2022a; Johnson and Hastings, 2022b), but more work needs to be done.
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Appendices

1.2.A Deriving small-noise coexistence mechanisms

The derivation of spatiotemporal coexistence mechanisms can be broken into four parts. In part 1, the local

finite rate of increase is expressed in a common format: a polynomial of Ej and Cj . This requires re-writing

model of population dynamics as in terms of Ej and Cj (Appendix 1.2.B), assuming that environmental

fluctuations are small (Appendix 1.2.B.2), and applying a Taylor series expansion (Appendix 1.2.B.1). In

part 2, the appropriate spatial (Appendix 1.2.B.3) and temporal (Appendix 1.2.B.4) averaging is applied

in order to express the invasion growth rate in terms of local finite rates of increase. In part 3, The

approximations derived in parts 1 and 2 are combined to create a long expression for each species’ average

growth rate (Appendix 1.2.B.5). In part 4, the small-noise coexistence mechanisms are finally produced

(formulas presented in the main text) by comparing the invader to the residents.

Why does our exposition feature discrete-time populations dynamics? For one, the connection with data-

based modelling of real communities is more transparent, since data is collected at discrete points in time,

and as a consequence, ecologists primarily fit discrete-time models. Secondly, the expressions for the small-

noise coexistence mechanisms in the case of discrete-time are identical to those in case of continuous-time

when environmental stochasticity is proportional to white noise (Appendix 1.2.E.1).

A brief technical note: throughout the paper, we use the notation Ej as shorthand for Ej(x, t); it is

not the case that Ej is a random variable and that Ej(x, t) is a realization of said random variable, as the

notation seems to imply. As Chesson (2000) points out, the notation can be made more precise by adding

the seed number/ sample path as an additional argument, such that Ej(x, t, ω) is a realization of the random

variable Ej(x, t). Throughout this paper, when we apply the expectation operator (or covariance or variance

operators), we sum over space and/or time while fixing the sample path ω.

1.2.B Population growth as a function of the environment and competition

The local finite rate of increase, λj , is given by the function gj(Ej , Cj), where Ej represents the effects

of density-independent factors and Cj represents the effects of density-dependent factors (also known as

regulating factors or limiting factors).

The parameter Ej has many names: the environmentally-dependent parameter, the response to the en-

vironment, the environmental parameter, or the environment. It is typically a demographic parameter that

depends on the abiotic environment, such as per capita fecundity or the probability of seed germination,

hence the terminology response to the environment. But Ej may also be a literal environmental variable,

such as annual precipitation, degree days, or soil type. It is important to keep in mind that Ej need not
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represent the effects of the abiotic environment, since not all density-independent factors are part of the

abiotic environment (e.g., mortality from a generalist predator), and not all density-dependent factors are

biotic (e.g., refugia, soil nutrients).

The parameter Cj is often called the competition parameter, or simply competition. Concrete examples

of the competition parameter are the number of juvenile fish competing per open territory in the lottery

model, or a linear combination of population densities, as in the competitive Lotka-Volterra model. The focus

on competition reflects MCT’s intellectual origin (and more generally, ecology’s bias towards competition;

Mittelbach, 2019, p. 164) but the density-dependent Cj can just as easily represent predation pressure (Kuang

and Chesson, 2010; Chesson and Kuang, 2010; Stump and Chesson, 2015; Stump and Chesson, 2017) or

mutualistic benefits (Stump et al., 2018).

We note that in some papers (e.g., (Chesson, 1994; Chesson, 2018; Ellner et al., 2016), C{−i}
j or Cj\i is

used to denote the competition parameter of species j when species i is absent. We use Cj to denote the

same, since we are always considering a community in which one species is the invader.

1.2.B.1 Decomposing the finite rate of increase: the quadratic approximation

We will decompose gj(Ej , Cj) via a second-order Taylor series expansion. First though, we must select

equilibrium values of the environment and competition to expand about. These values, denoted E∗
j and C∗

j ,

must be selected so that gj(E
∗
j , C

∗
j ) = 1, a constraint that functions to eliminate the zeroth-order Taylor

series coefficient (see Eq.2.4).

In general, there is no unique choice of E∗
j and C∗

j , though as Chesson (1994) notes, fixing one parameter

will determine the other. That being said, not all choices are equally appropriate. In particular, for every term

in the Taylor series expansion to be the same order of magnitude – and thus of commensurate importance –

we must simultaneously select E∗
j to be close to Ex,t[Ej ], and C∗

j to be close to Ex,t[Cj ] (the reasoning will

be explained in the following section, 1.2.B.2).

There is a canonical method for selecting E∗
j and C∗

j : virtually eliminate environmental noise, select

E∗
j as the environmental parameter in the resulting deterministic skeleton, and then select C∗

j based on the

constraint gj(E
∗
j , C

∗
j ) = 1. In models with multiple regulating factors (see Appendix 1.2.E.3), there are an

infinite number of ways to select equilibrium parameters — there are many unknowns and just one constraint

(gj(E∗
j , C

∗
j ) = 1) — but there are several reasonable strategies (see Johnson and Hastings, 2022a, Section

2.1).

With the appropriate selection of the equilibrium parameters, we expand the local finite rate of increase
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with a second-order Taylor Series about E∗
j and C∗

j :

gj(Ej , Cj) ≈ 1 + α
(1)
j (Ej − E∗

j ) + β
(1)
j (Cj − C∗

j )

+
1

2
α
(2)
j (Ej − E∗

j )
2 +

1

2
β
(2)
j (Cj − C∗

j )
2 + ζj(Ej − E∗

j )(Cj − C∗
j ).

(1.171)

The coefficients of the Taylor series are

α
(1)
j =

∂gj(E∗
j ,C

∗
j )

∂Ej
, β

(1)
j =

∂gj(E∗
j ,C

∗
j )

∂Cj
, α

(2)
j =

∂2gj(E∗
j ,C

∗
j )

∂E2
j

, β
(2)
j =

∂2gj(E∗
j ,C

∗
j )

∂Cj ,2
ζj =

∂2gj(E∗
j ,C

∗
j )

∂Ej∂Cj
.

(1.172)

1.2.B.2 Small-noise assumptions

In order for the second-order Taylor series expansion (the r.h.s. of Eq.2.4) to be a good approximation of

gj(Ej , Cj), we must make some assumptions about the magnitude of environmental fluctuations. First, we

assume that the environmental parameter Ej fluctuates about E∗
j in a small finite range, and that the size of

this range in controlled by a small parameter σ. Here, we use the conventional "big-oh" notation to denote

an upper bound on magnitude of fluctuations:

Ej − E∗
j = O(σ). (1.173)

This means that
∣∣Ej − E∗

j

∣∣ < kσ, with some constant k as σ → 0. Our next assumption states that

environmental fluctuations are even smaller when averaged across space and time:

Ex,t[Ej ]− E∗
j = O(σ2). (1.174)

The justification of the above assumption is either 1) that positive and negative fluctuations cancel out, or 2)

that large fluctuations (which set the magnitude of Ej −E∗
j ) are overpowered by many smaller fluctuations.

Functionally, the assumption ensures that the effects of spatiotemporal averages are on the same order of

magnitude as the effects of spatiotemporal variance; note that Eq.1.173 and Eq.1.174 imply that Varx,t (E) =

O(σ2).

To help make sense of the above assumptions, consider an environmental parameter Ej(x, t) = a(x)+b(t).

Both the patch effect a(x) and time effect b(t) independently take the value +σ or −σ with probability = 0.5.

By construction, the first assumption, Eq.1.173, is met. If we then select E∗
j = 0, the relevant bounds are∣∣Ej − E∗

j

∣∣ ≤ 2σ,
∣∣Et[Ej ]− E∗

j

∣∣ ≤ σ, and
∣∣Et[Ej ]− E∗

j

∣∣ ≤ σ. Here we see that spatial and temporal averages of

environmental fluctuations are on the same order of magnitude as the raw fluctuations, Ej−E∗
j . Furthermore,
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we see that Ex,t[Ej ]−E∗
j = 0, which neatly demonstrates that the spatiotemporal average of fluctuations is

exceedingly small (Eq.1.174).

In order for environment and competition to have commensurate effects on per capita growth rates, we

must assume analogous bounds for for the competition parameter (Cj − C∗
j = O(σ) and Ex,t[Cj ] − C∗

j =

O(σ2)) and for relative density (νj − 1 = O(σ) and Ex,t[νj ]− 1 = O(σ2)). In some situations, these bounds

are not pure assumptions, but rather the result of some conditions. Heavily paraphrased, the conditions are

1) that species have a shared competition parameter (Chesson, 1994, p. 268) or have very similar competition

parameters (Chesson, 1994, p. 270, second equation), 2) that competition is a function of population densities

and environmental responses (Chesson, 1994, p. 269); 3) that competition does not amplify itself over time

(Chesson, 1994, p. 269)); and 4) that "... any increase in local density due to dispersal cannot increase

competition any more than O(σ) above the maximum competition applicable if there were no dispersal."

(Chesson, 2000, p. 234). Additionally, if there are more residents than regulating factors, then the scaling

factors can be used to cancel the ∆ρi coexistence mechanisms, and concerns about bounding Cj are moot.

For all the details, see Appendix 2 of Chesson (1994) and Appendix 3 of Chesson (2000).

The small-noise assumptions serve two primary purposes. First, they allow us to truncate the Taylor

series (Eq.2.4) at second order, thus limiting the number of coexistence mechanisms that we might simul-

taneously consider. Second, the small-noise assumptions allow us to use the small-noise approximation for

dynamical systems (Gardiner, 1985), resulting in simple stochastic models that permit analytical expressions

for important quantities, e.g., the covariance between environment and competition (See Schreiber, 2021 for

an example).

When the small-noise assumptions (and the auxiliary conditions above) are not met, one can proceed

with two risks. First, the small-noise coexistence mechanisms may not sum approximately to the invasion

growth rate; they will "miss" important processes that promote or hinder coexistence. Second, the exact

coexistence mechanisms may capture unknown processes that involve large environmental fluctuations, thus

making the exact coexistence mechanism less interpretable.

The small-noise assumptions above require large fluctuations to be impossible, not just improbable.

Restricting fluctuations to a finite range ensures that growth rates will not be dominated by low-probability,

high-impact events. The gain in internal validity comes at the cost of external validity: it is often reasonable

to model the environmental response by a random variable with support on the positive real numbers. For

example, recruitment in some marine animals appears to follow lognormal distributions (Hennemuth et al.,

1980; Ripley and Caswell, 2006). However, the exact coexistence mechanisms circumvent the finite range

assumption entirely, as long as we exclude from consideration the unlikely scenario where the distributions

of Ej and Cj are so fat-tailed that spatial, temporal, or spatiotemporal averages of Ej and Cj do not exist.
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Given the plethora of assumptions implicit in any ecological model, a violation of the finite range assumption

is just one of many ways in which the results of an MCT analysis are provisional.

1.2.B.3 Spatial averaging and fitness-density covariance

Next, we will derive a decomposition of the metapopulation finite rate of increase, λ̃j(t). Consider a commu-

nity with K distinct patches. The metapopulation finite rate of increase can be calculated as simple average

of each individual’s finite rate of increase, or equivalently, a weighted average of each patch’s finite rate of

increase, with weights equal to the relative density of the population in that patch. To see the logic of the

latter scheme, first note that

λ̃j(t) =

K∑
x=1

nj(x, t+ 1)

K∑
x=1

nj(x, t)

=

K∑
x=1

nj(x, t+ 1)

K Ex[nj(t)]
. (1.175)

Using the local dynamics (Eq.1.53) to substitute for nj(x, t+ 1) , we find that

λ̃j(t) =
1

K Ex[nj(t)]

K∑
x=1

(nj(x, t) gj(Ej(x, t), Cj(x, t))) +
1

K Ex[nj(t)]

K∑
x=1

(cj(x, t)− ej(x, t)) . (1.176)

To simplify the above expression, we would like second additive term (the spatial sum of net dispersal)

to vanish. This can be accomplished by assuming either 1) that the system is closed, i.e., no individuals can

enter or leave the system of patches, or 2) that the community receives roughly as many immigrants as it

loses emigrants. Scenario 1 is likely to be approximately true for communities that span entire ecosystems, or

for communities with very specific habitat requirements (e.g., Californian plants endemic to serpentine soils;

Harrison et al., 2006). In either case, there is no immigration into the metacommunity, and emmigration

out of the metacommunity results in mortality that can be treated as part of the local dynamics of marginal

patches. Scenario 2 is likely to be approximately true when the habitat surrounding the focal area is similar

enough to the habitat within the focal area, such that immigration and emigration are balanced over the

margin of the focal area. The focal area (which itself is not closed) is representative of a larger metacommunity

which is effectively closed.

Assuming that dispersal is negligible at the spatial scale of the metapopulation, dropping the notation

for explicit time-dependence, and rearranging terms, Eq.1.176 simplifies significantly,

λ̃j = Ex

[
nj

Ex[nj ]
gj(Ej , Cj)

]
, (1.177)
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thus revealing that the metapopulation finite rate of increase is a density-weighted average of local finite

rates of increase. λ̃j can be decomposed further with the law of total covariance:

λ̃j = Ex

[
nj

Ex[nj ]

]
Ex[gj(Ej , Cj)] + Covx

(
nj

Ex[nj ]
, gj(Ej , Cj)

)
= Ex[gj(Ej , Cj)] + Covx(νj , gj(Ej , Cj))

(1.178)

where νj is the relative density of species j, defined precisely as νj(x, t) =
nj(x,t)
Ex[nj(t)]

.

The first term in Eq.1.178 is the spatial average of local per capita growth rates. The second term is

the covariance between relative-density and growth rates, which captures the ability of species j to end up

in locations where it has high fitness (though the mechanism of this ability is completely unspecified). This

term is the precursor to fitness-density covariance.

1.2.B.4 Temporal averaging

The quantity which is predictive of persistence is not Et

[
λ̃k

]
, but rather Et

[
log λ̃j

]
. The logarithmic trans-

formation converts a product of λ̃j into a sum of log
(
λ̃j

)
, which facilitates the application of an arithmetic

average.

Conditions on the magnitude of fluctuations in Ej , Cj , and νj (Appendix 1.2.B.2) can be used to show

that λ̃j = 1 + O(σ) and Et

[
λ̃j

]
= 1 + O(σ2). The logarithm can now be decomposed with a Taylor series

expansion

log
(
λ̃j

)∣∣∣∣
λ̃j=1

≈ λ̃j − 1− 1

2

(
λ̃j − 1

)2
. (1.179)

Utilizing the fact that Et

[(
λ̃j − 1

)2]
= Vart

(
λ̃j

)
+O(σ4), we take the average over time to obtain the

average growth rate:

Et

[
log
(
λ̃j

)]
≈ Et

[
λ̃j

]
− 1− 1

2
Vart

(
λ̃j

)
. (1.180)

Plugging the decomposition of λ̃j (Eq.1.178) into equation Eq.1.180, we find that the invasion growth

rate can be approximated entirely by moments of λj and νj .

Et

[
log
(
λ̃j

)]
≈ Ex,t[λj ] + Et[Covx(νj(t), λj)]− 1− 1

2
Vart(Et[λj ]) . (1.181)
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1.2.B.5 Putting it all together: A decomposition of the average growth rate

The Taylor series decomposition of gj(Ek, Cj) (Eq.2.4) can be plugged into Eq.1.181, producing a fine-grained

partition of species j’s average growth rate

Et

[
log
(
λ̃j

)]∣∣∣∣
Ej=E∗

j

Cj=C∗
j
≈ α

(1)
j Ex,t

[
(Ej − E∗

j )
]
+ β

(1)
j Ex,t

[
(Cj − C∗

j )
]

+
1

2
α
(2)
j Varx,t(Ej) +

1

2
β
(2)
j Varx,t(Cj) + ζjCovx,t(Ej , Cj)

+ Et

[
Covx

(
νj , α

(1)
j (Ej − E∗

j ) + β
(1)
j (Cj − C∗

j )
)]

− 1

2
α
(1)2

j Vart(Ex[Ej ])−
1

2
β
(1)2

j Vart(Ex[Ej ])− α
(1)
j β

(1)
j Covt(Ex[Ej ] ,Ex[Cj ]) .

(1.182)

The additive terms in Eq.1.182, can be thought of as a components of the average growth rate, each of

which captures some "effect" on population growth. The components are not generally independent, which

correctly implies that the subsequent coexistence mechanisms are not generally independent (Song et al.,

2020; Kuang and Chesson, 2010; Yuan and Chesson, 2015). For instance, in the spatiotemporal lottery

model (Section 1.2.5 in the main text), the mortality parameter modulates all coexistence mechanisms.

However, growth rate components may be conceptualized as distinct processes, just as ecology and evolution

are interdependent but conceptually distinct.

Note that the term Ex,t

[
(Ej − E∗

j )(Cj − C∗
j )
]
has been replaced with Covx,t (Ej , Cj), since Covx,t (Ej , Cj) =

Ex,t

[
(Ej − E∗

j )(Cj − C∗
j )
]
+O(σ3) via the small-noise assumptions. Analogous replacements have been made

for other variance and covariance terms in Eq.1.182. These replacements are not a necessary part of MCT,

but they do make the mathematical expressions shorter and more comprehensible.

1.2.C Justification of the space-time decomposition

To isolate the effects of spatial and temporal variation, we first define a reference state where both spatial

and temporal variation are turned off; then, we separately turn on spatial (temporal) variation, and identify

the difference as the main effect of spatial (temporal) variation. Put in such colloquial terms, this procedure

may appear ad hoc at first glance. However, we show that this procedure agrees with intuition in a simple

example (Appendix 1.2.C.1), and is concordant with philosophical accounts of causation (Appendix 1.2.C.2).

1.2.C.1 A toy model with only spatially or only temporally varying abiotic factors

Here we analyze the edge case where the environmental response Ej is a function of abiotic factors that

individually vary over only space or time. This case is simple enough that we can describe our intuitions
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regarding what a space-time decomposition should do: the space component should only include the effects of

the spatially varying abiotic factors, and the time component should only include the effects of the temporally

varying abiotic factors.

To be more concrete, consider two abiotic factors, W and Y . The factor W only varies over space (i.e.,

at a particular location, W does not vary from year-to-year) and Y only varies over time (i.e., at a single

point in time, all locations have the same value of Y ). Select the equilibrium values of the abiotic resources,

W ∗ and Y ∗, so that E∗
j = fj(W

∗, Y ∗), where fj is a function that maps abiotic factors to species j’s

environmental response. The small-noise assumptions of MCT imply that W −W ∗ = O(σ), Y −Y ∗ = O(σ),

Ex,t[W −W ∗] = Ex[W −W ∗] = O(σ2), and Ex,t[Y − Y ∗] = Et[Y − Y ∗] = O(σ2). Using this information,

we can derive expressions for the space-time decomposition of Varx,t(Ej). Applying a Taylor series of fj

about W ∗ and Y ∗, plugging the resulting expression into the space-time decomposition equations (Eq.1.82–

Eq.1.84), and utilizing the fact that the variance of a constant equals zero (e.g., Vart(W ) = 0), we find

that

Sj =

[
∂fj(W

∗, Y ∗)

∂W

]2
Varx(W ) +O(σ3) (1.183)

Tj =

[
∂fj(W

∗, Y ∗)

∂Y

]2
Vart(Y ) +O(σ3), and (1.184)

Rj =

[
∂2fj(W

∗, Y ∗)

∂W∂Y

]2
Varx(W )Vart(Y ) +O(σ5). (1.185)

The Taylor series coefficients show that Sj captures the main effect of the spatially varying abiotic factor,

Tj captures the main effect of the temporally varying abiotic factor, and that Rj captures the interaction

effect between the two abiotic factors. This model is exceedingly simple, but it is the first line of evidence

that our space-time decomposition behaves as desired.

1.2.C.2 The space-time decomposition measures causation

Counterfactual theories of causation posit that causation can be explained in terms of counterfactual de-

pendency (Hume, 1748, Section XII ; Mill, 1856 , Lewis, 1973, Pearl and Mackenzie, 2018). To say "A

caused B", is to say "if A had not occurred, then B would not have occurred". To operationalize causation,

we may calculate differences (with respect to some outcome of interest) between possible worlds, where

the possible worlds are similar in every relevant way except for some focal causal factor. The comparison

of possible worlds is crucial, which is why the counterfactual account of causation is sometimes called the

difference-making account of causation. Lewis (1973) explains "We think of a cause as something that makes
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a difference, and the difference it makes must be a difference from what would have happened without it."

The exposition above makes our challenge clear: to justify our space-time decomposition on the grounds

that it captures causation, we must 1) describe Sj , Tj , and Rj (see Eq.1.82–Eq.1.84) in terms of differences

between possible worlds, as has been done in the main text (Section 1.2.3.3) and 2) argue that the possible

worlds in question are close in some relevant sense, following Lewis’s (1979) guideline that possible worlds

"...maximize the spatiotemporal region thorough-out which perfect match of particular fact prevails". By

using spatial (temporal) averaging to squash spatial (temporal) variation, we are doing just that: the sequence

of spatial averages A(t) = Ex[Ej ] minimizes the squared error
∑

x,t (Ej(x, t)−A(t))
2, under the constraints

that there is no spatial variation, and that spatial variation must be squashed using only information from

the Ej ’s within each individual time-step.

1.2.D Deriving the small-noise fitness-density covariance for the spatiotemporal

lottery model

Like all coexistence mechanisms, the fitness-density covariance coexistence mechanisms is O(σ2), which

implies that the leading-order approximation for the covariance will involve O(σ) approximations of νj(t)

and λj(t). To this end, we take a perturbative approach, expanding both parameters in powers of σ,

νj(x, t) = νj,0(x, t) + σνj,1(x, t) + ...; and λj(x, t) = λj,0(x, t) + σλj,1(x, t) + ....

Matching like-terms in the perturbative expansion and the Taylor series expansion of λj (Eq.2.4), we find

that λj,0(x, t) = 1 and σλj,1(x, t) = α
(1)
j (Ej(x, t) − E∗

j ) + β
(1)
j (Cj(x, t) − C∗

j ). The solution λj,0(x, t) = 1

implies that νj,0(x, t) = 1. Noting the constancy of the zeroth-order solutions, the covariance can now be

approximated as

Covx(vj(t), λj(t)) = Covx(vj,0(t) + σvj,1(t) + ..., λj,0(t) + σλj,1(t) + ...)

≈ Covx(σvj,1(t), σλj,1(t)) .

(1.186)

We now seek to simplify by expressing vj,1(x, t) in terms of the environmental parameter. Dividing both

sides of the population map (Eq.1.149) by Ex[nj(t)] gives the relative-density map.

νj(x, t+ 1) = qjνj(x, t)
λj(x, t)

λ̃j(t)
+ 1− qj . (1.187)

The small-noise assumptions (Appendix 1.2.B.2) allow us to make the substitution, λ̃j(x, t) = 1 +O(σ),

which simplifies the relative density map to
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νj(x, t+ 1) = qjνj(x, t)λj(x, t) + 1− qj . (1.188)

We now expand vj in powers of σ and match terms of order σ.

O(σ) : νj,1(x, t+ 1) = qjνj,1(x, t) + qjλj,1(x, t). (1.189)

Substituting the above expression into the covariance produces

Covx(vj(t), λj(t)) ≈ Covx(σvj,1(t), σλj,1(t))

=σ2Covx(qvj,1(t− 1) + λj(t− 1), λj,1(t))

=σ2Covx
(
q2vj,1(t− 2) + qλj,1(t− 2) + λj,1(t− 1), λj,1(t)

)
...

=σ2
∞∑
i=1

qiCovx(λj,1(t− i), λj,1(t)) .

(1.190)

Substituting α
(1)
j (Ej(x, t)− E∗

j ) + β
(1)
j (Cj(x, t)− C∗

j ) +O(σ2) for σλj,1, we get

Covx(vi(t), λi(t)) ≈
∞∑
s=1

qsCovx
(
α
(1)
i (Ei(x, t− s)− E∗

i ) + β
(1)
i (Ci(x, t− s)− C∗

i ),

α
(1)
i (Ei(x, t)− E∗

i ) + β
(1)
i (Ci(x, t)− C∗

i )
)
.

(1.191)

Next, we express the invader’s competition parameter fluctuation in terms of the resident’s environmental

response. In the two-species lottery model of Section 1.2.5, Ci(x, t) − C∗
i = Er(x, t) − E∗

r + O(σ2). The

covariance expression is now

Covx(vi(t), λi(t)) ≈
∞∑
s=1

qsCovx
(
α
(1)
i (Ei(x, t− s)− E∗

i ) + β
(1)
i (Er(x, t− s)− E∗

r ),

α
(1)
i (Ei(x, t)− E∗

i ) + β
(1)
i (Er(x, t)− E∗

r )
)
.

(1.192)

Finally, we write the environmental fluctuations in terms of patch and time effects (Eq.1.150), evalu-

ate the above expression using the geometric series and the symbols introduced in the Section 1.2.5 (e.g.,

Covx(ai, ar) = ϕ
(x)
ir σ

(x)
i σ

(x)
r ), and take the average across time:

107



Et[Covx(vi, λi)] ≈
q

1− q

[
α
(1)
i

2
σ
(x)
i

2
+ β

(1)
i

2
σ(x)
r

2
+ 2α

(1)
i β

(1)
i ϕ

(x)
ir σ

(x)
i σ(x)

r

+ α
(1)
i

2
θ2i σ

(x)
i

2
σ
(t)
i

2
+ β

(1)
i

2
θ2rσ

(x)
r

2
σ(t)
r

2

+ 2α
(1)
i β

(1)
i θiθrϕ

(x)
ir ϕ

(t)
ir σ

(x)
i σ

(t)
i σ(x)

r σ(t)
r

]
.

(1.193)

In the lottery model, there are always more larvae produced than are necessary to compensate for

adult mortality. If there is only one resident, its local density will be exactly 1 everywhere after the local

growth phase. Since global dispersal with local retention acts symmetrically on all patches, the resident’s

density will still be 1 everywhere after the dispersal phase. Therefore, the resident’s covariance term is

zero, and the fitness density covariance coexistence mechanism is simply the expression above, Eq.1.193; i.e.,

∆κi = Et [Covx(vi, λi)]. When symmetries in demographic parameters are taken into consideration, Eq.1.193

reduces to the result in the main text, Eq.1.166.

1.2.E Generalization of MCT to different classes of models

In the main text (Section 1.2.3), we presented formulas for coexistence mechanisms in models with discrete-

time dynamics and no age/stage-structure . With slight modification, these same formulas can be used to

calculate coexistence mechanisms in other classes of models.

In continuous-time models, gj represents the local per capita growth rate, dnj(t)/dt (as opposed to

the finite rate of increase in the discrete-time case). In models with multiple regulating factors, the Cj

argument is replaced with an arbitrary number of arguments representing regulating factors, and finer-

grained fluctuation-dependent coexistence mechanisms are computed by allowing one or two of these factors

to vary while holding the rest constant. In structured population models the function gj represents the

finite rate of increase of the sum of states, i.e., ∥n(t + 1)∥/∥n(t)∥, where ∥n(t)∥ is the sum (or integral) of

population densities across all traits/ages/stages.

1.2.E.1 Stochastic Differential Equations (SDEs)

A Stochastic Differential Equation (SDE) is a continuous-time process in which stochastic perturbations

occur at an infinitesimal time-scale. Ecological SDES are usually not physically motivated, and can often

be viewed as approximations to stochastic difference equations as the length of the time step shrinks to zero

(Turelli, 1977). Such approximations are useful because they permit analytical results (e.g., the stationary

distribution of population densities in Hatfield and Chesson, 1989).

A univariate, non-spatial SDE can be written as
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dn(t) = n(t) [a(n(t))dt+ b(n(t))dW (t)] , (1.194)

where a(n(t)) is the infinitesimal per capita mean and b(n(t)) is the infinitesimal per capita scale. These

two quantities are respectively defined as the expectation and variance of per capita population growth,

conditioned on n(t), in the limit of small time steps; or in symbols,

a(n) = lim
∆t→0

E[n(t+∆t)]− n(t)

n(t)∆t
, and (1.195)

b(n) = lim
∆t→0

√
Var(n(t+∆t)− n(t))

n(t)∆t
. (1.196)

To solve the SDE, we use Itô’s lemma to perform a change of variables. Itô’s lemma (Karlin and Taylor,

1981, p. 347–348) states that for an arbitrary SDE,

dX(t) = A(X, t)dt+B(X, t)dW (t), (1.197)

the SDE for the transformation f(X, t) is

df =

[
∂f

∂t
+A(X, t)

∂f

∂x
+

B(X, t)2

2

∂2f

∂x2

]
dt+B(X, t)

∂f

∂x
dW (t). (1.198)

We define the transformation f(n, t) = log(n(t)). The SDE is

df =

[
a(n(t))− b(n(t))2

2

]
dt+ b(n(t))dW (t), (1.199)

which reveals that the tendency for population density to increase/decrease is given by the sign of limt→∞
∫ t

0
a(n(s))−

b(n(s))2

2 ds. For resident species, Et

[
a(n)− b(n)2

2

]
= 0. In SDEs, the quantity a(n) − b(n)2

2 plays the same

role that the logged finite rate of increase plays in discrete time models. The discounting of the expected

per capita growth rate by half of the variance should be reminiscent of Eq.1.180.

For illustrative purposes, we have thus far looked at a univariate, non-spatial SDE. To make the general

SDE notation more congruent with the formalism of spatiotemporal MCT, we first define the local per capita

growth rate, rj , as the output of the function gj :

rj := gj(Ej , Cj) = aj(Cj) + bj(Cj)(Ej − E∗
j ). (1.200)

The model has been parameterized so that Var(Ej(x, t)) (the variance of Ej(x, t) across sample paths)
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is not proportional to the time step. For example, consider the Lotka Volterra model with spatiotemporal

environmental noise

n′
j(x, t+ dt)− nj(x, t) =

(
1−

S∑
k=1

αjknk(x, t)

)
dt+ ϵj(x)dt+ σjdWj(t), (1.201)

where ϵj(x) is the effect of location x on environmental noise, σj is the scale of temporal environmental

fluctuations, and n′
j(x, t) is the population density after the local population growth phase, but before the

dispersal phase. Here, the competition parameter is Cj(x, t) =
∑S

k=1 αjknk(x, t) by convention (Chesson,

1994, Section 5). The environmental parameter is Ej(x, t) = ϵj(x) + σjdWj(t)/
√
dt; because E[dW ] = dt

(Karlin and Taylor, 1981, p.347), division by
√
dt ensures that variances of Ej will not be proportional to the

time step. With Ej and Cj defined in this way, we have Var(Ej(x, t)) = σ2
j and gj(Ej , Cj) = (1−Cj) +Ej .

Following the logic of Section 1.2.B.3, the metapopulation per capita growth rate is

r̃j = Ex[r] + Covx(νj , rj) , (1.202)

To approximate the average per capita growth rate, we approximate Et[r̃j ] and Vart(r̃j) with Taylor

series of gj about Ej and Cj ; and truncate using the small-noise assumptions (Appendix 1.2.B.2). The result

is (
Et[r̃j ]−

Vart(r̃j)

2

)
≈ α

(1)
j Ex,t

[
(Ej − E∗

j )
]
+ β

(1)
j Ex,t

[
(Cj − C∗

j )
]

+
1

2
α
(2)
j Varx,t(Ej) +

1

2
β
(2)
j Varx,t(Cj) + ζjCovx,t(Ej , Cj)

+ Et

[
Covx

(
νj , α

(1)
j (Ej − E∗

j ) + β
(1)
j (Cj − C∗

j )
)]

− 1

2
α
(1)2

j Vart(Ex[Ej ])−
1

2
β
(1)2

j Vart(Ex[Ej ])− α
(1)
j β

(1)
j Covt(Ex[Ej ] ,Ex[Cj ]) ,

(1.203)

which is nearly identical to the corresponding discrete-time approximation (Eq.1.182), the only difference

being that the function gj(Ej , Cj) generates the per capita growth rate as opposed to the finite rate of

increase, such that the Taylor series coefficients have different meanings. Because of the correspondence

between the continuous-time and discrete-time approximations of the average growth rate, equations from

the main text (Eq.2.14–Eq.1.63 & Eq.1.85–Eq.1.104) can be used to calculate the small-noise coexistence

mechanisms for SDE models, again with the caveat that the Taylor series coefficients may have different

meanings.

