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Transmitter Cooperation under Finite Precision CSIT:

A GDoF Perspective

Arash Gholami Davoodi and Syed A. Jafar

Center for Pervasive Communications and Computing (CPCC)

University of California Irvine, Irvine, CA 92697

Email: {gholamid, syed}@uci.edu

Abstract

The benefits of partial and full transmitter cooperation are evaluated for a two user interfer-
ence channel under finite precision channel state information at the transmitters (CSIT), using
the generalized degrees of freedom (GDoF) metric. Under finite precision CSIT, the benefits of
interference alignment are completely lost, so that the X channel obtained by partial transmitter
cooperation does no better than the underlying interference channels. Full transmitter coopera-
tion produces a vector broadcast channel (BC) which has a strict GDoF advantage over partial
cooperation (X channel) and whose GDoF are fully achieved by interference enhancement. 1

1 Introduction

Cooperation is widely regarded as the panacea for countering interference in wireless networks. The
benefits of cooperation are known to be quite powerful under ideal channel knowledge assumptions,
but are not as well understood in the presence of channel uncertainty. This is especially critical for
transmitter side cooperation, because the quality of channel state information at the transmitters
(CSIT) is typically much more limited in practice. It is therefore of great interest to understand
the fundamental limits of transmitter cooperation under finite precision CSIT.

In spite of much research activity aimed at limited CSIT settings (summarized in Section 3.2),
a fundamental understanding of the finite precision CSIT setting has remained rather elusive. This
is the case even from the very coarse, degrees of freedom (DoF) perspective. As a representative
example, the 2005 conjecture of Lapidoth, Shamai and Wigger (in short, the LSW conjecture) which
predicts a collapse of the degrees of freedom of a vector broadcast channel under finite precision
CSIT [1], remained open for nearly a decade, and was finally settled (in the affirmative) only in
2014 [2].

In the settling of the LSW conjecture, there is cause for both hope and despair. On the one
hand, it takes away some of the optimism behind transmitter cooperation, because it shows that the
benefits of transmitter cooperation are entirely lost from a DoF perspective under finite precision
CSIT. On the other hand, it does so by introducing a new tool for finite precision CSIT settings —
a novel combinatorial argument limiting the size of aligned image sets, i.e., the sets of codewords
that are distinguishable at one receiver but not at another receiver — under all possible (including
non-linear) coding schemes. The new tool, if it can be generalized, offers hope of further refining our

1This work was supported in part by ONR grant N00014-15-1-2557, and by NSF grants CCF-1319104 and CCF-
1161418. This work was presented in part at IEEE Globecom 2015.
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understanding of the finite precision CSIT setting, beyond the coarse DoF perspective. Specifically,
it points the way to the next logical step, a generalized degrees of freedom (GDoF) characterization,
which is goal of this paper.

1.1 Generalized Degrees of Freedom (GDoF)

Much of the recent progress on the capacity of wireless networks has come about from a progressive
refinement approach that pursues the path:

DoF → GDoF → O(1) gap → constant gap → capacity

The coarse DoF metric serves as the starting point, but suffers from severe limitations, e.g., it
essentially treats all non-zero channels as equally strong (capable of carrying one DoF each) in the
high SNR limit. Distinctions in the strength of various signals, which are extremely important in
practice, are essentially ignored in the DoF perspective. The GDoF perspective refines the picture
by adopting a model that maintains the ratio of signal strengths in the dB scale (essentially the
ratio of channel capacities) constant as the high SNR limit is approached. It is therefore able
to explore weak and strong interference regimes, which are hidden in the DoF perspective, and
offer insights into optimal schemes for those regimes. GDoF characterizations tend to be stepping
stones to capacity characterizations within an O(1) gap, i.e., a gap that does not depend on SNR,
but may depend on the channel realizations. The next progressive refinement goal tends to be a
capacity characterization within a constant gap, i.e., a gap that does not depend on SNR or channel
realizations. Not surprisingly, the ultimate refinement goal is the capacity itself.

Following this approach, since the DoF of the finite precision CSIT setting with transmitter
cooperation are now settled, the logical next goal is to pursue a GDoF characterization.

2 System Model

2.1 Interference Channel: IC(W11,W22)

As the underlying channel model, consider the 2 user interference channel defined by the input-
output equations:

Y1(t) =
√
Pα11G11(t)X1(t) +

√
Pα12G12(t)X2(t) + Z1(t) (1)

Y2(t) =
√
Pα21G21(t)X1(t) +

√
Pα22G22(t)X2(t) + Z2(t) (2)

Here, over the tth channel use, Xk(t) is the symbol sent from transmitter k, normalized so that it
is subject to unit power constraint. Yk(t) is the symbol observed at receiver k. Zk(t) ∼ N (0, 1) is
the zero mean unit variance additive white Gaussian noise. Gij(t) is the channel coefficient from
transmitter j to receiver i, whose value is assumed to be bounded away from zero and infinity, i.e.,
there exist constants 0 < ∆1 < ∆2 <∞ such that |Gij(t)| ∈ [∆1,∆2], ∀i, j ∈ {1, 2},∀t ∈ N.

For ease of exposition, we will start with the assumption that all symbols take only real values.
The results do extend to complex channels as well, as shown subsequently in this work.

The 2 user interference channel has messages Wkk that originate at transmitter k and are
intended for receiver k, k = 1, 2. Since codebooks, probability of error, achievable rate tuples
(R1, R2), and capacity region C, are all defined in the standard Shannon theoretic sense, their
definitions will not be repeated here.
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The channel model is parameterized by P . The GDoF region is defined as

D =

{
(d1, d2) : ∃(R1(P ), R2(P )) ∈ C(P ) s. t. d1 = lim

P→∞

R1(P )

Co(P )
, d2 = lim

P→∞

R2(P )

Co(P )

}
(3)

where Co(P ) is the baseline reference capacity of an additive white Gaussian noise channel Y =
X+N with transmit power P and unit variance noise. For real settings it is 1/2 log(P )+o(log(P )) =
log(P̄ ) + o(log(P )) where for notational convenience we define

P̄ ,
√
P .

Remark: Note that unlike DoF, the scaling with P in the GDoF framework does not correspond
to a physical scaling of powers in a given channel, because of the different power scaling exponents
αij. Rather, each P value defines a new channel. Intuitively, this class of channels belong together
because, normalized by log(P ), they have (approximately) the same capacity, so that a GDoF char-
acterization simultaneously characterizes the capacity of all the channels in this class within a gap
of o(log(P )).

