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Abstract

On Exotic Lagrangian Tori in CP2

by

Renato Ferreira de Velloso Vianna

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Denis Auroux, Chair

We construct an exotic monotone Lagrangian torus in CP2 using techniques motivated
by mirror symmetry. We show that it bounds 10 families of Maslov index 2 holomorphic
discs, and it follows that this exotic torus is not Hamiltonian isotopic to the known Clifford
and Chekanov tori.
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Chapter 1

Introduction

Using Darboux’s theorem, it is very easy to find Lagrangian tori inside a symplectic man-
ifold, because any open subset of Cn contains many. Therefore it has been of interest in
symplectic topology to understand Lagrangian submanifolds satisfying some global prop-
erty, such as monotonicity (for definition of monotone Lagrangian submanifold, see section
6). On the other hand, for a long time, the only known monotone Lagrangian tori in Cn (up
to Hamiltonian isotopy) were the products (S1(r))n ⊂ Cn, the so called Clifford tori. Only
in 1995, Chekanov introduced in his paper [5] the first examples of monotone Lagrangian
tori not Hamiltonian isotopic to these.

The Clifford torus can be symplectically embedded into the complex projective space
CPn and the product of spheres ×nCP1, giving monotone tori. Each one of these is also
known as a Clifford torus. Chekanov’s monotone tori were also known to give rise to exotic
monotone Lagrangian tori in these spaces. But it was only much later that Chekanov and
Schlenk, in [6], described in detail their family of exotic monotone Lagrangian tori in these
spaces, where by exotic we mean not Hamiltonian isotopic to the Clifford torus.

In [1], Auroux studied the SYZ mirror dual (a “Landau-Ginzburg model”) of a singular
special Lagrangian torus fibration given on the complement of an anticanonical divisor in
CP2. This fibration interpolates between the Clifford torus and a slightly modified version
of the Chekanov torus described by Eliashberg and Polterovich in [9]. This construction
explains how the count of holomorphic Maslov index 2 discs, described by the superpotential
of the Landau-Ginzburg model, changes from the Clifford torus to the Chekanov torus. The
key phenomenon that arises is wall-crossing : in the presence of the singular fiber, some other
fibers bound Maslov index 0 discs. These fibers form a “wall” on the base of the fibration,
separating the Clifford type torus fibers and the Chekanov type torus fibers, and accounting
for differences in the count of Maslov index 2 discs between the two sides of the wall.

In this paper, we reinterpret Auroux’s construction using almost toric fibrations as de-
fined by Symington in [19]; see also [17]. The base of the relevant almost toric fibration
can be represented by a base diagram that resembles the base of the moment map of the
standard torus action on CP2, except that it has a marked point called node in the interior,
representing the singular fiber, and a cut that encodes the monodromy around the singular
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fiber; see Figure 1.1, where nodes are represented by ×’s and cuts by dotted lines. Mod-
ifying the almost toric fibration of a four dimensional symplectic manifold by replacing a
corner (zero dimensional fiber) by a singular fiber in the interior with a cut is called nodal
trade, also referred in this paper as ‘smoothing the corner’, and lengthening or shortening
the cut is called nodal slide. Both operations are known to preserve the four-manifold up
to symplectomorphism; see [17,19].

The Clifford torus lies over the center of the standard moment map picture of CP2, and
the small cut introduced by a nodal trade points towards it. We can lengthen the cut to pass
through the Clifford torus, which develops a singularity and then becomes the Chekanov
torus. This is illustrated on the first three base diagrams of Figure 1.1.

We can continue further and introduce another cut by performing a nodal trade in one
of the remaining corners and lengthening it to pass by the Chekanov torus, giving rise to
another monotone torus, as illustrated in Figure 1.1. This particular torus is the main focus
of this paper. However, we also note that we can further perform a nodal trade on the
remaining corner and pass it through the central fiber. Not only that, we can then shorten
the other cuts to pass again through the central fiber, giving rise to an infinite range of
monotone tori, that we conjecture not to be Hamiltonian isotopic to each other.

To perform these modifications in a more orderly way, it is convenient to redraw the
almost toric base, after crossing the central fiber. This is done by fully cutting the almost
toric base in two, following the considered cut, then applying the monodromy associated
with the cut to one of the two components and gluing again with the other component. This
move straightens the edges that intersected the original cut, while creating a new cut in
the same direction as the original one but on the other side of the node. Each one of the
pictures at the bottom of Figure 1.1 is related with the one right above it via this cut and
glue process. Figure 2.3 illustrates more the case with only one cut: after we switch the cut
to the other side, we end up with an almost toric fibration on CP2 with a base that resembles
the polytope of the weighted projective space CP(1, 1, 4), but with a cut and node replacing
the corner that corresponds to the orbifold singularity, and having the Chekanov torus as its
central fiber. Following the isotopies generated by shortening the cut in the re-glued picture
to a limit situation where the node hits the corner illustrates a degeneration of CP2 into
CP(1, 1, 4).

More generally, the projective plane admits degenerations to weighted projective spaces
CP(a2, b2, c2), where (a, b, c) is a Markov triple, i. e., satisfies the Markov equation:

a2 + b2 + c2 = 3abc.

All Markov triples are obtained from (1,1,1) by a sequence of ‘mutations’ of the form

(a, b, c) → (a, b, c′ = 3ab− c)

These degenerations of CP2 to other wighted projective spaces potentially give an infinite
range of exotic monotone Lagrangian tori in CP2, since they are expected to bound different
number of Maslov index 2 holomorphic discs. This was conjectured by Galkin-Usnich in
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Figure 1.1: The procedure for going from the Clifford torus on the top left base diagram, to
the Chekanov torus (third base diagram) and to the T (1, 4, 25) torus (fifth base diagram) by
applying nodal trades and nodal slides, where dots represent the image of the monotone tori
in the base diagrams. Each of the bottom diagrams is equivalent to the one right above it
since they are related by the cut and glue process described above and illustrated in Figure
2.3. Affine lenghts of the edges are measured relative to the respective primitive vector. For
detailed explanation of pictures see section 2.3.

[11], where they also explain how to predict the superpotential related to each one of the
conjectured tori by applying successive ‘mutations’ to the superpotential (2.4).

A degeneration from CP2 to CP(a2, b2, c2) can be illustrated by almost toric pictures
by introducing cuts in all corners of the standard polytope of CP2 via nodal trades and
then performing cut and glue operations as described above, according to the sequence
of mutations that links (1, 1, 1) to (a, b, c). In view of this we call B(a2, b2, c2) the base
of an almost toric fibration on CP2 that is about to degenerate to the toric fibration of
CP(a2, b2, c2), i.e., whose picture resembles a moment polytope of CP(a2, b2, c2) but with
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appropriate cuts, not passing through the center, joining each corner to a node. We also call
T (a2, b2, c2) the central fiber of B(a2, b2, c2), so T (1, 1, 1) is the Clifford torus and T (1, 1, 4)
is the Chekanov torus. Recalling that walls of Maslov index 0 discs divide the base of a
singular Lagrangian fibration into chambers, we say that a fiber is of T (a2, b2, c2) type if it
belongs to a chamber that (continuously deforms to a chamber that) contains the monotone
T (a2, b2, c2) torus as a fiber, and hence bounds the same number of regular Maslov index 2
J-holomorphic discs as T (a2, b2, c2).

The aim of this paper is to study T (1, 4, 25). First we predict the number and relative
homotopy classes of regular Maslov index 2 J-holomorphic discs T (1, 4, 25) bounds using
wall-crossing formulas. Even though these formulas are believed to hold for the almost toric
case, they are not yet completely proven rigorously, and neither is the relation between J-
holomorphic discs and tropical curves upon degeneration to a ‘large limit’ almost complex
structure.

Therefore, after that we proceed to give, purely in the language of symplectic topology,
a complete self-contained proof of:

Theorem 1.0.1. There exists a monotone Lagrangian torus in CP2 endowed with the stan-
dard Fubini-Study form bounding 10 families of Maslov index 2 holomorphic discs, that is
not Hamiltonian isotopic to the Clifford and Chekanov tori.

For that we modify Auroux’s example described in [1], by considering a singular La-
grangian fibration that should interpolate between Chekanov type tori and T (1, 4, 25) type
tori.

More specifically, the rest of this paper is organized as follows.
In section 2, we review mirror symmetry in the complement of an anticanonical divisor,

Landau Ginzburg models, wall-crossing phenomena and Auroux’s example we mentioned
above, following the approach in [1, 2].

In section 2.3, we review almost toric fibrations and in section 2.4 we explain the rela-
tionship between J-holomorphic discs and tropical discs in almost toric fibrations, working
it out for the Example in section 2.1. Even though the approach is not totally rigorous,
in section 3 we use tropical discs and wall-crossing formulas for an almost toric fibration
to predict the existence of the T (1, 4, 25) torus and the number of Maslov index 2 discs it
bounds, by computing the superpotential in an informal manner.

In section 4, we use a explicit degeneration of CP2 into CP(1, 1, 4) to define T (1, 4, 25)
type Lagrangian tori and set the conditions for computing the Maslov index 2 holomorphic
discs it bounds.

In section 5, we compute first the relative homotopy classes allowed to have Maslov index
2 holomorphic discs and then the actual Maslov index 2 holomorphic discs a T (1, 4, 25) type
torus bounds. We also prove regularity and orient the moduli space of holomorphic discs in
each of the classes in order to determine the correct signed count for the superpotential.

In section 6, we modify the symplectic structure to construct the monotone T (1, 4, 25)
torus and prove that it is not symplectomorphic to the known Clifford and Chekanov tori.
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Finally, in section 7, we repeat the techniques of sections 3 and 4 to conjecture the existence
of an exotic monotone torus in CP1×CP1, bounding 9 families of Maslov index 2 holomorphic
discs.
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Chapter 2

Motivation: Mirror symmetry

This chapter is a summary of the introduction to mirror symmetry in the complement of a
anti-canonical divisor explained in [1, 2]. Mirror symmetry has been extended beyond the
Calabi-Yau setting by considering Landau-Ginzburg models. More precisely, it is conjec-
tured that the Mirror of a Kähler manifold (X,ω, J), with respect to a effective anticanon-
ical divisor D, is a Landau-Ginzburg model (X∨,W ), where X∨ is a mirror of the almost
Calabi-Yau X\D in the SYZ sense, i.e. a (corrected and completed) moduli space of special
Lagrangian tori in X\D equipped with rank 1 unitary local systems (U(1) flat connections
on the Lagrangian), and the superpotential W : X∨ → C given by Fukaya-Oh-Ohta-Ono’s
m0 obstruction to Floer homology, which is a holomorphic function defined by a count of
Maslov index 2 holomorphic discs with boundary on the Lagrangian; see [1,2]. Kontsevich’s
homological mirror symmetry conjecture predicts that the Fukaya category ofX is equivalent
to the derived category of singularities of the mirror Landau-Ginzburg model (X∨,W ).

In order to apply the SYZ construction to X\D, we have to represent it as a (special)
Lagrangian fibration over some base. Also, to ensure that the count of Maslov index 2
holomorphic discs is well defined, one asks L to satisfy some assumptions. More precisely,
we require:

(1) there are no non-constant holomorphic discs of Maslov index 0 in (X,L);

(2) holomorphic discs of Maslov index 2 in (X,L) are regular;

(3) there are no non-constant holomorphic spheres in X with c1(TX) · [S2] ≤ 0.

In this case one defines the superpotential W = m0 : X
∨ → C by

Definition 2.0.2.

m0(L,∇) =
∑

β,µ(β)=2

nβ(L)exp(−
∫
β

ω)hol∇(∂β) (2.1)
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where ∇ is a U(1) flat connection on L, hol∇(∂β) is the holonomy around the boundary
of β and nβ(L) is the (algebraic) count of holomorphic discs in the class β whose boundary
passes though a generic point p ∈ L. More precisely, considering M(L, β) the oriented (after
a choice of spin structure for L) moduli space of holomorphic discs with boundary in L
representing the class β, nβ(L) is the degree of its push forward under the evaluation map at a
boundary marked point as a multiple of fundamental class [L], i.e., ev∗[M(L, β)] = nβ(L)[L].

In principle one does not know if the series (2.1) converge. Thus, it is preferable to
replace the exponential by a formal parameter and the superpotential then takes values in
the Novikov field. Nevertheless, all the superpotentials computed in this paper are given by
a finite sums, and we use the exponential for consistency with [1].

For each β ∈ H2(X,L,Z), with ∂β ̸= 0 ∈ H1(L,Z), we can define a holomorphic function
zβ : X∨ → C∗ by

zβ(L,∇) = exp(−
∫
β

ω)hol∇(∂β); (2.2)

see Lemma 2.7 in [1].

Remark 2.0.3. Actually, the function zβ is only defined locally, for we have to keep track of
the relative class β under deformations of L. In the presence of non-trivial monodromy, which
appears when we allow the fibration to have singular fibers, the function becomes multivalued.

In some cases, including the Lagrangian fibrations considered in this paper, the map
H1(L) → H1(X) induced by inclusion is trivial, and then we can get a set of holomorphic
coordinates zj = zβj

by considering relative classes βj so that ∂βj forms a basis of H1(L).
Then our superpotential can be written as a Laurent series in terms of such holomorphic
coordinates.

In many cases we consider Lagrangian fibrations with singular fibers, and some of the La-
grangian fibers bound Maslov index 0 holomorphic discs, passing through the singular point.
The projection of such Lagrangians forms “walls” in the base, dividing it into chambers.
The count of Maslov index 2 holomorphic discs bounded by Lagragian fibers can vary for
different chambers. This is called “wall-crossing phenomenon”; see section 2.2 and section 3
of [1]. Nevertheless, one can still construct the mirror by gluing the various chambers of the
base using instanton corrections; see Proposition 3.9 and Conjecture 3.10 in [1].

The example below not only illustrates wall-crossing, but also serves as the main model
for the rest of the paper. For a more detailed account, see section 5 of [1] or section 3 of [2].

2.1 A motivating example

The following example is taken from [1], section 5. We will describe it in detail because our
main construction, given in section 4, can be thought as a further development of the same
ideas.

Consider CP2, equipped with the standard Fubini-Study Kähler form, and the anticanon-
ical divisor D = {(x : y : z); (xy − cz2)z = 0}, for some c ̸= 0. We will construct a family of
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Lagrangian tori in the complement of the divisor D. For this we look at the pencil of conics
defined by the rational map f : (x : y : z) 7→ (xy : z2). We will mostly work with f in the
affine coordinate given by z = 1, as a map from C2 to C, f(x, y) = xy. The fiber of f over
any non-zero complex number is then a smooth conic, while the fiber over 0 is the union of
two lines, and the fiber over ∞ is a double line.

There is a S1 action on each fiber of f given by (x, y) 7→ (eiθx, e−iθy). Recall that the
symplectic fibration f carries a natural connection induced by the symplectic form, whose
horizontal distribution is the symplectic orthogonal to the fiber. Our family of tori will
consist then of parallel transports of each S1 orbit, along circles in the base of the fibration,

centered at c ∈ C. We say that the height of an S1 orbit is the value of µ(x, y) = 1
2

|x|2−|y|2
1+|x|2+|y|2 ,

which is the negative of the moment map of the S1 action. Let Vθ be the vector field generated
by the S1 action. Since dµ = −ω(Vθ, ·) and Vθ is contained in the tangent space of the fibers,
we see that the moment map remains invariant under parallel transport. Therefore we get
that our family of Lagrangian tori is given by

Definition 2.1.1. Given r > 0, and a real number λ ∈ R, set

T c
r,λ = {(x : y : z); |f(x : y : z)− c| = r;µ(x : y : z) = λ}

=
{
(x, y); |xy − c| = r; |x|2 − |y|2 = 2λ(1 + |x|2 + |y|2)

}
. (2.3)

Figure 2.1: The special Lagrangian torus T c
r,λ in C2 \D (from [1])

Remark 2.1.2. All the pairs consisting of a symplectic fibration together with a map from
the symplectic manifold to R (real data) used to define the Lagrangian fibrations considered
in this paper form pseudotoric structures as defined by Tyurin in [20].