The derivation of exact coexistence mechanisms follows Section 1.2.3.3 from the main text, except that

rj − (rj−Et[rj ])
2

2 is used in place of log(λ).
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Formulas for exact coexistence mechanisms in SDE models

The invasion growth rate(
Et[r̃i]−

Vart(r̃i)

2

)
= ∆Ei

(e) +∆ρi
(e) +∆Ni

(e) +∆Ii
(e) +∆κi

(e), (1.204)

Density-independent effects

∆Ei
(e) = Ei −

1

S − 1

S∑
r ̸=i

GTr

GTi
Er (1.205)

E j = Et

[
Ex

[
gj(Ej , C

∗
j )
]
−
(
Ex

[
gj(Ej , C

∗
j )
]
− Ex,t

[
gj(Ej , C

∗
j )
])2

2

]
(1.206)

Linear density-dependent effects

∆ρi
(e) = gi(E

∗
i ,Ex,t[Ci])−

1

S − 1

S∑
r ̸=i

GTr

GTi
gr(E

∗
r ,Ex,t[Cr]) (1.207)

Relative nonlinearity

∆Ni
(e) =

Ci −
1

S − 1

S∑
r ̸=i

GTr

GTi
Cr

−∆ρi
(e) (1.208)

C j = Et

[
Ex

[
gj(E

∗
j , Cj)

]
−
(
Ex

[
gj(E

∗
j , Cj)

]
− Ex,t

[
gj(E

∗
j , Cj)

])2
2

]
(1.209)

The storage effect

∆Ii
(e) = Ii −

1

S − 1

S∑
r ̸=i

GTr

GTi
Ir (1.210)
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Ij = Et

[
Ex[gj(Ej , Cj)]−

(Ex[gj(Ej , Cj)]− Ex,t[gj(Ej , Cj)])
2

2

]
−
(
Ej + Cj

)
(1.211)

Fitness-density covariance

∆κi
(e) = Ki −

1

S − 1

S∑
r ̸=i

GTr

GTi
Kr (1.212)

K j = Et

[
Ex[νj gj(Ej , Cj)]−

(Ex[νj gj(Ej , Cj)]− Et[Ex[νj gj(Ej , Cj)]])
2

2

]

− Et

[
Ex[gj(Ej , Cj)]−

(
Ex[gj(Ej , Cj)]− Ex,t

[
gj(Ej , C

∗
j )
])2

2

] (1.213)

= Et

[
Ex[νj gj(Ej , Cj)]−

(Ex[νj gj(Ej , Cj)]− Et[Ex[νj gj(Ej , Cj)]])
2

2

]
−
(
Ej + Cj + Ij

)
(1.214)

1.2.E.2 Continuous-time models (non-SDEs)

When the dynamics of population density are not governed by SDEs (even when Ej or Cj are governed by

SDEs, as in Li and Chesson, 2016) a simple arithmetic average over space and time gives the correct average

growth rate. With the function gj generating the per capita growth rate, dnj/dt, the average growth rate

can be approximated as

Et[r̃j ] ≈ α
(1)
j Ex,t

[
(Ej − E∗

j )
]
+ β

(1)
j Ex,t

[
(Cj − C∗

j )
]

+
1

2
α
(2)
j Varx,t(Ej) +

1

2
β
(2)
j Varx,t(Cj) + ζjCovx,t(Ej , Cj)

+ Et

[
Covx

(
νj , α

(1)
j (Ej − E∗

j ) + β
(1)
j (Cj − C∗

j )
)]

.

(1.215)

Here, there is no discounting for temporal variation, so spatial and temporal variation are treated symmet-

rically (with the exception of fitness density covariance). The small-noise and exact coexistence mechanisms

are as follows:
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Formulas for small-noise coexistence mechanisms in (non-SDE) continuous-time models

The invasion growth rate

Et[r̃i] ≈ ∆Ei +∆ρi +∆Ni +∆Ii +∆κi (1.216)

Density-independent effects

∆Ei =

[
α
(1)
i Ex,t[Ei − E∗

i ] +
1

2
α
(2)
i Varx,t(Ei)

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
α(1)
r Ex,t[Er − E∗

r ] +
1

2
α(2)
r Varx,t(Er)

]
(1.217)

Linear density-dependent effects

∆ρi =β
(1)
i Ex,t[Ci − C∗

i ]−
1

S − 1

S∑
r ̸=i

GTr

GTi
β(1)
r Ex,t[Cr − C∗

r ] (1.218)

Relative nonlinearity

∆Ni =
1

2
β
(2)
i Varx,t(Ci)−

1

S − 1

S∑
r ̸=i

GTr

GTi

1

2
β(2)
r Varx,t(Cr) (1.219)

The storage effect

∆Ii =ζiCovx,t(Ei, Ci)−
1

S − 1

S∑
r ̸=i

GTr

GTi
ζrCovx,t(Er, Cr) (1.220)

Fitness-density covariance

∆κi =Et

[
Covx

(
νi, α

(1)
i Ei + β

(1)
i Ci

)]
− 1

S − 1

S∑
r ̸=i

GTr

GTi
Et

[
Covx

(
νr, α

(1)
r Er + β(1)

r Cr

)]
(1.221)
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Formulas for exact coexistence mechanisms in (non-SDE) continuous-time models

The invasion growth rate

Et[r̃i] = ∆Ei
(e) +∆ρi

(e) +∆Ni
(e) +∆Ii

(e) +∆κi
(e), (1.222)

Density-independent effects

∆Ei
(e) = Ei −

1

S − 1

S∑
r ̸=i

GTr

GTi
Er (1.223)

E j = Ex,t

[
gj(Ej , C

∗
j )
]

(1.224)

Linear density-dependent effects

∆ρi
(e) = gi(E

∗
i ,Ex,t[Ci])−

1

S − 1

S∑
r ̸=i

GTr

GTi
gr(E

∗
r ,Ex,t[Cr]) (1.225)

Relative nonlinearity

∆Ni
(e) =

Ci −
1

S − 1

S∑
r ̸=i

GTr

GTi
Cr

−∆ρi
(e) (1.226)

C j = Ex,t

[
gj(E

∗
j , Cj)

]
(1.227)

The storage effect

∆Ii
(e) = Ii −

1

S − 1

S∑
r ̸=i

GTr

GTi
Ir (1.228)

Ij = Ex,t[gj(Ej , Cj)]−
(
Ej + Cj

)
(1.229)
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Fitness-density covariance

∆κi
(e) = Ki −

1

S − 1

S∑
r ̸=i

GTr

GTi
Kr (1.230)

K j =Ex,t[νj gj(Ej , Cj)]− Ex,t[gj(Ej , Cj)] (1.231)

Ex,t[νj gj(Ej , Cj)]−
(
Ej + Cj + Ij

)
(1.232)

1.2.E.3 Multiple regulating factors

In the spatiotemporal lottery model, competition is a function of just one regulating factor: open reef

territories. In more realistic models, we may want to cast competition as function of L regulating factors,

F = (F1, F2, ..., FL), which may be species densities, refugia, resources, natural enemies:

Cj = ϕj(F ). (1.233)

In previous work (e.g., Barabás et al., 2018; Chesson, 2020), the finite rate of increase is directly expanded

with respect to the regulating factors. We will expand the competition-generating function ϕj with respect

to the regulating factors, and then substitute the expansion for Cj within the mathematical expressions

for small-noise coexistence mechanisms. Our approach makes the formulas slightly longer (unlike previous

theory, the coefficients β(1)
j and β

(2)
j are not absorbed into ϕ

(1)
jk and ϕ

(2)
jkl, the Taylor series coefficients of ϕj),

but in substituting ϕj(F ) for Cj , we demonstrate that the case of multiple regulating factors is not different

from what is presented in the main text. Note however that in some models, the only reasonable choice for

the competition parameter results in Cj = λj , such that β
(1)
j = β

(2)
j = 1.

Formulas for small-noise coexistence mechanisms which explicitly use the regulating factors can be ob-

tained by taking the formulas for small-noise coexistence mechanisms in the main text (Eq.2.14–Eq.1.63),

substituting in the Taylor series expansion of ϕj in place of Cj , and truncating using the small-noise as-

sumptions. To Taylor-expand ϕj , one must select equilibrium values F ∗j such that C∗
j = ϕj(F

∗j). This task

may be guided by the conditions Fk − F ∗j
k = O(σ) and Ex,t[Fk] − F ∗j

k = O(σ2), which are implied by the

small-noise assumptions (Appendix 1.2.B.2). Note that the equilibrium levels of the regulating factors can

be species-specific (hence the superscript "j"). There is no best way to select the equilibrium parameters,

but various strategies are discussed briefly by Johnson and Hastings, 2022a, Appendix 1. The Taylor series
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coefficients are denoted ϕ
(1)
jk =

∂ϕj(F
∗j)

∂Fk
and ϕ

(2)
jkl =

∂2ϕj(F
∗j)

∂Fk∂Fl
.

Formulas for small-noise coexistence mechanisms: multiple regulating factors

The invasion growth rate

Et

[
log
(
λ̃i

)]
≈ ∆Ei +∆ρi +∆Ni +∆Ii +∆κi, (1.234)

Density-independent effects

∆Ei =

[
α
(1)
i Ex,t[(Ei − E∗

i )] +
1

2
α
(2)
i Varx,t(Ei)−

1

2
α
(1)2

i Vart(Ex[Ei])

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
α(1)
r Ex,t[(Er − E∗

r )] +
1

2
α(2)
r Varx,t(Er)−

1

2
α(1)2

r Vart(Ex[Er])

]
(1.235)

Linear density-dependent effects

∆ρi =

[
L∑

k=1

β
(1)
i ϕ

(1)
ik Ex,t

[
Fk − F ∗i

k

]]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
L∑

k=1

β(1)
r ϕ

(1)
rk Ex,t[Fk − F ∗r

k ]

]
(1.236)

Relative nonlinearity

∆Ni =
1

2

[
L∑

k=1

L∑
l=1

(
β
(2)
i ϕ

(2)
iklCovx,t(Fk, Fl)− β

(1)
i

2
ϕ
(1)
ik ϕ

(1)
il Covt(Ex[Fk] ,Ex[Fl])

)]

− 1

S − 1

S∑
r ̸=i

GTr

GTi

1

2

[
L∑

k=1

L∑
l=1

(
β(2)
r ϕ

(2)
rklCovx,t(Fk, Fl)− β(1)

r

2
ϕ
(1)
rk ϕ

(1)
rl Covt(Ex[Fk] ,Ex[Fl])

)]
(1.237)

The storage effect

∆Ii =

[
L∑

k=1

(
ζiϕ

(1)
ik Covx,t(Ei, Fk)− α

(1)
i β

(1)
i ϕ

(1)
ik Covt(Ex[Ei] ,Ex[Fk])

)]

− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
L∑

k=1

(
ζrϕ

(1)
rk Covx,t(Er, Fk)− α(1)

r β(1)
r ϕ

(1)
rk Covt(Ex[Er] ,Ex[Fk])

)]
(1.238)

Fitness-density covariance
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∆κi =

[
L∑

k=1

Et

[
Covx

(
νi, α

(1)
i Ei + β

(1)
i ϕ

(1)
ik Fk

)]]

− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
L∑

k=1

Et

[
Covx

(
νr, α

(1)
r Er + β(1)

r ϕ
(1)
rk Fk

)]]
(1.239)

The regulating factors have additive effects on the coexistence mechanisms, thus allowing the contribution

of subsets of regulating factors to be extracted. We will demonstrate how this partitioning would work, using

examples with a single regulating factor, Fk.

The contribution of regulating factor Fk to the linear density-dependent effects, i.e., species

i’s degree of specialization on Fk:

β
(1)
i ϕ

(1)
ik Ex,t

[
Fk − F ∗i

k

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi
β(1)
r ϕ

(1)
rk Ex,t[Fk − F ∗r

k ] .

The contribution of regulating factor Fk to the storage effect:

[
ζiϕ

(1)
ik Covx,t(Ei, Fk)− α

(1)
i β

(1)
i ϕ

(1)
ik Covt(Ex[Ei] ,Ex[Fk])

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
ζrϕ

(1)
rk Covx,t(Er, Fk)− α(1)

r β(1)
r ϕ

(1)
rk Covt(Ex[Er] ,Ex[Fk])

]

It should also be straightforward to derive the space-time decompositions of the small-noise coexistence

mechanisms. For example, the contribution of Fk to the time component of the storage effect is

(
ζiϕ

(1)
ik − α

(1)
i β

(1)
i ϕ

(1)
ik

)
Covt(Ex[Ei] ,Ex[Fk])−

1

S − 1

S∑
r ̸=i

GTr

GTi

(
ζrϕ

(1)
rk − α(1)

r β(1)
r ϕ

(1)
rk

)
Covt(Ex[Er] ,Ex[Fk]) .

(1.240)

The contribution of regulating factor Fk to relative nonlinearity Arguably, there are several

ways to partition relative nonlinearity further with respect to individual regulating factors.

1. The contribution of Fk’s variance to relative nonlinearity, or equivalently, the degree of specialization

on the variance in Fk:
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1

2

[
β
(2)
i ϕ

(2)
ikkVarx,t(Fk)− β

(1)
i

2
ϕ
(1)
ik ϕ

(1)
ik Vart(Ex[Fk])

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

1

2

[
β(2)
r ϕ

(2)
rkkVarx,t(Fk)− β(1)

r

2
ϕ
(1)
rk ϕ

(1)
rk Vart(Ex[Fk])

] (1.241)

2. The contribution of covariance between Fk and Fl (k ̸= l) on relative nonlinearity, or equivalently, the

degree of specialization on the covariance between Fk and Fl:

[
β
(2)
i ϕ

(2)
iklCovx,t(Fk, Fl)− β

(1)
i

2
ϕ
(1)
ik ϕ

(1)
il Covt(Ex[Fk] ,Ex[Fl])

]
− 1

S − 1

S∑
r ̸=i

GTr

GTi

[
β(2)
r ϕ

(2)
rklCovx,t(Fk, Fl)− β(1)

r

2
ϕ
(1)
rk ϕ

(1)
rl Covt(Ex[Fk] ,Ex[Fl])

] (1.242)

3. The total contribution of Fk to relative nonlinearity, including the contribution of the variance of Fk,

and the contribution of covariances between Fk and other regulating factors:

[
1

2

(
β
(2)
i ϕ

(2)
ikkVarx,t(Fk)− β

(1)
i

2
ϕ
(1)
ik ϕ

(1)
ik Vart(Ex[Fk])

)]

−

 1

S − 1

S∑
r ̸=i

GTr

GTi

1

2

(
β(2)
r ϕ

(2)
rkkVarx,t(Fk)− β(1)

r

2
ϕ
(1)
rk ϕ

(1)
rk Vart(Ex[Fk])

)
+

 L∑
l ̸=k

(
β
(2)
i ϕ

(2)
iklCovx,t(Fk, Fl)− β

(1)
i

2
ϕ
(1)
ik ϕ

(1)
il Covt(Ex[Fk] ,Ex[Fl])

)
−

 1

S − 1

S∑
r ̸=i

GTr

GTi

 L∑
l ̸=k

(
β(2)
r ϕ

(2)
rklCovx,t(Fk, Fl)− β(1)

r

2
ϕ
(1)
rk ϕ

(1)
rl Covt(Ex[Fk] ,Ex[Fl])

)

(1.243)

The exact coexistence mechanisms can be obtained by following the directions implied by the formulas

in the main text (Eq.1.72–Eq.1.80). For example, the formula for ∆ρi
(e) (Eq.1.74) directs the user to set Cj

to Ex,t[Cj ]; because Cj = ϕj(F ), one would set ϕj(F ) to Ex,t[ϕj(F )].

However, to partition the coexistence mechanisms further into contributions from individual regulat-

ing factors, we need a slightly different approach: fix all regulating factors at F ∗J and then modify

the regulating factors one at a time. For example, when partitioning ∆ρi
(e), we set ϕj(F1, . . . , FL) to

ϕj(F
∗j
1 , . . . ,Ex,t[Fk] , . . . , F

∗j
L ), one regulating factor at at a time, and then sum the L resulting pieces of

invasion growth rate to approximate ∆ρi
(e). Unless ϕj is a linear function of the regulating factors, the

aforementioned procedure will not exactly equal ∆ρi
(e) as defined in the main text (Section 1.2.3.3). This is

discussed further below.

To define these exact coexistence mechanisms in a reasonable amount of page-space, new notation is
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required. Let
{
v−{k}, a

}
be a vector v where the k-th element has been replaced with a. Similarly, let{

v−{k,l}, a, b
}

be a vector v where the k-th element has been replaced with a, and the l-th element has been

replaced by b. The notation introduced here allows us to express ideas such as holding all elements of F

at their equilibrium values, except for Fk, which is held at its spatiotemporal average:
{
F ∗−{k},Ex,t[Fk]

}
.

The following formulas look complicated, but they express the simple idea, pioneered by Ellner et al. (2016,

2019), that coexistence mechanisms can be measured as the marginal effects of allowing some parameters to

vary while holding the rest constant.

Formulas for exact coexistence mechanisms: multiple regulating factors

The invasion growth rate

Et

[
log
(
λ̃i

)]
= ∆Ei

(e) +∆ρi
(e) +∆Ni

(e) +∆Ii
(e) +∆κi

(e) +∆ϵi, (1.244)

Density-independent effects

∆Ei
(e) = Ei −

1

S − 1

S∑
r ̸=i

GTr

GTi
Er (1.245)

E j = Et

[
log
(
Ex

[
gj(Ej , ϕj(F

∗j)
])]

(1.246)

Linear density-dependent effects

∆ρi
(e) =

L∑
k=1

[
log
(
gi

(
E∗

i , ϕi

({
F ∗i−{k}

,Ex,t[Fk]
})))

(1.247)

− 1

S − 1

S∑
r ̸=i

GTr

GTi
log
(
gr

(
E∗

r , ϕr

({
F ∗r−{k},Ex,t[Fk]

})))]
(1.248)

Relative nonlinearity

∆Ni
(e) =

Ci −
1

S − 1

S∑
r ̸=i

GTr

GTi
Cr

−∆ρi
(e) (1.249)

119



C j =

L∑
k=1

k∑
l=1

Et

[
log
(
Ex

[
gj

(
E∗

j , ϕj

({
F ∗j−{k,l}

, Fk, Fl

}))])]
(1.250)

The storage effect

∆Ii
(e) = Ii −

1

S − 1

S∑
r ̸=i

GTr

GTi
Ir (1.251)

Ij =

[
L∑

k=1

Et

[
log
(
Ex

[
gj

(
Ej , ϕj

({
F ∗j−{k}

, Fk

}))])]]
−
(
Ej + Cj

)
(1.252)

Fitness-density covariance

∆κi
(e) = Ki −

1

S − 1

S∑
r ̸=i

GTr

GTi
Kr (1.253)

K j =

L∑
k=1

Et

[
log
(
Ex

[
vj gj

(
Ej , ϕj

({
F ∗j−{k}

, Fk

}))])]
(1.254)

− Et

[
log
(
Ex

[
gj

(
Ej , ϕj

({
F ∗j−{k}

, Fk

}))])]
(1.255)

Remainder

∆ϵi = ϵi −
1

S − 1

S∑
r ̸=i

GTr

GTi
ϵr (1.256)

ϵj = Et[log(Ex[vj gj(Ej , ϕj(F )])]−
(
Ej + Cj + Ij + Kj

)
(1.257)

The exact coexistence mechanisms here are different from those presented in the main text (Section

1.2.3.3: Eq.1.72–Eq.1.80), due to the fact that the competition parameter is generically a nonlinear function

of the regulating factors, i.e., Ex,t [ϕj(F )] ̸=
∑L

k=1 ϕj

({
F ∗j−{k}

,Ex,t[Fk]
})

). Normally, the precursor to the
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exact fitness-density covariance, K j , is defined as a deviation from the average growth rate. Above, we have

defined K j differently — as deviations summed across regulating factors — and captured the remainder of

the average growth rate with ϵj . The benefit of defining exact coexistence mechanisms in this way is that all

canonical coexistence mechanisms can be partitioned into contributions from subsets of regulating factors.

1.2.E.4 Structured population models

In structured population models, the average per capita growth rate is replaced with the concept of the

dominant lyapunov exponent (also known as the stochastic growth rate; Caswell, 2001, Section 14.3.3).

Small-noise approximations of the stochastic growth rate tend to be complicated (Tuljapurkar, 1982), so we

do not pursue them here.

The exact coexistence mechanisms can be computed using the formulas in the main text (Section 1.2.3.3:

Eq.1.72–Eq.1.80) with one modification. Because the distribution of future population density is determined

by
∑∞

t=0 log
(
∥n′

j(x, t+ 1)∥/∥nj(x, t)∥
)

(Tuljapurkar and Orzack, 1980), the function gj(Ej , Cj) now is taken

to generate ∥n′
j(x, t + 1)∥/∥nj(x, t)∥. Here, n′

j(x, t) is the vector of population densities corresponding to

each age or stage class at location x and time t; n′
j(x, t + 1) contains the population densities after the

growth phase, but before the dispersal phase; and the operator ∥.∥ computes the sum across of all elements

in a vector. In models with continuous population structure (e.g., an integral projection models with size-

dependent demographic rates), the population density becomes a function of continuous variables (e.g.,

nj(x, t, z), where z is body size), and ∥.∥ computes the integral across said variables.

1.2.F The maximum number of species that can coexist via fitness density

covariance

When there is no temporal variation, Eq.1.191 in Appendix 1.2.D reduces to

Et[Covx(vj , λj)] ≈
q

1− q
Varx

(
α
(1)
j (Ej(x)− E∗

j ) + β
(1)
j (Cr(x)− C∗

r )
)

≈ q

1− q

[
α
(1)
j

2
Varx(Ej) + 2α

(1)
j β

(1)
j Covx(Ej , Cj) + β

(1)
j

2
Varx(Cj)

]
.

(1.258)

The competition parameter Cj can be expanded as a function of L regulating factors (see Appendix 1.2.E.3):

Cj = ϕj(F ), where F = (F1, F2, ..., FL). The environment parameter can be expressed a vector of M discrete

states: Ej ∈ E′, where E′ = (E′
1, E

′
2, ..., E

′
M ). Then, there are M ×L "effective regulating factors" with the

form Covx(E
′
m, Fk); and L(L − 1)/2 "effective regulating factors" with the form Covx(Fk, Fl). This result

shows that fitness density covariance can potentially support a large number of species.
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2.1 Towards a heuristic understanding of the storage effect

2.1.1 Abstract

The storage effect is a general explanation for coexistence in a variable environment. Unfortunately, the

storage effect is poorly understood, in part because the generality of the storage effect precludes an interpre-

tation that is simultaneously simple, intuitive, and correct. Here, we explicate the storage effect by dividing

one of its key conditions —- covariance between environment and competition — into two pieces, namely

that there must be a strong causal relationship between environment and competition, and that the effects

of the environment do not change too quickly. This finer-grained definition can explain a number of previous

results, including 1) that the storage effect promotes annual plant coexistence when the germination rate

fluctuates, but not when the seed yield fluctuates, 2) that the storage effect is more likely to be induced by

resource competition than apparent competition, and 3) why the storage effect arises readily in models with

either stage structure or environmental autocorrelation. Additionally, our expanded definition suggests two

novel mechanisms by which the temporal storage effect can arise — transgenerational plasticity and causal

chains of environmental variables —- thus suggesting that the storage effect is a more common phenomenon

than previously thought.
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2.1.2 Introduction

The storage effect is a general explanation for how species can stably coexist by specializing on different

environmental states. A favorable environment for one species leads to a productive period that drives high

intraspecific competition. A variable environment thus allows species to "take turns" having productive

periods, such that intraspecific competition is (on average, across species and time / space) greater than

interspecific competition. A temporally-varying environment can generate a temporal storage effect (Chesson,

1994; often simply called the storage effect) and a spatially heterogeneous environment can generate the

spatial storage effect (Chesson, 2000a).

The temporal storage effect can be illustrated by the lottery model of coral reef fishes (depicted in Fig.

2.1; equations provided in Appendix 2.1.I). A good environment manifests as high per capita fecundity. For

the abundant red species, a good environment leads to high competition, i.e., many fish larvae per empty

territory. For the rare blue species, a good environment does not lead to high competition: the red fish

has low per capita fecundity, and although the blue fish has high per capita fecundity, there are few adults

to begin with. The positive effects of a good environment are undermined by the high competition that

it brings about; because this phenomenon disproportionately hurts common species and helps rare species,

population abundances are stabilized and coexistence is attained.
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Figure 2.1: An illustration of the storage effect in the lottery model. Panel a): For the common red

species, a good environment (high per capita larval production) is undermined by the competition (total

larvae per empty site) that it brings about. Panel b): The blue species recovers from rarity because a good

environment does not lead to high competition.

The storage effect is one of the most important concepts in community ecology. It subverted the ecology

milieu of the 1970s, which focused on coexistence via resource partitioning and often regarded environmental

stochasticity as a malignant force, both for individual species’ persistence (Lewontin and Cohen, 1969) and

for multi-species coexistence (May, 1974; but see Levins, 1979 & Huston, 1979 for the opposite perspective).

Further, the storage effect subverted a tradition of thought going back to Darwin, who thought competitive
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exclusion was the status quo of nature (see Lewens, 2010 for the reasons why), and therefore, that coexistence

was the oddity worth explaining: "We need not marvel at extinction; if we must marvel, let it be at our own

presumption in imagining for a moment that we understand the many complex contingencies on which the

existence of each species depends" (Darwin, 1859, p. 322).

Darwin’s presumption of competitive exclusion was formalized by the competitive exclusion principle

(Volterra, 1926, Lotka, 1932, Gause, 1934; Levin, 1970) and later brought into focus by Hutchinson’s (1961)

paradox of the plankton, which asked how dozens of lake phytoplankton species could coexist on a handful

of limiting nutrients. By showing that an arbitrary number of species can coexist on a single resource (e.g.,

Chesson, 1994, Eq. 81), the storage effect flipped the question of "Why are there so many species?" to

"Why is the number of species that which we observe?" To this end, the storage effect and other coexistence

mechanisms have been measured in a number of real ecological communities (Cáceres, 1997; Venable et

al., 1993; Pake and Venable, 1995; Pake and Venable, 1996; Adler et al., 2006; Sears and Chesson, 2007;

Descamps-Julien and Gonzalez, 2005; Facelli et al., 2005; Angert et al., 2009; Adler et al., 2010; Usinowicz

et al., 2012; Chesson et al., 2012; Chu and Adler, 2015; Usinowicz et al., 2017; Ignace et al., 2018; Hallett

et al., 2019; Armitage and Jones, 2019; Armitage and Jones, 2020; Zepeda and Martorell, 2019; Zepeda and

Martorell, 2019; Holt and Chesson, 2014; Ellner et al., 2016; Ellner et al., 2019).

Unfortunately, the storage effect is difficult to understand in its entirety. The problem is that the storage

effect is a general phenomenon that can look very different in different models, thus making it difficult to

relate the storage effect to a small set of ecological constructs. Take for instance the two seminal models

of the storage effect: the lottery model and the annual plant model (Chesson, 1994, Section 5). In the

lottery model, coexistence is only possible if there are long-lived adult fish, i.e., if there are overlapping

generations. In the structurally-similar annual plant model (seeds play the role of adult fish, germinants

play the role of fish larvae), coexistence is only possible if there is a persistent seed-bank. Generalizing from

these two models, one may be tempted to claim that the storage effect occurs when species have a robust life

stage that can "wait it out" for a good year. However, this interpretation turns out to be imprecise, since

multiple models (e.g., Abrams, 1984; Loreau, 1989; Li and Chesson, 2016; Schreiber, 2021) have shown that

stage-structure and overlapping generations are neither necessary nor sufficient for the storage effect.

Perhaps a universal ecological interpretation of the storage effect is too ambitious. Instead, we can gain

insight by studying the ingredient-list definition of the storage effect : a list of abstract conditions that tend

to lead to a systematically positive storage effect, i.e., a storage effect that helps most species recover from

rarity. The ingredients are neither necessary nor sufficient for a positive storage effect (see Appendix 2.1.A);

rather, the ingredient list is a tool that can be used (in conjunction with examples) to understand how the

storage effect promotes coexistence. Here, we attempt to explicate the storage effect by expanding on a
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single ingredient: the covariance between environment and competition. This paper is not meant to be a

comprehensive overview of the storage effect, as this has been done elsewhere (Chesson et al., 2003, Snyder,

2012; Barabás et al., 2018).

The ingredient-list definition states that the storage effect depends on

1. species-specific responses to the environment,

2. a non-zero interaction effect of environment and competition on per capita growth rates (also known

as non-additivity), and

3. covariance between environment and competition (EC covariance).

To some extent, the ingredient list definition recapitulates the mathematical definition of the storage

effect (derived in Appendix 2.1.A). When ecologists talk colloquially about a storage effect, they are typically

talking about a positive (i.e., coexistence-promoting) storage effect that is mediated through competition.

However, apparent competition can mediate the storage effect, sometimes called "the storage effect due

to predation" (Kuang and Chesson, 2010; Chesson and Kuang, 2010; Stump and Chesson, 2017). The

storage effect tends to be positive when the interaction effect is negative and EC covariance is positive (as

is the case in almost all models of the storage effect), or when the interaction effect is positive and the EC

covariance is negative (Schreiber, 2021). When the converse is true, the storage effect tends to be negative

(i.e., coexistence-hindering), which can generate a stochastic priority effect (Chesson, 1988; Schreiber, 2021)

in the absence of other coexistence-promoting mechanisms.

The function of ingredient 1 is rather obvious: species-specific responses to the environment is a form of

niche differentiation, which has long been recognized as critical for coexistence (Grinnell, 1904). Classically,

"niche differentiation" refers to differences in resource consumption (Tilman, 1982), the affinities of natural

enemies (Holt, 1977), or social/behavioral differences (Chesson, 1991). The storage effect is unique in that

coexistence is achieved through environmental niche differences.

Ingredient 2, an interaction effect between environment and competition, is akin to an interaction effect

in a multiple regression where the response variable is the per capita growth rate, and the predictor vari-

ables are the environment and competition parameters. The interaction effect speaks to a synergy between

environment and competition: it is nor merely the case that a good environment leads to high competition

and that high competition is bad for population growth; a negative interaction effect means that the simul-

taneous occurrence of a good environment and high competition is extra-bad. Put another way, a negative

(positive) interaction effect occurs when species are less (more) sensitive to competition in the face of a poor

environment.
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The well-known competitive exclusion principle (Gause, 1934; Levin, 1970) states that no more than L

species can coexist on L regulating factors (e.g., resources, natural enemies). The interaction effect breaks

this theoretical limit to coexistence by combining environment and competition into a large number of

effective regulating factors. The species-specific environmental responses explain the preponderance of these

factors, whereas competition provides the density-dependence inherent in a regulating factor (environmental

niche differentiation alone is incapable of promoting coexistence; Chesson and Huntly, 1997).