For the interference channel, quantities of interest for user k include the signal (interference) to
noise power ratio, SNRk (INRk) defined here (in logarithmic scale) as follows.

log SNRk = αkk log(P̄ ) + 2 log(|Gkk|)
log INRk = αkk̄ log(P̄ ) + 2 log(|Gkk̄|)

where k̄ is defined to be 1 if k = 2, and 2 if k = 1. Note that

αkk = lim
P→∞

log SNRk

log(P̄ )
(4)

αkk̄ = lim
P→∞

log INRk

log(P̄ )
(5)

2.2 Partial Cooperation: X Channel

A partial cooperation scenario of interest is to allow each transmitter to serve independent mes-
sages to both users. This produces the X channel setting, with four independent messages:
W11,W12,W21,W22, such that message Wij originates at transmitter j and is intended for receiver
i.

2.3 Full Cooperation: MISO BC

Allowing full cooperation between the two transmitters produces the MISO BC (multiple input
single output broadcast channel) setting where the effective transmitter has two antennas, and
there are two independent messages W1,W2 intended for receivers 1, 2, respectively, each of which
is equipped with one antenna.

3 Background

3.1 Perfect CSIT

The perfect CSIT assumption implies that the channel knowledge at the transmitters is infinitely
precise, instantaneous, and globally available.2 In terms of DoF results (αij = 1, ∀i, j ∈ {1, 2}), with

2For all the discussion in this paper, please note that perfect channel knowledge is always assumed at the receivers.
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perfect CSIT, full cooperation (BC) enables 2 DoF, partial cooperation (X channel) enables 4/3 DoF
[3], whereas no cooperation (interference channel) allows only 1 DoF. GDoF region characterizations
are also known under perfect CSIT. For ease of exposition in this section, let us focus on sum-GDoF
in the symmetric setting, and compare the interference channel without cooperation, with partial
cooperation (X), and with full cooperation (BC).

symmetric setting:
α11 = α22 = 1
α12 = α21 = α

(6)

If perfect CSIT is assumed to be available, then the sum-GDoF of the 2 user interference channel
are represented by the so-called “W” curve [4], shown in Fig. 1 by the green line segments. Starting
from the left, the different segments correspond to very weak, weak, moderately weak, strong, and
very strong interference scenarios.

The most interesting aspect of partial cooperation, i.e., the X channel setting, is the possibility
of interference alignment, which does not arise in the 2 user interference channel. In the symmetric
setting (6) with perfect CSIT, the GDoF of the X channel [5] are represented in Fig. 1 by the
red line segments. To identify the gains from interference alignment in the X channel, as opposed
to the GDoF of the underlying interference channel, it is important to note that the X channel
contains another interference channel, with messages W12,W21, whose sum-GDoF in the symmetric
setting are shown in Fig. 1 in blue. From Fig. 1, it is evident that the X channel has a GDoF
advantage over the best of the two underlying interference channels only in the regime 2

3 < α < 3
2

(shaded in Fig. 1) [5]. This is the regime where the red plot strictly dominates the best of blue
and green plots — the regime where interference alignment is useful. Outside this regime, in order
to achieve the optimal sum-GDoF, it suffices to operate the X channel as the weak interference
channel. Remarkably, the GDoF characterization for the X channel has also been further refined all
the way to an exact capacity characterization in the very weak (also known as “noisy”) interference
regime [5].

With full cooperation, if perfect CSIT is available, then zero forcing suffices to achieve the
sum-GDoF of the resulting BC, which, in the symmetric setting, are easily seen to be 2 max(1, α),
and are shown in Fig. 1 at the top of the figure. Clearly, the benefits of full cooperation are quite
significant under perfect CSIT.

3.2 Limited CSIT

Given the difficulty of achieving near perfect channel knowledge at the transmitters in practice,
there has been much work aimed at relaxing this assumption. It is known that under no CSIT
(isotropic fading) the DoF of the BC setting collapse [6], so there is no DoF benefit of cooperation.
If channels are drawn from generic sets of finite cardinality, with the specific realization unknown
to the transmitter, then under this limited CSIT model (also known as the compound setting),
the DoF of the BC setting collapse to those of the X channel [7]. Remarkably, the X channel in
the compound setting does not lose any DoF relative to perfect CSIT. Thus, under the compound
channel uncertainty model full cooperation does not allow any more DoF benefits beyond that of
partial cooperation as represented by the X channel. Other models of limited CSIT include delayed
CSIT [8] where full cooperation allows 4/3 DoF, while the optimal DoF of partial cooperation (X
channel) remain open. The DoF of mixed CSIT models where imperfect current CSIT and perfect
delayed CSIT are both available, have been characterized for the full cooperation scenario (BC)
in [9]. The DoF of alternating CSIT models where CSIT can vary across users between perfect,
delayed and none, have been explored in [10] which also identifies synergistic benefits.
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3.3 Finite Precision CSIT

Under the finite precision CSIT model, the transmitters are assumed to be aware of the αij values,
i.e., the coarse channel strength parameters, but not the precise Gij values. For the Gij the
transmiters are only aware of the joint probability density function (PDF). Define the set of channel
coefficient variables G = {Gij(t) : t ∈ N, i, j ∈ {1, 2}}. Finite precision CSIT corresponds to the
existence of bounded density functions. Precisely, the finite precision CSIT model assumes that
there exists a finite positive constant fmax,

0 < fmax <∞
such that for all finite cardinality disjoint subsets G1,G2 of G,

G1 ⊂ G,G2 ⊂ G,G1 ∩G2 = φ, |G1| <∞, |G2| <∞
the conditional PDF

∀G1, G2, fG1|G2
(G1|G2) ≤ f |G1|

max .

Despite being investigated extensively over the past decade, the DoF with transmitter cooperation
remained an open problem under finite precision CSIT, until recently it was shown that there is no
DoF advantage of full or partial cooperation, i.e., the BC (and therefore also the X channel) has
only 1 DoF under finite precision CSIT [2]. In fact, this was shown to be true even if perfect CSIT
for one of the two users, say user 1, was consistently available to the transmitter.

4 Results: GDoF under Finite Precision CSIT

In this section, we provide an overview of the results of this work and place them in perspective
with prior work.

4.1 Main Result

The main result of this work is a complete GDoF characterization for full transmitter cooperation
(BC) under finite precision CSIT as stated in the following theorem.