Note that actually T c
|c|,0 is a singular torus, pinched at (0, 0), so varying r and λ give

us a singular toric fibration. If r > |c|, we say that T c
r,λ is of Clifford type, and if r < |c|

, of Chekanov type. The motivation for this terminology is that in the first case we can
deform the circle centered at c with radius r in the base to a circle centered at the origin,
without crossing it, and with it we obtain a Lagrangian isotopy from T c

r,0 to a Clifford torus



CHAPTER 2. MOTIVATION: MIRROR SYMMETRY 9

S1(
√
r)× S1(

√
r). Not crossing the origin implies that no torus in the deformation bounds

Maslov index 0 discs, hence the count of Maslov index 2 discs remains the same; see section
5.2 of [1]. On the other hand, for r < |c|, T c

r,0 is the Eliashberg-Polterovich version of the
so-called Chekanov torus; see [9].

To compute the Maslov index of discs in terms of their algebraic intersection number
with the divisor D, one can prove that these Lagrangian tori are special with respect to
the holomorphic 2-form Ω(x, y) = (xy − c)−1dx ∧ dy. In general, we can associate to an
anticanonical divisor D a nonvanishing holomorphic n-form Ω on the complement X \ D
given by the inverse of a section of the anticanonical bundle that defines D. Recall the
following definition:

Definition 2.1.3. A Lagrangian submanifold L is said to be special Lagrangian, with respect
to Ω and with phase ϕ, if Im(e−iϕΩ)|L = 0.

For a proof that T c
r,λ are special Lagrangian with respect to Ω, see proposition 5.2 of [1].

The following is Lemma 3.1 of [1].

Lemma 2.1.4. If L ⊂ X\D is special Lagrangian, then for any relative homotopy class
β ∈ π2(X,L) the Maslov index of β, µ(β), is equal to twice the algebraic intersection number
β · [D].

It can also be shown that T c
r,λ bounds Maslov index 0 holomorphic discs if and only if

r = |c|. So we see that r = |c| creates a wall in the base of our Lagrangian fibration given
by pairs (r, λ). Then we need to treat the cases r > |c| and r < |c| separately.

For r > |c|, we argue that T c
r,λ is Lagrangian isotopic to a product torus S1(r1)× S1(r2),

without altering the disc count throughout the deformation. Denote by z1 and z2 respectively
the holomorphic coordinates on the mirror associated to the relative homotopy classes β1
and β2 of discs parallel to the x and y coordinate axes in (C2, S1(r1) × S1(r2)). Namely,
zi = exp(−

∫
βi
ω)hol∇(∂βi). We get from Proposition 4.3 of [1] that the superpotential

recording the counts of Maslov index 2 holomorphic discs bounded by T c
r,λ for r > |c| is given

by

W = z1 + z2 +
e−Λ

z1z2
, (2.4)

where Λ =
∫
[CP1]

ω. The term e−Λ

z1z2
corresponds to discs that project via f to a double

cover of C2 \∆ branched at infinity lying in the class [CP1] − β1 − β2 ∈ π2(CP2, T c
r,0). The

other terms z1 and z2 of the superpotential correspond to sections of f over the disc ∆
centered at c with radius r, intersecting respectively the components {x = 0} and {y = 0}
of the fiber f−1(0).

Now we look at the case r < |c|, and consider the special case λ = 0, the Chekanov torus
considered by Eliashberg-Polterovich in [9]. One family of Maslov index 2 holomorphic discs
lies over the disc ∆ centered at c with radius r, given by the intersection of f−1(∆) with
the lines x = eiθy. We denote by β their relative class in π2(CP2, T c

r,0). The other discs
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are harder to construct. Consider the class α of the Lefschetz thimble associated with the
critical point of f at the origin and the vanishing path [0, c− rearg(c)i]. One can see that α,
β and H = [CP1] form a basis of π2(CP2, T c

r,0). The following Lemma and Proposition, due
to Chekanov-Schlenk [6], have their proofs sketched in [1].

Lemma 2.1.5 (Chekanov-Schlenk [6]). The only classes in π2(CP2, T c
r,0) which may contain

Maslov index 2 holomorphic discs are β and H − 2β + kα for k ∈ {−1, 0, 1}.

Proposition 2.1.6 (Chekanov-Schlenk [6]). The torus T c
r,0 bounds a unique S1 family of

holomorphic discs in each of the classes β and H − 2β + kα for k ∈ {−1, 0, 1}. These discs
are regular, and the corresponding algebraic count is 2 for H−2β and 1 for the other classes.

Since deforming λ to 0 yields a Lagrangian isotopy from T c
r,λ to T c

r,0 in the complement
of f−1(0), so without encountering any Maslov index 0 holomorphic discs, the disc count
remains the same and we have that for r < |c| the superpotential is given by

W = u+
e−Λ

u2w
+ 2

e−Λ

u2
+
e−Λw

u2
= u+

e−Λ(1 + w)2

wu2
(2.5)

where u and w are the holomorphic coordinates on the mirror associated to the class β
and α.

Wall

Figure 2.2: Wall-crossing: Following a Maslov index 2 holomorphic disc through a Lagrangian
deformation of the fibers crossing a wall consisting of fibers bounding Maslov index 0 discs
(see Figure 2.7 for the tropical picture).
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2.2 Wall-crossing

In this section we explain the wall-crossing phenomenon. Then we see how it happens in
Example 2.1 and explain the relation between the two formulas for the superpotential in
terms of the wall-crossing at r = |c|, still following section 5 of [1].

Let us follow a Maslov index 2 holomorphic disc in a class γ′ through a Lagrangian
deformation of the fibers crossing a wall (formed by projection of fibers bounding Maslov
index 0 discs). Assume that the given disc continues to exist throughout the deformation.
The following phenomenon typically happens: if the boundary of such a disc intersects that
of a Maslov index 0 holomorphic disc in a class α while on the wall, they can be glued into
another Maslov index 2 disc, in the class γ = γ′+α, on the other side of the wall, besides the
deformation that passes through, in the “same” class γ′, without attaching the Maslov index
0 disc. Conversely, a Maslov index 2 holomorphic disc in a class γ can split into a Maslov
index 2 holomorphic disc in a class γ′ and a Maslov index 0 holomorphic disc in a class γ,
while on the wall, and then disappear after the Lagrangian passes through; see Figure 2.2.

We see how this phenomenon appears in the Example 2.1. Begin considering the case
where λ > 0, so T c

r,λ lies in the region where |x| > |y|. Then when r = |c| the torus intersects
{y = 0} in a circle bounding a Maslov index 0 disc, u0. This disc represents the class α, on
the Chekanov side, and β1 − β2, on the Clifford side. As r decreases through |c|, the family
of holomorphic discs in the class β2 on the Clifford side become the family of discs on the
class β on the Chekanov side, and the discs in the class H − β1 − β2 on the Clifford side
becomes the discs in the class H − 2β − α on the Chekanov side.

Since a disc in the class H − 2β − α, bounded by a torus over the wall r = |c|, intersects
u0 in [H−2β−α] · [α] = 2 points, new discs in the classes H−2β and H−2β+α arise from
attaching u0 to a disc in the class H − β1 − β2 = H − 2β − α at one or both points where
their boundaries intersect. On the other hand, a discs in the class β, at the wall, intersects
the Maslov index 0 disc u0 at one point. When crossed to the Clifford side, a disc in the
class β1 = β2 + α arrises from attaching u0 to a disc in the class β2 = β; see Figures 2.5,
2.6, 2.7 (in these figures, discs are represented tropically). Conversely, one can think that a
holomorphic disc in the class β1 on the Clifford side, when deformed towards the wall, breaks
into a holomorphic disc in the class β = β1 − α and the Maslov index 0 disc u0 and then
disappears on the Chekanov side.

For λ < 0, when r = |c| the torus intersects {x = 0} in a circle bounding a Maslov index
0 disc in the class β2 − β1 = −α. As r decreases through |c|, the families of holomorphic
discs that survive the deformation through the wall are in the classes β2 and H − β1 − β2
on the Clifford side, becoming β and H − 2β − α on the Chekanov side. As before, two new
families of discs are created in the classes H − 2β and H − 2β +α, while discs in the classes
β1 disappear, after wall-crossing.

The difference between the “naive” gluing formulas, which for λ > 0 matches β � β2 and
for λ < 0 matches β � β1, is due to the monodromy of the Lagrangian fibers T c

r,λ around
the nodal fiber T c

|c|,0, which is explained in the next section. However, one can perform wall-
crossing corrections to take care of this discrepancy and yield a single consistent gluing for
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both halves of the wall.
A holomorphic disc in the class β on the Chekanov side is thought to correspond to both

discs in the classes β1 and β2, taking into account the attachment of the holomorphic disc
u0 in the class α. In terms of the coordinates z1, z2 on the Clifford side, associated with β1
and β2, and coordinates u and w on the Chekanov side, associated with β and α, the gluing
becomes u� z1 + z2.

For λ > 0, one can think that the “naive” formula u = z2 is modified by a multiplicative
factor of 1 + w, i. e. , u = (1 + w)z2 = z1 + z2, as predicted in Proposition 3.9 of [1]. For
λ < 0, the correct change of coordinates is u = z1(1 +w−1) = z1 + z2, w

−1 = z2/z1, which is
the same as for λ > 0.

Taking the wall-crossing into account the correct change of coordinates in the mirror is
given as follows:

Homology Classes Coordinates

α � β1 − β2 w � z1
z2

β � {β1, β2} u� z1 + z2

H − 2β + {−1, 0, 1}α � H − β1 − β2
e−Λ(1+w)2

u2w
� e−Λ

z1z2

It is then easy to check that the formulas (2.4) and (2.5) for the superpotential, and this
corrected coordinate change, do match up.

2.3 Almost toric manifolds

The aim of this section is to explain the geometry of almost toric fibrations and use it for
a better understanding of the singular Lagrangian fibration in the previous example. Most
importantly, we can use it to construct other fibrations and predict the superpotential on
each of the chambers divided by the walls. This way we can predict existence of exotic
Lagrangian tori in almost toric manifolds, and in particular the torus in CP2 that appears
in Theorem 1.0.1. For a more detailed explanation of almost toric fibrations, see [17,19].

The following is definition 2.2 of [17]:

Definition 2.3.1. An almost toric fibration of a symplectic four manifold (M,ω) is a La-
grangian fibration π : (M,ω) → B such that any point of (M,ω) has a Darboux neighborhood
(with symplectic form dx1 ∧ dy1 + dx2 ∧ dy2) in which the map π has one of the following
forms:
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π(x, y) = (x1, x2), regular point,

π(x, y) = (x1, x
2
2 + y22), elliptic, corank one,

π(x, y) = (x21 + x22, x
2
2 + y22), elliptic, corank two,

π(x, y) = (x1y1 + x2y2, x1y2 − x2y1), nodal or focus-focus,

with respect to some choice of coordinates near the image point in B. An almost toric
manifold is a symplectic manifold equipped with an almost toric fibration. A toric fibration
is a Lagrangian fibration induced by an effective Hamiltonian torus action.

We call the image of each nodal singularity a node.
Recall that a Lagrangian fibration yields an integral affine structure, called symplectic,

on the complement of the singular values on the base, i.e. each tangent space contains a
distinguished lattice. These lattices are defined in terms of the isotropy subgroups of a
natural action of T ∗B onM given by the time-one flow of a vector field associated with each
covector of T ∗B. More precisely, take ξ ∈ T ∗B and consider the vector field Vξ defined by
ω(., Vξ) = π∗ξ. Set ξ · x = ϕξ(x), where ϕξ is the time-one flow of Vξ. Call Λ∗ the isotropy
subgroup of the action, which is a lattice such that (T ∗B/Λ∗, dαcan) and (M,ω) are locally
fiberwise symplectomorphic (here, αcan is induced by the canonical 1-form of T ∗B). This
induces two other lattices, the dual lattice, Λ given by Λb = {u ∈ TbB ; v∗u ∈ Z, ∀ v∗ ∈ Λ∗

b},
inside TB, and the vertical lattice, Λvert = {Vξ ; ξ ∈ Λ∗}, inside the vertical bundle in TM .
We call the pair (B,Λ) a almost toric base.

For an almost toric four manifold, the affine structure defined by the lattice above, com-
pletely determinesM up to symplectomorphism, at least when the base is either non-compact
or compact with non-empty boundary; see Corollary 5.4 in [19]. Also, since (T ∗B/Λ∗, dαcan)
and (M,ω) are locally fiberwise symplectomorphic, a basis of the lattice is in correspondence
with a basis of the first homology of the fiber over a regular point, H1(Fb). Therefore, the
topological monodromy around each node is equivalent to the integral affine monodromy.
The neighborhood of a nodal fiber is symplectomorphic to a standard model (see section 4.2
in [19]) and the monodromy around a singular fiber (of rank 1) is given by a Dehn twist. In
suitable coordinates the Dehn twist can be represented by the matrix :

A(1,0) =

(
1 1
0 1

)
A change of basis of H1(Fb) gives a conjugate of A(1,0), which is, in terms of its eigenvector

(a, b):

A(a,b) =

(
1− ab a2

−b2 1 + ab

)
Due to the monodromy, one cannot find an affine embedding of the base of an almost

toric fibration with nodes into R2 equipped with its standard affine structure Λ0. However,
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after removing a set of branch curves in the base B, i.e., a collection of disjoint properly
embedded curves connecting each node to a point in ∂B̄, it may be possible to define such
an embedding.

4

1

1∼ ∼=

Figure 2.3: The leftmost picture is a base diagram of the almost toric fibration of CP2 related
to the singular Lagrangian fibration given in Example 2.1 (for small c), having the Clifford
torus as its central fiber. The next base diagram is obtained by applying a nodal slide
passing through the Clifford torus, so that the central fiber becomes the Chekanov torus.
Following the arrows we first cut the previous picture in the direction of (1, 1), then we apply
the monodromy A(1,1) to the bottom part and finally we re-glue the parts to obtain a base
diagram representing the same almost toric fibration.

Definition 2.3.2 (3.2 of [17]). Suppose we have an integral affine embedding Φ : (B−R,Λ) →
(R2,Λ0), where (B,Λ) is an almost toric base and R is a set of branch curves. A base diagram
of (B,Λ) with respect to R and Φ is the image of Φ decorated with the following data:

- an x marking the location of each node and

- dashed lines indicating the portion of ∂Φ(B −R) that corresponds to R.
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Remark 2.3.3. The presence of monodromy in the affine structure on B implies the ex-
istence of monodromy in the affine structure induced on the mirror X∨. This explains the
discrepancy between the uncorrected coordinate changes across the two halves of the wall in
Example 2.1. See remark 5.11 in [1].

The affine direction(s) of the image of such a branch curve in R2 determine the mon-
odromy around the corresponding node. If the image is contained in a line with direction
(a, b), the monodromy is given by A(a,b); for a more detailed account of base diagrams, see
section 5.2 of [19]. For instance, the leftmost picture of Figure 2.3 represents the Lagrangian
fibration seen in Example 2.1. The ray represented by dashed lines in the direction (1, 1) is
an eigenvector of the monodromy, which hence is given by A(1,1).

Two almost toric surgery operations are of importance for us. They change the almost
toric fibration into another almost toric fibration of the same symplectic four manifold and
are defined as follows:

Definition 2.3.4 (4.1 of [17]). Let (B,Λi) be two almost toric bases, i = 1, 2. We say that
(B,Λ1) and (B,Λ2) are related by a nodal slide if there is a curve γ in B such that

- (B − γ,Λ1) and (B − γ,Λ2) are isomorphic,

- γ contains one node of (B,Λi) for each i and

- γ is contained in the eigenline (line preserved by the monodromy) through that node.

Definition 2.3.5 (4.2 of [17]). Let (Bi,Λi) be two almost toric bases, i = 1, 2. We say that
(B1,Λ1) and (B2,Λ2) differ by a nodal trade if each contains a curve γi starting at ∂Bi such
that (B1 − γ1,Λ1) and (B2 − γ2,Λ2) are isomorphic, and (B1,Λ1) has one less vertex than
(B2,Λ2).

Remark 2.3.6. The rightmost picture of Figure 2.3 is not considered to differ by a nodal
trade from the moment polytope of CP(1, 1, 4), because the latter, being the base of an orbifold
toric Lagrangian fibration, is not considered to be an almost toric base.