However, this is all very abstract. What causes an interaction effect in particular ecological systems? In

the seminal models of coexistence theory (the lottery model and the annual plant model; Chesson, 1994,

Section 5) a robust life-stage / overlapping generations generates a negative interaction effect, also known

as buffering (Chesson et al., 2004; Snyder, 2012) — the survivability of a life-stage that is insensitive to

both environment and competition protects against the double-whammy of a poor environment and high

competition (Chesson and Huntly, 1988). In models where a robust life-stage is insensitive to competition

but not the environment (e.g., adult fish or seed survival fluctuates; Chesson, 1988; Schreiber, 2021), we

observe a positive interaction effect.

In other models, an interaction effect results from other types of population structure, whether it be dor-

mancy (Cáceres, 1997; Ellner, 1987), phenotypic variation (Chesson, 2000b), or spatial population structure

(Chesson, 2000a). However, an interaction effect can arise in the absence of population structure, simply due

to the multiplicative form of a per capita growth rate function (Li and Chesson, 2016; Letten et al., 2018;

Ellner et al., 2019). It is also worth noting that in the population genetic version of the storage effect, an

interaction effect can result from heterozygosity (Dempster, 1955; Haldane and Jayakar, 1963), sex-linked

alleles (Reinhold, 2000), epistasis (Gulisija et al., 2016), and maternal effects (Yamamichi and Hoso, 2017).

There are many ways for an interaction effect to occur. At least for the moment, it is not possible to give

a general interpretation of the interaction effect in terms of a small set of life-history characteristics, like

dormancy, robust life stages, etc.

The final ingredient, covariation between environment and competition, is the focus of this paper. Co-

variation is typically used as statistical measure of linear association, so at first glance it may be unclear how

the covariance arises from underlying population dynamics. To make ingredient 3 more comprehensible, we

split it into two sub-ingredients: 3A) a strong causal relationship between environment and competition (i.e.,

a good environment leads to high competition, or conversely, a bad environment leads to low competition),

and 3B) that the environment does not change too quickly. This expanded list can be levied to understand

a number of theoretical results and to intuit novel contexts in which the storage effect can arise.
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2.1.3 Expanding the ingredient-list definition of the storage effect

The ingredient-list definition of the storage effect can be expanded as follows:

3. Covariance between environment and competition.

3A. A strong causal relationship between environment and competition, and

3B. the environment does not change too quickly.

Before proceeding, we must note that the terms "environment" and "competition" are used loosely.

While the environment E can represent abiotic variables per se, most often E is identified as a demographic

parameter that depends on fluctuating density-dependent factors (e.g., germination probability depends

on precipitation). For this reason, E is often called the environmental response or the environmentally-

dependent parameter. Competition C can be generally understood as the effects of regulating factors, which

may include species’ densities, resources, refugia, territories, natural enemies, etc.

The first sub-ingredient, 3A — a strong causal relationship between environment E and competition C

— establishes the potentiality of a covariance between E and C. If fluctuations in E cause fluctuations in C,

then it is not hard to imagine that E will tend "go along with" C (though ingredient 3B is also essential).

For example, increased temperatures can increase resource uptake rates, thus decreasing resource availability.

More generally, a favorable environment leads to higher population densities, which leads to fewer resources,

less space, or more predators on a per capita basis.

Given the well-known dictum "correlation does not imply causation", it may seem strange that ingredient

3A invokes the philosophically vexed concept of causation. Our hope is that the evocative ingredient 3A (as

opposed to the inoffensive "E affects C") emphasizes that the covariance is not just a summary statistic,

but a consequence of dynamic relationships between variables. In Appendix 2.1.B, we argue that while it

is technically possible to obtain a positive EC covariance without causation between E and C, cases of the

storage effect are always undergirded by a causal relationship between environment and competition at some

level (i.e., for some definitions of E and C).

The second sub-ingredient, 3B — the environment does not change too quickly — is more difficult

to understand. Per capita growth rates depend on the current values of E and C. However, since the

environment causally affects the level of competition, and causes precede their effects, the only guaranteed

statistical relationship is that between the current value of C and the past value of E. Figure 2.2 illustrates

this idea: one causal arrow (and thus one unit of time) is required for the environment to directly affect

growth rates, whereas two causal arrows (and thus two units of time) are required for the effects of the

environment on the growth rate to be mediated through competition. For a non-zero covariance between the
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current environment and competition, it is essential that the effects of the environment are carried forward

through time, such that the effect of a past environment is brought into contact with the competition that

it caused. In terms of the framework known as Modern Coexistence Theory (Chesson, 1994; Barabás et

al., 2018) with E∗ and C∗ representing equilibrium levels of environment and competition respectively, per

capita growth rates depend on the term (E(t) − E∗)(C(t) − C∗) (see Appendix 2.1.A), whereas a causal

relationship between E and C only ensures a statistical relationship between (E(s)− E∗) and (C(t)− C∗),

for some s < t.
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Figure 2.2: A causal diagram shows how the EC covariance arises generally, with panels showing how the

EC covariance arises in the annual plant model. The black arrows show the direction of causation, e.g., in-

creased population density N causes increased competition C. The blue dashed arrow indicate a set-subset

relationship: the per capita growth rate r is a function of the effective regulating factor
(
Ej − Ej

) (
C − C

)
(which becomes Cov(E,C) when averaged over time). The negative sign indicates the negative EC inter-

action effect typical of competition models. The environment E has a direct effect on r. However, it takes

some time (i.e., two causal arrows) for the indirect effects of E on r to be mediated through C. Therefore,

for E to covary with C, there must be some mechanism for carrying the effects of the environment through

time. In the annual plant model, this mechanism is the germinant life stage. Panel a) Precipitation causes

a high probability of germination. Panel b) The germinants compete for a limited supply of soil nitrogen.

Panel c) A good environment (i.e., high germination probability) is undermined by the high competition

that it brings about, manifesting as few seeds per capita (grey plants are dead germinants). Panel d) The

seeds disperse and join the seed bank (off-season seed mortality not shown).

Ingredient 3 is the most surprising and contingent aspect of the storage effect. By contrast, it seems
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natural for species to have idiosyncratic responses to the environment, thus satisfying ingredient 1: even if

species are subjected to strong convergent evolution or environmental filtering, we would still expect some

systematic difference between species due to evolutionary transient dynamics, development constraints, etc.

It also seems natural for species to experience an interaction effect between environment and competition

(thus satisfying ingredient 2), seeing as how the alternative — additivity — takes a very specific form in

scalar populations: λ = n(t + 1)/n(t) = exp{αE + βjC + c}, where α, β, and c are constants. Chesson

(1994) writes "There are so many ways in which nonadditivity can arise that it seems doubtful that any

real populations could be additive, although approximate additivity could be common". But there is no

guarantee that nature will simultaneously satisfy ingredients 3A and 3B, which together require that the

environment not change before its causal effects on competition are felt.

To back up our verbal argument, we analyze a general model and find that the covariance between envi-

ronment and competition is an increasing function of TE/TE→C , where TE is the timescale of environmental

autocorrelation, and TE→C is the time scale on which the environment affects competition. The time scale

TE is a measure of ingredient 3B, and 1/TE→C is a measure of ingredient 3A, with a stronger causal rela-

tionship between environment and competition corresponding to a smaller TE→C . Our result is insensitive

to model details, including the structure of growth rate equations, whether the model is discrete-time or

continuous-time, whether environmental variation is stochastic or seasonal, and whether or not resource-

consumer dynamics are explicitly modelled. Full details are given in the Appendices 2.1.C–2.1.H, but here

we present a instructive subset of our analysis.

Consider a general model that describes the dynamics of a single species with population density N(t)

and environmental parameter E(t):

N(t+∆t) = N(t) + F (N(t), E(t))∆t

E(t+∆t) = E(t) +G(E(t))∆t+ σ
√
∆t η(t).

(2.1)

Here, F is the deterministic growth rate function of the population, G is the deterministic change function

of the environmental parameter, σ is the scale of stochastic perturbations, t is time, ∆t is the length of a

time step, and η(t) is a draw from the standard normal distribution.

Because the growth rate functions F and G are arbitrary, Eq.2.1 describes a large number of mod-

els. These models can be linearized about their equilbria, thus allowing the for a universal mathematical

treatment of idiosyncratic population dynamics. In Appendix 2.1.C, we show that the covariance between
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environment and competition is

Cov(E,C) =
(TEσ)

2

2TE→C (1− TE FN )
, (2.2)

where FN is defined as the partial derivative of F evaluated at equilibrium, i.e., FN = ∂F (N,E)
∂N

∣∣∣
N=N∗

E=E∗
.

Stronger population regulation corresponds to a more negative FN . The time scale of environmental change,

TE , is the reciprocal of the return rate of the environment: TE = −1/GE , where GE is defined analogously

to FN . The other time scale parameter, TE→C , is the reciprocal of the rate at which the environment affects

competition (note that time scales are always defined as the reciprocals of rates; Hastings, 2010). The EC

covariance always increases with TE and always decreases with TE→C , thus suggesting the following heuristic:

Cov(E,C) is an increasing function of
TE

TE→C
.

In other words, a large covariance between environment and competition requires that the environment

changes more slowly than the time it takes the environment to appreciably affect competition. A large

covariance, in turn, corresponds to a more potent storage effect. The fraction TE/TE→C also helps to clarify

ingredients 3A and 3B, which employ the frustratingly vague words "strong" and "quickly"; now we see that

the environment must not change too quickly, relative to the strength of the causal relationship between

environment and competition.

When species have environment niche differences but are otherwise equivalent, the storage effect (denoted

∆I) can be written as

∆I =− ζ(1− ρ)
(TEσ)

2

2TE→C (1− TE FN ) ,
, (2.3)

which mathematically recapitulates the expanded ingredient-list definition of the storage effect. Ingredient

1 (species-specific responses to the environment) is captured by 1 − ρ, where ρ is the correlation between

species’ environmental responses. Ingredient 2 (the interaction effect between environment and competition)

is captured by ζj . In models where the storage effect is mediated through resource competition, ζ is typically

negative, so −ζ > 0. Ingredient 3A (a strong causal relationship between environment and competition) is

by captured by 1/TE→C : a stronger causal relationship between E and C corresponds to to a faster rate

at which the environment affects competition, and in turn, a smaller TE→C . Finally, ingredient 3B (the

environment does not change too quickly) is captured by TE .
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2.1.4 Discussion

The interplay between ingredients 3A and 3B can explain several interesting results regarding the storage

effect. Kuang and Chesson (2009) analyzed a model in which two species had one shared resource and

one shared predator. Resource competition generated a storage effect, whereas the shared predator did not.

Ingredients 3A and 3B explain why. The time scale of environmental change is a single time step, but the time

it takes for the environment to affect predator density is two time steps: one time step for the environment

to affect prey density, and one time step for prey density to affect predator density. By the time that

competition (which includes all regulating factors, including predators) has responded to the environment,

the environment has changed (i.e., TE/TE→C is small). In contrast, a predator-mediated storage effect may

arise if predators respond quickly to prey density, as is the case with prey-switching behavior (Kuang and

Chesson, 2010; Chesson and Kuang, 2010) or satiation due to a type 2 functional responses (Stump and

Chesson, 2017). Here, it takes a single time step for prey density to react to the environment, and predator

behavior tracks prey density instantaneously. The environment affects competition at a much faster rate

(i.e., TE→C is small, so TE/TE→C is large).

Another interesting result is that in the annual plant model, (Chesson, 1994) the storage effect arises when

germination probability fluctuates, but not when the seed yield fluctuates. Both germination probability

or per germinant seed yield (the two environmental parameters under consideration) have causal effects on

competition. Increased per germinant yield increases the density of seeds, which increases the number of

subsequent germinants, which then increases the level of competition for soil nutrients. Increased germination

leads to an increased number of germinants, which also increases the level of competition. However, note

the difference in the length of the two causal pathways: the germination probability affects competition in

the current time step (TE→C is small), whereas the yield affects competition in the next time step (TE→C

is large); by then, the environment has changed and the covariance between environment and competition

evaporates.

The storage effect’s namesake originates from the canonical lottery and annual plant models (see Chesson,

1994, Section 5), where a robust life stage is necessary for coexistence. In these models, the storage effect

can support all species if years of good recruitment are "stored" in long-lived adult fish or in a dormant seed

bank, as a non-zero survival parameter is necessary for a non-zero interaction effect between environment

and competition (ingredient 2). However, such EC interaction effects arise readily without any need for

stage structure, whenever per capita growth rates take a multiplicative functional form. For example, in

a simple phytoplankton model (Appendix 2.1.H), the environmental parameter is related to the maximum

resource uptake rate, and competition is inversely related to resource concentrations, so the product of
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uptake rate × resource concentration in the phytoplankton’s per capita growth rate function leads to an EC

interaction effect. Clearly, a robust life stage is not required, which explains why sophisticated expositions

of the storage effect regard "storage" as a metaphor (for periods of positive population growth that are not

cancelled by periods of negative growth; Chesson, 1994), or replace it entirely with the notion of buffering

(i.e., protection against the double whammy of an unfavorable environment and high competition; Chesson

et al., 2004; Snyder, 2012).

The storage effect arises in temporally autocorrelated environments (Loreau, 1989; Loreau, 1992; Li and

Chesson, 2016; Schreiber, 2021; Appendix 2.1.H), because the environment doesn’t change too quickly, i.e.,

ingredient 3B is satisfied. But recall that "the environment" can refer to any model parameter that depends

on fluctuating density-independent factors. From this broad perspective on what constitutes the environment,

it becomes clear that an autocorrelated abiotic variable per se is not required. Rather, ingredient 3B can be

satisfied by any mechanism that carries the effects of the abiotic environment through time.

The metaphor of environmental autocorrelation suggests an alternative meaning of "storage" — any

mechanism that carries the effects of the environment through time, thus satisfying ingredient 3B. Auto-

correlated environments perform this novel notion of storage in the sense that the current environment is

predictive of the future environment. In the lottery model of coral reef fish dynamics, the abiotic environ-

ment affects per capita fecundity, which affects the number of fish larvae. The environment is thus "stored"

in the larvae, which may drift offshore for months before returning to the reef and competing for territory.

Similarly, in the annual plant model, the abiotic environment affects the probability of seed germination,

and is thus "stored" in the number of germinants. Note that in the lottery model and annual plant model,

the classical notion of storage is about generating an interaction effect (ingredient 2) via the long-lived life

stage: adult fish or seeds. The novel notion of storage (i.e., carrying the effects of the environment through

time) is about generating a covariance (ingredient 3) through the comparatively short-lived life stage: fish

larvae or germinants.

To date, all models of the temporal storage effect feature either temporal autocorrelation or stage-

structure, although both features are sometimes implicit. In the lottery model and annual plant model, the

stage-structure is hidden by the fact that both juvenile and adult dynamics can fit into a single equation

(per species). In Abrams’s (1984) model, environmental fluctuations are speciously temporally uncorrelated,

but there is an assumed time scale separation between environmental change and resource dynamics such

that TE/TE→C is automatically large. Abrams (1984) writes "resources are assumed to attain new steady

state densities rapidly after an environmental change which results in altered consumption rates", implying

that the environment is autocorrelated on the short time scale of resource dynamics. Once one accepts that

a function of stage-structure and temporal autocorrelation is satisfying ingredient 3B, it becomes readily
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apparent that the storage effect can arise in other situations. Here, we present two novel mechanisms that

may mediate the storage effect: transgenerational plasticity and causal chains of environmental variables.

We contend that non-adaptive transgenerational plasticity (TGP; Bell and Hellmann, 2019) can carry

the effects of the environment forward through time, therefore satisfying ingredient 3B. A subset of TGP is

maternal effects, classically envisioned as the provisioning of nutrients and resources into seeds or eggs. A

nesting bird facing a favorable environment (e.g., a particular pattern of rainfall produces a large number of

preferred seeds) accumulates muscle mass and fat reserves, which allows the bird to produce larger clutches

with higher egg quality (Price, 1998). The "head-start" that the offspring receive make it more likely that

they will survive and reproduce in following years, even if the following years’ environments are comparatively

poor. In this example, we see that a good environment in one year will lead to modified demographic rates

in subsequent years — it is as if the environment is autocorrelated. Note that what we are proposing

here is different from the model of Yamamichi and Hoso (2017), where maternal effects produces a negative

interaction effect and diploidy leads to the EC covariance.

Non-adaptive TGP tends to carry-over the favorable effects of a good environment (or conversely, the

deleterious effects of a poor environment), while adaptive TGP (Herman and Sultan, 2011) tends to buffer

against the sustained impact of a poor environment. For example, if a drought-stressed plant passes its

developmental drought-response (e.g., a deeper root system and earlier flowering time; Herman and Sultan,

2016; Galloway and Burgess, 2009) to its offspring, and the offspring also face drought conditions, then the

offspring will perform better than they would have otherwise (if they had come from well-watered progeni-

tors). Adaptive TGP does not reduce temporal autocorrelation, but rather reduces the overall variance in

the environmental parameter. Of course, plasticity of any sort is only expected to evolve in spatially and

temporally autocorrelated environment (Lachmann and Jablonka, 1996; Stomp et al., 2008; Colicchio and

Herman, 2020), so we would expect that the storage effect would reflect the balance between the coexistence-

promoting effects of autocorrelation and the coexistence-hindering effects of adaptive TGP.

Additionally, we contend that causal chains of environmental responses can satisfy ingredient 3B (Fig 2.3).

Consider a community of annual plants. High precipitation in year 1 causes a high germination probability in

year 1, and thus a large number of germinants in year 2. Simultaneously, high precipitation in year 1 causes

a high abundance of fly pollinators in year 2, which causes a high per germinant seed yield in year 2. Thus,

there is a covariance between an environmental response (i.e., per germinant seed yield) and competition

(i.e., the density of germinant competitors), even if the abiotic environment (precipitation) and species’

environmental responses (germination probability and per germinant yield) are temporally uncorrelated.
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Figure 2.3: The covariance between environment and competition can be generated by causal chains of envi-

ronmental variables. Solid arrows denote direct causal relationships. The dotted arrow denotes an indirect

relationship. The causal relationship between the exogenous density-independent factors — precipitation

and pollinators — prevents the effects of the environment from changing too quickly, thus satisfying ingre-

dient 3B. The demographic parameters are correlated because both are causally affected by precipitation on

different time-lags.

The previous example can be explained in two ways, depending on how one understands "the environ-

ment". In Modern Coexistence Theory, it is conventional for the environment to be a demographic parameter

that depends on fluctuating density-independent factors. If we take this perspective, then it is clear that

there is not a causal relationship between the environmental parameters (germination and yield). Rather,

there is an indirect relationship that is a consequence of both parameters ultimately being caused by precipi-

tation, but with different time-lags (Fig 2.3). If on the other hand, we identify the environment as exogenous

density-independent factors, then ingredient 3B is generated by a causal chain of environmental variables,

wherein precipitation causes increases in the pollinator population (recall that density-independent factors

may be biotic).

Ingredient 3B also explains the putative potency of the spatial storage effect, which "...seems to be

inevitable under realistic scenarios" (Chesson, 2000a). In models with permanent spatial heterogeneity, the

local environment does not change over time, thus automatically satisfying ingredient 3B. This is not to say

that environmental heterogeneity guarantees an environmental-competition covariance. It must also be the

case that populations can build up in good environments, thus satisfying ingredient 3A. There are at least

four scenarios that can generate a causal relationship between the local environment and local competition.

1) Either survival or fecundity varies over space, and not all individuals disperse after every time step;

there is some local retention (sensu Chesson, 2000a). 2) Either survival or fecundity varies over space,

and all individuals do disperse, but the spatial scale of environmental variation is larger than the scale of
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dispersal (Snyder and Chesson, 2003; Snyder and Chesson, 2004). Note the similarity with scenario 2 — if

an individual disperses but finds itself in an similar context, it is as if it never left. 3) Survival varies over

space, and although there may be widespread dispersal, there are immobile individuals that survive between

time steps (Muko and Iwasa, 2000; Snyder and Chesson, 2003). 4) Either survival or fecundity varies over

space, and all individuals disperse, but the environment affects competition on a short, within-generation

time scale (as opposed to an inter-generational time scale). For example, consider an annual plant model

with global dispersal in every time step (e.g., intermittent flooding redistributes seeds) and spatially-varying

germination probabilities. Within each time step, high germination probabilities lead to high competition

between germinants; ingredient 3A is satisfied despite the fact that seed banks do not build-up in favorable

locations.

It is interesting to note that the primary contingency for the temporal storage effect is ingredient 3B

(will the effects of the environment be carried through time?) whereas the contingency for the spatial

storage effect is 3A (will individuals stick around, such that the local environment has a causal relationship

with local competition?). In both the lottery model and the annual plant model, there is no interaction

effect (ingredient 2) when the survival probability varies across space (i.e., when scenario 3 in the previous

paragraph is attained). Note: an analogous claim cannot be made about the temporal storage effect, due to

the fact that temporal and spatial coexistence mechanisms are calculated differently (Chesson, 2000a, p. 218).

While spatial variation in survival does not engender a storage effect in these simple models, the variation in

population density that results from differential population buildup can engender a fitness-density covariance

(see Muko and Iwasa, 2000 for an example), a spatial coexistence mechanism that often (but not always)

goes along with the spatial storage effect. A discussion of the relationship between fitness-density covariance

and the spatial storage effect is outside the scope of this paper, but see Chesson (2000a, 2012), Chesson et al.

(2003), and Barabás et al. (2018) for more details.

The most thorough empirical test of the spatial storage effect found near-zero EC covariances in a

community of herbaceous woodland plants (Towers et al., 2020). The authors provide several reasons for

the absence of covariance, but ingredient 3A suggests an additional reason. It is possible that the average

dispersal distance of the plants is much greater than the grain size of environmental variation, such that

populations cannot build up in favorable environments. Herbaceous plants can disperse passively up to

2–3 meters (Harper, 1977; Vittoz and Engler, 2007; or much more via animal-based dispersal or flooding),

and previous research has shown that nutrient supplies can vary significantly across a meter (Tilman, 1982,

p. 100; Bogunovic et al., 2014), so this explanation for a weak spatial storage effect, while speculative, is not

out of the question.

Though temporal autocorrelation is positively related to the temporal storage effect, it does not invariably
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promote coexistence. Temporal autocorrelation in the environment increases the magnitude and duration

of deviations from equilibrium population densities, which is related to the probability of stochastic extinc-

tion. In the limit of strong autocorrelation, the environment is effectively constant (Kamenev et al., 2008),

leading to competitive exclusion in the absence of fluctuation-independent coexistence mechanisms. Thus,

we expect a hump-shaped, uni-modal relationship between temporal environmental autocorrelation and the

mean coexistence times of species, reflecting the balance between opposing forces of the storage effect and

the intensity of perturbations (Adler and Drake, 2008; Pande et al., 2020).

Recent work has shown that the mean persistence time decreases monotonically with temporal autocor-

relation in the lottery model (Danino et al., 2018; Meyer and Shnerb, 2018). However, this result is not a

general feature of the storage effect in temporally autocorrelated environments, but rather a reflection of

the lottery model’s particular assumptions. The lottery model assumes that the number of total individuals

(in the entire community) is equal to a fixed number of reef territories, and that there are always enough

larvae to fill empty territories. Due to these assumptions, a sole resident species will have a constant density

of adult fish, thus precluding a build-up of population density during extended periods of good conditions.

On an between-year time scale, a good environment does not lead to high competition (as we discuss later,

ingredient 3A will nonetheless be satisfied on the within-year time scale). However, the assumption of a

constant community capacity is not realistic: even among territorial coral reef fishes, Thibaut et al. (2012)

found substantial fluctuations in total abundance.

The storage effect in the lottery model is brought about by processes that occur within a year — processes

obscured by the fact that the lottery model equations only track changes between years. For example,

the lottery model generates a storage effect when the environmental parameter E is uncorrelated between

years (Chesson, 1994); while this result may appear to be a violation of ingredient 3B, the environment is

autocorrelated on the within-year time scale. On this faster time scale, the adult fish spawn, larvae drift

offshore, adult fish die, larvae return to the reef, and larvae are recruited into empty territories. If the

environmental parameter E is identified as the density of larvae per capita (recall that E can be defined as

any fluctuating density-independent parameter), then E is effectively constant from the end of the spawning

period to the beginning of the recruitment period (i.e., TE is large). Competition — here operationalized as

larvae per open site at the time of recruitment — is affected by E within a time step (i.e., TE→C is small),

and so TE/TE→C is large. The lottery model is analyzed further in Appendix 2.1.I.

It is interesting that the (mathematically) simplest models seem to obscure our heuristic explanation of

the storage effect. In the two canonical models of the storage effect (the lottery model and the annual plant

model) the competition parameter C can be expressed as a function of E (say, C(t) = C̃(E(t))). Then,

C can be approximated with a Taylor series, leading to the strikingly simple approximation Cov(E,C) =
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C̃EVar(E), where C̃E is the first-order Taylor series coefficient. However, competition is emphatically not a

function of the contemporaneous environment, but rather a function of contemporaneous density-dependent

factors like resource availability, predator density, etc. The claim that competition is function of the en-

vironment is an indication of a hidden time scale: the current level of competition is affected by the past

environment (mediated through density-dependent factors), but this dynamic relationship occurs within a

time step and is not explicitly modelled. If E only changes between time steps, then this model structure

enforces a time scale separation where TE ≫ TE→C .

In this paper, we have attempted to provide a better heuristic explanation of the storage effect by

showing how an EC covariance is likely to arise. Our analysis shows how seemingly disparate models are

actually similar. For example, a juvenile life stage (e.g., fish larvae in the lottery model), environmental

autocorrelation, and permanent spatial heterogeneity all serve the same function: carrying the effects of the

environment forward through time, to bring it into contact with the competition that it caused. Future

research should focus on further explicating ingredient 2, an interaction effect between environment and

competition. The interaction arises from a variety of mechanisms in a variety of models (see the Introduction),

and it is unclear what ties these mechanisms together. A recent demonstration of this messiness comes from

Schreiber (2021), who analyzed simple model in which fluctuating survival drives a positive interaction

effect, but fluctuating fecundity drives a negative interaction effect. The storage effect would be much more

understandable and predictable if one could know the sign of an interaction effect based only on a verbal

description of an ecological system, not a mathematical analysis or analogy with previously studied classes

of models.
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Appendices

Throughout the Appendices, tedious and lengthy calculations (e.g., matrix inverses) are performed with the

software Mathematica. See the supplementary files SI_calculations.nb and SI_calculations.pdf

at https://github.com/ejohnson6767/storage_effect_heuristic, or Figshare, https://doi.org/10.6084/m9.figshare.

20399253.v1.

2.1.A The Storage Effect

The mathematical definition of the storage effect is a product of Modern Coexistence Theory (Chesson, 1994;

Chesson, 2000a; Barabás et al., 2018), a framework for partitioning invasion growth rates into coexistence

mechanisms: terms that correspond to different explanations for coexistence. Here, we provide a derivation

of the mathematical definition of the storage effect, partly for completeness, and partly because our definition

deviates slightly from previous definitions (we will comment on these differences later).

1. Choose an invader. Modern Coexistence Theory is based on invasion analysis, the practice of

checking (mathematically or computationally) whether species can recover from rarity. One species

(the invader, subscript i) is perturbed to zero density, thus simulating a low-density scenario. The

remaining species (the residents, subscript r) are left at their typical densities, and are given time to

attain their limiting dynamics in the absence of the invader.

The long term average per capita growth rate of the invader is the invasion growth rate, and the sign

of the invasion growth rate determines whether the invader recovers in the medium-term (Schreiber

et al., 2011; Pande et al., 2020). In the long-term, a phenomenon known as "the resident strikes back"

is possible (Mylius and Diekmann, 2001; Geritz et al., 2002).

2. Write the per capita growth rates in terms of the environmental and competition. Write

the per capita growth rate of species j as a function gj of the environmental parameter Ej(t) and the

competition parameter Cj(t), i.e., dnj(t)/(nj(t)dt) = gj(Ej(t), Cj(t)). Note that both Ej(t) and Cj(t)

may be species-specific. In discrete-time models, the effective per capita growth rate is the logged

finite rate of increase, i.e., log(λj(t)) = gj(Ej(t), Cj(t)), where λj(t) = nj(t + 1)/nj(t). An extension

of Modern Coexistence Theory for structured populations is provided by Ellner et al. (2019).

3. Expand growth rates in the neighborhood of E∗
j and C∗

j . Select equilibrium values of the

environment and competition, E∗
j and C∗

j , such that gj(E
∗
j , C

∗
j ) = 0. The canonical way to find the

equilibrium parameters is set some noise parameter to zero, which should fix E∗; then, the constraint

gj(E
∗
j , C

∗
j ) = 0 can be used to solve for C∗

j .
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We perform a second-order Taylor series expansion of gj(Ej(t), Cj(t)) about E∗
j and C∗

j , resulting in

gj(Ej(t), Cj(t)) ≈ α
(1)
j (Ej(t)− E∗

j ) + β
(1)
j (Cj(t)− C∗

j )

+
1

2
α
(2)
j (Ej(t)− E∗

j )
2 +

1

2
β
(2)
j (Cj(t)− C∗

j )
2 + ζj(Ej(t)− E∗

j )(Cj(t)− C∗
j ),

(2.4)

where the Taylor series coefficients are

α
(1)
j =

∂gj
∂Ej

∣∣∣Ej=E∗
j

Cj=C∗
j

, β
(1)
j =

∂gj
∂Cj

∣∣∣Ej=E∗
j

Cj=C∗
j

,

α
(2)
j =

∂2gj
∂E2

j

∣∣∣Ej=E∗
j

Cj=C∗
j

, β
(2)
j =

∂2gj
∂C2

j

∣∣∣Ej=E∗
j

Cj=C∗
j

, ζj =
∂2g

∂Ej∂Cj

∣∣∣Ej=E∗
j

Cj=C∗
j

.

(2.5)

4. Time-averaging. Temporal averages are denoted with "bars", e.g., the temporal average of Ej(t) is

Ej . From Eq.2.4, we find that

gj(Ej , Cj) ≈ α
(1)
j (Ej − E∗

j ) + β
(1)
j (Cj − C∗

j )

+
1

2
α
(2)
j Var(Ej) +

1

2
β
(2)
j Var(Cj) + ζjCov(Ej , Cj) .

(2.6)

The above expression depends on small-noise assumptions, specifically that the magnitude of environ-

mental fluctuations (i.e.,
∣∣Ej(t)− E∗

j

∣∣) is small, and that the average environmental fluctuation (i.e.,∣∣Ej − E∗
j

∣∣) is even smaller (see Chesson, 1994 for details). These assumptions ensure the accuracy of

the Taylor series and allow us to replace (Ej − E∗
j )(Cj − C∗

j ) with Cov(Ej , Cj).

5. Invader–resident comparisons

The long-term average growth rate of each resident must be zero (otherwise residents would go extinct

or explode to infinity), allowing us to write the seemingly trivial equation,

gi(Ei, Ci) = gi(Ei, Ci)−
S∑

r ̸=i

qir gr(Er, Cr), (2.7)

which will later facilitate a comparison between the invader and the residents. The qir are called scaling

factors (Barabás et al., 2018), also known as comparison quotients (Chesson, 2020). The original

definition, provided by Chesson (1994), is equivalent to qir =
β
(1)
i

β
(1)
r

∂Ci

∂Cr
with the partical derivative

evaluated at the equilibrium values of environment and competition. When all species have a shared

competition parameter (i.e., Cj = C), this simplifies to qir =
β
(1)
i

β
(1)
r

.