Theorem 1 The GDoF region of the 2 user MISO broadcast channel under finite precision CSIT
is:

D =

(d1, d2) ∈ R+
2 :

d1 ≤ A,
d2 ≤ B,

d1 + d2 ≤ min(A+ C,B +D)

 (7)

where

A = max(α11, α12) (8)

B = max(α21, α22) (9)

C = max((α21 − α11)+, (α22 − α12)+) (10)

D = max((α11 − α21)+, (α12 − α22)+) (11)

Note that Theorem 1 provides a full GDoF region (as opposed to only sum-GDoF) characteri-
zation, and for all values of αij (as opposed to only symmetric setting).
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4.2 Comparison: Perfect vs Finite Precision CSIT

For ease of comparison with other related GDoF characterizations, we focus on the sum-GDoF
under the symmetric setting as illustrated in Fig. 1. For the MISO BC with finite precision CSIT,
the sum-GDoF value is max(2− α, 2α− 1) and is shown in black in the figure.

1 4

3

3

2

5

2

1

2

2

3

3

4

1

4/3

3/2

2

3

d(�)

GDoF of X channel

2

GDoF of Interference Channel
with messages W11, W22

GDoF of Interference Channel
with messages W12, W21

↵ !

GDoF of BC

GDoF of BC with Finite Precision CSIT

GDoF of X Channel with Finite Precision CSIT

(Same with Finite Precision CSIT)

(Same with Finite Precision CSIT)

Interference
Enhancement

(Full Cooperation)
(Finite Precision CSIT)

Interference
Alignment

(Partial Cooperation)
(Perfect CSIT)

Interference
Enhancement

(Full Cooperation)
(Finite Precision CSIT) · · ·

Figure 1: Sum-GDoF in the symmetric case α11 = α22 = 1, α12 = α21 = α.

Here we list the key observations.

1. [No cooperation (IC) – No loss]: It is straightforward to verify that the GDoF of the
interference channel under finite precision CSIT are the same as with perfect CSIT. This is
also true for the other interference channel with messages W12,W21.

2. [Full Cooperation (BC) – Loss of min(1, α)]: As long as α 6= 0, there is always a loss in
the BC GDoF due to finite precision CSIT compared to perfect CSIT, and the loss is equal
to min(1, α).

3. [Partial Cooperation (X) – Reduced to Trivial]: Recall that the X channel had a
strict advantage over the underlying interference channels only in the regime 2/3 < α < 3/2
where interference alignment allowed higher GDoF under perfect CSIT. Under finite precision
CSIT, the sum-GDoF of the X channel are bounded above by that of the BC under finite
precision CSIT in the regime 2/3 < α < 3/2, and by the X channel GDoF under perfect
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CSIT everywhere outside. However, these bounds always correspond to one of the underlying
interference channels. Thus, there is no benefit of partial cooperation relative to using the
best of the underlying interference channels under finite precision CSIT.

4. [Interference Alignment Benefits Disappear]: Consider the regime where interference
alignment was useful under perfect CSIT and partial cooperation (X channel), i.e., 2/3 < α <
3/2. Under finite precision CSIT, the sum GDoF (even with full cooperation) in this regime
collapse to the best of the underlying interference channels. In other words, the benefits of
interference alignment are entirely lost under finite precision CSIT.

5. [Interference Enhancement offers the only Robust Advantage]: Remarkably, while
the regime where interference alignment was useful sees a collapse to underlying interference
channels, the opposite happens everywhere interference alignment was not useful. Everywhere
outside the regime 2/3 < α < 3/2, note that the sum-GDoF of the BC under finite precision
CSIT strictly dominate the best of the interference channels. Since in this regime there
was no additional advantage of partial cooperation even with perfect CSIT, the BC with
finite precision CSIT also dominates the X channel (even with perfect CSIT!) in this regime.
Indeed, as we will see, the advantage is not due to interference alignment, but rather due to
interference enhancement3 [11], i.e., strengthening the interference so that it can be decoded
and subtracted by the undesired receiver. Thus, remarkably, under finite precision CSIT,
interference enhancement emerges as the only scheme with a robust GDoF advantage relative
to the underlying interference channels, and this advantage is accessible only through full
cooperation (not through partial cooperation).

While a pictorial representation is difficult for the fully asymmetric setting because of the
abundance of parameters, the following theorem presents the corresponding generalization.

Theorem 2 For all parameters α11, α12, α21, α22, we have

max(S(IC1), S(IC2)) = So(X) = min(So(BC), S1(X))

where IC1 is the interference channel with messages W11,W22, IC2 is the interference channel with
messages W21,W12, and for any channel So is the sum-GDoF value with finite precision CSIT, and
S1 is the sum-GDoF value with perfect CSIT. Note that for the interference channels the CSIT
superscripts are omitted because S1(IC1) = So(IC1) and S1(IC2) = So(IC2).

5 Proof of Theorem 1: Real Setting

For ease of exposition we first present the proof for the real setting.

5.1 Outer Bound

Outer bounds d1 ≤ A and d2 ≤ B are trivial bounds for single user capacity. We will prove the
remaining bound d1 + d2 ≤ min(A + C,B + D). Note that the outer bound argument is a gener-
alization of the combinatorial argument introduced in [2]. To avoid repetition, and due to space
limitations, we will omit some of the detailed explanations for similar steps in [2].

3Interference enhancement is also sometimes referred to as “interference forwarding” [11] when relays are involved.
We prefer the terminology interference enhancement for the broadcast channel without relays per se.
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Step 1: Deterministic Channel Model. The deterministic channel model has inputs X̄1(t), X̄2(t) ∈
Z and outputs Ȳ1(t), Ȳ2(t) ∈ Z, defined as

Ȳ1(t) = bP̄α11−max(α11,α21)G11(t)X̄1(t)c+ bP̄α12−max(α12,α22)G12(t)X̄2(t)c (12)

Ȳ2(t) = bP̄α21−max(α11,α21)G21(t)X̄1(t)c+ bP̄α22−max(α12,α22)G22(t)X̄2(t)c (13)

such that

X̄1(t) ∈ {0, 1, · · · , dP̄max(α11,α21)e}, ∀t ∈ N (14)

X̄2(t) ∈ {0, 1, · · · , dP̄max(α12,α22)e}, ∀t ∈ N (15)

Recall that P̄ =
√
P .

Step 2: Fano’s Inequality.

n(R1 +R2) ≤ nmax(α21, α22) log(P̄ ) +
[
H(Ȳ

[n]
1 |W2, G

[n])−H(Ȳ
[n]

2 |W2, G
[n])
]

+n o log(P̄ )) + o(n) (16)

Step 3: Functional Dependence. As in [2], without loss of generality

(X̄
[n]
1 , X̄

[n]
2 ) = f(Ȳ

[n]
1 ,W2, G

[n]
11 , G

[n]
12 ) (17)

⇒ Ȳ
[n]

2 = f(Ȳ
[n]

1 ,W2, G
[n]) (18)

where a = f(b) denotes that a is some function of b.
Step 4: Aligned Image Sets. For given W2 and channel realization G[n], define S

Ȳ1
[n](G[n],W2)

as the set of all codewords (X̄
[n]
1 , X̄

[n]
2 ) that produce the same output, Ȳ2

[n]
, at receiver 2, as is

produced at receiver 2 by the codeword that produces Ȳ
[n]

1 at receiver 1.