In Figure 2.3, the leftmost base diagram is obtained by applying a nodal trade to a
corner of the moment polytope of CP2, which is the base diagram for the standard toric
fibration of CP2. The following picture is then obtained by a nodal slide. As explained in
the introduction, once the singular fiber passes trough the Clifford torus, the central fiber
develops a singularity and then becomes the Chekanov torus. The rightmost picture is a
B(1, 1, 4) base diagram representing the same almost toric fibration. Shortening the cut to
a limit situation where it hits the corner describes a degeneration of CP2 into CP(1, 1, 4).
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2.4 Holomorphic discs viewed from almost toric

fibrations and wall-crossing

In this section we use almost toric pictures to describe a limit affine structure of the fibra-
tion for which holomorphic curves converge to tropical curves. We illustrate the Maslov
index 2 tropical discs given in this limit affine structure for the almost toric fibration con-
sidered of Example 2.1. This section is not intended to contain a rigorous approach to the
correspondence between tropical curves and holomorphic discs in an almost toric setting.

Assume one has an almost toric fibration with special Lagrangian fibers with respect to Ω,
a holomorphic 2-form with poles on the divisor D that projects to the boundary of the base
B. Then the interior of B carries a second affine structure, sometimes called complex. The
lattice which describes this affine structure, which we denote by Λc, is given by identifying
TbB ≃ H1(Lb,R), via the flux of the imaginary part of Ω and via Poincarè duality with
H1(Lb,R) ⊃ H1(Lb,Z). More precisely, for each vector v ∈ TbB one gets the element of
H1(Lb,R) given by the homomorphism

[γ] ∈ H1(Lb,R) 7→
d

dt

∣∣∣∣
t=0

∫
Γt

Im(Ω),

where Γt is given by any parallel transport of γ over a curve c(t) on the base, with c(0) = b
, c′(0) = v. Since Im(Ω) is a closed form, vanishing on the fibers, the above is independent
of c(t) and Γt, and hence well defined. A fiber over the boundary of B is infinitely far from
a given fiber over an interior point, since Ω has a pole on the divisor D.

Figure 2.4: After a deformation of the almost complex structure, J-holomorphic discs project
to amoebas eventually converging to tropical curves in the large complex structure limit.

In general, the projections to B of holomorphic curves, called amoebas, can be fairly
complicated. However, it is expected that under a suitable deformation of the almost complex
structure J towards a ‘large limit’ (where the base directions are stretched), the amoebas
converge to tropical curves; see Figure 2.4. Also, the wall generated by the singular fiber
converges to a straight line with respect to this affine structure, since it is the projection of a
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holomorphic curve containing Maslov index zero discs bounded by the fibers. Moreover, since
the boundary of such a disc represents the vanishing cycle in the neighborhood of the nodal
fiber, its homology class is fixed by the monodromy. Hence the straight line corresponding
to the wall is in the direction of the eigenvector of the affine monodromy. In a neighborhood
of a fiber away from the singular ones the almost toric fibration are expected to approach
TB/ϵΛc with ϵ → 0 at the limit. This way, the change of coordinates and monodromy for
this ‘large limit’ complex affine structure is given by the transpose inverse of the symplectic
affine structure defined in section 2.3, where the neighborhood of a regular fiber is isomorphic
to a neighborhood of T ∗B/Λ∗. Also, our ‘limit lattice’ at a point b on the base is identified
with H1(Lb,Z).

This principle is illustrated for Example 2.1 in Figures 2.5 and 2.6. In these two figures:

- The Lagrangian torus under consideration is the fiber over the thick point.

- The dashed lines represent the walls (long dashes) and the cuts (short dashes), and ‘x’
represents the node (singular fiber).

- A tropical disc is a tree whose edges are straight lines with rational slope in B, starting
at the torus and ending on the nodes or perpendicular to the boundary at infinity.
The internal vertices satisfy the balancing condition that the primitive integer vectors
entering each vertex of the tree, counted with multiplicity, must sum to 0.

- The Maslov index of the disc equals twice the number of intersection with the boundary
at infinity, i.e., the divisor.

- The multiplicity of each edge is depicted by the numbers of lines on Figure 2.6, but
on some other figures the multiplicities are represented by the thickness of the line, for
visual purposes (they can be computed taking into account the balancing condition).

- The vanishing cycle is represented by (−1, 1) on the lattice H1(Lb,Z).

The relation between these pictures and the formulas in section 2.1 is as follows: z1, z2
are coordinates on the Clifford side associated with the vectors (1, 0) and (0, 1), respectively,
and u, w are coordinates on the Chekanov side associated with the vectors (1, 0) and (−1, 1),
respectively, for the top part of the Chekanov side (when λ < 0). The direction of the edge
leaving the torus can be read off from the superpotential and is the negative of the vector
representing the exponents of the corresponding monomial. For instance, the disc associated
with the monomial e−Λ

z1z2
in (2.4) leaves the torus with tangent vector (1, 1) in Figure 2.5,

while the disc associated with the term e−Λ

u2 in (2.5) has tangent vector (2, 0) (multiplicity 2)
in Figure 2.6. We call this vector the “class” of the tropical disc.

The formulas for the two superpotentials are related by a wall-crossing transformation
(or mutation). We describe it now for the case of a two dimensional base. In what follows,
when referring to a particular fiber Lb, let β1, β2 be relative homotopy classes of discs with
boundary on Lb such that ∂β1 , ∂β2 are associated with (1, 0) and (0, 1) seen as elements of
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Figure 2.5: Clifford type torus.
W = z1 + z2 +

e−Λ

z1z2
.

Figure 2.6: Chekanov type torus. W = u +
e−Λ

u2w
+ 2 e−Λ

u2 + e−Λw
u2 = u+ e−Λ(1+w)2

u2 .

Figure 2.7: As in Example 2.1 (see also Figure 2.2), a disc in the class β2 breaks into a disc
in the class β1 and the exceptional disc u0, and disappears after crossing the wall, for λ < 0.

H1(Lb,Z), respectively. Moving the point b on the base, we keep denoting by β1, β2 the con-
tinuous deformations of this relative classes. Consider a wall in B coming from the projection
of a family of Maslov index zero discs propagating out of a node in the base along the affine
direction (m,n) ∈ Z2. (Here we only consider the part of the wall that lies on the positive half
of the eigenline generated by (m,n)). Set W+ = {v ∈ R2|{v, (m,n)} is positively oriented}
and W− = {v ∈ R2|{v, (m,n)} is negatively oriented}. Denote by z1, z2 (respectively u1,
u2), the coordinates associated with β1, β2 for the fibers Lb with b in the chamber contained
in W+ (respectively W−). The class of the primitive Maslov index zero discs bounded by
the fibers along the wall is of the form mβ1 + nβ2 + k[CP1] and hence is represented by the
monomial w = e−kΛzm1 z

n
2 = e−kΛum1 u

n
2 . The coordinates z1, z2 and u1, u2 are then related

by the:
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Wall-crossing formula
ur1u

s
2 
 zr1z

s
2(1 + w)nr−ms (2.6)

That way, knowing the superpotential on one side of the wall, it is expected that one can
compute the superpotential of the other side by applying the above wall-crossing formula.
Note that the absolute value of the exponent |nr −ms| is the intersection number between
a disc represented by zr1z

s
2 and the Maslov index zero disc at a fiber over the wall.
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Chapter 3

Predicting the enumerative geometry
of T (1, 4, 25)

In this chapter we apply the same ideas as in the previous section to another almost toric
fibration, any of the ones shown on Figure 3.1, to predict the superpotential of the T (1, 4, 25)
type torus, obtained from the previous Chekanov torus after another wall-crossing.

Figure 3.1 represents almost toric fibrations on CP2 containing two singular fibers of rank
one. The middle diagram arises by applying a nodal trade to one corner of the right-most
diagram in Figure 2.3, after redrawing the diagram via an element of AGL(2,Z), which is,

up to translation,

(
1 0
−3 1

)
. Lengthening the new cut to pass trough the central fiber we

end up with an almost toric fibration having the monotone T (1, 4, 25) torus as a fiber, as
illustrated by the right-most diagram in Figure 3.1.

We assume the Lagrangian fibers are special with respect to some 2-form Ω with poles
on the divisor, and that in a ‘large limit’ almost complex structure, pseudo-holomorphic
curves project to tropical curves. We will start the description of the superpotential in the
chambers where the fibers are of Clifford type and successively cross two walls in order to
arrive at a tentative formula for the superpotential in the chamber where the fibers are
T (1, 4, 25) type tori. In section 4, we construct a singular Lagrangian fibration interpolating
between Chekanov type tori and T (1, 4, 25) type tori. For the later, the count of Maslov
index 2 holomorphic discs is verified rigorously in section 5 using only symplectic geometry
techniques.

Now we focus on the chamber containing the Clifford type tori illustrated on the top

right part of Figure 3.2. Since we applied

(
1 0
−3 1

)
to the right-most diagram of Figure 2.3,

we need to ‘dually’ change the coordinates used on Figure 2.5 by applying the transpose

inverse

(
1 3
0 1

)
. Calling these new coordinates ẑ1, ẑ2, associated with (1, 0) and (0, 1) on

the top right part of Figure 3.2, they are described in terms of z1, z2 by z1 = ẑ1, z2 = ẑ31 ẑ2.
This way a tropical disc in the class (p, q) on the top right part of Figure 3.2 corresponds to
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Figure 3.1: Almost toric base diagrams of CP2 having, respectively, the monotone Clifford,
Chekanov and T (1, 4, 25) tori as the a fiber.

a monomial with exponents ẑp1 ẑ
q
2. After this change of coordinates, the invariant direction

at the singularity is (2, 1) and the monodromy is given by A(2,1); see Figure 3.2. Therefore
at the top part of the chamber corresponding to the Clifford type tori the superpotential is
given by

WClif = ẑ1 + ẑ31 ẑ2 +
e−Λ

ẑ41z2
(3.1)

As the vanishing vector of the first wall is (2, 1), the vanishing class is represented by
the coordinate w̃ = ẑ21 ẑ2 = z̃21 z̃2, where z̃1, z̃2 are the coordinates corresponding to the
standard basis on the Chekanov side. Applying the wall crossing formula 2.6 to (3.1), the
superpotential in the Chekanov region is

WChe = z̃1 + e−Λ (1 + w̃)2

z̃41 z̃2
= z̃1 + e−Λz̃2 + 2

e−Λ

z̃21
+
e−Λ

z̃41 z̃2
. (3.2)

We now cross the second wall towards a T (1, 4, 25) type torus. The second wall has
vanishing vector (−1, 1) and the monomial corresponding to the vanishing class is w =
e−Λz̃2z̃

−1
1 = e−Λu2u

−1
1 , where u1, u2 are are the coordinates corresponding to the standard

basis on the T (1, 4, 25) side and the factor e−Λ is present because the class of the Maslov
index 0 disc is −β1 + β2 + [CP1] ∈ π2(CP2, L), where β1 and β2 are the classes associated
with the coordinates, z̃1, z̃2. Indeed, knowing the boundary of w represents the class (−1, 1),
we get the first two coefficients of β1 and β2. To obtain the coefficient of [CP1] we compute
the Maslov index. We have that µ([CP1]) = 6 (see Lemma 2.1.4) and z̃1 and e

−Λz̃2 are terms
in WChe, hence µ(β1) = 2 and µ(β2) = −4. In order to have Maslov index 0, the coefficient
of [CP1] must be 1. Finally, applying the wall-crossing formula 2.6 to (3.2) we get that
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Figure 3.2: Clifford type torus.
WClif = ẑ1 + ẑ31 ẑ2 +

e−Λ

ẑ41z2
.

Figure 3.3: Chekanov type torus. WChe = z̃1+
e−Λz̃2 + 2 e−Λ

z̃21
+ e−Λ

z̃41 z̃2
.

WT (1,4,25) = u1 + 2
e−Λ

u21
(1 + w)2 +

e−Λ

u41u2
(1 + w)5

= u1 + 2
e−Λ

u21
+ 4

e−Λu2
u31

+ 2
e−Λu22
u41

+
e−Λ

u41u2
+ 5

e−2Λ

u51

+10
e−3Λu2
u61

+ 10
e−4Λu22
u71

+ 5
e−5Λu32
u81

+
e−6Λu42
u91

= u+ 2
e−Λ

u2
(1 + w)2 +

e−2Λ

u5w
(1 + w)5. (3.3)

The last formula is a more simplified expression in terms of the coordinates u = u1 and
w. The expanded version in coordinates u1, u2 makes it easier to visualize the class of each
disc. Figure 3.4 illustrates a T (1, 4, 25) type torus, predicted to bound 10 different families
of holomorphic discs, corresponding to the 10 terms in this expression.

Even though our approach in this section was not completely rigorous, it points toward
the existence of such an exotic torus bounding 41 discs, if we count with multiplicity (sum the
coefficients of each monomial). The theory for proving the correspondence between tropical
curves on the base and holomorphic curves on the total space is not fully developed yet, so
the actual proof in section 5 will use a different approach.

Remark 3.0.1. The bottom most region on Figures 3.2-3.4 is known to have infinitely many
walls, since it can have Maslov index 0 discs ending in both nodes with different multiplicities.
This can be detected by the need for consistency of the changes of coordinates due to wall-
crossing when we go around the point where the walls intersect. This phenomenon is called
scattering, first described by M. Kontsevich and Y.Soibelman in [14]. See also M. Gross [12].
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Figure 3.4: A T (1, 4, 25) type torus bounding 10 families of Maslov index 2 holomorphic

discs. The superpotential is given by WT (1,4,25) = u+ 2 e−Λ

u2 (1 + w)2 + e−2Λ

u5w
(1 + w)5.
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Chapter 4

The exotic torus

This chapter is devoted to the actual construction of the exotic torus. Heuristically, we try
to mimic the following procedure: first perform a nodal trade in a smooth corner of the
moment polytope of CP(1, 1, 4) to get an “orbifold almost toric fibration”; then we smooth
the orbifold singularity and trade it for an interior node, obtaining the almost toric fibration
described by the middle diagram of Figure 3.1. This way the analogue of a Chekanov type
torus in CP(1, 1, 4) deforms to a T (1, 4, 25) type torus. For the first step, we consider a
symplectic fibration on CP(1, 1, 4) given by f0(x̃ : 1 : z̃) = x̃z̃, with fibers preserved by
a circle action eiθ · (x̃ : 1 : z̃) = (e−iθx̃ : 1 : eiθz̃). The parallel transport of an orbit
along a circle centered at c ∈ R>0 with radius r < c is then a ‘Chekanov type torus in
CP(1, 1, 4)’. The second part is carried out using a degeneration from CP2 to CP(1, 1, 4)
parametrized by a real parameter t. We then consider a family of symplectic fibrations ft
on CP2 \ {y = 0} converging to f0, compatible with a circle action, so that, for each t > 0,
the parallel transport of an orbit along the same circle at the base is a T (1, 4, 25) type torus
which converges to a ‘Chekanov type torus in CP(1, 1, 4) as t→ 0. One technical issue that
arrises is that we need to equip CP2 with a non-standard Kähler form (symplectomorphic
to the standard one) in order to be able to give explicit descriptions of these tori.

As mentioned in the introduction, the projective plane degenerates to weighted projective
spaces CP(a2, b2, c2), where (a, b, c) is a Markov triple. For c′ = 3ab− c, a deformation from
CP(a2, b2, c2) to CP(a2, b2, c′2) can be seen explicitly inside CP(a2, b2, c, c′) via the equation
, z0z1 − (1− t)zc

′
2 − tzc3 = 0.

We are going to work only with CP2 = CP(1, 1, 1) and CP(1, 1, 4) inside CP(1, 1, 1, 2).
For t ∈ [0, 1], let Xt be the surface z0z1 − (1− t)z22 − tz3 = 0.