153



We can draw meaningful comparisons between the invader and the residents by substituting the Taylor

series expansion (Eq.2.6) into the right-hand-side of the invader–resident comparison (Eq.2.7) and

grouping like-terms:

gi(Ei, Ci) ≈α
(1)
i (Ei − E∗

i ) +
1

2
α
(2)
i Var(Ei) + β

(1)
i C∗

i −
S∑

r ̸=i

qir

(
(Er − E∗

r ) +
1

2
α(2)
r Var(Er) + β(1)

r C∗
r

)
︸ ︷︷ ︸

r′i,Density-independent effects

+ β
(1)
i Ci −

S∑
r ̸=i

qirβ
(1)
r Cr︸ ︷︷ ︸

∆ρi,Linear density-dependent effects

+
1

2

β(2)
i Var(Ci)−

S∑
r ̸=i

qirβ
(2)
r Var(Cr)


︸ ︷︷ ︸

∆Ni,Relative nonlinearity

+ ζiCov(Ei, Ci)−
S∑

r ̸=i

qirζrCov(Er, Cr) .︸ ︷︷ ︸
∆Ii,The storage effect

(2.8)

The new symbols (r′i, ∆ρi, ∆Ni, and ∆Ii) denote coexistence mechanisms.

The mathematical definition of the storage effect is

∆Ii = ζi Cov(Ei, Ci)−
S∑

r ̸=i

qir ζj Cov(Er, Cr) . (2.9)

Our definition of the storage effect differs from previous definitions in several ways: 1) Like Barabás et al.

(2018) but unlike Chesson (1994), we do not define the Taylor series coefficients β
(1)
j and β

(2)
j with negative

signs. We do this for consistency of notation, which can prevent calculation errors. 2) In Chesson (1994),

the subtraction inherent in an invader-resident comparison is built into the definition of qir. Here, the qir are

positive and the subtraction is explicit. 3) Both Chesson (1994) and Barabás et al. (2018) define the storage

effect with the so-called standard parameters, Ej and Cj . The introduction of the standard parameters would

complicate our exposition, and all aforementioned definitions for the storage effect are numerically equivalent

in the limit of small noise, an assumption upon which Modern Coexistence Theory is built. See Chesson

(2020) and Barabás and D’Andrea (2020) for a discussion of the merits of the standard parameters.

Coexistence mechanisms are often divided by the invader’s sensitivity to competition, which we opera-

tionalize here as
∣∣∣β(1)

i

∣∣∣. The rationale is that
∣∣∣β(1)

i

∣∣∣ can be interpreted as the speed of population dynamics
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(at least in the lottery model and annual plant model), so the scaling enables a comparison of species with

slow and fast life-cycles (Chesson, 2018). Note that this scaling is distinct from the aforementioned qir

scaling factors.

Scaled coexistence mechanisms are sometimes averaged over species (see Chesson, 2003, Barabás et al.,

2018), either to make comparisons between communities or to quantify how a mechanism affects species in

general. The community-average storage effect is defined as

(
∆I∣∣β(1)
∣∣
)

=
1

S

S∑
i=1

∆Ii∣∣∣β(1)
i

∣∣∣ . (2.10)

Ingredient 2 (an EC interaction effect) and ingredient 3 (the EC covariance) are necessary for the storage

effect in the sense that the right-hand-side of Eq.2.9 will be zero if ζj = 0 and Cov(Ej , Cj) = 0 for all j.

However, the ingredients are neither necessary nor sufficient in the sense that one can construct examples

where the right-hand-side of Eq.2.9 is positive despite not all species (including the focal species i) attaining

the ingredients individually; or, examples where right-hand-side of Eq.2.9 is zero despite all species attaining

the ingredients individually. Such constructions typically leave species with highly asymmetric ∆Ii, even

though coexistence is more likely to be attained when all species have a positive ∆Ii.

As we have defined it above, ∆Ii is a species-specific quantity, whereas coexistence is a community-level

property. Even though Eq.2.9 is called "the storage effect" by convention, a more sophisticated understand-

ing of coexistence theory identifies the community-average measure as the relevant quantity (Chesson, 2003;

Chesson, 2008; Yuan and Chesson, 2015). The community-average storage effect is a complicated expression

(an averages of an average), and thus does not transparently reveal anything resembling a necessary or suffi-

cient condition. However, in special cases (e.g., a single limiting factor, symmetric species), the community

average measure does reveal the key role played by the three ingredients; for example, see Table 6.3 in

Chesson (2008), Eq.2.41 or Eq.2.66 later on in the Appendices.

2.1.B EC covariance and causation

Mathematically, covariance is what is required of the storage effect. Why then, does ingredient 3A employ

the concept of causation? Cases of correlation without causation are readily caused by latent variables — if

X and Y are causally unconnected, but both are positively related to the latent variable Z, then X and Y

will covary. As an ecological example, consider a hypothetical annual plant system in which soil salinity E

and the probability of seed germination (which relates to competition via C = # germinant competitors =

germination probability × # seeds) are causally unconnected, but positively correlated due to both factors

being causally related to precipitation. Increased precipitation causes increased soil moisture, which causes
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increased germination; increased precipitation causes the height of a saline water table to increase, which

increases soil salinity. Note however, that while there is technically no causation between E and C as we

have defined them, there is causation between the environment and competition at some level (here, between

precipitation and the number of germinant competitors), and that this causal relationship is necessary for

the observed correlation between E and C. Cases of EC covariance without EC causation are only made

possible by causation at some level. Note also that the EC covariance is a population covariance, so a

spurious covariance based on sampling error is impossible.

It is well known that correlation does not imply causation, but it is not widely recognized that the

inverse is true: causation does not imply correlation. A simple example of causation without correlation is

a phytoplankton species whose nitrogen uptake rate is a hump-shaped function of temperature, E. If the

environment is highly autocorrelated, such that the uptake rate becomes proportional to competition C (here

operationalized as the reciprocal of nitrogen concentration), then the relationship between E and C could

look like a concave-up parabola in the E −C plane. Since a parabola has covariance equal to zero, we could

measure a zero-valued storage effect despite the presence of all ingredients, including a causal relationship

between E and C. However, the storage effect has not really disappeared. Rather, the bit of per capita

growth rate that is attributable to the storage effect has been shunted to a different coexistence mechanism:

relative nonlinearity (see Eq.2.8).

The dependence of coexistence mechanism’s values on different definitions of E and C is a well-known

feature of Modern Coexistence Theory (Barabás et al., 2018). While this non-uniqueness is not ideal,

experience suggests that there are better and worse definitions of E and C which may be judged by their

naturalness, interpretability, mathematically convenience, and ability to produce ecological insights. In the

current hypothetical of a phytoplankton species, the superior choice of E is the resource uptake rate, which

has the virtue of separating specialization on environmental states (i.e., the storage effect) from specialization

on resource variation per se (i.e., relative nonlinearity).

2.1.C EC covariance for a resident species

We first analyze the dynamics a single resident species, dropping species-specific subscripts for notational

simplicity. The time-evolution of population density N and the environmental parameter E is given by the

equations

N(t+∆t) = N(t) + F (N(t), E(t))∆t

E(t+∆t) = E(t) +G(E(t))∆t+ σ
√
∆t η(t),

(2.11)
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where F is the deterministic growth rate function of the population, G is the deterministic change function

of the environmental parameter, t is time, dt is the length of a time step, and η(t) is a draw from the

standard normal distribution, i.e., η(t) ∼ Normal(0, 1). The scaling of η(t) by
√
∆t is explained by the

central limit theorem: the standard deviation of a sum of n i.i.d. random variables is proportional to
√
n,

so if perturbations affecting the affecting the environmental parameter occur at a near-constant rate, then

the sum of perturbations will be proportional to
√
∆t. The functions F and G are arbitrary but smooth

functions. Note that the dynamics of E do not depend on population density; indeed, density-independence

is the defining feature of an environmental parameter.

In the continuous-time limit (i.e., as the length of the time step shrinks), we obtain a system of stochastic

differential equations (SDEs),

dN(t) = F (N(t), E(t))dt

dE(t) = G(E(t))dt+ σdW (t),

(2.12)

with dW (t) denoting an increment of the standard Wiener process (Karlin and Taylor, 1975, ch. 7). Suppose

that in the absence of fluctuations in E (i.e., in the limit as σ → 0), the system attains a stable equilibrium,

denoted (N∗, E∗). This assumption is not very assumptive: most real-world population exhibit random

fluctuations around a stable equilibrium, rather than population cycles or chaotic behavior (Turchin, 2003;

Kendall et al., 1998; Louca and Doebeli, 2015). Suppose further that environmental noise is small (i.e.,

σ is small relative to other model parameters hidden in F and G), such that we can approximate the

dynamics with a linearization about the equilibrium (see Gardiner, 1985, ch. 7 for details). The assumption

of small environmental noise is not particular to our exposition — it is foundational to Modern Coexistence

Theory (Chesson, 1994; Barabás et al., 2018). While the small-noise assumption ensures the accuracy of the

mathematical expressions to come, a violation of the small-noise assumption does not imply that the results

are quantitatively or qualitatively inaccurate; statements about accuracy would required detailed numerical

analyses of particular models.

The small-noise approximation of our dynamical system is

dN(t) = [FN (N(t)−N∗) + FE(E(t)− E∗)] dt

dE(t) = [GE(E(t)− E∗)] dt + σdW (t),

(2.13)

where FN , FE , and GE are partial derivatives evaluated at equilibrium, e.g., FN = ∂F (N,E)
∂N

∣∣∣
N=N∗

E=E∗
. The

assumption of a stable equilibrium implies that FN < 0 and GE < 0.

Our ultimate goal to is to obtain the covariance between the focal residents’ environmental parameter

and competition parameter, Cov(E,C). If we suppose that competition is a function of current popula-
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tion density, say C = C̃(N), then we can use a Taylor series expansion of C̃ to make the approximation

Cov(E,C) ≈ C̃NCov(E,N). Thus, our proximal goal is to express Cov(E,N) in terms of model parame-

ters. It is natural to write competition as a function of population density in population models where per

capita growth rates are directly affected by population densities (e.g., the competitive Lotka Volterra model).

However, our main finding (that Cov(E,C) increases as TE/TE→C increases) also holds true in models with

explicit resource competition, and by extension, apparent competition (Section 2.1.F).

To build intuition for the derivation of Cov(E,N), we first perform the simpler, univariate derivation of

Var(E). We translate the stochastic process to the origin (re-using the symbols N and E) such that N∗ =

E∗ = 0. This does not change variances or covariances (note the property Cov(X + a, Y + b) = Cov(X,Y ))

but it does simplify the derivation by allowing us to write Var(E) = E
[
E2
]
. The SDE for the environmental

parameter is

dE(t) = [GEE(t)] dt + σdW (t). (2.14)

Our general strategy is to use Itô’s lemma to perform a change of variables, use the property of Itô

Isometry to calculate the variance of the new variable, and then perform the inverse change of variables to

obtain the variance of E.

Consider a generic univariate drift-diffusion SDE:

dX(t) = a(X, t)dt+ b(X, t)dW (t). (2.15)

Itô’s lemma (Karlin and Taylor, 1981, p. 347–348) states that the corresponding SDE for a smooth function

f(X, t) is

df =

[
∂f

∂t
+ a(X, t)

∂f

∂x
+

b(X, t)2

2

∂2f

∂x2

]
dt+ b(X, t)

∂f

∂x
dW (t). (2.16)

We define the new variable Y = f(E, t) = E(t)e−GEt. The SDE of the new variable is

dY (t) = σe−GEtdW (t), (2.17)

which conveniently has no drift term. The SDE integrates to

Y (t) = Y (0) +

∫ t

0

σe−GEsdW (s). (2.18)

The property of Itô Isometry (Allen, 2010, p. 377) and the independence independence of increments of
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the Weiner process implies that for any two variables X and Y ,

E
[(∫ t1

0

X(s)dW (s)

)(∫ t2

0

Y (s)dW (s)

)]
= E

[∫ min(t1,t2)

0

X(s)Y (s)ds

]
. (2.19)

Applying Itô isometry to our transformed variable Y , we find that

E
[
Y (t)2

]
= Et

[(
Y (0) +

∫ t

0

σe−GEsdW (s)

)2
]

= E
[
Y (0)2

]
+ E

[
2Y (0)

∫ t

0

e−GEsdW (s)

]
+ E

[(∫ t

0

σe−GEsdW (s)

)2
]

= Y (0)2 + E
[∫ t

0

σ2e−2GEsds

]
= Y (0)2 +

∫ t

0

σ2e−2GEsds

= Y (0)2 +
σ2

2GE

(
1− e−2GEt

)
.

(2.20)

To revert back to the environmental parameter, we apply the inverse function f−1(Y, t) = Y (t)eGE t:

Var(E(t)) = E
[
E(t)2

]
= E(0)2e2GEt − σ2

2GE

(
1− e2GEt

)
. (2.21)

Recalling that GE < 0, it is clear that Var (E(t)) converges exponentially fast to the variance of the stationary

distribution,

lim
t→∞

Var(E(t)) = − σ2

2GE
. (2.22)

We can apply the previous steps (Eq.2.14 – Eq.2.22) to the multivariate case. Let X(t) be the m-

dimensional state of the dynamical system at time t, which may include population densities, environmental

parameters, resource concentrations, etc. Additionally, A is a m×m matrix of rate per capita rate coefficients

(e.g., FN in Eq.2.13), B is a m×m matrix of diffusion coefficients, and W (t) is a length-m vector of Weiner

processes. The system of SDEs can be written succinctly as

dX(t) = AX(t) dt+B dW (t). (2.23)

Note here that W may have correlated increments, i.e., E[dWi(t)dWj(t)] = ρij dt . We place these correla-

tions in the m×m matrix C, with 1’s on the diagonal and correlation coefficients ρij on the off-diagonals.

We define the transformation Y (t) = X(t)e−tA, apply Itô’s lemma, and arrive at the multivariate analogue
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of Eq.2.20 (line 4):

E[Y (t)Y (t)
⊺
] = Y (0)Y (0)⊺ +

∫ t

0

e−sABCB⊺e−sA⊺

ds. (2.24)

The matrix product BCB⊺ is the covariance matrix of the noise term, B dW (t). Before evaluating the

above integral, we can perform the inverse transformation X(t) =
(
e−tA

)−1
Y (t) = etAY (t) to obtain an

intermediate expression for the matrix of covariances between states, denoted Σ(t) = E[X(t)X(t)
⊺
]:

Σ(t) = etA
(
X(0)X(0)⊺ +

∫ t

0

e−sABCB⊺e−sA⊺

ds

)
etA

⊺

= etAX(0)X(0)⊺etA
⊺

+

∫ t

0

e(t−s)ABCB⊺e(t−s)A⊺

ds.

(2.25)

To proceed, we need to use the V ec operator (Searle and Khuri, 2017). The V ec operator concatenates

the columns of a matrix into one long column vector, with the first column on top and the mth column

on the bottom. The V ec operator also has a handy property: for three arbitrary matrixes, V ec (UV P ) =(
PH ⊗U

)
V ecV , where "⊗" is the kronecker product, and the superscript "H" denotes the conjugate

transpose. We are dealing exclusively with real matrixes, so the conjugate transpose is simply the transpose,

PH = P ⊺. Applying the V ec operator, we obtain

V ecΣ(t) =
(
etA ⊗ etA

)
X(0)X(0)⊺ +

∫ t

0

e(t−s)A ⊗ e(t−s)A ds V ec (BCB⊺) . (2.26)

Now we utilize the identity eU ⊗ eV = eU⊕V , where "⊕" is the kronecker sum. Simplifying and integrating,

we arrive at explicit formulae for the covariances:

V ecΣ(t) = et(A⊕A)X(0)X(0)⊺ +

∫ t

0

e(t−s)(A⊕A) ds V ec (BCB⊺)

= et(A⊕A)X(0)X(0)⊺ + (A⊕A)
−1
(
et(A⊕A) − I

)
V ec (BCB⊺) .

(2.27)

It can be shown that the eigenvalues of any two matrixes U ⊕ V are the sums of every possible pair of

eigenvalues of U and V (Horn and Johnson, 2012). Since A has all negative eigenvalues (we assume a stable

equilibrium), A ⊕A has all negative eigenvalues. Therefore, in the limit as t → ∞, the exponential terms

in Eq.2.27 vanish and the covariances of the stationary distribution can be written as

lim
t→∞

V ecΣ(t) = − (A⊕A)
−1

V ec (BCB⊺) . (2.28)

We can use the expression above to compute the covariance between environment and competition.

Returning to our original model of a single resident species (Eq.2.13), the state becomes X(t) = (N(t), E(t))
⊺,
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and the matrixes become

A =

FN FE

0 GE

 , B =

0 0

0 σ

 , and C =

1 0

0 1

 . (2.29)

Using Eq.2.28 and restructuring the covariances in matrix-form, we obtain

lim
t→∞

Σ(t) =

− σ2FE
2

2FN
2GE+2FNGE

2
σ2FE

2GE(FN+GE)

σ2FE

2GE(FN+GE) − σ2

2GE

 . (2.30)

The EC covariance experienced by the resident species is therefore

Cov(E,C) =
C̃NFEσ

2

2GE (FN +GE)
. (2.31)

The EC covariance is always non-negative, due to assumptions about the signs of Taylor series coefficients

in matrix A (Eq.2.29). Specifically, we assume that GE < 0 (required for a stationary environment), FN < 0

(i.e., density dependence), and FE > 0 (which follows the convention in Modern Coexistence Theory that a

positive environment is good for population growth). If we instead made the assumption that FE < 0, then

the covariance would always be non-positive; however, the EC interaction effect (i.e., ζ, see Section 2.1.A)

would also flip signs, leading to the same numerical value of the storage effect .

We can re-parameterize EC covariance in terms of the time scales, which are defined as the reciprocal of

rates. For example, if the rate of train arrivals is 10 trains per hour, then the time scale of a train arrival is

1/10 hours = 6 minutes.

The return rate of the environmental parameter is −GE (recall that GE < 0), so the time scale of

environmental change is TE = −1/GE . The rate at which the environment affects competition is ∂C̃
∂E

∣∣∣
N=N∗

E=E∗
=

∂C̃
∂N

∣∣∣
N=N∗

∂F
∂E

∣∣∣
N=N∗

E=E∗
= C̃NFE obtained via the chain rule; therefore, the time scale on which the environment

affects competition is TE→C = 1/(C̃NFE). Making these substitutions, Eq.2.31 becomes

Cov(E,C) =
(TEσ)

2

2TE→C (1− TE FN )
. (2.32)

By taking the partial derivatives of the right-hand-side (with respect to TE and TE→C individually), it is easy

to see that Cov(E,C) increases monotonically with TE and decreases monotonically with TE→C . Therefore,

we say that

Cov(E,C) is an increasing function of
TE

TE→C
, (2.33)

161



as is claimed in the main text.

Current evidence suggests that density-dependence is often weak relative to stochastic forces (Ziebarth

et al., 2010; Knape and de Valpine, 2012; Thibaut and Connolly, 2020). In that case, FN is a small parameter

and Eq.2.32 simplifies further:

Cov(E,C) ≈ (TEσ)
2

2TE→C
. (2.34)

As the return rate of the environmental parameter (i.e., −GE) becomes smaller, the variance of the

environmental parameter increases (see Eq.2.22). Since the scale of fluctuations in E is proportional to the

covariance between E and C, one may suspect that the relationship between TE and Cov(E,C) is driven

by the indirect effect of environmental autocorrelation, mediated through increased environmental variation;

rather than environmental autocorrelation per se. To show that this is not the case, we can isolate the effects

of environmental autocorrelation by modifying the dynamical equation for E so that

dE(t) = [GE(E(t)− E∗)] dt +
σ√
−GE

dW (t), (2.35)

which ensures that the variance of E’s stationary distribution is always σ2. Under these dynamics, the EC

covariance comes out to

Cov(E,C) =
TEσ

2

2TE→C (1− TE FN )
. (2.36)

Here, just as before, Cov(E,C) is an increasing function of TE/TE→C .

2.1.D EC covariance for the invader

Because we are now dealing with two species, we use the subscripts i and r to refer to the invader and resident.

We still use F and G to refer to the deterministic growth functions of population density and the environ-

mental parameter (respectively), but use the superscripts (i) and (r) to denote whether the state variable in

question belongs to the invader or resident. For example, G(i) describes the time-evolution of the invader’s

environmental parameter, and the symbol F (i)
Nr

is the partial derivative of the invader’s population growth

rate with respect to resident density, evaluated at equilibrium, i.e., F (i)
Nr

= ∂F (i)(Ni,Nr,Ei)
∂Nr

∣∣∣ Ni=0,Nr=N∗
r

Ei=E∗
i ,Er=E∗

r

. With

this new notation, the residents’ EC covariance (Eq.2.32) is

Cov(E,C) =
C̃Nr

F
(r)
Er

σ2

2G
(r)
Er

(
F

(r)
Nr

+G
(r)
Er

) . (2.37)

We seek the covariance between the invader’s environmental response Ei and a shared competition param-
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eter C, which is determined by the resident’s density. In symbols, we seek C̃NrCov(Ei, Nr), which requires

us to analyze a system with three state variables: X(t) = (Nr(t), Er(t), Ei(t))
⊺. The SDE matrixes (see

Eq.2.23) are

A =


F

(r)
Nr

F
(r)
Er

0

0 G
(r)
Er

0

0 0 G
(i)
Ei

 , B =


0 0 0

0 σr 0

0 0 σi

 , and C =


1 0 0

0 1 ρ

0 ρ 1

 , (2.38)

where ρ is the correlation between the two-species’ environmental parameters. Applying Eq.2.28 and correctly

identifying Cov(Ei, Nr) = [limt→∞ Σ(t)]3,1, we have

Cov(Ei, C) =
C̃Nr

F
(r)
Er

ρσiσr

(F
(r)
Nr

+G
(i)
Ei
)(G

(i)
Ei

+G
(r)
Er

)
. (2.39)

In a two-species system with a shared competition parameter C, the storage effect for invader i is defined

as

∆Ii = ζiCov(Ei, C)− β
(1)
i

β
(1)
r

ζrCov(Er, C) , (2.40)

recalling from Section 2.1.A that qir = β
(1)
i /β

(1)
r in this context. The sensitivity to competition is β

(1)
j =

F
(j)
Nr

C̃Nr
, so the scaling factor is qir = F

(i)
Nr

/F
(r)
Nr

. The EC interaction effect could be expressed as a cross

partial derivative of the growth function F , i.e., ζj = F
(j)
NrEj

C̃Nr
. Note that the Taylor series term corre-

sponding to the coefficient FNrEj does not appear in the small-noise approximation of dynamics (Eq.2.13,

Eq.2.23), since it is small compared to other terms; F (j)
NrEj

(Nr −N∗
r )(Ej −E∗

j ) = O(σ2) in the conventional

"big-oh" notation, whereas F
(j)
Nr

(Nr −N∗
r ) = O(σ).

If we assume that species are symmetrical in all respects, with the exception that species respond differ-

ently to the environment (i.e., ρ < 1), then we no longer need to use species-specific subscripts: ζi = ζr = ζ,

F
(r)
Nr

= F
(i)
Nr

= FN , F
(r)
Er

= F
(i)
Ei

= FE , and G
(r)
Er

= G
(i)
Ei

= GE . Using this simplified notation and plugging

each species’ covariances (Eq.2.37 & Eq.2.39) into the storage effect formula (Eq.2.40), we get

∆Ii =− ζ(1− ρ)
C̃NFEσ

2

2GE (FN +GE)

=− ζ(1− ρ)
(TEσ)

2

2TE→C (1− TE FN )

(2.41)

which has the happy property of exactly matching the expanded ingredient-list definition of the storage

effect. In particular, Ingredient 3A (a causal relationship between environment and competition) is captured

by the fact that neither C̃N nor FE are zero, or equivalently, the fact that TE→C is not ∞. Ingredient 3B
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(that the environment does not change too quickly) is captured by the fact that TE is not zero.

2.1.E Seasonality

Our results also hold true for periodically fluctuating environments. Consider a sinusoidal environment with

small amplitude, permitting the small-noise approximation,

dN(t)

dt
= FN (N(t)−N∗) + FE(E(t)− E∗)

E(t) = E∗ + σ sin

(
2πt

p

)
,

(2.42)

where σ and p are the amplitude and period of environmental fluctuations, respectively. Because we are only

dealing with a single species, we have dropped the species-specific subscripts of the previous section in favor

of the simpler notation of Section 2.1.C. For the sake of simplifying the covariance calculation, we will once

again assume the system has been translated so that N∗ = 0 and E∗ = 0. The ordinary differential equation

can be integrated via the method of exponential integrating factors, resulting in the general solution,

N(t) = ceFN t −
FEpσ

(
FNp sin

(
2πt
p

)
+ 2π cos

(
2πt
p

))
F 2
Np2 + 4π2

. (2.43)

Because FN < 0, the large-t limit eliminates the term ceFN t without needing to know the initial condition.

We can compute the covariance by integrating the large-t limit of N(t) and E(t) across a single period:

Cov(E,C) ≈ C̃NCov(E,N)

= C̃NE[EN ] [sinceE[E]E[N ] = E∗N∗ = 0]

=
C̃N

p

∫ p

0

E(t)N(t)dt

=
C̃N

p

∫ p

0

(
σ sin

(
2πt

p

))−
FEpσ

(
FNp sin

(
2πt
p

)
+ 2π cos

(
2πt
p

))
F 2
Np2 + 4π2

 dt

= − C̃NFNFEp
2σ2

2F 2
Np2 + 8π2

.

(2.44)

Re-parameterizing with TE = p and TE→C = 1/
(
C̃NFE

)
, the covariance becomes

Cov(E,C) = − FN (σTE)
2

TE→C (2F 2
NT 2

E + 8π2)
. (2.45)
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2.1.F Explicit resource competition

In many population models, per capita growth rates are a decreasing function of species’ densities. This

structure is a simple representation of competition or apparent competition, but it assumes that resource (or

natural enemy) dynamics are much faster than the focal population dynamics (Chesson, 1990; Kuang and

Chesson, 2008). Here we show that our results are insensitive to this assumption by examining a general

model of explicit resource competition. Due to the duality between resources and natural enemies (i.e.,

"enemy-free space" is a resource; Jeffries and Lawton, 1984), this section also covers the case of explicit

apparent competition.

Here we seek the covariance between a residents’ environmental response Er and competition parameter

C, the latter of which is determined by the resource concentration R(t). The dynamical system is given by

the equations

dN(t) = F (N(t), E(t), R(t))dt

dE(t) = G(E(t))dt+ σdW (t)

dR(t) = H(N(t), E(t), R(t))dt.

(2.46)

The inputs to the deterministic growth functions (F , G, and H) imply that the environmental pa-

rameter may directly affect the dynamics of both the resident and the resource (see section 2.1.H for

a concrete example). The dynamics produce the multivariate small-noise approximation with the state

X(t) = (N(t), E(t), R(t))
⊺ and the matrixes (see Eq.2.23),

A =


0 FE FR

0 GE 0

HN HE HR

 , B =


0 0 0

0 σ 0

0 0 0

 , and C =


1 0 0

0 1 0

0 0 1

 . (2.47)

Constraints on parameters are imposed by a general understanding of ecological dynamics: FE > 0

(because of the sign convention where a positive environment increases population growth rates), FR > 0

(resources are generally good for population growth), GE < 0 (necessary for a stationary environment),

HN < 0 (resources are consumed), HE ≤ 0 (an increase in the environmental parameter either negatively

affects resource dynamics by increasing resource consumption, or only directly affects population dynamics),

and HR < 0 (because of negative feed-backs in resource dynamics; consider chemostat or logistic dynamics

around equilibrium). In order for the equilibrium (N∗, E∗, R∗) to be stable, the parameters must also satisfy

the inequality: HR
2

4FR
≤ HN < 0.

We can re-write the population growth function as F (N,E,R) = N f(E,R), where f is a per capita
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growth rate function. Then, note that FN = ∂
∂N [Nf(E,R)]

∣∣∣N=N∗

E=E∗

R=R∗

= f(E∗, R∗)+N∗ ∂
∂N [f(E,R)]

∣∣∣
E=E∗

R=R∗
= 0,

which explains A11 = 0. On the other hand, HR is not zero because resource fluxes are not necessarily

proportional to current resource concentrations. An example of this is a chemostat model, wherein resource

input is independent of current resource concentration.

Competition can be generically defined as a decreasing function of resource concentration, C(t) =

C̃(R(t)). Thus, the EC covariance can be approximated as Cov(E,C) ≈ C̃RCov(E,R). A particularly

simple example is C(t) = 1/R(t), which leads to Cov(E,C) ≈ (−1/R∗2)Cov(E,R).

Using the standard formula (Eq.2.28), we obtain

Cov(E,C) = − σ2C̃RFEHN

2GE (GE (GE +HR)− FRHN )
. (2.48)

Just as in the no-resource model (section 2.1.C), the time scale of environmental change is TE = −1/GE . The

time scale on which the environment affects competition, TE→C , depends on the value of HE . If HE = 0, then

the environmental parameter only directly affects population dynamics, and thus the shortest pathway from

environment to competition is [environment → population density → resource concentration]. Therefore,

the rate at which the environment affects competition is ∂C̃
∂R

∣∣∣
R=R∗

× ∂H
∂N

∣∣∣
N=N∗

R=R∗
× ∂F

∂E

∣∣∣N=N∗

E=E∗

R=R∗

= C̃NHNFE .

Correspondingly, TE→C = 1/(C̃NHNFE). If, on the other hand, HE < 0, then the environmental parameter

directly affects resource dynamics, and the time scale is instead TE→C = 1/(C̃NHE).

One may re-parameterize Cov(E,C) in terms of TE and TE→C , but the resulting expression is not as

simple as the analogous expression in case of implicit resource competition (i.e., Eq.2.32). In particular,

the constitutive parameters of TE→C are not all eliminated from the expression; the resulting dependencies

between variables (say, between HN and TE→C) make it difficult to understand how TE→C affects the

covariance. Nevertheless, we can evaluate our main result qualitatively by checking if Cov(E,C) responds

as expected to changes in the constitutive parameters of TE and TE→C .

We first consider the case where the environmental parameter does not directly affect resource dynamics

(i.e., HE = 0). Here, TE→C is proportional to −1/C̃R, −1/HN , and 1/FE . Equivalently, TE→C increases

along with C̃R and HN ; and decreases as FE increases. Therefore, if Cov(E,C) increases as TE→C decreases

(ingredient 3A), then we would expect that Cov(E,C) is a decreasing function of C̃R and HN ; and an

increasing function of FE . Following similar logic, TE is proportional to −1/GE , so if Cov(E,C) increases

as TE increases (ingredient 3B), then we would expect that Cov(E,C) is an increasing function of GE .

In the case where where the environmental parameter negatively affects resource dynamics (i.e., HE < 0),

the time scale parameter TE→C is proportional to −1/C̃R and −1/HE . In turn, we would expect that
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Cov(E,C) is a decreasing function of C̃R and HN .

Indeed, all of the relationships in the previous two paragraphs are always true. We show that this is the

case by taking the partial derivatives of the right-hand-side of Eq.2.48 with respect to the aforementioned

parameters (e.g., C̃R) and evaluating whether the result is positive or negative. These calculations were

performed with the software Mathematica; see the supplementary files.

2.1.G Discrete time

Our main result — Cov(E,C) increases as TE/TE→C increases — is also true in discrete-time systems.

Similarly to the continuous-time case, we can linearize a system of difference equations and use the approx-

imate dynamics to compute covariances. Consider the discrete-time system with resident density N and

environmental state E,

N(t+∆t) = F ′(N(t), E(t))

E(t+∆t) = G′(E(t)) + σ′η′(t).