H(Ȳ1
[n]
, S

Ȳ1
[n] |W2, G

[n]) (19)

= H(Ȳ1
[n]|W2, G

n) +H(S
Ȳ1

[n] |W2, G
[n], Ȳ1

[n]
) (20)

= H(Ȳ1
[n]|W2, G

n) (21)

= H(S
Ȳ1

[n] |W2, G
[n]) +H(Ȳ1

[n]|S
Ȳ1

[n] ,W2, G
[n])

= H(Ȳ2
[n]|W2, G

[n]) +H(Ȳ1
[n]|S

Ȳ1
[n] ,W2, G

[n]) (22)

≤ H(Ȳ2
[n]|W2, G

[n]) + E[log |S
Ȳ1

[n] |] (23)

≤ H(Ȳ2
[n]|W2, G

[n]) + log
(

E[|S
Ȳ1

[n] |]
)

(24)

From (21) and (24) we have

H(Ȳ1
[n]|W2, G

n)−H(Ȳ2
[n]|W2, G

[n]) ≤ log
(

E[|S
Ȳ1

[n] |]
)

So it only remains to bound the average size of an aligned image set E[|S
Ȳ1

[n] |].

E[|S
ȳ
[n]
1

|] =
∑

ȳ′
n
1∈{Ȳ1

[n]}

P
(
ȳ′
n
1 ∈ Sȳ[n]1

)
(25)
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Step 5. Probability that Images Align. Given G
[n]
11 , G

[n]
12 , consider two distinct realizations of

user 1’s output sequence Ȳ
[n]

1 , denoted as λ[n] and ν[n], which are produced by the corresponding

two realizations of the codeword (X
[n]
1 , X

[n]
2 ) denoted by (λ

[n]
1 , λ

[n]
2 ) and (ν

[n]
1 , ν

[n]
2 ), respectively.

λ(t) = bP̄α11−max(α11,α21)G11(t)λ1(t)c+ bP̄α12−max(α12,α22)G12(t)λ2(t)c (26)

ν(t) = bP̄α11−max(α11,α21)G11(t)ν1(t)c+ bP̄α12−max(α12,α22)G12(t)ν2(t)c (27)

We wish to bound the probability that the images of these two codewords align at user 2, i.e.,
ν[n] ∈ Sλ[n] . For simplicity, consider first the single channel use setting, n = 1. For ν ∈ Sλ we must
have

bP̄α21−max(α11,α21)G21ν1c+ bP̄α22−max(α12,α22)G22ν2c
= bP̄α21−max(α11,α21)G21λ1c+ bP̄α22−max(α12,α22)G22λ2c (28)

So for fixed value of G22 the random variable P̄α21−max(α11,α21)G21(ν1−λ1) must take values within
an interval of length no more than 4. If ν1 6= λ1, then G21 must takes values in an interval of length
no more than 4

P̄α21−max(α11,α21)|ν1−λ1|
, the probability of which is no more than 4fmax

P̄α21−max(α11,α21)|ν1−λ1|
.

Similarly, for fixed value of G21 the random variable P̄α22−max(α12,α22)G22(ν2−λ2) must take values
within an interval of length no more than 4. If ν1 = λ1 then, because ν 6= λ, we must have ν2 6= λ2,
then the probability of alignment is similarly bounded by 4fmax

P̄α22−max(α12,α22)|ν2−λ2|
.

Next we will bound the max of P̄α21−max(α11,α21)|ν1 − λ1| and P̄α22−max(α12,α22)|ν2 − λ2|. From
(26) and (27) we have

|λ− ν| ≤ 2 + P̄α11−max(α11,α21)|G11||λ1 − ν1|+ P̄α12−max(α12,α22)|G12||λ2 − ν2| (29)

≤ 2 + 2∆2P̄
max(α11−α21,α12−α22,0)

×max(P̄α21−max(α11,α21)|ν1 − λ1|, P̄α22−max(α12,α22)|ν2 − λ2|) (30)

So, if |λ− ν| > 2, the probability of ν ∈ Sλ is no more than

8∆2fmaxP̄
max(α11−α21,α12−α22,0)

|λ− ν| − 2
(31)

Now let us return to the case of general n, where we similarly have,

P(λ[n] ∈ Sν[n]) ≤ (8∆2fmax)nP̄max(α11−α21,α12−α22,0) ×
∏

t:|λ(t)−ν(t)|>2

1

|λ(t)− ν(t)| − 2
(32)

Step 6. Bounding the Expected Size of Aligned Image Sets.

E(|Sν[n] |) =
∑

λn∈{Ȳ1[n]}

P (λn ∈ Sν[n]) (33)

≤ (8∆2fmax)nP̄nmax(α11−α21,α12−α22,0)

n∏
t=1

 ∑
λ(t):|λ(t)−ν(t)|≤2

1 +
∑

λ(t):2<|λ(t)−ν(t)|≤Qy

1

|λ(t)− ν(t)| − 2


≤ (8∆2fmax)nP̄nmax(α11−α21,α12−α22,0) ×

(
max(α11, α12) log(P̄ ) + o(log(P̄ ))

)n
(34)
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where Qy ≤ (2∆2 + 2)dP̄max(α11,α12)e. Substituting these bounds back into (16) we have

n(R1 +R2) ≤ nmax(α21, α22) log(P̄ )

+
[
H(Ȳ

[n]
1 |W2, G

[n])−H(Ȳ
[n]

2 |W2, G
[n])
]

+ n o log(P̄ )) + o(n) (35)

≤ nmax(α21, α22) log(P̄ ) + log E|Sν[n] |+ n o log(P̄ )) + o(n)

≤ n (max(α21, α22) + max(α11 − α21, α12 − α22, 0)) log(P̄ )

+ n o log(P̄ )) + o(n) (36)

So that we obtain the GDoF bound

d1 + d2 ≤ B +D (37)

By symmetry we also have the GDoF bound

d1 + d2 ≤ A+ C (38)

Together these two bounds give us d1 + d2 ≤ min(A+C,B+D), completing the proof of the outer
bounds for Theorem 1.