Explicit embeddings are

CP(1, 1, 1) −→ CP(1, 1, 1, 2)

(x : y : z) 7→ (x : y : z :
xy − (1− t)z2

t
) for t ̸= 0, (4.1)
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CP(1, 1, 4) −→ CP(1, 1, 1, 2)
(x̃ : ỹ : z̃) 7→ (x̃2 : ỹ2 : x̃ỹ : z̃) for t = 0. (4.2)

Set ξ = xy−(1−t)z2

t
. We now consider a fibration given by F = z2z3

z31
from CP(1, 1, 1, 2)

(minus two lines) to CP1, coinciding with f0 on X0
∼= CP(1 : 1 : 4). We restrict F to Xt, for

t > 0, obtaining:

ft : Xt \ {(1 : 0 : 0 : 0)} ≃ CP2 \ {(1 : 0 : 0)} → CP1

ft(x : y : z) =
zξ

y3
(4.3)

Also consider the divisor D = f−1
t (c), where we take c to be a positive real number,

thought of as a smoothing of f−1
t (0) = {zξ = 0}. We can define a circle action on CP2 \{y =

0}, given, using coordinates (z, ξ = x−(1−t)z2

t
), by eiθ · (z, ξ) = (e−iθz, eiθξ). This action does

not extend to all of CP2, and it does not preserve the Fubini-Study Kähler form. However,
we can modify the Kähler form to make it S1-invariant in a open subset; see below. As
in Example 2.1, we can consider Lagrangian T (1, 4, 25) type tori, built up as the parallel
transport of orbits along the circle centered at c with radius r < c. The other parameter
of this fibration of Lagrangian tori is given by the moment map of the circle action (with
respect to the modified Kähler form). In order to make everything explicit and be able
to actually compute the Maslov index 2 holomorphic discs bounded by these tori, we will
construct a Kähler form ω, for which the moment map is given by:

µω(x : 1 : z) = 2
|z|2 − |ξ|2

1 + |z|2 + |ξ|2
, (4.4)

on an open set contained in the inverse image with respect to ft of an open disc of radius
R > 2c centered at 0.

For that, on the region described above, we take ω to be equal to i
4
∂∂̄ log(1+ |z|2+ |ξ|2),

in the coordinate chart y = 1. In homogeneous coordinates this form is given by

ω̃ =
i

4
∂∂̄log

(
1 +

∣∣∣∣zy
∣∣∣∣2 + ∣∣∣∣ ξy2

∣∣∣∣2
)

=
i

4
∂∂̄log(|y|4 + |z|2|y|2 + |ξ|2) (4.5)

The second expression is well defined on CP2 \ (1 : 0 : 0) , and equal to the first one
since ∂∂̄ log(|y|4) = 0. A calculation in the affine chart x = 1 shows that, along the complex

line y = 0, it becomes dy ∧ dȳ/
∣∣∣ (1−t)z

t

∣∣∣2. So we see that ω̃ is well defined and nondegenerate

away from y = 0, but it is degenerate along the line y = 0, and also is singular at (1 : 0 : 0).

In order to define a nearby symplectic form, set ρ =
∣∣∣ zξy3 ∣∣∣ and ℓ =

| zy |
2
−
∣∣∣ ξ

y2

∣∣∣2
1+| zy |

2
+
∣∣∣ ξ

y2

∣∣∣2 for y ̸= 0,
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and consider a cut off function η that is zero for (x : y : z) ∈ {ρ < R; |ℓ| < λ0} and one
for (x : y : z) ∈ CP2 \ {ρ ≤ 2R; |ℓ| ≤ 2λ0}. The parameters R and λ0 are chosen so that
c+r < 2c < R and 0 < λ0 < 1/2, this way CP2\{ρ ≤ 2R; |ℓ| ≤ 2λ0} is an open neighborhood
of {y = 0}. Define

ω =
i

4
∂∂̄ log(|y|4 + |z|2|y|2 + |ξ|2 + s2η(ρ, ℓ)(|x|2 + |y|2 + |z|2)2) (4.6)

where s is a very small constant. We see that ω is well defined in the whole CP2 since
it is an interpolation between ω̃ and the Kähler form ωs = i

4
∂∂̄log(|y|4 + |z|2|y|2 + |ξ|2 +

s2(|x|2 + |y|2 + |z|2)2) which is 1/2 of the pullback of the Fubini-Study form on CP11 via the
embedding,

ι : CP2 −→ CP11

(x : y : z) 7→ (y2 : zy : ξ : sx2 : sy2 : sz2 : sxy : sxy : syz : syz : szx : szx)

Proposition 4.0.2. For s > 0 sufficiently small, keeping fixed the other parameters c, r, t,
0 < λ0 < 1/2 and R, ω is a well defined nondegenerate Kähler form. Moreover, ω lies in the
same cohomology class as the Fubini-Study form ωFS.

Proof. We note that for y ̸= 0,

ω =
i

4
∂∂̄log((1− η)φ1 + ηφ2) =

1

2
ddclog((1− η)φ1 + ηφ2),

where

φ1 =
|y|4 + |z|2|y|2 + |ξ|2

|y|4
,

φ2 =
|y|4 + |z|2|y|2 + |ξ|2 + s2(|x|2 + |y|2 + |z|2)2

|y|4
,

and on a neighborhood of y = 0, ω is equal to ωs, hence it is Kähler.
We already know ω is nondegenerate at {ρ < R; |ℓ| < λ0} and CP2 \ {ρ ≤ 2R; |ℓ| ≤ 2λ0}.

Since ωs converges to ω̃ uniformly on the compact set {ρ ≤ 2R; |ℓ| ≤ 2λ0} (where ω̃ is
nondegenerate) as s→ 0, there is a small enough s making ω nondegenerate.

To determine the cohomology class of ω, it is enough to compute
∫
[CP1]

ω. Considering

[CP1] = {y = 0} we see that
∫
[CP1]

ω =
∫
[CP1]

ωs and so [ω] = [ωs] =
1
2
ι∗[ωCP11 ] = [ωFS].

The space of Kähler forms in the same cohomology class is connected. Hence, by Moser’s
theorem, (CP2, ω) and (CP2, ωFS) are symplectomorphic. After applying such a symplecto-
morphism, we get Lagrangian tori in (CP2, ωFS) with the same properties as the ones we
consider in (CP2, ω).

The constants c, r, t, λ0, R and s are chosen in this order. For what follows c, 0 < λ0 <
1/2 and R > 2c are fixed, r < c and t is thought to be very small with respect to c and r.
Considering the symplectic form ω from now on, we define the following Lagrangian tori:
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Definition 4.0.3. For λ ∈ R, |λ| < λ0:

T c
r,λ =

(x : y : z) ∈ CP2;

∣∣∣∣zξy3 − c

∣∣∣∣ = r,
µω

2
=

∣∣∣ zy ∣∣∣2 − ∣∣∣ ξ
y2

∣∣∣2
1 +

∣∣∣ zy ∣∣∣2 + ∣∣∣ ξ
y2

∣∣∣2 = λ

 . (4.7)

For the sake of using Lemma 2.1.4, which gives a convenient formula for computing
Maslov index for special Lagrangian submanifolds, we now consider the meromorphic 2-form
on CP2 which is the quotient of ΩC3 = dx∧dy∧dz

t(ξz−cy3)
defined on C3 and has poles on the divisor

D. On the complement of {y = 0}, taking y = 1, it is given by

Ω =
dx ∧ dz
t(ξz − c)

=
dξ ∧ dz
ξz − c

. (4.8)

Here ξ = x−(1−t)z2

t
.

Proposition 4.0.4. For c, r and λ as above, the tori described in the (ξ, z) coordinate chart
by T c

r,λ = {(ξ, z); |ξz − c| = r; |z|2 − |ξ|2 = λ(1 + |z|2 + |ξ|2)} are special Lagrangian with
respect to Ω.

Proof. Take VH the Hamiltonian vector field of the Hamiltonian H(ξ, z) = |ξz − c|2, i.e.,
defined via ω(VH , ·) = dH. Since H is constant on the Lagrangian T c

r,λ and on each sym-
plectic fiber of f(ξ, z) = ξz, VH is symplectically orthogonal to both, hence tangent to the
Lagrangian T c

r,λ and not tangent to the symplectic fibers of f . Consider the vector field
ϑ = (iξ,−iz), tangent to the fibers and the Lagrangian torus, as they intersect along circles
of the form (eiθξ0, e

−iθz0). So, {ϑ, VH} form a basis for the tangent space of T c
r,λ. Now note

that

ιϑΩ =
iξdz + izdξ

ξz − c
= idlog(ξz − c).

Therefore,
Im(Ω)(ϑ, VH) = dlog|ξz − c|(VH) = 0.
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Chapter 5

Computing holomorphic discs in CP2
bounded by T cr,0

In this chapter we focus on the case λ = 0 and show that, at least for small enough t with
respect to r and c, it bounds the expected 10 different families of Maslov index 2 holomorphic
discs (with the expected multiplicity modulo signs). We often use the coordinates (z0 : z1 :
z2 : z3), but restricted to CP2 ≃ Xt via the embedding (4.1).

5.1 The homology classes

We omit the subindex t and consider f(x : y : z) = zξ
y3

mapping CP2 minus (1 : 0 : 0) to CP1.

Proposition 5.1.1. There is only one family of holomorphic discs, up to reparametrization,
in CP2 with boundary on T c

r,0 (r < c) that is mapped injectively to the disc |w− c| ≤ r by f ,
where w is the coordinate in C.

Proof. Let u : D → CP2 be such a disc so, up to reparametrization, f◦u(w) = Ψ(w) = rw+c.
The map u can be described using coordinates y = z1(w) = 1, z = z2(w) and ξ = z3(w), so
z2(w)z3(w) = Ψ(w). Since zero (and infinity) does not belong to the image of Ψ as r < c,
z2 and z3 have no zeros or poles on the disc (note that if z(w) = 0 and ξ(w) = ∞ then
x(w) = ∞, contradicting y(w) ̸= 0, for the same reason z(w) ̸= ∞). At the boundary of the

disc, mapped by u to T c
r,0, |z2| = |z3|. So, by holomorphicity, z2(w) = eiθz3(w) = ei

θ
2

√
Ψ(w),

for some choice of square root and some constant θ.

Call β the relative homotopy class of the above family of discs, α the class of the Lefschetz
thimble associated to the critical point of f at the origin lying above the segment [0, c − r]
(oriented to intersect positively {z = 0}) and H = [CP1] the image of the generator of
π2(CP2) in π2(CP2, T c

r,0). One checks that α, β, H form a basis of π2(CP2, T c
r,0). On Figure

3.4, holomorphic discs in the class β are represented by the tropical disc arriving at the torus
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in the direction (1, 0) and associated to the term u of the superpotential WT (1,4,25). If we
consider λ > 0, and increase r → c, we see that the torus depicted on Figure 3.4 approaches
the wall, and the class α corresponds to a tropical Maslov index 0 disc that runs along the
wall and ends at the node.

In order to understand what relative homotopy classes are allowed to have Maslov index 2
holomorphic discs, we analyze their intersection with some other complex curves, for instance
the line over ∞, y = 0, the line and conic over 0, z = 0 and D2 : xy− (1− t)z2 = 0 . Another
curve we use is a quintic, D5 that converges to (x̃z̃ − cỹ5)2 = 0 on CP(1, 1, 4). It is given by

D5 : z0z
2
3 − 2cz21z2z3 + c2z51 = xξ2 − 2cy2zξ + c2y5 = 0

For z ̸= 0 and setting f = zξ
y3
, we can write this equation as

y5(c2 − 2cf +
xy

z2
f 2) = 0 (5.1)

Remark 5.1.2. Again relating to Figure 3.4, the leftmost node is thought to be the torus T c
c,0

and the wall in the direction (1,−1) to be formed by the tori T c
c,λ. D2 = {ξ = 0} projects to the

upper part of the wall, while {z = 0} projects to the lower part of the same wall, as the Maslov
index 0 discs bounded by T c

c,λ are contained in these two divisors. Using similar reasoning,
one expects that over the rightmost wall lie complex curves converging to {ỹ(x̃z̃ − cỹ5) = 0},
the boundary divisor of the “orbifold almost toric fibration” on CP(1, 1, 4). D5 converges to
{(x̃z̃ − cỹ5)2 = 0}, hence it is thought to lie over the lower part of the rightmost wall, while
{y = 0}, which converges to {ỹ2 = 0}, is thought to lie over the upper part of the same wall.

Remark 5.1.3. To compute intersection number with H in Figure 3.4, one can use the
tropical rational curve formed by the union of all the tropical discs depicted on Figure 3.2.
Also, note that each wall hits the cut of the other, leaving them with slopes (−5, 2) on the
top left and (7, 2) on the top right; the additional dotted lines are omitted on all pictures for
simplicity.

Lemma 5.1.4. For fixed c and r < c, and for t sufficiently small, the classes α, β and H
intersect the varieties {z = 0}, {y = 0}, D3 = f−1(c)∪ {(1 : 0 : 0)}, D2 : xy− (1− t)z2 = 0,
D5 and have Maslov index, according to the table below.

Class z = 0 y = 0 D3 D2 D5 Maslov index µ
α 1 0 0 -1 0 0
β 0 0 1 0 2 2
H 1 1 3 2 5 6

Proof. In order to use these curves to compute intersection numbers, we first need to ensure
they don’t intersect T c

r,0. This is clear for z = 0, y = 0, D3, and D2. Later we will see that
T c
r,0 ∩D5 = ∅.
The intersections with H follow from Bezout’s Theorem. By construction, α (represented

by the Lefschetz thimble over the segment [0, c − r] which can be parametrized by y = 1,
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z = ρeiθ, ξ = ρe−iθ, ρ ∈ [0, c − r]) does not intersect y = 0 and D3, also, it intersects both
z = 0 and D2 at one point with multiplicity 1 and −1, respectively. Each disc computed
in Proposition 5.1.1 representing the class β does not intersect z = 0, y = 0, and D2, and
intersect D3 positively at one point.

It remains for us to understand the intersection of D5 with the torus T c
r,0, α and β. For

that, we look at the family of conics C = {z = eiθξ; θ ∈ [0, 2π]} containing T c
r,0, the thimble

representing the class α and the discs representing the class β computed in Proposition 5.1.1.
On C, using the coordinate chart y = 1, we have:

z = eiθξ = eiθ
x− (1− t)z2

t
. (5.2)

So, solving for x in (5.2), and using f = zξ = e−iθz2, we get:

x = te−i θ
2 f 1/2 + (1− t)eiθf, (5.3)

for some square root of f . Then, by (5.1) and (5.3), the points of D5 ∩C are those where

c2 − 2cf + e−iθf(tei
−θ
2 f 1/2 + (1− t)eiθf) = (f − c)2 + tf 3/2(e−i 3θ

2 − f 1/2) = 0

For t small enough, for each value of θ, all the solutions of this equation lies in the region
|f − c| < r. From this we can conclude that D5 ∩ T c

r,0 = ∅, D5 ∩ α = ∅, since, in T c
r,0,

|f − c| = r and the thimble representing α lies over [0, c− r].
Now, a holomorphic disc representing the class β is given by z = ξ = f 1/2 and Re(z) > 0;

see Proposition 5.1.1. This means that this disc intersects D5 in exactly two points, namely
the two solutions of (z2 − c)2 + tz3(e−i 3θ

2 − z) = 0, where z is close to
√
c. As both are

complex curves, the intersections count positively, so the intersection number between D5

and β is equal to 2.
Finally, from lemma 2.1.4, we see that the Maslov index is twice the intersection with

the divisor D3.

Lemma 5.1.5. The only classes in π2(CP2, Tr,0) which may contain holomorphic discs of
Maslov index 2 are β, H − 2β +mα, −1 ≤ m ≤ 2 and 2H − 5β + kα, −2 ≤ k ≤ 4.

Proof. To have Maslov index 2 the class must have the form β+ l(H−3β)+kα. Considering
positivity of intersections with y = 0 we get l ≥ 0, with z = 0 and D2 we get −l ≤ k ≤ 2l,
and finally with D5, l ≤ 2.

5.2 Discs in classes H − 2β +mα

Theorem 5.2.1. There are no Maslov index 2 holomorphic discs in the class H − 2β − α;
there are one-parameter families of holomorphic discs in the classes H−2β and H−2β+2α,
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with algebraic counts equal to 2 up to sign in both cases, and a one-parameter family of
holomorphic discs in the class H − 2β + α, with algebraic count equal to 4 up to sign.

This is precisely what we expect from the term 2 e−Λ

u2 (1 + w)2 in WT (1,4,25); see equation
(3.3).

Proof. We will try to find holomorphic discs u : (D, S1) → (CP2, T c
0,r) in the class H −

2β + mα, −1 ≤ m ≤ 2. Recall f : CP2 \ (0 : 0 : 1) → CP1, f(x : y : z) = zξ
y3
, and set

Ψ = f ◦ u : D → CP1. Since u has Maslov index 2 it doesn’t go through (1 : 0 : 0), where
D3 has a self intersection, so Ψ is well-defined.