(2.49)

The prime superscript ("′") is used to differentiate current functions and parameters from corresponding

continuous-time functions and parameters. Assuming that σ′ is small and that the deterministic sub-system

settles to a stable equilibrium, we can write the approximate dynamics as

N(t+∆t)−N∗ = F ′
N (N(t)−N∗) + F ′

E(E(t)− E∗)

E(t+∆t)− E∗ = G′
E(E(t)− E∗) + σ′η′(t).

(2.50)

More generally, a system of linear stochastic difference equations can be written as

X(t+∆t) = A′ X(t) +B′ η′(t), (2.51)

where X(t) is m-dimensional state, A′ is a m ×m matrix, B is a m ×m matrix, and η′ is a draw from a

multivariate normal distribution with correlation matrix C′.

Assuming that the system has been translated so that E[X] = 0, computing the covariance matrix

(denoted Σ′) of the stationary distribution amounts to squaring both sides of Eq.2.51 and taking the expec-

tation:

lim
t→∞

Σ′(t) = A′
[
lim
t→∞

Σ′(t)
]
A′⊺ +B′C′B′⊺. (2.52)

Applying the V ec operator to both sides and solving for the stationary covariances, we obtain the explicit

formula

lim
t→∞

V ecΣ′(t) = (I −A′ ⊗A′)
−1

V ec
(
B′C′B′⊺) . (2.53)
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Applying the above equation to the discrete-time system with a sole resident (i.e., Eq.2.50), we find that

Cov(E,C) =
C̃NF ′

EG
′
Eσ

′2

(G′
E
2 − 1) (F ′

NG′
E − 1)

. (2.54)

The time scales TE and TE→C are the reciprocals of dynamical rates, but the parameters in the covariance

expression above (e.g., F ′
E) are not rates — they are are dimensionless. To convert the parameters to

their continuous-time counterparts, we match terms in the discrete-time system (Eq.2.50) to terms in the

corresponding continuous-time solution, obtained by integrating the continuous-time dynamics over a short

time step. See the Mathematica notebook for details.

We obtain F ′
N = exp{FN∆t} and G′

E = exp{GE∆t}, the standard conversion between the finite rate of

increase and per capita growth rates (Gotelli and Ulrich, 2012, p. 13). Recall that FN and GE are the Taylor

series coefficients of the small-noise approximation of continuous-time dynamics (Eq.2.13). Following Eq.2.21,

the conversion for the noise variance is σ′2 = −(σ2/2GE)(1 − exp(2GE∆t)). The remaining coefficient

conversion is more complicated: FE = FE(exp(FN∆t)−exp(GE∆t))
FN−GE

.

Now, the covariance can be written as

Cov(E,C) = −
C̃NFE(e

FN∆t − eGE∆t)eGE∆t σ2

2GE
(1− e2GE∆t)

(FN −GE) (e2GE∆t − 1) (e(FN+GE)∆t − 1)
. (2.55)

For small ∆t, the Taylor series approximation ex∆t = 1+ x∆t+ . . . can be applied. Truncating at O(1), the

covariance can be approximated as

Cov(E,C) ≈ C̃NFEσ
2

2GE (FN +GE)
, (2.56)

which is identical to the continuous-time covariance (Eq.2.31). Substituting in TE and TE→C will result once

again in Eq.2.32, thus making it clear that Cov(E,C) increases as TE/TE→C increases.

2.1.H A phytoplankton model with fluctuating uptake rates

Here we provide an example with the purpose of 1) demonstrating how the general methodology of section

2.1.C may be used in practice, and 2) providing intuition with regard to the biological meaning of TE→C .

Consider a chemostat with phytoplankton density N(t) and resource concentration R(t). The phytoplank-

ton exhibits a linear functional response, but with a temporally-fluctuating uptake rate, given by exp(E(t)).
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The environmental parameter itself follows Ornstein-Uhlenbeck dynamics. The equations are

dN(t)

dt
= N(t)

[
c eE(t)R(t)− δ

]
dR(t)

dt
= δ(S −R(t)) + eE(t)N(t)R(t)

dE(t) = −θ(E(t)− µ)dt + σdW (t),

(2.57)

where c is the resource-to-phytoplankton conversion coefficient, δ is the dilution rate (and equivalently, the

death rate for phytoplankton), S is the resource supply concentration, θ is the return rate of the environmental

parameter, µ is the mean of E(t), and σ is the scale of perturbations to E(t).

The deterministic dynamics produce a single positive equilibrium, n∗ = (ceµS − δ), R∗ = (δe−µ)/c, and

E∗ = µ. Defining the full system state as X(t) = (N(t), R(t), E(t))
⊺, the matrixes of the linearized system

are

A =


0 δe−µ (ceµS − δ) c (ceµS − δ)

0 −θ 0

− δ
c − δe−µ(ceµS−δ)

c −ceµS

 , B =


0 0 0

0 0 0

0 0 σ

 , and C =


1 0 0

0 1 0

0 0 1

 . (2.58)

A natural choice for the competition parameter is C(t) = C̃(R(t)) = − log(cR(t)), which makes the

per capita growth rate of the phytoplankton exp(E(t)− C(t)) − δ. With this choice, the interaction effect

between environment and competition is ζ = −δ, which is always non-zero (as claimed in the main text).

Computing the covariances of the stationary distribution and using the approximation Cov(E,C) ≈

C̃RCov(E,R), we find that the EC covariance is

Cov(E,C) =
σ2 (ceµS − δ)

2θ (ceµS − δ + θ)
. (2.59)

Following the mathematics of Section 2.1.D, we can obtain a simple expression for the storage effect if we

assume that species have different responses to the environment but are otherwise identical. In a two-species

community where the cross-species correlation in E is ρ, the storage effect is

∆I = δ (1− ρ)
σ2 (ceµS − δ)

2θ (ceµS − δ + θ)
. (2.60)
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The time scale on which the environment affects competition is

TE→C =
1

C̃RHE

[H is the r.h.s. of dR(t)/dt, (Eq.2.57)]

=
1

ceµS − δ
.

(2.61)

Intuitively, the rate at which the environment affects competition (i.e., the reciprocal of TE→C) increases as

the rate of consumption and conversion (i.e., c exp(µ)) increases; and decreases as the process of chemostat

dilution (i.e., δ) becomes stronger than resource-consumer interactions.

Combining the definition of TE→C (Eq.2.61) with the definition TE = 1/θ, the EC covariance (Eq.2.59)

can be rewritten as

Cov(E,C) =
(σTE)

2

2 (TE + TE→C)
. (2.62)

2.1.I The lottery model

In this section, we will analyze the lottery model (sensu Chesson, 1994), one of the canonical models in

Modern Coexistence Theory. We will show that the storage effect arises readily when environmental states

are uncorrelated between time steps, a result that speciously acts as counter-example to our claim that

Cov(E,C) increases with TE/TE→C . However, as we argue in the main text, E is very much autocorrelated

on the more relevant within-step time scale. We will also show how the lottery model connects to our broader

claim that ingredient 3B can be satisfied by a life stage, which through its numerical response to the abiotic

environment, carries the effects of the environment through time.

2.1.I.1 The conventional lottery model

The lottery model describes coral reef fishes competing for space. In a single time step, adult fish produce

larvae according to the time-varying per capita fecundities ξj(t), adult fish die with probabilities δj , and

larvae compete for the open territories. Each individual larvae has the same probability of winning a territory,

hence the lottery model’s name. It is assumed that the fish always produce far more larvae than are necessary

to replace the dead adults, such that adult densities of all species sum to one. The per capita fecundities are

assumed to be temporally uncorrelated, though there may be cross-species correlations within a time step.

Unrecruited larvae die before the next time step begins, so we can track the adult densities (denoted Nj)
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with one equation per species:

Nj(t+ 1) = Nj(t)


survival prob.︷ ︸︸ ︷

1− δj +

per capita fecundity︷︸︸︷
ξj(t)



open territories︷ ︸︸ ︷
S∑

j=1

δjNj(t)

S∑
j=1

ξj(t)Nj(t)︸ ︷︷ ︸
total larvae



 . (2.63)

Here, S is the number of species in the community. Conventionally, the environmental parameter is per

capita fecundity, and competition is the number of larvae per open territory (both on the logarithmic scale

for mathematical convenience). In symbols, we have Ej(t) = log(ξj(t)) and C(t) = log


S∑

j ̸=i

ξj(t)Nj(t)

S∑
j ̸=i

δjNj(t)

. The

lottery model can now be written as

Nj(t+ 1) = Nj(t) [1− δj + exp{Ej(t)− C(t)}] . (2.64)

Unlike previous models in this document, the competition parameter is a function of both the environ-

mental parameter and population density: C(t) = C̃(E(t),N(t)), where E(t) and N(t) are S-dimensional

vectors. This in itself is an indication that the lottery model contains multiple time scales. Indeed, the envi-

ronment (i.e., per capita fecundity) affects the number of larvae, which affects competition (i.e., recruitment)

some time later. Events on this fast time scale (from spawning to recruitment) occur within a single time

step of the lottery model.

The covariance between environment and competition for species j can be approximated as

Cov(Ej , C) ≈
S∑

k=1

[
C̃Ek

Cov(Ej , Ek) + C̃Nk
Cov(Ej , Nk)

]
=

S∑
k=1

[
C̃Ek

Cov(Ej , Ek)
]

[since the Ej(t) are temporally uncorrelated] .

(2.65)

For a sole resident species, C̃Er = 1, and thus the covariance is Cov(Er, C) = σ2
r . For an invader in the

presence of a sole resident, the covariance is Cov (Er, C) = ρσiσr. The interaction effect between environment

and competition is ζj = −δj(1 − δj). Putting it all together, a symmetric invader and resident (which are

identical with the exception of their environmental responses; i.e., ρ ̸= 1), will produce the scaled storage

effect
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∆I

δ
≈ σ2 (1− δ) (1− ρ). (2.66)

For the remainder of our discussion, we will consider a system with a single resident and drop all species-

specific indexes. The environmental parameter of the resident is uncorrelated between time steps, which

corresponds to the autoregressive-1 equation,

E(t+ 1) = E∗ +G′
E(E(t)− E∗) + ση(t) [η(t) ∼ Normal(0, 1)] , (2.67)

with G′
E = 0. Following the logic of section 2.1.G, the return rate of the environment (i.e., the continuous-

time analogue of the autoregressive parameter G′
E) is −GE = − log(G′

E) = − log(0) = ∞; and thus the time

scale of environmental change is TE = −1/GE = 0. The lottery model produces coexistence via the storage

effect when TE = 0 (see Eq.2.66), which seems to contradict a number of previous results (Eq.2.32, Eq.2.45,

Eq.2.48, Eq.2.62) where a non-zero TE was required for a non-zero Cov(E,C).

2.1.I.2 Larvae carry the environment

Even if we were to imagine that the fish spawn in an instant, it is still the case that "the environment" is

autocorrelated on the within-step time scale. "The environment", broadly understood as any fluctuating,

density-independent parameter, can be defined in terms of larval density. By virtue of the larva’s continued

existence, "the environment" is autocorrelated. Put another way, The larvae carry the effects of the abiotic

environment through time, thus satisfying ingredient 3B.

To demonstrate this interpretation of the lottery model, we show how dispersal can alter the larva’s

ability to carry the effects of the environment. After the spawning phase, planktonic fish larvae drift offshore

(ostensibly this is an adaptation for avoiding predation), returning months later to compete for open reef

territories. The conventional lottery model assumes that all larvae return, but it is more likely that larvae

are both lost and gained through dispersal amongst stretches of reef in a larger metapopulation. We can

track larvae in a single patch with the differential equation

dL(s, t)

ds
= m (µ− L(s)) , (2.68)

where s is the number of days since the beginning of the spawning period in year t, m is the rate of dispersal,

and µ is the expectation of per capita fecundity ξ(t). The model assumes that there are a large number of

patches and that the ξ(t) of different patches are independent (so that the spatial average of ξ(t) converges

to the expectation µ); that dispersal between patches is equally likely throughout the time period; and that
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each patch is an equally likely destination for any disperser (i.e., spatially implicit dynamics).

The initial condition in our single patch is L(0, t) = n(t)ξ(t). Integrating from 0 to s1, the number of

days between the end of the spawning phase and the beginning of the recruitment phase, we obtain the larval

density, L(s1, t) = n(t)ξ(t)e−ms1 + µ (1− e−ms1).

The density of larvae that originated in the focal patch (i.e., the larvae that carry the effects of the local

environment) are L(s, t) = n(t)ξ(t)e−ms. We re-define the environmental parameter as the per capita density

of these original larvae at time s: E(s, t) = ξ(t)e−ms. It is clear that E is autocorrelated on the time scale

of days. In fact, the characteristic decay rate of E is m, which means that the time scale of environmental

change is TE = 1/m days.

We note here that there are different ways to interpret the effects of dispersal. If one defines "the environ-

ment" in terms of the remaining larvae (as we have above), then TE is inversely proportional to the dispersal

rate, but TE→C is relatively unaffected by dispersal. On the other hand, if one defines "the environment" in

terms of the effective per capita fecundity, then TE is unaffected by dispersal and TE→C increases along with

the dispersal rate. See the Mathematica notebook for details. While multiple interpretations are possible,

the result is the same: as the dispersal rate increases, TE/TE→C decreases, and in turn, so does the EC

covariance.
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2.2 Interpreting other coexistence mechanisms

Why coexistence mechanisms? Why not use some other scheme for partitioning invasion growth rates?

For one, the coexistence mechanisms are demarcated with respect to the absence vs. presence of density-

dependence (i.e., Ej vs. Cj) and variation (i.e., Ex,t[Cj ] vs. Varx,t(Cj)), two integral concepts in population

biology. Second, the coexistence mechanisms are distinct from a historical perspective: nobody discovered

two coexistence mechanisms in the same paper (though fitness-density covariance is an amalgam of several

previously proposed explanations). Finally, the coexistence mechanisms reveal commonalities between seem-

ingly disparate explanations for coexistence. Herbivores are physically very different from soil nutrients, but

both can behave similarly from a population-dynamical perspective (Chesson and Kuang, 2008).

That is not to say that the coexistence mechanisms are the only reasonable way partition the invasion

growth rate. Ellner et al. (2019) give a generic method for calculating unorthodox partitions and provide an

example involving species’ traits. One may decompose the conventional coexistence mechanisms further into

contributions from individual (or subsets of) regulating factors or into contributions from spatial variation

and temporal variation. One may also aggregate coexistence mechanisms to compare the main effect of

density-independent factors (i.e., ∆Ei) to the main effect of density-dependent factors (i.e., ∆ρi +∆Ni); or

to compare all spatial mechanisms to all temporal mechanisms (Johnson and Hastings, 2022a, Section 4.1).

Causal diagrams (Fig. 2.4, 2.5, 2.6, 2.8) can be used to demonstrate how each coexistence mechanism

operates. With the exception of density-independent effects (∆Ei), each coexistence mechanism has two

features: 1) a negative feedback loop involving population density nj and per capita growth rates rj , and 2)

some degree of specialization / exclusivity / ecological differentiation. For example, in the causal diagram for

the linear density-dependent effects, ∆ρi (Fig. 2.5), species j has a species-specific competition parameter

Cj , implying that species j specializes on particular resources or natural enemies. Note that the causal

diagrams are highly stylized; they focus on a feedback loop corresponding to a single species, and therefore

only show a small subset of a much larger community-level causal diagram.

There are at least two reasons for relating simple explanations for coexistence to the coexistence mech-

anisms. First, the resulting taxonomy of models can serve as a heuristic guide for determining the precise

causes of coexistence in a new model. Second, we need disparate models to give a fully generally inter-

pretation of coexistence mechanisms. As we will see, it is likely that some misconceptions about relative

nonlinearity and the storage effect are the consequence of over-generalizing from two highly-similar models

(the lottery model and the annual plant model; Chesson, 1994).
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Figure 2.4: Density-independent effects. The density-independent factors (captured by Ej and Var(Ej))
affect growth rates and population density. Note the absence of any feedback loops. The quantity

(
Ej − E∗

j

)2
becomes Varx,t(Ej) when averaged across space and time.

.

2.2.1 ∆Ei Density-independent effects

The first coexistence mechanism, ∆Ei, is termed density-independent effects and can be interpreted as the

degree to which density-independent factors favor the invader. The value of ∆Ei does not depend on any

species’ density. This represented by the lack of a feedback loop in clearly in Figure 2.4. Consequentially,

one species will have the largest ∆Ei, regardless of which species is the invader; if all other terms in the

invasion growth rate partition are zero, then all other species in the community will be excluded (Chesson

and Huntly, 1997). This thought experiment demonstrates 1) that density-dependent factors are necessary

for coexistence and therefore ∆Ei might rightfully not deserve the title of "coexistence mechanism"; and 2)

why all the Taylor series terms containing only Ej ’s are shunted into ∆Ei, while the growth rate components

containing only Cj ’s are split between ∆ρi and ∆Ni: the density-independent effects are between-species

differences that cannot be responsible for coexistence, so it is often uninteresting to partition them further

(but see Ellner et al., 2019).

2.2.2 ∆ρi Linear density-dependent effects

The second quantity, ∆ρi, is called the linear density-dependent effects. The linear density-dependent effects

is best understood as the class of classic explanations for coexistence: resource and natural-enemy parti-

tioning. More precisely, ∆ρi is the rare-species advantage resulting from specialization on the mean level of

density-dependent factors, which could take the form of mineral nutrients, water, carbon, prey species, light,

space, refugia, pathogens, parasites, parasitoids, predators, herbivores, etc. The "specialization" need not
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Figure 2.5: Linear density-dependent effects. The negative feedback loop involves the species-specific com-
petition parameter Cj , which includes the effects of resources and natural enemies.

be complete in the sense that each species only affects and is affected by a single density-dependent factor.

Rather, there is some contingent (i.e., model specific) threshold of specialization needed in order to attain

coexistence (Barabás et al., 2016). In the two-species Lotka-Volterra model, there is a simple mathematical

condition for the "specialization threshold" (i.e., intraspecific competition > interspecific competition). In

more speciose communities, such simple equations do not generally exist (Saavedra et al., 2017; Logofet,

1993).

Naturally, coexistence in explicit resource-consumer models can be attributed to ∆ρi (e.g., Ellner et

al., 2019). The same can be said of coexistence in Lotka-Volterra-like models (Volterra, 1937; Hassell and

Comins, 1976; Walters and Korman, 1999; Dallas et al., 2021), where species densities themselves can be

treated as density-dependent factors. Lotka-Volterra dynamics are usually viewed as a useful but imperfect

simile for the dynamics associated with competition or apparent-competition (Abrams et al., 2008; Mayfield

and Stouffer, 2017; O’Dwyer, 2018). However, when resource dynamics are fast, a specific form of resource-

consumer dynamics are well-approximated by Lotka-Volterra dynamics (MacArthur, 1970; Chesson, 1990).

The linear density-dependent effects encompasses several notable explanations for coexistence. First,

∆ρi captures coexistence mechanisms that operate on finer-grained spatial or temporal scales than that of

observation/data-collection. For example, the competition–colonization trade-off can be attributed to fitness-

density covariance from a "worm’s-eye view" (Bolker and Pacala, 1999; Shoemaker and Melbourne, 2016),

but can be attributed to the linear density-dependent effects from a "bird’s-eye view". the competition–

colonization trade-off (Skellam, 1951; Levins and Culver, 1971) can be attributed to ∆ρi. The same is

true for related explanations, such as the fecundity-dispersal trade-off (Yu and Wilson, 2001) and a seed
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size-number trade-off (Turnbull et al., 1999; Muller-Landau, 2010). The latter factoid can be verified by

looking at the equations in Levins and Culver’s (1971) classic paper on the competition–colonization trade-

off and using the process of elimination to exclude fluctuation-dependent coexistence mechanisms. There

are no patch-level equations, which excludes spatial fluctuation-dependent coexistence mechanisms; and the

per capita growth rate equation is linear and deterministic, which excludes temporal fluctuation-dependent

coexistence mechanisms.

Second, the Janzen-Connell hypothesis of tropical tree coexistence (Janzen, 1970; Connell, 1971) also

falls under the umbrella of ∆ρi. Unlike ordinary natural-enemy partitioning, the Janzen-Connell hypothesis

posits that coexistence is boosted further by distance-responsive predation: parasites and diseases tend to

kill seeds and seedlings which are near to their parent trees. However, Stump and Chesson (2015) used

MCT to show that distance-responsive predation generally undermines coexistence, thus disproving the

Janzen-Connell hypothesis in its most platonic form.

Finally, coexistence via intransitive competition (Soliveres and Allan, 2018) is partially captured by ∆ρj .

Intransitive competition means that there is no best competitor in all settings, such that coexistence occurs

via indirect effects that span across a network of interspecific interactions. This process is well-caricatured

by Rock-Paper-Scissors dynamics, where species A beats B, B beats C, C beats A, and so on (May and

Leonard, 1975, Gilpin, 1975). Intransitive competition is normally studied with Lotka-Volterra models, it

can also arise in more complex, multi-trophic models (Schreiber and Rittenhouse, 2004; Schreiber et al.,

2018). While it has not been documented empirically or theoretically (to our knowledge), intransitivity can

be mediated through other coexistence mechanisms. For instance, intransitivity via relative nonlinearity

may occur if species A generates a lot of resource variation, which disproportionately hurts species B via

relative nonlinearity, and so on.

Invasion analysis is generally seen as incompatible with coexistence via intransitive competition. The

problem is that in perturbing a species to invader state, intransitive loops (sensu Gallien et al., 2017, Fig.

B3) involving the invader are destroyed, which may cause knock-on extinctions. However, intransitive loops

among the resident species affect the densities of the those species, and thus the level of competition felt by

the invader. It is in this sense that ∆ρi partially captures the effects of intransitive competition.

Gallien et al. (2017) suggest a measure of the effects of intransitive competition on coexistence: the

difference between invasion growth rate in the real world, and a hypothetical world where an some intransitive

loops have been broken by removing a single resident species (this is repeated for each resident, and then

averaged). This measure captures the effects of some intransitive loops (i.e., all the loops that pass through

a single resident), but not all of them (i.e., the loops among the S − 2 remaining residents). We suggest the

following method for measuring the effects of all intransitive loops (excluding those involving the invader)
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simultaneously: take the difference between the true invasion growth rate, and the invasion growth rate

where there is a single resident species; naturally, this is repeated across all resident, and then averaged.

To be clear, our suggestion is tentative and untested; more work is needed to integrate Modern Coexistence

Theory with the reality of intransitive competition.

2.2.3 ∆Ni Relative nonlinearity

Figure 2.6: Relative nonlinearity. The negative feedback loop is mediated through the variance of regulating
factors. The quantity

(
Cj − C∗

j

)2 becomes Varx,t(Cj) when averaged across space and time. Increased
population density nj increases the magnitude of fluctuations in competition,

(
Cj − C∗

j

)2. These fluctuations
may affect the metapopulation growth rate rj either positively or negatively through the coefficient β

(2)
j ;

here we show a negative effect, as this is the case in resource-consumer models where the consumer has a
type II functional response and the competition parameter is Cj = 1/”resource concentration”.

The first fluctuation-dependent mechanism, ∆Ni, is called relative nonlinearity. It can be interpreted as

the rare-species advantage that results from specialization on the variation in a density-dependent factors

(Levins, 1979; Tilman, 1982). The variation can be generated endogenously via population dynamics (Arm-

strong and McGehee, 1976, 1980); or exogenously, either directly via a fluctuating resource supply (Stewart

and Levin, 1973; Hsu, 1980; Smith, 1981; Butler et al., 1985; Abrams, 2004), or indirectly via environmental

fluctuations (Chesson, 1994; Yuan and Chesson, 2015).

Compared to other coexistence-promoting mechanisms — specifically ∆ρi and ∆Ii — relative nonlinearity

is understudied. The relegation of relative nonlinearity probably has several causes. For one, Chesson (1994)

showed that in systems with a single competitive factor, only one species can coexist via relative nonlinearity,

but an unlimited number of species could coexist via the storage effect. Further, Chesson (2000) found that

there is no relative nonlinearity in the annual plant model and the lottery model with only spatial variation. In
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models where relative nonlinearity can arise, Chesson (2000) writes that ". . . the limited ability for relative

nonlinearity to promote coexistence when acting alone means that it is best viewed as modifying other

mechanisms ... by decreasing the degree of dominance of a superior competitor with a relatively concave

growth rate ... ". As we will show below, this is only generally true for models where resource variation is

driven by environmental stochasticity: fluctuations in the per capita demographic rates of of resources or

consumers.

Theoretically, many species can coexist via relative nonlinearity when there are many competitive factors.

In a system with L regulating factors, there are L(L+ 1) unique spatial and temporal covariances; treating

the covariance between regulating factors as an effective regulating factor and following the mathematics of

the competitive exclusion principle, we conclude that the maximum number of species that can coexist via

relative nonlinearity is L(L+1). However, it is unclear how to devise a concrete model in order to attain this

outcome, to say nothing of how representative such a model would be of real-world population dynamics.

To better understand the relationship between resource variation and coexistence, we consider a com-

munity with a single resource and two consumers that exhibit an opportunist-gleaner tradeoff (Fig. 2.7).

We also use a heuristic that originates from Tilman’s (1980, 1982) graphical analysis of resource-consumer

models: For coexistence to occur, species must consume proportionately more of that which most limits their

own growth. In the example portrayed in Figure 2.7, the gleaner is hurt by resource variation, so it is most

limited by mean resource levels. Thus, coexistence requires that the gleaner disproportionately decreases

mean resource levels, or equivalently, increases resource variation when it is abundant.

The gleaner can increase variation (and thus promote coexistence) by inducing cyclical resource-consumer

dynamics (Armstrong and McGehee, 1976, 1980). This outcome is contingent upon model parameters, but

it is not a quirk: the gleaner has a faster consumption rate (at low resource concentrations), and is therefore

inherently more destabilizing than the opportunist.

If resource dynamics are subject to environmental stochasticity, then resource variation should scale

monotonically with mean resource levels (according to the small-noise approximation of population dynamics;

Gardiner, 1985; Lande et al., 2003). Here, since the gleaner has a lower R∗ than the opportunist, the

gleaner tends to decrease resource variation, thus undermining coexistence. There is some reason to believe

that this outcome is common in the real-world: Taylor’s law (Taylor, 1961; Taylor, 2019) shows that the

aforementioned relationship between the mean and variance is common, at least for biotic resources. Though

relative nonlinearity cannot promote coexistence in the case of environmental stochasticity, it is nevertheless

important because it can change competitive outcomes (e.g., if resource variation is severe enough, then the

opportunist will exclude the gleaner).

When the resource supply rate fluctuate through time, the gleaner tends to increase resource variation,
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thus promoting coexistence (Hsu, 1980; Smith, 1981). The reason for the increase in variation is related to

the different slopes the two consumer’s birth-rate curves around their respective equilibrium resource levels

(at R∗
1 and R∗

2; see Fig. 2.7). If the slope is steep, a resource surplus causes a dramatic increase in consumer

birth rates; the subsequently large consumer population then reduces resource levels. In other words, resource

levels are regulated via a negative feedback loop with consumers, and the strength of this negative feedback

is proportional to the slope of the birth rate function. Because the gleaner species necessarily has a shallow

slope (than the opportunist), it necessarily increases resource variation. Note here that coexistence is possible

but not guaranteed. Experimental work with phytoplankton microcosms supports the idea that fluctuating

resource supply changes population dynamics and sometimes causes coexistence (Grover, 1990; Grover, 1991;

Grover, 1997, ch. 5).

So far in this section, we have discussed temporal relative nonlinearity in the context of resource com-

petition. However, relative nonlinearity should work similarly in the apparent competition module (i.e.,

two prey, one predator), due to duality between resource concentration and the inverse of predator density

("enemy-free space" Jeffries and Lawton, 1984). Indeed, previous research has already demonstrated that

in models with apparent competition, relative nonlinearity via endogenous cycles can promote coexistence

(Schreiber, 2004) and that relative nonlinearity via environmental stochasticity does not permit multiple

species to coexist (Stump and Chesson, 2017, Appendix D.2).

Spatial relative nonlinearity has only been explicitly studied in a few papers ( Chesson, 2000; Snyder

and Chesson, 2004; Stump et al., 2018). It has been suggested that spatial relative nonlinearity should arise

less readily than temporal relative nonlinearity (Chesson, 2000; Snyder and Chesson, 2004; Barabás et al.,

2018) but this suggestion is clearly an extrapolation from the lottery model and annual plant model with

fluctuating fecundity. Within the context of resource-consumer models with opportunist-gleaner trade-offs,

we expect that spatial relative nonlinearity behaves similarly to temporal relative nonlinearity (Table 2.1).

There is one exception: population cycles are necessarily a temporal phenomenon, so there is no purely

spatial analogue of the endogenously generated resource-consumer cycles.

If there is spatial variation in the per capita (or per concentration) parameters of resource dynamics, then

we can apply the same argument that we used in the case of temporal environmental stochasticity: resource

variation is proportional to mean resource levels, so the dominant competitor in the absence of fluctuations

— the gleaner — tends to decrease resource variation, thus undermining coexistence. This coexistence-

undermining effect is strongest when there is complete local retention (i.e., individuals never disperse away

from their home patches). Local retention in spatial models plays a similar role to temporal autocorrelation

in temporal models, in the sense that both allow population buildup when/where conditions are favorable

(see Johnson and Hastings, 2022b). As we will see, local retention tends to boost the spatial storage effect
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and fitness-density covariance.

If there is spatial variation in resource supply rates, then we can apply the same argument that we used

in the case of temporally-fluctuating resource supply: The gleaner is less capable of dampening fluctua-

tions in resource concentrations, which increases resource variation (relative to the opportunist), and in-turn

promotes coexistence. There is an interesting twist: the coexistence-promoting effect of this mechanism

is strongest when there is no local retention of consumers. Local retention strengthens the feedback loop

between population density and resource concentration, such that consumers tamp-down resources in good

patches (i.e., patches with high resource supply rates). When consumers disperse, good patches lose con-

sumers (on net), which increases the spatial variation in resource concentrations. In Appendix 2.2.B, we

analyze a model and show — with simulations and math — that spatial variation in resource supply can

indeed promote coexistence.

In conclusion, whether or not relative nonlinearity promotes coexistence in opportunist-gleaner models

depends on the ultimate source of resource variation (Table 2.1). While "it depends" is perhaps an unsat-

isfactory answer, it is valuable in that it refutes the conventional wisdom that relative nonlinearity simply

tweaks growth rates or switches competitive outcomes.

Figure 2.7: An opportunist-gleaner trade-off. Consumer 1 (the "gleaner") excludes consumer 2 (the "oppor-
tunist"), but consumer 2 benefits from relative nonlinearity in the presence of resource fluctuations. Figure
modified from Figure 1.1, Chapter 1.
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Table 2.1: Does relative nonlinearity promote coexistence in a model with an opportunist gleaner trade-off?
Here, Promotes coexistence = Yes means that it is possible for both species to coexist. No means only one
species can persist.
Source of resource/natural-enemy variation Promotes coexistence?