5.2 Achievability

The key idea for achievability is interference enhancement [11]. Before presenting the general
proof, let us convey the main insights through a simple example. Consider the symmetric setting
with α = 0.5, where we wish to achieve the sum-GDoF value of d1 + d2 = 1.5 through the tuple
d1 = 1, d2 = 0.5. To do this, let us split user 1’s message as W1 = (Wc,W1p) and user 2’s message
as W2 = W2p, where W1p acts as a private sub-message to be decoded only by user 1, W2p acts
as a private sub-message to be decoded only by user 2, while Wc acts as a common sub-message
that can be decoded by both users. Each sub-message carries 0.5 GDoF. Messages Wc,W1p,W2p

are encoded into independent Gaussian codebooks Xc, X1p, X2p, with powers E|Xc|2 = 1 − P−0.5,
E|X1p|2 = P−0.5 and E|X2p|2 = P−0.5. From the first transmit antenna, we send X1 = Xc + X1p

and from the second transmit antenna, X2 = Xc +X2p. Suppressing the time index for clarity, the
received signals are:

Y1 = P̄G11(Xc +X1p) + P̄ 0.5G12(Xc +X2p) + Z1

Y2 = P̄ 0.5G21(Xc +X1p) + P̄G22(Xc +X2p) + Z2

Receiver 1 first decodes the codeword Xc for the message Wc, treating everything else as noise.
The SINR value for this decoding is

|P̄G11 + P̄ 0.5G12|2(1− P−0.5)

1 + P (P−0.5)|G11|2 + P 0.5P−0.5|G12|2
≥ P ((∆1 − P̄−0.5∆2)+)2(1− P−0.5)

1 + P 0.5∆2
2 + ∆2

2

(39)

and the achievable rate (for real channels) is 0.5 log(1 + SINR) = 0.25 log(P ) + o(log(P )) =
0.5 log(P̄ ) + o(log(P )), which gives us the GDoF value dc = 0.5.

P (1− P−0.5)|G11(t)|2
(1 + P (P−0.5)|G11(t)|2 + P 0.5((1− P−0.5)|G12(t)|2 + P−0.5|G12|2))
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≥ (P − P 0.5)∆2
1

1 + P 0.5∆2
2 + (P 0.5 − 1)∆2

2 + |G12|2
(40)

After decoding Wc, receiver 1 is able to reconstruct codeword Xc and subtract its contribution
from the received signal. After this, receiver 1 decodes the codeword X1p for its desired message
W1, while treating the remaining signals as noise. The rate that is supported for this message is:

=
1

2
log

(
P (P−0.5)|G11|2

1 + P 0.5(P−0.5)|G12|2
)

≥ 1

2
log

(
P 0.5∆2

1

1 + ∆2
2

)
=

1

4
log(P ) + o(log(P )) =

1

2
log(P̄ ) + o(log(P ))

which gives us the GDoF value d1 = 0.5. Receiver 2 proceeds similarly, first decoding Xc for
Wc while treating all other signals as noise, which is feasible for dc = 0.5, and then reconstructs
and subtracts the contribution of Xc from its received signal. It finally decodes X2p for W2 while
treating the remaining signals as noise, which is feasible for d2 = 0.5. Thus, the GDoF achieved is
(d1, d2) = (d1p + dc, d2) = (0.5 + 0.5, 0.5) = (1, 0.5). Note the key role of interference enhancement,
in the encoding of Wc into Xc. This is interference for receiver 2, and yet by also sending it from
the stronger antenna (antenna 2) for user 2, the power of the interference at user 2 is enhanced
enough so that it can be decoded and subtracted by receiver 2, before proceeding to decode its
desired signal.

Now, for the general case of α11, α12, α21, α22 we present the achievability scheme for the point
d1 = A, d2 = min(A+C,B+D)−A. Note that the other point d1 = min(A+C,B+D)−B, d2 = B
is derived similarly, and the whole region is derived by time sharing. The four cases summarized
below cover all possibilities.

Consider the four cases of (α12 ≤ α11 and α21 ≤ α22), (α11 ≤ α12 and α22 ≤ α21), (α12 ≤
α11 and α22 ≤ α21), and (α11 ≤ α12 and α21 ≤ α22).

1. α12 ≤ α11 and α21 ≤ α22.

(a) α11 ≤ α21. Here W1 = Wc,W2 = W2p. E|Xc|2 = 1 − P−α11 and E|X2p|2 = P−α11 .
X1 = Xc, X2 = Xc +X2p. Achieves (d1 = α11, d2 = α22 − α11).

User 1’s message W1 acts as a common message to be decoded by both receivers and is
encoded into a Gaussian codebook Xc with power E|Xc|2 = 1−P−α11 . User 2’s message
acts as a private message decodable only by user 2, and is encoded into an independent
Gaussian codebook Xp with power E|X2p|2 = P−α11 . From the first transmit antenna
we send X1 = Xc and from the second transmit antenna, X2 = Xc + X2p. Receiver 1
decodes Xc treating everything else as noise to get its desired message W1 with d1 = α11

GDoF. Receiver 2 decodes and subtracts Xc while treating its own desired signal as
noise, and then decodes its desired signal to achieve d2 = α22 − α11 GDoF. Suppressing
the time index for clarity, the received signals are:

Y1 = P̄α11G11(Xc) + P̄α12G12(Xc +X2p) + Z1

Y2 = P̄α21G21(Xc) + P̄α22G22(Xc +X2p) + Z2
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Receiver 1 first decodes the codeword Xc for the message Wc, treating everything else
as noise. The SINR value for this decoding is

log(
Pα11((∆1 − P̄α12−α11∆2)+)2(1− P−α11)

1 + Pα12P−α11∆2
2

)

≥ α11 log(P ) + o(log(P )) (41)

and,

log(
Pα22((∆1 − P̄α21−α22∆2)+)2(1− P−α11)

1 + Pα22P−α11∆2
2

)

≥ α11 log(P ) + o(log(P )) (42)

so, both of the recievers can decode Xc. log(1 + SINR) ≥ α11 log(P ) + o(log(P )), which
gives us the GDoF value dc = α11.
After decoding Wc, receiver 2 is able to reconstruct codeword Xc and subtract its con-
tribution from the received signal. After this, receiver 2 decodes the codeword X2p for
its desired message W2, while treating the remaining signals as noise. The rate that is
supported for this message is:

= log

(
Pα22(P−α11)|G22|2

1

)
≥ (α22 − α11) log(P ) + o(log(P )) (43)

Receiver 2 proceeds similarly, first decoding Xc for Wc while treating all other signals as
noise, which is feasible for dc = α11, and then reconstructs and subtracts the contribution
of Xc from its received signal. It finally decodes X2p for W2 while treating the remaining
signals as noise, which is feasible for d2 = α22 − α11. Thus, the GDoF achieved is
(d1, d2) = (dc, d2p) = (α11, α22 − α11).