We look at Ψ(w)−c
r

, which maps the unit circle to the unit circle. Looking at the intersec-
tion numbers given in Lemma 5.1.4, we see that our disc must intersect y = 0 and the divisor
D3 at 1 point. Therefore, as Ψ = f ◦ u, f−1(∞) = {y3 = 0} and D3 = f−1(c) ∪ (1 : 0 : 0),

the map Ψ(w)−c
r

has a pole of order 3 and a simple zero, so

Ψ(w)− c

r
=
τw0(w)

τ 3w1
(w)

eiϕ, where τυ(w) =
w − υ

1− ῡw
, (5.4)

for some w0, w1 in D and eiϕ ∈ S1. We can use automorphisms of the disc to assume
w1 = 0, ϕ = 0 and write w0 = a. Note that the disc automorphism w 7→ eiϕ

′
w amounts to

w0 7→ e−iϕ′
w0 and ϕ 7→ ϕ− 2ϕ′ in (5.4). So, ϕ′ = π keeps eiϕ invariant, therefore we need to

keep in mind that ±a gives the same holomorphic disc modulo reparametrization.

Ψ

η1

η0

η2

u

f

u(η1)

u(η2)
u(η0)

z = 0

D2

y3 = 0a

u(a)

Figure 5.1: Picture of Ψ(w) = f ◦ u(w) = z(w)ξ(w)
y3(w)

= z2(w)z3(w)

z31(w)
(for the case m = 0; |I| = 2,

i.e., u intersects the conic D2 twice). {η0, η1, η2} = Ψ−1(0) and {a} = Ψ−1(c) behave as in
Lemma 5.2.3 for small t. Recall that the divisor D3 is the closure of f−1(c) ∋ u(a).

Since r < c, the image of u intersects f−1(0) ⊂ D2 ∪ {z = 0} in three points u(ηj)’s, j =
0, 1, 2, i.e., ηj ∈ D are so that Ψ(ηj) = 0. The integer m in H − 2β +mα determines how
many times the disc u intersects D2, and we consider a set I ⊂ {0, 1, 2} with that number
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of elements. Writing z1 = y, z2 = z and z3 = ξ, and τj = τηj we see that the map u can be
expressed in the form

z1(w) = w , z2(w) = e−iθh(w)
∏
j /∈I

τj(w) , z3(w) = eiθh(w)
∏
j∈I

τj(w), (5.5)

where h(w) is a nonvanishing holomorphic functions and eiθ ∈ S1.

Remark 5.2.2. A suitable scaling of the homogeneous coordinates eliminates the need for
a multiplicative factor in the expression for z1(w). In principle we know that z2(w) =

e−iθh2(w)
∏

j /∈I τj(w), z3(w) = eiθh3(w)
∏

j∈I τj(w). But we see that on ∂D,
∣∣∣ z2z1 ∣∣∣ =

∣∣∣ z3z21 ∣∣∣
and |z1| = 1, so |h2| = |h3| on the unit circle, therefore h3 = eiθ

′
h2 for some constant θ′.

Note that we can absorb −θ′/2 in θ and assume that h3 = h2 = h.

Since Ψ(w) = z2(w)z3(w)

z31(w)
=

h2(w)
∏

τj(w)

w3 , we get h(w) =
(

Ψ(w)w3∏
τj(w)

)1/2
, for some choice

of square root. The other choice is equivalent to a translation by π of the parameter θ.
Rewriting this last equation and using Ψ(w)−c

r
= τa(w)

w3 , we get:

w3Ψ(w) = rτa(w) + cw3 = h2(w)τ0(w)τ1(w)τ2(w). (5.6)

We expect one parameter family(ies) of solutions and we see that u is determined by
the parameters a and θ. Therefore we want to understand how many possible choices for a
there are, for any given θ. Moreover, understanding how these solutions vary with θ, we can
describe the moduli space of holomorphic discs in the class H − 2β +mα bounded by T c

r,0,
denoted by M(T c

r,0, H − 2β +mα), for each m.
The possible values of a are constrained by the following equation coming from the fact

that ξ = − (1−t)
t
z2 when y = 0:

z3(0)

z22(0)
= −1− t

t
=

e3iθ
∏

j∈I τj(0)

h(0)
∏

j /∈I τ
2
j (0)

=
e3iθ(−1)|I|

∏
j∈I ηj

h(0)
∏

j /∈I η
2
j

. (5.7)

Since (5.6) implies that −ar = −h2(0)η0η1η2, (5.7) can be rewritten as

ar

(
1− t

t

)2∏
j /∈I

η3j = e6iθ
∏
j∈I

η3j . (5.8)

Note that solving (5.8) for a amounts to a solution of (5.7) for some choice of square root

for h(w) =
(

Ψ(w)w3∏
τj(w)

)1/2
.

Understanding the behavior of the parameters ηj and a as t→ 0 will allow us to analyze
the existence of a solving this equation for small values of t. Note that the right side of (5.8)
is uniformly bounded for all t. So we conclude that a

∏
j /∈I ηj → 0, as t → 0. Moreover, if

we can show that h(0) is bounded away from zero, then we can conclude that ηj → 0 for
some j /∈ I; see (5.7).
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Lemma 5.2.3. h(0) is bounded away from 0 and, after possibly relabeling the ηj’s, the
following asymptotic hold as t→ 0:

a = O(t1/2), η0 = O(t1/2), η1 →
√
r

c
i, η2 → −

√
r

c
i.

Moreover, 0 /∈ I. Therefore, as |I| < 3 represents the number of intersection with D2,
there is no holomorphic disc in the class H − 2β − α (i.e. for m = −1).

Proof. Consider the polynomial:

Ξ(w) = w3(1− āw)Ψ(w) = r(w − a) + cw3(1− āw) = −cā(w − ζ)(w − η0)(w − η1)(w − η2),

for some ζ, with |ζ| > 1. Assume |η0| ≤ |η1|, |η0| ≤ |η2|, and write

(w − η0)(w − η1)(w − η2) = w3 − σw2 + qw − p

By comparing coefficients, we get

pζ =
ra

cā
(5.9)

1 = ā(ζ + σ) (5.10)

By (5.6),

h2(0) =
ar

η0η1η2
=
ar

p
.

By equations (5.9), (5.10) and noting that |σ| ≤ 3 ≤ 3|ζ|,

1 = |a||ζ + σ| ≤ 4|aζ| = 4|a|r
c|p|

=
4|h2(0)|

c
.

So, we get |h(0)| ≥
√
c
2
. Looking at equation (5.7), we get that at least one ηj must be

in the denominator. More precisely
∏

j /∈I ηj = O(t1/2). As the other ηj’s lie in the unit disc,

p = O(t1/2) → 0 and by (5.9), ζ 7→ ∞. Also by (5.10) , as σ is bounded, we get that a 7→ 0,
in fact a = O(t1/2).

Therefore,

Ξ(w) = w(cw2 + r) + w4O(t1/2) +O(t1/2),

and we see that η0 = O(t1/2) and η1η2 7→ r
c
, say η1 7→ +

√
r
c
i, η2 7→ −

√
r
c
i. In particular, we

conclude that 0 /∈ I. Also, pζ = ζη0η1η2 = ζη0(
r
c
+ O(t1/2)) = ra

cā
, hence ζη0 = a

ā
+ O(t1/2).

Note that since |I| < 3, there are no holomorphic discs for m = −1, and this finishes the
proof of Lemma 5.2.3.



CHAPTER 5. COMPUTING HOLOMORPHIC DISCS IN CP2 BOUNDED BY TC
R,0 34

Now we need to analyze the cases I = ∅, {1}, {2}, {1, 2}.

Case I = ∅, m = 2:

By (5.8), (5.9):

(āζ)3 = a4
(
1− t

t

)2
e−6θir4

c3
= a4K (5.11)

where K =
(
1−t
t

)2 e−6θir4

c3
.

Proposition 5.2.4. For small enough t > 0, equation (5.11) has four solutions for each
given parameter θ. Moreover, naming these solutions a1(θ), a2(θ), a3(θ), a4(θ), as we vary
continuously with θ, in counter-clockwise order, we have that aj(θ + π/3) = aj+1(θ).

Proof. By (5.10)

(āζ)3 = 1 +O(t1/2) (5.12)

Combining (5.11) with (5.12) we see that for g(a) = 1− (āζ)3

a4K − 1 + g(a) = 0 (5.13)

One sees that, for sufficiently small t, there are 4 solutions of such equation since g(a) and
g′(a) are O(t1/2). (To see that g′(a) = O(t1/2), we use that g(a) = g̃(a, ā), where g̃(a, b) is a
holomorphic function, and using Cauchy’s differentiation formula, we get that each partial
derivative is O(t1/2).)

So for each θ there are four solutions for a, each of them close to a fourth root of K−1.
Recall we named these solutions, as varying continuously with θ, in counter-clockwise order,
a1(θ), a2(θ), a3(θ), a4(θ). We see from (5.11) that aj(θ + π/3) = aj+1(θ).

Let uθa1(θ) be the holomorphic disc given by (5.5), for a given value of θ and the other

parameters determined by a1(θ).

Lemma 5.2.5. The moduli space of holomorphic discs in the class H−2β+2α, M(T c
r,0, H−

2β + 2α), can be parametrized using only holomorphic discs uθa1(θ) for θ ∈ [0, 2π]. Also, the

algebraic count of holomorphic discs in M(T c
r,0, H − 2β + 2α), nH−2β+2α(T

c
r,0), is equal to 2

up to sign.

Proof. Since aj(θ + π/3) = aj+1(θ), we can parametrize the moduli space of holomorphic
discs in the class H − 2β + 2α using only holomorphic discs uθa1(θ) for θ ∈ [0, 4π]. But recall
that solutions are counted twice as the disc automorphism w 7→ −w amounts to a 7→ −a
and 0 = ϕ 7→ ϕ − 2π = −2π in (5.4). Hence we see that uθ+2π

a1(θ+2π) = uθa3(θ) = uθ−a1(θ)
is the

same up to reparametrization. Therefore the map θ 7→ uθa1(θ), from S1 = [0, 2π]/0 ∼ 2π to

the moduli space M(T c
r,0, H − 2β + 2α) gives a diffeomorphism.
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In order to compute nH−2β+2α(T
c
r,0) we need to look at ev∗[M(T c

r,0, H − 2β + 2α)] =
nH−2β+2α(T

c
r,0)[T

c
r,0]. The boundary of each holomorphic disc lies in the class 2(∂α−∂β), and

the parameter θ comes from the action eiθ·(ξ, z) = (eiθξ, e−iθz), described in coordinates (ξ, z)
for y = 1, whose orbits are in the class of the thimble, i.e., ∂α. Therefore, nH−2β+2α(T

c
r,0) =

±2.

Case I = {2} (similarly I = {1}) , m = 1:

By (5.8), (5.9), setting now K =
(
1−t
t

)2
re−6θi:

Kη30 =
1

a

η32
η31

=
1

a
(−1 +O(t1/2)). (5.14)

Similarly to the previous case we have

Proposition 5.2.6. For small enough t > 0, equation (5.14) has four solutions for each
given parameter θ. Moreover, naming these solutions a1(θ), a2(θ), a3(θ), a4(θ), as we vary
continuously with θ, in counter-clockwise order, we have that aj(θ + π/3) = aj+1(θ).

Lemma 5.2.7. The moduli space of holomorphic discs in the class H−2β+α, M(T c
r,0, H−

2β + α), can be parametrized using only holomorphic discs uθa1(θ) for θ ∈ [0, 4π]. Moreover,

the algebraic count of holomorphic discs in M(T c
r,0, H − 2β + α), nH−2β+α(T

c
r,0), is equal to

4 up to sign.

Proof. (of Proposition 5.2.6 and of Lemma 5.2.7)
Since ζη0 =

a
ā
+O(t1/2), and a = O(t1/2):

(āζ)3
1

a
(−1 +O(t1/2)) = K(āζη0)

3 = K[a(1 +O(t1/2))]3 = Ka3(1 +O(t1/2)).

Using (āζ)3 = 1 +O(t1/2), we get

Ka4 +O(t1/2) = −1. (5.15)

Using the same argument as before we get four solutions for a, a1(θ), a2(θ), a3(θ), a4(θ),
varying continuously with θ, ordered in the counter-clockwise direction. Again aj(θ+π/3) =
aj+1(θ), but now the disc automorphism w 7→ −w, not only switches a 7→ −a but also
η1 ↔ η2, which accounts for the case I = {1}. Therefore the moduli spaceM(T c

r,0, H−2β+α)
is given by {uθa1(θ); θ ∈ [0, 4π]}, and hence nH−2β+α(T

c
r,0) = ±4.

The case I = {1, 2} , m = 0, works in a totally analogous way, with nH−2β(T
c
r,0) = ±2.

This concludes the proof of Theorem 5.2.1.
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5.3 Discs in classes 2H − 5β + kα

Theorem 5.3.1. There are no Maslov index 2 holomorphic discs in the class 2H − 5β −
2α, and one-parameter families of holomorphic discs in the classes 2H − 5β + kα, k =
−1, 0, 1, 2, 3, 4, with algebraic counts equal to 1, 5, 10, 10, 5, 1, up to sign, respectively.

This is precisely what we expect from the term e−2Λ

u5w
(1 + w)5 in WT (1,4,25); see equation

(3.3).

Proof. We start approaching the problem following the same reasoning as in the previous
subsection. But we will get an extra parameter, since the intersection with {y = 0} is 2 for
discs in the classes 2H − 5β + kα,−2 ≤ k ≤ 4. This will make our computation harder.
Nonetheless, looking at Figure 3.4, for t→ 0 we expect the discs in these classes (for k ≥ −1)
to converge to holomorphic discs in CP(1, 1, 4) that remain away from the orbifold point,
since they don’t touch the singular fiber that collapses into the singular orbifold point when
t = 0. The idea is then to understand the limits of such discs when t → 0, ‘count’ them for
t = 0 and use Lemma 5.3.6 to show that the count remains the same for small t > 0.

Consider a holomorphic map u : (D, S1) → (CP2, T c
0,r) in the class 2H − 5β + kα,−2 ≤

k ≤ 4, and Ψ(w) = f ◦ u(w). Analyzing intersection numbers with divisors we get

Ψ(w)− c

r
=

τw0(w)

τ 3w1
(w)τ 3w2

(w)
eiϕ (5.16)

and denote by η0, . . . , η5 the zeros of Ψ(w). Again using automorphisms of the disc we
can choose w1 = 0 and ϕ = 0 and also rename w2 = ν and w0 = b. Then, the holomorphic
disc can be described by

z1(w) = wτν(w) , z2(w) = e−iθh(w)
∏
j /∈I

τj(w) , z3(w) = eiθh(w)
∏
j∈I

τj(w) (5.17)

where h(w) =
(

Ψ(w)w3τ3ν (w)∏
τj(w)

)1/2
, and I ⊂ {0, 1, 2, 3, 4, 5}. Recall that y = z1, z = z2,

ξ = z3 and τj = τηj .
In the same way as in the previous section, we get a pair of equations

z3(0)

z22(0)
= −1− t

t
=

e3iθ
∏

j∈I τj(0)

h(0)
∏

j /∈I τ
2
j (0)

=
e3iθ(−1)|I|

∏
j∈I ηj

h(0)
∏

j /∈I η
2
j

(5.18)

z3(ν)

z22(ν)
= −1− t

t
=

e3iθ
∏

j∈I τj(ν)

h(ν)
∏

j /∈I τ
2
j (ν)

=
e3iθ

∏
j∈I qj

h(ν)
∏

j /∈I q
2
j

(5.19)

where we write qj = τj(ν). Again we want to understand the asymptotic of the parameters
b, ν and ηj as t→ 0.
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Ψ

η3

η0

η2

u

f

u(η1)

u(η2)
u(η0)

z = 0

D2

y3 = 0

η1

η5

η4 ν

0

u(η5)

u(η3)
u(η4)

u(0)

u(ν)

b

u(b)

Figure 5.2: Picture of Ψ(w) = f ◦ u(w) = z(w)ξ(w)
y3(w)

= z2(w)z3(w)

z31(w)
(for the case k = −1; |I| = 4,

i.e., u intersects the conic D2 in five points). {η0, · · · , η5} = Ψ−1(0), {0, ν} = Ψ−1(∞) and
{b} = Ψ−1(c) behave as in Lemma 5.3.2 for small t. Recall that the divisor D3 is the closure
of f−1(c) ∋ u(b).