Temporal variation
Endogenous population cycles Yes
Environmental stochasticity No
Fluctuating resource supply rate Yes
Spatial variation
Endogenous population cycles N/A
Environmental stochasticity No
Fluctuating resource supply rate Yes

2.2.4 ∆κi Fitness-density covariance

The final fluctuation-dependent mechanism, ∆κi, is known as fitness-density covariance (also sometimes

called growth-density covariance). This term can be interpreted as the differential ability of an invader’s

individuals to end up in locations where they have high fitness (Chesson, 2000; Chesson et al., 2005; Chesson,

2012). Fitness-density covariance accounts for the tremendous potential for biodiversity that can result

from the spatial partitioning of density-dependent factors. Examples include phytoplankton partitioning a

light gradient in the water column (Huisman et al., 1999; Gervais et al., 2003), nesting birds partitioning

tree branches (MacArthur, 1958), and plants partitioning microhabitats with different ratios of resource-

supply rates (Tilman, 1982; Crozier and Boerner, 1984). Fitness-density covariance also accounts for the

spatial partitioning of density-independent factors (i.e., environmental niche partitioning), the competition–

colonization trade-off, and heteromyopia.

We can immediately see that ∆κi contains enormous complexity in a simple formula: relative density is

the outcome of a multi-generational interplay between dispersal and local growth, and "fitness" itself can

be decomposed into many parts. To get a better grasp on this complexity, we will look at several scenarios

that do not lead to fitness-density covariance, followed by several scenarios that do.

First, consider a landscape with a homogeneous environment. If per capita growth rates decrease with

population density, then chance fluctuations in relative density will generate a negative Covx(νj , λj) (Lloyd

and Dybas, 1966; Lloyd, 1967; Matsuda et al., 1992). However, if there are no systematic differences between

species, an invader will quickly attain the same spatial correlations as the resident, resulting in ∆κi = 0

(Chesson, 1991). On the other hand, ∆κi will be positive if individuals aggregate semi-independently across

space, as will occur naturally for invaders with herding, swarming, and/or mate-finding behavior. This

scenario demonstrates that environmental niche differences are not necessary for coexistence, but that niche
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Figure 2.8: Fitness-density covariance. The full negative feedback loop is nj → C → λ
(local)
j → nj →

νj → (νj − 1)(λ
(local)
j − 1) → rj → nj . The local finite rate of increase is given to superscript "(local)"

to help differentiate it from the metapopulation growth rate, rj . The product of fluctuations in relative
density and fitness, (νj − 1)(λ

(local)
j − 1) becomes Et

[
Covx

(
νj , λ

(local)
j

)]
when properly averaged across time

and space. Local population growth along with the local retention of individuals leads to a buildup of
population density in certain patches. This local process is represented by the subset of the feedback
loop nj → C → λ

(local)
j → nj . Local population density affects relative density, νj , and local fitness,

λ
(local)
j . Then, local densities and finite rates of increase feed into the term (νj − 1)(λ

(local)
j − 1), which

affects the metapopulation growth rate rj . This process is represented by the subset of the feedback loop
nj → νj → (νj−1)(λ

(local)
j −1) → rj → nj . As in the causal diagram of the storage effect, the species-specific

environmental parameter functions to imbue the negative feedback loop with some degree of specialization.

differences of some kind — whether they be environmental or behavioral — are still required.

Second, consider a landscape with a heterogeneous environment which is inhabited by organisms that

have complete information, can disperse at no cost, and do not exhibit interference competition. Here,

residents will attain the ideal free distribution (Fretwell, 1969): the spatial distribution of a resident s where

fitness is constant at λs = 1 across the landscape. If the invader has environmental niche differences, it will

concentrate in its best patches without increasing competition, thus producing a positive ∆κi. If the invader

has the same environmental niche as the resident, then ∆κi equals zero. This scenario demonstrates that

fitness-density covariance is not merely a measure of how good species are at actively dispersing to "good"

patches. Since the local fitness of a patch depends on the number of competitors in that patch, the ability

to end up in location with high fintess is inextricably tied to abundance.

For our final no-coexistence scenario, consider a heterogeneous environment with organisms that exhibit

widespread dispersal : in each time-step, all individuals disperse and rain uniformly across the landscape.

Here, relative density is the same in every patch, and thus fitness-density covariance is zero.

What does generate a positive ∆κi? Environmental niche differences, environmental heterogeneity, and
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local retention naturally engender a positive fitness-density covariance:. A good environment for a resident

leads to a buildup of resident individuals, but a good environment for an invader does not lead to a buildup

of invader individuals. This asymmetry leads to reduced fitness for residents in high density patches, which

translates to a positive ∆κi. This whole process can also generate a storage effect if the interaction effect

between environment and competition is non-zero. As Chesson (2000) points out, variation in relative density

can generate a positive covariance between environment and competition, even if a negative covariance would

be attained in the absence of density variation.

Fitness-density covariance accounts for the coexistence of competitors in patches with varying resource

supply rates (Chase and Leibold, 2003, ch. 6). Resources in different patches can be treated (mathematically)

as separate regulating factors (Levins, 1974; Szilágyi and Meszéna, 2009). Alternatively, this process can

be thought of as a special case of the environmental niche partitioning described in the previous paragraph,

where the spatially fluctuating resource supply point is the environmental parameter Ej . Even though

Ej is typically a demographic parameter that directly affects some focal species (e.g., the probability of

germination), Ej can just as easily directly affect the regulating factors (for an example, see Appendix 2.2.B.

Fitness-density covariance also accounts for two previously proposed explanations for coexistence: the

competition–colonization trade-off (Skellam, 1951; Levins and Culver, 1971) and heteromyopia (Murrell and

Law, 2003). In the competition–colonization trade-off, the superior colonizer has a positive ∆κi (Shoemaker

and Melbourne, 2016) because it ends up in recently disturbed patches which are devoid of competitors. In

the case of heteromyopia — the phenomenon where intraspecific competition occurs over longer distances

than interspecific competition — intraspecific competition lowers the residents’ density, creating small holes

in the landscape. The invader settles into theses holes and only competes strongly with a few conspecific in

the near vicinity, resulting in a positive ∆κi (Snyder, 2008).

Another way to understand fitness-density covariance is to understand how it differs from other coexis-

tence mechanisms. The spatial storage effect and fitness-density covariance seem inextricably related, since

they both arise readily in models with environmental niche differences, environmental heterogeneity, and

local retention. However, we can tease out differences just by looking at the mathematical definitions of the

two coexistence mechanisms. For one, the spatial storage effect requires spatial variation in the environment,

whereas fitness-density covariance does not. Species may have biased dispersal based on sensory preferences

of environmental conditions that otherwise do not affect growth rates (Barabás et al., 2018, Appendix S5);

though this is environmental variation in the colloquial sense (species are responding to environmental cues),

there is "no environmental variation" in the technical sense that there is no varying demographic parameter

than affects the local finite rate of increase.

A fitness-density covariance can potentially emerge in a truly homogeneous environment if species engage
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in aggregating behavior (e.g., swarming, schooling, herding, "natal homing"). It is quite possible that such

behavior will generate a positive fitness-density covariance: the clustered resident individuals experience

lower fitness λ (via increased competition), but continue to aggregate because there is an individual-level

fitness benefit for doing so. However, aggregating behavior could also lead to a negative fitness-density

covariance. If aggregation is strong enough, invader populations can be regionally rare but locally abundant,

thus eliminating a rare-species advantage. Alternatively, aggregation can have positive fitness consequences

(e.g., increased mating-finding ability, group-level vigilance) such that the residents benefit on-net.

Even in the face of environmental heterogeneity, there are still notable differences between the spatial

storage effect and fitness-density covariance. In Appendix 2.2.A we derive expressions for both coexistence

mechanism in an arbitrary model with two species, permanent spatial heterogeneity, and dispersal. When

species are identical except for their responses to the environment, we find that

∆I =
qN∗

0α
(1)

1− q(θN∗
0 β

(1) + 1)

[
ζσ2(ϕ− 1)

]
, and (2.69)

∆κ =
qN∗

0α
(1)

1− q(θN∗
0 β

(1) + 1)

[
q

1− q
2α(1)θβ(1)σ2(ϕ− 1)

]
. (2.70)

All of the symbols are described in and Appendix 2.2.A; but notably, σ2 is the variance in the environ-

mental parameter Ej ; ϕ is the spatial correlation between the two species’ environmental parameters; ζ is

the interaction effect between environmental and competition; and q is the local retention fraction (a (1− q)

fraction of individuals disperse after each time-step).

Both the spatial storage effect and fitness-density covariance are proportional to q × σ2 × (1 − ϕ), re-

spectively representing local retention, environmental heterogeneity, and spatial niche differences. Under

these conditions, fitness-density covariance is all but inevitable, whereas the spatial storage effect depends

on there being a substantial interaction effect ζ. This may explain why some simple spatial models produce

fitness-density covariance but not the spatial storage effect (e.g., Amarasekare and Nisbet, 2001; Muko and

Iwasa, 2000).

Another notable difference is that the spatial storage effect is proportional to q/(1− q), whereas fitness-

density covariance is nearly proportional to (q/(1 − q))2, which is very large when the local retention q is

large. The discrepancy occurs because the density of a species is proportional to q/(1 − q); in turn, the

density of species is only proportional to competition (which shows up in the spatial storage effect), but

is proportional to both relative density ν and fitness λ (the product of which shows up in fitness-density

covariance). This may explain Shoemaker and Melbourne’s (2016) finding that fitness-density covariance is

more important than the spatial storage effect: the authors used large retention fractions (q ≈ 0.9).
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It has been argued that the spatial storage effect "seems to be inevitable under realistic scenarios"

(Chesson, 2000), and that "...space itself is often the bet-hedging strategy that generates storage ..." (Barabás

et al., 2018). However, we believe that these statements are over-generalizations from particular versions

of the lottery model and annual plant model, where spatially-fluctuating fecundity automatically generates

an interaction effect ζj . However, with a slight tweak to these models, we see exactly the opposite: when

survival fluctuates instead of fecundity, the interaction effect is automatically zero. The spatial storage effect

may indeed be prevalent in nature, but it is by no means inevitable (e.g., Towers et al., 2020).

We have shown that the relative importance of the spatial storage effect and fitness density covariance

are context dependent: fitness density covariance tends to be be comparatively large when local retention is

large and when fecundity doesn’t vary across space. Much like the contingent effects of relative nonlinearity

(Table 2.1), this contingency implies that very little can be said about the relative importance of coexistence

mechanisms, a priori. To determine how species are coexisting (or failing to coexist), one must fit a model

and quantify coexistence mechanisms.
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Appendices

2.2.A The spatial storage effect vs. fitness-density covariance

Consider a community with scalar populations inhabiting discrete patches (indexed by x), with discrete-time

dynamics (indexed by t). In each time-step, there are two events. First is a bout of local population growth,

determined by the local finite rate of increase, λj(x, t). Second is a dispersal event, where in each patch a

proportion of individuals, pj , disperse and are distributed uniformly over all patches (including the patch of

origin). It follows that a proportion of individuals, qj = (1−pj), are retained locally; We call q the retention

proportion. To simplify the expressions for coexistence mechanisms, we assume that there is no temporal

variation, and that population densities Nj and relative densities νj settle to an equilibrium in each patch.

The time-evolution of population density Nj at patch x is given by

Nj(x, t+ 1) = qjNj(x, t)λj(x, t) +
1− qj
K

K∑
s=1

Nj(s, t)λj(s, t). (2.71)

Often in MCT, the competition parameter is a function of both species densities and the environmental

parameter; However, in such models, there is an implicit time-lag between the effects of environment and

competition on population dynamics, such that the environment has enough time to affect competition within

a time-step. For instance, in the lottery model, per capita fecundity (the environmental parameter) affects

the per larva recruitment probability (the competition parameter), but recruitment occurs weeks or months

after reproduction, a fact which is hidden by the simple structure of the lottery model equations. In this

appendix, we only consider models in which the competition parameter is a function of a single residents s’s

population density: Cj = hj(Ns). This simplifies things because it prevents the environment from affecting

competition on two separate time-scales: within a time-step (as in the lottery model) and between time-steps

(via inter-generational population growth).

To obtain the spatial storage effect, we must obtain the quantity Covx(Ej , Cj), which in the two-

species/single-resident case can be approximated as Covx (Ej , θjrNs), where θjr is is a constant that converts

species s’s density to species j’s competition: θjr =
dhj(N

∗
s )

dNs
. Using perturbation theory and the properties

of geometric series, fitness-density covariance can be approximated (Appendix 1.2.D) as

Et[Covx(vj , λj)] ≈
qj

1− qj
Varx

(
α
(1)
j (Ej − E∗

j ) + β
(1)
j (Cs − C∗

s )
)
, (2.72)

which — again assuming that the competition parameter is a function of only the resident’s density — can
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be approximated as

Et[Covx(vj , λj)] ≈
qj

1− qj

[(
α
(1)
j

)2
Varx(Ej) + 2α

(1)
j β

(1)
j Covx(Ej , θjrNs) +

(
β
(1)
j

)2
Varx(θjrNs)

]
. (2.73)

Now, it is clear that simplifying the expressions for the coexistence mechanisms will require us to find

the residents’ density, Ns. Specifically, re-expressing Ns in terms of the environmental parameter, Es, will

allow us to express the coexistence mechanisms in terms of spatial variation and between-species correlation

in the environment.

To find Ns, we take a perturbative approach, where both Nj and λj are expanded in powers of the small

parameter σ: Nj(x, t) = Nj,0(x, t) + σNj,1(x, t) + ...; and λj(x, t) = λj,0(x, t) + σλj,1(x, t) + .... With this,

we re-write the population dynamics (Eq.2.71) as

Nj,0(x, t+ 1) + σNj,1(x, t+ 1) + . . . =qj(Nj,0(x, t) + σNj,1(x, t) + . . .)(λj,0(x, t) + σλj,1(x, t) + . . .)

+
1− qj
K

K∑
s=1

(Nj,0(s, t) + σNj,1(s, t) + . . .)(λj,0(s, t) + σλj,1(s, t) + . . .).

(2.74)

The zeroth-order dynamics are the same in every patch (because environmental fluctuations are O(σ)).

Assuming that there are no complex dynamics, the resident density reaches a stable equilibrium, denoted

N∗
s,0, that is the same in each patch and which can be obtained by solving

Ns = Ns gs(E
∗
s , hs(Ns)) (2.75)

for Ns. For example, if the population model is λs(x, t) = s+E(x)/(1 + cNs(x, t)), then N∗
s,0 =

E∗
s

c(1−s) −
1
c .

Noting that λ∗
j,0 = gj(E

∗
j , hj(N

∗
s,0)) = 1, the first-order dynamics can be written as

σNj,1(x, t+ 1) =σ
[
qj
(
N∗

j,0λj,1(x, t) +Nj,1(x, t)
)
+ (1− qj)

(
N∗

j,0Ex[λj,1(t)] + Ex[Nj,1(t)]
)]

. (2.76)

MCT is based on small-noise assumptions (details in Chesson, 1994; Chesson, 2000) that ensure that all terms

in the mathematical expression of the invasion growth rate are of commensurable magnitude. Specifically,

MCT assumes that environmental fluctuations are small and that the average of fluctuations is even smaller;

Or put into symbols, Ej − E∗
j = O(σ) and Ex,t

[
Ej − E∗

j

]
= O(σ2). Analogous bounds can be put on

population density, relative density, and the competition parameter, as all of these a ultimately functions

of the environment. These small-noise assumptions can be used to match terms from the perturbative
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expansion above and the Taylor series expansion of λj (see Section 3, Eq.3 in the main text), resulting in

σλj,1(x, t) = α
(1)
j (Ej(x, t)−E∗

j )+β
(1)
j (Cj(x, t)−C∗

j ). The small-noise assumptions also mean that Ex [λj,1(t)]

and σEx[Nj,1] are O(σ2), which simplifies Eq.2.74 to

σNj,1(x, t+ 1) = σ
[
qj
(
N∗

j,0λj,1(x, t) +Nj,1(x, t)
)]

. (2.77)

Using the relationship σλj,1(x, t) = α
(1)
j (Ej(x, t) − E∗

j ) + β
(1)
j (Cj(x, t) − C∗

j ) ≈ α
(1)
j (Ej(x, t) − E∗

j ) +

β
(1)
j θjrNs,1) to substitute for λj,1(x, t), we can solve for the equilibrium density of the resident

N∗
s ≈ N∗

s,0 + σN∗
s,1, where (2.78)

σN∗
s,1 =

qsN
∗
s,0α

(1)
s (Es − E∗

s )

1− qs(θssN∗
s,0β

(1)
s + 1)

. (2.79)

Plugging the above expression into the formulas for coexistence mechanisms (see Section 3 in the main

text), and writing the covariance between the two species’ environmental responses as ϕσ1σ2 (where ϕ is the

correlation coefficient), we find that the spatial storage effect is

∆Ii =
qsN

∗
s,0α

(1)
s

1− qs(θssN∗
s,0β

(1)
s + 1)

[
ζiϕσiσs − ζsσ

2
s

]
, (2.80)

and fitness-density covariance is

∆κi =
qi

1− qi

(α(1)
i

)2
σ2
i +

2α
(1)
i α

(1)
s θirβ

(1)
i ϕσiσsqsN

∗
s,0

1− qs(θssN∗
s,0β

(1)
s + 1)

+

(
α
(1)
s θirβ

(1)
i σsqsN

∗
s,0

1− qs(θssN∗
s,0β

(1)
s + 1)

)2


− qs
1− qs

(α(1)
s

)2
σ2
s +

2
(
α
(1)
s

)2
θssβ

(1)
s σ2

sqsN
∗
s,0

1− qs(θssN∗
s,0β

(1)
s + 1)

+

(
α
(1)
s θssβ

(1)
s σsqsN

∗
s,0

1− qs(θssN∗
s,0β

(1)
s + 1)

)2
 .

(2.81)

Here, we can see that the invader’s dispersal dynamics (i.e., the value of qi) does not play a role in the

spatial storage effect, but does play a role in fitness-density covariance. The resident’s dispersal dynamics,

on the other hand, play a role in both mechanisms.

If the invader and resident have identical demographic parameters but partially uncorrelated environ-

mental responses, then we can drop the species-specific subscripts, and the coexistence mechanisms simplify

to
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∆I =
qN∗

0α
(1)

1− q(θN∗
0 β

(1) + 1)

[
ζσ2(ϕ− 1)

]
, and (2.82)

∆κ =
qN∗

0α
(1)

1− q(θN∗
0 β

(1) + 1)

[
q

1− q
2α(1)θβ(1)σ2(ϕ− 1)

]
. (2.83)

2.2.B Spatial variation in resource supply promotes coexistence

Here, we analyze a 2-consumer, 1-resource model in which the two consumers exhibit an opportunist-gleaner

trade-off. The model can also be described as a discrete-time approximation of a continuous-time chemostat

model. The local finite rate of increase for the consumer is

λj(x, t) = 1 +

(
wµjR(x, t)

Kj +R(x, t)
− d

)
∆t, j = (1, 2), (2.84)

where w is an efficiency constant (converts resource uptake to consumer biomass), µj is the resource maximum

uptake rate, Kj is the half-saturation constant, d is the dilution/death rate, ∆t is the length of a time-step,

and R(x, t) is the concentration of the resource at location x and time t.

Each time-step is split into two phases: growth and dispersal. Growth follows the equations above. The

dispersal phase can be described as local retention with global dispersal, and follows Eq.2.71 in 2.2.A.

The resource dynamics are given by the equation,

R(x, t+ 1) = R(x, t) +

d(S(x)−R(x, t))−
2∑

j=1

µjNj(x, t)R(x, t)

Kj +R(x, t)

∆t, (2.85)

where S(x) is the patch-specific resource supply point. Here, S(x) is effectively the environmental parameter,

so S(x)− S∗ = O(σ). Resources do not disperse.

First we verify a claim in the main text: coexistence via spatial relative nonlinearity is not possible

if there is complete local retention. With no dispersal, we can straightforwardly solve for the equilibrium

resource concentration. When there is only a single resident s,

R∗ =
dKs

µsw − d
(2.86)

in each and every patch. There is no spatial variation in resource concentration, so there can be no spatial

relative nonlinearity (assuming that local populations reach equilibrium and do no experience endogenously-

driven population cycles).
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As discussed in Section 4.3 in the main text, coexistence is possible if the gleaner species tends to increase

resource variation, compared to the opportunist. The opportunist-gleaner continuum is controlled by µj and

Kj , with higher parameter values corresponding to more opportunism. We can fix the equilibrium resource

concentration at some arbitrary value R∗
0, so that both species are competitively equivalent in the absence

of spatial resource variation, via Tilman’s (1982) R∗ rule. We can then solve for µj ,

µj =
d(Kj +R∗

0)

R∗
0w

, (2.87)

and substitute the right-hand-side into the dynamical equations. With this substitution, Kj becomes the only

parameter that controls the degree of opportunism, but modulating Kj does not change the (equilibrium)

competitive equivalence of species.

We will now calculate the resource variation in the case of a single-resident, using the same perturbative

approach as in 2.2.A. Writing the dynamics of resource concentration (i.e., the right-hand-side of Eq.2.85)

as the function Φ(R(x, t), Ns(x, t), S(x)), the first-order dynamics are

σNs,1(x, t+ 1) =σqs

(
N∗

s,0

dλs(R
∗)

dR
R1 +Ns,1(x, t)

)
, and (2.88)

σR1(x, t+ 1) =
dΦ(R∗

0, N
∗
s,0, S

∗)

dR
σR1(x, t) +

dΦ(R∗
0, N

∗
s,0, S

∗)

dR
σNs,1(x, t) +

dΦ(R∗
0, N

∗
s,0, S

∗)

dS
(S(x)− S∗).

(2.89)

After substituting in the Taylor series coefficients, we can solve for the equilibrium resource concentration:

R∗
s ≈ R∗

0 + σR∗
s,1, where (2.90)

R∗
s,1 = (S(x)− S∗)

(1− qs)R
∗
0(Ks +R∗

0)

dKsqs(R∗
0 − S∗) + (qs − 1)

(
KsS∗ +R∗

0
2
) . (2.91)

Recall that R∗
0 is fixed. Using the fact that Varx (Rs) ≈ Ex

[
R2

s,1

]
and Varx (S) = σ2, we find that resource

variation is

Varx(Rs) ≈ σ2

[
(1− qs)R

∗
0(Ks +R∗

0)

dKsqs(R∗
0 − S∗) + (qs − 1)

(
KsS∗ +R∗

0
2
)]2 . (2.92)

In the Mathematica notebook, spatial_DeltaN.nb (https://github.com/ejohnson6767/MCT_review),

we prove that the resource variation decreases monotonically with the parameter Ks. This result confirms
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our earlier claim that gleaner species increase resource variation, compared to opportunist species. In the

R script spatial_opportunist_gleaner_sims.R (https://github.com/ejohnson6767/MCT_review),

we provide a simulation example to show species can indeed coexist.

Data availability statement

Code is available on GitHub, https://github.com/ejohnson6767/MCT_review.
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3.1 An explanation for unexpected population crashes in a

constant environment

3.1.1 Abstract

Unexpected population crashes are an important feature of natural systems, yet many observed crashes

have not been explained. Two difficulties in explaining population crashes are their relative rarity and the

multi-causal nature of ecological systems. We approach this issue with experimental microcosms, with large

numbers of replicates of red flour beetle populations (Tribolium castaneum). We determined that population

crashes are caused by an interaction between stochasticity and successive episodes of density dependence:

demographic stochasticity in oviposition rates occasionally produces a high density of eggs; so high that there

are insufficient flour resources for subsequent larvae. This mechanism can explain unexpected population

crashes in more general settings: stochasticity “pushes” population into a regime where density-dependence

is severely overcompensatory. The interaction between nonlinearity and stochasticity also produces chaotic

population dynamics and a double-humped one-generation population map, suggesting further possibilities

for unexpected behavior in a range of systems. We discuss the generality of our proposed mechanism, which

could potentially account for previously inexplicable population crashes.
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3.1.2 Introduction

Most of the time, populations can be described as fluctuating randomly around a weakly-stable equilibrium

(Ziebarth et al., 2010; Thibaut and Connolly, 2020). However, some populations experience unexpected

population crashes, also known as catastrophes, extreme events, or ecological black swan events. These

crashes, however rare, have outsized consequences for conservation and management (Drake, 2005; Granéli

and Turner, 2006; Mangel and Tier, 1994; Raffa et al., 2008).

Colloquially, black swans are rare events that have large impacts. Technically, black swans are sampled

from the tail of a heavy-tailed or fat-tailed probability distribution. Such distributions may be contrasted

with the gaussian distribution, whose thin, exponentially decaying tails preclude extreme events. In the

context of ecology, population crashes are simply black swan events from the left tail of the distribution of

per capita growth rates.

Ecological black swans are rare by definition. Nevertheless, they have been documented in a range of

populations: temperate lake phytoplankton (Batt et al., 2017), Baltic sea phytoplankton (Segura et al.,

2013), North American nesting birds (Keitt and Stanley, 1998), marine copepods (Schmitt et al., 2008), a

number of seal and sea lion species (Gerber and Hilborn, 2001), water flea (Daphnia) microcosms (Drake,

2014), and 25 (out of 609) populations in the Global Population Dynamics Database (Anderson et al., 2017).

Additionally, there are a great number of putative black swans that are labeled in the ecological literature

as “catastrophes” (reviewed by Mangel and Tier, 1994).

Although it is premature to make any claims about the prevalence of ecological black swans, there are

several pieces of evidence to suggest that black swans are more common than a naïve survey of the literature

would indicate. First, Anderson et al. (2017) found that the probability of detecting black swans increases

with time-series length. Second, some of the longest ecological time series in existence contain black swans

(Batt et al., 2017; Segura et al., 2013). Finally, it is nearly impossible to determine statistically that a

distribution does not have heavy tails (Weron, 2001).

Even when it is known that a distribution has heavy tails, forecasting is precarious. Standard measures

of spread or risk — like the standard deviation — can converge so slowly to their true values that they fail

out-of-sample (Taleb, 2019). Even worse, black swan events dominate the standard deviation, such that a

single observation can completely change one’s model (e.g., Fig. 3.21 in Taleb, 2020). This phenomenon

is familiar in finance (Mandelbrot and Hudson, 2007) hence the investor’s dictum “past performance is not

indicative of future results”, even though financial time series have thousands of data points. The prospect

of forecasting crashes is somewhat more dismal in ecology, where typical time series have tens of data points.

Because statistics and time series analysis are unlikely to be informative, we would like a mechanistic
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explanation to help identify, ahead of time, systems in which population crashes may occur. Here, we

use mechanistic models and flour beetle microcosms experiments to derive a novel mechanism of population

crashes. Our mechanism combines the universal feature of stochasticity with the common feature of successive

rounds of density dependence. To put it simply, population crashes can occur when stochasticity occasionally

“pushes” population density into a regime where overcrowding is severe.

3.1.3 Methods

3.1.3.1 Experimental microcosms

Flour beetles (Tribolium castaneum) between 1 and 2 weeks of age (i.e., time since eclosion) were obtained

from laboratory stock populations. Beetles were counted or weighed into 4 x 4 x 6 cm plastic enclosures

which were partially filled with 20 g of standard media (95% enriched wheat flour and 5% brewer’s yeast by

mass). After a variable number of days which we call the oviposition period, adult beetles were sifted out of

the media, leaving only the media and eggs. The complete T. castaneum life cycle takes 4–5 weeks (Sokoloff,

1974, p. 66), so we census the resulting adult beetles 6 weeks after the inoculation of stock beetles.

Censusing is carried out via one of two methods: 1) taking a picture of frozen beetles, using an ImageJ

Fiji (Schindelin et al., 2012) macro to automatically count the beetles, and reviewing all pictures to manually

correct any mistakes; or 2) estimating the total number of beetles using the total weight of all beetles, based

on extrapolating the weight of 50 beetles. In previous experiments the weight-based method resulted in less

than 1% error, which we deem negligible.

Our experimental setup enforces non-overlapping generations and synchronized life cycles, whereas previ-

ous Tribolium experiments have allowed a continual mixing of life-stages (e.g. Costantino et al., 1997). Our

approach has several benefits. 1) The number of larvae and pupae at census-time are negligible, allowing

for high-throughput computer-assisted beetle counting. 2) The only relevant inter-stage interaction is adult-

on-egg cannibalism (Appendix 3.1.A). Allowing more inter-stage interactions would add to the complexity

of the system, thus complicating the processes of model fitting and model adequacy analysis. 3) Our setup

simulates the lifecycles of many univoltine and bivoltine insects.

3.1.3.2 Datasets

When not being handled, both stock and experimental populations were maintained in dark incubators at

60±10% relative humidity. Data was collected for 2197 one-generation experimental replicates. A single

replicate is constituted by a population of T. castaneum in a single plastic enclosure. The data may be

divided into three distinct datasets (collections of replicates) that correspond to distinct combinations of
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temperature and genetic strain of beetle.

Dataset 1 (# replicates = 243; collected in 2020 and 2021): Stock populations were maintained at 31

degrees C. Adult beetles (and their subsequent eggs) were exposed to 22.5 degrees C for the entirety of a

7-day oviposition period but were returned to 31 degree C conditions afterwards.

Dataset 2 (# replicates = 1678; collected in 2019 and 2020): Stock populations and experimental units

were always kept at 31 degrees C. Oviposition periods include 1,2, 3, 5, and 7 days. The various oviposition

periods proved useful in model comparisons and graphical model validation (Appendix 3.1.D). In our main

results (Fig. 3.2–3.4), we present only the subset of Dataset 2 where the oviposition period is 7 days

(# replicates = 816). This isolates initial population size as the independent variable, and enables a fair

comparison with Datasets 1 and 3.

Dataset 3 (# replicates = 276; collected in 1997): Stock populations and experimental units were main-

tained at 34 degrees C. The oviposition period was 7 days. Dataset 3 contains a higher maximum number

of beetles at time t+1 than Dataset 1 or 2. Our recent experiments at 34 degrees C (data not published)

show that this difference cannot be explained solely by differences in experimental temperatures. Instead,

we suspect that the stark difference can be attributed to genetic differences in T. castaneum strains. After

Dataset 3 was collected (but before Dataset 1 or 2) our beetle populations became infested with parasitic

mites, which forced us to purge all populations and start anew with a different strain.

3.1.3.3 Model description

Figure 3.1: Visual summary of flour beetle population dynamics. The composition (denoted with the “o”

symbol) of (a) the adult(t) → larvae(t) map with (b) the larvae(t) → adult (t+1) map can produce (c) a

double-humped time-1 (i.e., adult(t) → adult(t+1)) population map. These plots depict the deterministic

model with hypothetical parameters.
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Our experimental populations experience two rounds of density dependence at successive life stages (Fig.

3.1): density-dependent egg production due to adult-on-egg cannibalism (Fig. 3.1a), and density-dependent

larval survival due to scramble competition (Fig. 3.1b). When adults are placed into fresh media, they begin

to oviposit eggs and eat eggs. The egg dynamics can be captured by the simple linear differential equation,

dz

dh
=

n (t)

2
(α− βz (h)) , initial conditions : z(0) = 0, (3.1)

where z is the number of eggs; n is the number of adult beetles (hence n/2 is the number of females); h is

the number of days since the start of the oviposition period; t is the generation number of the adult beetles,

α is the per-adult, per-day oviposition rate; and β is the per-adult, per-egg, per-day cannibalism rate.

Obviously, only females can oviposit. Less obviously, females are far more voracious egg cannibals than

males — using industrial die to perform an egg mark-recapture experiment, Sonleitner (1961) found that

Tribolium castaneum females ate 19 times as many eggs as males. Although there are large differences

between species and strains of Tribolium with respect to multiple elements of life history (Park et al., 1965;

Sokoloff, 1974), the relatively greater voracity of females appears to hold true across Tribolium species and

strains (Boyce, 1946; Rich, 1956; Stanley, 1942). For this reason and for mathematical convenience, our

models assume that only females eat eggs.