Note that when α11 = α12, the SINR value for decoding the message Wc by treating
everything as noise will be

log(EG11,G12

Pα11 |G11 +G12|2(1− P−α11)

1 + Pα12P−α11 |G12|2
)

log(
Pα11(1− P−α11)

1 + Pα12P−α11∆2
2

EG11,G12 |G11 +G12|2)

≥ α11 log(P ) + o(log(P )) (44)

where we used that for all m, EG11 |G11 + m|2 ≥ E{G11,|G11+m|> 1
2fmax

}|G11 + m|2 ≥
1

4f2max
Pr(|G11 +m| > 1

2fmax
) ≥ 1

8f2max
.

(b) α21 ≤ α12 ≤ α22. Here W1 = (Wc,W1p), W2 = (W2p). E|Xc|2 = 1 − P−α12 , E|X1p|2 =
P−α12 , and E|X2p|2 = P−α12 . X1 = Xc +X1p and X2 = Xc +X2p. Achieves (d1, d2) =
(α11, α22 − α12).

Split messages W1 = (Wc,W1p), and W2 = (W2p) which are encoded into independent
Gaussian codebooks Xc, X1p, X2p with powers E|Xc|2 = 1 − P−α12 , E|X1p|2 = P−α12 ,
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and E|X2p|2 = P−α12 . Send X1 = Xc +X1p and X2 = Xc +X2p. Both receivers decode
Xc and subtract it from their received signal to decode they private codewords. The
GDoF achieved is (d1, d2) = (α11, α22 − α12).

Similarly, let us split user 1’s message as W1 = (Wc,W1p) and split user 2’s message
as W1 = (Wc,W2p) where sub-messages Wc, W1p and W2p carries α12, α11 − α12 and
α22 − α12 GDoF respectively. Messages Wc,W1p,W2p are encoded into independent
Gaussian codebooks Xc, X1p, X2p, with powers E|Xc|2 = 1 − P−α12 , E|X1p|2 = P−α12 ,
and E|X2p|2 = P−α12 . From the first transmit antenna, we send X1 = Xc + X1p and
from the second transmit antenna, X2 = Xc +X2p. similar to the first case, both of the
recievers can decode Xc. log(1 + SINR) ≥ α12 log(P ) + o(log(P )), which gives us the
GDoF value dc = α12.
After decoding Wc, receiver 1 and 2 are able to reconstruct codeword Xc and subtract
its contribution from the received signal. After this, receiver 1 decodes the codewords
X1p for its desired message W1 and receiver 2 decodes the codewords X2p for its desired
message W2, while treating the remaining signals as noise. Similar to the first case,
d1p = α11 − α12, and, d2p = α22 − α12. Thus, the GDoF achieved is (d1, d2) = (d1p +
dc, d2p) = (α11, α22 − α12).

(c) α12 ≤ α21 ≤ α11. Here W1 = (Wc,W1p),W2 = W2p. E|Xc|2 = 1 − P−α21 , E|X1p|2 =
P−α21 , and E|X2p|2 = P−α21 . X1 = Xc +X1p, X2 = Xc +X2p. Achieves (d1 = α11, d2 =
α22 − α21).

In this case DoF pair of (d1 = α11, d2 = α22 − α21) is achievable similar to the case
α21 ≤ α12 ≤ α22, except that sub-messages Wc, W1p and W2p carries α21, α11 − α21

and α22−α21 GDoF respectively. Messages Wc,W1p,W2p are encoded into independent
Gaussian codebooks Xc, X1p, X2p, with powers E|Xc|2 = 1 − P−α21 , E|X1p|2 = P−α21 ,
and E|X2p|2 = P−α21 .

(d) α22 ≤ α12. (d1 = α11, d2 = 0) is achievable trivially.

2. (α11 ≤ α12 and α22 ≤ α21). This case is similar to the case (α12 ≤ α11 and α21 ≤ α22)
except the user indices are switched.

3. (α11 ≤ α12 and α21 ≤ α22). In this case, DoF pair of (d1 = α12, d2 = max(α12, α22) − α12)
is achievable as follows. If α22 ≤ α12 then (d1 = α12, d2 = 0) is trivial. If α22 ≥ α12,(d1 =
α12, d2 = α22 − α12) is achievable by only transmitting at the second antenna with the full
power α22. Here W2 = (W1p,W2p). E|X1p|2 = 1 − P−α12 , E|X2p|2 = P−α12 , and X2 =
X1p +X2p.

Y1 = P̄α12G12(X1p +X2p) + Z1

Y2 = P̄α22G22(X1p +X2p) + Z2

Its easy to check that receiver 1 and 2 can decode the codeword X1p for the message W1p,
treating everything else as noise. Moreover, after decoding W1p, receiver 2 is able to re-
construct codeword X1p and subtract its contribution from the received signal. After this,
receiver 2 decodes the codeword X2p for its desired message W2p, while treating the remaining
signals as noise.

4. (α12 ≤ α11 and α22 ≤ α21). If α21 ≤ α11 then (d1 = α11, d2 = 0) is trivial. If α21 ≥ α11,
then, (d1 = α11, d2 = α21 − α11) is achievable by only transmitting at the first antenna with
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the full power α21 similar to the case (α11 ≤ α12 and α21 ≤ α22). Here W1 = (W1p,W2p).
E|X1p|2 = 1− P−α11 , E|X2p|2 = P−α11 , and X1 = X1p +X2p.

This completes the proof of achievability.

6 Proof of Theorem 1: Complex Setting

Achievability for the complex setting is essentially identical to the real setting. Here we describe
the outer bound proof for the complex setting. The channel model for the complex setting is the
identical to the real setting described in Section 2, except that all symbols are complex and instead
of (3), The GDoF region is defined as

D =

{
(d1, d2) : ∃(R1(P ), R2(P )) ∈ C(P ) s. t. d1 = lim

P→∞

R1(P )

Co(P )
, d2 = lim

P→∞

R2(P )

Co(P )

}
(45)

where Co(P ) is the baseline reference capacity of an additive white Gaussian noise complex channel
Y = X + N with transmit power P and unit variance noise where for complex settings it is
log(P ) + o(log(P )). The deterministic channel model is described similar to the real setting as
follows.