Lemma 5.3.2. h(0) is bounded away from 0 and, after possibly relabeling the ηj’s, the
following asymptotics hold as t→ 0:

b = O(t1/2), ν = O(t1/2), η0 = O(t1/2) and for j ̸= 0, ηj → −r
c

1
5
e

2πi
5

j.

Using (5.18) and the above Lemma 5.3.2 we see that 0 /∈ I. Therefore there is no
holomorphic disc representing the class 2H − 5β + kα, for k = −2. To prove the existence
of such discs for −1 ≤ k ≤ 4 with the right count, we look at the limit t = 0, i.e., in
CP(1 : 1 : 4). These six families of discs are expected to ‘survive’ in the limit and not pass
through the orbifold point of CP(1, 1, 4); see Figure 3.4. We show that this is the case for the
limits of the above families of holomorphic discs and, assuming regularity (proven in section
5.4), we argue that the disc counts are the same for X0 and Xt for a sufficiently small t.
Lemma 5.3.2 will allow us to prove:

Proposition 5.3.3. For all I ⊂ {1, 2, 3, 4, 5} and θ ∈ R, the discs described by (5.17)
uniformly converge to discs contained in the complement of the orbifold point of CP(1, 1, 4),
described in the coordinates (x̃ : ỹ : z̃) by

x̃(w) = e−iθ
√
rw5 + c

∏
j /∈I
j ̸=0

τj(w); ỹ(w) = w; z̃(w) = eiθ
√
rw5 + c

∏
j∈I

τj(w), (5.20)

where τj = τ
− r

c

1
5 e

2πi
5 j . For each I and θ, we denote this disc by u

θ
I . Moreover, the algebraic

count of discs in the relative class [uθI ], for |I| = 0, 1, 2, 3, 4, 5 is equal to 1, 5, 10, 10, 5, 1, up
to sign, respectively.
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Proof. (of Lemma 5.3.2)
Consider the polynomial:

Ξ(w) = w3(1− b̄w)(w − ν)3Ψ(w)

= r(w − b)(1− ν̄w)3 + cw3(1− b̄w)(w − ν)3 (5.21)

= −cb̄(w − ζ)
∏
j

(w − ηj), (5.22)

where |ζ| > 1, and write∏
j

(w − ηj) = w6 − σ1w
5 + σ2w

4 − σ3w
3 + σ4w

2 − σ5w + p.

Comparing the coefficients of 1 and w6, we get:

pζ = −rb
cb̄
, (5.23)

1 + 3νb̄ = b̄(ζ + σ1). (5.24)

For the following we recall that h2(w) = Ψ(w)w3τ3ν (w)∏
τj(w)

, in particular, by (5.16), h2(0) = − rb
p

and h2(ν) = rτb(ν)∏
j qj

.

By (5.23), (5.24), and noting that |σ1 − 3ν| ≤ |σ1|+ 3|ν| ≤ 9 ≤ 9|ζ|, we get that:

1 = |b||ζ + σ1 − 3ν| ≤ 10|b̄||ζ| = 10
|h(0)|2

c
.

So |h(0)|2 ≥ c
10
, proving the first statement of Lemma 5.3.2. We see from (5.18) that∏

j /∈I η
2
j = O(t) and hence p = O(t

1
2 ) → 0 as t → 0. Also ζ → ∞, b = O(t1/2) → 0 and

b̄ζ = 1 +O(t
1
2 ) → 1.

Now we basically need to show that ν = O(t1/2), since the asymptotic behavior of the
ηj’s described in Lemma 5.3.2 follows from (5.21) and ν = O(t1/2), after we separete the
terms that are O(t1/2), more precisely, Ξ(w) = w(r + cw5) + w7O(t1/2) + O(t1/2). So, let’s
look to Ξ(ν) using (5.21) and (5.22) (recall that qj = τj(ν) = (ν − ηj)/(1− η̄jν):

Ξ(ν) = r(1− |ν|2)3(ν − b)

= −cb̄(ν − ζ)
∏
j

(ν − ηj) = −cb̄(ν − ζ)
∏
j

qj(1− η̄jν) (5.25)

Claim 5.3.4. h(ν) is bounded away from 0, and by (5.19),
∏

j /∈I q
2
j = O(t), and therefore∏

j qj = O(t1/2).
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Proof. Using that b̄ζ = 1 +O(t1/2) and b̄ν = O(t1/2) we see that

h2(ν) =
rτb(ν)∏

j qj
=
r(ν − b)∏

j qj

1

1− νb̄
=

c
∏

j(1− η̄jν)

(1− |ν|2)3(1− νb̄)
(1 +O(t1/2))

is bounded away from zero. Indeed, if
c
∏

j(1−η̄jν)

(1−|ν|2)3(1−νb̄)
approaches zero, then, since cb̄(ν −

ζ)
∏

j qj is bounded, we get by (5.25) that b− ν → 0 and hence ν → 0. But in this case we
see that

∏
j(1− η̄jν) → 1, not 0.

Then we see from (5.19) that
∏

j /∈I q
2
j = O(t), hence

∏
j qj = O(t1/2).

We want to show that b − ν → 0 and hence ν → 0. For that to follow from (5.25) and
Claim 5.3.4, we need to see that |ν| does not approach 1 as t→ 0.

Claim 5.3.5. As t→ 0, |ν| is bounded by a constant strictly smaller than 1.

Proof. Let’s look again to Ξ(w), knowing that b = O(t1/2):

Ξ(w) = rw(1− ν̄w)3 + cw3(w − ν)3 + w7O(t1/2) +O(t1/2) (5.26)

Then we see that the roots ηj lying inside the disc are very close to the solutions of
rw(1− ν̄w)3 + cw3(w − ν)3 = 0, for t very small. The non-zero solutions satisfy:

|w2τν(w)
3| = r

c
< 1. (5.27)

Now, assume there is a sequence of values of t tending to 0 and holomorphic discs such
that ν → ν0, |ν0| = 1. From equation (5.26), we conclude that three of the roots ηj of Ξ(w)
converge to ν0, say η1, η2, η3, one converges to 0, say η0, and the other two solutions, η4 and
η5 converge to square roots of r

cν30
, by (5.27) (for values of w lying outside a neighborhood

of ν0, τν(w) =
w−ν
1−ν̄w

= −ν 1−ν−1w
1−ν̄w

→ −ν0).
Let ϵj be such that ηj = ν − ϵj, for j = 1, 2, 3. By (5.25), recalling that b = O(t1/2),∏

j qj = O(t1/2) and b̄ζ = 1 +O(t1/2) we see that (1− |ν|2)3 = Kϵ1ϵ2ϵ3, where

K =
−cb̄(ν − ζ)(ν − η0)

r(ν − b)
(ν − η4)(ν − η5) →

c

r
ν0 −

1

ν40

is bounded above and below.
Since

∏
j qj = O(t1/2), some qj → 0, for j = 1, 2, 3. Up to relabeling, assume q1 → 0. We

have that, for j = 1, 2, 3:

qj = τj(ν) =
ν − ηj
1− η̄jν

=
ϵj

1− |ν|2 + νϵ̄j
. (5.28)

So,

1

q1
=

(
1− |ν|2

ϵ1

)
+ ν

ϵ̄1
ϵ1

=

(
Kϵ2ϵ3
ϵ21

) 1
3

+ ν
ϵ̄1
ϵ1

→ ∞. (5.29)
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Passing to a subsequence if needed, we may assume that |ϵ1| ≤ |ϵ2| ≤ |ϵ3|. So by (5.29),
ϵ1
ϵ3

→ 0. Therefore, ∣∣∣∣ 1q3
∣∣∣∣ =

∣∣∣∣∣
(
Kϵ1ϵ2
ϵ23

) 1
3

+ ν
ϵ̄3
ϵ3

∣∣∣∣∣→ |ν0| = 1. (5.30)

But, by (5.27) and |τηj(ν)| = |τν(ηj)|, |η3|2|q3|3 → r
c
, which gives a contradiction since

|η3| → |ν0| = 1 and |q3| → 1.

Using Claim 5.3.5, equation (5.25), b = O(t1/2) and
∏

j qj = O(t1/2), we see that ν =

O(t1/2).
So Ξ(w) = w(r+ cw5)+w7O(t1/2)+O(t1/2) and, assuming |η0| ≤ |ηj| ∀j, we get that for

j ̸= 0, ηj → −( r
c
)
1
5 e

j2πi
5 , while η0 = O(t1/2). This finishes the proof of Lemma 5.3.2.

Proof. (of Proposition 5.3.3)
In the limit t = 0, taking into account that b = O(t1/2), ν = O(t1/2), η0 = O(t1/2) and

ηj → −( r
c
)
1
5 e

j2πi
5 , we have that Ψ(w),

∏5
j=1 τj(w), and h2(w), thought as maps form D to

CP1, uniformly converge to

Ψ(w) =
r + cw5

w5
;

5∏
j=1

τj(w) =
cw5 + r

rw5 + c
; h2(w) = rw5 + c.

So, for instance, in the case I = {1, 2, 3, 4, 5} we get that z1(w) , z2(w), z3(w) uniformly
converge to

z1(w) = w2; z2(w) = e−iθw
√
rw5 + c; z3(w) = eiθ

cw5 + r

rw5 + c

√
rw5 + c;

z0(w) =
z22(w)

z1(w)
= e−2iθ(rw5 + c).

Hence using the (x̃ : ỹ : z̃) coordinates of CP(1, 1, 4) we have

x̃(w) = e−iθ
√
rw5 + c; ỹ(w) = w; z̃(w) = eiθ

√
rw5 + c

cw5 + r

rw5 + c
.

In general, for each I, the holomorphic discs uniformly converge to discs uθI given by

x̃(w) = e−iθ
√
rw5 + c

∏
j /∈I
j ̸=0

τj(w); ỹ(w) = w; z̃(w) = eiθ
√
rw5 + c

∏
j∈I

τj(w).

Note that none of these discs pass through the singular point (0 : 0 : 1) of CP(1, 1, 4).
As before, we have extra automorphisms of the disc, given by w 7→ eik

2π
5 w that don’t

change (5.16) and we need to quotient out by this action of Z/5Z. We get that k ∈ Z5 acts
on uθI as follows:
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|I| 0 1 2 3 4 5

uθI 7→ u
θ+k 2π

5

∅ u
θ+2k 2π

5
I−k u

θ+3k 2π
5

I−k u
θ+4k 2π

5
I−k uθI−k u

θ+k 2π
5

I

where I − k = {l ∈ {1, . . . , 5} : l ≡ j − k mod 5, j ∈ I}.
We also note that, for fixed I, varying θ ∈ [0, 2π] and looking at the boundary of the

discs, the 2-cycle swept by ∂uθI is [∂uθI ] = ±5[T c
r,0]. Therefore, in the case |I| = 0 or 5, after

quotienting by Z/5Z, the algebraic count is ±1. In the cases |I| = 1 or 4, the action of Z/5Z
permutes the indices, so the moduli space of holomorphic discs is given by {uθI ; θ ∈ [0, 2π]},
where I = {1}, respectively I = {2, 3, 4, 5}, hence the algebraic count is ±5. Similarly for
|I| = 2 or 3, the action of Z/5Z permutes the indices, so the moduli space of holomorphic
discs is given by {uθI ; θ ∈ [0, 2π]} ∪ {uθI′ ; θ ∈ [0, 2π]}, where I = {1, 2} and I ′ = {1, 3},
respectively I = {3, 4, 5}, I ′ = {2, 4, 5}, hence the algebraic count is ±10.

Lemma 5.3.6. Assuming regularity, each of the above families of discs in X0 has a corre-
sponding family in Xt, for a sufficiently small t.

Proof. We consider the 3-dimensional complex hypersurface X inside C×(CP(1, 1, 1, 2)\(0 :
0 : 0 : 1)) defined by the equation

X : z0z1 − (1− t)z22 − tz3 = 0 (5.31)

containing

L =

{
(t, (z0 : z1 : z2 : z3)); t ∈ R and

∣∣∣∣z2z3z31
− c

∣∣∣∣ = r;

∣∣∣∣z2z1
∣∣∣∣2 = ∣∣∣∣z3z21

∣∣∣∣2
}

(5.32)

as a totally real submanifold.
Then we consider M(X ,L) the moduli space of Maslov index 2 holomorphic discs in

X with boundary on L. By applying the maximum principle to the projection on the first
factor, we see that such holomorphic discs lie inside the fibers Xt, for t ∈ R. Let’s consider
discs that stay away from the singular point in X0, such as those computed above.

Assuming the discs above are regular in X0 implies they are regular as discs in X . This
follows from the splitting u∗TX = u∗TX0 ⊕ C and the ∂̄ operator being surjective onto
1-forms with values in u∗TX0, by the assumed regularity, and onto 1-forms with values in
C, by regularity of holomorphic discs in C with boundary in R.

Hence M(X ,L) is smooth near the solutions for t = 0 given above and the map
M(X ,L) → R, which takes a disc in the fiber Xt to t, is regular at 0. Therefore for a
small t, all the Maslov index 2 holomorphic discs in X0 computed above deform to holomor-
phic discs in Xt.

The regularity of the discs above is proven in Theorem 5.4.4.
The families of discs in the classes 2H − 5β + kα, given by (5.17) have been shown to

converge uniformly to the corresponding ones in CP(1, 1, 4) given by (5.20). Smoothness of
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the moduli space M(X ,L) near the families of discs given by (5.20) in X0 guarantees that
each family {uθI ; θ ∈ [0, 2π]} has a unique family in Xt converging to it, for all t sufficiently
small. Hence the counts of Maslov index 2 holomorphic discs in the classes 2H−5β+kα for
Xt are the same as the ones computed in X0. This finishes the proof of Theorem 5.3.1.

5.4 Regularity

In order to prove regularity, we consider the following two lemmas.

Lemma 5.4.1. Let uθ be a one parameter family of Maslov index 2 holomorphic discs in
a Kähler 4 dimensional manifold X with boundary on a Lagrangian L. Set u = u0 and
V = ∂

∂θ
uθ
∣∣
θ=0

a vector field along u, tangent to TL along the boundary of u.
If V is nowhere tangent to u(D) and u : D → X is an immersion, then u is regular.

Proof. As u is an immersion, we can consider the splitting u∗TX ∼= TD⊕L as holomorphic
vector bundles, where L is the trivial line bundle generated by V . Also u∗|S1TL ∼= TS1 ⊕
Re(L), where Re(L) = spanR{V } and S1 ∼= ∂D.

So a section ζ ∈ Ω0
u∗
|S1TL(D, u∗TX) of u∗TX that takes values in u∗|S1TL along the bound-

ary splits as ζ1⊕ζ2 ∈ Ω0
TS1(D, TD)⊕Ω0

Re(L)(D,L). Since J is an integrable complex structure,
the kernel of the linearized operator D∂̄ is given by

{ζ ∈ Ω0
u∗
|S1TL(D, u∗TX); ∂̄ζ = 0}

which is isomorphic to

{ζ1 ∈ Ω0
TS1(D, TD); ∂̄ζ1 = 0} ⊕ {ζ2 ∈ Ω0

Re(L)(D,L); ∂̄ζ2 = 0}
∼= TIdAut(D) ⊕ Hol((D, S1), (C,R))

The last term on the right comes from L being trivial. Aut(D) is known to be 3 dimen-
sional, while Hol((D, S1), (C,R)) is the space of real-valued constant functions. Therefore,

DimKer(D∂̄) = 4 = 2 · χ(D) + µ(u∗TX, u∗|S1TL) = index(D∂̄)

The following lemma sets a sufficient condition for V , as given in the previous lemma,
not to be tangent to u(D).

Lemma 5.4.2. Let u : D → X be a Maslov index 2 holomorphic disc in a Kähler 4-manifold
X with boundary on a Lagrangian L such that uS1 : S1 → L is an immersion, and V a
holomorphic vector field on X along u, tangent to L at the boundary. If V is not tangent to
u(D) at the boundary, then u is an immersion and V is nowhere tangent to u(D).