When the initial number of adult beetles is large, both oviposition and cannibalism rates decrease (Rich,

1956; Sonleitner, 1961), due primarily to the density-dependent secretion of allelopathic ethylquinones (Bul-

lock et al., 2020; Park, 1934; Park, 1935; Sonleitner and Gutherie, 1991). The decrease in the oviposition

rate is comparatively large, such that the mean number of eggs decreases for high numbers of initial adults.

We modelled this phenomenon by allowing the cannibalism rate β (which may more aptly be called the ef-

fective cannibalism rate) to increase linearly with initial adults: β(t) = β0+β0n (t). This modelling decision

(which may be contrasted with allowing α to decrease with adult density) allows the mean number of eggs

to smoothly approach zero at high adult density. Previous research has verified that the oviposition rate α

and cannibalism rate β are approximately constant over the duration of the oviposition period (Howe, 1962;

Rich, 1956; Sonleitner, 1961).

After an oviposition period of s days, the number of eggs is

z (n (t)) =
α− e−s (n(t)/2) (β0 + β1n(t))

β0 + β1n(t)
. (3.2)

Thus, eggs are a unimodal, hump-shaped function of initial adults (Fig. 3.1a). Because β1 is very small

in our system, the number of eggs produced by an intermediate number of initial adults is approximately

α/β0, the oviposition rate divided by the maximum cannibalism rate.
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Once the adult beetles are sifted-out of the microcosms, the eggs hatch and become larvae. Most larvae

survive to the pupal stage, and most pupae survive to the adult stage. However, at extremely high larval

densities, there is not enough flour for early instar larvae to survive; scramble competition between larvae is

the proximal cause of population crashes. This is evidenced by the fact that replicates with large n(t) and

small n(t+1) (i.e., populations that have crashed) have a large number of eggs at the end of the oviposition

period (Fig. 3.2c) and a large number of dead larvae at census time (Fig. 3.2a & 3.2b).

Figure 3.2: Panel (a): In Datasets 1 and 2 (Panels (a) and (b) respectively), dead larval carcasses are

observed in replicates that experienced population crashes. Panel (c): A small egg-counting experiment in

Dataset 3 reveals that population crashes are not caused by insufficient egg-production.

We model egg-to-adult survival using a reversed logistic function. The number of adults of generation

t+ 1, as a function of the number of eggs, is

n (t+ 1) = z (n (t))

(
θL − θL

1 + e−k(z(n(t))−z∗)

)
, (3.3)

where θL is the maximum egg-to-adult survival probability, i.e., the egg-survival probability when there

are Low numbers of eggs. Here, z∗ is the die-off threshold, which is more precisely defined as the number

of eggs necessary to bring per-capita egg-to-adult survival probability to θL/2 . The parameter k controls

the speed at which this transition occurs. The larvae-to-adult map has the appearance of being nearly

discontinuous (Fig. 3.1b), partly because it is highly nonlinear (the egg-to-adult survival probability is

multiplied by the number of eggs), and partly because k is relatively large.

The maximum egg-to-adult survival probability is fixed at θL = 0.91, which was derived from an experi-

ment where we found that 182/200 (91%) of individual eggs in abundant flour survive to adulthood. There is

strong evidence (Appendix 3.1.B) that the die-off threshold decreases with initial population density, likely
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due to adults conditioning the flour with feces, pheromones, and ethylquinones; we model this relationship

with a simple linear function: z∗ = γ0 − γ1n (t).

Combining the function for net egg production with the function for egg survival produces the time-1

population map,

n (t+ 1) =
α− e−s (n(t)/2) (β0 + β1n(t))

β0 + β1n(t)

θL − θL

1 + e
−k

(
α−e−s (n(t)/2) (β0 + β1n(t))

β0 + β1n(t)
− z∗

)
 . (3.4)

While the deterministic model above may appear complicated, it is merely the composition of banal

density-dependent functions representing egg production and egg survival (Fig 3.1). Further justification

of our model’s structure can be found in the Supporting Information. Specifically, Appendix 3.1.B justifies

several ostensible limitations of the model, including fixing θL and using eggs as a proxy for larvae.

3.1.3.4 Stochastic model fitting

3.1.4 Results

Using model comparisons, a priori arguments, and graphical evidence (Appendix 3.1.D & Tables 3.2–3.4),

we determined that the relevant sources of stochasticity in flour beetle dynamics were sex-ratio stochasticity

and demographic stochasticity in oviposition rates. The full stochastic model (described fully in Appendix

3.1.E) faithfully recreates patterns in empirical one-generation population maps (Fig. 3.3).
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Figure 3.3: Time-1 population maps for Tribolium castaneum. Panels are arranged in order of an increasing

scaled average distance to population crashes, a system-specific metric of complexity that is defined in

the Results; Mean ± SD refers to the posterior predictive density of the metric. The solid black dots

are experimental data; panels (a), (b), and (c) correspond to Datasets 1, 2, and 3 respectively. Dataset

2 is subsetted so that the oviposition period is 7 days. The salmon-colored ribbons are High Predictive

Density Intervals (HPrDI) for n(t + 1), which were obtained by simulating from the full stochastic model.

Experimental temperature is the ultimate cause of the difference between panels (a) and (b). Beetle genetic

strain likely explains the difference between panels (b) and (c).

By modulating experimental conditions, we can modulate the values of demographic parameters, and in

turn, the probability of population crashes. At the low temperature of Dataset 1 (see Methods, subsection

datasets), the empirical population map is perfectly compensatory (Fig. 3.3a), i.e., for sufficiently high

population density, increasing population density further will not decrease population density at time t+ 1.

The compensatory nature of population dynamics reflects a stochastic equilibrium between oviposition and

egg-cannibalism. Population crashes do not occur frequently because the die-off threshold is high, likely

due to the flour being less polluted (with feces, pheromones, and ethylquinones) at lower temperatures (Fig.

3.1). Egg production does not decrease appreciably with increasing initial adults (i.e., β1 ≈ 0), likely for

the same reason.

At the intermediate temperature of Dataset 2, larval production does not usually exceed the larval-density

threshold for population crashes. However, on rare occasion, demographic stochasticity “pushes” the number

of larvae over the threshold. The emergent pattern is a bimodal distribution of adult beetles at time t+ 1,

with the low-density mode representing population crashes (Fig. 3.2b). Although sex-ratio stochasticity is

present in our beetle system (see Appendix 3.1.D and Fig. 3.2), it has negligible effects in large populations,

and therefore plays a relatively minor role in inducing population crashes.
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These crashes are truly black swan events, both in the sense that they are unexpected, and in the sense

that they are related to heavy-tailed distributions. For Dataset 2, population crashes (here operationalized

as n(t + 1) < 150)) occur in approximately 3.6% of the replicates in the range n(t) ∈= [12, 400]. Because

the distribution of n(t + 1) is approximately stationary in this range, population crashes are identically

and independently distributed random variables. Thus, the time until the first crash is given by a geometric

distribution with success parameter p = 0.036 and mean wait time 1/p ≈ 27 generations. For the fast-growing

Tribolium genus, 27 generations take over 3 years. Regardless of generation time, a time series of length 27 is

long by ecological standards: in the Global Population Dynamics Database (Prendergast et al., 2010), 66%

of the time series had fewer than 27 observations. Further, in Appendix 3.1.H, we use minimal mathematics

and empirical CDF plots to show that the population crashes come from a heavy-tailed distribution of per

capita growth rates.

A highly productive strain of T. castaneum at high temperatures (i.e., Dataset 3) can regularly produce

enough larvae to induce population crashes. The composition of two rounds of overcompensatory density-

dependence produces a double-humped population map (Fig. 3.3c): Larval die-offs do not occur for low

numbers of initial adults (because few adults produce few larvae) and are less common for high numbers of

initial adults (because adult overcrowding reduces oviposition rates). It is only at intermediate numbers of

initial adults that larval population crashes occur predictably.

Our three distinct datasets correspond to distinct experimental conditions (beetle genetics and incubator

temperature), which in turn influence population dynamics. Though the datasets differ with respect to

many demographic parameters, they can be arranged along a continuum of a synthetic parameter, the

scaled average distance to population crashes (Fig. 3.3). First, we denote the number of eggs required

for a population crash as ϕ. Then, the scaled average distance to population crashes can be written as

E
[
[ϕ − z] /

√
V ar (ϕ − z)

]
, the average distance between egg production and that which is required for

population crashes, scaled by the magnitude of typical fluctuations (see Appendix 3.1.F for more details).

A substantially positive value indicates that population crashes are rare, whereas a negative value indicates

that population crashes are more likely than not.

Note that we can manipulate the scaled average distance to population crashes by modulating the ovipo-

sition rate, α, and fixing all other variables. Therefore, to explore the full extent of the beetle system’s

dynamical behavior — for both the full stochastic model and the underlying “deterministic skeleton” — we

simulated beetle dynamics forward in time for a variety of hypothetical oviposition rates (Fig. 3.4). To

better simulate a real-world analogue of our beetle system, we also examine the distribution of population

sizes in the face of weak immigration (1 female per generation).

Dataset 3 provides evidence of chaotic population dynamics. The estimated oviposition rate for Dataset
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3 is approximately 15.8 eggs per day, placing the actual population in the chaotic regime of Figure 3.4a.

Analogous figures corresponding to Dataset 1 & 2 (not shown) did not provide evidence of chaos. The

deterministic dynamics generate a menagerie of interesting dynamical behavior: chaos, crisis, and period-

doubling bifurcations (Strogatz, 1994) (Fig. 3.4a); and immigration-induced population cycles (Stone and

Hart, 1999) (Fig. 3.4e). Adding stochasticity to the model erases the interesting structure of the deterministic

bifurcation diagrams (see Fig. 3.4b, 3.4d, and 3.4f). In the short-term, the beetle system can persist (Fig.

3.4c). In the long-term, rare population crashes predictably lead to extinction (Fig. 3.4b & 3.4d), an outcome

that is mitigated by weak immigration (Fig. 3.4f).
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Figure 3.4: Bifurcation diagrams for factorial ‘treatments’ (shown on the top and right margins of the fig-

ure). All demographic parameters besides the oviposition rate, α, were selected as the posterior means of the

stochastic model corresponding to Dataset 3. The oviposition period is 7 days. Deterministic refers to the

‘deterministic skeleton’ of the full stochastic model. Stochastic refers to the output of the full model. Long-

term simulations are 500 generations. Short-term simulations are 20 generations. Immigration amounts to

one adult per generation. The deterministic dynamics generate period-doubling bifurcations, crisis bifurca-

tions, chaos (panel a), and transient chaos (panel c). Weak immigration induces population cycles (panel

e, α > 15.7). The inclusion of stochasticity causes extinction (panel b). Extinction becomes likely at higher

oviposition rates (panel d) but can be avoided with weak immigration (panel f). Dataset 3 exhibits chaotic

population dynamics (α is estimated at approximately 15.8 eggs/day).218



3.1.5 Discussion

In our flour beetle microcosms, rare population crashes arise from a combination of noise and nonlinear

density-dependence. Without noise, the number of larvae would not exceed the threshold for larval die-offs.

Without a nonlinear response to competition between larvae, an excess of larvae would lead to only a slight

reduction in larval survival.

Although our beetle model has some system-specific features (e.g., the effective cannibalism rate increases

with initial population size), the observed mechanism of population crashes can be boiled down to a few

essential ingredients: two rounds of density-dependence and some form of stochasticity. The first round of

density-dependence must be compensatory or weakly overcompensatory in order to set the average number

of individuals slightly below the density at which the second round has severe effects. The stochasticity

(whether demographic or environmental; endogenous or exogenous) occasionally pushes population density

into a regime where the second round of density-dependence is severely overcompensatory.

Because two rounds of density dependence are required, our mechanism of population crashes naturally

emerges as an intergenerational phenomenon (Fig. 3.5). As we have seen, crashes occur as a within-generation

phenomena if different forms of density dependence are experienced by different life stages (e.g., adult-on-

egg-cannibalism vs. larval overcrowding, as in our beetle system), or in different seasons (e.g., nesting birds

limited by territories in the spring vs. food availability in the winter). Many insect populations display

density dependence at multiple life-stages. The discreteness of developmental stages or environmental states

is not integral to our explanation; in many ways, a two-stage juvenile-adult model is a faithful approximation

of a population with continuous age/size-structure (de Roos and Persson, 2013). Similarly, discrete-time

dynamics are not required; overcompensatory population maps emerge from the discretization of continuous-

time dynamics (see Fig. 5 in Hastings and Powell, 1991).
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Figure 3.5: Population crashes in a scalar population. Population crashes are caused by stochasticity and

the successive application of a single density-dependent process. Panel (a): the time-1 population map

displays severe density dependence. Panel (b): the noisy time-1 population map. Panel (c): the noisy

time-2 population map

In flour beetle microcosms, stochasticity causes crashes by pushing larval density over the larval die-off

threshold. More generally, an abnormally favorable environment (or pure luck) may produce a large number

of individuals; too many to be sustained by a subsequent normal environment. For instance, a population of

water voles (Arvicola amphibius; Le Pont, Switzerland; circa 1970) crashed (Saucy, 1994), plausibly because

a sequence of abnormally warm winters (personal observations based on meteorological data) amplified the

growth-phase of a predator-prey cycle, subsequently exacerbating the downward phase.

Alternatively, we may think of stochasticity as acting on the shape of the growth rate function itself,

effectively lowering the threshold for severe density-dependence. From this perspective, the severe threshold-

like density dependence of Fig. 3.1b & Fig. 3.5a appears less assumptive — severe density-dependence can be

induced by poor environmental conditions, rather than being an invariant feature of the growth rate function.

For instance, an Icelandic population of Rock ptarmigan (Lagopus mutus; Iceland; circa 1880) experienced

a severely cold winter, which likely caused the birds to feed at an increased rate, leading to rapid depletion

of the most nutritious food items and subsequent starvation (Andreev, 1991; Williams, 1954). Of course,

some population crashes appear to be induced entirely by extreme environmental conditions. For example,

a population of Eurasian wrens (Troglodytes troglodytes; circa 1960, England) was eradicated after its seed

supply was buried under snow for 45 days (a period of snow cover more than four times longer than the

historical average; Newton et al., 1998). It is hard to imagine that any wrens could survive this event, even

if population density had been lower.

It is well known that extreme density-dependence can cause wild fluctuations in population size, the
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canonical example being the chaotic dynamics of May’s (1976) logistic model. In such models and in Dataset

3 (see Fig. 3.3c), populations densities naturally increase until they are in the regime of extreme overcom-

pensation. In our mechanism of population crashes and Dataset 2 (Fig. 3.2b), the regime of extreme

overcompensation can only be reached through rare fluctuations. Thus, our mechanism is distinct from

chaos in the sense that 1) crashes are rare, 2) stochasticity is required, and 3) extreme overcompensation is

the exception, not the rule.

We note that our explanation (i.e., noise plus overcompensatory density-dependence) bears similarity to

John Wiens’s (1977) theory of “ecological crunches”, which posits that density dependence is only detectable

under poor environmental conditions. However, we show that overcrowding can also be catalyzed by pure

luck — demographic stochasticity, demographic heterogeneity, and sex-ratio stochasticity. If overcrowding

is indeed catalyzed by luck, and data on the abundance of intermediate stages (here, beetle larvae) is not

collected, then population crashes can occur for no discernible reason.

Our mechanism for population crashes is consistent with Anderson et al.’s (2017) finding the that the

vast majority of black swan events (87%) were downwards. Anderson explains that this result stems from

the asymmetry between reproduction and mortality: In most animals, the reproductive speed limit is set

by age-of-maturity, gestation, and fecundity, but “there is no limit on how dramatically a population can

be cut in size” (Anderson quoted in Ogden, 2018). Our mechanism offers an additional (non-mutually

exclusive) explanation for the prevalence of downward black swans: the per-capita growth rate function

is a concave-down function of population density, such that an increase in population density can have a

disproportionately negative effect on population growth.

Anderson (2015) summarized the published descriptions (or lack thereof) of black-swan events in the

Global Population Dynamics Database and found that approximately 50% of black swan events have an

unknown cause. It is possible that some of these events are inexplicable, precisely because (as in our flour

beetle microcosms) demographic stochasticity induces overcrowding. The effects of demographic stochas-

ticity are often overlooked, since fluctuations due to environmental stochasticity scale with population size

n, whereas fluctuations due to demographic stochasticity only scale with
√
n. However, an analysis of the

relationship between the mean and standard deviation of population sizes was consistent with demographic

stochasticity having substantial effects on real-world population fluctuations (Reed and Hobbs, 2004). A

number of studies (reviewed by Lande et al., 2010, Table 1.2) have found that the typical between-individual

differences are much larger than the typical between-year (environmental) differences. More recently, Snyder

and Ellner (2022) used complex stage-structured models to partition the variation in lifetime reproductive

success into contributions from environmental stochasticity, demographic stochasticity, and demographic het-

erogeneity (i.e., trait variation). Across several case studies, demographic stochasticity contributed far more
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than environmental or trait variation (the exception being a case study of Lomatium bradshawii where “the

environment” was the absence/presence of experimentally-prescribed burns), suggesting that demographic

stochasticity can be a potent force in intermediate-to-large sized populations.

It would be premature to make any definitive statements about the frequency of ecological “black swan”

events in the real-world (see the Introduction), let alone the generality of our proposed mechanism. Even

speculation is difficult, given that the most conspicuous feature of our explanation is severe, threshold-like

density-dependence and that there is great uncertainty about the strength of density-dependence in real-world

populations. On one hand, substantial density-dependence is usually “detected” in field or lab-based density-

manipulation experiments (see Thibaut and Connolly, 2020, Appendix S1 and sources therein), observational

studies of individual insect life stages (Hassell et al., 1989), and microcosm experiments (Benincà et al., 2008;

Costantino et al., 1997; Gurney et al., 1980). On the other hand, most analyses of ecological time series find

that density-dependence is weak (Knape and de Valpine, 2012; Ziebarth et al., 2010).

At least two theories can explain why time series analyses conclude that density-dependence is weak.

Theory 1: Density-dependence only appears to be weak because time-series data is collected on a larger

spatial scale than that of density-dependent processes (Ray and Hastings, 1996; Thorson et al., 2015).

Under this theory, abundance/density data reflects a spatial average over a number of semi-independently

fluctuating sub-populations, such that the statistical signal of density-dependence is lost. Theory 2: There

is substantial density-dependence at one life-history stage, but the resulting numerical response is diffused

across space. For example, if an annual plant community on a small spatial scale (≈ 100cm2) is well-under

carrying capacity, competition between germinants will be weak and per capita seed yields will be large.

However, because germinants compete for soil resources on the scale of centimeters, and seeds disperse on

the scale of meters, most of the seeds will not be retained locally. On the small spatial scale, there will be

a weak statistical relationship between seed densities in successive years (assuming that these small-scale

populations are not spatially synchronized).

Both theories explain the aforementioned discrepancy between time-series analyses and microcosm ex-

periments. Under the first theory, microcosms uncover true density-dependence because they because they

are deliberately constructed at the scale of density-dependent processes. Under the second theory, micro-

cosms artificially induce severe density dependence because they prevent dispersal. Although outside the

scope of this paper, the veracities of these theories have wide-reaching implications, with the second theory

questioning the external validity of microcosm experiments in general.

With slight modification, the mechanism responsible for population crashes can also generate an odd-

looking generation-to-generation population map (Fig. 3.2c). We demonstrate here that such maps could

actually be quite general at the appropriate spatial scale of description. It has previously been recognized that
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the composition of two overcompensatory population maps can result in a double-humped “time-2” population

map (May and Oster, 1976; Schaffer, 1985). Our work builds on this important idea by showing that double-

humped maps can be produced by intra-generational interactions within successive developmental stages,

rather than inter-generational population growth. Double-humped maps may also emerge from more complex

and realistic settings. For instance, a double-humped Poincare map — which itself can be conceptualized as

the composition of two overcompensatory Poincare maps — was discovered in a continuous-time, tri-trophic

model (Hastings and Powell, 1991).

Here, we used flour beetle microcosms to demonstrate a novel mechanism for population crashes: envi-

ronmental or demographic noise ‘pushes’ population density into a regime where overcompensatory density

dependence causes population crashes. We recognize that there is also evidence for other mechanisms, like

extreme density-independent mortality (Newton et al., 1998; Potts et al., 1980), volatility clustering (Segura

et al., 2013; Segura and Perera, 2019; where seasonal resource supply modulates the variance in growth

rates), or more generally, ‘mixtures of distributions’ (Allen et al., 2001; Keitt and Stanley, 1998; Marquet

et al., 2005; McGill, 2003; Newman, 2005; Solow, 2005). A full understanding of population dynamics will

require much more attention to interactions between stochasticity, stage-structure, and density-dependence.
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Appendices

3.1.A Justification of limited inter-stage interactions

In our experimental setup, individuals have mostly synchronized life cycles. This significantly simplifies the

population dynamics under study, since it has long been known that larvae eat eggs (Chapman, 1933) and

pupae (Chapman, 1928); and that adults eat eggs (Chapman, 1928; Park, 1934) and pupae (Chapman, 1928;

Strawbridge, 1953). Even though some individuals may hatch/pupate/metamorphose earlier than others,

rendering a population with temporarily intermingling stages, there are good reasons to believe that this

does not appreciably influence population dynamics.

Early instar larvae have low egg cannibalism rates (Hastings and Costantino, 1991; Park et al., 1974).

This is likely due to limited mobility and the difficulty of consuming large eggs, the latter of which is

evidenced by Tribolium larvae’s general preference for small eggs (Craig, 1986; Ho and Dawson, 1966; Park

et al., 1965) and their small mouthparts relative to adults.

Both adult-on-pupa and larva-on-pupa cannibalism can be substantial if the stages intermingle for a long

time (Park et al., 1965), but the cannibalism rates are typically low. For example, if we take Park et al.’s

(1965) data corresponding to the T. castaneum strain with the highest total intraspecific larva-on-pupa

cannibalism (Table 12, treatment J), and assume that the per-larva, per-pupa cannibalism rate is constant

through time, we calculate that the per day rate is approximately 0.0028. This rate is an order of magnitude

smaller than typical adult-on-egg cannibalism rates (as estimated via our models). Using Park et al.’s data

for adult-on-pupa cannibalism, a similar calculation yields a similar conclusion. In our beetle system, where

pupae only mix with young adults, adult-on-pupa cannibalism should be even rarer: young adults hardly

move at all until several days after eclosion (Hagstrum and Smittle, 1980). It has also been noted that a

cannibalized pupa is “frequently left to be counted and plainly bears its mortal scars.” (Park et al., 1965).

We have never observed wounded or partial pupae, which is further evidence that both adult-on-pupa and

larva-on-pupa cannibalism is negligible.

There are a few old reports of adults consuming larvae (Chapman, 1928), but it has often been assumed

(Sokoloff, 1974, p. 138) that this interaction is negligible, given the high mobility of both life-stages. Adults

can take up to 15 minutes to eat a single egg (Park, 1934), so it is hard to imagine that an adult could

capture a larva for long enough to inflict a mortal wound. To our knowledge, no direct experimental evidence

is available, but Strawbridge (1953) used a regression approach and concluded that adults cannibalized the

immobile but sclerotized last-instar larvae more than early-instar larvae. Given the similarity between the

last-instar larvae and the pupae, and the low rate of adult-on-pupa cannibalism, it is reasonable to assume

that adult-on-larva cannibalism is small. It has also been suggested that Strawbridge’s estimates of adult-
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on-early-instar cannibalism could be entirely accounted for by density-independent larval mortality (Park

et al., 1965).

Given the highly cannibalistic nature of Tribolium and the size disparity between early and late instar

larvae, one might rightfully wonder whether larva-on-larva cannibalism is significant. However, larva-on-

larva cannibalism is negligible, if not non-existent (Park et al., 1965). This finding, taken with 1) the finding

that adult-on-larva cannibalism is rare, and 2) that egg consumption can take 15 minutes, suggests that the

adult beetles need immobile prey.

3.1.B Further justification of model structure

Here we justify — mostly on pragmatic & computational grounds — a few peculiar aspects of our model.

First, it may seem strange that we fix the maximum egg-to-adult survival probability at θL = 0.91; after

all, the three datasets clearly correspond to systems with different demographic parameters. When fitting

the stochastic models, we found that θL and α were effectively non-identifiable when we allowed both

parameters to be estimated from the data (constrained only by weakly informative priors) i.e., θL and α are

highly correlated in regions of high posterior density. Non-identifiability leads to large uncertainties in the

values of either parameter. More importantly, it causes computational issues (specifically, divergences in the

trajectories of Hamiltonian Monte Carlo) that can lead to biased estimation for all parameters.

Because θL and α are nearly non-identifiable, any difference between 0.91 and the true value of θL will

be “absorbed” by the estimate of α. For example, if the true effective fecundity is αθL = 10, and the

true maximum egg-to-adult survival is θL = 0.80, then an unbiased model fitting procedure will produce

α̂0.91 = 10, where the estimate of the oviposition rate is α̂ = θL/0.91. Therefore, fixing θL does not

dramatically change model predictions, though it does pollute the interpretation of α̂. We also have good

reason to believe that θL = 0.91 is approximately correct, since survival probabilities are relatively invariant

in the temperature range 22.5- 37.5 degrees C (Sokoloff, 1974, p. 57-66).

Second, in the full stochastic model (Appendix 3.1.E), the number of eggs surviving to adulthood in non-

crash replicates is modelled as binomial distributed with z (t) trials (i.e., the number of eggs) and success

probability θL. A more complete model would incorporate several rounds of binomial survival — one for

each life stage transition. However, we do not have the data to estimate these transition probabilities. Such

experiments would be difficult, since counting eggs is arduous, early instar larvae fall through our finest sieves,

and handling causes significant pupal mortality (Ryan and Nathanson, 1969). Estimating these transition

probabilities indirectly (i.e., integrating / summing conditional likelihoods over possible combinations of eggs,

larval instars, and pupae) is computationally infeasible. We would expect that this limitation of our model
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would result in artificially thin tails in the distribution of beetles surviving to adulthood (it is well-known

that mixtures of distributions produce heavy-tailed distributions; e.g., Allen et al., 2001). However, this

appears not to be the case (Fig.3.9, right panel).

Third, we model egg-to-adult survival as a function of egg density, even though population crashes are

caused by high larval density. This modelling decision can be justified on the grounds that egg density is a

good proxy for larval density. The egg-hatch probability is necessarily independent of egg-density (because

eggs are sedentary and non-interactive), so the average number of larvae is always proportional to the number

of eggs.

Finally, our model states that the die-off threshold decreases with initial population size: z∗ = γ0−γ1n (t).

If the die-off threshold did not decrease with n (t), one would expect that population crashes would become

less frequent at sufficiently high n (t), since the average number of eggs decreases with n (t) (as the effective

cannibalism rate increases). This is not the case. In Dataset 2, for very large n (t), we see an increase the

frequency of crashes, along with a decrease in the average n (t+ 1) for non-crashing replicates (Fig. 3.2 in

the main text) consistent with an increase in the effective cannibalism rate. Figure 3.6 clearly shows that the

crash frequency increases with n (t) and the length of the oviposition period. Both of these factors contribute

to the “conditioning of the medium” (Sokoloff, 1974, p. 150) — the nutritive depletion of the flour, along

with the accumulation of feces and ethylquinones — which likely engenders larval die-offs. The length of the

oviposition period does not need to be factored into the die-off threshold equation (i.e., z∗ = γ0 − γ1n (t)),

since the full stochastic model is fit with the subset of data where oviposition period ≈ 7days.
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Figure 3.6: The frequency of population crashes increases with n(t) and the length of the oviposition period;

data from Dataset 2. Sample sizes for each point ranges from 13 to 33 replicates.

3.1.C Stochastic modelling general information

All modelling code is available at https://github.com/ejohnson6767/castaneum_crash. See the file README.txt

for file descriptions. Our modelling approach has two steps.

1. We determined the important sources of stochasticity in beetle dynamics by comparing eleven sub-

models with different combinations and variants of the four main sources of stochasticity: demographic

stochasticity, demographic heterogeneity, sex-ratio stochasticity, and environmental stochasticity. For

technical / computational reasons that will be explained, these sub-models do not include demographic

stochasticity in egg-to-adult survival, nor do they include our mechanism of population crashes; natu-

rally, they are fit using only the subset of data for which population crashes did not occur (see Appendix

3.1.D for details). Using graphical evidence and cross-validation, we select a single best-fit model (de-

scribed fully in Appendix 3.1.E), which happens to include the processes of sex-ratio stochasticity and

demographic stochasticity in oviposition.
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2. We fit the full stochastic model, which includes the processes of sex-ratio stochasticity, demographic

stochasticity in oviposition, demographic stochasticity in egg-to-adult survival, and the mechanism of

population crashes (i.e., egg-to-adult survival is a decreasing function of egg-density).

All model-fitting was performed in the R software environment using the Stan program’s implementation

of Hamiltonian Monte Carlo. All models were formulated in a Bayesian framework, which in the current

context has several benefits (in comparison with a Maximum Likelihood approach). 1) Models with latent

variables can be efficiently fit using the program Stan, which only requires a conditional likelihood function.

Computing the marginal likelihood function for our full model would involve a (computationally infeasible)

triply-nested integration over latent females, eggs, and die-off thresholds. 2) Pair plots (i.e., bivariate plots of

posterior samples) can be used to troubleshoot — to identify non-identifiable parameters and posterior multi-

modality. 3) The joint posterior distribution of model parameters can be used to characterize parameter

uncertainty, which is useful in comparing the overall fit of different models. 4) Overfitting is avoided because

of the regularizing property of the prior distribution, and the fact that Bayesian inference is a form of model-

averaging (Hastie et al., 2009, Section 8.8) and thus avoids giving full credulity to parameter combinations

associated with spuriously large likelihoods.

All models were fit using weakly informative priors. The influence of the prior distributions were assessed

with the posterior contraction (Gelman et al., 2014), a measure of how much parameter uncertainty shrinks

a posteriori. The posterior contraction is defined as

c (θ|D) = 1− V arpost (θ|D)

V arprior (θ)
, (3.5)

where θ is an arbitrary parameter, D is the data, Varpost (θ|D) is the variance of the marginal posterior

distribution of θ, and V arprior (θ) is the variance of the marginal prior distribution of θ. To further ensure

model adequacy, we assessed a number of model diagnostics; see scripts/model_diagnostics.R at

https://github.com/ejohnson6767/castaneum_crash.

3.1.D Determining the important sources of stochasticity

In order to determine the important sources of stochasticity in beetle dynamics, we fit 11 sub-models that

contained various combinations of stochastic forces (full descriptions and likelihood functions are provided in

Appendix 3.1.G). The sub-models do not include demographic stochasticity in egg-to-adult survival, nor do

they include the mechanism of population crashes (i.e., egg-to-adult survival decreases with increasing egg

density). This focused approach is purely pragmatic: marginal likelihoods are required for model comparisons

(Merkle et al., 2019), and the marginal likelihood function of the full stochastic model is computationally
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intractable (due to nested integrations over the latent number of females, eggs, and die-off thresholds). The

sub-models are considerably simpler.

In addition, we do not expect that demographic stochasticity in egg-to-adult survival will contribute

significantly to the total variation in n(t + 1). In Dataset 2, sufficiently large n(t) produces an aver-

age non-crash n(t + 1) of approximately 300 individuals. Conditioned on the average number of eggs,

the standard deviation of n(t + 1) (attributed only to stochasticity in egg-to-adult survival) is approxi-

mately
√
(300/0.91) 0.91 (1− 0.91) ≈ 5, whereas the unconditional standard deviation of n(t+1) is approx-

imately 60. At n(t) = 5 and oviposition period = 1day, the average n(t + 1) is 17 individuals; thus, the

standard deviation of n(t + 1) (attributed only to stochasticity in egg-to-adult survival) is approximately√
(17/0.91) 0.91 (1− 0.91) ≈ 1, whereas the unconditional standard deviation of n(t+1) is approximately

23. Regardless of the number of eggs, the scale of variation in survival is only
√

0.91 (1− 0.91) ≈ 0.28, a

small number. Even if θL is not exactly equal to 0.91, any high survival probability will lead to low vari-

ance in Bernoulli sampling; as it turns out, survival probabilities are high for all life stages in the range of

temperature and humidity conditions that our beetles experienced (Sokoloff, 1974, p. 57-66).