The deterministic channel model has inputs X̄1(t), X̄2(t) ∈ C and outputs Ȳ1(t), Ȳ2(t) ∈ C,
defined as,

Ȳ1(t) = bP̄α11−max(α11,α21)G11(t)X̄1(t)c+ bP̄α12−max(α12,α22)G12(t)X̄2(t)c (46)

Ȳ2(t) = bP̄α21−max(α11,α21)G21(t)X̄1(t)c+ bP̄α22−max(α12,α22)G22(t)X̄2(t)c (47)

where the real and imaginary parts of the inputs, i.e. X̄kR(t) and X̄kI(t) are integers and satisfy
the following per-symbol power constraint

X̄1R(t), X̄1I(t) ∈ {0, 1, · · · , dP̄max(α11,α21)e}, ∀t ∈ N (48)

X̄2R(t), X̄2I(t) ∈ {0, 1, · · · , dP̄max(α12,α22)e}, ∀t ∈ N (49)

Similar to the real setting, define the set of channel coefficient variables

G
[n]
jk = {Gjk,R(t), t ∈ [n]} ∪ {Gjk,I(t), t ∈ [n]},∀j, k ∈ {1, 2}

where Gjk,R(t), Gjk,I(t) are the real and imaginary parts of Gjk(t), respectively. Define G[n] =⋃
j,k∈{1,2}G

[n]
jk . Similar to the real setting, ∀n ∈ N, and for all finite cardinality disjoint subsets

G1,G2 of G[n],

G1 ⊂ G[n],G2 ⊂ G[n],G1 ∩G2 = φ, |G1| <∞, |G2| <∞

the conditional PDF

∀G1, G2, fG1|T ,G2
(G1|T , G2) ≤ f |G1|

max .

The generalization of the proof to the complex channel coefficients setting is, for the most part,
straightforward based on the real case studied earlier. To avoid repetition, here we focus only on
the differences.
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Step 2: Fano’s Inequality.

n(R1 +R2) ≤ nmax(α21, α22) log(P ) +
[
H(Ȳ

[n]
1 |W2, G

[n])−H(Ȳ
[n]

2 |W2, G
[n])
]

+n o log(P̄ )) + o(n) (50)

Step 3: Functional Dependence. and Step 4: Aligned Image Sets. are exactly the same
as the real setting.

Step 5. Probability that Images Align. Similarly, given G
[n]
11 , G

[n]
12 , consider two distinct

realizations of user 1’s output sequence Ȳ
[n]

1 , denoted as λ[n] and ν[n], which are produced by the

corresponding two realizations of the codeword (X
[n]
1 , X

[n]
2 ) denoted by (λ

[n]
1 , λ

[n]
2 ) and (ν

[n]
1 , ν

[n]
2 ),

respectively.

λ(t) = bP̄α11−max(α11,α21){G11,R(t) + jG11,I(t)}{λ1,R(t) + jλ1,I(t)}c
+bP̄α12−max(α12,α22){G12,R(t) + jG12,I(t)}{λ2,R(t) + jλ2,I(t)}c (51)

ν(t) = bP̄α11−max(α11,α21){G11,R(t) + jG11,I(t)}{ν1,R(t) + jν1,I(t)}c
+bP̄α12−max(α12,α22){G12,R(t) + jG12,I(t)}{ν2,R(t) + jν2,I(t)}c (52)

We wish to bound the probability that the images of these two codewords align at user 2, i.e.,
ν[n] ∈ Sλ[n] . For simplicity, consider first the single channel use setting, n = 1. For ν ∈ Sλ we must
have

bP̄α21−max(α11,α21){G21,R(t) + jG21,I(t)}{ν1,R(t) + jν1,I(t)}c
+bP̄α22−max(α12,α22){G22,R(t) + jG22,I(t)}{ν2,R(t) + jν2,I(t)}c

= bP̄α21−max(α11,α21){G21,R(t) + jG21,I(t)}{λ1,R(t) + jλ1,I(t)}c
+bP̄α22−max(α12,α22){G22,R(t) + jG22,I(t)}{λ2,R(t) + jλ2,I(t)}c (53)

so, both the real and imaginary part of the two sides of the equality should be equal, or in the
other words,

P̄α21−max(α11,α21){G21,R(t){ν1,R(t)− λ1,R(t)} −G21,I(t){ν1,I(t)− λ1,I(t)}}
+P̄α22−max(α12,α22){G22,R(t){ν2,R(t)− λ2,R(t)} −G22,I(t){ν2,I(t)− λ2,I(t)}} ∈ [−2,+2](54)

P̄α21−max(α11,α21){G21,R(t){ν1,I(t)− λ1,I(t)}+G21,I(t){ν1,R(t)− λ1,R(t)}}
+P̄α22−max(α12,α22){G22,R(t){ν2,I(t)− λ2,I(t)}+G22,I(t){ν2,R(t)− λ2,R(t)}} ∈ [−2,+2](55)

Without loss of generality assume,

M
def
= P̄α21−max(α11,α21)|ν1,R(t)− λ1,R(t)| ≥ max{P̄α21−max(α11,α21)|ν1,I(t)− λ1,I(t)|

, P̄α22−max(α12,α22)|ν2,R(t)− λ2,R(t)|, P̄α22−max(α12,α22)|ν2,I(t)− λ2,I(t)|} (56)

Note that from (56), if ν1(t) 6= λ1(t) then ν1,R(t) 6= λ1,R(t). So, from (54) and (55) for fixed values
of G22,R, G22,I ,

P̄α21−max(α11,α21){G21,R(t){ν1,R(t)− λ1,R(t)} −G21,I(t){ν1,I(t)− λ1,I(t)}} ∈ [a− 2, a+ 2]

(57)

P̄α21−max(α11,α21){G21,R(t){ν1,I(t)− λ1,I(t)}+G21,I(t){ν1,R(t)− λ1,R(t)}} ∈ [b− 2, b+ 2]

(58)
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for some numbers a, b which are independent from G21,R(t), G21,I(t). So, by multiplying (57) and
(58) to |ν1,R(t)− λ1,R(t)| and |ν1,I(t)− λ1,I(t)| respectively and then summing together, it can be
concluded that both the G21,R(t) and G21,I(t) can get value within an interval with the length of
8
M . So, the probability of alignment is computed similar to the real case, and is bounded by 64f2max

M2 .
Next, we will bound <|λ(t)− ν(t)| and, =|λ(t)− ν(t)| from above.