CHAPTER 5. COMPUTING HOLOMORPHIC DISCS IN CP2 BOUNDED BY TC
R,0 43

Proof. Suppose that either du(x) = 0 or V is tangent to u(D) at a point u(x); up to
reparametrizing the disc we may assume that x ̸= 0. Consider another holomorphic vector
field W = du( ∂

∂θ
) given by an infinitesimal rotation, which is tangent to u(D), has a zero

at 0 and is also tangent to L at the boundary. Then the Maslov index can be computed
using det2(W ∧ V ), so the number of zeros of det(W ∧ V ) is µ(u∗TX, u|∂DTL)/2 = 1. But
W vanishes at u(0) and either vanishes or is parallel, as a complex vector, to V at u(x).
Since the zeros of W ∧ V always occur with positive multiplicity, as the vector fields are
holomorphic, we get a contradiction.

Now we are ready to prove

Theorem 5.4.3. The holomorphic discs representing the classes β and H − 2β +mα in Xt

computed on proposition 5.1.1 and theorem 5.2.1 are regular, for small t.

Proof. By Lemmas 5.4.1, 5.4.2, we only need to notice that for each of the holomorphic discs
uθI considered, the vector field V (w) = ∂

∂θ
uθI(w) is not tangent to uθI(∂D). We note that

in the limit t = 0, we have that uθI uniformly converge, in a compact neighborhood of the
boundary, to a holomorphic disc given by:

z1(w) = w; z2(w) = e−iθ
√
rw2 + c

∏
j /∈I
j ̸=0

τηj(w); z3(w) = eiθ
√
rw2 + c

∏
j∈I

τηj(w)

where η1 = i
√
r/c, η2 = −i

√
r/c. So we see that in the limit t = 0, V (w) = ∂

∂θ
uθI(w) is

parallel to the fibers of f(z0 : z1 : z2 : z3) = z2z3
z31

restricted to X0 and nowhere vanishing.

Therefore, V (w) is not tangent to uθI(∂D) for t = 0, and by continuity the same holds for
small t.

Theorem 5.4.4. The holomorphic discs in X0 computed in Theorem 5.3.1 are regular. By
Lemma 5.3.6, for small t, the corresponding holomorphic discs in the classes 2H − 5β +mα
in Xt are also regular.

Proof. Similar to the other cases, for each considered holomorphic disc uθ, we have the vector
field V (w) = ∂

∂θ
uθ(w) = (ix̃(w),−iz̃(w)) in coordinates (x̃, z̃), for ỹ = 1 on CP(1, 1, 4) along

the boundary. These vectors are not tangent to uθ(D) along the boundary, since they are
nonvanishing and parallel to the fibers of f(x̃, z̃) = x̃z̃. Hence, by lemmas 5.4.1, 5.4.2, these
discs are regular.

5.5 Orientation

The choice of orientation of the moduli space of holomorphic discs is determined by a choice of
spin-structure on the Lagrangian; see [7] section 5. In this section we choose a spin structure



CHAPTER 5. COMPUTING HOLOMORPHIC DISCS IN CP2 BOUNDED BY TC
R,0 44

on our Lagrangian T (1, 4, 25) torus and argue that, under the choice of orientations made
in [10], see also section 7 of [7], the evaluation map from each of the moduli spaces of Maslov
index 2 holomorphic discs considered in this section to the T (1, 4, 25) torus is orientation
preserving. We use the same definition of spin-structure given by C. Cho in section 6 of [7]:

Definition 5.5.1. A spin structure on an oriented vector bundle E over a manifold M is a
homotopy class of a trivialization of E over the 1-skeleton of M that can be extended over
the 2-skeleton.

In case of surfaces, it’s enough to consider a stable trivialization of the tangent bundle.
We see that ∂α and ∂β form a basis of H1(T

c
r,0,Z) and hence they induce a trivialization of

the tangent bundle of T c
r,0 oriented as {∂α, ∂β}.

The orientation of the moduli space at a disc u : (D, ∂D) → (X2n, Ln) is then given by
the orientation of the index bundle of the linearized operator D∂̄u that is induced by the
chosen trivialization of the tangent bundle TL along ∂D, as described in [10].

The rough idea is that we extend the trivialization of the tangent bundle of the Lagrangian
to a neighborhood of ∂D, then take a concentric circle contained in it, and pinch it to a
point O ∈ D, the part of the disc inside the circle becoming a CP1. The trivialization of
TL along the pinched neighborhood gives a trivialization of its complexification TX. This
way, considering the isomorphisms given by the trivializations, the linearized operator is
homotopic to a ∂̄ operator on D ∪ CP1, whose kernel consists of pairs (ξ0, ξ1) where: ξ0 is
a holomorphic section of the trivial bundle Cn over the disc, with boundary on the trivial
subbundle Rn, i.e, a constant maps into Rn; and ξ1 is a holomorphic section of the bundle
induced by u∗TX over CP1, which we denote by TX|CP1 . These sections must match at
O ∈ D and the ‘south pole’ S ∈ CP1. In other words, Fukaya, Oh, Ohta, Ono show that
the index of the linearized operator (seen as a virtual vector space KerD∂̄u − CoKerD∂̄u) is
isomorphic to the kernel of the homomorphism:

(ξ0, ξ1) ∈ Hol(D, ∂D : Cn,Rn)×Hol(CP1, TX|CP1) → ξ0(O)− ξ1(S) ∈ Cn ∼= TX|S (5.33)

Now the kernel can be oriented by orienting Rn ∼= Hol(D, ∂D : Cn,Rn) (which is es-
sentially the trivialization of the tangent space of the Lagrangian), since Hol(CP1, TX|CP1)
and Cn carry complex orientations. For a detailed account of what we just discussed, see
Chapter of [10] Part II, also Proposition 5.2 in [7].

Denote by M̃(γ) the space of holomorphic discs on CP2 with boundary on T c
r,0 in the

class γ, not quotiented out by Aut(D). By the same argument as in section 8 of [7], the
factor Rn ∼= Hol(D, ∂D : Cn,Rn) in (5.33) corresponds to the subspace of TuM̃(γ) given
by the deformations of u which correspond to translations along the boundary of T c

r,0, i.e.,

generated by V = ∂
∂θ
uθ and by infinitesimal rotations in Aut(D). This way, we orient the

moduli space of discs accordingly with our chosen orientation {∂α, ∂β}. In particular, M(β),
which consists of one-parameter family of discs uθ described in Proposition 5.1.1, is oriented
in the positive direction of θ, since ∂uθ

∂θ
and the tangent vector to the boundary of uθ form
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a positive oriented basis of TT c
r,0; while the other moduli spaces M(H − 2β + mα) and

M(2H − 5β + kα) are oriented in the negative direction of the parameter θ, since in these
cases ∂uθ

∂θ
and the tangent vector to the boundary of uθ form a negative oriented basis.

Proposition 5.5.2. The evaluation maps from M1(β), M1(H − 2β +mα) and M1(2H −
5β + kα) to T c

r,0 are all orientation preserving.

Here the subscript 1 refers to the moduli space with one marked point at the boundary.
The proof of the proposition above follows from the same argument as in Proposition 8.2
in [7].

As a corollary of all we have done in this section, we get

Theorem 5.5.3. In the region corresponding to T (1, 4, 25) tori, the mirror superpotential is
given by (3.3):

WT (1,4,25) = u+ 2
e−Λ

u2
(1 + w)2 +

e−2Λ

u5w
(1 + w)5
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Chapter 6

The monotone torus

In this chapter we show that we can modify our symplectic form in a neighborhood of D5 to
a new one for which T c

r,0 is Lagrangian monotone. Recall that a Lagrangian L in a symplectic
manifold (X,ω) is called monotone if there exists a constant ML such that for any disc u in
π2(X,L) satisfies ∫

u∗ω =MLµL(u)

where µL is the Maslov class.
Recall the relative homotopy classes H = [CP1], β and α defined after Proposition 5.1.1,

with Maslov indices µ(H) = 6, µ(β) = 2 and µ(α) = 0. A disc in the class α is given
by the Lefschetz thimble over the interval [0, c− r] with respect to the symplectic fibration
f , so

∫
α
ω = 0. We see that L = T c

r,0 satisfies the monotonicity condition if and only if
[ω] · β =

∫
β
ω = Λ/3, where Λ =

∫
H
ω.

We could try to compute
∫
β
ω (=

∫
β
ω̃), which depends on our choice of c and r < c. As

r → 0, [ω] · β converges to 0. We could take then a very large value for c and r very close to
c. Nonetheless, a careful computation shows that the symplectic area [ω] ·β remains smaller
than Λ/3. Taking then another approach, we look at table 5.1.4 and see that D5 intersects
β in 2 points and H in 5 points. We can then build a 2-form σ supported in a neighborhood
of D5, so that the ratio [σ] · β/[σ] ·H = 2/5 > 1/3. By adding a large enough multiple of σ
to ω, we get a Kähler form ω̂ for which [ω̂] · [β] = Λ/3.

Proposition 6.0.4. There is a Kähler form ω̂ for which T c
r,0 is Lagrangian monotone. More-

over, ω̂ can be chosen to agree with ω away from a neighborhood of D5 that is disjoint from
T c
r,0.

Proof. Take a small enough value of r, for which it is straightforward to see that [ω]·β < Λ/3.
In order to make T c

r,0 monotone we perform a Kähler inflation in a neighborhood of the quintic
D5 (see section 5.1) to achieve [ω̂] · β =

∫
[CP1]

ω̂/3, keeping [ω̂] · α = 0.

Take a small neighborhood N of D5 = {s5 = 0} not intersecting T c
r,0, where s5 =

xξ2−2cy2zξ+c2y5. Take a cutoff function χ such that χ(|s5|2) is equal to 1 in a neighborhood
of D5 and is equal to 0 in the complement of N . We then define ω̂ = ω +Kσ for
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σ =
i

2
∂∂̄ log

(
|s5|2 + εχ(|s5|2)(|x|2 + |y|2 + |z|2)5

)
where K and ε are constants to be specified. We use the fact that ∂∂̄ log(|f |2) = 0 for a
holomorphic function f , to note that the expression for σ is the same for the homogeneous
coordinates (1 : y

x
: z

x
), (x

y
: 1 : z

y
) and (x

z
: y

z
: 1), therefore σ defines a 2-form on CP2, and

also to note that σ = ∂∂̄ log(|s5|2) = 0 outside N , so T c
r,0 is Lagrangian with respect to ω̂.

Lemma 6.0.5. [σ] = 5[ωFS] is independent of ε and the cutoff function χ.

Proof of Lemma. To determine the cohomology class of σ, it is enough to compute
∫
[CP1]

σ.

For this we consider [CP1] = {x = 0}, and write σ = 1
4
ddclogψj, where

ψ1 =
|s5|2 + εχ(|s5|2)(|x|2 + |y|2 + |z|2)5

|y|10
,

ψ2 =
|s5|2 + εχ(|s5|2)(|x|2 + |y|2 + |z|2)5

|z|10
,

are homogeneous functions respectively defined on {y ̸= 0}, {z ̸= 0}, such that

ψ1

ψ2

=
|z|10

|y|10
(6.1)

We then divide [CP1] = {x = 0} into two hemispheres H+, H−, contained in {y ̸= 0},
{z ̸= 0}, respectively, to compute

∫
[CP1]

ω =
1

4

∫
H+

ddclogψ1 +
1

4

∫
H−

ddclogψ2 =
1

4

∫
∂H+

dclogψ1 +
1

4

∫
∂H−

dclogψ2

=
1

4

∫
∂H+

dclogψ1 − dclogψ2 =
1

4

∫
∂H+

dclog

(
|z|10

|y|10

)
=

5

4

∫
∂H+

dclog

(
|z|2

|y|2

)
(6.2)

which by comparison with the same calculation for ωFS is 5 times the area of [CP1] with
respect to the Fubini-Study form ωFS.

In particular, taking ε → 0 we get that σ converges to a distribution supported at
D5 = {s5 = 0}. Now considering α, β, H = [CP1] as cycles in H2(CP2,CP2 \ N ) and
[σ] ∈ H2(CP2,CP2 \ N ) we see that their σ-areas are a constant π times their intersection
number withD5, i.e.,

∫
α
σ = πα·[D5] = 0,

∫
β
σ = πβ·[D5] = 2π and

∫
H
σ = π[CP1]·[D5] = 5π.

Then, since the ratio between the σ-area of β and H is 2/5 > 1/3, we can choose a
constant K, so that [ω̂] · β = [ω̂] ·H/3. Given this value of K, we can choose ε small enough
to ensure that ω̂ is nondegenerate and hence a Kähler form for which T c

r,0 is monotone
Lagrangian.
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6.1 The monotone T (1, 4, 25) torus is exotic

We are now going to prove that the count of Maslov index 2 holomorphic discs is an in-
variant of monotone Lagrangian submanifolds. We will see that it suffices to show it is an
invariant under deformation of the almost complex structure. Let L be a monotone La-
grangian submanifold of a symplectic manifold (X,ω) and Js, s ∈ [0, 1] a path of almost
complex structures such that (L, J0), (L, J1) are regular, i.e., for k = 0, 1, Maslov index 2
Jk-holomorphic discs are regular. Note that since L is monotone there are no Js-holomorphic
discs of nonpositive Maslov index for any s ∈ [0, 1]. Since L is orientable, Maslov indexes are
even, so the minimum Maslov index is 2. Therefore, there is no bubbling for Maslov index
2 Js-holomorphic discs bounded by L, when we vary s.

Consider then, for β ∈ π2(X,L), µ(β) = 2, the moduli spaces M(β, Js) of Js-holomorphic
discs representing the class β , modulo reparametrization. We choose the path Js generically
so that the moduli space

M̃(β) =
1⊔

s=0

M(β, Js)

is a smooth manifold, with

∂M̃(β) = M(β, J0) ∪M(β, J1).

Lemma 6.1.1. If L is oriented and monotone, the classes and algebraic count of Maslov
index 2 J-holomorphic discs with boundary on L are independent of J , as long as (L, J) is
regular.

Proof. Since L is oriented, there is no J-holomorphic discs with odd Maslov index and for
L monotone, the Maslov index of a disc is proportional to its area. Hence, Maslov index 2
J-holomorphic discs are the ones with minimal area, for any almost complex structure J . L.
Lazzarini ( [16]) and Kwon-Oh ( [15]) proved that for any J-holomorphic disc u with u(∂D) ⊂
L, there is a somewhere injective J-holomorphic disc v, with v(D) ⊂ u(D). Therefore, by
minimality of area, Maslov index 2 discs are somewhere injective. By connectedness of the
space of compatible almost complex structures we can consider Js, s ∈ [0, 1] a generic path of
almost complex structures such that (L, J0), (L, J1) are regular as above. The result follows
immediately from the cobordism M̃(β) between M(β, J0) and M(β, J1).

Theorem 6.1.2. If L0 and L1 are symplectomorphic monotone Lagrangian submanifolds of
a symplectic manifold (X,ω), with an almost complex structure J so that (L0, J) and (L1, J)
are regular, then algebraic counts of Maslov index 2 J-holomorphic discs, and in particular
the numbers of different classes bounding such discs, are the same.

Proof. Let ϕ : X → X be a symplectomorphism with ϕ(L1) = L0. Apply Lemma 6.1.1 with
L = L0, J0 = J , J1 = ϕ∗J .
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Corollary 6.1.3. The monotone T (1, 4, 25) torus is not symplectomorphic to either the
monotone Chekanov torus or the monotone Clifford torus.

Remark 6.1.4. We can try to find an exotic torus in C2 by considering the T (1, 4, 25) torus
in affine charts. If we restrict to the coordinate charts {y ̸= 0} or {z ̸= 0}, only the discs
in the class β remain. Hence we cannot distinguish the T (1, 4, 25) torus, considered in the
charts {y ̸= 0} or {z ̸= 0}, from the usual Chekanov torus, which also bounds a single family
of holomorphic discs in C2. In the {x ̸= 0} coordinate chart, another family of holomorphic
discs in the class 2H − 5β − α remains present, besides the one in the class β. This can be
checked directly or just by observing that the intersection numbers of the complex line {x = 0}
with H, β, α are 1 , 0 and 2, respectively. Therefore our methods cannot distinguish the
T (1, 4, 25) torus, considered in the chart {x ̸= 0}, from the usual Clifford torus in C2, which
also bounds two families of Maslov index 2 holomorphic discs in C2, whose boundaries also
generate the first homology group of the torus.