The sub-models were fit for each dataset separately. We fit the sub-models to a subset of data — repli-

cates for which population crashes had not occurred — determined visually via one-generation populations

maps. Almost all parameters had marginal posterior contractions greater than 0.96, indicating that the

prior distribution had negligible influence. The sole exception was the return-rate parameter (for all three

datasets) of sub-model 3, the model with temporally autocorrelated fluctuations in oviposition rates. The

autoregressive parameter ρ was nearly non-identifiable with the demographic stochasticity parameter ηα,

leading to large posterior uncertainties. Diagnostics indicated that all sub-models — with the exception of

sub-models 10 and 11 — converged to the posterior distribution and had low Monte Carlo error.

Sub-models were compared using Pareto-Smoothed Importance Sampling Leave-One-Out Cross Valida-

tion (PSIS LOOCV; Vehtari et al., 2017) with expected log predictive density as the loss function. This

method of model comparison is preferable to information criteria-based methods, which do not account

for parameter uncertainty, are not well-defined for hierarchical models, and which only approximate cross-

validation error asymptotically for linear models.

Cross Validation results are presented in Tables 3.2–3.4. Across all datasets, many of the best-fit sub-

models included demographic stochasticity and/or some form of demographic heterogeneity (recall that

sex-ratio stochasticity is a special case of demographic heterogeneity). There seems to be no predictive

benefit to including demographic stochasticity in cannibalism, indicating that either cannibalism rates do

not vary appreciably over time (which is doubtful), or that demographic stochasticity in cannibalism is

effectively modelled by increasing the demographic stochasticity in oviposition. There also seems to be
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no predictive benefit of including both demographic heterogeneity and sex-ratio stochasticity. Sub-models

with environmental stochasticity performed poorly, either running into computational issues or generating

low likelihoods. This is not too surprising, seeing as how the beetles lived in temperature and humidity-

controlled incubators.

We give special attention to the Cross Validation results of Dataset 2 (Table 3.3). Dataset 2 has multiple

oviposition period lengths and the most replicates by far. Without multiple oviposition period lengths,

the parameters α and β0 are highly correlated among posterior samples, leading to high uncertainty in the

marginal posteriors of both parameters.

According to Cross Validation, the best-fit sub-model for Dataset 2 was sub-model 5, which featured

demographic stochasticity and demographic heterogeneity in oviposition rates. However, there is not strong

evidence for the superiority of sub-model 5 compared to sub-models 1, 5, and 6. Because Model 1 is more

parsimonious, represents the same process (sex-ratio stochasticity is a type of demographic heterogeneity),

and is more plausible a priori (we know that there is randomness in the sex-ratio), we regard sub-model 1

as the best sub-model for Dataset 2. Sub-models 2, 3, 7, 8, 9, and 11 were clearly worse.

There was no clear relationship between complexity and fit, with complexity being defined in relation to

sub-model 1: Sub-models 2, 3, 4, and 9 are more complex; sub-models 5 and 8 are similarly complex; and

sub-models 6, 7, and 11 are less complex. Interestingly, the sub-model with only demographic stochasticity

did not perform terribly worse than the best-fit sub-model. This is some indication that demographic

stochasticity is the dominant stochastic force in our beetle microcosms.

However, we believe that demographic heterogeneity of some sort (recall sex-ratio stochasticity is a special

case of demographic heterogeneity) plays an important role in our system. There are two pieces of evidence

for this. First, sex ratio stochasticity undeniably exists in our system, a priori (Howe, 1956). Second,

demographic heterogeneity accounts for the high variance in n(t + 1) at small n(t) for experiments with a

long oviposition period: a fluctuation in the sex ratio has compounding effects on egg production over the

oviposition period (because the sex ratio stays the same), whereas demographic stochasticity does not (a

large number of eggs one day is likely to be cancelled out by a small number of eggs the next day).

The verbal argument above is supported by the conjunction of mathematical and graphical evidence. In

the sub-model with only demographic stochasticity (sub-model 6, Appendix 3.1.G) the variance of n(t+1) is

necessarily an increasing function of n(t). This is what we see in experimental data with a 1-day oviposition

period (Fig. 3.7, left panels). In the sub-model with both demographic stochasticity and demographic

heterogeneity (sub-model 2, Appendix 3.1.G) the variance of n(t + 1) is necessarily an increasing function

of n(t) when the oviposition period is short. However, when the oviposition period is long, it is possible for

the variance of n(t + 1) to be a decreasing function of n(t). This is precisely what we see in experimental
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data with a 7-day oviposition period (Fig. 3.7, right panels).

Figure 3.7: The variance of n(t+ 1) increases with n(t) when the oviposition period is short, but decreases

with n(t) when the oviposition period is long; data from Dataset 2. The shaded regions on the bottom panels

represent the sample variance ± 2 standard errors. The formula for the standard error of the variance is

given by Rao (1973, p. 438). An outlier with n(t) = 5 and n(t + 1) > 125 has been excluded from the left

panels (the 1-day oviposition period data), since this datum almost certainly represents experimental error.

Undeniably, demographic stochasticity plays a large role in our beetle microcosms. In a sub-model with
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only demographic heterogeneity (sub-model 7, Appendix 3.1.G), the variance of n (t+ 1) goes to zero for

sufficiently large n (t). This prediction is obviously contradicted by the empirical time-one population maps

(Fig. 3.3 in the main text). In a model with only environmental stochasticity (sub-model 11, Appendix

3.1.G), the variance of n (t+ 1) should increase quadratically with n (t) for sufficiently small s×n (t). Again,

this pattern does not appear in the data (Fig. 3.7, bottom-left panel).

We selected sub-model 1 as the all-purpose, best-fit sub-model for all datasets. This decision was based

on 1) the strong a priori evidence for sex ratio stochasticity, 2) the strong graphical evidence for both demo-

graphic stochasticity and demographic heterogeneity (of some variety), 3) the evidence (a priori, graphical,

and Cross Validation) against the appreciable influence of environmental stochasticity, and 4) the Cross

Validation results for dataset 2 (which are given more inferential weight for reasons previously discussed).

3.1.E Full stochastic model description

Here we describe the full stochastic model, i.e., sub-model 1 (with sex-ratio stochasticity and demographic

stochasticity) with the mechanism of population crashes and demographic stochasticity in egg-to-adult sur-

vival. Because Hamiltonian Monte Carlo is a gradient-based method, all of the model’s parameters (including

the number of females and eggs) are treated as continuous variables. Therefore, we often utilize the normal

approximation to the binomial distribution: a binomial distribution with n trials and success probability

p is approximated by a zero-truncated normal (hereby denoted Normaltrunc) with mean np and variance

np(1− p). model parameters are described in Appendix, Table S3.1.

The full stochastic model has several notable features:

1. Sex-ratio stochasticity. Even though flour beetles have a 50 : 50 sex ratio in large populations (Howe,

1956), the sex ratio may fluctuate substantially in small populations. The number of females is binomial

distributed with success probability = 1/2. We used the normal approximation, such that the number

of females given x adults is drawn from a zero-truncated normal distribution with mean x/2 and

variance x/4.

2. Demographic stochasticity in oviposition. In each moment, each female has an oviposition rate that is

drawn from a normal distribution with mean α and variance ηα
2. Because each female’s oviposition

rate is drawn independently, the sum of oviposition rates fluctuates with variance f ηα
2 in a population

with f females. For notational simplicity, the explicit generation-time dependence (e.g., f(t)) has been

suppressed. The differential equation for egg-production in the main text (see Methods) becomes the

stochastic differential equation (SDE),
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dz(h) = f (α− β z (h)) dh+
√
f ηαdWh, (3.6)

where h is the number of days since the beginning of the oviposition period, β is the effective cannibalism

rate, and dWh is an increment of the Weiner Process. Recall that β = β(t) = β0 − β1n(t). The above

SDE is associated with a Fokker-Planck equation for the probability of egg density p(z). The Fokker-

Planck equation is

dp (z, h)

dh
= − ∂

∂z
[f (α− β z) p (z, h)]

1

2

∂2

∂z2
[
f η2α p (z, h)

]
, boundary conditions : p(z, 0) = δ (z) ,

(3.7)

where δ (z) is the Dirac-delta function. This partial differential equation can be solved using the Fourier

method. After an oviposition period of s days, the egg ‘density’ z is distributed normally with mean
α(1−e−fβs)

β and standard deviation
√

η2
α(1−e−2fβs)

2β .

3. Varying thresholds for die-offs. If the die-off threshold (denoted z∗) was the same for every replicate

population, the minimum z∗ would be determined by the largest n(t+1) across replicates. Put another

way, a fixed z∗ would not allow for an anomalously large number of eggs to survive to adulthood.

Instead, we let each replicate have its own threshold, drawn from a zero-truncated normal distribution

with mean µz∗ and standard deviation σz∗ .

Demographic stochasticity in egg-to-adult survival. We found that for replicates with population

crashes, V ar (n (t+ 1)) was larger than expected under binomial survival. This may be a consequence

of multiple rounds of survival (for different life-stages) or microenvironments within a single replicate.

Regardless, we accounted for this excess noise with the parameter, ϵH , the scale of fluctuations in the

egg-to-adult survival probability when there are High numbers of eggs. Because egg survival depends

on both the replicate-specific adults n(t) and the replicate-specific die-off threshold z∗, egg-to-adult

survival (simply denoted θ) is also a replicate-specific parameter.

3.1.F Full stochastic model, fitting details

We use the variables xi and yi to denote the n(t) and n(t+1) of the i-th replicate, respectively. The subscript

i also indexes replicate-specific parameters and oviposition period. Again, we suppress the notation for

dependence on the generation number t. A table of model variables is provided in the Appendix, Table S2.

The model is technically a doubly-nested hierarchical model, with parameters θi and ϵi (for each replicate
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i); hyperparameters zi and z∗i ; and hyper-hyperparameters α, ηα, β0, β1, k, σz∗ , γ0, γ1, θL, ϵH , f i. There are

many parameters for the numbers of females, fi (one for each replicate), but these are highly constrained by

Mendel’s law of segregation: females are binomial distributed with xi trials and success probability 1/2. The

variables µZi , σZi , µzi∗ , βi, and ϵL are intermediate quantities (i.e., they can be derived from parameters).

(Approximate) Binomial sampling of females

fi ∼ Normaltrunc(mean = xi/2, sd =
√
xi/2) (3.8)

Process model for egg production

µZi
=

α
(
1− e−fiβisi

)
βi

(3.9)

σZi =

√
η2α (1− e−2fiβisi)

2βi
(3.10)

βi = β0 + β1xi (3.11)

(latent) data model for egg production

zi ∼ Normaltrunc (mean = µZi
, sd = σZi

) (3.12)

Varying thresholds for larval die-offs

z∗i ∼ Normaltrunc (mean = µzi∗ , sd = σz∗) (3.13)

µzi∗ = γ0 + γ1xi (3.14)

Per-capita larval survival

θi = θL − θL

1 + e−k(zi−z∗
i )

(3.15)

ϵL =
√
θL (1− θL) (3.16)

ϵi = ϵL − ϵL − ϵH

1 + e−k(zi−z∗
i )

(3.17)

Data model for beetle abundance at time t+1

yi ∼ Normaltrunc(mean = θizi, sd = ϵi
√
zi ) (3.18)
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3.1.G Sub-model likelihood functions

For each sub-model, we describe the probability of attaining z eggs given f female beetles. Here we suppress

the notation for dependence on the generation number and the replicate number. Since the egg-to-adult

survival probability is treated as a constant 0.91 in the sub-models, the probability of attaining y adults

given f females is prob (y|f) = prob (z /0.91|f). The probability of y adults given x initial adults can be

computed by marginalizing over the latent number of females: prob (y|f) =
∑x

f=0 prob (z/0.91|f) prob (f |x).

For some of the models, the true probability distribution of z given f is not a gaussian, but we will

nevertheless model the data as if it came from the gaussian. This is done for the pragmatic reason that

the PDF is often difficult or impossible to compute analytically, but the mean and variance of the PDF

are easy to compute using the property of Ito Isometry. Many distributions can approximate the normal

distribution (e.g., the gamma distribution as the shape parameter becomes large), and our data (for non-

crash replicates) appears to be approximately normally distributed for nearly every n(t). In models without

sex-ratio stochasticity, the number of females is defined as f = x/2.

1. Model with only demographic stochasticity (in oviposition rates) and sex-ratio stochastic-

ity. This model is described in Appendix 3.1.E, point 2. Each female has an independently fluctuating

oviposition rate with temporal mean α. The likelihood function is the density of a normal distribution

with mean α
(
1− e−fβs

)
/β and variance ηα

2
(
1− e−2fβs

)
/ (2β). The likelihood is

prob (z|f, α, β, ηα) =

exp

−
βe2βfs

(
z−α−αeβ(−f)s

β

)2

η2
α(e2βfs−1)


√
π
√

η2
αe−2βfs(e2βfs−1)

β

(3.19)

2. Model with demographic stochasticity (in oviposition rates), sex-ratio stochasticity, and

demographic heterogeneity (in oviposition rates). Each female’s time-averaged oviposition rate

is an independently and identically distributed random variable with mean µα and variance σ2
α such

that the population-average oviposition rate α is drawn from a normal distribution with mean µα and

variance σ2
α/f . To obtain the PDF for the number of eggs, we marginalize over the population average

oviposition rate,

∫ ∞

−∞
prob (z|f, α, β, ηα) prob (α|µα, σα) dα =

β exp

(
βfs− f(µα+eβfs(βz−µα))2

(eβfs−1)(βfη2
α(eβfs+1)+2σ2

α(eβfs−1))

)
√

π(eβfs−1)(βfη2
α(eβfs+1)+2σ2

α(eβfs−1))
f

(3.20)
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The integral of from −∞ to ∞ clearly produces an approximation, since oviposition rates cannot be

negative. The resulting PDF is a gaussian with mean µα

(
1− e−fβs

)
/β and variance

e−2βfs
(
eβfs − 1

) (
βfη2α

(
eβfs + 1

)
+ 2σ2

α

(
eβfs − 1

))
2β2f

(3.21)

3. Model with demographic stochasticity (in oviposition rates) with temporal autocorrela-

tion, and sex-ratio stochasticity. Here, females’ oviposition rates are temporally autocorrelated.

This model can be thought of as providing a sliding scale between demographic stochasticity and

demographic heterogeneity. When the autocorrelation time is short, females’ oviposition rates fluctu-

ate quickly as in the case of demographic stochasticity. When the autocorrelation time is very long,

the females’ oviposition rates are effectively constant over the course of the oviposition period (i.e.,

demographic heterogeneity).

Female number i has an oviposition rate µα + ζi, where the deviation from the mean oviposition rates

µα evolves in accordance with an Ornstein Uhlenbeck process:

dζi =
1

ρ
ζidt+ ηαdWi, (3.22)

where ρ is the characteristic timescale of autocorrelation, and dWi is an increment of the Weiner

Process.

The egg dynamics are given by the differential equation

dZ

dt
= f (µα − βZ) + fζ, (3.23)

where ζ = 1
f

∑f
i=1 ζi is the population average deviation. With the assumption that perturbations to

females’ oviposition rates are independent, ζ evolves according to the stochastic differential equation,

dζ =
1

ρ
ζdt+

ηα√
f
dW. (3.24)

We may now compute the mean and variance of Z using Ito Isometry. The mean is

α
(
1− e−fβs

)
/β, (3.25)

and the variance is
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−
ρ2η2αe

−2s(βf+ 1
ρ )
(
(βfρ− 1)

2
(
−e2s(βf+

1
ρ )
)
− 4βfρes(βf+

1
ρ ) + e

2s
ρ (βfρ+ 1) + βfρ (βfρ+ 1) e2βfs

)
2β (βfρ− 1)

2
(βfρ+ 1)

(3.26)

4. Model with demographic stochasticity (in both oviposition and cannibalism rates), and

sex-ratio stochasticity. In this model, cannibalism rates fluctuate over time. Individuals’ can-

nibalism rates are drawn from a normal distribution with mean µβ = β0 + β1nt and variance ηβ
2.

Fluctuations in cannibalism rates are independent of fluctuations in oviposition rates, leading to the

stochastic differential equation

dZ = f (µα − βZ) dt+
√
fηαdW1 +

√
fZηβdW2. (3.27)

The mean is α
(
1− e−fβs

)
/β and the variance is

e−2βfs
(
α2
(
2β2

(
efsη

2
β − 1

)
+ η4β

(
−
(
eβfs − 1

)2)
+ βη2β

(
−4eβfs + e2βfs + 3

))
+ β2η2α

(
β − η2β

)(
e2βfs − efsη

2
β

))
β2
(
2β2 + η4β − 3βη2β

)
(3.28)

5. Model with demographic stochasticity in oviposition rates and demographic heterogeneity

and oviposition rates. This model is the same as model 2 above, except that there is no sex-ratio

stochasticity. The number of females is simply f = nt/2.

6. Model with only demographic stochasticity. Same as model 1, but without sex-ratio stochasticity.

7. Model with only demographic heterogeneity. The population-average oviposition rate α is

drawn from a normal distribution with mean µα and variance σ2
α/F . Because there is no demographic

stochasticity, conditioned on α, the number of eggs is always α
(
1− e−fβs

)
/β. Using the standard

transformation of variables formula to transform the PDF of α to the PDF of Z, we get

prob (z|f, µα, β, σα) =

β
√
f exp

(
βfs−

f
(
µα− βzeβfs

eβfs−1

)
2

2σ2
α

)
√
2πσα (eβfs − 1)

(3.29)

which is a normal distribution with mean α
(
1− e−fβs

)
/β and variance

σ2
αe−2βfs(eβfs−1)

2

β2f .
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8. Model with demographic heterogeneity and sex-ratio stochasticity. Same as model 7, but

with sex-ratio stochasticity.

9. Model with demographic stochasticity, sex-ratio stochasticity, and environmental stochas-

ticity. Each female in a replicate population has the same time-averaged oviposition rate, α. However,

α is different from replicate-to-replicate, because α is drawn from a normal distribution with mean µα

and variance γ2
α. To obtain the PDF for the number of eggs, we marginalize over α:

∫ ∞

−∞
prob (z|f, α, β, ηα) prob (α|µα, γα) dα = −

β exp

(
βfs− (µα+eβfs(βz−µα))2

(eβfs−1)(2γ2
α(eβfs−1)+βη2

α(eβfs+1))

)
√
π (eβfs − 1) (2γ2

α (eβfs − 1) + βη2α (eβfs + 1))
.

(3.30)

The resulting PDF is a gaussian with mean µα

(
1− e−fβs

)
/β and variance

e−2βfs
(
eβfs − 1

) (
2γ2

α

(
eβfs − 1

)
+ βη2α

(
eβfs + 1

))
2β2

(3.31)

10. Model with sex-ratio stochasticity and environmental stochasticity. The population-specific

oviposition rate α (shared across all females in a replicate population) is drawn from a normal distribu-

tion with mean µα and variance γ2
α. Conditioned on α, the number of eggs is always α

(
1− e−fβs

)
/β.

Using the standard transformation of variables formula to transform the PDF of α to the PDF of Z,

we get

prob (z|f, µα, β, γα) =

β exp

(
βfs−

(
µα− βzeβfs

eβfs−1

)
2

2γ2
α

)
√
2πγα (eβfs − 1)

(3.32)

which is a normal distribution with mean α
(
1− e−fβs

)
/β and variance

e−2βfs
(
eβfs − 1

) (
2γ2

α

(
eβfs − 1

))
2β2

(3.33)

11. Model with environmental stochasticity. Same as model 10, but with no sex-ratio stochasticity.

3.1.H Heavy tails

Here we examine the per capita growth rates (i.e., r = log (n (t+ 1) /n (t))) of Dataset 2 in the range

n(t) ∈ [12, 400]. Visually, the distribution of per capita growth rates appears has a heavy left tail (Fig. 3.8).
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There is no universal definition of a heavy-tailed distribution, but we will examine our data in light of two

common definitions of heavy-tailed distributions: sub-exponential tail decay and infinite variance.

Figure 3.8: The histogram of per capita growth rates displays substantial right skew, with a putatively heavy

left tail. The data is from Dataset 2, subsetted so that oviposition period = 7 days, and n (t) ∈ [12, 400].

Visually, the distribution of n(t+1) is very similar over this range of n(t), thus justifying the aggregation of

data.

The one-sided exponential distribution with rate parameter λ has the probability density

f (x;λ) = λe−λx (3.34)

for x ≥ 0. The tail probability is equivalent to the inverse cumulative distribution function,

∫ ∞

x

f (s;λ) ds = e−λx, (3.35)

the logarithm of which is simply −λx.
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We can distinguish heavy-tailed and thin-tailed distributions from each other by plotting the logarithm

of the inverse empirical CDF (inverse eCDF), on the y-axis and the absolute deviation from the mean

on the x-axis. Thin-tailed distributions should display a linear or concave-down relationship. Heavy-tailed

distributions should display a concave-up relationship. Figure 3.9 shows that the right tail of the distribution

of r is concave-down, whereas the left tail (which includes population crashes) is concave-up.

Figure 3.9: The logarithm of the inverse empirical cumulative distribution function, as a function of the

Absolute value of n (t+ 1)−n (t+ 1). A concave-up relationship indicates sub-exponential tail decay, i.e., a

heavy tail. The data is from Dataset 2, subsetted so that oviposition period = 7 days, and n (t) ∈ [12, 400].

Another definition of a heavy-tailed distribution is any distribution with infinite variance. A power law

distribution has the probability density

f (x;ω) = cx−ω, (3.36)

for sufficiently large x (the symbol c is a normalizing constant). The contribution of a tail to the variance

is

∫ ∞

x

(s− µ)
2
f (s;ω) ds → cx3−ω

ω − 3
, as x → ∞. (3.37)

The contribution of the tail to the variance grows when ω ≤ 3, so the variance is finite only when ω > 3.

The inverse CDF goes to c x1−ω

−1+ω as x → ∞. In turn, the logarithm of the inverse CDF goes to
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log

(
c

ω − 1

)
− (1− ω) log(x), as x → ∞. (3.38)

From this equation, we can see that the logarithm of the inverse CDF is a linearly decreasing function

of log (x). When the distribution has infinite variance, the linear relationship has slope ≥ −2. When the

distribution has finite variance, the linear relationship has slope < −2.

Figure 3.10 shows the tail data with overlaid lines of slope = −2. The right tail shows faster than

cubic decay, the hallmark of finite variance. The left tail is irregular, showing approximately cubic decay

en masse, but possibly settling on faster than cubic decay in the far reaches of the tail. The distribution

of r is borderline infinite-variance. Technically, the variance is automatically infinite since extinction events

correspond to r = log(0) = −∞, but we have omitted extinction events from our analysis here.

Figure 3.10: The logarithm of the inverse empirical cumulative distribution function, as a function of

log
(∣∣∣n (t+ 1)− n (t+ 1)

∣∣∣). A tail with slope ≥ −2 indicates that the distribution has infinite variance. The

data is from Dataset 2, subsetted so that oviposition period = 7 days, and n (t) ∈ [12, 400].

Data availability statement

Code is available on GitHub, https://github.com/ejohnson6767/castaneum_crash.
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Table 3.1: Symbols for data and model parameters.

Description Units

Inputs/
Outputs

xi final abundance, n(t), of the ith replicate beetles
yi final abundance, n(t+ 1), of the ith replicate beetles
si oviposition period; how long adults are allowed to oviposit in fresh media days

Parameters

fi abundance of females beetles
z number of eggs eggs
α mean average oviposition rate, i.e., the oviposition rate, averaged across time and

all females
eggs per female
per day

βi mean cannibalism rate, i.e., the cannibalism rate averaged across time and all
females in replicate i

eggs per female
per egg per day

β0 the cannibalism rate when there are zero adult beetles eggs per female
per egg per day

β1 the number of units by which cannibalism rate changes for each additional adult. eggs per female
per egg per day
per nt

ηα scale of demographic stochasticity in oviposition rates; the standard deviation of
the distribution from which oviposition rates are drawn at each point in time

eggs per female
per day

z∗i replicate-specific die-off threshold. When approximately z∗i eggs are present, the
egg-to-adult survival is halfway between θL = 0.91 and θH

eggs

µzi∗ mean of the truncated normal distribution from which replicate-specific die-off
thresholds are drawn

eggs

σz∗ standard deviation of the truncated normal distribution from which replicate-
specific die-off thresholds are drawn

eggs

θL egg-to-adult survival probability when there are few eggs; value is fixed at 0.91
based on a previous experiment

dimensionless

θi The mean egg-to-adult survival probability of the ith replicate; given z eggs, the
mean number of adults is θiz

dimensionless

ϵL The scale of fluctuations in the egg-to-adult survival probability when there are
a Low number of eggs; defined as

√
θL (1− θL).

dimensionless

ϵH The scale of fluctuations in the egg-to-adult survival probability when there are a
High number of eggs; analogous to the standard deviation of a Bernoulli random
variable.

dimensionless

ϵi The standard deviation in the egg-to-adult survival probability of the ith replicate;
given z eggs, the standard deviation of the number of adults is ϵi

√
z

dimensionless

γ0 the mean die-off threshold when there are zero adult beetles dimensionless
γ1 the number of units by which the mean die-off threshold decreases for each addi-

tional adult.
per adult
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Table 3.2: Sub-model comparisons for the non-crash subset of Dataset 1 (# replicates = 237). The acronym
“elpd” stands for expected log predictive density. êlpd is an estimate of elpd, computed using Pareto
Smoothed Importance Sampling, Leave-One-Out Cross Validation (PSIS LOO) as implemented by the loo
package (Vehtari et al., 2017). ∆êlpd is the difference with respect to the best-fit model. SE

(
∆êlpd

)
is the

estimate of the standard error of ∆êlpd. The effective number of parameters is calculated as the difference
between êlpd and the non-cross-validated log predictive density; this quantity is analogous to the bias cor-
rection term in AIC. Sub-models 4 & 10 could not be effectively fit, hence the NAs; diagnostics indicated
high Monte Carlo error and that the sampler did not converge.

Description ∆êlpd SE (∆elpd) # Effective parameters

demographic stochasticity (oviposition) 0.00 0.00 6.97
demographic stochasticity (oviposition), and demo-
graphic heterogeneity (oviposition)

-0.15 0.38 6.93

demographic stochasticity (oviposition), sex-ratio
stochasticity

-9.55 1.32 7.30

demographic stochasticity (oviposition), sex-ratio
stochasticity, and demographic heterogeneity (ovipo-
sition)

-10.69 1.52 7.56

demographic stochasticity (oviposition), sex-ratio
stochasticity, and environmental stochasticity (ovipo-
sition)

-12.47 16.37 25.13

environmental stochasticity (oviposition), sex-ratio
stochasticity

-13.02 18.39 1.71

demographic stochasticity (oviposition) with temporal
autocorrelation, sex-ratio stochasticity

-18.17 2.61 7.62

environmental stochasticity (oviposition) -30.21 19.43 4.11
demographic heterogeneity (oviposition) -99.94 10.33 10.98
demographic heterogeneity (oviposition), sex-ratio
stochasticity

-104.57 10.25 10.88

demographic stochasticity (oviposition and cannibal-
ism), sex-ratio stochasticity

-320.27 171.91 337.24
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Table 3.3: Sub-model comparisons for the non-crash subset of Dataset 2 (# replicates = 1548). The
acronym “elpd” stands for expected log predictive density. êlpd is an estimate of elpd, computed using
Pareto Smoothed Importance Sampling, Leave-One-Out Cross Validation (PSIS LOO) as implemented by
the loo package (Vehtari et al., 2017). ∆êlpd is the difference with respect to the best-fit model. SE

(
∆êlpd

)
is the estimate of the standard error of ∆êlpd. The effective number of parameters is calculated as the differ-
ence between êlpd and the non-cross-validated log predictive density; this quantity is analogous to the bias
correction term in AIC. Sub-model 10 could not be effectively fit, hence the NAs; diagnostics indicated high
Monte Carlo error and that the sampler did not converge.

Description ∆êlpd SE (∆elpd) # Effective parameters

demographic stochasticity (oviposition), and demo-
graphic heterogeneity (oviposition)

0.00 0.00 48.18

demographic stochasticity (oviposition), sex-ratio
stochasticity

-4.21 5.33 5.09

demographic stochasticity (oviposition and cannibal-
ism), sex-ratio stochasticity

-4.68 5.26 5.24

demographic stochasticity (oviposition) -12.89 3.05 4.86
demographic stochasticity (oviposition), sex-ratio
stochasticity, and environmental stochasticity (ovipo-
sition)

-12.95 5.03 6.46

demographic stochasticity (oviposition), sex-ratio
stochasticity, and demographic heterogeneity (ovipo-
sition)

-24.60 7.33 7.28

demographic stochasticity (oviposition) with temporal
autocorrelation, sex-ratio stochasticity

-50.51 9.42 6.69

environmental stochasticity (oviposition), sex-ratio
stochasticity

-119.93 19.56 2.26

environmental stochasticity (oviposition) -297.65 20.74 5.41
demographic heterogeneity (oviposition) -609.91 33.47 13.02
demographic heterogeneity (oviposition), sex-ratio
stochasticity

-630.64 33.22 13.15
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Table 3.4: Sub-model comparisons for the non-crash subset of Dataset 3 (# replicates = 107). The acronym
“elpd” stands for expected log predictive density. êlpd is an estimate of elpd, computed using Pareto
Smoothed Importance Sampling, Leave-One-Out Cross Validation (PSIS LOO) as implemented by the loo
package (Vehtari et al., 2017). ∆êlpd is the difference with respect to the best-fit model. SE

(
∆êlpd

)
is the

estimate of the standard error of ∆êlpd. The effective number of parameters is calculated as the difference
between êlpd and the non-cross-validated log predictive density; this quantity is analogous to the bias cor-
rection term in AIC. Sub-model 10 could not be effectively fit, hence the NAs; diagnostics indicated high
Monte Carlo error and that the sampler did not converge.

Description ∆êlpd SE (∆elpd) # Effective parameters

demographic heterogeneity (oviposition), sex-ratio
stochasticity

0.00 0.00 4.24

demographic stochasticity (oviposition) with temporal
autocorrelation, sex-ratio stochasticity

-0.21 1.36 4.36

demographic stochasticity (oviposition), sex-ratio
stochasticity

-0.24 2.14 4.17

demographic stochasticity (oviposition and cannibal-
ism), sex-ratio stochasticity

-0.81 2.52 4.57

demographic heterogeneity (oviposition) -3.42 4.16 5.86
demographic stochasticity (oviposition), and demo-
graphic heterogeneity (oviposition)

-3.51 3.56 28.39

demographic stochasticity (oviposition), sex-ratio
stochasticity, and environmental stochasticity (ovipo-
sition)

-4.29 4.03 7.40

demographic stochasticity (oviposition) -6.74 6.96 6.30
environmental stochasticity (oviposition), sex-ratio
stochasticity

-17.12 6.02 1.54

demographic stochasticity (oviposition), sex-ratio
stochasticity, and demographic heterogeneity (ovipo-
sition)

-23.51 8.32 14.78

environmental stochasticity (oviposition) -38.76 10.08 9.99
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