<|λ(t)− ν(t)| ≤ 2 + P̄α11−max(α11,α21)|G11,R(t)||ν1,R(t)− λ1,R(t)|
+P̄α11−max(α11,α21)|G11,I(t)||ν1,I(t)− λ1,I(t)|
+P̄α12−max(α12,α22)|G12,R(t)||ν2,R(t)− λ2,R(t)|
+P̄α12−max(α12,α22)|G12,I(t)||ν2,I(t)− λ2,I(t)|

≤ 2 +M × P̄max(α11−α21,α12−α22) × {|G11,R(t)|+ |G11,I(t)|+ |G12,R(t)|+ |G12,I(t)|}
(59)

=|λ(t)− ν(t)| ≤ 2 + P̄α11−max(α11,α21)|G11,I(t)||ν1,R(t)− λ1,R(t)|
+P̄α11−max(α11,α21)|G11,R(t)||ν1,I(t)− λ1,I(t)|
+P̄α12−max(α12,α22)|G12,I(t)||ν2,R(t)− λ2,R(t)|
+P̄α12−max(α12,α22)|G12,R(t)||ν2,I(t)− λ2,I(t)|

≤ 2 +M × P̄max(α11−α21,α12−α22) × {|G11,R(t)|+ |G11,I(t)|+ |G12,R(t)|+ |G12,I(t)|}
(60)

so for max(<|λ(t)− ν(t)|,=|λ(t)− ν(t)|) > 2 using (59) and (60), the probability of alignment

which was bounded by 64f2max
M2 can be bounded by

64f2
max

M2

≤ 1024f2
max∆2

2P̄
2 max(α11−α21,α12−α22)

max(<|λ(t)− ν(t)| − 2,=|λ(t)− ν(t)| − 2)2

≤ 1024f2
max∆2

2P̄
2 max(α11−α21,α12−α22)

max(<|λ(t)− ν(t)| − 2, 1) max(=|λ(t)− ν(t)| − 2, 1)
(61)

For max(<|λ(t)− ν(t)|,=|λ(t)− ν(t)|) ≤ 2 the probability of alignment is bounded by one. Now
let us return to the case of general n, where we similarly have,

P(λ[n] ∈ Sν[n]) ≤ max(1, 1024f2
max∆2

2P̄
2 max(α11−α21,α12−α22))n ×

∏
t:max(<|λ(t)−ν(t)|,=|λ(t)−ν(t)|)>2

1

max(<|λ(t)− ν(t)| − 2, 1) max(=|λ(t)− ν(t)| − 2, 1)
(62)
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Step 5. Bounding the Expected Size of Aligned Image Sets.

E(|Sν[n] |) =
∑

λn∈{Ȳ1[n]}

P (λn ∈ Sν[n]) (63)

≤ max(1024f2
max∆2

2, 1)nP̄ 2nmax(α11−α21,α12−α22,0)

×
n∏
t=1

 ∑
<|λ(t)−ν(t)|:<|λ(t)−ν(t)|≤2

1 +
∑

<|λ(t)−ν(t)|:2<<|λ(t)−ν(t)|≤Qy

1

<|λ(t)− ν(t)| − 2


×

n∏
t=1

 ∑
=|λ(t)−ν(t)|:=|λ(t)−ν(t)|≤2

1 +
∑

=|λ(t)−ν(t)|:2<=|λ(t)−ν(t)|≤Qy

1

=|λ(t)− ν(t)| − 2


≤ max(1024f2

max∆2
2, 1)nP̄ 2nmax(α11−α21,α12−α22,0) ×

(
max(α11, α12) log(P̄ ) + o(log(P̄ ))

)2n
where Qy ≤ (2∆2 + 2)dP̄max(α11,α12)e. Substituting these bounds back into (50) we have

n(R1 +R2) ≤ nmax(α21, α22) log(P )

+
[
H(Ȳ

[n]
1 |W2, G

[n])−H(Ȳ
[n]

2 |W2, G
[n])
]

+ n o log(P )) + o(n) (64)

≤ nmax(α21, α22) log(P ) + log E|Sν[n] |+ n o log(P )) + o(n)

≤ n (max(α21, α22) + max(α11 − α21, α12 − α22, 0)) log(P )

+ n o(log(P )) + o(n) (65)

So that we obtain the GDoF bound

d1 + d2 ≤ B +D (66)

By symmetry we also have the GDoF bound

d1 + d2 ≤ A+ C (67)

Together these two bounds give us d1 + d2 ≤ min(A+C,B+D), completing the proof of the outer
bounds for Theorem 1.

7 Proof of Theorem 2

For this proof, let us consider the three regimes of weak interference channel, mixed interference
channel, strong interference channel based on IC1

Weak interference channel regime (α11 ≥ α21 and α22 ≥ α12). Within this regime, con-
sider the following three cases

1. max(α12, α21) ≤ min(α11, α22). In this case, from the [4] and [12] we have,

S(IC1) = min(α11 + α22 −max(α12, α21), α11 + α22 − α12 − α21 +D1) (68)

S(IC2) = min(α11, α22) (69)

S1(X) = α11 + α22 − α12 − α21 + min(D1, D2, D3, D4) (70)

So(BC) = α11 + α22 −max(α12, α21) (71)
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where D1, D2, D3, D4 are defined in [12]. Note that, from (68), (70), and (71) we have,
min(So(BC), S1(X)) ≤ S(IC1) ≤ max(S(IC1), S(IC2)) ≤ So(BC). Moreover, we also know
that, for any arbitrary parameters max(SIC,1, SIC,2) ≤ SX . Therefore (12) holds.

2. α12 ≤ α22 ≤ α21 ≤ α11. We have max(S(IC1), S(IC2)) = So(BC) = α11, i.e., (12) holds.

3. α21 ≤ α11 ≤ α12 ≤ α22. We have max(S(IC1), S(IC2)) = So(BC) = α22. So (12) holds.

Mixed interference channel regime. Without loss of generality, assume α11 ≥ α21, α12 ≥
α22. So, in this setting, we have max(S(IC1), S(IC2)) = So(BC) = max(α11, α12), i.e., (12) holds.

Strong interference channel regime. The strong interference regime maps to the weak
interference regime by a relabeling of parameters. So, (12) holds here as it does in the weak
interference regime.

8 Conclusion

The approach of [2] is developed further to fully characterize the GDoF region of the two user
interference channel with partial (X channel) and full (BC) transmitter cooperation, under finite
precision CSIT. While the benefits of interference alignment disappear, and along with it the non-
trivial benefits of partial cooperation, full cooperation shows a remarkable benefit, which is shown
to be due entirely to interference enhancement. While interference alignment (under perfect CSIT)
was useful mainly when channels were of comparable strength, interference enhancement becomes
more powerful as the disparity between channel strengths increases.
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