6.2 Floer Homology and non-displaceability

The modern way to show that a Lagrangian submanifold L of a symplectic manifold X
is non-displaceable by Hamiltonian diffeomorphisms is to prove that its Floer homology
HF (L,L) is non-zero. The version of Floer Homology we use in this section to prove that
HF (T c

r,0) ̸= 0 (for some choice of local system) is the Pearl Homology, introduced by Oh
in [18]. Here we will follow the definitions and notation similar to the ones given in [3, 4].

yx

u1

u0

Figure 6.1: A trajectory contributing to the differential of the pearl complex

Let (X,ω) be a symplectic manifold, J a generic almost complex structure compatible
with ω, and L a monotone Lagrangian submanifold, with monotonicity constant ML. We
also choose a C∗ local system over L (we don’t need to use the Novikov ring because L is
monotone, so the area of holomorphic discs is proportional to the Maslov index) and a spin
structure to orient the appropriate moduli spaces of holomorphic discs. To define the pearl
complex we fix a Morse function f : L→ R and a metric ρ so that (f, ρ) is Morse-Smale and
we denote the gradient flow by γ.

The pearl complex C(L; f, ρ, J) = (C[q, q−1]⟨Crit(f)⟩, d) is generated by the critical
points of f , and the differential counts configurations consisting of gradient flow lines of γ to-
gether with J-holomorphic discs as illustrated in Figure 6.1. More precisely, for |x| = indf (x),
|y| = indf (y), B ∈ π2(M,L), δ(x, y, B) = |x| − |y| − 1 + µ(B):
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dx =
∑

|y|=|x|−1

#P(x, y, 0) · y +
∑

δ(x,y,B)=0,
B ̸=0

(−1)|y|#P(x, y, B)hol∇(∂B)qµ(B) · y (6.3)

where ∇ is the chosen local system and P(x, y, B) is the the moduli space of “pearly
trajectories”, whose elements are gradient flow lines of f from x to y when B = 0, and
otherwise tuples (u0, t1, u1, · · · , tk, uk), k ∈ Z≥0 so that:

i. For 0 ≤ j ≤ k, uj is a non-constant J-holomorphic disc with boundary on L, up to
reparametrization by an automorphism of the disc fixing ±1.

ii.
∑

j[uj] = B.

iii. For 1 ≤ j ≤ k, tj ∈ (0,+∞), and γtj(uj−1(1)) = uj(−1).

iv. γ−∞(u0(−1)) = x, γ+∞(uk(1)) = y.

The choice of spin structure on L gives an orientation for the moduli space of holomorphic
discs, and together with the orientation of the ascending and descending manifolds of each
critical point of f , one can get a coherent orientation for P(x, y, B). For a detailed account
of how to orient the space of pearly trajectories, see appendix A.2.1 of [4].

We have a filtration given by the index of the critical point. For simplicity we write
C∗(L) for C∗(L; f, ρ, J). Note that d =

∑
j≥0 δ2j, where δ0 : C∗(L) → C∗−1(L) is the Morse

differential of the function f and δ2j : C∗(L) → C∗−1+2j(L) considers only configurations for
which the total Maslov index is 2j. This gives a spectral sequence (the Oh spectral sequence),
converging to the Pearl homology, for which the second page is the singular homology of L
with coefficients in C[q, q−1].

Let L be the space of C∗ local systems in L and consider the ‘superpotential’ function
W : L → C[q, q−1],

W (∇) =
∑

β,µ(β)=2

nβq
2hol∇(∂β) =

∑
β,µ(β)=2

nβzβ(∇) (6.4)

where zβ(∇) = q

∫
β ω

ML hol∇(∂β) = q2hol∇(∂β) and nβ is the count of Maslov index two
J-holomorphic discs bounded by L in the class β.

Assume also that the inclusion map H1(L) → H1(X) is trivial, so we have that the ring of
regular functions on the algebraic torus L ∼= hom(H1(L),C∗) is generated by the coordinates
zj = zβj

(∇) for relative classes βj such that ∂βj generates H1(L).
The following result is the analogue of Proposition 11.1 of [8] (see also section 12 of [8])

in the pearly setting:
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Proposition 6.2.1. Let f be a perfect Morse function. Denote by p the index 0 critical point,
by q1, · · · , qk the index 1 critical points, by Γ1, · · · ,Γk, the closure of the stable manifold of
q1, · · · , qk, respectively, and by γ1, · · · , γk the closure of the respective unstable manifolds.
Set zj = zγj . Then

δ2(p) =
∑
j

±zj
∂W

∂zj
qj

In particular δ2(p) = 0 precisely for the local systems corresponding to the critical points
of W .

Proof. ( up to choice of orientations) We note that the only possible pearly trajectories
contributing to the coefficient of qj in δ2(p) consist of a holomorphic discs u with u(−1) = p
together with a flow line from u(1) ending in qj, i.e., u(1) ∈ Γj. Hence,

δ2(p) =
∑

β,µ(β)=2

±nβzβ(∇)
∑
j

([∂β] · [Γj])qj (6.5)

Since [γ1], · · · , [γk] form a basis for H1(L), we can write [∂β] =
∑

j aj[γj], where aj =

[∂β] · [Γj]. So zβ(∇) is a constant multiple of
∏

j z
aj
j , therefore (6.5) gives precisely δ2(p) =∑

j ±zj
∂W
∂zj
qj.

Corollary 6.2.2. Consider the monotone T (1, 4, 25) torus T c
r,0, endowed with the standard

spin structure and local system ∇ such that hol∇(∂β) = 9
4
ek

2π
3
i, for some k ∈ Z, and

hol∇(∂α) = 1
8
, where α and β are as defined in section 5.1. Then the Floer homology

HF (T c
r,0,∇) is non-zero. Therefore T c

r,0 is non-displaceable.

Proof. Since T c
r,0 has dimension 2, all the boundary maps δ2j are zero for j ≥ 2. Hence the

pearl homology HF (T c
r,0,∇) is the homology of (H∗(T

c
r,0) ⊗ C[q, q−1], δ2). Writing u = zβ

and w = zα, the ‘superpotential’ is given by

WT (1,4,25) = u+ 2
q6

u2
(1 + w)2 +

q12

u5w
(1 + w)5

The result follows from computing the critical points of WT (1,4,25) which are w = 1
8
,

u = 9
4
ek

2π
3
iq2.

Remark 6.2.3. It can be shown that in fact for any monotone Lagrangian torus δ2 = 0 for
the local systems ∇ which are critical points of W , so HF (T c

r,0,∇) ∼= H∗(T
c
r,0)⊗ C[q, q−1].
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Chapter 7

Prediction for CP1 × CP1

In this chapter we apply the same techniques of sections 3, 4 to predict the existence of an
exotic monotone torus in CP1 × CP1 bounding 9 families of Maslov index 2 holomorphic
discs, hence not symplectomorphic to the Clifford or Chekanov ones.

We use coordinates ((x : w), (y : z)) on CP1 × CP1. We smooth two corners of the
divisor {xwyz = 0}. First considering the fibration given by f0((x : w), (y : z)) = xy

wz

and D2 = {ξ = 0}, for ξ = xy−wz
2t

and t a positive real number, we smooth the corner of

{xy = 0} to get a new divisor D2 ∪{wz = 0}. Then using f = zξ
wy2

, we smooth the corner of

D2∪{z = 0} and get a new anticanonical divisor D = f−1(c)∪{w = 0}, for c a positive real
number. Then we consider a similar singular Lagrangian torus fibration on the complement
of D. In particular we define the T (1, 2, 9) (see remark 7.0.5) type torus:

Definition 7.0.4. Given c > r > 0 and λ ∈ R,

T c
r,λ =

{
((x : w), (y : z));

∣∣∣∣ zξwy2 − c

∣∣∣∣ = r;

∣∣∣∣zy
∣∣∣∣2 − ∣∣∣∣ ξwy

∣∣∣∣2 = λ

}
, (7.1)

which is Lagrangian for a symplectic form similar to (4.6).

Remark 7.0.5. The role of the parameter t in the definition of ξ is less obvious than in
the case of CP2, since here it amounts to a single rescaling. However as in the case of CP2,
its presence is motivated by considerations about degenerations. More precisely the choice of
ξ = xy−wz

2t
is based on a degeneration of CP1 × CP1 to CP(1, 1, 2), which can be embedded

inside CP3; see Proposition 3.1 of [2]. Applying two nodal trades to the standard polytope
of CP1 × CP1 and redrawing the almost toric diagram as in Figure 2.3, we see that the
Chekanov torus corresponds to the central fiber of CP(1, 1, 2), and the torus fiber obtained
by lengthening both cuts to pass through the central fiber of CP1 × CP1 corresponds to the
central fiber of CP(1, 2, 9), therefore we denote it by T (1, 2, 9).

We then proceed as in section 3 to predict the number of families of Maslov index 2
holomorphic discs this torus should bound, at least for some values of t, c and r.
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Figure 7.1: A T (1, 2, 9) type torus in CP1 × CP1 bounding 9 families of Maslov index 2

holomorphic discs. The superpotential is given by WT (1,2,9) = u2 + + e−A

u2
+ e−B

u2
+ e−Au1

u2
2

+

e−Bu1

u2
2

+ e−A−B

u1u2
2

+ 3 e−A−B

u3
2

+ 3 e−A−Bu1

u4
2

+
e−A−Bu2

1

u5
2

.

It is known that the Clifford torus bounds four families of Maslov index 2 holomorphic
discs in the classes β1, β2, H1 − β1, H2 − β2, where β1 = [D× {1}] and β2 = [{1} × D] seen
in the coordinate chart y = 1, w = 1 and H1 = [CP1] × {pt} and H2 = {pt} × [CP1]. On
the almost toric fibration illustrated on Figure 7.1, it is located in the top chamber and has
superpotential given by

WClif = z1 + z2 +
e−A

z1
+
e−B

z2
, (7.2)

where z1 , z2 are the coordinates associated with β1, β2, A =
∫
[CP1]×{pt} ω, B =

∫
{pt}×[CP1]

ω.

(For a monotone symplectic form A = B.)
The first wall-crossing towards the Chekanov type tori gives rise to the change of coor-

dinates z1 = v1(1 + w̃), z2 = v2(1 + w̃)−1, where w̃ = e−A/z1z2 = e−A/v1v2. Hence the
superpotential becomes
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WChe = v2 + v1(1 + w̃) + e−B (1 + w̃)

v2
= v1 + v2 +

e−A

v2
+
e−B

v2
+
e−A−B

v1v22
. (7.3)

Crossing now the other wall towards the T (1, 2, 9) type tori, we get the change of coor-
dinates u1 = v1(1 + w), u2 = v2(1 + w), w = v1/v2 = u1/u2.

The superpotential is then given by

WT (1,2,9) = u2 + (e−A + e−B)
1 + w

u2
+ e−A−B (1 + w)3

u1u22

= u2 +
e−A

u2
+
e−B

u2
+
e−Au1
u22

+
e−Bu1
u22

+
e−A−B

u1u22
+ 3

e−A−B

u32
+ 3

e−A−Bu1
u42

+
e−A−Bu21

u52
. (7.4)

7.1 The homology classes

We consider the torus T c
r,0. Using notation similar to that in section 5, let’s call β the class

of the Maslov index 2 holomorphic disc lying on the conic z = ξ that projects into the region
|f − c| ≤ r, and α the Lefschetz thimble associated to the critical point of f at the origin
lying above the segment [0, c− r] (oriented to intersect positively with {z = 0}).

As before we use positivity of intersection with some complex curves to restrict the
homology classes.

Lemma 7.1.1. For fixed c and r, for t sufficiently small, the intersection number of the
classes α, β, H1 and H2 with the varieties {x = 0}, {y = 0}, {w = 0}, {z = 0}, D3 =
f−1(c) ∪ {((0 : 1), (1 : 0)), ((1 : 0), (1 : 0))}, D2 = {ξ = 0}, D′

3 = {xξ − cw2y = 0},
D6 = D3 ∪D′

3 (all of them disjoint from T c
r,0) and their Maslov indeces µ, are as giving in

the table below:

Class x = 0 y = 0 w = 0 z = 0 D2 D3 D′
3 D6 µ

α 1 0 0 1 -1 0 0 0 0
β 0 0 0 0 0 1 1 2 2
H1 1 0 1 0 1 1 2 3 4
H2 0 1 0 1 1 2 1 3 4

Proof. The intersection numbers of H1 and H2 with the given complex curves are computed
using Bezout’s theorem, and the Maslov index is twice the intersection number with the
anticanonical divisor D = D3 ∪ {w = 0}.

By construction, the intersection of α with {z = 0} is one, with D2 is negative one and
with D3, {y = 0} and {w = 0} it is clearly zero, as well as the intersection of β and T c

r,0 with
{ywz = 0} and D2. Also clear is the intersection of β with D3.
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To understand the intersection of the torus T c
r,0, α and β with {x = 0} and D′

3, we look
at the family of conics C = {z = eiθξ; θ ∈ [0, 2π]} containing T c

r,0, the thimble representing
the class α and holomorphic discs representing the class β, similar to the ones in Proposition
(5.1) (for instance one where z = ξ, and Re(z) > 0). We use the coordinate chart y = 1,
w = 1.

For {x = 0} ∩ C, we have z = eiθξ = −eiθz/2t, so the intersection is only at z = 0, for t
small enough, and with same sign as for {z = 0}, since x is a multiple of z along C.

For D′
3 ∩ C, we note that x = z(2te−iθ + 1) along C. Considering f = zξ, we have

0 = xξ − c = z(2te−iθ + 1)ξ − c = f(2te−iθ + 1)− c

So, f = c
(2te−iθ+1)

, so we see that for t very small, D′
3 ∩ C intersects in a circle projecting

via f inside the region |f − c| < r, therefore D′
3 intersects T c

r,0, α and β respectively at 0,
0, and 1 point (counting positively as D′

3 and our representative of the β class are complex
curves).

Remark 7.1.2. D6 was found by considering the degeneration of CP1×CP1 to CP(1, 1, 2) in
a similar manner as in section 5.1 D5 was found using the degeneration of CP2 to CP(1, 1, 4).
Here it turns out that D6 = D3 ∪D′

3.

Lemma 7.1.3. The only classes in π2(CP1×CP1, Tr,0) which may contain holomorphic discs
of Maslov index 2 are β, H1 − β, H2 − β, H1 − β + α, H2 − β + α and H1 +H2 − 3β + kα,
−1 ≤ k ≤ 2.

Proof. Maslov index 2 classes must be of the form β+kα+m(H1−2β)+n(H2−2β). Consid-
ering positivity of intersections with complex curves the proof follows from the inequalities
for k, m and n given by the table:

Curve x = 0 y = 0 w = 0 z = 0 D2 D3 D′
3

Inequality −m ≤ k 0 ≤ n 0 ≤ m −n ≤ k k ≤ m+ n m ≤ 1 n ≤ 1

7.2 The monotone torus

In order to make T c
r,0 a monotone Lagrangian torus, we deform our symplectic form using

Kähler inflation in neighborhoods of complex curves that don’t intersect T c
r,0,in a similar way

as we did in section 6. First one can inflate along {y = 0} or {w = 0} to get a monotone
Kähler form ω̃ for CP1×CP1, i.e.,

∫
H1
ω̃ =

∫
H2
ω̃, for which

∫
α
ω̃ = 0 . In order for T c

r,0 to be

monotone, we need a Kähler form ω̂, satisfying the same conditions as ω̃ plus
∫
H2
ω̂ = 2

∫
β
ω̂.

Noting that the intersection numbers of D6 with α, β, H1, H2 are 0 ,2, 3 and 3, respectively,
we can get ω̂ by adding a specific multiple of a 2-form supported on a neighborhood ofD6 to ω̃
as in Proposition 6.0.4, so as to satisfy

∫
α
ω̂ = 0 and

∫
H1
ω̂ =

∫
H2
ω̂ = 2

∫
β
ω̂. The last equality
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can be achieved because the ratio between the intersection numbers [D6] ·H1 = [D6] ·H2 and
[D6] · β is 2/3 which is greater than 1/2.

Therefore one only need to compute the expected Maslov index 2 holomorphic discs in
the classes β, H1 − β, H2 − β, H1 − β + α, H2 − β + α and H1 +H2 − 3β + kα, −1 ≤ k ≤ 2
to prove:

Conjecture 7.2.1. There is a monotone T (1, 2, 9) torus, of the form T c
r,0, in CP1 × CP1,

bounding 9 families of Maslov index 2 holomorphic discs, that is not symplectomorphic to
the monotone Chekanov torus nor to the monotone Clifford torus.
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